RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS
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ABSTRACT. Let X be a separated scheme of finite type over a field k£ and D a non-reduced effective
Cartier divisor on it. We attach to the pair (X, D) a cycle complex with modulus, those homotopy
groups - called higher Chow groups with modulus - generalize additive higher Chow groups of Bloch-
Esnault, Riilling, Park and Krishna-Levine, and that sheafified on X z,, gives a candidate definition
for a relative motivic complex of the pair, that we compute in weight 1.

When X is smooth over k and D is such that D,.4 is a normal crossing divisor, we construct
a fundamental class in the cohomology of relative differentials for a cycle satisfying the modulus
condition, refining El-Zein’s explicit construction of the fundamental class of a cycle. This is used to
define a natural regulator map from the relative motivic complex of (X, D) to the relative de Rham
complex. When X is defined over C, the same method leads to the construction of a regulator map
to a relative version of Deligne cohomology, generalizing Bloch’s regulator from higher Chow groups.

Finally, when X is moreover connected and proper over C, we use relative Deligne cohomology
to define relative intermediate Jacobians with modulus JTY\D of the pair (X, D). For r = dim X, we

show that JTY\D is the universal regular quotient of the Chow group of 0-cycles with modulus.
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1. INTRODUCTION

1.1. A quest for a geometrically defined cohomology theory for an algebraic variety, playing in al-
gebraic geometry the role of ordinary cohomology of a topological space, dates back to the work of
A.Grothendieck and early days of algebraic geometry. In [3], A.Beilinson gave a precise conjectural
framework for such hoped-for theory, foreseeing the existence of an Atiyah-Hirzebruch type spectral
sequence for any scheme S (arbitrary singular)

(1.1) qu = HI/)\;(q(S: Z(—q)) = K_p—q(S)

converging to K,(S), Quillen’s algebraic K-theory of S. Narrowing the context a little, fix a perfect
field £ and consider the category Schy of separated schemes of finite type over k. When X is smooth
and quasi-projective, S.Bloch’s apparently naive definition of Higher Chow groups, given in terms of
algebraic cycles, provides the right answer, as established in [17] and [32]. In larger generality, motivic
1991 Mathematics Subject Classification. Primary 14C25; Secondary 14C30, 14F42, 14F43.
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cohomology groups have been defined by V.Voevodsky [11] and M.Levine [31] as Zariski hypercoho-
mology of certain complexes of sheaves, and they are known to agree with Bloch’s definition in the
smooth case [12]. So, if X is any scheme of finite type over k, we are now able to consider the motivic
cohomology groups

X = Hjy (X, Z(x) = Hy (X, Z)
having a number of good properties, including the existence of the spectral sequence (1.1) for smooth
X.

While the smooth case is thus established, the conjecture in the general form proposed by Beilinson
is still widely open. As motivating example consider, for a smooth variety X, the K-theory of its m-th
thickening X,,, Ko(X X Speck[t]/t"™). These groups behave very differently from the corresponding
motivic cohomology groups, since according to the current definitions one has

Hiy (X, Z(+)) = Hiy (X x i Speck[t] /¢, Z(x),

and this quite obviously prevents the existence of the desired spectral sequence. The insensibility of
motivic cohomology to nilpotent thickening is manifesting the fact that, in Voevodsky’s triangualated
category DM(k,Z), one has M (X) = M(X,,). From this point of view, the available definitions are
not completely satisfactory, as they fail to encompass this kind of non-homotopy invariant phenomena.

1.2. Without an appropriate categorical framework, such as the one provided by DM(k,Z), the
quest starts again from algebraic cycles. The first attempt was made by S.Bloch and H.Esnault,
that in [2] introduced additive higher Chow groups of 0-cycles over a field in order to describe the
K-theory of the ring k[t]/(t?) and gave the first evidence in this direction, showing that these groups
are isomorphic to the absolute differentials Q) agreeing with Hasselholt-Madsen description of the
K -groups of a truncated polynomial algebra. Their work was refined in [1] and extended by K.Riilling
to higher modulus in [36], where the additive higher Chow groups of 0-cycles were actually shown to
be isomorphic to the generalized deRham-Witt complex of Hesselholt-Madsen.

The generalization to schemes was firstly given by J.Park in [35], that defined additive higher Chow
groups for any variety X. Park’s groups were then further studied by A.Krishna and M.Levine in
[25], that proved a number of structural properties for smooth projective varieties, such as a projective
bundle formula, a blow-up formula and some basic functorialities.

1.2.1.  Additive higher Chow groups are a modified version of Bloch’s higher Chow groups, defined by
imposing some extra condition, commonly called “Modulus Condition”, on admissible cycles and are
conjectured to describe the relative K-groups K2*(X,m), where K" (X, ,m) denotes the homotopy
fiber

K(X xp A) = K(X xy k[t]/t™).

From this point of view, additive higher Chow groups are a candidate definition for the relative motivic
cohomology of the pair

(X xp A, X xp k[t]/t™ = X,).

One of the goals of this paper is to generalize this construction, defining for every pair (X, D) consisting
of a scheme X (separated and of finite type over k) together with a (non reduced) effective Cartier
divisor D — X, cubical abelian groups

2"(X|D,e) C z"(X,e), (Bloch’s cubical cycle complex)
those n-th homotopy groups will be called higher Chow groups of X with modulus D
(1.2) CH(X|D,n) = 7, (=" (X|D, 8)) = Ho (" (X|D, %)).

These groups are controvariantly functorial for flat maps of pairs and covariantly functorial for proper
maps of pairs. Sheafifying this construction on X z,, we obtain, for every r > 0, complexes of sheaves

Lz p(r) = Zx(r)
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called relative motivic complexes, naturally mapping to Z+(r), the complexes of sheaves computing
Bloch’s higher Chow groups CH"(X;n). We call the hypercohomology groups of ZY|D(T) the motivic

cohomology groups of the pair (X, D),
H(X|D,Z(r)) = B (X zar, Zg p(1))-

The choice of the words is quite optimistic, since at this moment only few properties of our relative
motivic cohomology groups and of higher Chow groups with modulus are established. A significant
issue is represented by the contravariant functoriality for all maps, for which an appropriate moving
lemma has to be established.

1.3. When X = C is a smooth projective curve over k and D is an effective divisor on it, the Chow
group of O-cycles with modulus is indeed a classical object. In [40], J-P.Serre introduced and studied
the equivalence relation on the set of divisors on C' defined by the “modulus” D (this explains the
choice of the terminology), describing in terms of divisors the relative Picard group Pic(C, D), that
is the group of equivalence classes of pairs (£,0), where £ is a line bundle on C and o is a fixed
trivialization of £ on D. When the base field k is finite and C' is geometrically connected, the group

lim CHy(C|D)
D

is isomorphic to the idele class group of the function field k(C) of C.

In [28], M.Kerz and S.Saito introduced Chow groups of 0-cycles with modulus for varieties over
finite fields and used it to prove their main theorem on wildly ramified Class Field Theory. If X is
smooth over k, take a compactification X < X, with X integral and proper over k, and a (possibly
non reduced) closed subscheme D supported on X — X. Then the group CHy(X|D) is defined as the
quotient of the group of O-cycles zo(X) modulo rational equivalence with modulus D (see [28] and
3.1), and it is used to describe the abelian fundamental group 7$*(X). This work is one of the main
sources of motivations for the present paper, and explains our choice of generalizing addivite higher
Chow groups to the case of an arbitrary pair. Higher Chow groups with modulus (1.2) recover (for
n =0 and r = dim X) Kerz-Saito definition (see Theorem 3.3).

1.4. Motivated by 1.3, we can use our relative motivic complexes to give a definition of higher Chow
groups with compact support. Let X be a separated scheme of finite type over k and let X be a proper
compactification of X such that the complement of X in X is the support of an effective Cartier divisor
D. Define for r,n > 0

CH"(X,n). = {CH"(X|mD,n)},, € pro— Ab

where pro — Ab denotes the category of pro-Abelian groups. This definition does not depend on the
choice of the compactification X, and it is consistent with the definition of K-theory with compact
support proposed by M.Morrow in [34].

We give an overview of the content of the different sections.

1.5. Section 2 contains the definitions of our objects of interest, namely higher Chow groups with
moduli and relative motivic cohomology groups, together with some basic properties. We define
relative Chow groups with modulus, generalizing Kerz-Saito’s definition, in Section 3, where they are
also shown to be isomorphic to higher Chow groups with modulus for n = 0. In Section 4 we compute
the relative motivic cohomology groups in codimension 1, showing that
L p(1) = (’)%D[—l] = Ker(Ox — Op)[-1] (quasi-isomorphism)

generalizing Bloch’s computation in weight 1, Z+(1) = O%[—l], and proving the first of the expected
properties of the relative motivic cohomology groups.
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1.6. Suppose that D is an effective Cartier divisor on X such that its reduced part D,.q is a normal
crossing divisor on X . Our first main result, presented in Section 5, is the construction of a fundamental
class in the cohomology of relative differentials for a cycle satisfying the modulus condition. More
precisely, consider the sheaves

(1.3) % = Wllog D) @ Ox(=D), >0

where Q% (log D) denotes the sheaf of absolute Kéhler differential r-forms on X with logarithmic poles
along |Dycq|- Using El-Zein’s explicit construction of the fundamental class of a cycle given in [10],
we can show that if an admissible cycle satisfies the Modulus Condition, then its fundamental class
in Hodge cohomology with support appears as restriction of a unique class in the cohomology with
support of sheaves constructed out of (1.3) (Theorem 5.9). The refined fundamental class is then
shown to be compatible with proper push forward (Lemma 5.14). Some further technical lemmas are
proved in Section 6.

1.7. Let (X, D) be as in 1.6. The second main technical result of this paper, presented in Section 7,
is the construction, using the fundamental class in relative differentials, of regulator maps from the
relative motivic complex ZY\ p(r) to a the relative de Rham complex of X

ban: L p(r) = Q%D = 02" (log D) @ Ox(~D) in D™ (X zar)

where Q%T (log D) denotes the r-th truncation of the complex Q5-(log D). The map ¢4r is compatible
with flat pullbacks and proper push forwards of pairs.

When X is a smooth algebraic variety over the field of complex numbers, we can use the same
technique to define regulator maps to a relative version of Deligne cohomology (see (8.10)) and to
Betti cohomology with compact support

¢p: 6*Z7|D(r) - Zng(T); ¢B: G*ZY\D(T) — )Z(r)x in Di(yan),

where € is the morphism of sites and j: X — X is the open embedding of the complement of D in X,
generalizing Bloch’s regulator from higher Chow groups to Deligne cohomology, constructed in [4].

1.8. Suppose that X is moreover connected and proper over C, and consider the induced maps in
cohomology in degree 2r. We have a commutative diagram (see 9.1.1)

H7 (XD, Z(r))

¢27‘,7‘
ld)%r,r\

0 Txip HE (X|D,Z(r)) — H*" (X an, 1 Z(r) x)

and in analogy with the classical situation, we call the kernel JZ%. = the r-th relative intermediate

X|D
Jacobian of the pair (X, D). We note that they admit a description in terms of extensions groups Ext!
in the abelian category of enriched Hodge structures defined by S.Bloch and V.Srinivas in [6].

One can show that J%I I fits into an exact sequence

- r r
0—=Uxip = Jxp XDyes — 0,

\
where UY\D is a unipotent group (i.e. a finite product of G, ) and J%lD . (constructed as J%lD with
D,..q in place of D) is an extension of a complex torus by a finite product of G,,. If we compose with
the canonical map o o

CH"(X|D) — H;(X|D,Z(r))
we get an induced map

(1.4) PX|D CHT(7|D)hom — J%lD

that we may view as the Abel-Jacobi map with G,-part, where CH"(X|D)phom is the subgroup of
CH"(X|D) consisting of the classes of cycles homologically trivial.
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The problem of considering a suitable equivalence relation with modulus for algebraic cycles in order
to define a G,-valued Abel-Jacobi map was already sketched by S.Bloch in [5], with reference to his
joint work with H.Esnault. In case r = d := dim X, the Jacobian (or Albanese) J%l p is actually a
commutative algebraic group and the map (1.4) becomes

pxp: CHo(X|D)" — J%D,
where CHo(C|D)° denotes the degree 0 part of the Chow gorup CHg(C|D) of zero-cycles with modulus.
A different construction of Albanese variety with modulus was given by H.Russell in [37] and (in
characteristic zero) by K.Kato and H.Russell in [27] using duality theory for 1-motives with unipotent
part.

In Section 9 we prove, using transcendental arguments, that J%l , With d = dim X is the universal

regular quotient of CHo(C|D)?, in analogy with the results of H.Esnault, V.Srinivas and E.Viehweg
[12] and L.Barbieri-Viale and V.Srinivas [7] for singular varieties (Theorem 9.5).

Acknowledgments. The first author wishes to thank heartily Marc Levine for many friendly con-
versations and much advice on these topics, for providing an excellent working environment at the
University of Duisburg-Essen and for the support via the Alexander von Humboldt foundation. The
second author wishes to thank heartily Moritz Kerz for inspiring discussions from which many ideas
of this work arose. He is also very grateful to the department of mathematics of the university of
Regensburg for the financial support via the SFB 1085 “Higher Invariants” (Regensburg).

2. CYCLE COMPLEX WITH MODULUS

2.0.1. We fix a base field k. Let P} = Projk[Yp,Y1] be the projective line over k and denote by y
the rational coordinate function Y1 /Yy on P}. Let pP: (P1)™ — (P)" ! forn € N\ {0},1 <i <n be
the projection onto the i-th component. We use on (P!)" the rational coordinate system (t,...,t,),
where t; = t o p;. Let

0" = (P \ {1})"

and let ¢ : 0" — O™ with
(b, stn) = (b1, tic1, 6 tis oy t,), forn € N1 <d <n+ 1,6 € {0,00},

be the inclusion of the codimension one face given by t; = €,e € {0,00}. The assignment n — O
defines a cocubical object °. Note that this is an extended cocubical object in the sense of [33, 1.5].
We conventionally set (0° = Speck.

A face of " is a closed subscheme F' defined by equations of the form

Yin = €1,-.-,Yi, = € ; € € {0,00}.

For a face F, we write 1y : F' < " for the inclusion. Finally, we write F/* C (PY)" for the Cartier
divisor on (P')™ defined by {y; = 1} and put F,, = . F/".
1<i<n

2.0.2. Let Y be a scheme of finite type over k, equidimensional over k, D an effective Cartier divisor
and F' a simple normal crossing divisor on Y. Assume that D and F have no common components.
Let X be the open complement X =Y — (F + D).

Lemma 2.1. Let W be an integral closed subscheme of X and let V. C W be an integral closed
subscheme of W. Let W (resp. V) be the closure of W (resp. of V) inY. Let ¢yp wY Sy (resp.
by vV Y') be the normalization morphism. Then the inequality ¢*W(D) < ng*W(F) as Cartier
divisors on W' implies the inequality ¢3-(D) < ¢3-(F) as Cartier divisors on vV,
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) ", —=N —  —N
Proof We use the same argument as [26, Proposition 2.4]. Let Z =W  x3w V < W and let ZV
be its normalization. By the universal property of the normalization, there exists a unique surjective
morphism h making the diagram

f

ZN—>Z—>WN

I

el Al U

v

Y

commutative. Note that all the schemes are of finite type over the base field k, so the normalization
morphisms are finite and hence A is finite too. Note that V is not contained in D,..q nor F and hence
intersects properly both D and F. We can therefore apply [26, Lemma 2.1] to get from ng*W(D) <
ng*W(F) the inequality

F$5(D) < f*(F) on ZV.
By the commutativity of the above diagram, we get then h*(¢3-(F) — ¢3-(D)) > 0. Since h is a
finite surjective morphism between normal varieties, we have that the pullback along h of a Cartier

divisor FE is effective only if E was already effective (see [26, Lemma 2.2]). In particular, we have
¢3A(F) — ¢3(D) > 0, proving the lemma.

