
ON PRO-CDH DESCENT ON DERIVED SCHEMES
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Abstract. We prove a ‘pro-cdh descent’ result for suitably connective localizing invariants
and the cotangent complex on arbitrary qcqs derived schemes. As an application, we deduce
a generalised Weibel vanishing for negative K-groups of non-Noetherian schemes.
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1. Introduction

The algebraic K-groups of a blowup BlZ(X) of a quasi-compact, quasi-separated (qcqs, for
short) scheme X in a regularly immersed center Z have been computed by Thomason [Tho93]
(see also [CHSW08, Prop. 1.5]). In particular, the blowup square

E BlZ(X)

Z X

gives rise to a cartesian square of algebraic K-theory spectra and hence to a long exact
sequence of algebraic K-groups. If the closed immersion Z ↪→ X is not regular, this will
fail in general. However, if X is Noetherian, and one takes infinitesimal information into
account, one still gets a cartesian square. More precisely, if Z(n) and E(n) denote the n-th
infinitesimal thickenings of Z in X and E in BlZ(X), respectively, the square of pro-spectra

K(X) {K(Z(n))}n

K(BlZ(X)) {K(E(n))}n
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is weakly cartesian and hence induces a long exact sequence of pro-abelian groups. Note
here that the pro-systems only depend on the underlying topological space of Z (and E)
as a closed subset of X (and BlZ(X), respectively) but not on the particular subscheme
structure. In fact, more generally any abstract blowup square of Noetherian schemes gives
rise to a weakly cartesian square of K-theory pro-spectra. In this form, this result, often
coined “pro-cdh descent”,1 is first proven in [KST18b], but there are important precursors
[KS02, Cor06, Kri10, GH06, GH11, Mor16a, Mor18]. A variant for Noetherian ANS stacks
has been considered in [BKRS22]. These pro-cdh descent results play a central role in the
resolution of Weibel’s K-dimension conjecture [KST18b] (and [BKRS22] for stacks) and the
development of a continuous K-theory of rigid spaces [Mor16b, KST18a, KST23].

Given the rising interest in non-Noetherian schemes, which appear naturally, for example,
when working over a perfectoid base ring such as OCp , it is an obvious question, whether, or
in which form, pro-cdh descent also holds in this general setting. The following example, a
variant of which was constructed by Dahlhausen and the third author [DT22] precisely for
that purpose and which was independently studied by the first two authors [Kel24, Footnote
2] with respect to the procdh topology, shows that pro-cdh descent as formulated above does
not hold for general abstract blowup squares of non-Noetherian schemes.

Example 1.1. Let R be a valuation ring of dimension at least 2. Let 0 ( p ( m be prime
ideals in R, and choose x ∈ m \ p and y ∈ p \ {0}. Then xn divides y for all n ≥ 1 and for
each n the square

Spec(R/(xn)) Spec(R/(y))

Spec(R/(xn)) Spec(R/(xy))

id

is an abstract blowup square. If the induced square of K-theory pro-spectra would be weakly
cartesian, the map K(R/(xy)) → K(R/(y)) would be an equivalence. However, as y2 = 0
in R/(xy), 1 + y is a unit and defines a non-trivial element in the kernel of K1(R/(xy)) →
K1(R/(y)).

A posteriori, this is not surprising: A key point in [KST18b] was to prove Thomason’s
blowup formula for derived blowups in quasi-smooth centers together with the fact that for
every closed subscheme of an affine Noetherian scheme there exists a quasi-smooth derived
closed subscheme with the same underlying classical scheme. The condition that all (de-
rived) rings and schemes appearing be Noetherian then allowed to pass from derived schemes
back to classical schemes. For instance, for a Noetherian commutative ring A and elements
f1, . . . , fr in A generating the ideal I ⊆ A, the pro-system of (Koszul type) derived quotients
{A//fn1 , . . . , fnr }n is equivalent to the pro-system of discrete rings {A/In}n. This suggested
that some variant of the above pro-cdh descent statement, where one takes “derived” infini-
tesimal thickenings everywhere, could still be true. This is precisely what we achieve in this
paper. Our main K-theoretic result is the following.

Theorem A. Let f : Y → X be a proper, locally almost finitely presented morphism of
qcqs derived schemes which is an isomorphism outside a closed subset Z ⊆ |X| whose open

1We remark that it would be more appropriate to call this “pro-cdh excision” since it is not precisely a
descent statement for some topology. However, together with Nisnevich excision, it does imply actual (Čech)
descent for the procdh topology of [KS24], see Theorem 6.1 there. For this reason, and to be in line with the
existing literature we stick to the term “pro-cdh descent.”
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complement is quasi-compact. Denote by X∧Z and Y ∧Z the formal completion of X (respectively
Y ) along Z (respectively f−1(Z)) viewed as ind-derived schemes. Then the square of pro-
spectra

K(X) K(X∧Z)

K(Y ) K(Y ∧Z )

is weakly cartesian.

Let us point out that this result is not specific to K-theory. It holds more generally for
every localising invariant which is k-connective in the sense of [LT19] for some integer k; see
Theorem 4.5 for the general statement. For instance, it also applies to THH, TC, and rational
negative cyclic homology.

Remark 1.2. One may ask whether the same statement also holds for spectral schemes. As
our proof makes essential use of the theory of derived blowups of derived schemes developed
by Khan and Rydh [KR18], we cannot treat this more general case with our methods.

We also prove the analogous result for the cotangent complex, see Theorem 5.4. By the
arguments of [EM23] one then obtains pro-cdh descent in the above form for motivic cohomol-
ogy (Corollary 5.5). We thank Matthew Morrow for suggesting this result for the cotangent
complex and indicating the application to motivic cohomology.

In [KST18b], pro-cdh descent of K-theory was used to derive Weibel’s conjecture on the
vanishing of negative K-groups of a Noetherian scheme X below −dim(X). It is an obvious
question what we can say about negative K-groups if we merely assume X to be qcqs; see
e.g. Morrow’s Oberwolfach talk [Mor23]. In this generality, one can at least prove a vanishing
result for Weibel’s homotopy K-theory KH(X). Let vdim(X) denote the valuative dimension
of a scheme X introduced by Jaffard [Jaf60] (see [EHIK20] or [KS24, §7.1] for accounts). It
coincides with the Krull dimension if X is Noetherian. Furthermore, write Lcdh for the cdh
sheafification functor on presheaves of spectra and K≥0 for the presheaf of connective algebraic
K-theory.

Theorem 1.3. Let X be a qcqs scheme of finite valuative dimension.

(1) KH−i(X) = 0 for all i > vdim(X).
(2) The natural maps LcdhK≥0 → LcdhK → KH are equivalences.

Though we are mainly interested in (1), we include (2) for the sake of completeness. For
schemes essentially of finite type over a field of characteristic 0, this was first proven in [Hae04].
For general Noetherian X, (1) was first proven in [KS17] and (2) in [KST18b]. The fact that
KH is a cdh sheaf is [Cis13]. In the general case, the theorem follows easily from recent
results on the cdh-topology [EHIK20] and the K-theory of valuation rings [KM21, KST21].
In fact, the proof given under Noetherian assumptions in [KM21] still works, and for the
reader’s convenience we reproduce this proof at the end of the paper. Alternatively, the proof
of [KS17] respectively [KST18b] works mutatis mutandis, using the fact that a blowup does
not increase the valuative dimension (this is not necessarily true for the Krull dimension).

The previous theorem suggests that for any qcqs scheme X, the negative K-groups vanish
below − vdim(X). In this direction, we prove the following.
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Theorem B (Theorem 6.1). Let X be a qcqs (derived) scheme. Assume that the underlying
topological space of the spectrum of every local ring of every irreducible component of X is
Noetherian. Then the following hold.

(1) K−i(X) = 0 for all i > vdim(X).
(2) For all i ≥ vdim(X) and any integer r ≥ 0, the pullback map K−i(X)→ K−i(ArX) is

an isomorphism. In other words, X is K− vdim(X)-regular.

Remarks 1.4. (1) The assumption is for instance satisfied for any qcqs derived scheme of
Krull dimension ≤ 1. It is also stable under passing to schemes essentially of finite
type over X. In particular, the theorem holds for all schemes essentially of finite type
over a valuation ring.

(2) For general qcqs Q-schemes, (1) was announced by Elmanto and Morrow [Mor23,
Thm. 4]. Moreover, they prove that the canonical map K−i(X) → KH−i(X) is
an isomorphism for i ≥ dim(X). Our result implies this only for i ≥ vdim(X).
Conversely, their isomorphism does not imply our assertion (2).

(3) We do not know if the valuative dimension is really needed in the vanishing bound. I.e.,
we don’t know an example of a schemeX with vdim(X) > dim(X) andK− vdim(X)(X) 6=
0.

Structure of the arguments and the paper. The proof of Theorems A and B follows the
outline of [KST18b], but requires substantially more input from derived geometry. The proof
of Theorem A is reduced to the two special cases of derived blowups and finite morphisms,
respectively. This reduction is achieved by a structural result about modifications of derived
schemes, Theorem 3.2, which we view as our main contribution here. In its proof, we need
several preliminary results from derived algebraic geometry which we discuss in Section 2.

The case of Theorem A for derived blowups could essentially be proved as in [KST18b]. We
here present a stronger result with a simplified proof due to Antieau ([Ant18]; we reproduce
his proof in Proposition 4.1). For the case of finite morphisms in Theorem A, compared to
[KST18b] we give a simple proof of a more general result (Proposition 4.2). This follows quite
directly from [LT19].

The proof of our generalised Weibel vanishing statement is contained in Section 6. As we
are working with non-Noetherian schemes, this needs some additional input.

Related work. Another approach to pro-cdh descent statements has been proposed by
Clausen and Scholze. It is based on condensed mathematics [Sch] and Efimov’s theory of
localizing invariants of large categories [Efi24].

