DERIVED LOG ALBANESE SHEAVES

FEDERICO BINDA, ALBERTO MERICI AND SHUJI SAITO

ABSTRACT. We define higher pro-Albanese functors for every effective log motive over a
field k of characteristic zero, and we compute them for every smooth log smooth scheme
X = (X,0X). The result involves an inverse system of the coherent cohomology of the
underlying scheme as well as a pro-group scheme Alb'og(X ) that extends Serre’s semi-
abelian Albanese variety of X — |0X|. This generalizes the higher Albanese sheaves of
Ayoub, Barbieri-Viale and Kahn.
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1. INTRODUCTION

Let k be a perfect field and let X be a smooth, projective and geometrically connected
k-scheme. A very classical tool in the study of the geometry of X is given by the Albanese
variety Albx of X, the universal Abelian variety receiving a map from X (up to the
choice of a base point). When X is a smooth curve, the Albanese variety coincides with
the Jacobian variety Jac(X) of X, and essentially every invariant of X can be recovered
from it. In higher dimension, the Albanese variety is still an important tool for gathering
information about the Chow group CHy(X) of zero cycles of X. Extending the Albanese
map by linearity, there is in fact a well-defined morphism (now independent on the choice
of a base point)

(1.0.1) ax: CHy(X)? — Albx (k).

Much is known, at least conjecturally, about this map. If X is proper over an algebraically
closed field, a famous theorem of Rojtman [Roj80] asserts that ax is an isomorphism on
torsion subgroups (at least modulo p-torsion in characteristic p > 0, which was later fixed
by Milne [Mil82]). If & is finite, the kernel of ax can be explicitly determined by geometric
class field theory [KS83]. If k is the algebraic closure of a finite field, then a theorem of
Kato and Saito (see again [KS83]) asserts that ax is in fact an isomorphism, a statement
that is conjectured to be true even when k = Q as consequence of the Bloch-Beilinson
conjectures. This is far from being true over the complex numbers, as shown by Mumford.
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When X is no longer proper, both sides of (1.0.1) need to be modified. It is already clear
from the case of curves [Ser75] that one can consider a more general class of commutative
algebraic groups as the targets of maps from X, including Abelian varieties, tori, and their
extensions, i.e. semi-Abelian varieties. Serre [Ser60] (see also [FW84]) showed that the
problem of finding a universal map to a semi-Abelian variety has always a solution. The
corresponding universal object is now known as Serre’s Albanese variety: it agrees with
the usual Albanese variety if X is proper.

Using Serre’s semi-Abelian Albanese variety it is possible to extend the Albanese mor-
phism to every smooth quasi-projective variety', replacing the Chow group CHy(X) with
a different quotient of the free Abelian group of zero cycles of X, namely the Suslin ho-
mology group Hj(X). As observed by Spief and Szamuely [SS03], every semi-Abelian
variety, seen as étale sheaf on the big site Sm(k), has a natural structure of étale sheaf
with transfers, i.e. it enjoys an extra functoriality with respect to the category of finite
correspondences Cor(k) introduced by Suslin and Voevodsky. Since every map from an
affine space to a torus or to an Abelian variety is constant, such sheaves are moreover
A'-homotopy invariant.

These two facts are essentially enough to show that the assignment X — Albx (here
Albx is the non-connected algebraic group whose neutral component is exactly Serre’s
semi-Abelian Albanese?) can be promoted by left Kan extension to a motivic “realization”
functor

(1.0.2) L Alb: DM (k, Q) — D(HI< «(k, Q)

defined on the oo-category of Voevodsky’s effective motives D/\/lsz(k:,@), i.e. the full
subcategory of the derived oo-category of étale sheaves with transfers D(Shvi(k,Q))
whose objects are Al-local complexes, taking values in the derived co-category of the
Abelian category HI<; 4(k, Q) of 1-motivic sheaves with rational coefficients: this is the
full subcategory of étale sheaves with transfers generated under colimits by lattices (i.e.
étale sheaves L such that L(k) = Z") and semi-abelian varieties (see [ABV09, Prop. 1.3.8]).
It is naturally a full subcategory of the abelian category of homotopy invariant sheaves
with transfers.

This result, due to Ayoub and Barbieri-Viale [ABV09, Thm. 2.4.1] (extending Barbieri-
Viale and Kahn [BVK16] to non necessarily geometric motives) has several consequences.
First, it provides a construction of an Albanese map for arbitrary motives (in particular,
for every separated k-scheme of finite type, not necessarily smooth or proper), giving
for example vast generalizations of the theorem of Rojtman [BVK16, 13]. Second, the
Albanese functor is now a derived functor: it has higher homotopy groups L; Alb(M) =
(L Alb(M)) for every M € DM (k,Q), encoding information such as the Néron-Severi
group of a variety (see [BVK16, Thm. 9.2.3]). Moreover, the functor L Alb in (1.0.2) can

be identified with the left adjoint of the derived functor ig\/leﬂ of the natural embedding
HI< ¢ (k,Q) C Shvi(k,Q). Using this fact, one can show that igi\deﬁ is fully faithful,
and its essential image coincides with the stable co-category D./\/lefl(k,(@) generated by

the motives of curves. If we restrict ourselves to compact objects, D(HI<; ¢ (k,Q))~
coincides with the (bounded) derived category of the Abelian category of Deligne 1-motives
introduced in [Del74]. In fact, the properties of (1.0.2) are essential in the “motivic” proof

of Deligne’s conjectures on 1-motives, see [BVK16, Part 4] and [Vol13].

Our goal in this paper is to extend the picture sketched above in order to include a
more general kind of algebraic groups in the definition of the Albanese variety. Thanks to
Chevalley’s structure theorem, any connected commutative algebraic group over a perfect
field can be written as an extension of an Abelian variety by an affine smooth group scheme,

Lat least after inverting the exponential characteristic of the ground field, in an appropriate sense.
2This is necessary in order to make the assignment independent from the choice of a base point
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which splits as a product of a torus and a unipotent commutative group. As observed
by Serre, however, the problem of finding a universal map from a smooth variety X to
an arbitrary commutative algebraic group does not have a solution in general (namely,
when X is not proper), whence the classical restriction to semi-Abelian varieties. A
solution does, however, exist, if a bound on the dimension of the tangent spaces of the
maps is imposed. Let us assume that k has characteristic zero (and keep this assumption
throughout the rest of the Introduction, see Proposition 3.17). Faltings and Wiistholz
[FW84] realized that when X admits a smooth compactification X with normal crossing
boundary D, it is possible to use any finite dimensional subspace of the vector space
HY(X,Q%) to give such a bound. A natural choice is to use for n > 1 the subspaces
HO(X, Qly(nD)) of regular 1-forms on X having poles of order at most n along D. The

resulting universal object Alb(y nD) depends on the pair X := (X, nD) in a functorial
way. This gives a generalized Albanese morphism

ax @ Q: Qu(X) = Albym) ®z Q,

which is a surjective morphism of étale sheaves with transfers with rational coefficients
(here Qq-(X) denotes the étale sheaf of Q-vector spaces represented by X ). The generalized
Albanese Alby(n) is an extension of Serre’s semi-Abelian Albanese of X (independent on
the choice of the compactification X) by a unipotent group. If X is a curve, Alby) =
Jac(X,nD) is exactly the generalised Jacobian variety of Rosenlicht and Serre [Ser75],
and in higher dimension it is the generalised Albanese with modulus considered in [BS19],
[BK18] (see also [Rus08], [Rus13]).

By varying n, we get a pro-object in the category of commutative algebraic groups up
to isogeny gnn " Alby(n), which satisfies an obvious universal property, see Prop. 3.18.

In fact, we can give a finer result. Let RSCq; <1(k, Q) be the full (abelian) subcategory
of the category of étale sheaves with transfers Shvi(k, Q) generated under colimits by
commutative connected k-group schemes of finite type and lattices. Note that we clearly
have HIg <1 (k,Q) C RSCyq <1(k,Q). Write Comp(X) for the category of normal com-
pactifications X of X such that the complement X — X is the support of an effective
Cartier divisor.

Theorem 1.1. (see Thm. 4.27) Assume that the characteristic of k is zero. The embed-
ding RSCe <1(k, Q) C Shvi;(k,Q) has a pro-left adjoint:

(1.1.1) Alb: Shvi (k) — pro-RSCyq; <1,

induced by colimit from
Qur(X) > “1im” Alby
n

where X = (X, D) for a choice of X — X as above such that the support D of X — X is
a normal crossing divisor.

It is natural to ask for a derived version of the above Theorem, in the spirit of the result
of Ayoub, Barbieri-Viale and Kahn. However, since unipotent group schemes are Al-
contractible, (1.1.1) cannot be extended to DM (k, Q) in a non-trivial way, i.e. without
simply collapsing to the subcategory Hlg; <1 (k, Q), recovering (1.0.2).

Our solution to this difficulty is to extend the construction to a framework in which
A'-contractibility is no longer a problem. This is achieved by passing from the world of
algebraic geometry to the world of logarithmic algebraic geometry, in the sense of Fontaine,
Hlusie, Kato and others. Over a field k (seen as log scheme with trivial log structure),
we can, roughly speaking, replace schemes with log pairs X := (X,0X), where X is the
underlying k-scheme and 0X is a log structure supported on a Cartier divisor (the so-called
compactifying log structure associated to the open embedding of schemes X — [0X| — X).

For X a smooth log-smooth scheme (i.e. a log scheme such that the underlying scheme
is smooth and the log structure is supported on a normal crossing divisor, see 2.1.1), we
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can modify a bit the previous construction and consider a system (X, |0X |;eq + nD)n>1,
where X is a smooth compactification of X (which always exists under our characteristic
zero assumption) such that the reduced divisor |0X|,eq associated to the log structure on
X extends to a divisor on X and such that D = X — X is an effective Cartier divisor with
the property that D + |0X|;eq has normal crossings. We have then a pro-algebraic group

(1.1.2) AIb8(X) = “lim” Alb 5 |ox|. 4.y € Pro- RSCe; <1

which is an invariant of the log scheme X. Note that we recover the previous pro-Albanese
in the case where X = (X, triv), i.e. the scheme X seen as log scheme with trivial log
structure.

In order to exploit this formalism, we need another observation. Any commutative group
scheme G (not just semi-Abelian varieties) gives rise to an étale sheaf with transfers (still
denoted G) on Sm(k). As such, it belongs to the subcategory RSCg (k, Z) of Shv¥:(k,Z)
of reciprocity sheaves. Its objects satisfy the property that each section a € F(X) for any
X € Sm(k) “has bounded ramification”, i.e. that the corresponding map a: Zy.(X) — F
factors through a quotient ho(X) associated to a pair X = (X, D) where X is a proper
compactification of X and D is an effective Cartier divisor such that X = X —|D| (we refer
to such a pair as a Cartier compactification of X). Thanks to [Sai2l], every reciprocity
sheaf F'is logarithmic, i.e. it can be extended in a unique way to a functor Log(F') defined
on the category SmlSm(k) of smooth log smooth log schemes over k (see also [BM21] for
an alternative construction). In fact, we have that (with rational coefficients?)

Log(F) € logClLy, C Shvii (k,Q)

where Shvggt(k:,(@) is the category of dividing étale sheaves with log transfers introduced
in [BP®20, Section 3] (see also [BP©21]), i.e. sheaves for a certain Grothendieck topology
on the category 1ISm(k) of log smooth log schemes over k, equipped with an extra transfer
structure with respect to an extension of Voevodsky’s category of finite correspondences.
The topology is generated by étale covers of the underlying schemes together with admis-
sible blow-ups with center contained in the locus where the log structure is non-trivial.
The category logCI; is the Grothendieck abelian category [BM21, Thm. 5.7] of strictly
O := (P!, co)-invariant sheaves (here (P!, 00) denotes the log scheme P! with compact-
ifying log structure given by the open embedding A! <« P!). Again by [BM21, Thm.
5.7], it is the heart of a t-structure, called the homotopy t-structure, on the oco-category
of effective log motives logD M (k, Q) [BP?20], i.e. the full subcategory of the derived
oco-category D(Shv!iy (k, Q)) consisting of TO-local complexes. By Saito’s theorem, we have
actually a fully faithful embedding (see (2.10.2))

(1.1.3) wll: RSCy <1(k,Q) — logCly, C Shviik (k,Q),

and passing to the derived categories, a functor

e L—
WIPEPMT L D(RSCy <1 (K, Q) — D(Shvl (k, @) —2 logD M (k, Q),

where Lz is the localization functor.

If we put these facts together, we see that for each (X,0X) € SmISm(k), each smooth
compactification (X, |0X|+ D) € Comp(X) and n > 1, we can construct a strictly -
invariant sheaf (J)S%(Alb(x| DX |yea+n D)) defined on the category of log smooth log schemes
over k. With this input, the assignment X +— Alblog(X ) can be promoted to a functor
defined on the motivic category in the following way.

3Note that the result holds integrally if we replace the étale topology with the Nisnevich topology
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Theorem 1.2 (Theorems 5.1 and 5.15, Proposition 5.16). Assume that the characteristic

eff
of k is zero. The functor w?lgDM has a pro-left adjoint, the log motivic Albanese functor:

L AIb8: 1ogDM T (k, Q) — Pro-D(RSCy <1 (k,Q)).

which fits in a commutative diagram:

D(HI<, (k,Q)) —— Pro-D(RSCx, (k,Q))

LAlbg
L Ale TL Albles

DMZ (k,Q) ——— DM (k,Q) —— logDM (k,Q),

where L Alb<y is the (restriction of the) functor L Alb of Ayoub, Barbieri-Viale and Kahn
(1.0.2), w* is the natural comparison functor

w*: DM (k, Q) — logDM (k, Q),

which is fully faithful by [BPX20, Thm.8.2.16]. Moreover, the functor wISO{gDMCH is fully

faithful and its essential image is the full stable co-subcategory oflogDMeﬁ(k:, Q) generated
by w* DM (k,Q) and Galn].

The proof of the above theorem is fairly technical, and requires new ingredients com-
pared to the argument given in [ABV09] (among which some very explicit computations).
We would like to stress that the formalism of stable co-categories is essential to generalize
the usual construction of derived functors (via resolutions) to pro-adjoint functors between
derived categories, as we explain in Appendix A.

For X € SmISm(k), we determine the homotopy groups m; L Alb'°8(X) completely:

Theorem 1.3 (Theorem 6.1). Let X € SmlSm(k) geometrically connected and (X, D) a
Cartier compactification of X. Then we have that

“yLnE(Hi(X, OY(nD))V) Rk G)a for2 < i < dim(X)
“lim” | (HY(X,0+x(nD))/H (X,0%))V | @rGa .
. Jm X X ort=1
;L Alb" S(X) = BNS* (X —[8X]) f
Alb8(X)  (see (1.1.2)) fori=0
0 otherwise.

where NS*(X — |0X]|) is the dual torus to the Néron-Severi group of X —|0X|, and for V
a k-vector space, V' denotes its linear dual.

As an application, we can identify the compact objects of logD./\/leSfﬁ(k:,Q): our re-
sult generalizes [BVK16] on Deligne 1-motives to the case of étale Laumon 1-motives (or
“Deligne 1-motives with additive part”, see 7):

Theorem 1.4 (Theorem 7.16). Assume that k has characteristic zero. The functor

logD M=t . ., .
Weq preserves compact objects and it induces an equivalence

D' (M{ ¢ ® Q) = logDMEZ] (K, Q)
where the right hand side is the oo-subcategory of compact objects of logDM%ﬁl(k‘, Q)

1.1. Outline. We now give a brief outline of the contents of the various sections of this
paper.

In Section 2, we give a quick reminder of the theory of reciprocity sheaves and modulus
sheaves with transfers as developed in [KMSY21a], [KMSY21b], [KSY21] and [Sai20]. We
also give a quick recollection of the material in [BP?20] and [BM21] on logarithmic motives
and we prove some basic result with rational coefficients. In Section 3, we construct the
Albanese map with modulus as a universal object in the category of reciprocity sheaves
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and compare it with the usual Albanese map and the Albanese group scheme of [BK18].
In Section 4 we introduce the categories of n-reciprocity sheaves by a suitable modification
of the techniques of [ABV09]. We prove that the category of O-reciprocity sheaves agrees
with the category of O0-motivic sheaves of [ABV09]. We show the existence of a pro-left
adjoint Alb'°® of the fully faithful embedding of 1-motivic sheaves into the category of
dividing étale sheaves with log transfers, or “logarithmic sheaves” for short (again with
rational coefficients).

Section 5 is the most technical one: we prove that the category of logarithmic sheaves
admits enough BC-admissible objects (in the sense of the Appendix A) and deduce the
existence of a pro-left derived functor L Alb°®. The techniques in particular are fairly
different from the corresponding one in [ABV09], although the general structure of the
proof is similar. Next, we prove that the functor L Alb'® factors through logD M and
that on DM, it agrees with the motivic Albanese map of [ABV09] (note that this result

is optimal, see Remark 6.10). After that, we compute L Alb'°(G,) thanks to an explicit
resolution (the Breen-Deligne resolution of the algebraic group G,), deducing the full
faithfulness of the inclusion D(RSC<y ¢ )(k, Q) — logDM (k, Q).

In Section 6, we perform several computations, and we identify precisely L Alb(X) for
X € SmlSm(k), proving Theorem 1.3. We also pose some questions about the behaviour
of the higher pro-Albanese sheaves in some special geometric situations. In Section 7 we
consider the category of étale Laumon 1-motives, and prove that they are motivic in the
sense that their bounded derived category agrees with the category of compact objects in
the category of logarithmic 1-motives, as explained in Theorem 1.4.

Finally, in the Appendix A we introduce the notion of BC-admissible objects in a
stable co-category and generalise the notion of a derived functor to pro-adjuntions between
derived stable co-categories which are not in general induced by Quillen adjunctions.

Acknowledgements. The authors are deeply grateful to Joseph Ayoub for the many
insights and suggestions. F.B. wishes to thank Luca Barbieri-Viale for several useful
conversations. This project started while the first and the last named author were visiting
the Institut Mittag-Leffler in Djursholm, Sweden, during the special trimester program
“Algebro-Geometric and Homotopical Methods”, in the Spring 2017. Another part of this
project was written while the first author was a Postdoc at the University of Regensburg,
Germany and the last author was a visiting fellow there, both supported by the SFB 1085
“Higher Invariants”.

Warning 1.5. In the whole paper, we will commit the following abuse of notation: for G
a smooth commutative group scheme, we still write G for the associated étale sheaf with
transfers. For a ring A, we often write G € Shvg (X, A) for the sheaf G ®z A. Notice that
if A is torsion free, the functor _ ®7 A is exact, hence if

1-H—->G—-0Q—1
is an exact sequence of commutative algebraic groups, then
0>H®zA—>GRzA—>QRzA—0

is an exact sequence of étale sheaves with transfers.

2. RECIPROCITY SHEAVES AND LOGARITHMIC MOTIVES WITH RATIONAL COEFFICIENTS

We work over a fixed ground field k, which is assumed to be perfect. Let A be a
(commutative) ring of coefficients. In this section, we recall the main results on reciprocity
sheaves and logarithmic motives and we state some general results on the categories with
rational coefficients.

Let Sm(k) be the category of separated smooth schemes of finite type over k, and let
Cor(k) be the additive category of finite correspondences. It has the same objects as
Sm(k), and for X, Y € Sm(k), the hom group Cor(X,Y) is the free abelian group on the
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set of integral closed subschemes of X x Y which are finite and surjective over a connected
component of X (see [MVWO06, Def. 1.1]). We denote by PSh" (k, A) the category of
additive presheaves of A-modules on Cor(k), whose objects are called presheaves with
transfers. For X € Sm(k), we let Ay (X) = Cor(—, X) ®z A be the representable object.
For 7 the Nisnevich or the étale topology, we let Shv' (k, A) C PSh" (k, A) be the category
of T-sheaves with transfers and we let

a¥: PSh'(k,A) — Shv(k, A)

be Voevodsky’s T-sheafification functor: it is induced by the classical sheafification func-
tor defined on the category of presheaves of A-modules without transfers. Let HI C
PSh' (k, A) be the category of Al-invariant presheaves, i.e. objects F such that the pro-
jection X x A' — X induces an isomorphism F(X x A!) = F(X) for every X € Sm(k).
Set HI, = HINShvY(k,A) C Shv(k, A).

We recall the following result:

Proposition 2.1 ([MVWO06], Cor. 14.22, Prop. 14.23). Let A be a Q-algebra. Then for
every F € PSh" (k, A) we have anisF = agF. Moreover, for all smooth X and n > 0 we
have

Hﬁls(X’ F) = Hent(Xa F)

2.1. The oo-category of logarithmic motives. We recall the construction of the oo-
category of logarithmic motives of [BP?20] and some properties. The standard reference
for log schemes is [Ogul8]. We denote by 1Sm(k) the category of fine and saturated (fs
for short) log smooth log schemes over Spec(k), considered as a log scheme with trivial
log structure.

2.1.1. Log geometry. For X € 1Sm(k), we write X € Sch(k) for the underlying k-scheme.
We also write 0.X for the (closed) subset of X where the log structure of X is not trivial.
Let SmlSm(k) be the full subcategory of 1Sm(k) having for objects X € 1Sm(k) such
that X is smooth over k. By e.g. [BP020, A.5.10], if X € SmISm(k), then 0X is a strict
normal crossing divisor on X and the log scheme X is isomorphic to (X,0X), i.e. to the
compactifying log structure associated to the open embedding (X \ 0X) — X.