2.1. Cycle complexes.

2.1.1. Let X be a scheme of finite type over k, equidimensional over k, and let D be an effective
Cartier divisor on X. Let X be the open complement of D in X. We define the cycle complez of X
with modulus D as follows.

Definition 2.2. Let C"(X|D,n) be the set of all integral closed subschemes V' of codimension r on
X x O™ which satisfy the following conditions:

(1) V has proper intersection with X x F' for all faces F' of O".

(2) For n = 0, C"(X|D,0) is the set of all integral closed subschemes V' of codimension r on X
such that the closure of V in X does not meet, D.

(3) For n > 0, let V be the closure of V in X x (P})" and 7" be its normalization and o

7V 5 X x (P1)™ be the natural map. If (D x (P})*) NV # 0, then the following inequality
as Cartier divisors holds:

(2.1) ¢(D x (PH)") < ¢1(X x F).

An element of C"(X|D,n) is called a relative cycle of codimension r for (X, D).

Remark 2.3. The condition 2.2(3) implies V N (D x (P})") C X x F,, as closed subsets of X x (P!)",
and hence V N (D x 0") = § and V is closed in X x O". This implies that C"(X|D,n) is viewed as
a subset of the set of all integral closed subschemes W of codimension 7 on X x (0" which intersects
properly with X x F for all faces F' of 0.

Let V' C W be integral closed subschemes of X x [J" which are closed in X x O". Lemma 2.1 shows
that if the inequality (2.1) holds for W, then it also holds for V. This implies then the following

Lemma 2.4. Let V € C’“(Y_|D,n). For a face F of O™ of dimension m, the cycle (idx X tp)*(V) on
X xF~XxOmidsin C"(X|D,m).

Definition 2.5. Let 2"(X|D,n) be the free abelian group on the set C"(X|D,n). By Lemma 2.4, the
cocubical object of schemes n — O™ gives rises to a cubical object of abelian groups:

n— 2" (X|D,n) (n=1{0,00}", n=0,1,2,3...).
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The associated non-degenerate complex is called the cycle complex z”(X|D, ) of X with modulus D:
2" (X|D,n)

"(X|D,n) = —2
z"(X|D,n) > (XD.n)

degn
The boundary map of the complex 2”(X|D, o) is given by
o= (1)o7 -,
1<i<n
where 0f : 2"(X|D,n) — 2"(X|D,n — 1) is the pullback along 1i'e, well defined by Lemma 2.4. The
g-th homology group of the complex will be denoted by
CH"(X|D,q) = H,(2"(X|D, o)).
We call it the higher Chow group of X with modulus D.

Remark 2.6. (1) By Remark 2.3, 2"(X|D,n) can be naturally viewed as a subcomplex of 2"(X,n),
the (cubical version) of Bloch’s cycle complex, so that we have a natural map
CH"(X|D,q) - CH"(X,q).
(2) The above definition generalizes the additive higher Chow groups defined by Bloch and Esnault
[2], Park [35], Krishna and Levine [25]. In case X =Y x AL with Y of finite type over k and
D =n-Y x {0} for n € Z~o, CH"(X|D,q) coincides with TCH"(Y,q + 1;m).
Lemma 2.7. Let X and D be as above. Let r € N.

(1) Let f:Y — X be a proper morphism of schemes of finite type over k, equidimensional over k.
Assume that f*D is defined as effective Cartier divisor on'Y . Then the push-forward of cycles
induces a map of complexes:

f* . Zrerim(?)fdim(Y) (7|f*D, .) N ZT(7|D’ .)_

(2) Let f:Y — X be a flat morphism of schemes of finite type over k, equidimensional over k.
Then the pull-back of cycles induces a map of complezes:

f* 12 (X|D,#) = 2" (V|fD, ).
Proof The proof of the Lemma uses the same argument of [26], Theorem 3.1 (1) and (2).

2.1.2. In 1.4, we introduced the notion of higher Chow group with compact support for a scheme of
finite type over k as the cohomology of the pro-complex {z"(X|D, ®)} px for a chosen compactification
X of X with complement an effective Cartier divisor. The following Lemma shows that this object is
well defined and does not depend on the choice of X.

Lemma 2.8. Let X be an integral scheme of finite type over k and choose a compactification 7 : X <
X, where X is a proper integral scheme over k, T is an open immersion such that X — X is the support
of a Cartier divisor. The pro-complex

{z"(XID,®)}pcx

where D ranges over all effective Cartier divisors with |D| = X — X, does not depend on the compact-
ification X — X.

It is indeed enough to show the following

Lemma 2.9. Let X < X and X < X be two compactifications as above. Let f : X 5 X bea
proper surjective morphism which is the identity on X. Let D C X be an effective Cartier divisor
supported on X — X and put D' = f*D. Then we have the equality (cf. Definition 1.2)

C"(X|D,n) = C"(X'|D',n)
as subsets of the set of integral closed subschemes of X x O™,

Proof This follows immediately from the definition of the modulus condition and [25, Lemma 3.2]
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2.1.3. Let X and D be as in 2.1.1. For U étale over X, we let D denote D x+ U for simplicity. As
for Bloch’s cycle complex, the presheaves

2"(=|D,n): U — 2"(U|D,n)
are sheaves for the étale topology on X. We define
(2.2) Z(r)xp (resp. Z(r)%D))
as the cohomological complex of sheaves z"(—|D, 2r — i) in degree i on X, (resp. Xet).

Definition 2.10. We introduce the motivic cohomology of the pair (X, D) as the hypercohomology
of the complex of sheaves Z(r)p-

HY, (X|D,Z(r)) = H* (YZM’Z(r)7|D)'

2.1.4. In the following Sections we will prove some properties of these groups and relate them to var-
ious cohomology theories, namely a relative version of de Rham cohomology and Deligne cohomology,
constructing the corresponding Regulator maps.

3. RELATIVE CHOW GROUPS WITH MODULUS

Let X and D be again a pair consisting of an integral scheme X of finite type over k and an
effective Cartier divisor D on it. Fix an integer r > 1. In this Section we give a description of the
groups CH"(X|D,0) in terms of the relative Chow groups CH" (X |D) defined below.

Definition 3.1. Let Z"(X) (resp. Z"(X)p) be the free abelian group on the set C"(X) (resp.
C"(X)p) of integral closed subschemes W C X of codimension r (resp. integral closed subschemes
W C X of codimension r such that W N D = )). For an integral scheme Z and an effective Cartier
divisor F on Z, we set

(3.1) G(Z, B) = lim T(U,Ker(O}; — OF)),
U

where U ranges over all open subscheme of Z containing |E|. We then put

(v N *
(3.2) »"(X,D)= B G WD),
WeCr=1(X)

where 77" denotes the normalization of the closure W of W in X and 45, D is the pullback of the
Cartier divisor D via the natural map v : W — X. We set

(3.3) CH"(X|D) = Coker(3"(X, D) - Z2"(X)p),

where ¢ is induced by the composite of the divisor map on WN and the pushforward map of cycles
via yw for W € C""1(X). The groups CH"(X|D) are called Chow groups of X with modulus D.

Remark 3.2. The notations of Definition 3.1 should be compared with the one in [30, 1.1 and 2.9]. Note
that in the definition of a modulus pair (X,Y") in loc. cit., X = X —|Y| is required to be quasi-affine
over k. In this paper we don’t need this condition.

The main result of this section is the following
Theorem 3.3. There is a natural isomorphism
CH"(X|D,0) — CH"(X|D).

3.1. A description of relative cycles. For the proof of Theorem 3.3 we need to give an alternative
and more concrete presentation of the modulus condition of Definition 2.2. This is the content of
Lemma 3.4 and 3.7 below.
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3.1.1. Let n € N. For 1 < <n, we denote by ﬁ? the closure of the n-th dimensional box 0™ in the
i-th direction, i.e.
. v
P >0 =0x - xP' x..xO=(P)" = FF ~ O x P,
J#i
We let F* denote F* N E? for simplicity and write pr; : X x E? — X x O"! for the projections
removing the i-th factor P'.
Lemma 3.4. Let V € C"(X x O") be an integral cycle, and V the closure of V in X x (P')". For
1 <i < n, let V; be the closure of V in X x ﬁ?, Vﬁv be its normalization. Let ¢y : Vﬁv - X x E?
be the natural map. Then the condition (3) of Definition 2.2 implies the following condition:
(3)" The following inequality as Cartier divisors holds for all 1 <1i < n:
(34) ¢ (D xT)) < ¢% (X x F}").
The converse implication holds if either n = 1 or none of the components of VN (D x (P1)™) is contained
in 1<O< X x F.

Proof  The condition (3)’ follows from Definition 2.2(3) by base change via the open immersion
(P')* — Y F}* < (P')". The converse implication holds if the generic points of V' N (D x (P")") are

j#i
all in
) (PH™ ifn=1,
2, (B -2 _F) = PHY"— N Froifn>1,
== i 1<i<n

proving the last assertion.

Remark 3.5. The condition (3)’ of Lemma 3.4 implies V; N (D x 0; ) C X x F!* as closed subsets of
X x ﬁ?, and this in turn implies that V is closed in X x O".

Lemma 3.6. Letn > 1 and let V € C"(X x O")py». Suppose that V intersects properly U oo (X X
ar-t). Write
OV = (1) (V) € X x O

For 1 <i<mn, let V; be the closure of V in X x E? and put
Wi = pT‘i(Vi) C 7 X Dnil, Wf = W;\@ZOOV, Vo = Vz XW- WU

Then V; is finite over W; and
Vin (D xTj) c Vi c Wiy,
where W [y] denotes W; x (P* — {oo}).
Proof By definition, V; is proper over W; and closed in W;[y] = W; x (P! — {c0}). Since W, [y] is

affine over W;, we have immediately that V; is finite over W;. By assumption, V N (D x O") = §), so
that we have 9°V N (D x 0"~1) = (. Hence D x0; = pr; (D x 0"') does not intersect pr; 1 (9:°V),

and therefore V; N (D x 0,) C V; = V\pry 1 (87°V).

Lemma 3.7. Let V be as in Lemma 3.6. Then the condition (3)’ of Lemma 3.4 for V is equivalent
to the following condition:

(3)” Let va be the normalization of W, and Wﬁv’o = va X7, W. Then there exists an integer
v > 1 such that
Vi, W, W, Iyl =W,

7

7 x (P!~ {oo})

is the divisor of a function of the form
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f=0=-y)"+ > a(l-y)"" witha, € F(W?’O,I”WN),
1<v<m i

where [va - Ongv is the ideal sheaf for the divisor D X+ va in va and IVWN denotes its

i

v-th power.

Proof Let 5 € I'(V;,0) be the image of y. By Lemma 3.6, V7 is finite over W, and the minimal
polynomial of § over the function field K of W; can be written as:

O =0-7)"+ Y a,1-T)"" eT(W; ", 0)T].
1<v<m
We claim that V; X977, Wﬁv C Wﬁvo[y] coincides with the divisor of the function
m m—v N0
h=1=-y™+ Y a(l-y™ " el W, 0.
1<v<m

Indeed, since div(h) C V; xy7, Wy

7

it is enough to show that it is irreducible. But this is clear as
—N,o0 —=N,0

div(h) is finite over W; = and its generic fiber over W, " is irreducible. The last assertion of Lemma

3.6 follows then from the following.

Claim 3.8. The condition 3.4(3)’ holds if and only if a, € F(Wﬁv’o, [VWN) for all v > 1.

The question is local on X and we may assume that the ideal sheaf I, C O is generated by a
regular function 7 € T'(X, O). Note that, by Lemma 3.6, we have
Vin(DxO;) cV;,
so that we can actually remove 0;°V to check the modulus condition. If we still denote by 7 the image
of 7 in T(V;,0), we see then that the condition 3.4(3)’ is equivalent to require that
-y
T

1 — —o
(3.5) 9= ET(V, sy, W3, 0),
for every i = 1,...,n, where Vﬁv is the normalization of V;. Since 7 does not vanish identically on
W, we have 7 € K and thus the minimal polynomial of 8 over K is
m ay m—v
g =T"+ > T
1<v<m

o

. o . . =50 . . e . . N,
Since V; is finite over W, (3.5) is equivalent to the condition that 6 is finite over I'(W,
is equivalent to

,0), which

A N

(2

,0)  for all v,
completing the proof of Claim 3.8.

3.2. Proof of theorem 3.3. By definition, the groups CH"(X|D,0) and CH"(X|D) have the same
set of generators 2"(X|D,0) = Z"(X)p and to prove the theorem it suffices to construct a surjective
homomorphism ¢: z"(X|D, 1) — ®"(X, D) which fits into a commutative diagram

2 (X|D,1) —2— 2" (X|D,0)
(3.6) B H
3"(X,D) —— z7X)p

Let V € C"(X|D,1) be an integral cycle of codimension r, V C X x O satisfying the modulus
condition of Definition 2.2. By Remark 2.3, we note that V is actually closed in X x O'. Let V

be the closure of V in X x P!, W C X its image along the projection X x P! — X and WN the
normalization of . We write yy for the natural map W — X. Let °V denote 11 (V) (resp. 0°V
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denote ¢, ' (V)), where 1o, and ¢ are the two closed immersions X — X x P! induced by oo € P! and
0 € P! respectively. The restriction to V of the projection X x P' — P! induces a rational function
gy € k(V)*, and by [18, Prop.1.4 and §1.6] we have

(3.7) OV = 0%V =V = yw (divepy (N o) /iy 9V)»

where Ny ) )¢ K(V)* — k(W)* denotes the norm map induced by V — W, which is generically
finite by Lemma 3.6. We claim that

_N «
(3-8) Nk(V)/k(W)gV eGW ,vwD)

Indeed, let W~ = W\0>®V and whe—w" X9 W’. By Lemma 3.6 we have that

Voxg W Wyl = x (P! = {oo})

is the divisor of a function of the form

fpy=0=-pm+ > al-ym

1<v<m

with a, € F(WN’O, Iy (D)) and where I;:n (D) C Oppn denotes the ideal sheaf of the pullback 5y, D
of D to W' . Since 8°V N D = 0, (3.8) follows from the equality:

Ny wemygv = F(0) =1+ > a.

1<v<m
We define now ¢: z"(X|D,1) — ®"(X, D) by the assignment
N« ad (Y
(V) = Nywyeewygv € GIW vy D) C @7(X, D) (V€ C"(X|D, 1)).
The commutativity of (3.6) then follows from (3.7).
To complete the proof of Theorem 3.3, it remains to show the surjectivity of ¢. Take W € C" (X))
and g € G(WN,V;VD). Let ¥ C W' be the closure of the union of points z € W of codimension

. . . . N .
one such that v.(g) < 0, where vy is the valuation associated to x. Since W is normal, we have
g e (W —X,0) and the assumption g € G(W vy, D) implies

(3.9) g-1eT(W" -5, I~ (D))

Now we identify g with a morphism ¢, : /2 I S {o}. Let T' C W x P! be the closure of
the graph of 1,, V. C W x P! its image along WY xP' 5 WxPland V=V N (W xO) ¢ X xO.
It suffices to show that the cycle V defined in this way belongs to 2z"(X|D, 1), i.e. that it satisfies the
modulus condition, and that ¢(V') = g. Note that once the first assertion is proven, the second follows
from the very construction of V.