In forthcoming work, the first two authors introduce a “procdh topology” on qcqs derived
schemes. It will follow from Theorem A (or 4.5) that every localizing invariant which is
k-connective for some integer k satisfies descent for that topology.

Acknowledgement. We thank Christian Dahlhausen for discussions about pro-cdh descent
in the non-Noetherian setting which led to the variant of Example 1.1 and which was one
of the starting points of this project. We are grateful to Ben Antieau for allowing us to
include his pro-excision result for derived blowups, which is stronger than the one obtained in
[KST18b]. We thank Matthew Morrow for bringing our attention to the cotangent complex
and further comments and Mauro Porta for related discussions.



ON PRO-CDH DESCENT ON DERIVED SCHEMES 5

2. Preliminaries on derived algebraic geometry

We freely use the language of derived algebraic geometry as developed by Toën–Vezzosi
[TV08, TV05], Lurie [Lur18] and others. The following subsections mainly serve to fix some
notation and recall some notions and facts that will be used later on. Readers familiar with
derived algebraic geometry may safely skip this section and only come back when needed.

2.1. Derived rings and schemes. We write CAlg∆ for the ∞-category of simplicial com-
mutative rings [Lur18, §25.1] and refer to its objects as derived rings. There is a forgetful
functor CAlg∆ → CAlgcn, where CAlgcn denotes the ∞-category of connective E∞-algebras
in spectra. This functor preserves small limits and colimits and is conservative.

A derived scheme is a pair X = (|X|,OX) consisting of a topological space |X| and a
sheaf OX of derived rings on |X| such that clX := (|X|, π0OX) is a classical scheme and the
higher homotopy sheaves πiOX are quasi-coherent π0OX -modules. We call clX the underlying
classical scheme or the classical truncation of X. Derived schemes form the objects of an
∞-category dSch, and similarly as above there is a forgetful functor from derived schemes to
spectral schemes. There is also a functor of points approach to derived schemes. In other
words, there is a fully faithful functor

dSch→ Fun(CAlg∆, Spc),

which coincides with the Yoneda embedding on affine derived schemes [Lur18, §1.6].
A map f : X → Y of derived schemes is called proper, a closed immersion, affine, or finite,

respectively, if the underlying map of classical schemes clf has the corresponding property. If
U ⊆ |X| is an open subset, then (U,OX |U ) is itself a derived scheme. Such a derived scheme
is called an open subscheme of X which we simply denote by U .

2.2. Quasi-coherent modules. If A is a derived ring, we write Mod(A) for the symmetric
monoidal ∞-category of A-modules (in spectra). For a derived scheme X, we denote by
QCoh(X) the category of quasi-coherent sheaves on X. These are stable ∞-categories with
canonical t-structures, and we denote their connective part by Mod(A)cn and QCoh(X)cn,
respectively. Moreover, they only depend on the underlying spectrum or spectral scheme,
respectively. If X = Spec(A) is affine, we have an equivalence QCoh(X) = Mod(A).

If Z ⊆ |X| is a closed subset, we denote by QCoh(X onZ) the full subcategory of QCoh(X)
spanned by those quasi-coherent sheaves which are supported on Z. If X is quasi-compact and
quasi-separated (qcqs, for short) and the open complement of Z is compact, then QCoh(X onZ)
is compactly generated and its compact objects coincide with the perfect ones, [Lur18,
Prop. 9.6.1.1], [CMNN, Prop. A.9]. Here a quasi-coherent sheaf on X is called perfect if
and only its restriction to each affine open subscheme U = Spec(A) ⊆ X belongs to the
smallest thick stable subcategory of QCoh(U) = Mod(A) containing A. We write Perf(X)
and Perf(X onZ) for the corresponding subcategories. The arguments used to prove this also
apply to the case of connective sheaves:

Lemma 2.1. Let X be a qcqs derived scheme, and let Z ⊆ |X| be a closed subset with
compact open complement. Then QCoh(X onZ)cn is compactly generated and the inclusion
QCoh(X onZ)cn ↪→ QCoh(X)cn preserves compact objects. An object of QCoh(X onZ)cn is
compact if and only if it is perfect (as an object of QCoh(X)).

Proof. The same argument as in the proof of [CMNN, Prop. A.9] proves the first two claims:
In case X is affine, these follow from [Lur18, Prop. 7.1.1.12(e)] and the fact that QCoh(X)cn
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is compactly generated by [Lur18, Prop. 9.6.1.2]. The reduction of the global case to the local
case is done by [Lur18, Ex. 10.3.0.2 (4), Prop. 10.3.0.3, Th. 10.3.2.1 (b)]. It then follows that
an object of QCoh(X onZ)cn is compact if and only if its image in QCoh(X)cn is compact.
The compact objects in the latter category coincide with the perfect, connective OX -modules
by [Lur18, Prop. 9.6.1.2.] again. �

2.3. Free algebras. If A is a derived ring, we denote the category of derived A-algebras by
CAlg∆

A . Its objects are derived rings B together with a map of derived rings A→ B. There is
an obvious forgetful functor CAlg∆

A → Mod(A)cn which admits a left adjoint, the free algebra
functor, LSym∗A : Mod(A)cn → CAlg∆

A . If M is a connective A-module, the underlying A-
module of LSym∗A(M) is the direct sum

⊕
n≥0 LSymn

A(M), where LSymn
A(M) is the n-th

derived symmetric power of M as studied for instance by Quillen [Lur18, Constr. 25.2.2.6],
whence the notation.

These constructions globalise: For a derived scheme X, write CAlg∆
OX for the ∞-category

of sheaves of derived rings on |X| equipped with a map from OX such that the underlying
sheaf of OX -modules is quasi-coherent. There is an adjunction

LSym∗OX : QCoh(X)cn � CAlg∆
OX : forget,

the forgetful functor is conservative and preserves sifted colimits. Consequently, LSym∗OX
sends compact objects to compact objects.

For A ∈ CAlg∆
OX one can form the relative spectrum Spec(A) which comes with an affine

morphism Spec(A)→ X.

2.4. Finiteness conditions. A map of derived rings A→ B is called locally of finite presen-
tation if B is a compact object of CAlg∆

A . It is called almost of finite presentation if B is an
almost compact object CAlg∆

A , i.e. each truncation τ≤nB is a compact object of τ≤nCAlg∆
A ;

see [Lur04, §3.1] and [Lur18, §4.1] for the analog notions for E∞-algebras. It turns out that
A → B is almost of finite presentation if and only if the underlying map of E∞-algebras is
almost of finite presentation; the analog for being locally of finite presentation is wrong.

These finiteness conditions are stable under base change: If A→ B is locally or almost of
finite presentation and A → A′ is an arbitrary map, then also A′ → B ⊗A A′ is locally or
almost of finite presentation, respectively [Lur17, Rem. 7.2.4.28]. They are also stable under
composition [Lur17, Rem. 7.2.4.29, Cor. 7.4.3.19].

If A is Noetherian, i.e. π0(A) is Noetherian in the classical sense and all higher homotopy
groups are finitely generated π0(A)-modules, then a derived A-algebra B is almost of finite
presentation if and only if B is Noetherian and π0(B) is a classically finitely generated π0(A)-
algebra [Lur04, Prop. 3.1.5] or [Lur17, Prop. 7.2.4.31].

A map f : Y → X of derived schemes is called locally of finite presentation or locally
almost of finite presentation (lafp, for short) if for all affine open subschemes U = Spec(A) ⊆
X and V = Spec(B) ⊆ Y with f(V ) ⊆ U the induced morphism A → B is locally of
finite presentation or almost of finite presentation, respectively. As in the affine case, these
notions are stable under base change and composition, and there is a characterization in the
Noetherian case.

For example, if F is a perfect, connective OX -module, i.e. a compact object of QCoh(X)cn,
then Spec(LSym∗OX (F)) is locally of finite presentation over X. Using this observation, we
prove the following lemma.
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Lemma 2.2. Let X be a qcqs derived scheme, and let U ⊆ X be a qc open subset with
complement Z. Let i : Y → X be closed immersion which is an isomorphism over U and
such that the underlying map of classical schemes clY → clX is finitely presented. Then there
exists a factorization Y → Y ′ → X of i such that

(1) the morphism Y → Y ′ is an isomorphism on underlying classical schemes,
(2) the morphism Y ′ → X is a closed immersion locally of finite presentation and an

isomorphism over U .

Proof. Let I = fib(OX → i∗OY ). As i is a closed immersion and an isomorphism over U ,
we have I ∈ QCoh(X onZ)cn. As the morphism of classical schemes clY → clX is classically
of finite presentation, it follows that the image J of π0(I) in π0(OX) is of finite type. By
Lemma 2.1, we can write I as a filtered colimit I = colimα Iα where each Iα ∈ Perf(X onZ)cn.
As π0(−) commutes with filtered colimits, we have colimα π0(Iα) = π0(I). As π0(I) → J
is surjective and J is of finite type, there exists an index α such that the induced map
π0(Iα) → J is surjective. By construction, we have the following commutative diagram in
QCoh(X)cn.

Iα 0

OX i∗OY

By adjunction, this induces a commutative diagram

LSym∗OX (Iα) OX

OX i∗OY

in CAlg∆
OX . We define A ∈ CAlg∆

OX to be the tensor product OX ⊗LSym∗OX
(Iα) OX . The

above diagram classifies a morphism A → i∗OY in CAlg∆
OX . We claim that it induces an

isomorphism on π0. Indeed, we compute2

π0(A) ∼= π0(OX)⊗♥π0(LSym∗OX
(Iα)) π0(OX)

∼= π0(OX)⊗♥Symπ0(OX )(π0(Iα)) π0(OX)

∼= π0(OX)/ im(π0(Iα)→ π0(OX))

= π0(OX)/J
∼= π0(i∗OY ).

