Publications
- [23a] Kay R"ulling and Shuji Saito,
Ramification theory of reciprocity sheaves, I; Zariski-Nagata purity
to appear in J. Reine Angew. (2023)
|PDF|
- [23b] F. Binda, A. Merici and S. Saito,
Derived log Albanese sheaves,
to appear in Advances in Math. (2023)
|PDF|
- [23c] F. Binda, A. Krishna and S. Saito,
Bloch's formula for 0-cycles with modulus and higher dimensional class field theory,
to appear in J. of Algebraic Geometry (2023)
|PDF|
- [23d] A. Merici and S. Saito,
Cancellation theorems for reciprocity sheaves,
to appear in Algebraic Geometry (2023)
|PDF|
- [23e] M. Kerz, S. Saito, G. Tamme,
K-theory of non-archimedean rings II,
to appear in Nagoya J. Math (2023)
|PDF|
- [23f] S. Saito,
Reciprocity sheaves and logarithmic motives,
Compositio Math. 159 (2023), no. 2, 355-379.
|PDF|
- [23g] Kay R"ulling and Shuji Saito,
Cycle class maps for Chow groups of zero-cycles with modulus,
J. of Pure and Applied Algebra 227 (2023), no. 5, Paper No. 107282.
|PDF|
- [22a] F. Binda, K. R"ulling and S. Saito,
On the cohomology of reciprocity sheaves,
Forum of Math. Sigma. 10 (2022), Paper No. e72, 111 pp.
|PDF|
- [22b] B. Kahn, H. Miyazaki, S. Saito and T. Yamazaki,
Motives with modulus, III: The category of motives,
Annals of K-theory 7 (2022), no. 1, 119--178.
|PDF|
- [22c] B. Kahn, S. Saito and T. Yamazaki,
Reciprocity sheaves, II,
Homology Homotopy Appl. 24 (2022), no. 1, 71--91.
|PDF|
- [22d] M. Kerz and S. Saito,
Correction to the article Lefschetz theorem for abelian fundamental group with modulus,
Algebra and Number Theory, 16 (2022), no. 8, 2001-2003
|PDF|
- [21a] K. R"ulling and S. Saito,
Reciprocity sheaves and their ramification filtrations,
J. Inst. Math. Jussieu. (2021) 1-74.
doi:10.1017/S1474748021000074.
|PDF|
- [21b] B. Kahn, H. Miyazaki, S. Saito and T. Yamazaki,
Motives with modulus, I: Modulus sheaves with transfers for non-proper modulus pairs,
Epijournal de Geometrie Algebrique 5 (2021), no. 1, 1--62.
|PDF|
- [21c] B. Kahn, H. Miyazaki, S. Saito and T. Yamazaki,
Motives with modulus, II: Modulus sheaves with transfers for proper modulus pairs,
Epijournal de Geometrie Algebrique 5 (2021), no. 2, 1--40.
|PDF|
- [21d] S. Kelly and S. Saito,
Smooth blowup square for motives with modulus,
Bulletin Polish Acad. Sci. Math., 69 (2021) no.2, pp.97-106.
|PDF|
- [20a] S. Saito,
Purity of reciprocity sheaves,
Advances in Math. 365 (2020), 107067, 70 pp.
|PDF|
- [20b] M. Kerz, S. Saito and G. Tamme,
Towards a non-archimedean analytic analog of the Bass-Quillen conjecture,
J. Inst. Math. Jussieu 19 (2020), no. 6, 1931--1946
|PDF|
- [20c] S. Saito and K. Sato,
On p-adic vanishing cycles of log smooth families,
Tunisian J. Math. 2 (2020), no. 2, 309--335.