We have the following diagram of schemes

Pl<—7V

r

W

(3.10) W—W
|

X
— N le

W —>WN><]P1<—

N

WN

where the horizontal arrows denoted ¢o, are induced by the inclusion co € P! and where the squares are
cartesians. Indeed this is obvious for the left one, and for the right one we notice that the natural map
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r—-v X W is an isomorphism, since it is both birational and closed (both are closed subschemes
of W x P).

Moreover, we note that
(3.11) S C prp (W x 00)NT).
Indeed, let n be a generic point n € ¥. Then there exists a unique ¢ € T', of codimension 1, such
that = prr(¢) and we have ve(g) = v,(g) < 0 (note that g € k(T') = k(WN), as I is birational to

W™). Such point ¢ is actually in (W x 00) T the projection W x P! — P! induces a well-defined
morphism

D\(W" x 00) = P! — {o0}

that correspondes to g, so that the point £ where ¢ is not regular is forced to belong to (WN x 00)NT.
From the diagram (3.10), one sees that (3.11) is equivalent to

SCr (1 (V) = (D),
so that W =W x5 W\t ot (V) C wh - ¥, and hence
Vo W =T s W CTW? x (P! = {o0})

is given by ' N ((WN — %) x (P' = {oo})). This is, by definition, the graph of 1, and hence it is the
divisor of y — g where y is the standard coordinate of P!. By the equivalent condition given by Lemma,
3.7, this proves that V satisfies the modulus condition of Definition 2.2 (and in particular it is closed
in X x O%). This completes the proof of Theorem 3.3.

4. RELATIVE CYCLES OF CODIMENSION 1
Let X and D be again as in Section 2, with D an effective Cartier divisor on X. The purpose of

this Section is to investigate the relative motivic cohomology groups H%,(X|D,Z(1)) in weight 1.

4.0.1. Assume in what follows that X = Spec(A) is the spectrum of a normal local domain A. We
write Ip or I for the invertible ideal of D C X. Let Alty,...,t,] be the polynomial ring in the variables
t; on A and write f € A[ty,...,t,] as

f=3 al-0* (€A,
AEA

for the multi-index

A={A=, LX) [ A €Zx}, (1=t = [ (1—t™.

1<i<
We say that f is admissible for Ip if a,... o) € A* and
ay € IRV for A#(0,---,0),
where || = max{\;|1 < i <n}for A= (A1, --,\n). Welet P,(A|I) denote the set of f € Afty,...,t,]
which are admissible for Ip. It’s easy to check that that P, (A|I) forms a monoid under multiplication.
4.0.2. Let y = Yy/Y1 be the rational coordinate function on P! of 2.0.1. We fix the affine coordinate
t=1-
1—
t1,...,t, on O" so that X x O" = SpecAlty,...,t,).

on O = P!\ {1}, so that O = Spec(k[t]). Similarly, we choose a coordinate system

Lemma 4.1. We keep the notations of 4.0.1 and 4.0.2. Let V. C X x UO" be an integral closed
subscheme of codimension 1. Then V € z'(X|D,n) if and only if there exists f € P,(A|I) such that
V =div(f) on X x O™
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Proof Assume V € z'(X|D,n). Then V satisfies the conditions of Lemma 3.6, and in particular it
has proper intersection with LZOO(X x O"~1) for every i = 1,...,n. By induction on n, we may assume

that there exists g € f’n_l(A|I) such that
OV =div(g(ty, ... ti 1,tig1,. .. tn)) C X x O™,
Since V; is of codimension 1 in X x ﬁ?, the restriction to V; of the projection
X xO; - X xOn !

is surjective (see Lemma 3.6). Then, by Lemma 3.7, the Modulus condition for V' is equivalent to the
condition that V' = div(f) with f € Aft1,...,t,] of the form

f=0+ Z a,(1—t;)") - g",
1<v<m

where N > 0 is some integer and
v
a, ET(X x O™ =0V, I"O) = I" - Alt1, ..., ti,.. ., tn)lg7"] forv>1.
It is easy to see that this implies f € I3n(A|I )~
Conversely assume V' = div(f) for f € P,(A|I). It is easy to see that V and O°V satisfy the
conditions of Lemma 3.6 and Lemma 3.7. One can also check that none of the components of V N

(D x (P')™) is contained in X x F. Hence, by Lemma 3.4, V satisfies the condition (3) of 2.2.

The good position condition with respect to the faces is clear for every cycle of the form div(f) and
we conclude that V € z'(X|D,n).

Corollary 4.2. We keep the notations of 4.0.1 and 4.0.2. Let 2" (X|D,n)eg C 2"(X|D,n) be the sub-
monoid of effective relative cycles and let P, (A|I) = (P,(A|I))/A*. Forn > 1 there is an isomorphism
of monoids

V: Pa(AID) = 2 (XD, n)en 5 f = V(f) = div(f),
and an isomorphism of groups
Vo Py(AID® = ' (XID,n) 5 flg = V(f) = V(g),
where
Po(AIDE =A{f/g| f,g9 € Pa(AlI)}.
4.0.3. We follow the notation of [25, §1.1]). The assignment
n+— P(AlI) (n={0,0}", n=0,1,2,3...)

defines an extended cubical object of monoids (see [33, 1.5]) in the following way. For the inclusions
Mnyiec:n—1—n(e=0,00,i=1,..,n), we define boundary maps

(4.1) 0ot Aty ] = Alty .ty for e € {0,00)
by
n:L,i,O(f(tla s 7tn)) = f(tla s 7ti*1)07ti7 s 7tn*1)>
n:L,i,oo(f(tla v 7tn)) = f(tla v 7ti*1)17ti7 v 7tn*1)'

For projections pr; :n —n —1 (i =1,...,n), we define
prfm : A[tl, . 7tn—1] — A[tl, . 7tn]

by

pr:;,i(f(th e 7tn*1)) = f(tla v )tiflyti+1> e )tn)'
They all induce corresponding maps on P, (A|I), denoted with the same letters. Permutation of factors
are defined in an obvious way and involutions 7,; ; are defined as the maps P,(A|l) — P,(A|l) induced
by t; = 1 — t;. For the multiplications

1 {0,00}> = {0, 00} ; p(00,00) = 005 u(a,b) = 0 for (a,b) # (00, 00),
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we define p* : Pi(A|I) — P> (A|I) as the map induced by 1 —¢ — (1 — ¢1)(1 — t2). The isomorphisms
in Corollary 4.2 are compatible with cubical structure.

Theorem 4.3. Under the above assumptions, we have CH'(X|D,n) = 0 for n # 1 and there is a
natural isomorphism

§:CH'(X|D,1) = (1+1)%,
where (1+I)* = (1+1)NA* viewed as a subgroup of A*.
Proof  The vanishing of CH'(X|D,n) for n = 0 is a direct consequence of the definition, since X

is local. In what follows we show the assertion for n > 1. By 4.0.3 we are reduced to compute the
homotopy groups H;(Ps(A|I)8") of the cubical objects of abelian group

n — P,(A|I)®".
Recall that these are homology groups of the complex

o= Pa(AIDS Pa(ADL, % Paca (DS [ Paca (AD, =
D PUAIDE /PUAIDE,,
where . .
Po(AIDE, = S prt i(Paci (AIDE), 8= (=1 (010 — 15 i.00)-
Let - -

NP, (A|T)E = Ker(n* . Kor(n® .
(A1) 2 er(n"”’omlg?gn er(1 ; o)

and consider the complex

s

Y NP (AIDE Y NP, (AD)E S0 NP(ADE
By [33, Lemma 1.6], we have a natural isomorphism

Hy(NPy(A|1)E) = Hi(Pa(AID)* /Po(AIDS.,)

deg
and we are reduced to show the existence of isomorphisms
42 mvP A ~ (T =t
(42) il '(|))—{ 0 if n > 1.

Consider
H : Frac(Alty,...,tn]) = Frac(A[t1,. .., tnt1])
defined by
H(f(tr,otn)) = 14+ (F) T 2y s tngn) = 1) (1 = 1),
where (1) = (1,...,1). One easily checks that this induces the maps (of sets)
H:P,(A|I) = Poy1(A|I), H:P,(A|I)® — Py (A1)
and we have, for ¢ € P, (A|I)8"
H(ny, i1 (8)  if2<i<n+1,
(4.3) Moer s (H($)) = 1 ifi =1 and e = oo,
¢ (mod A*) ifi=1ande=0.
Hence H induces a map NP, (A|I)8" — NP, 1(A|I)8", and if n > 1 we have
Mht1,1,0(H(@)) = ¢ for ¢ € Ker(NP, (A1)*" NPy (D).

This proves (4.2) for n > 1. To show (4.2) for n = 1, we define a map
6: PL(AIN® = (1+ 1) 5 f/g — f(0)g(1)/g(0)f(1) (f.g € Pi(AlI)).
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It is easy to see that this is a well-defined group homomorphism and that

(4.4) NPy (A|D)E ™25 NPUADE 5 1+1

is a complex (note that NPy (A|I)8" = Py (A|I)8"). To show that it is exact, we compute the boundary
for f € Pi(A|I)

! if € = o0,
i =41+ Y _a—n)  ii—2ande=o,
- ) ifi=1lande=0
F (mod A¥) = =0.

Hence, for f,g € Pi(A|I) with f(0)/f(1) = ¢g(0)/g(1), we have

H(f)/H(g) € NP(A[1)*" and n3, o(H(f)/H(g)) = f/g.
This proves the exactness of (4.4) and completes the proof of Theorem 4.3.

5. FUNDAMENTAL CLASS IN RELATIVE DIFFERENTIALS

In [16], El Zein gave an explicit construction of Grothendieck’s “fundamental class” [19] of a cycle
on a smooth scheme Y/k in Hodge cohomology, defining a morphims from the Chow ring of Y to
H*(Y, Q3 /k). It turns out that this approach can be partially followed and extended to construct a
relative version of El Zein’s fundamental class.

In this section, we consider an integral scheme Y of pure dimension n, smooth and separated over a
field k. We write Q5. for the Zariski sheaf of relative Kéhler differentials on Y and Q3. = Q3. for the

sheaf of absolute differentials. Note that Q%, /k is a coherent sheaf on Y, while 03, is just quasi-coherent,
in general. For r > 0, we let C"(Y") be the set of integral closed subschemes of codimension 7 on Y.

5.1. Review of El Zein’s fundamental class.
5.1.1. Let Ky be the Cousin complex of Q0 ,[n], namely

K™= @ zy*H;(Qg/k) for 0 <j<n,
yeY (i)

J

where i, : y = Y is the inclusion and Hi(ﬂg/k) = lin He (U, Qg/klU), the limit being over all open

yeU
subsets of Y containing y. Since Y is smooth over k, Qg/k[n] is dualizing on Y and therefore Ky is a

residual complex on Y [22, VI.1.1]. Take W € C"(Y) and let + : W — Y be the inclusion. Let n be
the generic point of W. Let Ky, = L!K;( be the residual complex on W constructed in [22, VI.§3]. By
[22, VL.§2] one has

Ka/_n = in* HomOY,r, (k(n)aH;( g/k)) = iﬂ* EXH(‘QY‘,, (k(n)a( g/k)n):

where the isomorphism follows from [20, 6.3] since H} (9} ,) is dualizing for Oy,,. Let J C Oy, be
the maximal ideal and write ww/y, for (A" J/J?)V. The fundamental class of W is defined to be at
first [16, III.1.i] a morphism of sheaves

can

(5.1) clwk s Qi < i (1) = (B )n © 0wy,
> in, Bxto, (K1), (4)n) = Ky

where p is the fundamental local isomorphism of [22, IT1.7.2].
This map is then extended [16, III.1.ii] to a morphism of complexes

cw,: Q%Z[n —r] = Kyy.
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Pushing forward to ¥ and composing with the Trace morphism [22, VI.4.2]

can Ly ClW,k

1+« Ow R0y Qeor s, QT

° Tr, °
Y/h W/k LKy [-n+r] — Ky[-n+r]

we get then an element in
Homp o) (10w ®o, Q377 Ky[-n +1]) = Homp(oy) (1sOw, Ky [-n + 1] @0, (Qy7,)").

Since Ky [-n + 7] @0, (27, )V is a resolution by quasi-coherent injective modules of the sheaf 0%k
(see [22, IV.3]), we finally get an element in relative Hodge cohomology with support by the natural
map

Exto, (10w, Qy i) = Hyy (Y, Q) = lim Exto, (Ow,, Q)

where W,, C Y are the infinitesimal thickenings of W < Y (see [20, 2.8]). We still call it the
fundamental class of W, denoted ¢l (W),

Remark 5.1. One can show (see again [16, Thm. 3.1]) that cl;, (W), lies in the image of Hy, (Y, Qg,/kd),
where Q3 ., C €y, is the subsheaf of closed forms.

5.1.2. Using the technique of [30, A.6], one can construct a cycle class clg, (W) in the absolute Hodge
cohomology group with support Hjy, (Y, Q) starting from the relative case of 5.1.1. We quickly recall
the argument. Let kg C k be the prime subfield of k and let Z be the set of smooth kg-subalgebras of
k, partially ordered by inclusion: it is a filtered set. For Y and W as in 5.1.1, we fix a kg-algebra A
and a smooth separated A-scheme Y, together with a closed integral subscheme Wy, flat over A, such
that

YiRa k=Y and Wy @4 k=W.

For every B € T containing A, we write Y (resp. Wg) for the base change Y4 ® 4 B (resp. Wa ® 4 B).
A Cech cohomology computation shows then that
Hiy (V, Q) = Hyy (Y, Q5,,,) = lim Hyy, (V5,905 /1,).
BeT
Note that, by construction, codimy W = codimy, Wg for every B € 7 containing A.

5.1.3. The morphism (5.1) can be made explicit. Suppose we have fi,..., f. a regular system of
parameters of Oy,,, w € ['(W, Q%Z) a differential form on W, © a lifting in Qg;,:n of the image of w
in Q;V_/TI; ,- Then the element cly,i(w) is represented by the element (see [16, L.1])

DAAfL A A, . §
[ fcll...f,, f] € Exto, , (1i0win, (Q%1)n)-

By the Trace formula (see [9, A.2], in particular Lemma A.2.1, and [16, p.37]), we may then represent
the fundamental class cl,(W), in Hy, (Y, Qg,/k) by the symbol

{dfl/\.../\dfr]
fl---fr

that can be computed locally as follows. Let V' C Y be an affine open neighborhood of the generic point
n of W such that fi,...,f. € Oy, extends to a regular sequence fi,...f. € I'(V,O) which defines
WNVin V. Let U be the covering of V' \ W given by the open subsets {U; = D(f;)}i=1,...,» and write

c* U, Q(,/k) for the Cech complex of Q(,/k with respect to the covering ¢/. Then the cohomology class
of the Cech cocyle

df1 df.
B
fl fr'
gives an element in H" = (V\W, ) that maps to the class clg (W), jv in Hyyqy (V, Q) via the
boundary morphism.

(5.2) dlogfi A - Ndlogf, = € HO(Ulﬂ---UT,Q(,/k)
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In view of 5.1.2, the description (5.2) holds also for the absolute fundamental class clﬁ(W)lV €
Hyyqy (V. 9.

In what follows we give a refinement of the fundamental class in a relative setting with modulus
(see Theorem 5.9).
Lemma 5.2. For a closed subscheme T C'Y of pure codimension a,

(5.3) HY.(Y,Q)) =0 forq<aandj>0.

Proof First notice that by 5.1.2 we can reduce to the relative case and replace Q{/ by Q{,/k. Let n
be a generic point of T'. Since Oy, is Gorenstein and 3, [k is finite, we can apply local duality [20,
Th.6.3] and get

H? (Spec(Oy,y,), i) = Hom(Ext( ! (Q, fiyr Q¥ 1)

where I is a dualizing module for Oy,. As Q{//k is free, we deduce that
n

H] (Spec(Oy,y), Q{,/kn) =0 forq#a.