We set Y ′ = Spec(A). By construction, we get the factorization Y → Y ′ → X of i. The
above computation shows that Y → Y ′ is an isomorphism on underlying classical schemes.
Moreover, as Iα is supported on Z, Y ′ → X is an isomorphism over U . Finally, as Iα is
perfect, it follows that Y ′ → X is locally of finite presentation, as desired. �

2here the ⊗♥ indicates the underived tensor product and Sym denotes the classical symmetric algebra
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2.5. Formal completion. Let X be a qcqs derived scheme and let Z ⊆ |X| be a closed
subset whose open complement |X| \ Z is quasi-compact. The formal completion X∧Z is an
ind-object of derived schemes with a map i : X∧Z → X. It is determined by the following
universal property: For any derived ring R, composition with i induces an equivalence of
MapInd(dSch)(Spec(R), X∧Z) with the union of components of MapdSch(Spec(R), X) consist-

ing of those morphisms Spec(R) → X that set-theoretically factor through Z; see [GR14,
Prop. 6.5.5] for the existence of X∧Z as an ind-derived scheme. More concretely, we can write
X∧Z as the ind-system

(1) X∧Z = {Z ′}Z′↪→X
of (a small cofinal subsystem of) all closed immersions of derived schemes Z ′ ↪→ X with
|Z ′| = Z.

If X = Spec(A) is affine, there exist finitely many elements f1, . . . , fr ∈ π0(A) whose zero
locus is Z. In this case, X∧Z can also be represented by

(2) X∧Z = {Spec(A//fα1 , . . . , f
α
r )}α≥1

where the symbol // indicates the derived quotient, i.e. the (derived) tensor productA⊗Z[t1,...,tr]

Z where the maps send ti to fαi and 0, respectively; see [Lur04, Prop. 6.1.1] or [Lur18,
Lemma 8.1.2.2].

It follows immediately from the universal property that the formation of the derived com-
pletion commutes with base change: If f : Y → X is a quasi-compact map, then Y ∧f−1(Z) '
X∧Z ×X Y . We therefore also write Y ∧Z instead of Y ∧f−1(Z).

If X is a Noetherian classical scheme, then the formal completion is itself classical, equal
to the classical formal completion. This follows for example from [Lur18, Lemma 17.3.5.7].

2.6. Ample line bundles. Ample line bundles on Noetherian derived schemes have been
studied by Annala [Ann22]. We need some of the results in the more general setting of qcqs
derived schemes. These are certainly well-known, the proofs are essentially the same as for
classical schemes.

Let X be a qcqs derived scheme. A line bundle L on X is called ample if for any point
x ∈ X there exists an n ≥ 1 and a global section s ∈ π0Γ(X,L⊗n) such that the non-vanishing
locus Xs of s is affine and contains x. If f : X → Y is a morphism of derived schemes, then
L is called f -ample if for every affine open subscheme U ⊆ Y the restriction of L to f−1(U)
is ample.

Let now L be any line bundle on X and s ∈ π0Γ(X,L) a global section. We view the latter
as a map s : OX → L. If F is any quasi-coherent sheaf on X, we get a diagram

(3) F ⊗s−−→ F ⊗L ⊗s−−→ F ⊗L⊗2 −−→ . . .

In the case of classical schemes, the following lemma is standard. For Noetherian derived
schemes, it is [Ann22, Lemma 2.6].

Lemma 2.3. In the above situation, there is a canonical equivalence

colim
n

Γ(X,F ⊗ L⊗n) ' Γ(Xs,F).

Proof. If we take sections over Xs in (3), then all maps become equivalences. Thus the
restriction maps induce a map

colim Γ(X, (3))→ colim Γ(Xs, (3)) ' Γ(Xs,F).
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We claim that this map is an equivalence. As X is qcqs, a standard induction reduces us
to the case where X = Spec(A) is affine and L is trivial. So we may assume X = Spec(A),
Γ(X,L) = A, and F corresponds to the A-module M = Γ(X,F). In this case, the colimit in
question identifies with M [s−1] which also identifies with Γ(Xs,F) as F is quasi-coherent. �

Exactly as in [Ann22, Lemma 2.11], this can be used to prove the following lemma.

Lemma 2.4. Let f : X → Y be a morphism of qcqs derived schemes, L a line bundle on X,
and (Ui)i∈I an open covering of Y . Write fi for the restricted morphism f−1(Ui)→ Ui. Then
the following are equivalent:

(1) L is f -ample;
(2) for every i ∈ I, the restriction L|f−1(Ui) of L is fi-ample. �

The existence of an ample line bundle implies the resolution property in the following form:

Lemma 2.5. Let X be a qcqs derived scheme which carries an ample line bundle, and let F
be a connective, quasi-coherent OX-module such that π0F is of finite type as a π0OX-module.
Then there exists a vector bundle, i.e. a locally free OX-module of finite rank, E on X together
with a map E � F which is surjective on π0.

Proof. Choose an ample line bundle L. Replacing L by an appropriate tensor power, we may
assume that there exist finitely many global sections si ∈ π0Γ(X,L), whose non-vanishing
loci Xsi form an affine covering of X. As each Xsi is affine and F is quasi-coherent, we
have isomorphisms π0Γ(Xsi ,F) = π0Γ(Xsi , π0F) and similarly for OX in place of F . The
assumption that π0F is a π0OX -module of finite type then implies that each π0Γ(Xsi ,F) is a
finitely generated π0Γ(Xsi ,OX)-module. Choose finitely many generators mij ∈ π0Γ(Xsi ,F).
By Lemma 2.3 there exists an integer N such that all the mij extend to global sections of

F ⊗ L⊗N . These give rise to a map E :=
⊕

ij L⊗(−N) → F which is surjective on π0 by
construction. �

2.7. Quasi-smooth closed immersions and derived blowups. Derived blowups were
first introduced in [KST18b] for affine schemes in order to prove pro-cdh descent of algebraic
K-theory on Noetherian schemes. They were then systematically studied and developed much
further by Khan, Rydh, and Hekking [KR18, Hek21].

Let X be a derived scheme, and let Z ↪→ X be a quasi-smooth closed immersion [KR18,
2.3.6], i.e., Zariski locally on X, Z ↪→ X is the derived pullback of the map {0} ↪→ ArZ
for some r and some morphism X → ArZ. Equivalently, Zariski locally on X, Z ↪→ X is
given by Spec(A//f1, . . . , fr) ↪→ Spec(A) for suitable elements fi ∈ π0(A). The number r is
called the virtual codimension of the closed immersion. Then one can form the derived blowup
p : dBlZ(X)→ X of X in Z (or with center Z) which is characterized by a universal property:
it classifies virtual Cartier divisors on derived X-schemes; see [KR18, §4.1] for details. The
construction of the derived blowup commutes with arbitrary base change. Locally, if Z is the
derived pullback of {0} ↪→ ArZ along a map X → ArZ, then dBlZ(X) is the derived pullback of
the classical blowup Bl{0}(ArZ)→ ArZ. By the discussion of finiteness conditions in 2.4, as ArZ
is Noetherian, this in particular implies that the morphism p : dBlZ(X)→ X is lafp. Clearly,
p is an isomorphism outside Z and proper.

It follows from the description of the underlying classical scheme of dBlZ(X) in [KR18,

Thm. 4.1.5(vii)] that there is always a closed immersion BlclZ(clX) ↪→ cldBlZ(X) and this is

an isomorphism over clU where U is the open complement of Z.
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The derived blowup dBlZ(X) carries a canonical line bundle O(1) (the dual of the ideal
sheaf defining the universal virtual Cartier divisor) and this line bundle is p-ample. Indeed,
by Lemma 2.4 we may work affine-locally on X and hence assume that p : dBlZ(X) → X is
the pullback of the classical blowup Bl{0}(AnZ)→ AnZ, and the line bundle O(1) is the pullback
of the classical canonical line bundle on Bl{0}(An) which is ample. As being relatively ample
is stable under base change (the proof in [Ann22, Prop. 2.12] works in general), it follows that
O(1) is p-ample.

In presence of an ample line bundle, every closed subset with quasi-compact complement
is the support of a quasi-smooth closed subscheme. More precisely, we have the following
lemma.

Lemma 2.6. Let X be a qcqs derived scheme which carries an ample line bundle. Let Z0 ↪→
clX be a classically finitely presented closed subscheme. Then there exists a quasi-smooth
closed subscheme Z ↪→ X whose classical truncation is Z0.

Proof. This is very similar to [BKRS22, Constr. A.2.2]. Let J = fib(OX → OZ0). As OZ0 is
a discrete, quasi-coherent sheaf and OX → OZ0 is surjective on π0, the sheaf J is connective,
quasi-coherent, and π0J is the ideal sheaf defining Z0 in clX. As Z0 ↪→ clX is classically
of finite presentation, π0J is a π0OX -module of finite type. Hence Lemma 2.5 implies the
existence of a vector bundle E on X and a map E → J which is surjective on π0. Let
V (E) be the geometric vector bundle V (E) := Spec(LSym∗OX (E)) over X. The composition
E → J → OX defines a section s : X → V (E), and we form the fibre product

Z X

X V (E).

i 0

s

Equivalently, we have

Z = Spec(OX ⊗LSym∗OX
(E) OX).

By construction, i : Z ↪→ X is quasi-smooth. The same computation as in the proof of
Lemma 2.2 shows that clZ = Z0, as desired. �

2.8. Pushouts of derived schemes. We also need certain pushouts of derived schemes.
These have been studied in [GR17]:

Lemma 2.7. Let i : Y1 → Y ′1 be a closed immersion of derived schemes which is an isomor-
phism on underlying topological spaces, and let f : Y1 → Y2 be an affine map in dSch. Then
the following hold.