- [20d] V. Cossart, U. Jannsen and S. Saito,
Desingularization: Invariants and Strategy: Application to Dimension 2,
Lecture Notes in Mathematics. 2270 (2020), Springer-Verlag, Berlin
|PDF|
- [19a] M. Kerz, S. Saito and G. Tamme,
K-theory of non-archimedean rings I,
Documenta Math. 24 (2019), 1365--1411
|PDF|
- [19b] F. Binda and S. Saito,
Relative cycles with moduli and regulator maps,
J. Inst. Math. Jussieu. 18 (2019), no 6, 1233--1293
|PDF|
- [18a] K. R"ulling and S. Saito,
Higher Chow groups with modulues and relative Milnor K-theory,
Trans. AMS. 370 (2018), 987--1043
|PDF|
- [18b] U. Jannsen, S. Saito and Y. Zhao,
Duality for relative logarithmic de Rham-Witt sheaves and wildly ramified class field theory over finite fields,
Compositio Math. 154 (2018), 1306--1331
|PDF|
- [17] S. Kelly and S. Saito,
Weight homology of motives,
Internatinal Math. Research Notices. 13 (2017), 3938--3984
|PDF|
- [16a] B. Kahn, S. Saito and T. Yamazaki,
Reciprocity sheaves, I,
Compositio Math. 152 , no. 9 (2016), 1851--1898
|PDF|
- [16b] M. Kerz and S. Saito,
Chow group of 0-cycles with modulus and higher dimensional class field theory,
Duke Math. J. 165 , no. 15 (2016), 2811--2897
|PDF|
- [14a] S. Saito and K. Sato,
Zero-cycles on varieties over p-adic fields and Brauer groups,
Ann. Sci. Ecole Norm. Sup. 47 (2014), 505--537
|PDF|
- [14b] M. Kerz and S. Saito,
Lefschetz theorem for abelian fundamental group with modulus,
Algebra and Number Theory, 8 (2014), 689--702
|PDF|
- [14c] U. Jannsen, S. Saito and K. Sato,
Etale duality for constructible sheaves on arithmetic schemes,
J. Reine Angew. 688 (2014), 1--65
|PDF|
- [13] M. Kerz and S. Saito,
Cohomologicla Hasse principle and resolution of quotient singularities,
New York J. Math. 19 (2013), 597--645
|PDF|
- [12a] M. Kerz and S. Saito,
Cohomological Hasse principle and motivic cohomology of arithmetic schemes,
Publ. Math. IHES 115 (2012), 123--183
|PDF|
- [12b] U. Jannsen and S. Saito,
Bertini theorems and Lefschetz pencils over discrete valuation rings, with applications to higher class fileld theory,
J. of Algebraic Geometry 21 (2012), 683--705
|PDF|
- [11] S. Saito,
Cohomological Hasse principle and motivic cohomology of arithmetic schemes,
Proceedings of the International Congress of Mathematicians,
Hyderabad, India, 2010.
|PDF|
- [10a] S. Saito and K. Sato,
A finite theorem for zero-cycles over p-adic fields,
Annals of Mathematics 172 (2010), 593--639 |PDF|
- [10b] S. Saito and K. Sato,
A p-adic regulator map and finiteness results
for arithmetic schemes,
Documenta Math. Extra Volume: Andrei A. Suslin's Sixtieth Birthday (2010), 525-594
|PDF|
- [10c] S. Saito,
Recent progress on the Kato conjecture,
in: Quadratic forms, linear algebraic groups, and cohomology,
Developments in Math. 18 (2010), 109--124
|PDF|
- [08a] M. Asakura and S. Saito,
Maximal components of Noether-Lefschetz locus for Beilinson-Hodge cycles,
Math. Annalen 341 (2008), 169--199
|PDF|
- [08b] M. Asakura and S. Saito,
Surfaces over a p-adic field with infinite torsion in the Chow group of 0-cycles,
Algebra and Number Theory 1 (2008), 163--181
|PDF|
- [07a] J. Lewis and S. Saito,
Algebraic cycles and Mumford-Griffiths invariants,
Amer. J. Math. 129 (2007), 1449-1499
|PDF|
- [07b] M. Asakura and S. Saito,
Beilinson's Hodge conjecture with coefficient for open complete intersections, in: Algebraic cycles and Motives Volume 2 (for J. Murre's 75--th Birthday)
London Math. Society Lecture Note Series 344 (2007), 3--37 |PDF|
- [06a] M. Asakura and S. Saito,
Noether-Lefschetz locus for Beilinson-Hodge cycles I,
Math. Zeit. 252 (2006), 251--237
- [06b] M. Asakura and S. Saito,
Generalized Jacobian rings for open complete intersections,
Math. Nachr. 279 (2006), 251--237
- [04] S. Saito,
Beilinson's Hodge and Tate conjectures,
in: Transcendental Aspects of Algebraic Cycles,