Note that if a = dimY, i.e. T is a closed point of Y, cohomology with support in 7" agrees with
local cohomology and we get the lemma by the above argument. The general case is then obtained by
(descending) induction on the codimension of T by means of the long exact localization sequence

o lim By (T,94,,) = HE(Y, Q) = Hi(Spec(Oy.,), B ) = -
wcr

the limit being over all closed proper subschemes of 7.

Remark 5.3. By the localization exact sequence, (5.3) implies that for W € C"(Y") and an open subset

V C Y contaning the generic point of W, we have

(5.4) Hip (V,2) < Hipy (V, 5.
In particular, the affine description (5.2) characterizes clj, (W) (as well as clg,(W),).

5.2. Relative version of El Zein’s fundamental class.

5.2.1. Let Y be again a smooth variety over k. We fix now a (reduced) simple normal crossing divisor
F and an effective Cartier divisor D on Y. In what follows, we will assume that " and D satisfy the
following condition:

(%) There is no common component of D and F, and D,.s + F is a (reduced) simple normal
crossing divisor on Y

Write
X=Y-(F+D)=Y-F<=Y
for the open complement of F'+ D in Y and tx for the open immersion X< Y.
Remark 5.4. In section 7.3, we will work in a situation where (X,Y — FY) = (X,,, X,,,Y,,) with
X,=Xx0"wX, =X xO"=%Y, =X x (PHY* > D,, = D x (P")"

where X C X D D are as in §2 and X is smooth over k and the reduced part of D is a simple normal
crossing divisor.

Definition 5.5. [see Definition 2.2] Let X,Y,F,D be as above and let W be an integral closed
subscheme of codimension = on X. Let W be the closure of W in ¥, W its normalization and
by - WN — Y the natural map. We say that W satisfies the modulus condition (with respect to the
divisor D and the face F') if the following inequality as Cartier divisors on WN holds

(5.5) $2-(D) < Gi(F).
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We denote by C"(Y, F, D) the set of integral closed subschemes W of codimension r on X that do
satisfy the modulus condition. o
Note that the condition implies that W N (Y — F) N D = () and that W is closed in ¥ — F.

Definition 5.6. Let O (log F + D) be the sheaf of logarithimic differentials for the standard log
structure on Y defined by the divisor D,..q + F (see [24, 1.5-1.7]): it is the subsheaf of (1x).0Q% of
differential forms with logarithmic poles along D,..q + F. We write Q3. (log F'+ D) for its r-th external
product and set

Qyp(og F) = Qy (log F' + D) ®o, Oy(-D).
By the same argument used to prove Lemma 5.2, we have the following

Lemma 5.7. For a closed subscheme T CY,
(5.6) H.(Y, Q3 p(log F)) =0 for ¢ < codimy (T').
Remark 5.8. Let W € C"(X) and W C Y be its closure. The long exact localization sequence, together
with (5.6), implies the injection
(5.7) w(¥, Q3 p(log F)) < Hyy (X, Q).

We now come to the main result of this section:
Theorem 5.9. For W € C"(Y, F, D) there is an element

clo(W) € Hi(Y, QY p (log F))

which maps to the fundamental class cly,(W) € Hyy, (X, Q%) under the map (5.7).

The proof is divided into several steps. We start with the following reduction

Claim 5.10. Let Fy,..., F, be the irreducible components of F' and let Z be the reduced part of
W xy F. We may assume the following conditions:

(&%1) Z is irreducible of pure codimension r + 1 in Y,
(%2) Y = Spec(A4) is affine equipped with 7 € A and s; € A with 1 < i < n such that D =
Spec(A/(m)) and F; = Spec(A/(s;)).

Proof Lemma 5.7 together with the localization sequence implies that we have

(5.8) (¥, Q5 p(log F)) = Hy (Y —T,9Q5 p(log F)|Y7T)

for every closed subscheme 7' C W of codimension strictly larger then r 4+ 1 in Y. Therefore we can
disregard the irreducible components Z; of Z of with codimy (Z;) > r + 1 and, by shrinking ¥ around
the generic points of Z of codimension 7 4+ 1 in Y, we can assume the conditions of Claim 5.10 except
for the irreducibility of Z.

This last reduction can be shown as follows: take a finite open covering Y = iLeJIUi such that each U;

contains at most one irreducible component of Z. Fixing a total order on I, let I'® for a € Z >0 be the
set of tuples a = (ig, . ..,i,) in I with ip < -+ < i,. For (ig,...,i4) € I'¥), put Uy = Us, N---NU;,.
We have the Mayer-Vietoris spectral sequence associated to the the covering 'UIUi

1€

(5.9) B = P HE (Ua, Oy p(log F), ) = HEEY (Y, Q5 (log F)).
acI(a)

Putting V; = U; N X we have the induced covering X = 'gIVi and the analogue of (5.9)

(5.10) B = @ Hypnv, (Va, Uk y,) = HRF(X,0%).
acl(@)
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By (5.6), (5.9) gives rise to an exact sequence

0 = Hi (Y, Q5 p(log F)) = (DH{p,,, (Ui, 2y p (log F))
i€l

(i,5)eI®)

and (5.10) gives the similar exact sequence for Hj, (X, Q%). We can therefore replace Y by U; and
assume that Z is irreducible.

5.3. The case W is a normal variety. We first prove the following

Lemma 5.11. Let Iz C A be the ideal of definition for W C'Y = Spec(A). There exist f € Iy and
a € A such that f = s; + wa for some 1 <i <mn.

Proof Indeed, the modulus condition (5.5) implies that
WXXDCWXXFCF.

Since W x x F is assumed to be irreducible, W x x D C F; for some 1 < i < n so that s; € Ly + (7).
This proves the lemma.

Since Z is contained in F; by the proof of Lemma 5.11, f = s; + wa is a regular parameter of the
local rings of ¥ at points of Z. By the normality of W, W is regular at the generic point of Z and
we may assume by (5.8) that, after shrinking Y around the generic point of Z, we can complete f to
a regular sequence f; = f, fa,..., fr in A such that Iy = (f1, f2,..., fr). Put U; = Spec(A[1/f;])
for 1 < j < r. By the local description (5.2), we have that cli,(W) € Hj, (X, Q%) is given by the
cohomology class of the Cech cocyle

w' =dlog f Adlog fo A--+Adlog f, € H*(XNU N---NU,, V)
— |0 r
=H' (X \W, QX\X\W)‘
Since the cohomology class of dlogs A dlogfa A - - - Adlog f, vanishes, we see that clg, (W) € Hj, (X, Q%)
can be also represented by the cocycle

(5.11) w = dlog g Adlog foa A---Adlog fr, e HH(X NULN---NU,, Q%).

It suffices then to show that w is a restriction of an element of H*(U; N---NU,, QQ‘D(log F)). Indeed
Lemma 5.11 implies

dlog si = dlog (1 + gﬂ') = ;( — adlog s; + da + adlog )

(2

which proves the desired assertion.

5.4. The case of an arbitrary W. Let ¢y-: W — W be the normalization morphism. Since it is
finite, there exist an integer M and a closed immersion

. —N
v W o PY =Y x PY
which fits into the commutative square

PN
—N W M
w ——DPy

oW lpy
ii

W——Y
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where py is the projection (this is an idea due to Bloch, taken from [15, Appendix]). Noting ¢y =
i3 © Py = Py © igpv , the modulus condition (5.5) implies

W n PY ¢ ortM(PY PY PM)  (cf. Definition 5.5).
By the normal case 5.3, the fundamental class

T N T s
™MW nPY) e HEEY L (PYLQ50Y)
x
r+M

arises from an element of H’“Wﬂe/[ (PM, QP%P%(IOg PM)). Now Theorem 5.9 follows from the commuta-

tivity of the following diagram

r r 5.7 r T
(5.12) HeEY (B, 0 (log PR))CC D HEEY (P, 03 )
(py)*l l(px)*
(5.7)

and from the fact that (pX)*(clng(WN NPY)) = clf,(W) € Hy, (X, Q% ). Here the vertical maps are
induced by the trace maps

(5.13) ]R(px)*Q];LM —= Q% and R(py).Qo2, (logP¥) — Qyp(log F).

pip
YRy

which come from Lemma 5.14 below where one takes (Y',F',D') = (P¥,P¥ PM). Note that the
commutativity of (5.12) follows from the functoriality of the trace maps (5.13), so that the only thing
which is possibly left to be checked is the identity

(px) (™M (T N PY)) = el (W) € Hiy (X, Q%)

which follows from the compatibility with proper push forward of El Zein’s fundamental class. See [10,
II1.3.2] and Section 5.5 below.

5.5. Compatibility with proper push forward. Let (Y, F, D) and (Y', F', D’) be two triples satis-
fying the condition (%) of 5.2.1 and let f: Y’ — Y be a proper morphism. We say that f is admissible
if the following condition holds:

(%) The pullback of the Cartier divisors F' and D along f are defined and satisfy f*(F) = F' and

D" > f*(D) and |f~H(D)| = |D|.

Note that the condition implies that D' — D!_, > f*(D — D,.q) and X' = f~'(X) so that the
restriction fx. of f to X' is proper.
Lemma 5.12. Let f: (Y',F',D') — (Y, F,D) be an admissible proper morphism between the triples
(Y F',D") and (Y,F,D). Let X =Y —(F+D) and X' =Y'—(F'+D'). Then the proper pushforward
of cycles by fx: induces a homomorphism

fur Qri@mY S dimY (yr prophy o C7(Y,F,D) 1 >0.

Proof Let W be a closed integral subscheme of X' satisfying the modulus condition (5.5) with
respect to D' and F'. Let f(WW) denote the image of W via f|x/, endowed with the structure of closed
integral subscheme. We need check f(W) satisfies (5.5) with respect to D and F. We may suppose
that dim W = dim f(W). Let W (resp. f(W)) denote the closure of W in Y’ (resp. f(W) in Y)
and let ¢p: wY Sy resp. gzﬁm: f(W)N — Y') be the normalization morphism. Note that, by

construction, f(W) = f(W) intersects properly both D and F. Then there exists a finite and surjective
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map h : wY o f(W)N making the diagram

commutative. The conditon (&) implies

B (65305 (D)) = G (7 (D)) < 63(D') < 63 () = 630 (F () = h* (635 (F)).
By [26, Lemma 2.2] (see also Lemma 2.1), this implies ng;(—W)(D) < ng;(—W)(F), completing the proof.
Remark 5.13. Noting that the pushforward defined at the level of cycles commutes with the boundary

maps as in the case of Bloch’s higher Chow groups, Lemma 5.12 proves the covariant functoriality of
Lemma 2.7, giving a map of complexes

fur Z(s)zpr = L(r)xyp Wwith s =7 4+ dim X’ — dim X.
5.5.1. Let g: X' — X be a proper morphism between smooth schemes over k. Put § = dim X —

dim X'. Using [22, VI, 4.2; VII, 2.1] or [9, 3.4], for integers r, s > 0 with s —r = §, we can construct a
trace map in the bounded derived category D®(X) of complexes of Ox-modules

(5.14) Try : Rg. Q% [0] = Q%.

One way to define this is the following. Arguing as in 5.1.2, we may assume that the base field
k is finitely generated over its prime subfield ky. Write d = ¢t + dim X and d' = ¢t + dim X’ with
t = trdeg,, (k). We have an isomorphism

(5.15) 0% = Hompx) (%", 9%),

given by a — (8 — a A ) (note that we are choosing a sign, as we could have set a +— (8 — 8 A «)).
Noting d' — s = d — r we have isomorphisms

Rg.Q% (8] =~ Rg.RHompx(Q%", Q% [0]) ~ Rg.RHomp(x (%", 9'Q%)
~ RHomp(x) (Rg. Q%" Q%),

where the last isomorphism is Grothendieck-Verdier duality and the second isomorphism comes from
the isomorphism

(5.16)

9'0% = g'mcko[—d] 2 7 ko[ —d] = Q% [d — d],
where mx : X — Specky and wx: : X' — Specky are the structural morphisms. By adjunction, the

natural map g*Q?{T — Q?{,T induces QdX_T — Rg*QdX_,T, which induces the desired map (5.14) via
(5.15) and (5.16).

Lemma 5.14. Let f: (Y',F',D') — (Y, F,D) be a morphism satisfying the condition (&%). Let g =
X' — X be the induced morphism and 7 : X — Y and 7 : X' — Y’ be the open immersions. Then,
for integers r,s > 0 with s —r = § :== dimY — dim Y”, there exists a natural map in D(Y):

(5.17) Try: Rf Q50 p (log F')[6] — Qyp(log F)

which fits into the commutative diagram

Rf.Q5 p (log F')[0] — Rf.Rr.0%.[5] —> Rr.Rg.Q%. [9]

TT'f
R7,.Tr,

Q;‘D(log F)— s Rr.O%
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Proof Let ¥ = D,.q+ F and ¥’ = D' _,+ F'. We are ought to construct a natural map
Try : Rf.Q% (log =')(~D')[6] - 0 (log S)(~D)

Let D" = f*(D — D,eq) + D!_,. By (&), we have D" < D' and therefore it is enough to show the
existence of a natural map

(5.18) Trs : Rf.Q5 (log =) (=D")[§] — Q4 (log £)(—=D). in D(Y).

As before, we may assume that k is finitely generated over its prime subfield ko with ¢ = trdegy, (k)
and put d =t +dimY and d' = ¢ + dim X'. We have isomorphisms (cf. (5.15) and (5.16))

(5.19) Q3 (log £) (= D) = Homp(y) (25" (log £)(D)), 25 (%)),

Rf.5 (log £')(—D")[0]

~ Rf.RHompy (47" (log D), 0 (X' — D")[6])

~ Rf.RHomp(y (25" (log =) (f*D), Q% (X' + f*Dred = Do) 0])

~ RHomp(y)(Rf.(25" (log T')(f* D)), O3 (%))
where the last isomorphism follows from the Verdier duality and the isomorphism

PO (D) = f4(f*S) = QY (2 + f*Dred — D}oq) 0]
using the assumption F’ = f*F. By adjunction, the natural map
FQ5" (log £)(D) — Q57" (log ) (f*D)

(5.20)

induces
Q)" (log £)(D) — Rf.(37" (log B')(£°D)),
which induces the desired map (5.18) via (5.19) and (5.20).

Now take W € C*(Y',F’,D’). Under the assumption of Lemma 5.14, we have a commutative
diagram

(5.21) H (Y, Q4 o (log f7F)) L HE (Y, 0 (log F)

[\(5.7) 125.7)

Hy (X, 05,) ——2—— Hyyy (X, 0%)
where f, (resp. g.) are induced by Try (resp. Try).

Lemma 5.15. Let

cl(W/Y') € B (V' Q3 (log f7F)), clo(f.(W)]Y) € B (Y, Oy p (log F))

denote the fundamental classes of W and f.([W]) from Theorem 5.9 (the latter makes sense by Lemma
5.12). Then we have

(5.22) AR (F(W)/Y) = Fuclgy(W/Y") € BE (Y, Q5 (log F)).

Proof Since the relative fundamental classes restrict to El Zein’s fundamental classes under the maps
(5.7) in (5.21), the lemma follows from the compatibility of El Zein’s fundamental class for proper
morphisms. See [21, Prop. 4.2.3] for an explicit proof in the case of the crystalline fundamental class.
The proof in loc. cit. can be easily adapted to our situation.

6. LEMMAS ON COHOMOLOGY OF RELATIVE DIFFERENTIALS

In this section we prove two lemmas which will be used in the construction of regulator maps to
the relative de Rham cohomology and relative Deligne cohomology in §7 and §8.



RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS 23

6.1. Independence of relative de Rham complex from the multiplicity of D. Let (Y, F, D)
be as in 5.2.1, X =Y — (F + D) and write D,.q4 for the reduced part of D. Let Di,..., D, be the
irreducible components of D and e; be the multiplicity of D; in D. We have the relative de Rham
complex

Q% p(log F): Oy (=D) 5 QY p(log F) —5 Q25 (log F) = -+ = Q5 p(log F) — -+~
The following lemma shows that, in some cases (notably in characteristic 0), Q3 pllog F) does not
depend on e; fori € I :={1,...,n}.
Lemma 6.1. In the above setting, assume further that e; < p for all i € I if p= ch(k) > 0. Then the
natural map
O3 plog F) = Q5 (log F' + D)(—=D) = Q5 (log F' + D)(—Drea)
is a quasi-isomorphism (see Definition 5.6).

Proof We endow N! with a semi-order as follows: for m = (m;);c; and n = (n;);cr in N, we say
that m < n if m; < n; for every i € I. For every multi-index m = (m;);cr € N, we set

(6.1) Dw =Y m;D; and Iy =Oy(—Dp).
i€l
Let mpqee = (€1,...,€,). The assignment (6.1) gives rise to a filtration on the de Rham complex

indexed by m € N with mp,q. > m > (1,...,1):
03 (10g F + D)(~Dyed) D 9 (log F + D)(=Dyy).
Fix now v € I, an integer ¢ > 0 and m = (my,...,m,) € N'. We define a sheaf Winw o0 Yza, as
wiy = QY (log F' + D)(—=Dw) /95 (log F + D)(=Dms,) (= I ®0, Q5 (log F' + D)p, ),
where 0, denotes the multi-index (67) with 6% = 1 and §7 = 0 for ¢ # v. The exterior derivative on
Q% (log F' + D) induces a map
d, cwh, = Wity
locally defined by

ﬁﬂ" QW ﬁwl" ® (dw—l— Xn:mi-dlog(m) /\w) ,
=1 =1

i=1
where 7; € Oy denotes a local uniformizer of D;, for each 7 € I. Thus we get a complex:

2
2 dm,u

m,v

0
dm,u

dl
Wy i In ®Op, — wi.h,, = w
Lemma 6.1 follows then from a repeated application of the following result:
Lemma 6.2. Assume (m,,p) =1 if p=ch(k) > 0. Then the complez wy, , is acyclic.

Proof This is shown in [29, Theorem 3.2]. For the reader’s convenience, we include a sketch of the
proof here. Let v € {1,...,n} and write

wp, = Qp, (log(F + Z Di)p,)
iel—{v}

for the sheaf of g-differential forms on D, with logarithmic poles along the restriction of the divisor
F+ E#V D; to D,. We have an exact sequence
Res? _
0— Q% (log(F+ > D;) = Q%L(log(F + Y _Di)) — wh' =0,
iel—{v} el

where Res? is the residue homomorphism along D, (see e.g. [14, 2.3]). This induces an exact sequence

Resi _
(6.2) 0o In®wh —swl, — Inowh ' =0,



24 FEDERICO BINDA AND SHUJI SAITO

where Resy, , = idy,, ® Res]. Now a direct computation shows
q—1 q o+l 09 —
di, oResy , +Resi’, odl , =m, - zdwm L

where Iy ®w}, is viewed as a subsheaf of wf, , via (6.2). This gives, under the assumption (m,,p) =1
(if p = ch(k) > 0), the contracting homotopy of the complex w?, ,,, completing the proof of the lemma.

m,v?

6.2. Analogue of homotopy invariance for relative differentials.

Proposition 6.3. Let X be a smooth variety over a field k and let D C X be an effective divisor such
that D,..q is simple normal crossing. Let P = P} be the projective space of dimension m with H C P},
a hyperplane. Let m: P x X — X be the projection. Then the natural map

7 Q%(log D)(=D) — R, Q%

r p(log H + D)(-D)

is an isomorphism for every r > 0 in the bounded derived category D(X za,) of Zariski sheaves on X .
Here, in the second term, we let H (resp. D) denote X xj, H (resp. D x; PT*) for simplicity.

Proof By the derived projection formula, it is enough to show that the natural map
(6.3) 7 Q% (log D) — R, Q% _(log H + D)

is an isomorphism for every r > 0. Since the logarithmic structure on the left side (resp on the right
side) is taken, by definition, with respect to the reduced structure of D (resp. of D + H), we may
assume that D is reduced (see Definition 5.6).

Write D,..., D, for the irreducible components of D. We prove (6.3) by induction on the n.
If n = 0, the assertion is well-known and follows from the projective bundle formula for sheaves
of differential forms: we recall the argument. Let ¢z be the closed immersion X x H < X x PP
mr: X x H = X be the projection on the first factor. Taking residues along H gives an exact
sequence of sheaves of Ox xp-modules

(6.4) 0— Q% o — Q% (log H) ™28 (1), 0!, — 0,
and pushing forward (6.4) along 7 gives rise to a distinguished triangle
(6.5) R(m )« Q! [=1] = Rr, Q% — Rr Q% (log H) -

that we write for convenience shifted by 1 on the left. Let £ be the first Chern class of H in Hodge
cohomology

¢ = c1(Op(H)) € H'(P,2p) = H' (P, ),

and view it as a global section of the direct image sheaf R' ., QleP' By the projective bundle formula,
the cup product with the powers of ¢ determines an isomorphism in the derived category of bounded
complexes of Ox-modules:

(6.6) @ QO - R Q% 55 (Cos- - sCm) Z ™ (c;) U &
0<j<m 0<j<m
Similarly, we have an isomorphism
(6.7) P T S RE) ) (o em) Y wh(e) UL
0<j<m—1 0<j<m—1
where £ € H' (H, Q%) is the restriction of £ to H. We have an exact sequence of complexes

0= P oI+ s P -k - 0 -0,
0<j<m—1 0<k<m
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where ¢ is the natural inclusion. By (6.5), (6.6) and (6.7) there is then a commutative diagram

@ U1+ )] 2 Ry )

0<j<m—1 1]

O~ Rr.On
oggzm x ] Tl p

that proves the desired isomorphism - = R, Q% p(log H).

Suppose now n > 1 and write I = {1,...,n}. Following [38, 2], for each 1 < a < n we define

D[a]: H Dilm"‘ﬂDia;
{il,...7ia}cl
where {iy,...,i,} C I range over all pairwise distinct indices. Note that Dlal ig the disjoint union of

smooth varieties and that we have a canonical finite morphism
la: Dl X fora > 1.

On each D!*l we have a divisor with simple normal crossings

E.= ][] ((Dilﬂ---mDia)m( 3 Dj))cD[“].

1<iy <-<ig<n J&{i1,eia}
For example, if n = 2 then D! is the disjoint union of D; and D, and E; is given by two copies of
the divisor D; N Dy, one on each component of DI, Then there is an exact sequence of sheaves on X

0 — Q% 5 Q% (log D) 25 .97 (log By ) 22 0,972 (log En) —

- Or—a Patl . r—a—1
= o= QA (log By) —— Q700

(log Eqq1) — -+ -
where e is the canonical inclusion, ¢, denote for simplicity the pushforwards by i, for all a > 1, and
the maps p, are given by the alternating sums of the residues (see [38, Proposition 2.2.1]). Similarly
we have an exact sequence of sheaves on X x P
r r7 €X xP r I T . r—1 r7
0— 0% ,(logH) —— Q% (log H + D) = i.Q7 ) p(log H + Ep) — -+

s Q0 (log H + Ey) — i.05°5) p(log H + Eqpq) — -

where for simplicity we write i, for the pushforwards by D!l x P — X x P and E, for E, x P for all
a > 1. By induction assumption, we have the isomorphisms

0% 5 Rr, Q% (log H), .97 %(log Ey) = R, i, Q)% (log H + E,),

a al P

which implies the desired assertion (6.3) by a standard argument from homological algebra.

Remark 6.4. In the notations of Proposition 6.3, let U denote the open complement of X x H in X x IP.
It is isomorphic to a m-dimensional affine space A%. Let j: U — X x P be the open immersion. Then
we have a canonical injective map
0%, p(log H) — .0

that allows us to identify the sheaf of r-differential forms with logarithmic poles along H with a
subsheaf of (the push forward of) the sheaf of r-differential forms on an affine space over X. The
isomorphism of Proposition 6.3 induced by the pullback along the projection 7 can be therefore inter-
preted as a weak homotopy invariance property, justifying the title of this section.

7. REGULATOR MAPS TO RELATIVE DE RHAM COHOMOLOGY

7.1. Preliminary lemmas. We resume the assumptions and the notations of 5.2.1.
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7.1.1. Leti: Z — Y be asmooth integral closed subscheme of Y which is transversal with D,..q+ F'.
By definition, for any irreducible components Ey, ..., Es of D,..q4+ F, the scheme-theoretic intersection

Z Xy By Xy X+« Xy Ej

is smooth. Letting Dy = D Xy Z and Fy = F Xy Z, this means that (%) in 5.2.1 is satisfied
for (Z,Dy,Fy) instead of (Y,D,F). Let W € C"(Y,F,D) and let Wy,...,W,, be the irreducible
components of the intersection W N (Z N X), so that each W; is closed in Z N X. Suppose that, for
i=1,...,n, Wand ZNX intersect properly at W; (i.e. that W; has codimension r in ZN X for every
i). As cycle on Z N X we can then write the intersection of W and Z N X as
W= ni Wi
1<i<n

where n; € 7 are the intersection multiplicities of W; for ¢ = 1,...,n. Lemma 2.1 shows then that we
have W, € CT(Z, Fz,Dz) for all 7.

Lemma 7.1. Let Z and W be as in 7.1.1. Let clg(W) € H(Y, QQ‘D(log F)) be the relative funda-
mental class of W of 5.9. We have

(W) = Y nacly(Wh),

1<i<n
where " : Hi(Y, Q’{,‘D(logF)) - Hi (Z, Q% b, (log Fz)) is the pullback along i and clf,(W;) for
i=1,...,n are the relative fundamental classes of W; with respect to (Z,Dy,Fy).

Proof We have the following commutative diagram

HI (Y, Q4 p(log F) — > He (2,9, (log Fz))

f“”'” Jin

H?/V(XvQTX);;H;Vﬂ(ZmX)(ZmXﬂgr )

Zlznx

Since the relative fundamental class of W restricts to El Zein’s fundamental class under the map (5.7),
the assertion may be shown after restriction to X. We are therefore reduced to the case Y = X,
i.e. D = (), with W integral closed subscheme of codimension 7 in Y and Z smooth integral closed
subscheme of codimension p in Y, properly intersecting .

Let cly (W) € Hy, (Y, Q}) be the fundamental class of W in Y and let clz(i*W) = clz (W - Z) denote
the element

> iz (Wi) € Hiyny(Z,9%)
1<i<n

where we let again {T¥;}; be the irreducible components of the intersection W N Z and n; € Z be the
intersection multiplicities. If i*: Hy;, (Y, Qy) — Hy, 4, (Z, Q) is the pullback along i: Z — Y, we have
then to show the following identity

(7.1) i*cly(W) =clz(i*W) in Hyy,(Z,Q7%).

By [16, ITIL.3, Lemme 1], the cup product with the fundamental class of the smooth subvariety Z defines
an injective Gysin map

(7.2) v iy (Z,9%) = Hypf? (V0 7) 5 a = aUdy(Z).

that maps, for every i = 1,...,n, the fundamental class of W; in Z to the fundamental class of W; in
Y. Hence we have

ez (W) =elz (W) Ucly (Z) = ely (1" W).
By [16, IIT Theorem 1] (see also [21, II, 4.2.12]), we have the compatibility with the intersection product

cy (W - Z) = cly (W) Ucly(Z) in Hii2 (Y, Q3P).
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Finally, since the composite map
Hyy (Y, 95) -5 Hyy/(Z,0%) -5 By (v, Q57)
is also given by the cup product with cly (Z), we get
L(i*cly (W) =cly (W) Uely(Z) =cly (W - Z) = 1(clz (i*W)).
Hence the identity (7.1) follows from the injectivity of the Gysin map (7.2).

7.2. Relative de Rham cohomology.

7.2.1. We resume again the assumptions of 5.2.1 and write Q;,‘D(log F) for the relative de Rham
complex

° d d r
(7.3) QY p(log F): Oy (-D) — Q%/lD(logF) — Q%lD(logF) == Oy p(log F) —

It is canonically a subcomplex of the de Rham complex (1x,.Q%,d). For every r > 0, we can consider
the (brutal) truncated complex Q%TD (log F) = UZ"(Q;/|D(10g F)), i.e. the subcomplex of QY‘D(log F)
defined by

(7.4) 0= =00y p(log F) N Q;T[l,(logF) —

as well as the truncated de Rham complex Q3" = 05,(Q%) C Q%-
Let T be an integral closed subscheme of Y of codimension ¢. For r > 0 we define the relative de
Rham cohomology of Y with support on 7" as the Zariski hypercohomology with support

>r
HE (Y, QY‘D(logF)).
There is a strongly convergent spectral sequence

(7.5) EP? = HE (Y, Q5 (log F)),

where, for p,q > 0, we let

EP — { HZ. (Y, Q5 p(log F))  ifp >,
1 - .
0 ifp<r.

We see that, by Lemma 5.7, EV'? = 0 for ¢ < ¢. Thus we have
(7.6) HG (Y, 05, (log F)) =0 forp+g<r+ec.

Assume now that codimy (7') = r. Lemma 5.7, together with the definition of the E;-terms of the
spectral sequence, gives us that E7"? # 0 for p + ¢ = 2r if and only if p = ¢ = r. We can see similarly
that EZ" ~ E"", so that we finally get

(7.7) B (V, Q51 (log F)) = Ker (H7 (Y, Q5 (log F)) 5 Hyp (Y, Q3 (log F)))

where d is the map induced by the exterior derivative.

Remark 7.2. Let V be any open subset V' C Y containing the generic point of T. By (7.7), the
localization exact sequence (together with (5.6)) implies the injection

(7.8) B (Y, 977, (log F)) < Bty (V, 37, (log F)

|v)'

In particular, for V =X we get from (7.8) the injection

L (V, Q3 (log F) < Hifx (X, 0%7).

We can now give a refinement of Theorem 5.9.
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Theorem 7.3. For W € C"(Y, F, D), there is a unique element, called the fundamental class of W in
the relative de Rham cohomology,

clpr(W) € BL(Y, Q3 (log F))

which maps under the map (7.7) to the fundamental class clg(W) € HI(Y, Q;‘D(log F)) defined in
Theorem 5.9.

Proof The spectral sequence (7.5) has an analogue in the non relative setting
EPY = HF(X, Q%)

for E}? = HY, (X, Q) if p > r and 0 otherwise. Using 5.2 instead of (5.6) we have the analogue of
(7.7), namely

(7.9) H (X, 057) = Ker(Hjy (X, 9%) ~5 Hyy (X, 0%7)).

By [16, Thm. 3.1] (see Remark 5.1), the fundamental class clf,(W) € Hj, (X, Q%) is in the kernel
of the map induced by the exterior derivative d. Therefore by (7.9), the absolute class ¢l (V) gives
rise to an element of HZj (X, Q)Z(T). By (5.7), Theorem 5.9 and (7.7), the same holds for the relative
fundamental class clg (W) € Hy(Y, Q5 ,(log F)), giving rise to clpp(W) € H%’“(Y,QZT (log F)) as

Y|D
required. The last stated property is then clear by construction.