(1) The pushout square

Y1 Y ′1

Y2 Y2 tY1 Y ′1

i

f f ′

i′

exists in dSch. Write Y ′2 := Y2 tY1 Y ′1. The map Y2 → Y ′2 is a closed immersion and
an isomorphism on underlying topological spaces. In particular, if Y2 is qcqs, then so
is Y ′2.
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(2) For an affine open subscheme U2 ⊆ Y2 with U1 := f−1(U2) ⊆ Y1, and the correspond-
ing open subschemes U ′i ⊆ Y ′i (i = 1, 2), the map

U2 tU1 U
′
1 → U ′2

is an isomorphism.
(3) If f is an open immersion, then so is f ′.
(4) Assume i exhibits Y1 as the underlying classical scheme of Y ′1. Then i′ : Y2 → Y ′2 is

an isomorphism on underlying classical schemes.

Proof. Except for (4), this is [GR17, Ch. 1, Cor. 1.3.5]. By (2), we may assume Yi = Spec(Ai)
(i = 1, 2) and Y ′1 = Spec(A′1) are affine and A1 = π0(A′1). By the construction of the pushout,
Y ′2 = Spec(A′2) where A′2 = A2×A1A

′
1 is the pullback in derived rings. We thus have an exact

sequence of homotopy groups

π1(A1)→ π0(A′2)→ π0(A2)⊕ π0(A′1)→ π0(A1),

which implies (4) as π1(A1) = 0 and π0(A′1) ∼= π0(A1). �

3. Modifications of derived schemes

In the following, X always denotes a qcqs derived scheme.

Definition 3.1. Let U ⊆ X be a quasi-compact open subscheme. A U -modification of X is
a proper morphism f : Y → X which is an isomorphism over U . A closed U -modification is
a U -modification which is a closed immersion.

Note that we do not assume that a U -modification induces a bijection of the set of generic
points. For example, if Z ↪→ X is a quasi-smooth closed immersion with |Z| ∩ |U | = ∅, then
the derived blowup BlZ(X) → X is a U -modification which is moreover lafp (see 2.7). In
fact, derived blowups and lafp closed U -modifications generate all lafp U -modifications in the
following sense:

Theorem 3.2. Assume that X carries an ample line bundle. Let U ⊆ X be a quasi-compact
open subscheme. Let f : Y → X be an lafp U -modification of X. Then there exists a commu-
tative diagram

Y ′ Y

X̃ X

h

g

f

p

where g is an lafp U -modification of Y , h is an lafp closed U -modification, and p is a derived
blowup with center set-theoretically contained in X \U . Moreover, Y ′ carries a (p ◦ h)-ample
line bundle.

Proof. As f : Y → X is proper and lafp, the morphism of classical schemes clf : clY → clX
is proper and classically locally of finite presentation, hence classically of finite presentation.
It is also an isomorphism over clU . By [RG71, Cor. 5.7.12] (or [Sta23, Tag 081T]), there
exists a clU -admissible blowup3 Y0 → clX such that the morphism Y0 → clX factors through
clY → clX. For the constructions to come, we need the open immersion clU → Y0 to be affine.
As this is not necessarily the case, we make a further blowup: As clU is quasi-compact, there

3i.e., a blowup in a finitely presented closed subscheme of clX which is set-theoretically contained in the
complement of clU ⊆ clX
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exists a finitely presented closed subscheme T0 ↪→ Y0 whose underlying topological space is
Y0\clU .4 Let Y1 → Y0 be the blowup of Y0 in T0. Then the canonical open immersion clU → Y1

is affine as its complement is a Cartier divisor. As the composite of two clU -admissible
blowups is a clU -admissible blowup [Sta23, Tag 080L], the composition Y1 → Y0 → clX is
a clU -admissible blowup, say Y1 = BlS0(clX) for some classically finitely presented closed
subscheme S0 ↪→ clX.

As X carries an ample line bundle, Lemma 2.6 implies the existence of a quasi-smooth
closed immersion of derived schemes S ↪→ X whose classical truncation is S0 ↪→ clX. Let

p : X̃ → X be the derived blowup of X in S. Then there is a canonical closed immersion

Y1 ↪→
cl
X̃, which is an isomorphism over clU . Note that Y1 need not be classically of finite

presentation over X. However, by [GD71, Cor. 6.9.15] we can write the ideal sheaf defining Y1

in
cl
X̃ as a filtered colimit of sub-ideal sheaves of finite type. Passing to relative spectra, we

deduce that the closed immersion Y1 ↪→
cl
X̃ can be written as a cofiltered limit of classically

finitely presented closed immersions Yα →
cl
X̃ all of which are isomorphisms over clU . As

clY → clX is classically of finite presentation, there exists an α such that the clX-morphism
Y1 → clY factors through a morphism Yα → clY , see [Gro66, Prop. 8.14.2]. Thus, so far, we
have constructed a commutative diagram of classical schemes finitely presented over clX

Yα
clY

cl
X̃ clX

in which all morphisms are isomorphisms over clU . The lower right corner is the classical

truncation of the cospan X̃
p−→ X

f←− Y .
As the composite of the affine open immersion clU → Y1 with the closed immersion Y1 ↪→

Yα, the open immersion clU → Yα is affine, too. By Lemma 2.7 we may hence form the pushout
Y2 = YαtclU U of derived schemes, for which we have clY 2 = Yα. As p and f are isomorphisms

over U , we get induced morphisms h2 : Y2 → X̃, g2 : Y2 → Y , and a commutative diagram

Y2 Y

X̃ X.

h2

g2

f

p

Note that h2 is a closed immersion, as this only depends on the underlying map of classical
schemes. Moreover, all morphisms in the above diagram are U -modifications. However, h2

and g2 need not be locally of almost finite presentation. In order to remedy this, we consider

the induced morphism k2 = (h2, g2) : Y2 → X̃ ×X Y . As clY → clX is separated, and as
h2 is a closed immersion, k2 is a closed immersion, too. It is also an isomorphism over U .

By construction, the map of underlying classical schemes clk2 : Yα = clY 2 → cl(X̃ ×X Y ) is
classically of finite presentation. We can hence apply Lemma 2.2 to obtain a factorization

of k2 through a closed derived subscheme k′ : Y ′ ↪→ X̃ ×X Y such that k′ is locally of finite

presentation and an isomorphism over U , and clY ′ ∼= clY 2. The composite h : Y ′ ↪→ X̃×XY →
4For example, one can use absolute Noetherian approximation [TT90, Thm. C.9, C.2] to see this.
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X̃ is then lafp and an isomorphism over U . As its underlying map of classical schemes

identifies with clh2 : clY 2 ↪→
cl
X̃, it is a closed immersion. Similarly, the composite g : Y ′ →

X̃×XY → Y is lafp and an isomorphism over U . This finishes the construction of the asserted
commutative diagram.

It remains to prove the claim about ample line bundles. As discussed in 2.7, the canonical

line bundle O(1) on the derived blowup X̃ is p-ample. As h is a closed immersion and thus
in particular affine, the pullback h∗O(1) is then (p ◦ h)-ample. �

4. Pro-cdh descent for connective localizing invariants

In this section, we prove our main results on pro-descent for localizing invariants. The
strategy is the same as in [KST18b]: We first prove the result for the special cases of derived
blowups and finite modifications and then use the geometric input from Theorem 3.2 to handle
the general case.

We begin by fixing some notation. Let k be a fixed commutative base ring (e.g. k = Z). If
E is an additive invariant of small k-linear ∞-categories with values in a stable presentable
∞-category C, e.g. the ∞-category of spectra, and X is a qcqs derived k-scheme, we write
E(X) for E(Perf(X)). Let Z ⊆ |X| be a closed subset with quasi-compact open complement.
Recall from 2.5 that the formal completion X∧Z is an ind-derived scheme. Applying E we thus
obtain a pro-object E(X∧Z). We write E(X,X∧Z) for the relative term fib(E(X) → E(X∧Z))
in Pro(C).

A version of the following Proposition was first proven in [KST18b]. There all schemes
were assumed to be classical Noetherian schemes, E was K-theory, and the result only gave a
weakly cartesian square of pro-spectra, see below for this notion. In a letter to Kerz, Antieau
[Ant18] described a simplification of the proof which at the same time gives a cartesian square.
We thank Ben Antieau for allowing us to include his argument in our paper.

Proposition 4.1. Let X, Z, and E be as above. Let X̃ → X be a derived blowup in some
quasi-smooth closed immersion S ↪→ X with S set-theoretically contained in Z. Then the
square

E(X) E(X∧Z)

E(X̃) E(X̃∧Z)

is cartesian in Pro(C).

Proof. Let r ≥ 1 be the virtual codimension of the derived blowup, and letD be its exceptional
divisor, i.e., the universal virtual Cartier divisor on the derived blowup, so that there is a
commutative diagram

D X̃

S X.

q

j

p

i

Recall from [Kha20, Thm. C] that Perf(X̃) has a semi-orthogonal decomposition as follows.

The functor p∗ : Perf(X) → Perf(X̃) is fully faithful, denote its essential image by B(0).

For 1 ≤ k ≤ r − 1, the composed functor j∗(q
∗(−) ⊗OD OD(−k)) : Perf(S) → Perf(X̃) is
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fully faithful, denote its essential image by B(−k). Then the sequence of full subcategories

(B(0),B(−1), . . . ,B(−r+1)) forms a semi-orthogonal decomposition of Perf(X̃). In particular,
there is a decomposition

(4) E(X̃) ' E(B(0))⊕
r−1⊕
k=1

E(B(−k)) ' E(X)⊕
r−1⊕
k=1

E(S).