A morphism f: X — Y of fs log schemes is called strict if the log structure on X is the
pullback log structure from Y. Geometrically, if both X and Y are objects in SmlSm/(k),
this amounts to require that there is an equality 0X = f*(9Y) as reduced normal crossing
divisors on X. For 7 a Grothendieck topology on Sch(k), the strict topology st on
SmlSm(k) is the Grothendieck topology generated by covers {e;: X; — X} such that
e;: X; — X is a 7-cover and each e; is strict. Recall from [BP(®20, 3.1.4] that a cartesian
square of fs log schemes

vy %y

bl

X 2o X
is a dividing distinguished square (or elementary dividing square) if Y = X' = and f is a
log modifications, in the sense of F. Kato [Kat21] (see [BP(¥20, A.11.9] for more details on
log modifications). The collection of dividing distinguished squares forms a cd structure
on SmlISm(k), called the dividing cd structure. For 7 a Grothendieck topoogy on Sch(k),
the dividing topology dr on SmlISm(k) is the topology on SmISm(k) generated by the
strict topology s7 and the dividing cd structure.

From now until the end of the section, we will consider 7 € {Nis, ét}.

2.1.2. Correspondences and transfers. Following [BP(20], we denote by 1Cor(k) the cat-
egory of finite log correspondences over k. It is a variant of the Suslin—Voevodsky category
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of finite correspondences Cor (k). It has the same objects as SmISm(k)*, and morphisms
are given by the free abelian subgroup
ICor(X,Y) C Cor(X —0X,Y — 9Y)

generated by elementary correspondences V¢ C (X —0X) x (Y —9Y) such that the closure
V € X x Y is finite and surjective over (a component of) X and such that there exists
a morphism of log schemes V¥ — Y, where V¥ is the fs log scheme whose underlying
scheme is the normalization of V' and whose log structure is given by the inverse image log
structure along the composition VY — X x Y — X. See [BP¥20, 2.1] for more details,
and for the proof that this definition gives indeed a category.

Additive presheaves (of A-modules) on the category 1Cor(k) will be called presheaves
(of A-modules) with log transfers. Write PSh!"(k, A) for the resulting category. As usual,
for X € 1Cor(k) we denote by Ay, (X) the representable presheaf 1Cor(—, X) ®z A.
As in [BM21], we let SmISm(k) be the category of fs log smooth k-schemes X which
are essentially smooth over k, i.e. X is a limit yinie I X, over a filtered set I, where
X; € SmISm(k) and all transition maps are strict étale (i.e. they are strict maps of log
schemes such that the underlying maps f;;: X; — X; are étale). For X € SmISm(k) and
x € X, we put
(2.1.1) X" = (x",9Xx") € Sml1Sm(k)
where (X)" denotes the henselization of X at x and (9X)" denotes the pullback of X
along the henselization map. For F' € PSh'"(k,A) and X € SmlSm(k) such that X =
hm,  X; for X; € SmlSm(k) we put as usual F(X) := lim, F(X;).

We denote by Shvlif(k, A) C PSh'*(k, A) the subcategory of dr-sheaves. By [BP(®)20,
Prop. 4.5.4] and [BP®20, Thm. 4.5.7], the inclusion Shv!¥(k, A) ¢ PSh'(k, A) admits
an exact left adjoint ag, (see [BPO20, Prop. 4.2.10]), and the category Shvi(k,A) is
a Grothendieck abelian category ([BP©20, Prop. 4.2.12]). For 7 € {Nis,ét}, [BP©20,
Theorem 5.1.8] implies that for F € PSh!"(k, A) and X € 1Sm(k),

(2.1.2) Hg(X,a4,F) = lim  H (Y, a5 F).
vexgm
where X C?l‘\fl is the filtered category of log modifications Y — X such that Y € SmlSm(k).

The following statement can be shown by imitating the proof of [MVWO06, Prop. 14.23]
using (2.1.2).

Proposition 2.2. Let A be a Q-algebra and let F be an object of PSh'™(k, A). Then there
s a natural isomorphism
Hinis(X; aanis F) = He (X, aaqec ),
for all X € SmISm(k) and n > 0.
Finally, recall from [BP(¥20, (4.3.4)] that there is an adjunction
ooz

)
(2.2.1) Shv!¥(k, A) «——— Shv'(k,A)
wlog
where for Y € Cor(k), w;OgF(Y) = F(Y, triv) and for X € 1Cor(k), wi,F'(X) = F(X —
|0X]). We will need later the following immediate result.
Proposition 2.3. For all A € Shv¥ and B € Shvl¥’, we have that

* ~ * 1
7H0m5hvg;(k,1x) (B, wiogA) = wipgHomgy i 5 (WﬁOgBa A).

4Notice that this notation conflicts with the notation of [BPQ®20] where the objects were the same as
ISm(k), although the categories of sheaves are the same in light of [BP(?)20, Lemma 4.7.2]
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2.1.3. Log motives. In light of Proposition 2.2, from now until the end of the section, we
will consider one of the following situations:

e 7 is the Nisnevich topology

e 7 is the étale topology and A is a (Q-algebra.

Let D(Shvli(k, A)) be the derived stable co-category of the Grothendieck abelian cat-
egory Shvl¥(k,A) as in [Lurl?7, Section 1.3.5]: it is equivalent to the underlying oo-
category of the model category Cpx(PSh!'"(k, A)) with the dr-local model structure used
in [BPQ20] and [BM21].

The adjunction (wéog,wl*og) of (2.2.1) induces the following adjunction of co-categories
of sheaves (see [BP020, 4.3.4)):

(2.3.1) Lw®: D(Shvli (k, A)) 7= D(Shv¥(k,A)) : Ruf,.

Finally (see [BP®20, Section 5.2]), let O := (P!, o). Notice that w(0) = A*.

Definition 2.4. The stable co-category logD M (k, A) is the localization of the stable
oco-category D(ShvI™(k, A)) with respect to the class of maps

(aqr A0 x X))[n] = (aarA(X))[n]
for all X € 1Sm(k) and n € Z. We let
Li4rm): D(ShviiE(k, A)) — 1ogDM (K, A)
be the localization functor. For X € SmlSm(k), we will let M(X) = L, 5(A1:(X)).

The interested reader can verify that this is equivalent to the underlying oco-category of
the model category Cpx(PSh'"(k, A)) with the (O, dr)-local model structure of [BP@20,
Def. 5.2.1] and [BM21, Def. 2.9]. The derived (triangulated) category of effective log
motives logDM®T (k, A) is by definition the homotopy category of logDMT (K, A).

We recall the following result, which follows naturally from [BM21, Thm. 5.7]:

Theorem 2.5. The standard t-structure of D(Shv'™ (k, A) induces an accessible t-structure
on logDM® (k, A) compatible with filtered colimits in the sense of [Lurl7, Def. 1.3.5.20],
called the homotopy t-structure.

_ We denote by logCI,;, its heart®, which is then identified with the category of strictly
U-invariant dr-sheaves and it is a Grothendieck abelian category. The inclusion

i : 1ogCI,, < Shvli¥(k, A)

admits both a left adjoint Af*: F 70(L 4.7 (F0])) and a right adjoint RS, (see [BM21,
Proposition 5.8]), in particular it is exact.

2.2. Comparison with Voevodsky motives. In this subsection, we assume that k
admits resolution of singularities (see e.g. [BP©20, Def. 7.6.3] for a precise definition).
This assumption is always satisfied if ch(k) = 0.

Definition 2.6. Let X € Sm(k). A smooth Cartier compactification or simply a Cartier
compactification of X is a pair (X, D) where X € Sm(k) is proper and D C X is an
effective Cartier divisor with simple normal crossing such that X — |D| = X.

Note that if & admits resolution of singularities, every X € Sm(k) admits a (smooth)
Cartier compactification. This definition is slightly different from the one used in [KMSY?21a]
and [KMSY21b], where the total space X is not required to be smooth over k, but simply
normal. Under our assumption on k, this difference is irrelevant.

°In [BM21], it is denoted by CI'**
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y [BP©20, Prop. 8.2.12], the adjunction of (2.3.1) descends to an adjunction:
(2.6.1) LPw%%: 1logDM T (k, A) —— DM (k, ) : RD
.0. wﬁ . log s « 7’ s wlog

where the right hand side is the oo-category of Voevodsky motives. By [BP(?20, Thm.
8.2.16 and Thm. 8.2.17], the functor RDwf‘Og is fully faithful and for X € Sm(k) and

(X, D) a Cartier compactification we have a natural equivalence
RPwi,M(X) ~ M(X,0X)

with X supported on |D|. In particular, the essential image of Rle*Og is the full subcat-
egory spanned by M(X) with X € SmlSm(k) and X proper. Finally, by [BM21, Prop.
5.12] it is t-exact with respect to the homotopy t-structure of 2.5 on log DM (k, A) and
the Morel-Voevodsky t-structure on DMGH(/{,A). In particular, we have a fully faithful
functor (still denoted by wf‘og) HI, — logCI, between the hearts that commutes with
the inclusions. The following result will be crucial in the proof of Proposition 5.10:

Lemma 2.7. The functor wi,,: HI; — logCl,. admits a right adjoint (in particular it
commutes with all colimits) and is monoidal.

Proof. Since wl*og is fully faithful and by [BM21, Proposition 7.3] the composition logCI,;, C

log
Shvltr —> Shv'" is also fully faithful, we have that for F € HI, and G € logCI,,,
Homiogar,, (Wi F, G) = Homgny (w; 8w, F, w,*5G) = Hompn (F, h, (0, G)),

where hQ, : Shv}’ — HIL. is right adjoint to the inclusion (see [RS21, 4.34]). This proves

that hOA1 wéog is right adjoint to wikog’ which implies that wl*og commutes with all colimits.
Since the functor wj,, commutes with all colimits, it is enough to show that for XY €
Sm(k) we have

* 1 * 1 * 1
wlog(hOA (X X Y)) = wloghOA (X) ®logCI wloghOA (Y)v

where A, : Shv!' — HI is left adjoint to the inclusion (the 0-th Suslin homology sheaf).
Thanks to [BP?20, Proposition 8.2.4], for any choice of a smooth Cartier compactification
X > XandY CY, by putting as log structure X and 9Y associated with the simple
normal crossing d1V1sor X — X and Y — Y, we have equivalences in logDM®f:

RPwi, M2 (X) = M(X,0X) and RPwi,MA(Y) = M(Y,0Y).
By taking 7y, [BM21, Proposition 5.12] implies that
W (X) = h"(X,0X) and w*hd (V) = bl (Y, 0Y).
Hence, we have that
W (X) Droger A (V) = (K, 0X) @rogar B (7, 0Y) = WT((K, 0X) x (¥, 0Y)).

Finally, since the underlying scheme of (X,0X) x (Y,0Y) is X x Y, which is proper,
and the subscheme where the log structure is trivial is X x Y, we have that the log
scheme (X,0X) x (Y,9Y) is a Cartier compactification of X x Y, hence again by [BP?20,
Proposition 8.2.4] we have

Wi (X, 0X) x (Y,0Y)) 2 w*hf (X x V),

which concludes the proof. ]
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2.3. The abelian category of reciprocity sheaves. We recall the construction of the
abelian category of reciprocity sheaves via modulus sheaves of [KMSY21a] and [KMSY21b]
as done in [KSY21] and some properties.

A pair X = (X, D) where X is proper scheme of finite type over k and D is an effective
Cartier divisor on X is called a proper modulus pair if X —|D| € Sm(k). Let X = (X, Dx),
Y = (Y, Dy) be proper modulus pairs and I' € Cor(X — |Dx|,Y — |Dy|) be a prime
correspondence. Let I' € X x Y be the closure of T, and let ™ & X xY be the
normalization. We say that I' is admissible if (Dx)gn > (Dy)pnv as Weil divisors, where
(E)fzv denotes the pullback of the divisor F to the normalization ™. By [KMSY21a,
Proposition 1.2.7], proper modulus pairs and admissible correspondences define an additive
category, denoted MCor(k). For X = (X, D) and n > 0, we let ¥ := (X,nD).

We denote by MPST(k, A) or simply MPST the category of additive presheaves of A-
modules on MCor(k), whose objects are called proper modulus presheaves with trasnfers.
For X € MCor(k), we let Ay (X) = MCor(—,X) ®z A € MPST be the representable
object.

Definition 2.8. For X € Sm(k), we let Comp(X) be the cofiltered category given by
modulus pairs (X, D) given by Cartier compactifications of X (see [KMSY2la, Lemma
1.8.2] and Definition 2.6).

There is a functor:

w:MCor(k) — Cor(k) (X,D)— X —|D|,

which induces adjoint functors (cf. [KMSY21a, Pr. 2.2.1]):
w : MPST(k,A) —— PSh"(k,A) : w*
where w* is fully faithful. For X = (X, D) € MCor(k), we have
w'F(X) = F(w(X)) = F(X — |DJ).
The functor w) is given by left Kan extension, so that for X € Sm(k) and any choice of
X € Comp(X), we have
(2.8.1) wF(X) = lim  F(Q) = lim F(X™).
NeComp(X) n

where the displayed isomorphism follows from [Sai20, Lemma 1.27 (1)] (with XI = 0),
which implies that we have an isomorphism in pro- MPST:

“him " Ze (X)) = “1im” g comp(x) Zer(Y)-

As in the logarithmic case, let O := (P!,00) € MCor(k) and for any X = (X,D) €
MCor(k) let (see [KMSY21al)
Xe0:= (X xP,X xoo+DxPh.

We say F' € MPST is O-invariant if for any X € MCor(k), the projection p : X @0 — X
induces an isomorphism

p" F(X) - F(X®0O).
We let CI be the full subcategory of MPST consisting of all C-invariant objects. By
[KSY21, Lemma 2.1.2], it is a Serre subcategory of MPST and that the inclusion functor
iJ : CI — MPST has a left adjoint hoi and a right adjoint h% given for F' € MPST and
X € MCor(k) by

h
h

(F)(®) = Coker(ij —if : F(X © ) = F(%))
(F)(%) = Hom(hg (X), F),

de <O



12 FEDERICO BINDA, ALBERTO MERICI AND SHUJI SAITO

where for a € k the section i, : X — X ® U is induced by the map k[t] — k[t]/(t —a) = k.
We write RSC(k, A) C PSh* (k, A) for the essential image of CI under w. It is an abelian
subcategory of PSh' (k, A).

Remark 2.9. By (2.8.1), for F' € PSh*(k, A) the following conditions are equivalent:
(i) F € RSC(k,A),
(ii) for every X € Sm(k) and every section a : Zy(X) — F, there exists 9) €
Comp(X) such that a factors through Z, (X) — wghoi@)),
(iii) for every X € Sm(k) and every section a : Zy(X) — F, for any choice of X €
Comp(X) there exists n such that a factors through Z(X) — w!hoi(.’{(")).

For 7 the Nisnevich or the étale topology, we let RSC, (k, A) := RSC(k, A)NShv' (k, A).
The objects of RSC(k, A) (resp. RSC,(k,A)) are called reciprocity presheaves (resp. 7-
reciprocity sheaves) of A-modules. By [Sai20, Thm. 0.1], the Nisnevich sheafification
restricts to a functor

aXis: RSC(k,A) — RSChnis(k, A),
which makes RSChuis a Grothendieck abelian category (see [KSY21, Corollary 2.4.2]). No-
tice in particular that RSCyjs is closed under sub-objects and quotients in Shvi (k, A),
and that the inclusion functor i: RSCyis — Shv¥, (k, A) is exact. As in [KSY21, Theo-
rem 2.4.3 (1)], we denote by p the right adjoint to the inclusion .

By [Sai20, Theorem 0.2], each F' € RSCxis(k, A) satisfies global injectivity, i.e. for every
X € Sm connected with generic point nx, the restriction map gives an injective map:

F(X) = F(nx).

By Proposition 2.1, if A is a Q-algebra the étale sheafification coincides with the Nisnevich
sheafification, hence it restricts to a functor

ay. ~
(2.9.1) RSC(k,A) —2, RSCyis(k, A) +=— RSCg(k, A),
\/

in particular, if A is a Q-algebra, RSCg¢(k,A) is a Grothendieck abelian category and
every F' € RSCq(k, A) satisfies global injectivity.
We have two important examples of reciprocity sheaves:
(1) Let G* be the category of smooth commutative k-group schemes, locally of finite
type over k (i.e. G € G* such that the connected component of the identity G° is
a commutative algebraic gruop and mo(G) is finitely generated). It is classical that
the corresponding étale sheaf has a unique structure of sheaf with transfers (see
[SS03, Lemma 3.2]) and by [KSYR16, Theorem 4.4] it has reciprocity in the sense
of [KSYRI16, Definition 2.1.3]. This defines a functor G* — RSCg, generalizing
the functor G¥, — HIg considered in [BVK16].
(2) For € = (C,Cy) € MCor(k) with dim(C) = 1, let Pic(C, Cx) denote the relative
Picard group scheme. We would like to underline that C, is not supposed to be
reduced. By [RY16, Thm. 1.1] combined with [Sai20, Corollary 0.3], we have that

(2.9.2) WG (Zer (€)) = Pic(C, Cso).
We end this subsection recalling the following result:

Proposition 2.10. If A is a Q-algebra, the “forgetting transfers” functor RSCg(k, A) —
Shv (k, A) is fully faithful and exact.

Proof. The argument for homotopy invariant sheaves with transfers given in [BVK16, 3.9]
works here as well, replacing the reference to Voevodsky’s purity theorem for homotopy
invariant sheaves with the global injectivity provided by [Sai20, Theorem 0.2]. O
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2.4. Reciprocity sheaves and logarithmic motives. In this subsection, we continue
to assume that k satisfies resolution of singularities. Let 7 and A be as in 2.1.3.
We denote by logRec, C Shv! the essential image of the restriction of wéog to logClI,...

As observed in [BM21, Definition 7.4], the functors wili and wlog h?trwlog are an equiva-

lence of categories between logCI,;. and logRec,. By [Sai21], there exists a fully faithful
and exact functor

Log : RSCxjjs — 1ogClnis
such that wyLog ~ id. This implies (see [BM21, Theorem 7.6]) that the category RSCnis
is a full subcateogry of logRecy;, and the functor Log coincides with the composition:

CI

(2.10.1) RSChis C logRecy, —2% logClyn;, < Shvlil. .

If A is a Q-algebra, by Proposition 2.2, we have similarly a fully faithful and exact functor:
(2.9.1)

(2.10.2) wCl i RSCq = RSCnis " 1ogCllyy, = 1ogClyy, <> Shvlt,.

Remark 2.11. Since logRec, C Shv! is fully faithful, the inclusion RSC, C logRec,
has a right adjoint given by the functor p of [KSY21, Theorem 2.4.3 (1)]. The composi-

tion logCI,;. = logRec. 2, RSC, gives then a right adjoint to the inclusion RSC, C
logCl,,. Since the last inclusions of (2.10.1) and (2.10.2) also have right adjoints AJ}
(which coincides under our assumption on A), the functors (2.10.1) and and (2.10.2) have
right adjoints as well, in particular they commute with all colimits.

Remark 2.12. For every F' € logCl,., the equivalence w;Og: logCI,; ~ logRec.: wgg

induces an isomorphism of sheaves:

(2.12.1) F Zwbg ﬁ 8F.
If wlogF € HI,, we have that wlogwﬁogF € logClI_; hence

log * log ('_t) * log
wlo wﬁ F= hltr log i F =~ wlogwﬁ F?

where the equivalence (k) strictly depends on the fact that wl*ogwéogF € logClI,,., which
is not true unless wlOgF € HI,. We conclude that for every F € logCl,,. such that

wy W ¢ HI,, we have an isomorphism of sheaves:
(2.12.2) F’:wlog ﬂ SF.
We finish this section with the following analogue of Proposition 2.3:
Proposition 2.13. For all A, B € logCl,., then:
w, *Homgy,1: (A, B) = Homgy, (W;OgA W;OgB )-

Proof. By [BM21, Theorem 5.10] and the fact that wj, is fully faithful, we have an exact
sequence

O—>B—>w10gwﬁgB—>Q—>0
with wéogQ = 0, which induces an exact sequence:
0— wéogHoimsm};; (4,B) — WéogHoimsm};; (4, <*)1*ogW¢110gB ) = wéonghvgj(A7 Q)-
By Proposition 2.3, we have that

WﬁHOimsm};; (A, Wipgw éOgB ) = Homgy, o (WéogA WéOgB );
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hence it is enough to show that wﬁHomShvldtr(A, Q) =0. For X € Sm(k) we have that
wiHomgy, 1 (A,Q)(X) = Homgp, 1 (A, Homgy, 1 (A (X, triv), Q))
= I—IornlogRec.r (A7 h’?tr I_IoimShvldt; (Altr(X7 triv), Q))7

where b0 : Shv'¥ — logCI,._is the right adjoint of the inclusion. Since for all Y € Sm(k
Itr dr dr

we have that

wi’® Homgy, e (Arer (X, t1iv), Q)(Y) = QX x Y triv) = w®Q(X x ¥) =0,

by Lemma 2.14 below we conclude that A} HomSthr (Ajer (X, triv), @) = 0, which con-
cludes the proof. O

Lemma 2.14. For all G € Shvli’ such that wéogG =0, we have h, G = 0.

Proof. By purity [BM21, Theoremn 5.10], it is enough to show that A} Q(nx, triv) =0
for any generic point nx of X € Sm(k). We have that

I Q(x, triv) = Hom(hg" (Ares (1, t1iv)), Q)

and as observed in the proof of [BM21, Lemma 7.2], it follows from [BP©20, Proposition
8.2.2 and 8.2.4] that there is a surjective map

Atr(nx, triv) ~ w* Ay (nx) — w*h{?l(nX) ~ hgr(Altr(nX,triv)).

In particular,
h?trQ(nXa triv) — HomShvgﬁ; (Altr(nXa tI‘iV), Q) = I_IOHIShVS_r (Atr(nX)7 WéogQ) =0

as required. I

3. CATEGORIES OF RATIONAL MAPS AND UNIVERSAL PROBLEMS

3.1. Commutative groups schemes and torsors under them. We recall some well-
known facts on commutative group schemes over a perfect field k£ and we fix some notation.