Lemma 7.4. Let Z and W be as in 7.1.1. Let clj,z,(W) € H%—";(Y,Q%TD(log F)) be the fundamental

class of W in relative de Rham cohomology of Theorem 7.3. Then we have
*dpr(W) = Y nicpr(Wi),

1<i<n
where i*: ]H]QW’(Y,QIZ/TD(IogF)) — H%’“HZ(Z, Q%TDZ (log Fz)) is the pullback along i and clf,,(W;) for
i =1,...,n are the relative fundamental classes of W; in de Rham cohomology.

Proof By the construction of 7, (cf. (7.7)), the lemma follows from the same assertion for clg, that
is proven in Lemma 7.1.

7.3. The construction of the regulator map.

7.3.1. Let X be a smooth variety over a field k£ and let D C X be an effective Cartier divisor on X
such that the reduced part Dyeq is simple normal crossing. Let X = X — D be the open complement.
Let Qly(log D) be the Zariski sheaf on X of absolute Kahler differentials on X with logarithmic

poles along D,.q (see Definition 5.6). We write Qiy(log D) for its i-th external power and set

Vg p = Vg llog D) @oxc Ox(=D).
The exterior derivative gives rise to the relative de Rham complex
s . N d, Ol d,. 02 r
%y Ox(=D) = Q% —= Q% = = Qg =

For every r > 0, we have the (brutally) truncated complex

2r . r d, or+l
QY|D' 0— —>QY‘D—>QY‘D—>

In this section we show that Theorems 5.9 and 7.3 can be used to construct a cycle map in the derived

category D™ (X ,..) of bounded above complexes of Zariski sheaves on X

(7.10) ¢pr: L(r)gp = Q%D

where Z(r))p is the relative motivic complex introduced in (2.2). The induced maps

(7.11) o (XD, Z(r)) — ]qu(Yzar,Q%D)

are called the regulator maps to relative de Rham cohomology.
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7.3.2. In what follows all the cohomology groups are taken over the Zariski site. We use the notation
A, to denote a cubical object A: (0°°? — C in an abelian category C. The associated chain complex
is denoted A, and we write A,/(A.)degn = (As)non—degn for the non-degenerate quotient. In the
notations of Section 2, we write

X,=Xx0"wX, =X xO"=Y, =X x (PYY* > D, = D x (PH)™.

Write F,, for the divisor X x ((P')" —O"), D,, for the divisor D x (P')" on Y,, and 7, : ¥;, — X for

the projection. The triple (Y,,, F,,, D,,) satisfies the condition (%) of 5.2.1 and we can consider the
>r

complex Q;ﬂan (log F,) on (Yy)ar-

7.3.3. For a Zariski open subset U of X, we write U for the intersection U N X, U, for =, 1 (U) C Y,
and U, for U, N X,,. Let S;" be the set of (Zariski) closed subsets of U, of pure codimension r
whose irreducible components are in C"(U|D N U,n) (cf. Definition 2.2). In particular, for every
V € C"(U|DNU,n) we have

6D NT x (B)") < p2(T x F)

where V' denotes the closure of V in U,, x (P!)". We can therefore apply Theorem 7.3 to get a natural
map

" : 2’ UDNT,n) > lim By (U0, Q5 p, (log Fu)

wes;™

sending a cycle >°  m;[W;] with W; € C"(U|D NU,n) and m; € Z to
1<i<r

> mi-dppWi € B (U, leDn (log F,)),
1<i<r

where W is the Zariski closure of W = 1<U< W;in U,.

7.34. Fori=1,...,n,¢e¢€ {0,00}, let 1}, denote the inclusion of the face of codimension 1 in U x O"
given by the equation y; = €. Lemma 7.4 shows then that the diagram

i r(TT >r
2 (UDNT,n) ——— WIL; ) H2r (U, Q3 . (log F))
€Sy

nox nox
[ l%‘,e

Y lim  HE (T, 1, 05" log F,_
Z(UDNU,n-1)—>= — Un-1,95, 1, . (o8 Fu1))
wesp™ !

is commutative, where the left vertical map LZE* denotes the pullback of cycles along 17, and the right
vertical ¢ . * denotes the pullback of differentials along the same map.

The map cl;;" is then contravariant for face maps, giving rise to a natural map of cubical objects
of complexes

(7.12) 2 (UIDNT, %)[~2r] 22 lim Her (U, O3, (log F))[—2r].
wesy”

Lemma 7.5. Let i be a positive integer. The natural map
Q%‘D = Q' (log D)(-D) — R(nn)*ﬂgmn (log F,)

is an isomorphism in D™ (X o).
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Proof The proof is by induction on n. The case n = 1 follows from Proposition 6.3, applied in the
case m = 1 and H the k-rational point y = 1 in P!. For i = 1,...,n, we denote by F, 7 the face y; =1
of the closed box (P1)". Let ¢ : (P)™ — (P')" ! be the projectlon to the last (n — 1) factors. Note
that D, = ¢*(D,—1) and F,, = F{'; + ¢*(F—1).

By Proposition 6.3 applied to Y,,_; x P! 2, Y, —1, together with the derived projection formula, we
get then
(713) D, (10g Dut + Fact)(=Dat) =5 R(@). (U, (108(6" (Duct + Fut) + FJ'1)) (= Dn)-

Applying R(m,—1)« to (7.13), the claim follows from the induction assumption.

7.3.5. Let Z,(r)® be the Godement resolution of the complex QY D, (log F,) on (Y,)zar- By func-
toriality of Godement resolutions, Z,(r ) has a natural structure of cubical object in the category of
complexes making the canonical map QY D, (log F,,) — Z,,(r)* a morphism of cubical objects.

Let W be a closed subscheme of Y, of pure codimension r and let 7<2,.I'y#(U,, Zn(r)®) be the
canonical (good) truncation of I'y7(Un, Z,(r)®). By (7.6), we have

]HI’ U, QYT‘D (log F,)) =0 for i < 2r,

so that the morphisms of complexes

alm

T<2 Dy (Un, Zn(r)®) AN ;14 (Un,QY D, (log F,))[—2r]

r,n

(7.14) lim 7o, g (Un, Zu(r)*) <= lim  HE(T,, 97, (log F))[-2r]
wesy™ wesi™

are quasi-isomorphisms, both compatible with the cubical structure.

Remark 7.6. The complex Z,(r)® = Z,(r)* °%.D) is contravariantly functorial in the pair (X, D), where

by a morphism of pairs (X,D) — (X , D') we mean a morphism of schemes f: X — X such that
f*(D’) is defined and f*(D'") < D as Cartier divisors on X.

7.3.6. Combining (7.14) and (7.12), we have a diagram of complexes

@D AT 2] L I B (T, O, (log o)) =2r]

wes;™

li 7‘]-—‘7 Un)-Zn * o U
Ln T<2 W( (r)*®) B—>I‘(Un,_'[n(1“).)
wes;"

where ™" is the canonical map “forget supports”. Since all the morphisms are contravariant for face
maps, we get a diagram of cubical objects of complexes

i — ely” li H2 , log F.))[—2
&T(U|DHU,*)[ 2r]—> in (U* Y|D*(Og *))[ 1“]

wesy*
1. 7‘]:‘7 U 7Z * - U
Ln 7'§2 W( * *(T) ) $ F(U*,I*(T').)-

wesy”
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Let Tot(r<s,sr.- (U.,Z.(r)*)) be the total complex of the non-degenerate associated complex

lim T§27‘FW_(U*7I*(T).)
wesy (rer T L))

degn

and let
o™ Tot(ren, Dy (Tar Zu(r)*)) = lim (B2 (T, 03,5, (108 F))[=2r])non—degn = Far
wesy”

be the induced morphism. Since the maps a™" are quasi-isomorphisms for every n, the same holds for
a™*.

Let Q%TD — Z(r)® be the Godement resolution of the relative de Rham complex Q%TD on X and
let v be the inclusion to the factor at x =0

I(r)® L DU, Z(r)®).
By Lemma 7.5, the induced map

L(U,,Z.(r)® S
10)* 3 Tot—— L) 7 7 (e
F(U*az*(r).)degn
is a quasi-isomorphism. Combining it with the previously constructed maps we get a diagram of
complexes

™ *

s (UIDNT,%)[-2r] ———— F., I(r)*[-r]

Tot Ty (T, Z.(r)*) =5 F(T.. L. ()")
that sheafified on X, gives the desired map (7.10)

QSDR: Z(T)Y|D — Q%TD

Remark 7.7. The strategy used to construct regulator map (7.10), that relies on the existence of a
functorial flasque resolution of the relative de Rham complexes Q%T‘ p. (log F,) is due to Sato, taken

from [39, 3.5-3.10].

7.4. Compatibility with proper push forward. Let (Y, F, D) and (Y, F’, D’) be two triples satis-
fying the condition (%) of 5.2.1 and let f: (Y', F',D') — (Y, F, D) be an admissible proper morphism
between the triples (Y, F', D') and (Y, F, D) (see §5.5). Suppose that f is either a closed immersion
or a smooth morphism. The Gysin map of Lemma 5.14 can be turned into a map of complexes

fe: Rf*Q;,Tl%, (log F")[n] = Q5 p(log F)

where n = dimY — dimY”’. We can show this by the same method of [22, IL.5] (see also [23, Prop.
2.2]). Tt induces a map of the relative de Rham cohomology groups with supports

(7.15) fo B (Y, Q3 (log F)) — B (Y, Q31 (log F))

that is compatible with the fundamental class of Theorem 7.3, namely

(7.16) Fueclpp (W) = clpp (£ (W)

where the equality (7.16) follows from (5.22) and the fact that the fundamental class of a cycle is a
cohomology class of a closed form (see Remark 5.1).
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7.4.1. We resume the notations of Section 2 and 7.3.2. Let f: X — X be a proper morphism between
smooth varieties over k that is either a closed immersion or a smooth morphism. Let D' and D be
effective Cartier divisors such that D!, and D,.q are simple normal crossing. Write X' = X - D
(resp. X = X — D) for the open complement. Suppose for simplicity that D' = f*D. The map of
cubical complexes
r /7T — ell™ . ” >
2'(UIDNU,%)[=2r] —— h_r}n HQW(U*:QT/T‘D* (log Fy))[—2r]
wes;”

constructed in 7.3.4 is compatible with the pushforward (7.15). This can be used to show that the
regulator map constructed in Section 7.3 is compatible with the proper pushforward, i.e. that the
diagram

/
7 (r= ¢DR >r
e 03,

Lf* |

$DR >r
B0y 22 02

is commutative.

8. REGULATOR MAPS TO RELATIVE DELIGNE COHOMOLOGY

In this section we work over the base field £ = C. For an algebraic variety Y over C, write Oy for
the analytic sheaf of holomorphic functions on ¥ and Q. for the sheaf of holomorphic i-th differential
forms.

8.1. Relative Deligne complex. Let X be a smooth variety over C and let D C X be an effective
Cartier divisor on X such that the reduced part D,.q is simple normal crossing. Let j: X = X—D < X
be the open complement. Write Qiy(log D) for the sheaf of meromorphic i-th differential forms on X,
that are holomorphic on X and with at most logarithmic poles along D,..4. Resuming the notations
of 7.3, we write

QzY|D = Q%(IOgD) ®07 OY(_D))

and Q.Y\ I for the relative (analytic) de Rham complex. Let Cx denote the constant sheaf C on X,,,.
Lemma 8.1. Assume D is a reduced simple normal crossing divisor on X. Then the canonical map
»hCx — Q.Y\D 1S a quasi-isomorphism.

Proof Write Dyq,..., D, for the irreducible components of D. We use the strategy of the proof of
Proposition 6.3, doing induction on n. If n = 0 the assertion is clear. Write I = {1,...,n} and for
each 1 < a < n define

D[a]: H Dilm"‘ﬂDia;
{il,...7ia}cl
where {i1,...,i,} C I range over all pairwise distinct indices. Then D!l is the disjoint union of smooth

varieties and we have a canonical finite morphism
la: Dl X fora > 1.
The lemma follows then from the standard exact sequences
0= 71Cx = Cx = (i1)+Cpu = (42)+Cprzs — -+,

0— Q.Y\D — Q.Y = (11)«QDn = (12)« QP — -
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Remark 8.2. By Lemma 6.1, in characteristic 0 the relative de Rham complex Q.Y is independent

|D
from the multiplicity of D. Lemma 8.1 gives then

. ~ e ~ e
WCx — QY\DM — QY\D

where Q.Y is defined as Q.Y IS with D replaced by D,..q.

[Dyea

|
8.1.1. Let Y, X, F,D be as in 5.2.1 and write

X=Y-(F+D)LX=yY-F3VY.

On Y, we have the relative de Rham complex €23, pllog F) and the truncated subcomplex Q;TD (log F).
Write 5, p, (log F') for the variant of Q;,‘D(log F) with D replaced by D,.cq.

Lemma 8.3. We have a natural isomorphism in D*(Y,,)

(8.1) B: RrujiCx = Q% p, ,(log F).
Proof By Lemma 8.1 we have a functorial quasi-isomorphism
j!(CX l) Q.YlDred

and pushing forward along 7 one has the quasi-isomorphisms

Rr. Q2 ~ 7.0

X|Dyeu QY p,.,(log F)

e
X|Drea
[ ]

X0 is a quasi-isomorphism by using the same
red

where the canonical map Q% (log F) — 7.0
argument as [10, II, Lemme 6.9].

For every integer r > 0, write Z(r)x for the constant sheaf (2ir)"Z C C on X,,. We define the
relative Deligne complex for the triple (Y, F, D) as the object in the bounded derived category D®(Ya,)
given by
(8.2) Z(r){y,r,p) = Cone[Rr jiZ(r)x & QF{,(log F) = R jiCx |[-1],

where ¢ is induced by Z(r)x < Cx and + is the composite

0zr

. ~ e B .
YlD(logF) = QY p(log F') — Q% p, _,(log F) ~ Rr, jiCx,

where the last isomorphism £ is defined in (8.1). We have then a natural distinguished triangle in
D*(Yan):

(8.3) Z(r) B rpy = R jiZ(r)x @ QF7,(log F) — Rr jiCx — .
Remark 8.4. We note that the map 7 is a priori defined only at the level of the derived category.
However, after replacing Q.Y| Do with a functorial resolution Q.Y\ Do Z%‘ p» We can lift it to an

actual morphism of complexes.

8.1.2. Let W € C"(Y,F,D) and write_W for its closure in Y. By definition, W is a closed subvariety
of X of codimension r whose closure W in Y satisfies the modulus condition (5.5). As noted in after
Definition 5.5, the condition implies that

wWnY-F)ynD=0

and that W is closed in X =Y — F. Therefore, the localization exact sequence for X <+ X gives the
isomorphism

Hi.

Wny(yanaj!Z(T)X) = H%}V(Xan; Z(T)X)

In particular, we have

(84) Hw(Yam ]RT*j!Z(T)X) = HiWﬁy(yamj!Z(r)X) = H%)V(Xan; Z(T)X)y
so that purity for the Betti cohomology implies

(8.5) Hie (Yan, Rr jiZ(r)x) =0 for i < 2r,
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and that for i = 2r we have the Betti fundamental class
(8.6) (W) € B (Yan, R 1 Z(r) x) = Hif (Xan, Z(r) x).
obtained by the fundamental class of W in H3j (Xan, Z) after multiplication by (2ir)”.
Theorem 8.5. For W € C"(Y, F, D) we have
HL (Yan, Z(r)(DY’F’D)) =0 forq<2r

and there is a unique element, called the fundamental class of W in the relative Deligne cohomology,

(8.7) clp(W) € B (Yan, Z(r) 3, )
which maps to (cly(W), cl’ g (W)) under the (injective) map
(8.8) H (Yan, Z(r) (. 1, py) = FEZ(Van, RTuGIZ(r) x) & HEF-(Van, Q§(D(1og F))

arising from (8.2), where clpp(W) € ]H]%TC(YM,Q%TD(Iog F)) is the de Rham fundamental class of
Theorem 7.5.