Now let Z ′ ↪→ X be any closed derived subscheme with |Z ′| = Z. Note that all∞-categories
appearing above are in fact Perf(X)-linear, as are the functors between them. In particular, we

can base change the semi-orthogonal decomposition of Perf(X̃) along Perf(X)→ Perf(Z ′). As
there are canonical equivalences (as follows from [Lur18, Cor. 9.4.3.8] by passing to compact
objects; see also [BZFN10, Thm. 4.7] with slightly different hypotheses)

Perf(X̃)⊗Perf(X) Perf(Z ′) ' Perf(X̃ ×X Z ′),

Perf(S)⊗Perf(X) Perf(Z ′) ' Perf(S ×X Z ′),

we conclude that Perf(X̃ ×X Z ′) admits a semi-orthogonal decomposition

(B(0)Z′ ,B(−1)Z′ , . . . ,B(−r + 1)Z′)

with B(0)Z′ ' Perf(Z ′) and B(−k)Z′ ' Perf(S ×X Z ′) for 1 ≤ k ≤ r − 1. In particular,

(5) E(X̃ ×X Z ′) ' E(Z ′)⊕
r−1⊕
k=1

E(S ×X Z ′).

Recall from (1) that E(X∧Z) ∈ Pro(C) is given concretely as the pro-object {E(Z ′)}Z′↪→X,|Z′|=Z
where Z ′ runs through all closed derived subschemes of X with |Z ′| = Z. As formal com-

pletion is compatible with base change (see 2.5), we similarly have E(X̃∧Z) = {E(X̃ ×X
Z ′)}Z′↪→X,|Z′|=Z . Comparing the decompositions (4) and (5) it thus suffices to prove that the
functor induced by pullback

Perf(S)→ {Perf(S ×X Z ′)}Z′↪→X,|Z′|=Z

is an equivalence of pro-∞-categories. For this, it suffices to check that the map of ind-derived
schemes {S ×X Z ′}Z′↪→X,|Z′|=Z → S is an equivalence. But this is clear: By 2.5 again, the
source represents the Z-completion S∧Z of the target. As S is set-theoretically contained in
Z, we clearly have S∧Z = S. �

Let ` be an integer. Recall from [LT19, Def. 2.5] that a spectra valued localizing invariant
E is called `-connective if, for any n-connective map (n ≥ 1) of connective E1-ring spectra
A → B, the induced map E(A) → E(B) is (n + `)-connective. For example, K-theory,
topological cyclic homology TC and rational negative cyclic homology HN(− ⊗ Q/Q) are
1-connective, THH is 0-connective; see [LT19, Ex. 2.6].

Recall also that a map of pro-spectra {Cα}α → {Dα}α is called a weak equivalence if each
truncation {τ≤nCα}α → {τ≤nDα}α is an equivalence in Pro(Sp) and there are similar notions
of being weakly cartesian, weakly contractible, and so on; see [LT19, Def. 2.27].

Proposition 4.2. Let E be a localizing invariant of small k-linear ∞-categories that is `-
connective for some integer `. Let f : Y → X be a finite, lafp morphism of qcqs derived
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k-schemes which is an isomorphism outside the closed subset Z with |X| \ Z quasi-compact.
Then the commutative square of pro-spectra

(6)

E(X) E(X∧Z)

E(Y ) E(Y ∧Z ).

is weakly cartesian.

Proof. We first reduce to the case that X is affine: As X is qcqs, we can write X as the
colimit of a finite diagram of open affine subschemes Vi ↪→ X. As any localizing invariant
satisfies Zariski descent , we get E(X) = limiE(Vi) and E(Y ) = limiE(Y ×X Vi). If Z ′ ↪→ X
is a closed subscheme with |Z ′| = Z, we also have E(Z ′) = limiE(Vi ×X Z ′). As finite limits
in Pro(C) are computed level-wise and formal completion is compatible with base change, this
implies E(X∧Z) = limiE((Vi)

∧
Z) and similarly for E(Y ∧Z ). Replacing X by Vi and Z by Vi ∩Z

we thus reduce to the case that X is affine.
So assume now that X is affine, say X = Spec(A). As f is finite, also Y is affine, say

Y = Spec(B). Let φ : A → B be the corresponding morphism of derived rings and write
J = fib(A→ B). As A and B are connective, J is (−1)-connective. By [Lur18, Cor. 5.2.2.2]
the A-algebra B is almost perfect as an A-module, hence also J is almost perfect as an
A-module, i.e. τ≤nJ is a compact object in τ≤n+1 Mod(A)≥−1 = Mod(A)[−1,n] for every n.5

Choose f1, . . . , fr ∈ π0(A) whose zero set is Z. Recall from (2) that X∧Z is then represented
by the ind-derived scheme {Spec(A//fα1 , . . . , f

α
r )}α≥1. Consider the commutative diagram of

derived rings

(7)

A A//fα1 , . . . , f
α
r

B B//fα1 , . . . , f
α
r .

We claim that as pro-system in α, this square is weakly cartesian. The map of vertical fibres
(in A-modules) is the canonical map

J −→ J//fα1 , . . . , f
α
r ,

so we have to prove that this map is a weak equivalence as a pro-system in α. For any
i = 1, . . . , r, the fibre of the map of pro-systems J → {J//fαi }α is the pro-system

(8) { J fi←− J fi←− . . . }.
We show below that this system is weakly contractible. We then get weak equivalences

J
'−→ {J//fα1 }α and J

'−→ {J//fα2 }α
'−→ {J//fα1 , fα2 }α, and so on, so {(7)}α is indeed weakly

cartesian.
The assumption that f be an isomorphism outside Z implies that J [f−1

i ] = 0 for i =
1, . . . , r. Note that

J [f−1
i ] = colim(J

fi−→ J
fi−→ J

fi−→ . . . ).

5The (n + 1)-truncated objects in Mod(A)≥−1 are precisely the n-truncated, (−1)-connective objects in
Mod(A) with respect to the standard t-structure. Hence the usual truncation τ≤nJ coming from the t-structure
is the categorical (n+ 1)-truncation Mod(A)≥−1 → τ≤n+1 Mod(A)≥−1.
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As the standard t-structure on Mod(A) is compatible with filtered colimits, we have

0 = τ≤nJ [f−1
i ] = colim(τ≤nJ

fi−→ τ≤nJ
fi−→ τ≤nJ

fi−→ . . . )

As τ≤nJ is compact in Mod(A)[−1,n], we have

0 = π0(map(τ≤nJ, τ≤nJ [f−1
i ])) ∼= colimπ0(map(τ≤nJ, τ≤nJ))

which means that there is an N such that the power fNi acts nullhomotopically on τ≤nJ . It
follows that (8) is weakly contractible, and hence the pro-system of squares {(7)}α is indeed
weakly cartesian.

Note that for every α the canonical map B ⊗A (A//fα1 , . . . , f
α
r ) → B//fα1 , . . . , f

α
r is an

equivalence. Thus we may apply the variant of [LT19, Thm. 2.32] for `-connective localizing
invariants to deduce that {(7)}α induces a weakly cartesian square of E-theory pro-spectra.

�

Remark 4.3. In Proposition 4.2 one can actually relax the finiteness assumption if one adds
other hypotheses: As the proof shows, we only need that the pro-systems (8) are weakly
contractible for each i (using notation of the proof). This is satisfied if, on each truncation
τ≤nJ , some power of each fi acts null-homotopically.

If X and Y are n-truncated, then also J is n-truncated. It is then enough to assume that
J is perfect to order n in the sense of [Lur18, Def. 2.7.0.1] in order to conclude that the
pro-systems (8) are weakly contractible.

As a special case, if the map f in Proposition 4.2 is a closed immersion of classical qcqs
schemes which is classically finitely presented, then the conclusion of the proposition holds,
i.e. (6) is weakly cartesian.

Remark 4.4. There is a version of the above Proposition for stacks: Let X be a qcqs ANS
derived algebraic stack [BKRS22, A.1], Y → X a finite, locally almost finitely presented
morphism of derived algebraic stacks, and Z ↪→ X a closed immersion with quasi-compact
open complement. Let E be any connected localizing invariant in the sense of [BKRS22,
Def. C.1.3] (e.g. a 2-connective or a finitary 1-connective localizing [BKRS22, Rem. C.1.5]).
Then the square (6) of pro-spectra is weakly cartesian.

Indeed, the proof of [BKRS22, Thm. 4.2.1] works with the following changes: As in the
proof of Lemma 2.3.2 in op. cit., the proof of our Proposition 4.2 shows that the formally
completed square

(9)

Y ∧Z Y

X∧Z X

is weakly cocartesian. As in the proof of Theorem 2.4.1 of op. cit. this implies that the square
of derived (pro-)categories induced by (9) is weak pro-Milnor and satisfies weak pro-base
change in the sense of Definitions C.2.4 and C.2.6 there. Hence by Theorem C.3.1 there the
square (6) is weakly cartesian.

We now come to our main descent result, which in particular includes Theorem A.

Theorem 4.5. Let E be a localizing invariant of small k-linear ∞-categories which is `-
connective for some integer `. Let X be a qcqs derived k-scheme, U ⊆ X a quasi-compact
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open subscheme, and denote by Z the closed subset X \U . Let f : Y → X be a locally almost
finitely presented U -modification of X. Then the square of pro-spectra

(10)

E(X) E(X∧Z)

E(Y ) E(Y ∧Z )

is weakly cartesian.

If X and Y are Noetherian classical schemes, and f is classically of finite type, then f is
lafp (see 2.4). Moreover, the formal derived completions are equivalent to the classical formal
completions (see 2.5). We thus recover the classical pro-cdh descent statement as formulated
(for K-theory) for example in [KST18b, Thm. A].

Proof of Theorem 4.5. We first prove the theorem under the additional assumption that Y
carries an f -ample line bundle. Exactly as in the proof of Proposition 4.2 we reduce to the
case that X is affine. Then Y carries an ample line bundle.