Let G* be again the category of smooth commutative k-group schemes, locally of finite
type over k (for short, a commutative k-group scheme). Write G for the subcategory of
smooth commutative algebraic k-groups (i.e. objects of G* which are of finite type). Given
G € G*, let G° be the connected component of the identity in G. Recall (see [BVK16,
Definition 1.1.2] or [DG80, Proposition 5.1.4]) the following definition.

Definition 3.1. A group scheme L € G* is called discrete if L° = Spec(k) and the abelian

group L(k) is finitely generated (equivalently, if L is étale over k). A discrete k-group

scheme L € G* is called a lattice if L(k) is torsion free.

As in [BVK16], we denote by ‘M the subcategory of G* consisting of discrete k-group
schemes. By [BVK16, Lemma 1.1.3] it is a Serre subcategory of G*, hence it is an Abelian
category. We denote by M the full subcategory of lattices. By [DG80, Proposition 5.1.8],
for G € G*, there is an exact sequence

0= G =G —m(G) =0

where 7y(G) is an étale k-group, which is universal for homomorphisms from G to discrete
groups. The fibers of G — 7my(G) are the irreducible components of G.

Definition 3.2. Let G € G be a smooth commutative algebraic k-group. By k-torsor
under G or for G we mean a k-scheme P, locally of finite type over k, equipped with an
action P x G — P such that the induced morphism (s,g) — (s,sg): P xG — P x P
is an isomorphism. Write Pg for the category of k-torsors under G: morphisms between
torsors are G-equivariant k-morphisms.
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3.1.1. Given a k-torsor P under G € G, we can construct a commutative k-group scheme
Pg =11,,cz P¥" € G* using the sum of torsors V¢ (see [Mil80, I11.4.8.b]) following [Ram01,
1.2]. It fits in a short exact sequence

0>G—Pa27 -0,

presenting Pg as extension of Z by the group G. Moreover, we can identify the torsor P
with the fiber of the section 1 € Z along the map ap, so that we have a natural inclusion
P — P(;.

3.1.2. Write P for the category whose objects are pairs (P,G), where P € Pg for a
G € G a smooth commutative connected algebraic group. A morphism in P is the datum
of a pair of morphisms (f!, f%): (P,G) — (P',G"), where f': G — G’ is a k-morphism
of algebraic groups and f!': P — P’ is f-equivariant. If X is a k-scheme, we write X \P
for the comma category over X: its objects are triples (u, P,G), where (P,G) € P and
u: X — P is a k-morphisms. Morphisms in X\P are defined in the obvious way.

Definition 3.3. A fibration to torsors is the datum, for each X € Sm, of a full category
Mx of X\P, contravariantly functorial in X. Similarly, a fibration to torsors for proper
modulus pairs is the datum, for each X = (X, Xo) € MCor, of a full subcategory Mz of
X\P, where X = X \ X, € Sm, contravariantly functorial in X for maps in MSm™™" (see
[KMSY21a, Definition 1.3.3.(2)]).

The initial object (if it exists) of Mx is called the M-Albanese torsor of X. By
definition, it is the datum of a smooth commutative connected algebraic group Alb?w (X),
a k-torsor Albj,(X) under Alb{,(X) and a k-morphism X — Alb},(X) which is universal
for maps in Mx. The algebraic group Alb?w (X) is called the M-Albanese variety of X.
Similarly, if M_ is a fibration to torsors for proper modulus pairs, the initial object (if it
exists) of My is called the M-Albanese torsor of X. The corresponding algebraic group,
AIbQ (%) will be called the M-Albanese variety of X.

Ezample 3.4. For any X, let SAbx be the full subcategory of X\P consisting of maps
to torsors P under semi-Abelian varieties. In this case, the existence of an initial object
for SAbx was proven by Serre [Ser60] in the case the base field k is algebraically closed.
In [Wit08, Appendix A], a Galois descent argument is used to show that the Albanese
variety, the Albanese torsor and the universal map

X — AlbS), (X)

always exist, without any assumption on k.
If X is smooth and proper over k, the semi-abelian variety Alb3,,,(X) is in fact an
Abelian variety, and coincides with the classical Albanese variety of X, dual (as abelian

. . . . O,red
variety) to the Picard variety Picy ™.

3.2. A universal construction. We will discuss a number of situations in which the
M-Albanese torsor of a proper modulus pair X exists. In fact, we will consider different
fibrations to torsors M_ for proper modulus pairs, giving sufficient conditions for the
initial object to exist. In the end, all the fibrations that we consider will turn out to be
equivalent, giving then a unique notion of Albanese torsor for a proper modulus pair X.

Definition 3.5. Let X = (X, X,) be a proper geometrically integral modulus pair, and
write U(X) = U(X, X&) for the k-vector space HO(X,Q%CI(XOO)), where QlY,cl denotes
the subsheaf of closed forms. Let Mg be the full subcategory of X \P consisting of triples
(u, P,G) with the following property: Let k& C k be an algebraic closure of k and let
up: Xz — Pp = Gy be the base change of u to k. Then (u, P,G) € M if and only if
(uz)"UGy) € U(X5, X 5), where Q(Gy) denotes the space of invariant differential forms
on Gy. The assignment X M% defines a fibration to torsors for proper modulus pairs
in the sense of Definition 3.3
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Remark 3.6. It follows immediately that (u, P,G) € X\P belongs to M if and only if
U*LQ(GL) g U(YL>X<>0,L)

for any algebraically closed field L C k.

Theorem 3.7. For any X € MCor, the M%—Albanese torsor of X exists.

Proof. Suppose that k = k is algebraically closed. Since any k-torsor over an algebraic
group G € G is trivial in this case, the category /\/lg is equivalent to the category of
morphisms u: X — G from X to algebraic groups satisfying the condition u*(Q2(G)) C
U(X). Morphisms in M§ are k-morphisms f: G — G’ of torsors commuting with the
structural morphisms u: X — G and v': X — G’ (where we view G and G’ acting on
themselves). Although the morphism f is not a homomorphism of algebraic groups in
general, it can be written as f = fy + 7, where fp is a group homomorphism and 7 is a
translation.

Following [Ser60], in order to check whether an initial object for M% exists, it is enough
to restrict to the subcategory M%g of morphisms which are generating (see [Ser60, Defi-
nition 1]). For them, one has the following simple

Lemma 3.8 (Lemma 6, p.198, [FW84]). Let u: X — G € M$ and suppose that u is
generating in the sense of [Ser60, Definition 1]. Then the pullback map

u*: HO(G,Q5)™ = Q(G) — HY(X,Qk)
18 injective.

By e.g. [Ser75, Prop. II1.16], the dimension of any G € G agrees with the dimension of
the k-vector space (G) of invariant differential forms. The previous Lemma implies that
for any u: X — G € Mg’g, one has dim G < dim U (X). Since by [Ser60, Corollaire, p.05],
a necessary and sufficient condition for the initial object to exist is a uniform bound on

. . . . Q,g
the dimensions of the groups appearing in My, we conclude.
__Suppose now that k is any perfect field and let E7be an algebraic closure of k. Write
X7 for the base change X ®, k and X7 for the pair (X7, (X )z). According to the above
argument, the category M%E admits a universal object,

albf : Xz — AIbg .

The descent to the base field k& can be done following the proof of Serre [Ser75, V.22] in

the case of generalized Jacobians of curves to get a triple (ale, Albg’(l), Albg’(o)) defined
over k. g

3.3. Cutting curves. Assume now that X = (X, X..) € MCor is such that X is smooth
over k. A finite morphism v: C — X, with C a normal and geometrically integral curve,
is admissible for X if v(C') € Xoo. In this case, write Cw for the effective Cartier divisor
v*Xoo on C. Write C for the open subset C' \ Cs. We will use the following Lemma,
taken from [BS19].

Lemma 3.9 (Lemma 10.14, [BS19]). Let v be the restriction map
v HOX, Q) = [ HC,Q0)/H(C, Q50" X)),
v: C—X

where the product runs over the set of admissible curves v: C — X. Then the kernel of
agrees with H°(X, QIY(XOO))

If u: X — P is a k-morphism from X to a torsor P for an algebraic group G € G, we
get by composition a morphism

uc: C:=CxgX > X 5P
Write v*(u, P, G) for the corresponding object in C'\P.
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Lemma 3.10. A triple (u, P,G) € X\P belongs to MSt if and only if for any admissible
curve v: C — X, we have v*(u, P,G) € M%,Coo)'
Proof. The necessity of the condition is clear. According to Definition 3.5 and Remark 3.6,
the statement of the Lemma can be checked over an algebraic closure k of k, so that we
can assume k = k. As above, the category Mg is equivalent to the category of morphisms
: X — G from X to algebraic groups satisfying the condition ¥*(Q(G)) C U(X). Let
now ¢: X — G be a k-morphism, and let w € Q(G). We have to show that *(w) €
HO(X, QIY(XOO)) (note that ¥*(w) is automatically closed), i.e. that n := ¢*(w) has poles
along | X | of order bounded by the multiplicity of X, assuming that this condition is
satisfied after restriction admissible to curves. But this is precisely the content of Lemma
3.9. O

Proposition 3.11 (see [EW84]). Let X be a smooth proper modulus pair over a field k
of characteristic 0. Let k be an algebraic closure of k. Then the Mg—Albanese torsor

(alb$, Albg’(l),Albg’(O)) is characterized by the property that the pullback map
s QALY V) - HO(X, 0k )
is injective, with image equal to the subspace H°(X, Q%(XOO)) R k.

3.4. The universal regular quotient of the Chow group of zero cycles. We start
by recalling the definition of the Kerz-Saito Chow group of 0-cycles with modulus (see
[KS16]). For an integral scheme C' over k and for E a closed subscheme of C, we set

G(C,E) = [ Ker(O%  — OF,)
zel 7
= HgiF(U, ker(OZ — OF)),
EcCUcCC

where U runs over the set of open subsets of C' containing E (the intersection taking place
in the function field k(C)*). We say that a rational function f € G(C, E) satisfies the
modulus condition with respect to E.

Let X = (X, X) € MSm be a proper modulus pair and write X for the complement
X\ | Xoo|- Let Zy(X) be the free abelian group on the set of closed points of X. Let C
be an integral normal curve over k and let ¢g: C — X be a finite morphism such that
¢e(C) ¢ Xoo (so C is admissible in the sense of 3.3). The push forward of cycles along
the restriction of g to C = C x5 X gives a well defined group homomorphism

= G(C, gO%(XOO)) — Zp(X),
sending a function f to the push forward of the divisor divs(f).

Definition 3.12 (Kerz-Saito). We define the Chow group CHy(X) = CHo(X|Xs) of
0-cycles of X with modulus X, as the cokernel of the homomorphism

T P GO (X)) = Zo(X),
where the sum runs over the set of finite morphisms ¢&: C — X from admissible curves.

Definition 3.13. Let X € Sm(k) be geometrically integral and X € Comp(X) (see
Definition 2.8). Let CHo(X) be the Chow group of 0-cycles with modulus of X. Let MEH
be the full subcategory of X \P consisting of triples (u, P, G) with the following property.
For any algebraically closed field L D k, write up: Zo(X)? — Pr(L) & Gr(L) for the
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induced morphism on zero-cycles of degree zero. Then (u, P,G) € MgH if and only if ug,
factors as
Zo(X1)°

|

CHo(X)" —= GL(L),
where CHo(X)? is the image of Zy(X1)°.

Proposition 3.14. Assume that X is a smooth, proper and geometrically integral modu-
lus pair over k. Then the MgH—Alb(mese torsor (albgH7 AlbgH’(l),AlbgH’(O)) of X exists. If

dim X = 1, it agrees with the Rosenlich-Serre generalized Jacobian (¢x__, JacW Jac¥ )

XX VY% X
of [Ser75, V.4.20].

Proof. If dim X = 1, this is precisely the content of [Ser75, V.Theorem 1], and the very
definition of modulus for a rational map and local symbols. For the general case, as in the
proof of Theorem 3.7, it is enough to show the existence in the case k = k is algebraically
closed (the descent argument is identical). Similarly, we can restrict to the category MgH’g
of morphisms which are generating. According to [Ser60, Corollaire, p.05] it is then enough
to show that there exists a uniform bound on the dimensions of the groups appearing in
MgH’g. We do this by showing that MgH is a (full) subcategory of Mg The required
bound will be then provided by Lemma 3.8.

Suppose then that that u: X — G is a k-morphism from X = X\ |X| to a commutative
connected algebraic group G such that the induce map on zero cycles factors through
CHp(X). Let ¢: C — X be a finite morphism from normal integral curve C such that
¢(C) ¢ Xoo. Put C =C x5 X and Cx = ¢*(X). Let uc: C — G be the composition
u o . Then we have

uc(divg(f)) = u(ps(diva(f))) = 0 in G(k) for any f € G(C, Cx).

In particular, the divisor C is a modulus in the sense of Rosenlicht-Serre for the rational
map (still denoted uc) uc: C --» G. Therefore we have then a factorization ([Ser75, V,

Theorem 2])

Jan}Coo TC> G

where a: C' — Jacg o is the universal map from C to its generalized Jacobian (with
respect to a chosen k-rational point). But now we have

WE(R(G)) = 0" (@A) € 0" (Uacg ) = HOC, 0L 5 Op(Cu)),
where the last equality follows from [Ser75, V, Proposition 5]. This implies that (uc, G) €

M% Coo) for any admissible curve and so, by Lemma 3.10, we deduce that (u,G) €
ME. O

Remark 3.15. Suppose that k = k is algebraically closed and let X be a smooth proper
integral modulus pair. Then the morphism

px: CHp(X)? — Albx (k)

to the Albanese variety Alby = AlbgH’(O) of X induced by alby is surjective and regular.
We can reformulate the universal property in MgH by saying that Alby is the universal
regular quotient of the Chow group of zero cycles with modulus. As such it agrees, a
posteriori, with the Albanese variety Alb(X|X,) of [BK18, Theorem 1.1]. If k = C and
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| Xoo| is a strict normal crossing divisor, it agrees with the generalized Jacobian J%‘ X
oo

(for d = dim X) studied in [BS19, 10.2]. Despite the fact that it is defined starting from
a different modulus condition on algebraic cycles, it agrees also with the Albanese variety
with modulus Alb(X, Xo,) defined by Russell [Rus13]. This is a consequence of Lemma
3.10 and the fact that both notions agree with the Rosenlicht-Serre generalized Jacobian

in the one-dimensional caseS.

3.4.1. Let X be as above. From the proof of Proposition 3.14, we deduce immediately
the existence of a natural surjective map of torsors

P A o AW

equivariant with respect to a surjective homomorphism of algebraic k& groups Albg’(o) —

AlbgH’(O) such that alb§! = pg’CH o alb$. We will see below that those maps are isomor-
phisms when the characteristic of the base field is zero.

To further relate the Chow groups of zero cycles with modulus of a pair X with the M%
Albanese construction of 3.2, we also recall the following

Proposition 3.16 ([Ser75, III, Proposition 10] or [KSYR16, Proposition 4.3.1]). Let G
be a commutative algebraic group over a field K of characteristic zero. Let C be a proper
normal curve over K, C' an open dense subscheme of C and v: C — G a K-morphism.
Let D be an effective divisor on C supported on C \ C' such that

V*(QG)) € H(C,Qf @ Og(D)).
Then we have Y(divg(f)) =0 in G(K) for any f € G(C, D).

Proposition 3.17. Let k be a field of characteristic zero. Then the MgH—Albanese torsor
of X agrees with the Mg—Albanese torsor (alb%,Alb%(l), Albg’(o)) of Theorem 3.7.

Proof. 1t is enough to show that the two categories M%H and ./Vlge2 have the same objects
(as they are both full subcategories of X\P). According to Definitions 3.13 and 3.5,
it is enough to show the statement under the assumption that k& = k is algebraically
closed. We already know thanks to the proof of Proposition 3.14 that MgH is a full
subcategory of M% (this does not require k to be of characteristic 0). To prove the other
inclusion, let u: X — G € M% Again by Lemma 3.10, for any X-admissible morphism
¢: C — X from a normal integral curve, the composition uc: C xX — X — G satisfies
us(QG)) € HO(C, Qla ®c Ox(Cx)), where C denotes as before the pullback ¢*(X).
By Proposition 3.16 above, we have uc(diva(f)) = u(p«diva(f)) = 0 in G(k) for any
f € G(C,Cy), so that the map induced by u on the group of zero cycles of degree zero
Zo(X)Y factors through CHg(X)?. The same argument applies to any base-change to L D k
algebraically closed, so that (u,G) € MgH as required. d

3.5. The Albanese scheme with modulus. We can now extend the construction of
Ramachandran [Ram01] to the modulus setting. Let X € Sm(k) be geometrically integral
and X € Comp(X). Thanks to Theorem 3.7, we have a map, defined over k,

(3.17.1) alb M x — APM
universal for morphisms from X to torsors under commutative algebraic groups in M% (in
the following, we shall say “to torsors under commutative algebraic groups with modulus

X”). Let Alb§ € G* be the k-group scheme HneZ(Albg’(l))‘@" constructed in 3.1.1. The

6An independent (and explicit) proof of the fact that over C the generalized Jacobian J% agrees with

X|Xeo
AlIb(X, X o) defined by Russell has been given by T. Yamazaki [Yam17], using Hodge-theoretic methods.



20 FEDERICO BINDA, ALBERTO MERICI AND SHUJI SAITO

universal map (3.17.1) composed with the natural inclusion of Albg’(l) in Albg gives then
a canonical morphism

ax: X — Alb¥
which is now universal for morphisms to k-group schemes in the appropriate sense. By
construction, the k-group scheme Albg is an extension

0— ALY® - ALY - Z - 0.

If X has a k-rational point, the extension is split, i.e. we have an isomorphism Alb% =
Albg’(o) xZ. This happens in particular when k is algebraically closed, and corresponds

to the fact that we can trivialize the torsor Alb . Recall now the following
Proposition, which follows from [KSYR16, Theorem 4.1.1] (while the transfer structure
follows from [SS03, Proof of Lemma 3.2])

Q’(l) o Alb¥7(0)

Proposition 3.18. The k-group scheme Albgg, regarded as étale sheaf on Sm(k), has a
canonical structure of sheaf with transfers, and as such it has reciprocity in the sense of
[KSYR16, Definition 2.1.3].

Thanks to the Proposition, there is a unique map of preshaves with transfers
ax: L (X) — Alb$
extending the map ax: X — Albg defined above.

3.5.1. When X is moreover smooth over k, we can apply Proposition 3.14 to get a map,

defined over k, albgH’(l): X — AlbgH’(l), universal for morphisms to torsors in MgH
We can repeat the constructions of the previous point to get yet another k-group scheme
AlbgH € G* together with a canonical morphism

a$t: X — AbEH.

The group AlbgH has by the same argument of Proposition 3.18 a canonical structure
of étale sheaf with transfers, with reciprocity in the sense of [KSYRI16, Definition 2.1.3].
This gives us a unique map of presheaves with transfers

M 74, (X) — AIb§H

extending agH. When the base field has characteristic zero, the two constructions agree
by Proposition 3.17, so that we canonically identify AlbgéH with Albgg. In general, we
have a surjective map of étale sheaves Alb% — AlbgH.

3.6. The maximal semi-abelian quotient. Let X € Sm(k) be geometrically con-
nected. Serre’s Albanese map of Example 3.4 can be extended to a unique map of
presheaves with transfers:

(3.18.1) Zir(X) — Alby

where Alby is the semi-abelian Albanese scheme of X, defined by [Ram01] or [SS03,
Lemma 3.2] using the same recipe of Section 3.5. Since Alby is semi-abelian, it is a
homotopy invariant étale sheaf with transfers. Thus, taking sections over any field L D k,
we have a factorization of the map (3.18.1) through

hA' (X1) — Albx (L),

where h§1 (X1) denotes the zeroth Suslin homology group of X; = X ®; L. If X admits a

k-point, the scheme Albx decomposes as Z X Albgg), where Albg?) denotes Serre’s semi-
abelian Albanese variety of X. In particular, we get for any L D k algebraically closed an
induced (surjective) map on the degree zero part

(3.18.2) n' (X1)° = AbY) (L) = Albx, (L).
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Let X € Comp(X). By e.g. [BCKS17, Proposition 2.6], there is a natural surjection
CHy(X) — héAl (X)), which can be composed with (3.18.2) to give a surjective homomor-
phism

CHo(%.)° — Albx, (L).

By Definition 3.13, we have then that the object (albx, Alb()p,Albg?)) belongs to M.

+(0)

By Proposition 3.14, the universal property of AlbgH gives a unique surjection

AL 5 Al

(and similarly for AlbgH’(l) and Albg?), which factors through the semi-abelian quotient
Albg}iéoj)s of AlbgH’(O). It is straightforward to show that if X has a k-rational point, the

algebraic groups Albgjli’éoa)E and Albg?) are isomorphic. We have therefore the following

Proposition 3.19. Let X be as above, and suppose that X has a k-rational point. Then

+(0)

the semi-abelian part of AlbgH agrees with Serre’s semi-abelian Albanese variety of X.

3.7. Universal problem for presheaves with transfers. We continue with the no-
tations of 3.5. As observed in Remark 2.9 (ii), for any F' € RSC and for every section
g: Zy(X) — F, there exists X € Comp(X) such that g factors through whg (X). In this
case, we say that g has modulus X. We apply this to the case AlbgH.

Proposition 3.20. Let X € Sm(k) be geometrically connected and X € Comp(X). Then

the canonical map ax: Zi-(X) — AIBSY factors through wihg (X) and it is universal with
respect to this property: for any smooth commutative k-group scheme G, seen as étale
reciprocity sheaf, and for any section g: Z(X) — G with modulus X, there is a unique
morphism §: AIb§Y — G in PST such that

(X) g >y G

Alb§H.