Proof From (8.3) we have the long exact sequence

HZ! (YVan, R 1C) = B (Yan, Z(1) (5, py) =
e (Yan, Rru 1 Z(r) x) @ Hiz- (Yan, Q3] (log F)) = Hip (Van, RrajiCx ).
Recall that by (7.6) we have the vanishing

i >r
(8.9) Hw(yan; 0

Y‘D(logF)) =0 fori < 2r,

so that the first assertion follows from (8.9) and (8.5), proving at the same time the injectivity of (8.8).

To prove the second assertion, it suffices to show that clp(W) and cl},z(W) have the same image in

HEL (Van, RT.51C), giving rise to a unique element in HE(Van, Z(r)(DY’F’D)), that we denote clf,(W).
Note that pulling back along the inclusion ¢tx : X — Y gives rise to a commutative diagram

]H]%(Yan;]RT*j!Z(T)X) @ H{[%/V—T(Yan,Q%‘TD(IOgF)) —_— ]-H]QWT(YanaﬂgT*j!CX)

HY (Xan, Z(7) x) © B (Xan, Q3") ————— H¥ (Xan, Cx ).

where the right vertical map is an isomorphism by (8.4). As noticed in [13, Remark 6.4(b)], the
fundamental classes

(W) € HE (Xan, Z(r)x) and el g (W) € B2 (Xan, 057
have the same image in Hij, (Xan, 2%) =~ H{j (Xan, C). The claim follows then from the fact that, by
Theorem 5.9, the class cl}, (W) € ]HIQWT(YM, Q%TD (log F)) maps, via the pullback along ¢x, to the class
cdpr(W).
8.2. The construction of the regulator map.

D
X|D

JL(r)x = Ox(=D) = gy = - = QT7_|11:>’

8.2.1. We introduce a relative version Z(r) of the Deligne complex on X:

(8.10) Z(r)%D :
where jiZ(r) x is put in degree zero and the map jiZ(r)x — Ox(—D) is obtained by adjunction from
the canonical inclusion Z(r)x — Ox. The hypercohomology groups

HY (X]D, 2(r) = B (o, Z(r)2, )

are called the relative Deligne cohomology groups for the pair (X, D). By Lemmas 8.1 and 6.1, the

definition of Z(r)% , implies the following
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Lemma 8.6. Let r > 0 and let Q%TD be the r-th (brutally) truncated subcomplex of Q.Y|D' Then there

is a natural distinguished triangle in D*(X ,,)

Z(r)2 = iZ(r)x & Q2 = jCx - .

X|D X|D

Ezample 1. For r = 0 we have Z(0)xp, = jiZx, so that H%L(X|D,Z(0)) = HY(X,Z) is nothing but
Betti cohomology with compact support. o
For r =1, let O (resp. O}) denote the sheaf of invertible holomorphic functions on X (resp. on

D) and let (’)%D be the kernel of the restriction map

X X X
1—)OY|D—)OY—)LD*OD—>1,.

where tp : D — X is the closed immersion. Then the complex Z(l)y| p is quasi isomorphic to

O% D[— 1] via the exponential map. In particular, one has

H3,(X|D,Z(1)) = Pic(X|D).

8.2.2. In this section we construct a cycle map in the derived category D~ (X.n) of bounded above
complexes of analytic sheaves on X

(8.11) ¢p: € L(r)xp = Z(r)%p’

where Z(r)xp is the relative motivic complex of (2.2) and e: Xan = Xyar is the map of sites. The
induced maps
o 1 (XD, Z(r) — HL(X|D, Z(r)

are called the regqulator maps to relative Deligne cohomology.
In the notations of Section 2 and 7.3.2, we write again for n > 0

X,=Xx0"wX, =X xO"=Y, =X x (P)Y* > D, = D x (PH)™.

Let F,, be the divisor X x ((P')*—0"), D,, the divisor D x (P')" on Y, and 7, : ¥,, — X the projection.
Let Z(r) s, r, p, be the sheaf on (Y;,)an defined as Z(r) 5. , p, for the triple (Y, F, D) = (Y,, Fy, Dy,).
The analogue of Lemma 7.5 is given by

Lemma 8.7. Let i be a positive integer. The natural map

Z(T)%D = R(wn)*Z(r)FYn,Fn,Dn)'

is an isomorphism in D~ (X 4n).

Proof By Lemma 8.6 and (8.3), the statement follows from the natural isomorphism
0% (log D)(=D) = R(m). Q5 | p, (log Fy,)  for i >0,

given by Lemma 7.5, and from the isomorphism

(8.12) WZx =5 R(fn)s(u)Zx, with 71 Xpn = X x O" = X,

which follows from the homotopy invariance for the Betti cohomology, where j,: X, — X, denotes
the open immersion.

The method developed in 7.3 applies, mutatis mutandis, to this setting, using the fundamental class
in relative Deligne cohomology constructed in Theorem 8.5 and Lemma 8.7 in place of Lemma 7.5.
This gives rise to the natural map (8.11). The same argument (this time using the fundamental class

(8.6) in Betti cohomology and (8.12) in place of Lemma 7.5) provides a cycle map in D™ (Xay)
(8.13) ¢B: € L(r)xp = HL(r)x,

whose induced maps in cohomology will be called regulator maps to Betti cohomology.
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Remark 8.8. By construction, we have the following commutative square of distinguished triangles in
D_ (Yan)

+

€ L(r)xp —=> € L(r)xp © €L(r)xp ——> €"L(r)xp —

l@u ld’B@d’DR ldna

Z(T)g‘D — > JZ(r)x ® Q%TD — ;Cx N

where A is the diagonal and ¢ is the difference of identity maps, and the lower distinguished triangle
comes from Lemma 8.6.

9. THE ABEL-JACOBI MAP FOR RELATIVE CHOW GROUPS
9.1. Relative intermediate Jacobians.
9.1.1. _We resume the setting of 8. Let _X be a smooth variety over C equipped with an open embedding
X — X into a smooth proper variety X such that X is the complement of an effective Cartier divisor

D, with D,..q simple normal crossing. By definition, the relative Deligne complex (8.10) fits into the
distinguished triangle in D®(X,,)

(9-1) QL1 = Z(NFp, = 32 () x =

from which we get an exact sequence

0~ EL " = Hp(X|D,Z(r) = B (Xan, 42 (r)x),

where qu_l’r is defined to be the cokernel

|D

E%TD = Coker(Hq(yan:j!Z(r)X) — H(Xan, Q§TD))

By Theorem 8.5, we have a commutative diagram
H},((X|D, Z(r))

o5"
ld)%r \

0 By H, (X|D, Z(r)) —> H(X a0, 17(r) x)

Thus we get the induced map

— BT LT

(9.2) Py B (XID,Z(0),,,, = B 1

where H% (X |D, Z(r)), ., is, by definition, the Kernel of the regulator map to Betti cohomology ¢%".

9.1.2. Particularly interesting is the case ¢ = 2r. We write J%‘D for E%BM and we call it the r-th

relative intermediate Jacobian (for the pair X, D). By Theorem 3.3, we have a natural map
CH"(X|D) — HY,(X|D,Z(r)),
where CH"(X|D) is the relative Chow group of codimension 7 cycles on X. The morphism p20'" of

X|D
(9.2) induces a map

9.3) P CH' (XID)hom = Ty

that we call the relative Abel-Jacobi map.



RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS 37

Lemma 9.1. Let the notation be as above and assume that D s a reduced normal crossing divisor on
X. Then the Hodge to de Rham spectral sequence

B =B (Xan, g p) = H (Kan, Q%) = B (X o, i Cx )

degenerates at the page Ey and

FTH*( am]'(CX) ( amQ;TD)

is the r-th Hodge filtration for the Hodge structure on H*(X gn, 1Zx).

Proof This follows from the same argument as in the proof of Lemma 8.1, using again the standard
exact sequences as in loc. cit.
0— j!(CX — (Cy — (il)*(CD[l] — (i2)*(CD[2] —

0— Q;(‘D = Q% = (11)«Qpm = (12)«Qpp — -+ .

9.1.3. Let JZ be defined as JZ.,  with D replaced by D;.q. By Lemma 9.1, we can write JZ

X |D,ca X|D X|Dyea
as quotient
(9.4) Fip, = B (K, 51 Cx )/ F7 4+ B2 (K, (1) x),
where F” = H> 1 (X, QYIDred) is the r-th Hodge filtration on H>"~'(X,,,7#Cx ). By [2, Prop. 2],
we further have

H2" ™ (Xan, 1Cx ) /F" + H? ™ (Xan, 1 Z(r) x) = Extarms (Z, B H(Xan, 21Z(r) x))-
For r =1 or dim X, JZ XD, is an extension of the Jacobian J5 by a finite product of copies of C*.
In the intermediate case, the canonical map
TXip,a 7 %

is not surjective in general, but J. is still a non compact complex Lie group, extension of a

X\Dre
complex torus by a product of copies of C* (see [8, Lemma 6]).

Remark 9.2. When D is not reduced, the relative intermediate Jacobian J%‘ I still has an interpretation
as an extension group, but this time in the category of enriched Hodge structure EH S defined by Bloch
and Srinivas [6].

9.1.4. We note that there is an exact sequence

(9.5) 0 Uxip = Txip = TR, = 0
where
UY\ = Ker (HQT 1()(ana Q;T“D) — HQT I(Xan’ Q)<(T|‘Dred))

The only thing to check is the surjectivity of 7, which is a consequence of the commutative diagram

HY (Ko, 0, )) —— H(Xan, 05 )

| |

° <r
H¢ (Xan’QX\DTed) —>H ( an:QX‘DMd

where the isomorphism comes from Lemma 6.1 and « is surjective by Lemma 9.1. Thus we may view
the map (9.3) as the Abel-Jacobi map with G,-part. An analogous construction has been made in [12]
and [6] for Chow groups for singular varieties.

9.2. Universality of Abel-Jacobi maps for zero-cycles with moduli. In this section we prove
a universal property of the Abel-Jacobi maps for zero-cycles with moduli (see Theorem 9.5). It is an
analogue of [12, Th.4.1] where a similar property is shown for Abel-Jacobi maps for zero-cycles on
singular varieties. We also note that it is a Hodge theoretic analogue of [37, Th.3.29] (cf. also [27]).
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9.2.1. Let the notation be as in §8.1 with d = dim(X). We consider the Abel-Jacobi map

(9.6) px|p  Ao(X|D) = J%|D’

where Ag(X|D) = CHY(X|D)hom is the degree-0 part of the Chow group CHy(X|D) of zero cycles
with modulus D. Recall (cf. (3.3))
(9.7) CHo(X|D) = Coker( P  G(C, D) - Zo(X)),

cecMN(X)
where C¥(X) is the set of the normalizations of integral closed curves on X, and for C € Y (X), C
is the smooth compactification of C' with the natural morphism v¢ : C — X, and G(C,~v£D) is the
subgroup of C(C)* defined as (3.1), and ¢ is induced by the divisor map on C and the pushforward
map of zero cycles via v¢.
9.2.2. By definition, we have

(9.8) J%lD = Coker (H** (X4, 1 Z(d) x) = H*4 1 (X o, Q§TD))-

d
We endow J7| IS

complex vector space H24~1 (X ,,,2<? ) by a discrete subgroup. By (9.5), we have an exact sequence

with the structure of a complex Lie group as a quotient of the finite-dimensional

X|D
d d T, d
0— U7|D — J7|D — JY\DM — 0,
where U%l P, 1s a finite-dimensional complex vector space. By (9.4) we see that J%l Do is a semi-abelian

variety, due to the fact that the non-zero Hodge numbers of
H** (X o, 1 Z(d) x)

are among {(—1,0),(0,-1),(=1,—-1)} (cf. [12, 3]).

Lemma 9.3. J<

X|D
of algebraic groups.

has a unique structure as a commutative algebraic group for which w is a morphism

Proof This follows from the fact noted in [11, (10.1.3.3)] that the isomorphism classes of analytic and
algebraic group extensions of an abelian variety by G, or G, coincide (see [12, Lem.3.1]).

Definition 9.4. Take a point 0 € X and define a map of sets
Lo X = Ag(X|D) ; x — the class of [z] — [o].
For a commutative algebraic group G, a homomorphism of abelian groups
p:A(X|D) = G
is called regular if po 1, : X — G is a morphism of algebraic varieties.

The following theorem implies that J% p 1s the universal regular quotient of Ag (X|D).

|
Theorem 9.5. Let the notation be as in 9.2.1.
(1) The map pxp : AO(X|D)_—> J%|D
(2) For a regular map p : Ag(X|D) — G, there is a unique morphism h, : J%

is surjective and regular.

D — G of algebraic

groups such that p = h, o PX|D-
Remark 9.6. (1) It is easy to see that the universality does not depend on the choice of the base
point 0 € X.
(2) By the same argument as [12, Lem.1.12], one can shows that the image of p o ¢, is contained

in the connected component of G.
(3) Suppose that dim(X) = 1. Then, by Lemma 9.7 below, J%‘D

X with modulus D. Thus PX|D is an isomorphism and Theorem 9.5 in this case follows from
[40, Ch.V Th.1].

is the generalized Jacobian of
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9.3. The proof of the universality theorem.

9.3.1. We recall some basic facts on structure of a complex Lie groups. Let G be a connected
commutative complex Lie group and 2(G) be the space of the invariant holomorphic 1-forms on G.
We have a natural isomorphism

oG G H(GT) : g — {w%/jw} (g€ G, we 2(G)),

where H; (G,Z) — 2(G)V is given by integration of 1-forms over topological cycles, e € G is the unit
and the integration is over a chosen path from e to z. Note that 2(G)Y is the identified with the space
Lie(G) of the invariant vector fields on G and 75" is given by the exponential map Lie(G) — G.

For a given morphism f : M — G of complex manifolds and a point o € M with e = f(0), we have
a formula

(9.9) ra(f (@) = {w - / f*w} (z € M, we 2(G)),
where f*: 2(G) — H°(M,Q3,) is the pullback along f.

Lemma 9.7. Put
2(X|D) = {w € H' (X 4n, (D)) |dw =0 € HO(Xan,Qg()}.

(1) There is a canonical isomorphism of complex Lie groups

XD J%lD ~ (X|D)Y /Image(H; (X 4n, Z)),

where Hy (X an,Z) — 2(X|D)V is given by integration of 1-forms over topological cycles.
(2) Let ogpp : X = J%‘D be the composite of px p and to. Then

0 (% p (@) = {w —>/ w} € 2(X|D)Y (z € X).
(3) The pullback of holomorphic 1-forms by “X|D induces an isomorphism

QL ) =5 2(X|D) € H (X, Q4).

* .
XD " X|D

Proof Recall the definition of the Jacobian (9.8). By the Poincaré duality we have a canonical
isomorphism
(910) H2d71(yamj!z(d)X) = Hl(Xana Z)
From the spectral sequence
— v )
g — {Hq(Xan,wa) if p<d

= H"+q(yan,Q§d )
0 otherwise

X|D

we get an isomorphism

1/~ = X - d X |
H?? 1(Xanyﬂ§7D) - COker(Hd(Xan’QdY\i)) — Hd(Xan;Qdy“;))'

Hence, by Serre duality, we have a natural isomorphism
2d—1 /37 <d \V ~ OV
B! (X, 051,)Y = 2(X|D),
where
§(7|D) = {w € HO(Yan,Qly(log D) ®o+ Ox(D") |dw=0¢€ HO(Xan,Q?X)}
and D' denotes the divisor D — D,..4. Lemma 9.7(1) follows then from (9.10) and the following claim.