By Theorem 3.2, we find an lafp U -modification g : Y ′ → Y such that f ◦ g factors as an

lafp, closed U -modification h : Y ′ ↪→ X̃ followed by a derived blowup p : X̃ → X with center
set-theoretically contained in Z. Both of these are isomorphisms over U . By Proposition 4.1
and Proposition 4.2, the maps of relative E-theory pro-spectra

E(X,X∧Z)→ E(X̃, X̃∧Z)→ E(Y ′, Y ′
∧
Z)

are weak equivalences. Hence also the composite

(11) E(X,X∧Z)→ E(Y, Y ∧Z )→ E(Y ′, Y ′
∧
Z)

is a weak equivalence. It follows that E(X,X∧Z) → E(Y, Y ∧Z ) is the inclusion of a direct
summand (in the weak sense). As Y carries an ample line bundle, we can repeat this argument
for the U -modification Y ′ → Y . So also the second map in (11) is the inclusion of a direct
summand. It now follows that both maps are in fact weak equivalences.

We now prove the theorem for general Y . As before, we may assume that X is affine. By
Theorem 3.2 again, there exists an lafp U -modification g : Y ′ → Y such that Y ′ carries an
ample line bundle relative to X. As X is affine, this line bundle is in fact ample and it is also
ample relative to Y . Hence, by Step 1, the maps of pro-spectra E(X,X∧Z)→ E(Y ′, Y ′∧Z) and

E(Y, Y ∧Z )→ E(Y ′, Y ′∧Z) both are weak equivalences. By 3-for-2, also E(X,X∧Z)→ E(Y, Y ∧Z )
is a weak equivalence, as desired. �

5. Pro-cdh descent for the cotangent complex and motivic cohomology

We fix some base ring k (e.g., k = Z). For X a qcqs derived k-scheme, we denote by
LX ∈ QCoh(X) its (algebraic) cotangent complex relative to k, and by LiX its i-th derived
exterior power (i ≥ 0). If X = Spec(A) is affine, we also write LiA for the A-module Γ(X,LiX)
corresponding to LiX . If Y → X is a morphism of qcqs derived k-schemes, we denote by
LY/X its relative cotangent complex and by LiY/X its derived exterior powers. Similarly for a

morphism of derived k-algebras A→ B.
If Z ⊆ |X| is a closed subset with quasi-compact open complement, we obtain a pro-

completion along Z functor

(−)∧Z : QCoh(X)→ Pro(QCoh(X))
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by pulling back to the ind-derived scheme X∧Z and pushing forward. The usual formal comple-
tion along Z is given by composing the above functor with lim: Pro(QCoh(X))→ QCoh(X).

Lemma 5.1. Let X = Spec(A) be an affine derived k-scheme, Z ⊆ |X| a closed subset with
quasi-compact open complement. Let M ∈ Mod(A onZ)aperf be an almost perfect A-module
supported on Z. Then the canonical map

M →M∧Z

is a weak equivalence in Pro(Mod(A)).

Proof. This was proven in the proof of Proposition 4.2 (replace J there by M). �

For a pro-system of derived rings {A(α)}α we denote by Pro(Mod)({A(α)}) the∞-category
of pro-systems of modules over the pro-ring {A(α)}α (see [LT19, §2.4] for a precise definition).

Lemma 5.2. In the situation of the previous lemma, choose f1, . . . , fr ∈ π0(A) defining Z,
and write A(α) = A//fα1 , . . . , f

α
r . Then the pro-system

{LA(α)/A}α ∈ Pro(Mod)({A(α)})

vanishes. In fact, all transition maps in this pro-system are null-homotopic.

Proof. This follows by base change from the universal case: Let R = k[T1, . . . , Tr] be the
polynomial ring over k, let R→ k be the map sending all Ti to 0, and let gα : R→ A be the
map sending Ti to fαi . Then A(α) = k ⊗R,gα A and consequently

LA(α)/A ' Lk/R ⊗R,gα A ' Lk/R ⊗k A(α).

Consider the pro-system {Lk/R}α ∈ Pro(Mod(k)) whose transition maps are induced by the

maps R→ R sending the Ti to T βi . Then

{LA(α)/A}α ' {Lk/R}α ⊗k {A(α)}α.

Hence it suffices to prove that all transition maps Lk/R → Lk/R are null-homotopic in Mod(k).
As R → k has a section, the transitivity triangle yields an equivalence Lk/R ' ΣLR/k ⊗R k.
As R is a polynomial ring, LR/k is discrete, given by the module of Kähler differentials

Ω1
R/k =

⊕
iRdTi. The map Ti 7→ T βi induces dTi 7→ βT β−1

i dTi in Ω1
R/k, and hence the zero

map in Ω1
R/k ⊗R k ' Σ−1Lk/R for β > 1. This proves our claim. �

Lemma 5.3. In the situation of Lemma 5.2, the canonical map

{LiA ⊗A A(α)}α → {LiA(α)}α

is an equivalence in Pro(Mod)({A(α)}).

Proof. The transitivity triangle for the maps A→ A(α) and Lemma 5.2 imply the case i = 1.
Passing to derived exterior powers over {A(α)} implies the general case. �

The following theorem was suggested by Matthew Morrow. It generalizes [Mor16a, Thm. 2.4]
(see also [EM23, Lemma 8.5]).
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Theorem 5.4. Let X be a qcqs derived k-scheme, U ⊆ X a quasi-compact open subscheme,
and denote by Z the closed subset X \U . Let f : Y → X be a locally almost finitely presented
U -modification of X. Then for every i ≥ 0, the square of pro-spectra (or pro-complexes)

(12)

Γ(X,LiX) Γ(X∧Z , L
i
X∧Z

)

Γ(Y,LiY ) Γ(Y ∧Z , L
i
Y ∧Z

)

is weakly cartesian.

Here, similarly as in the previous section, Γ(X∧Z , L
i
X∧Z

) denotes the pro-object {Γ(Z ′, LiZ′)}Z′↪→X
where Z ′ ↪→ X runs through all closed immersions of derived schemes with |Z ′| = Z.

Proof. By Zariski descent we may assume that X = Spec(A) is affine. Choose f1, . . . , fr ∈
π0(A) defining Z, and write A(α) = A//fα1 , . . . , f

α
r so that X∧Z = {Spec(A(α))}α≥1. Abusing

notation slightly, we also write f∗L
i
Y ∈ Mod(A) for the module Γ(X, f∗L

i
Y ) = Γ(Y,LiY )

corresponding to f∗L
i
Y ∈ QCoh(X).

By Lemma 5.3 we have

Γ(X∧Z , L
i
X∧Z

) ' LiA ⊗A {A(α)}.
Similarly, using affine coverings of Y and the usual induction we get

Γ(Y ∧Z , L
i
Y ∧Z

) ' (f∗L
i
Y )⊗A {A(α)}.

So we have to prove that

(13)

LiA LiA ⊗A {A(α)}

f∗L
i
Y (f∗L

i
Y )⊗A {A(α)}

is weakly cartesian. The map LiA → f∗L
i
Y factors as LiA → f∗f

∗LiA → f∗L
i
Y , so it suffices to

show that the two squares

(14)

LiA LiA ⊗A {A(α)}

f∗f
∗LiA (f∗f

∗LiA)⊗A {A(α)}

and

f∗f
∗LiA (f∗f

∗LiA)⊗A {A(α)}

f∗L
i
Y (f∗L

i
Y )⊗A {A(α)}

are weakly cartesian.
We first treat the left one. Using the projection formula, we rewrite that square as the

tensor product of LiA with the square

(15)

A {A(α)}

f∗OY f∗OY ⊗A {A(α)}.

As f is lafp, f∗OY is almost perfect [Lur18, Thm. 5.6.0.2]. On the other hand, by assump-
tion A → f∗OY is an isomorphism outside Z. Hence the left vertical fibre in (15) lies in
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Mod(A onZ)aperf . It now follows from Lemma 5.1 that the map on vertical fibres is a weak
equivalence, and hence that (15) is weakly cartesian. As LiA is connective, tensoring with
LiA preserves weak equivalences and weakly cartesian squares (see e.g. [LT19, Lemma 2.29]).
Thus the left-hand square in (14) is weakly cartesian.

We now consider the right square in (14). The transitivity triangle for f gives rise to a
finite filtration on LiY whose graded pieces are given by

f∗LkX ⊗OY L
i−k
Y/X , k = 0, . . . , i.

It follows that the left vertical cofibre in our square has a finite filtration whose graded pieces
are given by

f∗(f
∗LkX ⊗OY L

i−k
Y/X) ' LkX ⊗A f∗Li−kY/X , k = 0, . . . , i− 1.

As f is lafp, the relative cotangent complex LY/X is almost perfect [Lur04, Prop. 3.2.14]

and so are its wedge powers Li−kY/X . Again because f is lafp, the direct images f∗L
i−k
Y/X are

almost perfect [Lur18, Thm. 5.6.0.2]. As f is an isomorphism outside Z, the sheaf f∗L
i−k
Y/X

is supported on Z for k < i. So we may again apply Lemma 5.1 to deduce that the map
f∗L

i−k
Y/X → (f∗L

i−k
Y/X) ⊗A {A(α)}α is a weak equivalence for k = 0, . . . , i − 1 and hence so is

the map

LkX ⊗A f∗Li−kY/X → (LkX ⊗A f∗Li−kY/X)⊗A {A(α)}α.

Using the above filtration, it follows that the map on vertical fibres in the right-hand square
in (15) is a weak equivalence, and hence that square is also weakly cartesian. This finishes
the proof of the theorem. �

Combining Theorem 5.4 with the arguments of [EM23, §8.1] we obtain pro-cdh descent for
Elmanto–Morrow’s motivic cohomology denoted by Z(j)mot(−).