Ztr

Proof. We first prove that ax: Z;(X) — Alby factors through wihg (X). We have to
show that for any smooth k-scheme S, the map Z (X)(S) — Albx(S) factors through
wihg (X)(S). Since Alby, as any commutative k-group scheme, satisfies global injectivity,
it is enough to check the factorization after passing to the function field £(S) of S, and in
fact even to its algebraic closure. Let then K D k be an algebraically closed field, and look
at the map Z,(X)(K) — Albx, (K). Let mo(X) be the spectrum of the integral closure
of kin I'(X, Ox). The assignment X +— m(X) is universal for morphisms from X into
étale k-schemes. Since X is geometrically integral by assumption, we have Z, (mo(X)) = Z
(as étale sheaves), and the map Z,(Xg) — Albyg, induces then a map

Zer(XK)? — ADY)

where Zy,(Xk)? denotes the kernel of Z(Xg) — Zu(mo(Xk)). We can then identify
Zir (X )?(K) with the group of 0-cycles of degree zero Zo(Xg)? of Xg. Since X is a
proper modulus pair, we have CHo(Xx)? = ho(Xk)?(K) thanks to [KSY21, Remark
2.2.3], and thus the claim follows from Proposition 3.14. The same argument proves the
universal property as well. O

From now on, we write simply Alby for the k-group scheme AlbgH. We end this section
with a the following result, which will be crucial for the construction of the category of
1-reciprocity sheaves.
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Lemma 3.21. Under the assumptions of Proposition 3.20, the map
ax @z Q: Qu(X) — Albx ®2Q

1§ a surjective morphism of étale sheaves with transfers with rational coefficients.

Proof. Let Im(ax) C Albx be the image of ay in PST. Since Alby is a smooth k-group
scheme, we have Alby € RSCyjs by [KSYR16, Theorem 4.1.1]. Let C' = Alby/Im(ax) €
RSC. We have to show that a)(C ®z Q) = 0. By (2.9.1), we have that a};(C ®7 Q) €
RSCyq (k,Q), in particular it satisfies global injectivity by [Sai20, Theorem 0.2}, i.e. for
any Y € Sm geometrically connected with function field k(Y") with algebraic closure k(YY)
there is an injective map

al(C ®z Q)(Y) = al(C @z Q)(k(Y)) = (C 0z Q)(k(Y)) = C(k(Y)) ®z Q.

To complete the proof, it is then enough to show that C'(k(Y")) = 0. This follows from
the fact that for any K D k algebraically closed, the map

Ziyr (X ®p K)(K) — Albx(K)

is surjective, since CHo(Xx)? — Albgeo)(K) is surjective. O

4. THE ALBANESE FUNCTORS

4.1. n-reciprocity sheaves. For any n > 0, let Cor(k)<, be the category of finite cor-
respondences on smooth k-schemes of dimension < n, and let MCor(k)<,, be the cat-
egory of modulus correspondences on smooth proper modulus pairs X = (X, X) with

dim(X) < n. We let MPST (k<,,) be the category of additive presheaves on MCor(k)<p,.
The natural inclusions of subcategory of objects of dimension < n give rise to a standard
string of adjoint functors between the category of presheaves

(4.0.1) (ont,00), op1: MPST(k<,) = MPST (k): oy,.

Here, we follow the convention of [KMSY21a] for the left Kan extension of the restriction
functor o7. Note that this is different from the one adopted in [ABV09].

Remark 4.1. Let
(4.1.1) (o on*), (on,: PST(k<n) S PST(k): o))

n,r“n

be the analogous adjoint functors from [ABV09]. Since the functor w clearly restricts to
a functor MCor(k)<,, — Cor(k)<p, for all F' € PST(k) we have that

olwF =2 W) F in MPST(k<y,).
By adjunction, we conclude that for all F' € MPST(k<,,),
oy w F = woy F in PST(k).

For FF € MPST(k) and X € Cor(k)<y, for any modulus pair X € Comp(X), we have
X € MCor(k)<y, hence o} F(X) = F(X)

wopF(X) = lim 0y F(X) = wF(X) = 0, (wF)(X).
X¥eComp(X)

Finally, for every modulus pair X and every a: Y — w(X) € Cor(k), by [KMSY21b,
Theorem 1.6.2] there exists a proper modulus pair 2’ € Comp(Y) and «/: Q" — X €
MCor (k) such that o = w(c’). In particular, since ) € MCor(k)<y, the system {F(Y)}
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for Y € Cor(k)<y, running over the maps ¥ — w(X) is cofinal in the system {F(w(Q))}
for 9 € MCor(k)<;, running over the maps ) — X. Hence we have that
WOl F(®) = ol Fw(X) = lm  F(Y)

(Y =w(X))
YeCor(k)<y,

= lm FW®)
(V'=X)
YeCor(k)<n

= lm  Fw(®)) = onw F(X).

(—X)
PeMCor (k) <y,

Remark 4.2. The functors o, commute with colimits of presheaves since they are left ad-
joint. The functor o}, also commutes with colimits of presheaves, since they are computed
section-wise and o} F/(X) = F(X) for all X € MCor(k)<y. In particular for all diagrams
{F;} in MPST, 0,0, thZ = @an,ga;E

The following lemma is mutuated from [ABV09, Lemma 1.1.12]:
Lemma 4.3. The unit map Id = o0, is invertible.

Definition 4.4. We say that ' € MPST is n-generated (resp. strongly n-generated) if
the counit map o, 10 F — F is surjective (resp. an isomorphism).

Remark 4.5. If F' is n-generated (resp. strongly n-generated), then w F' is n-generated
(resp. strongly n-generated) in the sense of [ABV09]. Indeed, the functor wy is exact and

wiop o0 = O’X!O'Z’VLU!F by Remark 4.1.

For example, if X = (X, Xoo) with dim(X) < n, then Z;.(X) is strongly n-generated.
The proof of the following Lemma is a diagram chase.

Lemma 4.6. Quotients and extensions of (strongly) n-generated sheaves are again (strongly)
n-generated.

Definition 4.7. Let F' € CI. Following [ABV09, Definition 1.1.20], we say that F' is an
n-modulus presheaf if the natural map

hts& (ong0p F) — WS F = agwerF
is an isomorphism of étale sheaves with transfers. Here, for any G € MPST, we de-

note by g% (G) the étale sheaf with transfers a¥werhf'G, where a¥: PST — Shv{ is

Voevodksy’s étale sheafification functor and wgy is the composition w o i, where ™ is

the inclusion CI — MPST, which has a right adjoint. Notice that the functor hg?éct is a
composition of left adjoints, hence it commutes with all colimits.
We write Cl<,, for the full subcategory of n-modulus presheaves.

The following is identical to [ABV09, Remark 1.1.21]:

Lemma 4.8. Let FF € MPST be strongly n-generated. Then hOE(F) is an n-modulus
sheaf.

Remark 4.9. Notice that in this case, differently from [ABV09, Remark 1.1.21], if F' is an

n-modulus presheaf then it is not automatic that F' is the hoi of a strongly n-generated
sheaf: we only know that the map

hgon 105 F — F
is an isomorphism after applying aé/thI.

Definition 4.10. We define the category of n-reciprocity sheaves RSCg; <,, as the essen-
tial image of Cl<,, via the functor aé/;wCI.
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The following result is immediate:

Lemma 4.11. Let F € Shvi. The following are equivalent
(i) F is an n-reciprocity sheaf;
(i) F = h{Sop 105G for some G € MPST.

0,6t
Moreover, if the above conditions hold, we can take G € Cl<,, in (ii).

Remark 4.12. If F' € RSCyg <, then F' is an n-generated étale sheaf in the sense of
[ABV09]. Indeed, for F' = h{%{oy,10,G, then there is a surjective map in Shvi;

agtar‘f'av*(F) = afwi0y, 105G a;/thIhO 10, G = hgGon10,G = F.

Recall that the category F' € Hlg; <, of [ABVOQ Definition 1.2.20], is the full subcate-
gory of HI of objects F' such that thA 4
Proposition 4.13. If F' € Hlg; <, then F' € RSCq¢; <y,
Proof. Take F' € Hlg <,,. By Remark 4.1 we have

(4.13.1) hogon 10w F = hySgw® O'n|O'V*F

1 . . .
,an F— Vh(‘)‘ F = F is an isomorphism.

Notice that ho w* = w*hAl, so by full faithfulness of w* we conclude that

06w O'XyO’V*F— aetwuhow UX.UV*F = agtw;w*hoA X;UV*F = Vh(‘]A n,UV*F F.
In view of (4.13.1) and Lemma 4.11, this implies F' € RSCyg; <y, d

The following lemma is analogue to [ABV09, Lemma 1.1.23]
Lemma 4.14. For any G € CI, the natural map
(4.14.1) UX’*hB?éi(an,gU;G) — oy *alwerG
induced by the counit map o,,,05G — G is an isomorphism in Shv¥ (k<p)

Corollary 4.15 (cfr. [ABV09, Corollary 1.1.26]). Let F' € RSC such that F = wciG
with G € CI and consider the natural map

rec * 14 O * \%4 a \%4 1%
07ét(0n710nG) = agwcthg 0n,10,G — agwcihy G = agwceiG = ag F

induced by the counit map oy 10,G — G. Let N be the kernel of the above map. If N is
an n-generated étale sheaf in the sense of [ABV09], then it is zero.

Proof. Since the functor on* is exact, we have by the definition of N an exact sequence
of étale sheaves:
V% V,* 1 rec * Vo V
0= 0, (N) = 0, hi% (0n10,G) — 0, ag F,

hence by Lemma 4.14 we conclude oy, *(N) = 0. Since N is n-generated, we have a

surjective map of étale sheaves with transfers 07‘{7 !JX’*(N ) — N, showing that N =0. O

4.2. O-reciprocity sheaves. We specialize the general results of the previous section to
the case n = 0. By definition, the objects of the category MCor<( of smooth modulus
pairs of dimension < 0 are the finite étale extensions ¢ D k (with empty modulus divisor).
The essential image of the restriction of the functor w: MCor — Cor to MCor<( induces
an equivalence of categories

wj<o: MCor<y ~ Cor<g

whose inverse is given by
Aj<o: Spec(f) = (Spec(£),0).
and induces an equivalence of categories
(4151) W|§0,!1 MPST(/{SO) >~ PST(kSO) )\|§07!.
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Moreover, for any X € MCor with X = w(X), we have
MCor (%, (Spec(£),0)) = Cor(w(X), Spec(£)) = Cor(mo(X), Spec(f)) == ZmIXEre)

where m(X) is the spectrum of the integral closure of k in I'(X, Ox) and mo(]Y|) for a
scheme Y denotes the set of connected components of the underlying topological space
|Y'|. The first isomorphism follows from the fact that Spec(¢) € CorP™P (see [KMSY21a,
Lemma 1.5.1]), while the second and the third are classical (see [MVWO06, Lecture 1] and
[ABV09, 1.2.1]). From this we get an adjunction

(4.15.2) Aj<o ©mp ow: MCor < MCor<: 0.

We let Iy denote A< o T o w. Passing to the categories of presheaves, we have that the
functor o, of (4.0.1) has a left adjoint:

(4.15.3) IIp: MPST(k) = MPST (k<p): I = o0,
In particular, og is given explicitly by
(4.15.4) 00 (F)(X) = F(IIp(X)) = F(mo(w(X)),0) for FF € MPST(k<o).

The following Corollary shows that the category of O-reciprocity sheaves is simply equiv-
alent to the category of O-motivic sheaves in the sense of Ayoub—Barbieri-Viale.

Corollary 4.16. Let G € MPST(k), then 0¢105G € CIL. In particular, every O-
reciprocity sheaf is strongly 0-generated in the sense of [ABV09], and we have equivalences
(4161) HIét7§0 ~ RSCét,SO ~ Shvgi(kg())
Proof. Let X € MCor and X = w(X). By(4.15.4), we have that

70,10G (X @ P') = 03 G(mo(w(X © P)),0).
On the other hand, we have that w(X ® P!) = X x A! and as observed in the proof of
[ABV09, Lemma 1.2.2], we have that mo(X x A') = m(X), hence

70,05 G(X @ P') = 03 G(mo(w(X @ P1)), 0) = 095G (m0(w (X)), 0) = 00,05 G(X).

Hence 0¢103G € CI proving the first assertion. Let ' € RSCq; <o and let F' = h{% 00105G’
with G’ € CI(k) be as in Lemma 4.11(ii). Then ¢ 105G’ € CI, so

a V,
F = afwerhg 00103 G' =~ alywog 105G = aé{ca{‘){!oo’*ng/.

This implies that F' € Shv(k<p). On the other hand, by Proposition 4.13 we have
HIétéo — RSCét,SO —> Shvgi(kgo).

By [ABV09, Lemma 1.2.2], the composition above is an equivalence, hence we deduce the
equivalences of (4.16.1). O

4.3. 1-reciprocity sheaves and Albanese functors. In this subsection, we will assume
that k£ has characteristic zero. In particular, k satisfies resolutions of singularities and for
any smooth proper modulus pair, we can identify AlbggH with Albg, and we simply write
Alby for the Albanese scheme of X.

Remark 4.17. If € = (C, Cy) denotes a 1-dimensional smooth and proper modulus pair,
by Lemma 4.8, h{%: (€) is a 1-reciprocity sheaf. Moreover, as observed in (2.9.2), we have:

ke (€) = aYworhy (Zir(€)) = alho(€) = Pic(C, Csy),

where Pic(C,Cy) denotes the relative Picard group scheme, whose connected compo-
nent of the identity Pic®(C,C4,) agrees with the Rosenlicht-Serre generalized Jacobian
Jac(C, Cw). By Proposition 3.20 and the proof of Proposition 3.14, we have Pic(C, Cy) =
Albg. Hence we finally have that h{fé‘;(ef) = Alby¢ is represented by a commutative group
scheme.
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Remark 4.18. More generally, let X be a smooth and proper modulus pair. Then the sheaf
Alby is 1-generated. In fact, Alby can be written as extension of a semi-abelian k-group
scheme (i.e. a k-group scheme G such that G is a semi-abelian variety) and a unipotent
algebraic group U. In characteristic 0, the group U is a product of G,, and G, is a direct
summand of hg?éct(IP’l, 200), so that it is 1-generated. The semi-abelian k-group scheme
G is a quotient of the generalized Jacobian of a suitable curve contained in G, which is
1-generated by the previous remark (see [ABV09, 1.3]). Hence G itself is 1-generated by
[ABV09, Lemma 1.1.15]. Applying again [ABV09, Lemma 1.1.15] to Alby we get the

statement.
We deduce from the previous remarks the following analogue to [ABV09, Lemma 1.3.4].

Lemma 4.19. Let FF € RSCy¢; <1. Then any subsheaf of F' is a 1-generated étale sheaf in
the sense of [ABV09].

Proof. We essentially follow the steps in the proof of [ABV(09, Lemma 1.3.4], starting from
the case of ' = hgj‘gi(e:), for € a smooth and proper modulus pair of dimension 1. This
is a l-reciprocity sheaf by Remark 4.17. Let E C F be a subsheaf. Since colimits of
1-generated étale sheaves are 1-generated étale sheaves, (see 4.2), we can assume that E
is the image of a map a: Zy(X) — hi%(€), for X € Sm. By Remark 4.17, we have then
a map
a: Z(X) — Albe = hg (€).
Since Albgy € RSC, by Remark 2.9 there exists a smooth proper modulus pair X with
X = X° such that a factors through ho(X), and by Proposition 3.20, it uniquely factors
through ax: ho(¥X) — Alby:
ho(X)

N
ax
Alby —%~ Albg.

By Lemma 3.21, the motivic Albanese map ax is a surjective morphism of étale sheaves,
hence the image of a agrees with the image of a’. Thus £ = Im(a’) is a 1-generated étale
sheaf by [ABV09, Lemma 1.1.15] and Remark 4.18.

Now the general case. Let E C F = hi%i(01)07G) with G € MPST (cf. Lemma
4.11(ii)). The sheaf 07G € MPST (k<) can be written as colimit of representable sheaves
in MPST(kSl), i.e.

01G = lim Zy(C)<1, €= (C,Cx), dim(C)=1.
C—olG

eC
6t

(4.19.1) F = hog(011(01G)) = lim b (01124 (€)<1) = lim Ao (€).

For any € € (€ — 0{G)<1, we have in particular a map h{%(¢) — F, and thus a map
from the fiber product

Since 01 and h{% commute with colimits (being left adjoints), we have then

limy (W5(C) xp E) B
€~)0’1’*F
which is surjective (the proof of surjectivity is formal and identical to the corresponding
statement in the proof of [ABV(9, Lemma 1.3.4]). Now it is enough to notice that each
hos (&) xp B C hi% (€) is a 1-generated étale sheaf by the previous step and the fact that
1-generated étale sheaves are stable by colimits. To conclude we apply again [ABV09,
Lemma 1.1.15]. O

Proposition 4.20. Let F € Shv'(k,Q) be an étale sheaf of Q-vector spaces which is
1-generated in the sense of [ABV09]. If it is a reciprocity sheaf, then it is a 1-reciprocity
sheaf. In particular, any subsheaf of a 1-reciprocity sheaf of Q-vector spaces is again
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a 1-reciprocity sheaf and the category RSCg <1(k, Q) is closed under taking subobjects,
colimits and extensions in RSCg(k, Q).

Proof. By Lemma 4.19, any subsheaf of a 1-reciprocity sheaf is again 1-generated, and
by [KSY21, Corollary 2.4.2] any subsheaf of a reciprocity sheaf is a reciprocity sheaf.
Then the second part of the Proposition follows from the first, since RSCg(k, Q) is an
abelian category stable by colimits in Shv¥i(k,Q) (here we are using the fact that we
consider Q-coefficients in order to exploit Proposition 2.1, since [KSY21, Corollary 2.4.2]
is a statement about the Nisnevich sheafification) and 1-generated étale sheaves are stable
by colimits and extensions by [ABV09, Lemma 1.1.15].

We now prove the first assertion. Let F' € Shvg(kz,(@) be a 1-generated étale sheaf
of Q-vector spaces and suppose that FF € RSC, i.e. that there exists G € CI such that
F = w(G. By Remark 4.1, we have that

O’K[O’Y’*F =woq,101G

and the counit O‘Y!O'Y’*F — F'is the image via wy of the counit 01)07G — G. Since

G € CI, the map 01,0]G — G factors through hoialv!JfG, which induces a factorization

v , VvV _Vx ()
agwo1)07G g0 101 F /F
0,601,101 ).

Since F' is a 1-generated étale sheaf, the map (x) is surjective, hence the induced map
ho%i(01101G) — F is surjective. Let N = ker(hg%i(01,07G) — F). By Lemma 4.11,
h§ (01,07G) € RSCy <1 so that N is a 1-generated étale sheaf by Lemma 4.19. Hence
N = 0 by Corollary 4.15 so that h{% (01,0{G) = F, which concludes the proof by Lemma
4.11. 0

Recall that RSCyg(k, Q) is a Grothendieck abelian category by [KSY21, Corollary 2.4.2].

The following corollary is immediate from the previous proposition.

Corollary 4.21. The inclusion RSCg; <1 (k,Q) C RSC(k,Q) (and consequently
RSCy; <i1(k,Q) C Shvi(k,Q)) is evact, and the category RSCq; <1(k,Q) is a Grothendieck
abelian category (in particular, it has enough injectives).

The proof of the following Lemma is identical to the proof of [ABV09, Lemma 1.3.6],
using Lemma 4.19.

Lemma 4.22. Let G € G* be a smooth commutative k-group scheme and let F' be an étale
subsheaf of G with transfers such that its sheaf of connected components my(F) is zero.
Then F' is represented by a closed subgroup of G.

Definition 4.23. A 1-reciprocity sheaf F' € RSCyq; <1(k, Q) is called finitely generated if
there exists a commutative k-group scheme G € G* with my(G) finitely generated together
with a surjection q: G — F. If the kernel of q is itself finitely generated, we say that F' is
finitely presented.

We write RSC;7<1 C RSC¢; <1 for the full subcategory of finitely presented 1-reciprocity
sheaves. An almost word-by-word translation of [ABV09, Proposition 1.3.8], using Lemma
4.19 and Lemma 4.22 gives the following canonical presentation of every finitely presented
1-reciprocity sheaf. This result will be repeatedly used in the rest of the paper.

Proposition 4.24. Any 1-reciprocity sheaf is filtered colimit of finitely presented 1-reciprocity
sheaves. If F is a finitely presented 1-reciprocity sheaf, then there is a unique and functorial
exact sequence

0=-L—-G—=>F—=0
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T

where G € G* is a smooth commutative k-group scheme and L € RSCg; <o(k) = Shvtét(kgo)
s a torsion free finitely generated 0-motivic sheaf.

Remark 4.25. For a smooth commutative k-group scheme G € G*, write G°* for its semi-
abelian quotient: it is a smooth commutative k-group scheme such that the connected
component of the identity (G**)% is a semi-abelian variety. We have by Chevalley’s
theorem an extension

(4.25.1) 0-U—=G—G" =0

where U is a unipotent group. Since k is of characteristic zero, U = G where r is the
unipotent rank of GG. More generally, for any F finitely presented 1-motivic sheaf, by
Proposition 4.24 we have a functorial commutative diagram

0 F 0

L G
(4.25.2) X l l

Gsab FAl 0

where by Remark 4.25, FA" is isomorphic to hf)*;t(F ), and since ker(G — G*%) is unipo-

tent, by [MVWO06, Example 2.23] we also conclude that CA'(F) ~ hé;t(F) [0], where
C’f‘l (F) is the Suslin complex. Moreover, by the right exactness of hé;t, the kernel of the

map G*% — F Alisa quotient of the lattice L, hence it is itself a lattice.

