ETALE DUALITY FOR CONSTRUCTIBLE SHEAVES
ON ARITHMETIC SCHEMES

UWE JANNSEN, SHUIJI SAITO AND KANETOMO SATO

In this note we relate the following three topics for arithmetic schemes: a general dual-
ity for étale constructible torsion sheaves, a theory of étale homology, and the arithmetic
complexes of Gersten-Bloch-Ogus type defined by K. Kato [KCT].

In brief, there is an absolute duality using certain dualizing sheaves on these schemes,
we describe and characterize the dualizing sheaves to some extent, relate them to symbol
maps, define étale homology via the dualizing sheaves, and show that the niveau spectral
sequence for the latter, constructed by the method of Bloch and Ogus [BO], leads to the
complexes defined by Kato. Some of these relations may have been expected by experts,
and some have been used implicitly in the literature, although we do not know any explicit
reference for statements or proofs. Moreover, the main results are used in a crucial way
in a paper by two of us [JS]. So a major aim is to fill a gap in the literature, and a special
emphasis is on precise formulations, including the determination of signs. But the general
picture developed here may be of interest itself.

0.1. Gersten-Bloch-Ogus-Kato complexes. For a scheme X and a positive integer n
invertible on X, denote by Z/n(1) = u,, the étale sheaf on X of n-th roots of unity, and
let Z/n(r) = u&" be the r-fold Tate twist, defined for € Z. As usual, we let

Q,/Z,y(r) = lim > Z]p™(r) (for p invertible on X).

For a smooth variety X over a perfect field of positive characteristic p > 0 and integers
n > 0andr > 0, W,y ., denotes the étale subsheaf of the logarithmic part of the r-th
Hodge-Witt sheaf 11, Q% ([Ill] Chapter I 5.7), which are Z/p"-sheaves. It is also noted
v, x 1n the literature. We denote

T : T
Weo QX,log = hg n>1 W QX,log 5

where the transition maps W, %, — W, 11 Q% are given by factoring the multipli-
cation by p. Let X be a noetherian excellent scheme, and let y and = be points on X
such that = has codimension 1 in the closure {y} C X. Then for a prime number p, Kato
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([KCT] §1) defined ‘residue maps’

H™* (y, pgi ) — H' (2, 137) (if ch(z) # p)
O.1.1)  H'(y, W, %) — H' (2, W, Q) (if ch(y) = ch(x) = p)

HA(y, M?r-&-l) — Hi(z, W, (if ch(y) = 0 and ch(x) = p),

where the maps of second and third type have non-zero target only for s = 0, 1, and in case
i = 1 they are only defined if [x(z) : k(x)P] < p". For a point z € X, we wrote H*(x, —)
for étale cohomology of x = Spec(k(x)), so this is just the Galois cohomology of (z),

the residue field at x. The sheaf ;.7 . is the inverse image of W, €2}, ., where U is a

dense smooth open subscheme of {x}. These maps are defined via the Galois cohomology
of discrete valuation fields, symbol maps on Milnor K-theory, and the valuation (see §0.7
below). Therefore we will write 8;31 for these maps, and denote sheafified variants in the
same way. In particular, for ¢« = r = 0 the first and the last maps via Kummer theory
correspond to the map

x log)

K(y)* (k) )" — Z/p"
induced by the discrete valuations on the normalization of 0~ Wl
It has become customary to denote

Z/pn(r) = I/M’Lqu)(,log[_r]
for an (essentially) smooth scheme over a perfect field of characteristic p. With this nota-
tion, all maps above have the form
val i+1 n ) n
Opa + ™ (y, Z/p"(r + 1)) — H'(x,Z/p"(r)) .

Suppose now that X is of finite type over a noetherian regular excellent scheme of finite
and pure dimension. Denote by (X/S), the set of points x € X of ‘virtual dimension ¢
over S’ (see (2.5.6) below). When S is the spectrum of a field then (X/5), means X, the

set of points on X whose Zariski closure m has dimension ¢. In [KCT], Kato showed
that, for each triple of integers 7, j and n > 0, the sequence

— P HT@Z/me+jh)— @ HT (@, Z/nr+j - 1) —
2€(X/S)r 2€(X/S)r—1
— P H(x,Z/n()),
ze(X/S)o
whose maps have the components J), , forms a complex C;;7(X). It was a major moti-
vation for this paper to understand the maps 81‘/"‘}6 and these complexes in terms of étale
duality.