Corollary 5.5. Let F be a prime field. Let X be a qcqs derived F-scheme, U ⊆ X a quasi-
compact open subscheme, and denote by Z the closed subset X \U . Let f : Y → X be a locally
almost finitely presented U -modification of X. Then the square of pro-complexes

Z(j)mot(X) Z(j)mot(X∧Z)

Z(j)mot(Y ) Z(j)mot(Y ∧Z )

is weakly cartesian.

Proof. The proof of Elmanto and Morrow goes through verbatim once we replace their
Lemma 8.5 by the above Theorem 5.4. �

6. Generalised Weibel vanishing

In this section we prove our generalised Weibel vanishing result. As its formulation in-
volves the valuative dimension, we start by recalling the latter. The valuative dimension of a
commutative ring was introduced and studied by Jaffard [Jaf60]; we refer to [EHIK20, §2.3]
for an account. For an integral domain A, it is defined as

vdim(A) = sup{n | ∃A ⊆ V0 ( V1 ( · · · ( Vn ⊆ Frac(A), Vi valuation ring},
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and in general as vdim(A) = sup{vdim(A/p) | p ∈ Spec(A)}. For a classical scheme X, one
then sets

vdim(X) = sup{vdim(OX(U)) |U ⊆ X affine open}.
We always have dim(X) ≤ vdim(X) and equality holds if X is Noetherian [Jaf60, Ch. IV,
Thm. 1, Cor. 2 of Thm. 5]. Note that the valuative dimension only depends on the under-
lying reduced scheme of a scheme. In particular, it makes sense to talk about the valuative
dimension of a closed subset of a scheme, by equipping it with any closed subscheme structure.

Let now X be a derived scheme. The Krull dimension dim(X) of X is defined to be the
Krull dimension of the underlying topological space of X. The valuative dimension vdim(X)
is defined to be the valuative dimension of the underlying classical scheme clX.

The following theorem generalizes [KST18b, Thm. B], which treats the case of Noetherian
classical schemes.

Theorem 6.1. Let X be a qcqs derived scheme. Assume that the underlying topological space
of the spectrum of every local ring of every irreducible component of clX is Noetherian. Then
the following hold.

(1) K−i(X) = 0 for all i > vdim(X).
(2) For all i ≥ vdim(X) and any integer r ≥ 0, the pullback map K−i(X)→ K−i(ArX) is

an isomorphism.

Remarks 6.2. (1) We point out that Lemma 6.6 on the annihilation of negative K-theory
classes is the only ingredient in our proof of Theorem 6.1 where we need a Noetherian
assumption on the underlying topological space.

(2) Any qcqs scheme of Krull dimension ≤ 1 satisfies the assumptions of the theorem.
(3) The assumptions in the theorem are stable under maps essentially of finite type:

Assume that X satisfies the hypothesis of Theorem 6.1. If f : Y → X is a morphism
of qcqs derived schemes such that the morphism clf of underlying classical schemes is
essentially of finite type, then also Y satisfies the hypothesis of the theorem.

Indeed, we may assume that Y and X are classical. Let Y0 be the spectrum of a
local ring of an irreducible component of Y . Then the restriction of f to Y0 factors
through the spectrum X0 of a local ring of an irreducible component of X and the
induced morphism Y0 → X0 is essentially of finite type. Say X0 = Spec(A) and Y0 =
Spec(S−1B) where B is a finitely generated A-algebra and S ⊆ B is a multiplicative
subset. As the topological space |X0| is Noetherian by assumption, so is | Spec(B)|
by [OP68, Cor. 2.6]. As Spec(S−1B) is homeomorphic to a subspace of Spec(B), it is
Noetherian, too.

For proving Theorem 6.1, we follow the strategy of the proof of [KST18b, Thm. B] though
we need some additional inputs. The following lemma replaces [KS17, Lemma 4] and is
essentially due to Scheiderer [Sch92].

Lemma 6.3. Let X be a spectral space, and F a sheaf of abelian groups on X. Let r ≥ 0 be
an integer. Assume that Fy = 0 for all points y ∈ X with dim({y}) > r. Then Hn(X,F) = 0
for all integers n > r.

Proof. This is a direct consequence of results of Scheiderer [Sch92], see the proof of Proposi-
tion 4.7 there. Let sp•(X)→ X be the quasi-augmented simplicial topological space defined
in [Sch92, §2]: Its set of n-simplices is given by chains of specialisations

x0 � · · · � xn
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of points in X with coincidences between the xi allowed. The topology is induced by the
constructible topology on Xn+1. The quasi-augmentation is given by the canonical map
sp0(X) → X. Let γn : spn(X) → X be the map sending a chain as above to x0. By [Sch92,
Rem. 2.5 and Thm. 4.1], the cohomology groups H∗(X,F) are computed by the complex

Γ(sp0(X), γ∗0F)→ Γ(sp1(X), γ∗1F)→ Γ(sp2(X), γ∗2F)→ · · ·
which arises from the cosimplicial abelian group [n]→ Γ(spn(X), γ∗nF). Let

B0 → B1 → B2 → · · ·
be the associated normalized subcomplex, which also computes H∗(X,F). As in the proof of
[Sch92, Prop. 4.7], Bn coincides with the group of those sections a ∈ Γ(spn(X), γ∗nF) whose
supports consist only of non-degenerate simplices x ∈ spn(X). Hence, it suffices to show
(γ∗nF)x = 0 for such x if n > r. So let now x ∈ spn(X) be given by a chain of specialisations

x0 � · · · � xn with pairwise different xi’s. Then, we must have dim({x0}) ≥ n > r. Thus the
assumption implies (γ∗nF)x = Fx0 = 0 as wanted. This completes the proof of the lemma. �

Lemma 6.4. For a scheme X and a point x ∈ X with closure {x} in X,

vdim(OX,x) + vdim({x}) ≤ vdim(X).

In particular,

vdim(OX,x) + dim({x}) ≤ vdim(X).

Proof. By definition it suffices to prove the lemma in case X = Spec(A) with A integral. In
this case, the first assertion is [Jaf60, Ch. IV, Prop. 2], the second assertion follows from the
fact that dim(Y ) ≤ vdim(Y ) for every scheme Y . �

Lemma 6.5. Let X be a qcqs derived scheme of finite valuative dimension. Let F be a sheaf
of spectra on X for the Zariski topology. Assume that for every x ∈ X, the homotopy groups
of the stalks π−i(Fx) vanish for i > vdim(OX,x). Then π−i(F (X)) = 0 for all i > vdim(X).

Note that if F is K-theory, then π−i(Kx) ∼= K−i(OX,x) as K-theory commutes with filtered
colimits.

Proof. This is deduced from Lemma 6.3 by the same argument as the proof of [KS17, Prop. 3].
From [CM21, Thm. 3.12] we know that the homotopy dimension of XZar is bounded by the
Krull dimension dim(X), and in particular the ∞-topos of sheaves of spaces on XZar is
hypercomplete. Hence there is a convergent Zariski descent spectral sequence

Ep,q2 = Hp(X, F̃−q) =⇒ π−p−q(F (X)),

where F̃−q is the Zariski sheaf of abelian groups on X associated to the presheaf U 7→
π−q(F (U)), and Ep,∗2 = 0 unless 0 ≤ p ≤ dim(X). It suffices to show Ep,q2 = 0 for

p + q > vdim(X). We may assume p ≤ dim(X) so that q > 0. Note that F̃−q,x = π−q(Fx).

By Lemma 6.3 it now suffices to check that π−q(Fx) = 0 for all points x with dim({x}) >
vdim(X)− q. But for such points x we have

vdim(OX,x) ≤ vdim(X)− dim({x}) < q

by Lemma 6.4, and hence π−q(Fx) = 0 by assumption. �

In the following lemma, given a morphism f : Y → X, we abusively denote the induced
morphism ArY → ArX by the same letter.
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Lemma 6.6. Let X = Spec(A) be a classical integral affine scheme whose underlying topo-
logical space is Noetherian. Let i > 0, r ≥ 0, and let γ be an element in K−i(ArX). Then
there exists an irreducible derived scheme Y and a proper lafp morphism f : Y → X which is
an isomorphism over a non-empty open subset U ⊆ X with the property that f∗(γ) = 0 in
K−i(ArY ).

Proof. As K-theory commutes with filtered colimits of rings, there exists a subring A0 ⊆ A,
finitely generated as a Z-algebra, and an element γ0 ∈ K−i(ArX0

) with a∗(γ0) = γ. Here
X0 = Spec(A0) and a : X → X0 is the induced morphism.

By [KS17, Prop. 5] there exists a proper birational morphism of schemes f0 : Y0 → X0 such
that f∗0 (γ0) = 0 in K−i(ArY0). As X0 is Noetherian, f0 is lafp (see 2.4). Let f1 : Y1 → X be
the derived pullback of f0 along a : X → X0. Then f1 is proper, lafp, and an isomorphism
over a non-empty open subscheme U ⊆ X. From the commutative diagram

Y1 Y0

X X0

f1 f0

a

it is clear that f∗1 (γ) = 0 in K−i(ArY1).

As clf1 is of finite type, the topological space |Y1| is Noetherian [OP68, Cor. 2.6]. In
particular, the open complement of the closure of |U | in |Y1| is quasi-compact, and hence
there exists a classically finitely presented closed subscheme Y2 ↪→ clY 1 whose underlying
topological space |Y2| is the closure of |U | in |Y1| (see footnote 4 in the proof of Theorem 3.2 or
[KS24, Lemma 4.14(1)] for an alternative argument). Note that Y2 ↪→ Y1 is an isomorphism
over U . By Lemma 2.2 there exists a finitely presented closed subscheme Y ↪→ Y1 with
clY = Y2. By construction, Y is irreducible, the composite f : Y ↪→ Y1 → X is proper, lafp,
and an isomorphism over U , and f∗(γ) = 0, as desired. �

In the proof, we use the following well known facts about non-positive K-theory on affine
(derived) schemes.