London Math. Society Lecture Note Series 313 (2004), 276--289
- [03a] S. M"uller-Stach and S. Saito,
On K_1 and K_2 of algebraic surfaces,
K-Theory 30 (2003), 37--69
- [03b] U. Jannsen and S. Saito,
Kato homology of arithmetic schemes and higher class field theory over local fields,
Documenta Math. Extra Volume: Kazuya Kato's Fiftieth Birthday, (2003), 479--538
- [02a] S. Saito,
Higher normal functions and Griffiths groups,
J. of Algebraic Geometry 11 (2002), 161-201
- [02b] S. Saito,
Infinitesimal logarithmic Torelli problem for degenerating hypersurfaces in P^n,
in: Algebraic Geometry 2000, Azumino,
Advanced Studies in Pure Math. 36 (2002), 401--434
- [00a] S. Saito,
Motives, Algebraic Cycles and Hodge theory,
in: The Arithmetic and Geometry of Algebraic Cycles,
CRM Proceedings and Lecture Notes 24 (2000), 235--253, American Mathematical Society
- [00b] S. Saito,
Motives and Filtrations on Chow groups, II,
in: The Arithmetic and Geometry of Algebraic Cycles,
NATO Science Series 548 (2000), 321--346, Kluwer Academic Publishers
- [96a] S. Saito,
Motives and Filtrations on Chow groups,
Invent. Math. 125 (1996), 149--196
- [96b] A. Langer and S. Saito,
Torsion zero-cycles on the self-product of a modular elliptic curve,
Duke Math. J. 85 (1996), 315--357
- [96c] J.-L. Colliot-Th'el`ene and S. Saito,
Z'ero-cycles sur les vari'et'es p-adiques et groupe de Brauer,
Internatinal Math. Research Notices 4 (1996), 151--160
- [95] S. Saito and R. Sujatha,
A finiteness theorem for cohomology of surfaces over p-adic fields and an application
to Witt groups,
Proceedings of Symposia in Pure Math. 58 Part II (1994), 403--416, AMS
- [94] S. Saito,
Cohomological Hasse principle for a threefold over a finite field,
in: Algebraic K-theory and Algebraic Topology,
NATO ASI Series, 407 (1994), 229--241,
Kluwer Academic Publishers
- [93] S. Saito,
A global duality theorem for varieties over global fields,
in: Algebraic K-theory: Connections with Geometry and Topology,
NATO ASI Series, 279 (1993), 425--444, Kluwer Academic Publishers
- [91a] S. Saito,
Torsion zero-cycles and etale homology of singular schemes,
Duke Math. J. 64 (1991), 71-83
- [91b] S. Saito,
On the cycle map for torsion algebraic cycles of codimension two,
Invent. Math. 106 (1991), 443--460
- [89a] S. Saito,
Arithmetic theory on an arithmetic surface,
Ann. of Math. 129 (1989), 547--589
- [89b] S. Saito,
Some observations on motivic cohomologies of arithmetic schemes,
Invent. Math. 98 (1989), 371--414
- [87a] K. Kato, S. Saito and T. Saito,
General fixed point formula for an algebraic surface
and the theory of Swan representations for two-dimensional local rings,
Amer. J. Math. 109 (1987), 1009--1042
- [87b] K. Kato, S. Saito and T. Saito,
Artin Characters for algebraic surfaces,
Amer. J. Math. 109 (1987), 49--76
- [87c] S. Saito,
Class field theory for two dimensional local rings,
in: Galois Representations and Arithmetic Geometry,
Advanced Studies in Pure Math. 12 (1987), 343-373
- [86a] S. Saito,
Arithmetic on two dimensional local rings,
Invent. Math. 85 (1986), 379--414
- [86b] K. Kato and S. Saito,
Global class field theory of arithmetic schemes,
Contemporary Math. 55 (1986), 255--331
- [85a] S. Saito,
Unramified class field theory of arithmetical schemes,
Ann. of Math. 121 (1985), 251--281
- [85b] S. Saito,
Class field theory for curves over local fields,
Journal Number Theory 21 (1985), 44--80
- [85c] K. Kato and S. Saito,
Unramified class field theory of arithmetical surfaces,
Ann. of Math. 118 (1985), 241--275
- [84] S. Saito,
Functional equations of L-functions of varieties over finite fields,
J. Fac. Sci. Univ. of Tokyo, Sec. IA 31 (1984), 287--296
- [83] K. Kato and S. Saito,
Two dimensional class field theory,
in: Galois groups and Their Representations,
Advanced Studies in Pure Math. 2 (1983), 103--152