(9.11) Q(X|D) = 2(X|D).
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To show (9.11), we may work locally at a point x € D. Choose a system of regular parameters
(m1,..., T t1 ..., ts) in Ox . such that m; are the local equations of the irreducible components D; of
D passing through z. Let n; be the multiplicity of D; in D. Then a local section w of Qly(D) at x is
written as

w = % with fZ Z a;dm; + Z bjdtj (ai,b]' € OXJ).
T 1<i<r 1<j<s
Put 7 =7 - - . If w € 2(X|D), we have
1 d
Ozdw:mi{—Zmﬂ /\6+d£:|7

7"'1 . 7":"’" 1§l§7, iy
which implies
dm
1<i<r

We compute
d’lTl d7ri

d’lTl
n= Z (nﬂriai — nimal) - P + Z nlbjﬂ'_l AN dt]‘

1<i<i<r 1<1,j<r

Thus (9.12) implies b; are divisible by m; for all j,1 and n;m;a; — n;ma; are divisible by m7; for all 4, 1.
This implies that b; and 7;a; are divisible by = for all ¢, j. Hence

1 dm; .
w= m( Z al il + Z b}dtj) with b;. =bj/m, a; = ma; /T € Ox»

T T 1<i<r 1<j<s

(2

so that w is a local section of Qly(log D)(D'") at . This proves (9.11) and the proof of Lemma 9.7(1)
is complete.

We now prove Lemma 9.7(2). Suppose first that dim X = 1, i.e. that X is a smooth complex
connected projective curve. In this case we have
(9-13) Z(1)Rp = #L1)x = Ox(-D),
where j: X = X \ D < X is the open immersion. The long exact sequence arising from (9.13) gives
an exact sequence

0— ‘%w — H5(X|D,Z(1)) = Z — 0,

where J%lD = H' (X an, Ox(=D))/H (X an, 7#Z(1) x) and we used the trace isomorphism

(9.14) H*(Xan, 1Z(1)x) = Z.

Let Zo(X) be the group of O-cycles on X. According to Theorem 8.5 (where one takes F' = 0 and
Y = X)), we have defined the fundamental class

(9.15) cp () € B | (Xan, Z(l)%D) for a € Zy(X)

as the unique element which maps to the pair (clj(a), clhz(a)) in

2, (Kan 51Z(1)) @ B, (K, 022 ) = B, (K, 12(1)) @ HY (Ko, @

%p)
X|D lex] o X|D/"

This gives us a homomorphism

clp : Zo(X) — HH(X|D, (1) = B (Ko Z(1)Z, )
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which maps « to the image of ¢lj,(e) under H, | (X|D,Z(1)) — H}(X|D,Z(1)), the forget support
map. By the definition (9.3) we have a commutative diagram

ClD

(9.16) Z0(X)dego — H3,(X|D, Z(1))

]

_ XD
CI’I1 (X|D)hom - J%\D

To compute clp we use an isomorphism

(9.17) exp : Z(l)%D = (’)%D[—l] in D"(X.an),

which is induced by the exponential sequence

(9.18) 0= HZ(1)x = Oxp — 0%, =0

in view of (9.13). The composite map

cl TN ex Y
Z()(X) =Ny s (XamZ(]-)%‘D) _P) Hl(Xan’O%|D)

is computed as follows: Let K%l IS be the subsheaf of the constant sheaf of rational functions on X
that are congruent to 1 modulo D. We have an isomorphism

divy : B (Xan, K%,/ OF; ) = Zo(X),

given by taking the divisors of rational functions on X. This gives us a map

divy!

p— 8 p—
(9.19) L:Z(X) = HO(Xan,IC%D/O%D) — Hl(Xan,(’)%D),
where 9 is the boundary map arising from the exact sequence
X X X X
(9.20) 1— 07|D — K7|D — }CY‘D/Ole — 1.

Lemma 9.8. We have expoclp = L.
Lemma 9.9. Consider the composite map
e: H'(X, le)v = [0 (X 4, Ox(=D)) =B H' (X 4, Ong).

where the first isomorphism is due to the Serre duality and the second map is induced by (9.18). Take
points x,0 € X and consider

Vo] = {w — /ww} € Q(X|D)Y /Hy (X un, 7).
Then we have €(7[,,21) = L([z] — [o0]) with [z] — [o] € Zo(X).

Note that in case dim(X) = 1, we have 2(X|D) = H°(X, Qlle) and also a commutative diagram

H' (Yana OY(_D)) L H° (y’ Qlle)V

| |

H (X any 12 (1) x) ——> Hi (Xan, Z)

where the lower isomorphism is due to Poincaré duality and the right vertical map is given by integra-
tion on topological 1-cycles. Hence Lemma 9.7(2) in case dim(X) = 1 follows from (9.16) and Lemmas
9.8 and 9.9.
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Proof of Lemma 9.9: Let v be a path in X from o to z. Let V = X \ v be the complement of 7 in
X. Let t, (resp. t, ) be a holomorphic function having a simple zero on x (resp. on o) defined on a
small neighborhood of z (resp. 0). Let U be an open neighborhood of ~, disjoint from D, such that
the function g = 5= log(i= =) is single valued on V' NU. Then the cocycle {V NU, i—:} € H! (Xan, (’))X(‘D)
represents the element L’([x] — [0]). By multiplying by a C*°-function f, that we can choose identically
0 on D and identically 1 on neighborhood of v containing U, we can consider a -closed form

a= %gflog (z—:)

of type (0,1), representing a lifting of the class of g in H'(Xan, O5(—D))/H'(Xan, 71Z(1)x) (we are
using the fact that one can compute the cohomology group H! (X Ox(=D)) by means of Dolbeaut
cohomology). This gives rise to an element in 2(X|D)Y /H;(Xan,Z)

Q(Y|D)9wn—>/_a/\w
X

/a/\w:/w
X o

for every form w € 2(X|D). For € > 0, let T'. denote a tubular neighborhood of v of radius €. Since
w is d-closed, we have

and it suffices to show that

1~ t 1 t
= —0fl (l) = ——d(fl (l)
aAw 2m§f og P Aw i (flog P w)
on X \ I'.. By Stokes theorem we get then
. te
/a/\w—hm aAw = lim —log( )
X e—0 I, e—0 AT, 27T’L

where we used the fact that f is 1 on I'. (for e sufficiently small). By cutting down the boundary 9T,
into pieces, one finally sees that

completing the proof of the Lemma.
Proof of Lemma 9.8: Take a € Zy(X). Note

divy'(a) € H),;(Xan, KX /O%

X|D X\D)

since the restriction of divy' () to HO(X —|af, KX XD JOX X ) vanishes. We have a commutative diagram
X exp
‘ |(Xan,ICX‘D/OX‘D)%H‘ |(XanaOY‘D) < ‘ |(Xan7Z( )X‘D)

| ] |

H (‘Xanalc>< /Ox\D) —>H (Xan:OX )<ﬂ (yanaz(l)2 )

X|D X|D X|D
Thus it suffices to show (cf. (9.15))
d(divy' (e)) = exp(clp(a)) € Hjy (Xan, O, p)-
For this we first note that the composite map
\ I(Xa“’Z( )X|D) = Hla\(Xa“’O;(\D) %Hlla\(ym’ﬂlfw)
coincides with the map induced by the map Z(I)X‘D Q;TD = Q§(|D[ 1] from Lemma 8.6. Hence

dlog(exp(clp(a)))) = clpp(a) € H, (Xan, OY\D) Hence the desired claim follows from the following.
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Claim 9.10. We have

(1) dlog: Hj, (Xan,Ole) Hi, I(Xan’QY|D) is injective.

(2) dlog(d(divy' (@) =l () € Y, (Xan, OF ).

To show (1), we consider a commutative diagram

0 —— Hjy | (Kan, Ox(=D)) = Hl,|(Xan, 0% ) —— HE,| (Xan, 22 (1))

| -

(Yana OY(—D)) d—> |1 ‘(Xan’QX|D) —— H‘a|( an:j!(CX)

0—=H,

where the horizontal sequences are exact arising from (9.18) and the exact sequence

0= jiCx = Ox(-D) % Qﬁ(‘D - 0.
The injectivity of the first map in the upper (resp. lower) sequence follows from the vanishing of
Hi | (Xan, 1Z(1)x) (vesp. H|,|(Xan, jiCx)) by semi-purity. Thus (1) follows from the injectivity of the
right vertical map due to the trace isomorphism (9.14).
To show (2) take a sufficiently small open U C X = X — |D| such that |a| C U and that there is
[ €T(U — |a|,0f) such that a = divy(f). We have a commutative diagram

dlog ~
B, (s K /O3 ) 2 B (K OF ) 5 HE (R, O )
), (U, K}/ 0F) — 22— HL (U, 0) — 5 H], (U, 9}))
) )
HO(U — |a], 05) == HO(U — |, 2})

where the vertical maps in the upper column are isomorphisms by excision, § is a boundary map in the
localization sequence associated to 7 : U — |a| < U, and ¢ is induced by the inclusion 7, Oé*\al — K.

By definition we have ¢(f) = divy'(a). Hence Claim 9.10(2) follows from the fact §(dlog f) = cl}, p(c),
which follows from (5.2). This completes the proof of Claim 9.10 and Lemma 9.7(2) for dim(X) = 1.

For dim X > 1, the assertion follows from the covariant functoriality of the cycle class maps (7.10)
and (8.11) for proper morphisms of pairs. Finally Lemma 9.7(3) follows from (2).

Lemma 9.11. Let p : Ao(X|D) — G be a reqular map with G connected and ¢, : X — G be
the composite of p and v, (see Definition 9.4). Then 2(G) — H°(X,,,Q%), the pullback map on
holomorphic 1-forms, induces

Yy 2(G) = 2(X|D).

The proof of this Lemma will be given later. In view of (9.9), Lemma 9.11 implies the following
corollary.

Corollary 9.12. Under the notation of Lemma 9.11, we have p = h,, ° XD where h,, : J%lD — G is
the morphism of algebraic groups defined by the commutative diagram

1p == Q(X|D)" /Image(H (Xan, )
h"l lkp
G — Q(G)/Hl (Ga'm Z)
where )\, is induced by ¢ in Lemma 9.11 and ¢, : Hi(Xon,Z) = Hi(Gan, Z).



44 FEDERICO BINDA AND SHUJI SAITO

We need some preliminaries for the proof of Lemma 9.11.

Lemma 9.13. Let p: Ao(X|D) — G be a regular map with G connected. Let C' be a smooth projective
curve and v : C — X be a morphism such that C = v~1(X) is not empty. Take o € C and write o
also for its image in X. Consider the composite map

Y:C 1 X 2 Ay(X|D) 5 G.
Then the image of ¥* : 2(G) — H°(C, QL) is contained in H°(C, Q%(W*D)).

Proof Put m = "D and let pgy,, : Ap(Cm) — J%
modulus m. We have a commutative diagram

Im be the Abel-Jacobi map for the curve C' with

C—— Ao(Clm)
Lv J/%
X 2> 4y(X|D) L—=¢
where the right vertical map is induced by 7. : Zo(C) = Zo(X) (see (9.7)). By the assumption that

p is regular, p o, : Ag(Cjm) — G is also regular. By Remark 9.6(3) we know that the generalized
Jacobian JL is universal, so that there exists a morphism h : JL — G of algebraic groups such

Clm Clm
that poy. =ho PClm: Hence 1 factors as
V0L G
Lo - PTm .
where ¢ is the composite C' =2 A(C|m) —3 L%Im' Hence 9* in the lemma factors as

2(G) 15 (L) S5 HO(C,0k),

Now the lemma follows from the fact (cf. [10, Ch.V Prop.5] and Lemma 9.7(3)) that

9" (2(7,,)) = H(C, Q(m)) C H(C,Qp).

Lemma 9.14. Let the notation be as in (9.7). The restriction map
6: H(X, Q%) /H'(X,0%(D)) » [ HY(C,08)/H(C,05(:D))
cecN(X)
18 injective.
Proof Let Z be an irreducible component of D. It suffices to show the map
~ 5% 4 ral * ral *
HO(X,Q%(D + 2)/H (X, QD)) =[] HC,Qu(&(D + 2))/H(C, Q5(v& D))
CeC(X)
is injective. Let w € H°(X, QL(D + Z)) such that f(w) = 0. We want to show w € H*(X,QL(D)).

Since Q2 (D + Z) /(D) is a locally free Oz-module, it suffices to show wjy € H(U, Q4(D)) for some
open subset U C X with U N Z # (). Choose an affine open U = Spec(A) satisfying the following
conditions:

(ML) Zy:=ZNU # P and UN Z' = for any component Z' # Z of D.

(#2) There exists a regular system of parameters m,t;...,t,. in A, with » = d — 1, such that
Zy = Spec(A/(m)) and

HO(U, Q%) = Adr & @D Adt;.

1<i<r
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Let n be the multiplicity of Z in D. We can write
1
wy = —— (adr + P bidt;) with a,b; € A.

- ,/TnJrl
1<i<r
Agsume, by contradiction, that a is not divisible by 7 in A. Then we can take a closed point © € Zyy
such that a € O% . Consider the ideal

I= (tl _tl(x)w--;tr —t,.(l')) C A>

where for a section f € A, f(x) € C denotes the residue class at the point z. By construction, there
exists a unique irreducible component W C U of Spec(A/I) passing through z. The condition (#2)
above implies then that dim W = 1 and that W is regular at z. Let C be the normalization of the
closure of W in X. Then 7 = 7 mod I is a local parameter of C' at z. By definition, the pullback of
w to C is written locally at z as

wie = #Edﬁ (@=amod I).

Now recall that, by assumption, we have wiE € HO(C, Qla(yéD)) On the other hand, @ € (’)g , since

S (’);((’w. This is a contradiction and so a must be divisible by .
We repeat the same argument: if b; is not divisible 7 in A, we can take a closed point = € Zy such
that by € O)XM. Considering this time the ideal

I'=(ty —ti(z) — 7, t2 — ta(2), ..., t, — t.(z)) C A,
we get in the same way a contradiction, proving that also b; must be divisible 7. Iterating the proof

for b; with i > 2, we finally have that the restriction w; belongs to HO(U, Qly(D)), completing the
proof.

Proof of Lemma 9.11: Since an invariant differential form on a commutative Lie group is closed,
it suffices to show the image of ¢} : 2(G) — H%(Xan, Q%) is contained in H*(Xan, Q5(D)). The
assertion follows then from Lemma 9.13 and Lemma 9.14.

We can finally proof the main Theorem of this section

Proof of Theorem 9.5: Theorem 9.5(2) follows from Corollary 9.12 and Remark 9.6(2). We are left to
show Theorem 9.5(1). Let ¢xp : X — J%lD be as Lemma 9.7(2). By loc.cit, it is analytic. One can
then show that it is a morphism of algebraic varieties by the same argument as in the proof of [12,
Th.4.1(i))].

It remains to show the surjectivity of PX|D- Let C € C{(X) and put m = 4% D. By Lemma 9.7 we

have a commutative diagram

— PT|m TC|m _

Ao(Clm) - T "~ 2(Clm)¥ /Image(H, (Can, )
— PX|D TX|D .

Ao(X|D) : T "~ Q(X|D)V /Image(H; (X on, )

where the right vertical map is induced by the pullback 7% : 2(X|D) — 2(C|m), and PCim 18 an
isomorphism by Remark 9.6(3). Noting that H°(X .y, QIY(D)) is of finite dimension, the argument of
the proof of Lemma 9.14 shows that there is a finite subset {C;};e; C CN(X) such that the pullback
map
2(X|D) - @ 2(Cile, D)
iel
is injective. From the above diagram, this implies the composite map

vl ~ PX|D
P 40(Tilye, D) — Ao(X|D) =5 T

iel
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is surjective and hence so is PX|D- This completes the proof.

[20]
21]

(22]
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