Lemma 6.7. (1) Let A be a derived ring. Then the canonical map K(A)→ K(π0(A)) is
2-connective, i.e. it induces an isomorphism on πi for i ≤ 1 and a surjection on π2.

(2) Let A be a discrete commutative ring, and let I ⊆ A be a locally nilpotent ideal (i.e.,
every element of I is nilpotent). Then the map K(A)→ K(A/I) is 1-connective.

(3) Let A be a discrete, commutative ring, X = Spec(A), and let X = X1∪X2 be a closed
covering of X. Write X12 = X1 ∩X2. Then there is a long exact sequence

K1(X)→ K1(X1)⊕K1(X2)→ K1(X12)→ K0(X)→ . . .

Proof. (1) For connective K-theory, this is due to Waldhausen [Wal78, Prop. 1.1]. The
general case follows from this together with [BGT13, Thm. 9.53] (or [KST18b, Thm. 2.16]).
Alternatively, see [LT19, Lemma 2.4] for a slightly more general statement.

(2) Writing I as a filtered colimit of nilpotent ideals, we may assume that I itself is
nilpotent. Then K0(I) = 0 by [Wei13, Exc. II.2.5] and hence K1(A) → K1(A/I) is sur-
jective by Prop. III.2.3 there. Moreover, K0(A) → K0(A/I) is an isomorphism by [Wei13,
Lemma II.2.2]. As the ideal generated by I in any A-algebra is still nilpotent, it then follows
from the definition of negative K-groups [Wei13, Def. III.4.1] that Ki(A) → Ki(A/I) is an
isomorphism for all i ≤ 0.
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(3) Let I and J be the ideals defining X1 and X2, respectively. Hence X12 = Spec(A/I+J).
Let A′ = A/I ∩ J . Then A′ sits in a Milnor square

A′ A/I

A/J A/I + J.

Hence, by [Wei13, Thm. III.4.3], there is a long exact sequence

K1(A′)→ K1(A/I)⊕K1(A/J)→ K1(A/I + J)→ K0(A′)→ . . .

As X1∪X2 = X, the ideal I ∩J is contained in the nilradical of A and so is locally nilpotent.
Using (2), we may thus replace A′ by A in the above sequence to get a long exact sequence
of the statement. �

Proof of Theorem 6.1. We write N (r)K(X) for the cofiber of the canonical split inclusion

K(X) → K(ArX) so that we have K(ArX) ∼= K(X) ⊕ N (r)K(X). Then assertion (2) of the

theorem is equivalent to the statement that N (r)K−i(X) = 0 for all i ≥ vdim(X).
We prove the theorem by induction on d = vdim(X). By Lemma 6.5, applied to K and

ΣN (r)K respectively, we may assume that X is affine and local. In this case, K−i(ArX) ∼=
K−i(ArclXred) for all i ≥ 0 and all r ≥ 0 by Lemma 6.7 (1), (2). So we can assume that X is

a classical reduced affine local scheme.
If d = 0, then also the Krull dimension dim(X) is 0. As X is local and reduced, it is the

spectrum of a field. Hence K−i(X) = 0 and for all i > 0 and N (r)K(X) = 0 (by [Wei13,
Thm. II.7.8] and the definition of negative K-groups), as X is regular Noetherian.

Now assume that d is positive and the assertion is proven for all derived schemes satisfying
the assumptions of Theorem 6.1 that are of valuative dimension < d. We first prove the
result for X under the additional assumption that X is irreducible, and hence has Noetherian
topological space.

Let γ be an element in K−i(X) with i > vdim(X) or in N (r)K−i(X) with i ≥ vdim(X).
We have to show that γ = 0. Let f : Y → X be a proper, lafp morphism as provided by
Lemma 6.6. In particular f∗(γ) = 0. Let Z be the closed complement of U in X. By Theorem
4.5 we obtain an exact sequence of pro-abelian groups

K−i+1(Y ∧Z )→ K−i(X)→ K−i(Y )⊕K−i(X∧Z)

and similarly for N (r)K in place of K. Recall from (1) in 2.5 that K−i(X
∧
Z) is the pro-abelian

group {K−i(Z ′)}Z′ where Z ′ runs through all closed (derived) subschemes Z ′ ↪→ X with
|Z ′| = Z and similarly K−i+1(Y ∧Z ) = {K−i+1(Y ×X Z ′)}Z′ .

As Z does not contain the generic point of X, we have vdim(Z ′) < vdim(X) for every Z ′

as above by [EHIK20, Prop. 2.3.2(4)]. Hence K−i(X
∧
Z) vanishes by induction. By [EHIK20,

Prop. 2.3.2(6)] we have vdim(Y ) = vdim(X). As f−1(Z) does not contain the generic point
of Y , the same argument as before implies that vdim(Y ×X Z ′) < vdim(Y ) for all Z ′ as
above. Hence also K−i+1(Y ∧Z ) vanishes by induction. It follows that f∗ : K−i(X)→ K−i(Y )

is injective. Similarly, f∗ : N (r)K−i(X) → N (r)K−i(Y ) is injective. As f∗(γ) = 0, we must
have γ = 0, as desired.

We now consider the general case. So X is now a classical, reduced, affine, local scheme of
valuative dimension d > 0 and every irreducible component of X has Noetherian topological
space. For ease of notation, we only consider assertion (1) of the theorem. The proof of (2)
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is completely parallel. To reduce to the integral case treated above, we apply an argument
from [EHIK20, Thm. 2.4.15] as follows: Take an integer i > d = vdim(X) and an element
γ ∈ K−i(X). We wish to show that γ = 0. Let

E = {Z ↪→ X reduced, closed | γ|Z 6= 0 ∈ K−i(Z)}.

We need to prove that E = ∅. Note that every Z ∈ E is itself a reduced local affine scheme and
that E is ordered by inclusion. Let (Zλ)λ∈Λ be a descending chain in E and put Z = limλ∈Λ Zλ.
As K-theory commutes with filtered colimits of rings, we have K−i(Z) = colimλ∈ΛK−i(Zλ).
So if γ|Z = 0, then there exists a λ such that γ|Zλ = 0, which is a contradiction. Hence γ|Z 6= 0
so that Z ∈ E and Z is a lower bound of (Zλ)λ∈Λ. If E 6= ∅, we may apply Zorn’s lemma to
conclude that E has a minimal element Z. As K−i(Z) 6= 0, Z must be reducible. Let Zgen be
the set of the generic points of Z equipped with the induced topology from the underlying
topological space of Z. By [HJ65, Cor. 2.4] (see also [EHIK20, Lemma 2.4.14]), there exists
a decomposition Zgen = S1 t S2 with Si closed and non-empty for i = 1, 2. Letting Zi be the
closure of Si in Z with reduced scheme structure, we have Z = Z1 ∪ Z2 and Zi ∩ Zgen = Si
for i = 1, 2. In particular, Z1 ∩ Z2 ∩ Zgen = ∅ so that vdim(Z1 ∩ Z2) < d by [EHIK20,
Prop. 2.3.2(4)]. By excision in non-positive K-theory for closed coverings of affine schemes
(Lemma 6.7(3)), we have an exact sequence

K−i+1(Z1 ∩ Z2)→ K−i(Z)→ K−i(Z1)⊕K−i(Z2).

The group on the left-hand side vanishes by induction. As Z was minimal in E , we must have
γ|Zi = 0 for i = 1, 2. Thus we get γ|Z = 0, which is a contradiction. Thus we must have
E = ∅, which completes the proof of Theorem 6.1. �

We now give a proof of Theorem 1.3, reproduced from [KM21, Rem. 3.5]. We refer to
[EHIK20, §2.1] for a discussion of the cdh topology in this generality but note that the defi-
nition of the cdh topology used in [EHIK20] is the one used by Suslin and Voevodsky, [SV00,
Def. 5.7], and the proof that cdh Čech descent is equivalent to cdh excision is Voevodsky’s
proof from [Voe10], rewritten in modern language in [AHW17, Thm. 3.2.5]. Voevodsky’s proof
that cdh Čech descent is equivalent to cdh hyperdescent requires Noetherian hypotheses that
were lifted in [EHIK20].

Proof. We note that homotopy K-theory is a cdh sheaf. This was first proven by Cisinski
[Cis13] for Noetherian schemes of finite dimension, which implies the general statement by ab-
solute Noetherian approximation; alternatively it follows from the fact that KH is truncating,
see [LT19, Cor. A.5]. In particular, we get the maps

(16) LcdhK≥0 → LcdhK → KH

which we want to show are equivalences. By [EHIK20, Thm. 2.4.15, Cor. 2.3.3] the∞-topos of
cdh sheaves of spaces on finitely presented X-schemes is locally of finite homotopy dimension
and of homotopy dimension ≤ vdim(X). This implies that we get a convergent spectral
sequence

(17) Ep,q2 = Hp(Xcdh, π̃−qKH) =⇒ KH−p−q(X).

where π̃qKH denotes the cdh sheafified homotopy groups of KH. A conservative family of
points for the cdh topology is given by the spectra of henselian valuation rings [GL01], [GK15,
Thm. 2.3, Thm. 2.6], [EHIK20, Cor. 2.4.19]. As K-theory of valuation rings is connective
and agrees with its homotopy K-theory [KM21, Thm. 3.4], [KST21, Lem. 4.3], and K and
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KH commute with filtered colimits, the maps (16) are equivalences so we get part (2) of
Theorem 1.3. The vanishing

KH−i(X) = 0, for all i > vdim(X)

claimed in part (1) follows from the spectral sequence (17). �
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1990, pp. 247–435.
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