Remark 4.26. Every G € G* is a compact object in RSCyg, since the string of forgetful
functors RSC¢ C Shv% — PST — PSh(Sm(k), Set) preserves filtered colimits and
group schemes are compact in PSh(Sm(k), Set). In particular, since compact objects are
stable by finite colimits, every object of RSC2t7<1 is compact in RSCy.

We can now prove the following generalization to [ABV09, Proposition 1.3.11].

Theorem 4.27. Let ch(k) = 0. The embedding RSC¢; <1(k,Q) C Shvii(k,Q) has a
pro-left adjoint:
Alb: Shv¥ (k) — pro-RSCg; <1 .
induced by colimit from
Qur(X) = “lim” Albyn

n

for any choice of X € Comp(X) smooth.

Proof. For X € Sm(k), recall from Definition 2.8 the cofiltered category of Cartier
compactifications Comp(X). It is enough to show that for any X, for any choice of
X € Comp(X) with total space smooth (since ch(k) = 0, such choice exists), and for any
E € RSCq¢ <1(k,Q), we have

lim Homgy,ytr (1) (Alby(n), E) = Homgpytr (1) (Qur (X)), E).

By Galois descent it is also enough to prove the claim for k algebraically closed. By Lemma
3.21, for any X the Albanese map ax: Qi (X) — Albym is a surjective morphism of
Shv{(k,Q) (here we are considering Alby( after tensoring with Q), hence since filtered
colimits are exact, we only need to show that

lim Homgy,ytr (1) (Alby(n), E) = Homgpytr 1) (Qur(X), E)

is surjective, i.e. that for any choice of X € Comp(X), every map Qi (X) — E factors
through Alby(, for some n. Since Q¢ (X) is compact in Shvi(k), by Proposition 4.24
we can suppose that F is finitely presented. Let E = coker(L — G) be as in Proposition
4.24. Then we get a long exact sequence
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. — Hom(Q4(X), G) — Hom(Qy(X), E) — HLY(X,L) —
Since L = Q", being k separably closed, Hélt(X, L) = HI{HS(X, Q") = 0. Thus the map
Hom(Qy-(X), G) — Hom(Qy, (X), E)

is surjective, i.e. every map s: Q¢ (X) — FE factors through G. Since G € RSCg (k,Q),
by Remark 2.9 (iii) for every s as above and for any choice of X € Comp(X), there exists
n such that s factors through hgeéﬁ;(.’{(")), and by Proposition 3.20, s has to factor through
Alby (), concluding the proof. 7 O

4.4. The log Albanese functor. We now generalize this to the logarithmic setting. Let
wlog RSC¢(k,Q) — Shvge (k, Q)

be the composition in (2.10.2). As observed in Remark 2.11, wl is fully faithful, exact
and commutes with all colimits.

Theorem 4.28. Let ch(k) = 0. The fully faithful exact functor

wCI

RSCy <1(k, Q) C RSCy(k, Q) —% Shvlit, (k, Q)
has a pro-left adjoint, called the log Albanese functor
Alb"8: Shvli? (k) — pro-RSCy <1 -

induced by colimit from

Que(X) ~ “lim” Alby(n

for any choice of X € Comp(X) smooth.

Proof. We proceed as in the non-log case. Since wgé commutes with filtered colimits, we

can reduce to prove the adjunction for maps against F finitely presented, quotient of a
smooth commutative group k-scheme G by a lattice L. As before, it is enough to prove
the claim with k algebraically closed, by Galois descent. Since we are considering sheaves
of Q-vector spaces, we can assume that L = Q". For X € SmlSm(k) we have

Hdet(X wlo L) Helt(X - ‘6X|aQT) =0.

So following the steps of the previous proof, it is enough to show that for any G commu-
tative group scheme and X € SmISm(k) any map

s: Qe (X )—>w10 G

factors through wlo Albx(n) for some n, and conclude by full faithfulness of wCI On the
other hand, since G € RSChyis, by [BM21, Lemma 6.6 and Theorem 7.6] we have that

Homgj, i (Qier(X), wiogG) = lim Homgsc,, (h§% (X)), G).

Since wl is fully faithful, s factors through wgglhgeect(%(”)) for some n, hence again by

Pr0p081t10n 3.20 and full faithfulness of wlog, it factors through wlOgAlbx(m, proving the
claim. g

We finish this section by proving some results on extensions in RSCg¢; <1(k, Q):

Proposition 4.29. The category RSCq; <1 (k, Q) is closed under extensions in Shve (k, Q).
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Proof. Let Fi,Fy € RSCq <1. Since RSCy; <1(k, Q) is a full subcategory of Shv(k, Q)
by Proposition 2.10, we have that an extension in RSCyg <1 (k, Q) splits in Shvg(k, Q) if
and only if it splits in RSCg; <1 (k, Q), so

EXt}lascétél(k,@) (F1, Fy) = Extgpy, o) (F1: F2).

By Proposition 4.24, we can write I} = ligFil with Fj, € RSCy ;. In particular, there
is a surjective map @F;, — F}. Let K be its kernel: we have the following commutative
diagram with exact rows:

(4.29.1)

Homgsc (K, Fy)

12

o1 (K ) —— EXt%{scétygl(FlaFﬂ — HEXtﬁscét,gl(Fi ) — EXtﬁscét‘Sl

lz l(*) l(**) [

HomShVét,gl(K7 FQ) E— EXtéhvét,Sl(FlvFQ) I HEXtéhvétél(Filv i2) — EXtéhVét,Sl(K’ FQ)

so by the five-lemma (%) is surjective if (x%) is surjective, hence we can suppose Fj €
RSCY; <, Since [ is compact in both RSCy¢; <1 and Shvi and filtered colimits are
exact, again by 4.24 it is enough to suppose that F € RSC}, ;. Let F; = coker(L; — Gi)
as in Proposition 4.24, we have a commutative square with exact rows:

EXthSCét,Sl (Gl, GQ) E— EXthSCét,Sl (Gl7 Fz) e EXt%’SCét,Sl (Gl, L2)

| I© |

(2)
Extpyg (1, G2) ——— Bty (G, o) —— Bxtgp .0 (G L)
By [Mill7, Exercise 5-10] we have that G* is closed by extensions in fppf sheaves. This

implies that (1) is an isomorphism. Moreover, EXtéhvg (k,@)(Gh L) = 0 by [Mil70, Corol-

lary 1.], which implies that (2) is surjective, so (3) is surjective, hence an isomorphism.
We have now the following commutative diagram with exact rows:

Homgsc Ly, Fy) —> Extﬁscétygl(Fl,Fg) — Extﬁscétél(Gl,Fg) — Extﬁscétél(Ll,Fg)

5 I B I

HomSth‘t,Sl(L17F2) EXtéhvétél(FhFQ) EXtéhvétél(GhFQ) EXtéhvétél(leFQ)'

éc,§1(

and we conclude using the 5-lemma. O
Lemma 4.30. For all F1, F> € RSCy <1 we have
Extgy,, r0) (F1, F2) =0 fori>2.

Proof. By the same argument of 4.29, we can suppose Fi, Fy € RSC&<1 (namely, the
exact sequence of (4.29.1) allows to consider F; € RSC’efm<1 and since now Fj is a
compact object in Shvg <;(k,Q) and filtered colimits are exact, we can assume that
e RSCcﬁtyq). Let F; = coker(L; — G;) as in Proposition 4.24. Since L; is a lattice,
Ext’(Ly, F») = 0 for i > 1, so we can suppose F; = Gy. Since by [Mil70, Cor. 1] we have

Extghvét(k,Q)(Gl, Ly) = Extghvét(ky@)(Gl, Gy) =0 fori>2,
we can conclude. O
Proposition 4.31. For I, F> € RSC¢ <1 (k,Q), we have

Extrsc,, -, ko) (F1s F2) = Extgy, o q)(F1, F2) for all i > 0.

ét,<1
In particular the category RSCg; <1(k, Q) has cohomological dimension 1, i.e. for i > 2
we have '

EXtﬁSCét7§1(k7Q) (Fl, FQ) - 0.
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Proof. The second part follows from the first in light of Lemma 4.30. Let us proceed
by induction: the case i = 0 is Proposition 2.10 and ¢ = 1 is Proposition 4.29. Let
i > 2: in light of Lemma 4.30, we need to show that Extgpgq, <1(k’Q)(F1,F2) = 0. Let

0 — F» = I - B — 0 with [ injective in RSC¢; <1(k, Q). We conclude since:

(1) . (2)

. 3
Y ~d 1
0 = Extgpy,, (ko) (F1 B) = Extrsc,, ko) (F1: B) = Extyge, _no) (F1 F2)

where (1) is Lemma 4.30, (2) is the induction hypothesis and (3) comes from the fact that
I is injective. (|

5. THE DERIVED ALBANESE FUNCTOR

Assume that k has characteristic zero. The goal of this section is to show the existence
of a left derived Albanese functor in the sense of Definition A.10. To ease the notation,
we will write Shv'™ (resp. Shv'™, resp. logCI) for Shvi¥ (k,Q) (resp. Shvix.(k,Q),
resp. logCl,y;.) and we will identify it with Shvi(k,Q) (resp. Shv'¥ (k,Q), resp.
logCI ) by Proposition 2.1 (resp. Proposition 2.2). We also write RSCg; <1 C RSCyg;
for RSCy¢; <1(k,Q) C RSCq(k,Q). In this section we let wlcojé denote the functor from
Theorem 4.28:

(5.0.1) RSC¢; <1 — Shv!'.

By Remark 2.11 and Proposition 4.20 this functor is fully faithful, exact and commutes
with all colimits.

We announce the main theorem (cfr. [ABV09, Thm. 2.4.1]), whose proof will occupy
the rest of the Section.

Theorem 5.1. The functor Alb'°® of Theorem 4.28 has a pro-left derived functor L Alb'°8
which factors through the stable co-category of effective log motives, giving rise to the log
motivic Albanese functor (still denoted L Alb1°2):

L AL 8 logDM®T (k, Q) — Pro-D(RSCq;.<1).
which is a pro-left adjoint of the functor

(wigg)

e D wis [—
WOEPMT DRSCy <1) — 2 D(Shv'™) =5 log DM (1, Q).

5.1. Some preliminary results. We collect now some technical lemmas that will be
used in the proof of the main theorem.
Recall the pair of adjoint functors from (2.2.1)

whg: Shvi(k,Q) = Shvik (k,Q): w,®

where wi,, F'(X) = F(X — |0X][). Recall that wéogwl*og = id and that by [BP?20, Proposi-

tion 8.2.8], for I € Hl we have that wi,, (F) = wlcO:gIF.

Lemma 5.2. For any finitely presented 1-reciprocity sheaf F' € RSCg¢ <1, we have an
isomorphism:

HOmShvtr (Gm, F) = HOmShvtr (Gm, FAl )

Moreover, we have that
Cly G, F) = wi H G, F'
wiggHomgpytr (Gm, F) = wiggHomgyp i (G, Fi™ ).
Proof. First notice that G, = wiliogwf‘ogGm, and that Homgy & (G, ' A') € HI, hence

CI Al ~ Al
wlogHomSthr (Gm, F ) = LL)I*OgHOInSthr (Gm, F )
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so the second isomorphism follows from the first. To prove the first isomorphism, consider
the presentation 0 - L — G — F — 0 of Proposition 4.24. Since Homg; (G, G}) =
Méhvtr(Gm, G,) =0, we conclude from the sequence (4.25.1) that
HOmSthr (Gm, G) — HOmSthr (G’m, GS(lb) .
By [BVK16, Lemma 3.1.4] and Proposition 2.10, we have
HOmSthr(Gm, G) = HOmShvtr (Gm, F),

which allows to conclude. O

Let X = (X, D) be a smooth proper and geometrically integral modulus pair, and let
Alb;ab be the maximal semi-abelian quotient of Alby. Suppose that X = X \ D has

a k-rational point. Then, by Proposition 3.19, Albi“b agrees with Serre’s semi-abelian

Albanese variety of X, Albx. Let U(X) be as in Definition 3.5: as observed in [BS19,
Lemma 10.7] we have an extension

(5.2.1) 0— U(X) @ G, — Alby — Alb3® = Alby — 0

Since Albx € HlI<q ¢, which is a Serre subcategory of RSC<«; ¢, the natural surjection
of (5.2.1) (with rational coefficients) gives then rise to a map

(5.2.2) Extyy, _, (Albx, Gi) = Extrgc,, -, (Albx, Gy).

ét,<1 (
Lemma 5.3. The map (5.2.2) is an isomorphism.
Proof. We need to show that

Homgsc,, ., (U, Gm) =0, and Exthsc U,G,,) = 0.

ét,g1(

which by Proposition 4.31 follow form analogous vanishing in Shvg;, which are well-known
(see e.g. [Ser75, VII, Proposition 7). O

Notice that for every G € logCI, we have that Homg, ier (wl*OgGm, G) € logCI since
Homgy, 1t (Wiog G, G) = mo(RHomgy 1x (wiog G, G))
and RHomgy i (Wi, G, F) is clearly O-local.

Lemma 5.4. For any finitely presented 1-reciprocity sheaf ' € RSC¢ <1, we have an
isomorphism:

~ 1
wikogGm ®logCI HomShvtr (w* Gm, F) — wl*og (Gm XRHI HOHlShvtr (Gm, FA ))
where @ogcr s the tensor product of the category logCI.

Proof. By Proposition 2.13, we have that

1 CI ~
wﬁogHomSthtr(k,Q) (wl*OgGm, wlogF) = HOmShvgl‘": (k,@) (G’m, F) .

By Lemma 5.2 the right hand side is isomorphic to Homgy, (1, g (G, FA"), and moreover
it is an object of HI (k,Q), hence by (2.12.2) we have an isomorphism

H Gy WO F) 2 wi w8 H s G, WA F) 2 wi H G, A
HOoMgy,ltr (wlog m> Wiog ) - wlogwﬁ HOIgy,y ltr (wlog m> Wiog ) - wlogﬂShv“( ms )7

so we conclude since by Lemma 2.7 we have that

* * Iy A % 1
wlogGm R1ogCI wlOgHOmSthr(Gm, FA ) = Wiog (Gm RHI HOmSthr (Gm, FA )) .
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Remark 5.5. Thanks to Proposition 4.24, we can write every F' € RSCq <;(k,Q) as
filtered colimit of finitely presented 1-reciprocity sheaves, F' = li Fi Since the functor
wlog from (5.0.1) commutes with all colimits, we have wlog( ) = lim, wlOgF By the
isomorphism

Wi gGim = coker(Q — hg®(PY, 0] + [00))),

given for example by [BP(020, 8.2.4] together with [MVWO06, Theorem 7.16], we see that
wl*OgGm is a compact object in logCI, hence in Shv'*". By Lemma 5.4 we have an isomor-
phism
(5.5.1)
. * 1
wl*ogGm ®10gCI mshvltr (wl*ogGm7 w](o:éF) = hﬂ-w]og (Gm ®HI mshvtr (G’n’h FZA )) .
i

. lo
Moreover, since Wy 8

(5.5.2)

(/.)éog (WIOgG ®logCI HomShvltr (wlogGm, wfgg )) 1&’1 (G QHI HOH]Sthr (G’m7 ,F;Al )) .

commutes with (filtered) colimits, we have that

In particular, since HIg is closed under colimits we have that for exery F' € RSCg <1,

lo
Wy & (wl*ogGm RlogCI HOIIlShvln (wl*ogGm’ wlogF)) € Hlg .

Lemma 5.6. Let F' € RSCq <i1(k,Q), then:

(5.6.1) HéNiS(X, Wiog Gm @loget Homgy e (Wiog Gy wlogF)) =0 forj>1.
Proof. Recall that for a torus T', we have that

(5.6.2) HI{IIS(XO,T) H’ (X°,T)=0 forj>1.

Zar
By Proposition 4.24, let F' = hgql F; with F; € RSCet <1- Since dNis-cohomology com-
mutes with filtered colimits, the left hand side of (5.6. 1) is isomorphic to

hﬂ H({Nis (X, Wl*og (Gm @HI HO7Inshv'°r (Gm7 FiAl )) )

The sheaf Homgy i+ (G, FiAl) is a 0-motivic homotopy invariant sheaf by [ABV09, Corol-
lary 1.3.9], hence T; := G, ®ur HomShvtr(Gm,FiAl) is a torus. Then since wf‘og is exact
and preserves injective sheaves, we have by (5.6.2) that

Hio (X, WiogLi) = HL. (X°,T;))=0 forj>1.
]

For a smooth scheme X, let NS"(X) be the group of codimension r-cycles modulo
algebraic equivalence.

Lemma 5.7. Let F' € RSCq <1 and let X = (X, D) be a proper modulus pair such that
X° =X —|D| is affine and NSI(Xg) = 0. Then we have an isomorphism

EXt%{SC (Albﬁlﬁ 10g("‘jl*og(?'m ®10gCI I_Ioirn(wl*ogG}m7(")Iog}71)))

HéNis(X7 wl*ogGm ®10gCI m(wfogva WlCo:gI (F))) .

Proof. Let F = IEF with F; € RSCet < and T = wlOgG RlogCIT Hom(wlOgGm,wlolF)
and T; = wi“o G, Qlogct Hom(wy Gm,wloéFi). By Remark 4.26, Alby is a compact
object in RSCét, and filtered colimits are exact and RSCg; <1 € RSCy; is closed under
extensions, hence by (5.5.2) we have that

Extrsc,, (Albz, 1OgT) = 1glEXtRsc (Albx, T3).

ét,<1
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On the other hand, by Lemma 5.4 we have
. X 1
HéNis(Xa T) = théNis()Q wlog(Gm ®HI I_IoiInShv"(C"'m’ FiA )))
i

Moreover, since wl*og is exact and preserves injective sheaves we have that
1 1
Hleis(X7 wl*og(Gm @HI HO7HlShv”(Gm’ Fz‘A ))) = H&Iis(Xoa G, Qur HO7rnShvt’r(G'ﬂ% EA ))

Finally, Homgy ¢ (G, FZ-AI) is a lattice by [ABV09, Corollary 1.3.9], hence it is enough
to show that for every lattice L we have an isomorphism

Extisc. _. (Alby, G, ®u1 L) & Hyo(X°, Gy @pr L).

ét,<1

By [ABV09, Lemma 2.4.5], since X° is affine and NSl(Xg) = 0, we have that
HY5(X°, Gy, @ L) = Exctygy,, _, (Albxe, Gy, ©mr L),
so it is enough to show that the canonical map Alby — Albx. induces an isomorphism
Extiyy,, ., (Albxe, Gy @pr L) = Extggc,, _, (Albx, Gy @pr L).

If k£ is algebraically closed, we have L = Q", hence the above isomorphism comes from
Lemma 5.3. A Galois descent argument (see [ABV09, Lemma 2.4.5, Step 1]) allows us to
deduce the isomorphism above for any k. O

5.2. Deriving the Albanese functor. We are ready to prove Theorem 5.1. The cate-
gories RSC¢; <1 and Shv'" are Grothendieck abelian categories and the functor wlogl from
(5.0.1) is exact and commutes with filtered colimits.

The derived oco-category D(Shvltr) is equivalent by classical reason to the co-category
underlying the model category Cpx(PSh'"(k, A)) with the dNis-local model structure
considered in [BM21]. In particular, by [BM21, Lemma 2.15], the functor iy, : D(Shv''") —
Chdg(Shvltr) preserves filtered colimtis. In particular, the commutative square of oo-
categories:

Chag(w 108) ltr
Chdg(RSCet <1) *) Ch (ShV )

ngl thrl
D( CI)

D(RSCy <1) — =5 D(Shv!tr)

satisfies the hypotheses of A.4, so that D(wg;) has a pro-left adjoint L Alb'°8. We con-
sider the BC-admissibility with respect to this diagram. Recall from Lemma A.14 that a
compact object P € Shv'" is BC-admissible as an object of Chdg(Shvm) if and only if
for every injective object I € RSCg¢; <1 we have

Extg, e (P, wlog( )) =0 for i # 0.
We make the following definition (see [ABV09, Def. 2.4.2]):
Definition 5.8. X € SmISm(k) is Alb'°8-trivial if X° is affine, NSl(X%) =0 and

HZar(X Ox)=0 forj>0.

Remark 5.9. If X = Spec(R) is affine and 0X is supported on a principal divisor with
global equation f, then X° = Spec(R[%]) is affine, in particular if NSl(Xg) = 0 we have
that X is Alb®-trivial and X° satisfies the hypotheses of [ABV09, Proposition 2.4.4].

The main technical input of the proof of Theorem 5.1 is the following result:

Proposition 5.10. Let X € SmISm(k) be Alb'°®-trivial, then the complex Qi (X)[0] is
BC-admissible.
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Proof. We follow (with some modifications) the path of the proof of [ABV(09, Proposition
2.4.4]. Since Qy,(X)[0] is a compact object, it is enough to prove that
t noter (Quer (X)), wﬁé([)) =0, fori >0 and for every I € RSCyg; <; injective.

By [BP?20, Proposition 4.3.2] the Ext groups in Shv'"™" can be computed as cohomology
groups:

Extgy i (Quer (X), wicg (1) = Hanis (X, wicg (1)),
so we need to check that Hiy, (X,wCi(I)) = 0 for i > 0. In order to control this coho-

log
mology, we look then at the adjunction map
(5.10.1) Wing Gm ®loger Homgy i (Wi, G, wioa (1)) — wioa (1)

We will make the following claim:

Claim 5.11. Let N (resp. Q) be the kernel and the cokernel (computed in Shv'™") of the
morphism (5.10.1). Then for j > 1 we have the following vanishing:

(5.11.1) Hio (X, N) = Hl;, (X, Q) = 0.

Combining Claim 5.11, and Lemma 5.6, we get that HéNlS(X wgé(l)) =0forj>1
and that we have a surjection

(5.11.2) Hixia(X, 7sGm Grogor Homgy e (@ing Gy wSH(D))) — i (X, wCL(1)) — 0.

We are then left to show that the displayed morphism in (5.11.2) is the zero map.
For every modulus pair X € Comp(X), the canonical map Q.(X) — wlOI Alby gives
for any ' € RSCyg; <1 a natural map (again we are using the fact that w 1s exact):

Extksc. o<1 (Albz, F) — Extghvm (wg; Alby, wlo o H&NiS(X, wlOgF)

hence, from (5.11.2) we get a commutative diagram (cfr. with the proof of [ABV09, 2.4.4])
(5.11.3)

EXt:ll:{sc (Alb:{, log (wikogGm ®lOgCI m(wl*ogGmy wlogI))) ) EXt%{SCét,Sl (Albx7 I)

! !

HéNis(X7 wikogGm ®@logC1 m(wrogGm7 wl(ggI;(I») . HéNis(X7 wlcojé(‘[))

ét,<1

Since [ is injective in RSCyg; <1, the term ExtRSC <1(Alb3€, I) is zero. On the other

hand, the left vertical map is an isomorphism by Lemma 5.7, which implies that (5.11.2)
is indeed the zero map. This finishes the reduction of the proof of 5.10 to Claim 5.11.

Proof of Claim 5.11. Since cohomology commutes with filtered colimits, let I = hgiF2
with F; finitely generated 1-reciprocity sheaves. For all ¢, let K; and N; be the kernel and
the cokernel of the adjunction map

(5.11.4) Wiog Gm ®1oger Homgy e (wlogGm,wggF) — wlo 'F.

As observed in Remark 5.5, since filtered colimits are exact we have that K = hﬂKz and
= hﬂ Qi, hence it is enough to show that for all ¢:

(5.11.5) Héle(Xv N;)=0, 7>0

(5.11.6) H<]1N1s(X7 Q) =0, j7>0.

By Lemma 5.4 we have that the left hand side of (5.11.4) is isomorphic to wl*og (Gm QuI

HomShvtr(Gm,FiAl)). Let K; and R; be the kernel and the cokernel of the adjunction
map

1 1
i : G ©u1 Homgy o (G, Y ) — FA



36 FEDERICO BINDA, ALBERTO MERICI AND SHUJI SAITO

We have the following diagram:

(5.11.7)
0 N; wlOgGm ®10gct Homgyier (wlogGm,wggF) — wlo Ir, » Q; 0
0 — wi, Ki —— wi, (G @1 Homgpyir (G, FA')) _ Wi FA —— wi Ry — 0.

By the cancellation theorem [Voel0], Homg, i (G, Gy @1 M) = M for M € HI, and
Homg, - (G, -) is exact as an endo-functor on HI. Hence we get Homgy u: (G, K;) =
Homg, ,t: (G, Ri) = 0, in particular the sheaves K; and R; are birational sheaves in
the sense of [KS17] (see [KS17, Proposition 2.5.2]). In particular, since wj,, is exact and
preserves injectives, by [MVWO06, Proposition 14.23] and [KS17, Proposition 2.3.3] that

(5.11.8) Hinio (X whg ) = Hi (X°,Ki) =0, j >0
(5.11.9) Hiio (X wiyRi) = H (X°,R;) =0, j > 0.

Since N; is a subsheaf of wl*ogKi, wéogNi is a subsheaf of Kj;, so it is a birational sheaf in
particular it is an object of HI by [KS17, Proposition 2.3.3 (a)] so N; = = WiogWy log by
(2.12.2). Therefore the same argument gives the vanishing (5.11.5).

Let H; be the kernel of the map F; — FA1 By a snake lemma argument on (4 25 2),
there exists a lattice L] and r; > 0 such that GJi/L, = H;. By the exactness of wlog, we
have that wSI Gyt /w* L' = wCTH;. Since L' is a lattice, Hinio (X, w* L) = HY (X°, L)) =0
for j > 0 and by [RS21, Corollary 6.8] with ¢ = 0 combined with [BM21, (7.6.1)] we have
that (see (2.1.2)):

(5.11.10) Hinio (X wigGa) = lim  H{ (Y, Oy).

Yexsm
By the comparison of Zariski cohomology with Nisnevich cohomology for coherent sheaves
we have that for all Y € X gi'vnz

Hlj\hs (Y OY) Zar (Y OY)

By definition the map ¥ — X is the composition of blowups in smooth centers, hence the
well know blow-up formula (see e.g. [Gro85, Corollary IV.1.1.11]) implies:

H), (Y,0y) = H) (X,0x)=0, j>0,

where the last vanishing comes from the fact that X was taken Alb'°8-trivial. In particular,
we conclude that

(5.11.11) Hinio (X, woaH;) = 0 for i # 0.

From the diagram (5.11.7) and a snake lemma argument, we get the following short
exact sequence:
(5.11.12) 0— w*K;/N; — wlogH — ker(Q; —» w*'R;) —

Now by (5.11.8) and (5.11.5) we have that H7. (X,w*K;/N;) = 0 for j > 0, so by
(5.11.11), (5.11.9) and (5.11.12) we deduce (5.11.6). O

Given Proposition 5.10, we can show the following
Lemma 5.12. The category Shviff\ﬁs(k,(@) is generated by the set of AIb°8-trivial objects
Of Shvlitlilis(k‘7 Q)

Proof. The category Shvgfiﬁs(k, Q) is compactly generated, and a set of compact generators
is given by Qy,(X)[7], for X € SmlSm and i € Z. By Proposition 5.10, it is then enough to
show that any X € SmlSm can be covered (even Zariski-locally) by X; € SmlSm which
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are Alb'8-trivial. Let (U;, f;) be a Zariski cover of X such that [0X ||, is principal. By
[ABV09, Corollary 2.4.6]), we can cover each U; by affine U;; such that NS (U3 Uij)p) =0,
and since |0X |y, is principal, [0X]y,; is again principal. Considering the log schemes
Uij == (Uij,0Xy,;), we have that NSY((Uij)z) — NSt ((U5;)z) is surjective by [Ful9s,
Example 10.3.4], hence NSI(U%) = 0. We conclude that {Uj;} is a Zariski cover of X by
Albl8_trivial log schemes. O

Proof of Theorem 5.1. From Lemma 5.12 and Proposition 5.10, we have that the oo-
category D(Shv'i%. (k,Q))) is generated by a set of compact BC-admissible compact
objects concentrated in degree zero. The existence of the derived log Albanese func-
tor L Alb'°8 as pro-left derived functor of Alb'°® follows then from Theorem A.13, and by
constrution it is equivalent to the pro-left adjoint of the functor D(wlog)

We are left to show that the functor L AIb'°® factors through the localization
Lg: D(Shvk(k, Q) — logDM™ (k, Q).

Recall that logDM®® (k, Q) is obtained as localization of D(Shvi. (k,Q)) with respect
to the class of maps:
(CT) Qitr (X x O)[n] = Quex(X) []
for X in SmlSm(k). From the proof of Lemma 5.12, we can suppose that X is Alb's-
trivial (this is the exact analogue of [ABV09, 2.4.1]). We are then left to show that
L A8 (Qy (X x O) — Qur(X)) is contractible for X an Alb'°8-trivial object. Since
Qitr(X) is BC-admissible by Proposition 5.10, we have by Remark A.9 that

L AIb8(Qy,(X)[n]) = “&_ ?Albys[n], for any choice of X € Comp(X).

Note also that if X is Albl-trivial, so is X x . Indeed, (X x 0)° = X° x Al is affine if
X° is affine, NS'((X° x Al)z) 2 NSH(X 2) and Hj (X x POy, p1) = Hy (X,Ox) for
all 7. Therefore

L AIb8(Qy (X x O)[n]) = “hH "Albyq), g, for any choice of X € Comp(X).

On the other hand, by construction we have

Albyi) 5= Albyw),
proving the factorization. The pro-adjunction now is formal since for X € D(RSCq¢ <1),
we have that D(wlog)(X) € D(1ogCI), hence it is (dNis, 0)-local by [BM21, Corollary 5.5],

SO:
logDMeff
D(wiog)(X) ~ igLaD(wisg) (X) ~ igwf (X),

hence for any ¥ € logDM (k, Q)

1 eff
Mapyogp veett (1,0 (Y5 w§01g M (X)) ~ Mapp, ghyitr (1,0)) (iTY D(wlog)(X )

dét
~ Mapp,,p(RSCy, <1 (£,0)) (L AIb8(Y), X)

as required. O

5.3. Logarithmic 1-motivic complexes. For any perfect field k and any commutative
ring A, recall the stable co-category of 1-motivic complexes DML, (k, A), i.e. the full

stable co-subcategory of DM (k, A) generated by M (X), with dlm( )< 1. If A =Q,
by [ABV09, Theorem 2.4.1], the composition

L Alb<y: DME (k,Q) — DM (k,Q) ==

is an equivalence. Let

LAD, D(HI< (K, Q))

w* : DM (k, Q) — logDM (k, Q)
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be the functor from (2.6.1). We give the following definition:

Definition 5.13. For any perfect field k£ and any commutative ring A, we let logD/\/l 1(k,A)

be the full stable co-subcategory of logD M (k, A) generated by w*D ML and wlog(U) [n]
for a unipotent group scheme U. We will call it the stable co-category of log 1-motives.

Remark 5.14. By [BP©020, Theorem 7.6.7], if k satisfies (RS) the oco-category w D/\/l<1 is

equivalent to the co-subcategory of logDM® (k, A) generated by M(X) with X a proper
smooth curve. Moreover, if ch(k) = 0, every unipotent group scheme splits as a direct
sum of G, hence the categroy logDM 1(k,A) is generated by w*DML and wCIG,[n).

Moreover, if A is a Q-algebra, the functor wl<°1gDM factors through logDMgﬁl(k,Q):

indeed the category D(RSC<;(k,Q)) is;generaged by ho(€)[n] with € = (C, Cx) a proper

modulus pair of dimension 1 such that C' — |Cy| is affine, and there is a fiber sequence
ho(€rea)n — 1] = Gg"[n] — ho(€)[n].
Let C € SmlSm(k) be the log scheme (C,9C) with |0C| = |Csol, then
o} eff * al * al * al
WEEM o (€rea)[m] = w b (C — Coo)m] = & (' (C = Coc))m] = w*M(C — Coc)m]

eff
and by construction w®'G,[n] = w1<°1gDM G,[n]. By repeating this argument backwards
we conclude that the functor wl<°1gDMe is also essentially surjecrive on logDM 1(k,A).

From now on, we consider again ch(k) = 0 and A = Q. We have the following general-
ization of [ABV09, Theorem 2.4.1]:

Theorem 5.15. The composition L Alb'°8 o lolgDM 18 equivalent to the constant pro-

object functor. In particular, the functor wlflgDM 18 fully faithful and induces an equiv-

alence
W9EPM™ . DRSC (k, Q) = log DM, (k,Q): lim L AILYE.

Proof. By construction, the proof follows from Proposition 5.16 and Lemma 5.18 below.
O

Proposition 5.16. There is a commutative diagram of stable co-cateogries:

D(HI< (k,Q)) —— Pro-D(RSCx (k,Q))

L Albles

DM (k,Q) ——— DM (k,Q) —— logDM (k, Q).

Proof. The category DM (k, Q) is generated by M (C) with C affine curve, and for such
C we have NS'(Cy) = 0. It is then enough to show that

L A8 (w* M (C)) ~ jL Alb<y (M (C)).

Since C' is affine, the right hand side is equivalent to the constant pro-object Alb(C')[0].
By [BP®20, Theorem 8.2.11], we have that w*M(C) = M(C,dC) with C the smooth
projective compactification of C'. To conclude, we have to show that

Alb(C) ifi=0
0 otherwise.

m; L Alb8(C,0C) = {

Notice that in this case, (C,dC) is not Alb"&-trivial since H(C, Og) # 0 if g(C) # 0.
On the other hand, there exist z,y € C such that C — {z}, C — {y} and C — {x,y} are
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affine. In particular, (C' — {z,y},0C), (C — {z},0C) and (C — {y},dC) are Alb°s-trivial
and there is a sZar-distinguished square

(C —{x,y},0C) —— (C —{z},00)

| |

(C —{y},0C) —— (C,9C)

which induces a fiber-cofiber sequence in logD M (k, Q):
M(C —{z,y},dC) — M(C — {x},0C) & M(C — {y},0C) — M(C,dC)
and so a fiber-cofiber sequence in Pro-D(RSC<;(k,Q)):
L AIb8(C—{x,y},0C) — L AIb°8(C—{x},dC)®L Ab°8(C—{y},dC) — L Alb'°(C, 0C).
Since (C — {z,y},0C), (C —{z},dC) and (C — {y},dC) are Albs-trivial, by Proposition
5.10 and Remark A.9 we conclude that
Albs(C,00) ifi =0
m:.L AIb8(C, 90) = ker(Alblog(é — {z,y},0C) = A/i‘i‘{f;%jﬁfggf) ifi=1
0 otherwise.

By construction, we have that Alb°8(C,dC) is the constant pro-object Alb(C), so to
conclude, we need to show that the map in pro- RSC<y ¢ (k, Q)
Alb'°8(C — {z,y},0C) — AIb8(C — {z},0C) @ AIb'°8(C — {y},0C)

is a monomorphism. It is an easy consequence of [Isa02, Proposition 3.2] that a map of of
pro-objects is a monomorphism if and only if it is injective levelwise on a coinitial system.
In particular, it is enough to show that for n > 0 the map

Ab@ oo in(ay vy = AP@ joctinian © AP@ actingy)
is an injective map of étale reciprocity sheaves. By Proposition 3.20 and the proof of
Proposition 3.14, we have Albe = Pic(C,Cy) for any € = (C,Cx), hence by [Sai20,
Theorem 0.2], it is enough to show that for every function field K over k, the map
Pic(Ck, |0C |k +n({z}k+H{y}k)) — Pic(Ck, (|0C|k +n{z} k) ©Pic(Cr, (|0C| k +n{y} k)

is injective, which follows by Lemma 5.17 below. g

Lemma 5.17. Let X be a proper smooth curve over a field and D, E be effective Cartier
divisors on X such that |D| # 0 and |D| N |E| # (0. Then there exist an exact sequence

0 — HY(X,0}) — Pic(X, D + E) — Pic(X, D) — 0.
If E = Ey + Ey with |E1| N |E2| =0, then the map
Pic(X,D + E) — Pic(X, D + E1) @& Pic(X, D + E3)
18 injective.
Proof. The second assertion follows immediately from the first. To show the first, recall
an isomorphism

Pic(X, D + E) = H'(X,0%,p,p) with O% 5. p

= Ker(Ox — Op, p)-
and a similar isomorphism with D + F replaced by D. By the assumption |D| N |E| # 0,

we have an exact sequence

X
0—>OX|D+E

which induces the desired exact sequence noting H%(X, (’))X(| p) = 0if [D] #0. O

— O%

X
X‘D—>OE—>0,
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eff
Lemma 5.18. For all i > 0, L; AIb'8(u'°5PM7G,) = 0.

Proof. By purity and étale descent, it is enough to show the vanishing over every al-
gebraically closed field extension K/k. Let X € SmlISm(K) and (X,D) be a Cartier
compactification of X. By the construction of Log in [Sai2l, §6] and [RS21, Cor. 6.8(1)],
we have

(5.18.1) wiogGa(X) = Im I'(X, Ox(nD)) = I'(X, Ox).

Hence, there is an explicit resolution (the normalized Bar construction, see [Bre69)):

xe o
(5.18.2) Que(AL triv)  — wl8PMT g,

where Qi (Al triv) is the complement of the retraction map Q LN Qe (AL triv) — Q,
and the augumentation Qi (AL, triv) — w€lG,(X) is induced by

Z(A') = Z(Homgen, (-, A')) — Homgen, (,, A') = G,

See [Bre69, §1-2]. The map factors through Qi (A!) and by (5.18.1) gives naturally a
map in Shv!*". The log scheme (Al triv) is Alb-admissible by Proposition 5.10 and Alb-
admissible objects are stable under direct summands, so we get the following explicit
construction:

L Alb(w'EPM7 G ) = Alb(Qi (AT triv))** = “lim” (Pic’ (P!, moo) © Q) **.

m

Let K as above: we have that
(Pic® (P!, moo) © Q)(K) = Pic’(Pk, mox)

where the right hand side is the group of vector bundles of degree 0 with a trivialization
at moo, which is already a Q-vector space since ch(K) = 0. It is then enough to show
that for m,n > 1, m,(Pic’(PL,moc)*®) = 0. Let us fix m. We compute the boundary
maps d,. For n > 1 have the following square:

B e
Zo(Af)g ————— Zo(A} g
(5.18.3) i(Alb(Plymoo))X" l(Alb(PLmoo))X”’l

Pic® (P, moo) ™ —2 Pic(PL., moo)*n!
where Zo(A%)g = Qi (A", triv)(K) is the group of zero-cycles with rational coefficients
and the map d? is the boundary maps for the complex (5.18.2) evaluated on K, defined

on generators as follows (see [Bre69]): let ({ai},...,{an}) € Zo(A%)g be a generator,
then

(5.18.4) dB(K): ({a1},...,{an}) — ({az},...,{an})
n—1
+) (oo {ai+aid, )+ (D"{ar}, - {an1}).
i=1
On the other hand, the Albanese map sends ({a1},...,{a,}) to the n-uple

1 _ (1) (n) _ (n)
((O’M)M (o W))
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(1)
@, (Z)] is the coordinate of the i-th copy of P . Consider z; := %, we have

0

where [T}

for every i an isomorphism that on generators is defined as follows:

(O T(i) — aiTO(i)> 1—a;z

(5.18.5) Pic’(PL, moo) = 1 + 2z K|z]/(z)™ . :
T(Z) _ T(l)
1 0

1-— Zi
where the operation on 1 + z;K[z;]/(z;)™ is the multiplication of polynomials. To ease
the notation, for @ € K we denote by [a] the element 1 — az; in 1 + 2, K[z]/(z)™ and

by [a] + [b] the element (1 — az;)(1 — bz;), hence we will denote =% by [a] — [1]. From
(5.18.3), (5.18.4) and (5.18.5) we conclude that the differential ¢, is computed as follows:

the i-th component of 6, ([a1] — [1],...,[an] — [1]) is
i—1 n—1
QD ([ai] = 1)) + (=) (lairr +ai] = [1) + ( D (~1)%([ai] — [1]))-
q=0 q=1i+1
On the other hand, we have that ([1],...,[1]) = Alb({0},...,{0}), hence
_ B _J)o ifn=91
u(l1)., (1)) = A(Z({0), ... {0})) { ) e,
Finally we can compute 8, ([a1],...,[an]) = dp([ar] — [1],- .., [an] — [1]) + on([1],- .., [1])-
We let (_); denote the i-th component, there are four cases:
[ait1 + a;i] ifn=9i=90
, . [a;] + [ai+1] — [ai+1 +a;] ifn=20,i=51
Onllail - lenli = 10 4 gi] — [ ifn=p1,i=20
[ait1] — @i + @it1] if n=91=51.

The group 1 + 2z;Kz]/(z)™ has a bounded filtration where for 1 < r < m:
Fil) = 1+ 2/ K[z]/(z)™.
For each r, we let [a], =1 + az]. We make the following claim:

Claim 5.19. Let r > 1 and let ([af],,...,[a}]r) € FillV & ...Fil'™. Then modulo

mod Fll( ) we have:

r+1
[(az—i—l + az) ]T if n=91=20
a; + aj ai+1 + a;)" ifn=50,i=51
bu(laflr .. faply)s = § 0 O = (o b i)l =2 002
[(az+az+1) *ai}r ifn=21,1=20
laj, — (ai + aiy1)"]r ifn=91=91.

Admitting Claim 5.19, since K is algebraically closed we conclude that for each r, we
have that

5, (FiilY @ ... @ FilW) C (FI1Y & ... ¢ Fil("~V).
In particular, the complex (Pic(P1;,m00)*, d) has a bounded filtration as follows:
(Pic®(Pk,moo)*, ds) = ED(Fill”, 6,) 2 ... D (FiILY, 6,) 2 P (FiILY, 6) = 0.
i=1 i=1 i=1
Moreover, for all r we have an evident isomorphism (see also (5.19.2) and (5.19.3) below)

gr” (PicO(P}(, moo)”) 2 K" ([ai]y, ..., [an]r) = (a1,...an)
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and the boundary map gr"(6,): K™ — K" ! is computed as in Claim 5.19. Using the
spectral sequence of the filtered complex (notice that the filtration is bounded so it always
abrupts), we are reduced to show that for allm > 1 and 1 < r < m,

T (gr” (PicO(P}{, moo)®), g’ (ds)).

Let (aj...an) € K™ such that gr"(d,)(a;...a,) = 0, we need to find (by,...,by4+1) such
that a; = gr"(8p+1)(b1,...,bnt1)i. Since K is algebraically closed we can suppose that
a; = z}. By Claim 5.19 we get that

0 ifn=971=90

ol 4z ifn=90,1=51
(5.19.1) g (0n) (2] )i = 0 & (@i @i)" = ) o i :

; ifn=91,1=90

T ifn=9i=91.
Let ¢ > 2 and suppose that we have constructed bq,...,b; such that for all £ <i—1,
xy = gr (0p+1)(b1,...,0;,0...,0)
then we have a polynomial relation on b;1; by imposing the condition
x; = gr (6p+1)(b1,...,bi,bit1,0...,0);

and deduce the existence of b, as root of such polynomial. Hence it remains to construct
by and bg in the case i = 1. If n =5 0, we choose by = (—z1)" and by = (x1 + x2)": from
the second case of(5.19.1) we have (z1 + z2)" = z] + x4, so we get that

gr' (On+1)(b1,02,0...,0)1 = (21 + 22)" — (w1 + 22 — 1) = @] + a5 — @) = 7.

If n =2 1, we choose by = 2] and by = z5: from the last case of (5.19.1) we have
(x1 4+ z2)" = x5, so we get that

8" (0n41)(b1,02,0...,0)1 = 27 + 25 — (21 + 22)" = 27.

This implies that m, (gr" (Pic?(P};,mo0)*®), gr"(ds)) = 0 for all n > 1 and reduces the proof
of Lemma 5.18 to Claim 5.19.

Proof of Claim 5.19. Let 6y, ; := 0p([a]]r, - - - [a},]r)1. Notice that for all b € K:
(5.19.2) — By = (1= b2)" = 1 4 b2} + O(z2") = [~b], mod Fill"),
and for all b,c € K

(5.19.3) [l + [l = (1 = b2)(1 — e2) = 1 = (b+ )2} + O(z/ ") = [b+ o], mod Fill") .
Let ¢, be a primitive r-th root of unity in K, then

r—1 r—1

[a]r =1 —ajzf = [[(1 = (Faizi) = ) [CHail,
q=0 q=1
thus 6, ; = Z;;% dn([Glai],. .., [CFan])i. We check the four cases:

(1) n=i=50: 6,5 = Y01 [CPaips + Glai] = Y211 (@i + ain)] = [(ai + aipa)']y
(2) n=20,i=21: 0p; = Z;;%[Qﬁaiﬂ] + [¢Pa]) — [GFaitr + (lai
= [aj e + [ai]r — (@i + aip1)"]s
(3) n=21,i =9 0: 6,5 = >or 1 [(Fasr + (lai] — [(Pai] = [(@i + aiv1)"]r — [af)
(4) n=gi=y1: 6u; = Yo 1[Clair1] — [Claips + (Pai] = [al]y — [(a; + aig1)"]s-
Here all congruences follow from (5.19.2) and (5.19.3). O
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6. SOME COMPUTATIONS
Recall from [BVK16, Theorem 9.2.3] (see also [Par21, Theorem 1.1] for a statement in
a language more similar to ours) that
(6.0.1) L Alb(w(X)) ~ Alb(w(X)) & NS*(w(X))[1],
where NS*(w(X)) is the torus dual to the Néron-Severi. The goal of this section is to give

an explicit description of L Alb°8(X): for X = (X,0X), recall that w(X) is defined as
—|0X|. We will prove the following result:

Theorem 6.1. Let X € SmISm geometrically connected and (X, D) a Cartier compact-
ification of X. Then we have that

“<_”( (X, 0x(nD))") @k Gq for2 <i<dim(X
L; AIblog(X) = ¥— <(H1 X Ox(nD))/HY (X, 0%))" )@k G, ®NS*(w(X)) fori=1
Alb'e #(X) fori=20
0 otherwise.

Moreover, the canonical map L Alb°8(X) — @?izrg(X)Li Alb8(X)[4] is an equivalence.
We start with the following observation:

Proposition 6.2. The inclusion D(ip1): D(HIg <1) — D(RSCq <1) has a left adjoint

Lf& such that m(Lf‘j)(F) = hlA1 (F) (the Suslin hyperhomology).

Proof. By Proposition 4.31, the inclusion D(RSCg; <1) — D(Shv¥; (k, Q)) is fully faithful,
then for F' € D(RSCq <1) and H € D(HIg <1):

Mapprscy, <) (F> D(iar)(H)) ~ Mapp gyt (1,0)) (£ D(iar) (H))
1 1
~ Mapp, et gy (Co- (F), H) ~ Mapp,, .,y (LAbC2 (F), H)

which implies that Lfﬁ exists and it coincides with L Alb Cf‘l. We can write F =
hocolim; ,, F;[n] with F; € RSCX;. Since CA' D(Shvi (k,Q)) — DM (Ek,Q)) com-
mutes with all (homotopy) colimits as a left adjoint, we have

1

CA' (F) ~ hocolim CA (Fy[n]) 2 hocolim(hA" (F)[n]),

where (%) follows from Remark 4.25. Hence the homotopy groups of Cfl (F) are 1-motivic
so that m; L3} (F) = ;L Alb CA'(F) = mCA (F) = B2 (F). O

Lemma 6.3. Let Pro-L3}: Pro-D(RSC¢ <1) — Pro-D(HIg <1). For X € SmISm(k)
geometrically connected, Pro- L<1LAlblog( X) is a constant pro-object and

lim pro-L; L AIb$(X) =~ L Alb(w(X).

Proof. Let Qu:(Ys) — Qiix(X) be a resolution in Shv!¥ (k,Q) by Alb-trivial objects.
Then L; AIb'°8(X) = m;(AIb°8(Y,)). On the other hand, by construction, Q¢ (w(Ys)) —
Qu(w(X)) is a resolution in Shv¥ (k, Q) by affine NS!-local objects in the sense of [ABV09)],
so Li Alb(w(X)) = m; Alb(w(Ys)). By Proposition 3.19 and (5.2.1), for 9), Cartier com-
pactifications of Y,, we have a fiber-cofiber sequence:

(6.3.1) “L UQM) @) Ga = AID%(Y,) — c(Alb(w(Ya))),

where U (LZ)S")) are the k-vector spaces from Definition 3.5. The complex Alb(w(Y,)) is
Allocal, so we have that

Pro-Ly; ¢(Alb(w(Y4))) ~ ¢(Alb(w(Y4))) = ¢(L Alb(w(X)))

)
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and for all ¢,n, there exist r; , such that U (@gn)) = G, so we conclude since:

Pro_[/i%(u@n (@ﬁn))) _ o« mei%(U(Q‘jsn))) =0.

n

The lemma above gives a natural map L Alb'°8(X) — c¢L Alb(w(X)). Let
(6.3.2) Fib(X) := hofib(L AIb™8(X) — ¢L Alb(w(X))).
In view of (6.3.1), we have that
: ~ KT8 9 (n)
(6.3.3) Fib(X) ~ “lim"U(QL"),

since for Qy;(Ys) — Qi (X) an Alb-trivial resolution and 2)s a Cartier compactification
of Y,, the map Alb(QjZ(-n)) — Alb(w(Y;)) is surjective with kernel U(@En)) for all i.

Definition 6.4. Let (G,) C D(RSCg; <1) be the stable co-subcategory generated by
direct sums of G, and let (G,)“ be the full subcategory of compact objects. In particular,
F € (Gg)% if and only if there exist s <t € Z and r, ..., > 0 such that

t
F ~ @ Gl

Remark 6.5. Let Pro-((Gg4)¥) C Pro-D(RSCyg; <1), then for all X as above Fib(X) €

Pro-((Gg)®)

Remark 6.6. Let Vectsy be the category of finite dimensional k-vector spaces. By Propo-
sition 4.31 and [Ser75, VII]:

Mapprsc,, <1)(Ga Galil) = Homveet (K7, £°)[i] = Mapp vect,,) (K" £°[i])-
In particular, the functor V +— Spec(k[V"V]) induces an equivalence of oo-categories
-®k Gg: D(Vecty) — (Gg)”
with quasi inverse given by RI'(Spec(k),-).
Let (1)V: Vectyq — Vecty] denote the equivalence given by the dual vector space. It
induces an equivalence:
(-)¥: Pro-D(Vectsq) — Ind-D(Vecty?).
Remark 6.7. There is a commutative diagram of stable oco-category:
Map(-,Ga)

Pro-(G,)¥ Pro-D(Vectyy) —~ Ind-D(Vect;))

Pro-RI'(Spec(k),-) )

where Map denotes the mapping space in Pro-D(RSCg; <;). This easily follows from the
fact that any map of sheaves f: G], — G is indeed a map of vector groups, hence since
G, = k ®k Gg, we have a commutative diagram in D(Vectgy):

Map(G$, G,) —— RI'(Spec(k), G3)Y

| |7y

Map(G", G,) —— RI(Spec(k),G")V.

Proposition 6.8. Let X € SmlSm(k) geometrically connected. Then for any (X, D)
Cartier compactification of X and i > 2, we have that

Li AIb5(X) = “lim " (H'(X, Ox(nD))") @, Ga.
In particular, L; AIb°8(X) = 0 for i > max(dim(X), 2).



DERIVED LOG ALBANESE SHEAVES 45

Proof. By (6.0.1), for X as above we have that for i > 2
L; AIb°8(X) ~ m;Fib(X).
By Remark 6.7 we have that
(6.8.1) Fib(X) = RI(Spec(k), Fib(X)) ®; G, ~ Map(Fib(X), G4)" @k Ga.

By Theorem 5.1 and [BP?20, Theorem 9.7.1] and (5.18.1).
(6.8.2)

Mappo pRSCy, <1) (L AIb8(X), Go) = Map;gp e (M(X), wiogGa) ~ RT(X, Ox).

Let now (X, D) be a Cartier compactification of X. This gives an isomorphism:
RT(X, Ox) ~lim R1 (X, Ox(nD)).

and the right hand side is in Ind—D(Vect?gf ), which completes the proof. ]
Since L Alb'°8 (X) is bounded, there are maps

L A8 (X) — 7<;L AIb'8(X) < 75;7<; L AIb'8(X) ~ L; AIb1°8(X)]i]
which induces a zig-zag
(6.8.3) LAIbE(X) = @) L Albos(X) « @) L, Albloe( X)),
Lemma 6.9. For X € SmISm(k) geometrically connected, we have an equivalence:

L AIbE(X) 22 @) 1, Albl2 (X)[d].

Proof. By Proposition 4.31, we have that for every F' € RSCg <1, and ¢ > 2,
EXt;ro-RSCét,Sl(WjFib(X)>C(F)) =0, resp. Ethyro—RSCét,Sl(WjL Alb(w(X)),c(F)) =0,

so by (6.3.2), we get Extf)m_ RSC L; AIb'°(X), ¢(F)) = 0. Then the spectral sequence

ét,gl(

EY = Extl,, rsc,, -, (Lj AID5(X), ¢(F)) = mit; Mapp,, prscy, <) (L AIDE(X), c(F)[0])

degenerates at page 2, giving for every j a short exact sequence
(6.9.1)
0 — Ext rsc,, o, (Lj AID(X), ¢(F)) = 145 Mapp,o pRSCy, <1) (L A% (X), o(F))

— Hompro RSCy, o (D145 AIDE(X), ¢(F)) — 0.
On the other hand, the complex @L; Alb°8(X)[i] also fits in short exact sequences
0 = Bxtho r s, (L AIDPE(X), c(F)) = T MaDpro p(rscy, <) (©Li AT, e F))
— Hompro RSCy < (L145 AID8(X), ¢(F)) = 0
so the zig-zag of (6.8.3) gives for all F' = “@”Fi and all n an equivalence
Mapp,o. pRSCy, <1) (B Li AD'(X)[i], F[n]) = lim Mapp,, prsc,, <) (B Li A (X)[i], ¢(F;)[n])
= lim 57" Mapp,o p(rsCy, <) (B Li A (X)[i], ¢(F))
=~ Jim =" Mapp,o prSCy, <) (L A% (X), ¢(F))
= @1 Mapp,o p(RSC4. <) (L AID#(X), c( F) [n])
= Mapp,o pRSCy ;) (L AD'(X), F[n]).

Then a spectral sequence argument and the fact that L Alb'°8 (X) is bounded implies that
for all C' € Pro-D(RSCyg <1) we have

Mapp,o-pRSCy, 1) (PLi AIb8(X)[i], C) ~ Mapp,o pRSCy, 1) (L AlbE(X),C)

which allows us to conclude. O
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Proof of Theorem 6.1. The only case left is ¢ = 1: we consider the long exact sequence of
homotopy groups arising from (6.3.2). The map L Alb(w(X)) — mo(Fib(X)) is zero since
by (6.0.1), L1 Alb(w(X)) is a torus, so we get a short exact sequcend in pro- RSCy¢; <1:

0 — mFib(X) — L1 AIb°8(X) — L; Alb(w(X)) eLy ¢(NS*(w(X))) — 0.

Since 7 Fib(X) is a pro-vector group, this short exact sequence splits and

(6.9.2) L1 AIb8(X) = 1, Fib(X) & NS*(w(X)).

Moreover, we have

Map(m1Fib(X), G4) ~ Map(L; Alb'°8(X), G,) ~ Hompro RSC, <, (L1 Alb°8(X), G,)[0],
where Map denotes the mapping space in Pro-D(RSC¢; <1). Hence (6.9.2) gives:

(6.9.3) 7L AIb'°8(X) 2 (Hom(L; AIb'8(X), G,)Y) @k G4 @ NS*(w(X)).
Let us compute Hom(L; Alb°(X), G,): by (6.8.2) and (6.9.1) we have an exact sequence:
(6.9.4) 0 — Ext}(AIb'8(X), G,) — H'(X,0x) — Hom(L; AIb°§(X),G,) — 0.

In particular, we have a similar exact sequence for the log scheme (X, triv), which we now
inversigate. For X proper we have by construction (see Theorem 4.28) that Alb8(X) is
the constant pro-object Alb(X), so there is a surjective map

Alb°8(X) — Albls(X)
whose kernel is an extension of the torus 7' := ker(Alb(w(X)) — Alb(X)) by the pro-vector
group “l'&l”U(Y, nD) @ G, where U(X,nD) comes from Definition 3.5. For i > 1, we
have that liﬂEx‘ci(U(Y, nD),G,) = 0 and Ext (T, G,) = 0, so we have a surjective map:
(6.9.5) Ext!(AIb'°8(X), G,) — Ext}(AIb8(X), G,).

Combining (6.9.4), and (6.9.5) we have a commutative diagram with exact rows:

0 —— Ext!(AIb8(X),G,) —— H'(X,0x) —— Hom(L; AIb'¢(X),G,) —— 0

| | |

0 —— Ext!(AIb'8(X),G,) —— H'(X,0x) —— Hom(L; AIb'¢(X),G,) —— 0
so to conclude it is enough to show that L; Alb°8(X) = NS*(X), which implies that
Hom(L; AIb°¢(X), G,) = 0, so the diagram above implies

Hom(L; Alb*¢(X), G,) ~ coker(H'(X,0x) — H*(X,Ox))

and we will conclude by duality and (6.9.3).
By (6.9.2), it is enough to show that 7 Fib(X) = 0. By (6.8.1), we have

mFib(X) = 71 (Map(Fib(X), G4)Y @k Ga) = (71 Map(Fib(X), G,)" @1 Ga),

so it is enough to show that 7_; Map(Fib(X),G,) = 0. By (6.3.2) for X we have a
fiber-cofiber sequence:

(6.9.6) Map(L Alb(X), G,) — Map(L AIb°8(X), G4) — Map(Fib(X), Ga).

By (6.0.1), since NS*(X) is a torus and Alb(X) is an abelian variety, by [Ser75, VII] we
have

7_1 Map(L Alb(X), G,) = mo Map(NS*(X), G,) & m—1 Map(Alb(X), G,)
=~ Ext!(AIb(X), G,) = H (X, O%),
where the last isomorphism is classical, and
7_g Map(L Alb(X), G,) = 0.
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Finally, 7_; Map(L Alb°8(X), G,) = H' (X, G,) by (6.8.2), so the map
7_1 Map(L Alb(X), G,) — 71 Map(L Alb'°8(X), G,)

in the long exact sequence of homotopy groups of (6.9.6) is an isomorphism, which implies
the desired vanishing. O

Remark 6.10. We observe from Theorem 6.1 two extreme cases: if X is affine, we have
that H'(X,Ox) ~ liqul(X,OX(nD)) =0fori>1,so
n

Alb8(X) ifi=0
Li AIb°8(X) = { NS*(X) ifi=1

0 otherwise.

In particular, L; Alblog(X) is constant for i > 1. For X proper, H'(X,Ox) = H'(X, O%),
SO
Alb(X) ifi=0
L; AIb°8(X) = { NS*(X) ifi=1
(H{(X,0x)") @, G, ifi>2.

In this case, L Alb'°8(X) is a constant pro-object. This shows that Proposition 5.16 cannot
be extended to the whole DM (k,Q): in general, if M € DM (k,Q), L AIb1°8(w* M) is
not equal to L Alb(M): the difference is controlled by coherent cohomology of degree > 2.

6.1. Open questions. We end this Section with the following observation. It seems to
be an interesting question to determine under which conditions L; Alb°® is a constant
pro-object.

This is related to the following problem: let X’ — X be a desingularisation of a d-
dimensional, integral variety over a field k, and let D be an effective Cartier divisor on X’
covering the exceptional fibre, and assume that codimx (7(D)) > 2. Let rD denote the
r-th infinitesimal thickening of D and F¢Ky(X’,rD) the subgroup of the relative K-group
Ko(X',rD) generated by the cycle classes of closed points of X’ — |D|, for each r > 1.

Bloch and Srinivas conjectured (see [Sri85, p. 6]) that the pro-object ¢ Jim 7 FeKo(X',nD)

is essentially constant and equal to F?Ky(X). The Bloch-Srinivas conjecture was proved
for normal surfaces by Krishna—Srinivas [KS02, Theorem 1.1], and for ch(k) = 0 it was
later extended to higher dimensional projective and affine varieties over an algebraically
closed field by Krishna [Kri06, Theorem 1.1] [Kril0, Thorem 1.2] and Morrow [Morl5,
Theorem 0.1, (iii), (iv)]".

The proof of [Morl5] indeed relies on a natural reformulation of the Bloch—Srinivas
conjecture for the Chow groups with modulus:

Theorem 6.11 (cfr. [Morl5, Theorem 0.3]). Let k be an algebraically closed field of
characteristic zero and w: X' — X and D be as above and assume that X is projective.
Then the pro-object “yLn”nCHO(X, nD) is constant with stable value equal to the Levine—

Weibel Chow group of zero cycles CHYW (V) of [LWS5] (see also [BK18]).

By the universal property of the Albanese map, we deduce that if in the situation
of Theorem 6.11 we assume that D is a simple normal crossing divisor, the pro-object
“lim 7, Alb(x , p) is indeed essentially constant, so the pro-object Lo Alb°8(X —7(|D|), triv)
is essentially constant. Then the following question arises naturally:

Question 6.12. Let X be a proper variety and U C X be a smooth open subvariety. When
is the pro-reciprocity sheaf L; AIb™(M (U, triv)) essentially constant?

"The conjecture is indeed true in a more general class of examples: the interested reader can check
[Mor15, Theorem 0.1 (7)-(vii)]
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Notice that in general L; Alb!°(M (U, triv)) is not essentially constant: let X be a proper
non-singular surface, and U = X — Y for some closed subscheme Y of X. Let (X', D) be
the blow-up of X in Y. As observed in [Har68, p. 407], if some irreducible component
of Y is a point, then dim(H'(U,Op)) = co. On the other hand, dim(H' (X', Ox/(nD)))
is finite for every n, so L AIb!°(M (U, triv)) is not constant by Theorem 1.3. At the
moment, we do not know if there is a nice family of pairs U C X that answers Question
6.12 positively.

7. LAUMON 1-MOTIVES AND COMPACT OBJECTS

In this Section, we combine the results of [Berl4] with some arguments of [BVK16]. As
before, let k be a field of characteristic zero.

7.1. Review of Laumon 1-motives. The following definition is adapted from [Berl4,
1].

Definition 7.1. An effective Laumon 1-motive is a two-terms complex M = [[' % G,
where I' is a formal k-group and G is a connected algebraic k-group, both seen as objects
of Shv (k). We say that M is étale if T' is a lattice.®. An effective morphism

M=[%a Ly - @
is a map of complexes. We denote the category of effective (resp. étale) Laumon 1-motives

by ./\/l(f’eff (resp. M‘ll(ef) An effective Laumon 1-motive is an effective Deligne 1-motive if

D

G is semi-abelian. We write M7 “f for the full subcategory of effective Deligne 1-motives.

Definition 7.2. An effective morphism (f,g): M — M’ is strict if g has (smooth) con-
nected kernel, and a quasi-isomorphism if g is an isogeny, f is surjective and ker(f) =
ker(g) is a finite k-group scheme.

Note that if (f, g) is strict and g is an isogeny, then ¢ is an isomorphism of commutative
algebraic groups. Write X for the class of quasi-isomorphisms: it admits a calculus of
right fractions (see [BVK16, C.2.4] or [Berl3, Lemma 1.6]). We can now give the following
Definition (see [Berl4, Definition 2] and [BVB09, Definition 1.4.4]).

Definition 7.3. The category of étale Laumon (resp. Laumon, resp Deligne) 1-motives
M 4 (resp. MY, resp. MP) is the localization by ¥ of the effective category.

Recall [BVK16, Appendix B] for the notion of C ® Q for an additive category C. The
proof of the following proposition is identical to [BVK16, Corollary C.7.3]:

Proposition 7.4. The categories MP © Q, M¢ ® Q and ./\/13‘7ét ® Q are abelian.

Definition 7.5 (see [Berl4]). Let M be the full subcategory of M 4 whose objects
are 1-motives M = [[' % G] with ker(u) = 0.

Lemma 7.6. The category M(ll:t ® Q is a generating subcategory of M{ ;4 ® Q, and it
1s closed under kernels and extensions. Moreover, for every object M € ./\/l‘f’ét ® Q there
exists a monomorphism f: M' — M" in M{7%, ® Q such that M = coker(f).

Proof. This is essentially [Berl4, Lemma 4]. O

Remark 7.7. The reader might wonder if there are interesting examples of étale Laumon
1-motives which are not Deligne 1-motives. The prototype of such example is given by
the 1-motive M% = [I' — G which is the universal G,-extension of the Deligne 1-motive
[ — G]. Starting from the motive M? it is possible to construct the universal sharp

8 Note that this definition is different from the one given in [BVBO09, 1.4], where the authors require in
addition that U(G) =0



DERIVED LOG ALBANESE SHEAVES 49

extension M* of M, as discussed in [BVB09]. Note however that the cateogry M7 g 18

not closed under f-extensions: as remarked in [BVB09, 3.1.5], [0 = G,]! = [G, — G2],
which is clearly not étale.

Remark 7.8. The category of Deligne 1-motives has an interesting self-duality, induced
by the classical Cartier duality for algebraic groups. This extends to Laumon 1-motives,
see [BVB09]. Note that while the Cartier dual of a Deligne 1-motive is again a Deligne
1-motive, the dual of an étale Laumon 1-motive is in general not étale. For example, if
A is an Abelian variety (see as 1-motive [0 — A]), its universal G, extension is the étale
Laumon 1-motive A% = [0 — A%, which is not a Deligne 1-motive. Its Cartier dual (A%)*
is the 1-motive [A’ — A’], where A’ is the dual Abelian variety of A and A’ is the formal
completion of A’ along the identity. Clearly, (A?)* is a Laumon 1-motive that is not étale.

Remark 7.9. Consider the functor
P MG — Shv (k. Q) [L % G] — coker(u) ®7 Q.

If [Ly i G1] — [La 2, Go] € 3, then by definition coker(u;) ® Q = coker(uz) ® Q. This
together with [BVK16, Lemma B.1.2] implies that p° induces:

p: MG 4 ©Q = Shve (k, Q).
Lemma 7.10. The restriction of p to MT; ® Q induces an equivalence (cf. Def. 4.23):

P MY @ Q 5 RSCY ., -

Proof. By definition, for [L — G] € M7 ® Q, p([L — G]) € RSC}, ., and by Proposi-
tion 2.10 for every morphism f we have that p(f) is a map in RSCY; ., hence p* is well
defined. The presentation of Proposition 4.24 gives then a quasi-inverse of p*. O

Remark 7.11. For a category C, we write Ind(C) for the Ind-category of C as in e.g. [KS06].
By [KS06, Prop. 6.3.4] and Remark 4.26 the functor Ind(RSCY; o;) — RSCg; <1 induced
by filtered colimits is fully faithful. It is also essentially surjective by Proposition 4.24,
hence it is an equivalence. Combining this with Lemma 7.6 and 7.10, we have a functor

(TAL1)  Ti Moy ®Q - Ind(Mf g Q) < Ind(M, ® Q) ~ RSCaq 1 (k, Q)

a,*

where (%) follows from the fact that M7% ® Q is a generating subcategory of M{ ;4 ® Q.
Since ./\/lciét ® Q is abelian by Lemma 7.4, it is idempotent-complete, hence following the
steps of [KS06, Exercise 6.1] the functor (7.11.1) is fully faithful and it identifies M{ ; ® Q
with a set of compact generators of RSCq; <1. Moreover, by [KS06, Proposition 8.6.11],
the category T(./\/liét ® Q) is closed under extensions in RSCyg; <;.

7.2. The derived category of étale Laumon l-motives. By [KS06, Proposition
8.6.11] and Remark 7.11, the image of the functor T of (7.11.1) is a Serre subcategory of
RSC< 4 (k,Q), hence we can consider the triangulated category D?vt'; (RSCc<i(k,Q))
< “ <
of bounded complexes of RSC< (k, Q) such that H,(C) = T'([L, — Gy)]) for [L, — G,] €
a , ® Q
1,ét

Remark 7.12. The functor T of (7.11.1) induces an equivalence of triangulated categories:
D*(Mf ¢ © Q) = D?\A;{ét (RSCet,<1(k,Q))

where the latter is the triangulated derived category , since by Proposition 4.31, every
object of RSCY;  is of projective dimension at most 1 in the sense of [Kel99], in particular
the image of T satisfies [Kel99, 1.21 Lemma (c2)], hence the equivalence comes from [Kel99,
1.21 Lemma (c)].
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Definition 7.13. Let D’( 16 ® Q) be the full co-subcategory of D(RSCq <1) spanned
by bounded complexes C € Db(RSCétél) such that m,C = T([L, — Gy)]) for [L, —
Gn] € Mi 4 ®Q.

Remark 7.14. Notice that since the category M{ ., ® Q does not have enough injective
nor projective objects, we cannot use [Lurl7, 1.3] to construct Db(/\/l‘iét ® Q) directly.

Lemma 7.15. There is an equivalence of co-categories:
D(RSCe,<1(k, Q) = D*(M{ 4 © Q)

where the left hand side denotes the subcategory of compact objects as in [Lur09, Notation
5.3.4.6].

Proof. Since the set of objects of RSCq; <1 (k, Q) lying in the image of (7.11.1) is a set of
compact generators, by [Stal6, Lemma 094B] we have an equivalence

D(RSCq,<1(k,Q))* ~ Idem(D*(M{ 4 ® Q))

where the right hand side is the idempotent completion of Db(/\/l‘iét ® Q), see [Lur09,

Definition 5.1.4.1]. On the other hand, the category D*(M¢ ,, ®Q) is idempotent-complete
since the image of (7.11.1) is idempotent complete (it is an abelian subcategory), hence
every object of D(RSCq¢ <1(k, Q))* lies in Db( 16 ®Q). The other inclusion is clear. [

Theorem 7.16. Let logDM, . (k, Q) = logDM (k, Q). The functor «'28PM™

preserves compact objects and it induces an equivalence
~ ff
Db( T,ét & Q) — logDMegl,gm(k¢ Q)

Proof. By Lemma 7.15, if C € D(RSC<) is compact, then it is a bounded complex such
that m;(C) = T'(M;) for M; € ./\/l‘iét ®Q. In particular, there exists n such that C = 7>,,C,
so we get a fiber-cofiber sequence in D(RSCy¢; <1 ):

T(Mn)[n] —C — Tznflc.

If C' is compact, then 7>,_1C' is compact, so by induction on the length of the bounded

complex it is enough to show that for M € M{ 4 ® Q, the object wlgolgDMeH (T'(M)[n]) is

compact. As observed in Lemma 7.6, there is an exact sequence in M‘iét ® Q:

0= M —-M'—M-—0

with M', M"” € M77,, and since T is exact we have

logDM*f logDM* logDM*
wE T (T(M)[n]) = cofib(wZF™™ (T(M)[n]) = wZF (T(M")[n]).
Thus, it is enough to show that wlgolgDMCH (T(M)[n]) is compact for M = [L <5 G]. In this
case, we have that T'(M) = coker(u), so we have a cofiber sequence

WEPMY (1)) — WIEPMT ]y - WIOEPM (7 () ).

We conclude since wlflgDMEH (L)[n] = w*L[n] and wg’lgDMeﬂ(G[n]) = wg;(G) [n] are com-
pact. The equivalence then follows from Theorem 5.15 and Lemma 7.15. O

APPENDIX A. PRO-LEFT DERIVED FUNCTORS

In this appendix we generalize to pro-left adjoints the results discussed in [ABV09, 2.1]
and [KS06, 14.3] for left adjoints. We use in an essential way the formalism of (stable)
oo-categories of [Lurl7] and [Lur09].
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A.1. We consider the following commutative square:

c—“5p
(A.0.1) JLC L’Dl

c G’ U4
where C,C’, D and D’ are co-categories, L¢ (resp. Lp) has a fully faithful right adjoint ic
(resp. ip). Let a : LpG — G'L¢ be the equivalence that makes the diagram commute.
As observed in [Lurl7, Definition 4.7.4.13], o induces a natural transformation (the Beck-

Chevalley map)
BC(a) : Gi¢ — ipG'.

Definition A.1. In the situation of A.1, an object X of D is BC(«a)-admissible if and
only if for any Y € C’ the Beck-Chevalley map induces an equivalence:

(A.1.1) Mapp (X, ipG'(Y)) = Mapp (X, Gic(Y)).
Assume that G and G’ have left adjoints F and F’, then by adjunction « induces a map
B: F/LD — LcF.

A.2. Let C be an (arbitrary) oco-category. We consider as in [Hoyl8, Section 2] the co-
category of pro-objects Pro-C together with the “constant pro-object” embedding c: C —
Pro-(C) such that Mapp,, (-, ¢(Y)) commmutes with cofiltered limits. Every element in
Pro-C is corepresented by a diagram I — C for I (the nerve of) a small cofiltered poset. We
will often denote an object of Pro-C as “ l'&aie I ? X; for a diagram I — C. By construction
we have that
Mappc(* im " X;, *Jim *Y;) = Jim ling Mape (X;, )
i€l JEI; i
where the limits and colimits are computed in S.

Remark A.2. The functors L¢ and i¢ extend levelwise to an adjunction (Pro-L¢, Pro-i¢) on
Pro-C and Pro-C’ with the same properties. The verification is immediate. In particular,
if D and D’ have all limits, G and G’ give the following commutative diagram:

Pro-C X% p

lPro-Lc Lpl

Pro-C' PG pr
which satisfies the hypotheses of Situation A.1 with equivalence
a?™® . LpPro-G — Pro-G'Pro-Le.

In particular, since ¢p commutes with all limits being a right adjoint, it is immediate that
X € D is BC(a)-admissible if and only if it is BC(a"?)-admissible.

Remark A.3. If C is an accessible stable oo-category equipped a t-structure (C<g,C>o) with
heart C¥, the oo-category Pro-C is also stable (see e.g. [KST19, Lemma 2.5]) and it comes
equipped with a t-structure such that (Pro-C)<g (resp. (Pro-C)>g) is the full subcategory
of objects which are formal limits of objects in C<q (resp C>o).

A.3. Let A be a Grothendieck abelian category. Write Ch(A) for the model category of
chain complexes with the injective model structure. Let W be the class of quasi isomor-
phisms. We consider the oco-categories (see [Lurl7, 1.3.5]) Chgg(A) = Ngg(Ch(A)) and
D(A) = Ngg(Ch(A))[W1]. An exact functor G: A — B between Grothendieck abelian
categories induces a dg-functor Ch(G) : Ch(A) — Ch(B) which preserves W, so by taking
the dg-nerve it induces a functor Chqg(G): Chgg(A) — Chqg(B) such that Chqe(G)(C) =
Ch(G)(C), and by e.g. [Hin20, Proposition 4.3], it induces D(G): D(A) — D(B) on the
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localizations. Note that both functors are clearly stable (i.e. they commute with shifts).
By construction, we have a commutative square of co-categories:

Chag(A) 29 Cng,(B)

(A.3.1) A B
bn ol
D(A) D(B)

where Lo and Lp have fully faithful right adjoints ¢o and ig. We will fix o that makes
(A.3.1) commute and just say that an object is BC-admissible.

Remark A.4. Note that, since G is exact, we can identify the Beck-Chevalley transforma-
tion Chgg(G)ia — iBD(G) as follows. For any object I € D(A) (i.e. a fibrant complex
in Ch(A) for the injective model structure), the object D(G)([I) is a fibrant replacement
of Chge(G)(i4(I)). The map Chqe(G)(ial) — iBD(G)(I) in Ch(B) is thus given by
the functorial fibrant replacement. In particular, if Ch(G) is a right Quillen functor, the
map Chye(G)(ial) — iBD(G)(I) is an equivalence in Chqe(B). On the other hand, the
functors condidered here are not necessarily right Quillen.

Remark A.5. If the functor G has a left adjoint F', then X is BC-admissible if and only
if it is F-admissible in the sense of [ABV09, Definition 2.1.5].

A.4. Pro-left derived functors. Fix A, B and G as above and we assume that G
and ig commute with filtered colimits. Since G is exact, it preserves finite limits, so
it has a pro-left adjoint F': B — pro-A. The functor D(G) is then an accessible functor
between presentable co-categories that preserves finite limits, hence it has a pro-left adjoint
LF:D(B) — Pro-D(A) (see e.g. [Hoyl8, Remark 2.2]).

For any chain complex C, let o<, C and 0>,C denote the stupid truncations (see [Stal6,
Tag 0118]) . We have an equivalence in Chyg:

(A.5.1) C= lig(l'&laz,magnC).

Definition A.6. We say that a chain complex C' is strictly bounded if there exists m,n
such that C' = 0<,C = 0>_,,C.

Remark A.7. Notice that if C' € Ch(B), the object Ch(F')(C) a priori lives in Chgg(pro-A),
which contains strictly Pro- Chgg(A). If C is a strictly bounded complex, let m,n such
that C' = 0<,C = 0>_,,C, then for r € [-m,n] let F¥(C,) = “@”ielr(Xr)i- Then one
can find a cofinal set I C I,. for all r such that

Ch(F)(C) = “Mm” (... = (Xp)i = (Xp—1)i = -..).

el
In particular, Ch(F)(C) € Pro-(Chge(A)).
Proposition A.8. For all C' € Chqg(B), there is an equivalence in S:
MapPro- Chgg(A) (Ch(F)(O) [0]> Y) = MapChdg(B) (X[OL Chdg(G) (Y))

Proof. Let C,, = 0 for n ¢ [—r,s]. The cofiber of the map o<;_1C — C is equivalent
to Cs[s], hence by induction on r + s we are reduced to the case where C' = Cj[s] with
Cs € B, and clearly Ch(F')(Cs[s]) = F(Cs)[s]. Since Pro- Chgg(A) is pointed, by [Lurl?,
Remark 1.1.2.8] it is enough to show that for all m,

mo Mapp,,. Chgg(A) (F(X)[m],Y) ~ mo MapChdg(B) (X[m], Chqg(G)(Y)).
Let FI(X) = “l'&n”Ti, then for all m we have an isomorphism of abelian groups:
HomCh(B) (X[m], Ch(G) (Y)) == llﬂ HomCh(A) (T; [m], Y),

INotice that we chose the convention for chain complexes, which is different from [ABV09, Lemma
2.1.10]: there the convention is for cochain complexes
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and since mp commutes with filtered colimits in & we have by [Lurl7, Remark 1.3.1.5,
Remark 1.3.1.11 and Definition 1.3.2.1]:
70 Mappro. gy, (a) (F(X)[n],Y) = lim 1o Mapcy,, (a y(Ti[n], Y)

= coker(lim Homep ) (7; i+ 1,Y) — lim Homep, A (Ti[n], Y)).
coker(Homcy(g) (X [n + 1], Ch(G)(Y)) = Homep(a) (X [n], Ch(G)(Y)))
mo Mapcy,,, ) (X [n], Chag (G)(Y)).

I

I

Remark A.9. A priori, there is no relation between F and LF', but if X is strictly bounded
and BC-admissible, then Proposition A.8 implies that

LEF(Lp(X)) =~ Lpro-a Ch(F)(X)[0].
In particular for X € B such that X|[0] is BC-admissible,

Wn(LF(LB(X[OD)) - {S(X) ioftzer:vv(i)se.

Remark A.9 motivates the following definition:

Definition A.10. In the situation of A.4, LF is said to be a pro-left derived functor of
F if for every X € B

moLF(X[0]) = F(X).

A.5. BC-admissible resolution. We will fix the setting of A.4. By abuse of notation,
we will say that P € B is BC-admissible if P[0] € Chqg(B) is

Proposition A.11. Let P, € Chgy(B) be a strictly bounded complex (see Definition A.6)
such that P, is BC-admissible for all n. Then P, is BC-admissible.

Proof. Up to shift, we can suppose that Py = 0>0Fs = 0<, P, for some n > 0: we proceed
by induction on n. If n = 0, then P, = FPy[0], and it is BC-admissible by assumption. Let
n > 0 and consider the fiber-cofiber sequence in Chgy(B):

O'gnflp. — Py — Pn[’I’L]

For all I € D(A), we conclude by the following diagram in & where the left and right
vertical maps are equivalences by induction:

Map(P,[0], Chae(G)(iaI[—n])) — Map(P,, Chag(G)(ial)) — Map(o<p—1Ps, Chag(G)(ial))
Map(P,[0], i D(G)(I[-n])) —— Map(Pe,isD(G)(I)) —— Map(g<n-1Fe,i8D(G)(1)).
O

Recall that B is said to be generated by a set of objects E if and only if F is closed
under direct sums and for every X € B there exists a surjective map

(A.11.1) Py—X—0

with Py € E. Suppose that that B is generated by a set of objects E which are BC-
admissible. Then let K be the kernel of (A.11.1), so there exists P; € E together with a
surjective map P; — K, hence we have an exact sequence:

By iterating (A.11.2) one can construct a resolution P, — X [0] where P, € E and P,, =0
for n < 0. We will call this a connective BC-admissible resolution.
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Lemma A.12. Suppose that B is generated by a set of objects which are BC-admissible.

For any X € B and any connective BC-admissible resolution Py — X[0], we have that
LF(Lp(X[0]) ~ lim Lpro-a (Ch(F)(o<nFs)).-
n

Proof. Since P, — X|0] is a resolution, we have Lg(P,) ~ Lp(X[0]). Moreover, since P,
is connective, we have that P, = lim o<, P, and o<, P, are BC-admissible by Proposition
A.11. Since LF and Ly commute with all colimits, by Remark A.9 we conclude that

LF(LpX[0]) ~ lig LF(Lpo<nPa) = 1in Lpro-a (Ch(F)(0<n P2)),

We can now prove the main theorem of this appendix:

Theorem A.13. In the situation of A.4, suppose that B is generated by a set objects
which are BC-admissible. Then the functor LF is a pro-left derived functor of F.

Proof. Let X € B and P, — X[0] a BC-admissible resolution, in particular P, € D(B)>¢.
Since LpX[0] € D(B)>¢ and LF is right t-exact, LF(LX|0]) € Pro-D(A)>0, hence

Since T<g is a left adjoint, it commutes with colimits, so by Lemma A.12 we have
TS()LF(X[O]) ~ T<0 hg LPro—A Ch(F) (Ugnp.) ~ hﬂ TSOLPro—A Ch(F) (USnPo>
n n
where the last colimit is computed in Pro-D(A)<p. On the other hand, by definition of
the t-structure on Pro-D(A) we have
TSOLPro—A Ch(F)(JSnP.) ~ LPI-O_ATSO Ch(F)(USnP.).

For n > 1, we have that 7<o Ch(F')(0<,P,) = coker(F(P;) — F(F))[0], and since F' is a
left adjoint, it preserves cokernels, so

coker(F(Py) — F(FPy)) = F(coker(Py — Py)) = F(X).
We conclude that in Pro-D(A)<p we have
%TSOLPro—A Ch(F)(JSnP.) ~ h%n”l Lpro_AF(X)[O] ~ LprO_AF(X)[O]

since Lpyo-a F(X)[0] € Pro-D(A)Y we conclude that
moLF(X[0]) ~ mo(im 7<o Lpro-a F(0<nFe)) ~ FI(X).

A.6. We end this appendix with a criterion of BC-admissibility.

Lemma A.14 (See [ABV09, Lemma 2.1.10]). In the situation of A.4, let P € B such
that P[0] is compact in Chag(B). Then P is BC-admissible if and only if for any injective
object Iy € A, Exth(P,G(Ip)) =0 fori # 0.

Proof. Suppose first that P is BC-admissible. If Iy € A is injective, then Iy[0] is fibrant,
so 1o[0] = ia LA (1p[0]). Let I = Lp(Ip[0]), then:

Extg (P, G(lo)) = mo Mapcy,, ) (P[0}, isD(G) (I[-n])).
Since P[0] is BC-admissible, we have:
mo Mapcy,, 8 (P[0], i8D(G)(I[=n])) = mo Mapcy,, ) (P[0], Chag (G) (ia[—n])))
= mo Mapcy,, B) (P[0], G(lo)[—n])).
The last term is zero for n # 0, hence Extj(P,G(Ip)) = 0 if n # 0.
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Let us now show the converse implication. We need to show that for every Y € D(A)
the Beck-Chevalley map induces an equivalence:

Mapcy,, (5) (P[0], i5D(G)(Y)) ~ Mapey,, (5)(P[0], Chag(G) (iaY)).

Let I :=ia(Y), s0 0<_po>m! is a strictly bounded complex of injectives; since P[0] is
compact and the colimit in (A.5.1) is filtered, Lemma A.15 below implies that:
(A.14.1)

Mapcn,, g (PI0], Chag (G)(1)) = lim(Gim Mapc,,_ iy (P00 Chigg (G)(1))
= i lan Mapcy, ) (PIO]. Chg (G) (7-n72.07))
~ timy(lim Mapn, (m (P[0), i5D(G)(Lao no=ml)
~ Mapen,, (3 (P[0], g i (G EA 020

Next, observe that, for any n and m, the map Chqg(G)(0<—no>ml) = iBD(G)(LAG<—nO>m])
is a fibrant replacement (see Remark A.4) of bounded complexes, which is given by the
total complex of injective resolutions of each G(I,) — J;. So, we have that
(A.14.2)

@iB'D(G)(LAO'S_nUZmI) ~ @TOtre[fn,m](Jr.) = TOtrZ—n(Jr.) ~ Z'B'D(G)(LAO'S_,II).

m

Since ig commutes with filtered colimits by assumption, (A.14.1) and (A.14.2) imply:
(A14.3) Mapcy,, ) (Pl0], Chag (G) (1A Y)) = Mapey, ) (P10], i lim D(G) (Lao<—al).

For every ¢q € Z, we have that for n > ¢:
1 D(G)(Y) = G(n,Y) = G(mgo<—nI) = 7,D(G)(Lao<_nI),

so since homotopy groups commute with filtered colimits:

(A.14.4) Tq li_ngD(G)(LAag,nI) = @qu(G)(LAGS,nI) = 1,D(G)(Y)
The proof follows then from (A.14.3) and (A.14.4). O

Lemma A.15. Let P € B such that for any injective object Iy € A, Exti(P,G(Ip)) =0
for i #0. Then for any strictly bounded complex I® € Ch(A) of injective objects of A:

Mapcy,, B)(P[0], Chag(G)(I") = Mapcy,, g) (P[0], i8D(G) (Lal’)).

Proof. Let I? = 0 for n ¢ [~r,s]. The cofiber of o< 11® — I’ is equivalent to I°[s]: by
induction on 7 + s we reduce to I” = I,[s] with I an injective object of B. We conclude:
0 ifn#s
Homp(P,G(I)) ifn=s.

O

Tn, MapChdg(B)(P[O],iBD(G)(LAIs[s])) = Exty "(P,G(Iy)) = {
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