0.2. Etale duality. A very general duality for constructible étale torsion sheaves has
been established in [SGA4]. This is a relative duality, encoded in an adjunction
0.2.1) Homy (.7, Rf'9) = Homg(Rf.7,9)

for a separated morphism of finite type f : X — S and bounded complexes of étale tor-
sion sheaves .% (on X) and ¢4 (on S) (cf. [SGA4] XVIII 3.1.4.9). There is also a derived
version, replacing Hom by R.7Zom. To obtain an absolute duality for the cohomology
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groups of sheaves on X, in the spirit of Poincaré duality, one needs an additional duality
on the base scheme S. For arithmetic applications one is interested in schemes X of finite
type over Z. Therefore we may assume that S = Spec(oy,), where oy, is the ring of integers
in a number field k. Here one has the Artin-Verdier duality

(0.2.2) H™(S, 7) x Bxty ™(Z,Gy) — H(S,Gy) = Q/Z,

where H" denotes the ‘cohomology with compact support’ [KCT] which takes care of
the archimedean places of k. But the figuring ‘dualizing sheaf” Gy, is not torsion, so the
relative duality above, for a scheme X /.S, does not apply. Nevertheless, for such a higher-
dimensional arithmetic scheme X, various absolute duality theorems have been obtained
(cf. [Dn], [Sp], [Mo], [Mi2], [Ge]), although always under some restrictions. For example
n-torsion sheaves for n invertible on X have been considered, or X was assumed to be
smooth over S, or X was assumed to be a scheme over a finite field.

Our approach is to introduce a complex of torsion sheaves Q/Z(1)s on S (see Defini-
tion 1.1.1, (1.1.5)) so that one has a perfect duality as in (0.2.2) when replacing G, g by
Q/Z(1)’. Next we define the dualizing ‘sheaf” (it is really a complex of sheaves) on .S as

Is = Q/Z(1)s[2],
and on every separated S-scheme X of finite type as
@X = Rf!gs )

where f : X — S is the structural morphism. Then, by using (0.2.1), (0.2.2) and addi-
tional arguments, one gets a duality (cf. §1)

H™(X,Z) x Exty ™(F, Zx) — HYX, 2x) — Q/7Z.

This is more or less formal, but we make the following three points. First, the duality is
completely general: X and the constructible complex .# can be arbitrary. Hence X may
be highly singular, and we may consider p-torsion sheaves even if p is not invertible on
X (so in particular, if X is an algebraic scheme over [F)), and the approach connects this
‘p-case’ and the case ‘away from p’ in a nice way. Secondly, we have a lot of information
on the complex Zx. Thirdly, it is this information that we need for the applications we
have in mind, cf. [JS] 2.20, 2.21.

We describe the information on Zx separately for each p-primary part Zx -, where p
is a prime. Put

L]p> = Qp/Ly and  pyeo = U Hpr -
n>1

In the rest of this §0.2, suppose n € N U {oo}. First we describe Z/p"(1)%.

(i) Let S = Spec(o;) be as before. The complex Z/p™(1) is, by definition, the
mapping fiber of a morphism

(0.2.3) 05" = 08« Rjupiyn — 1.Z/p"[-1].

Here j : U = Spec(ogx[p™']) < S is the open immersion, i : Z = S\ U < S is
the closed immersion of the complement, Z/p™ is the constant sheaf on Z, and i, is the
sheaf of p"-th roots of unity on U (note that p is invertible on ). One has R?j, i,» = 0 for
q > 2 ([Se] I1.3.3 (¢)), and hence 5?1 is determined by the morphism R'j, fpn —> 1 L)
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it induces. By adjunction and localization, this is in turn completely described by the
induced morphisms

Oy kX /p" = H'(kz, Z/p" (1)) — H°(T,Z/p") = Z/p"

for each closed point x € Z = S\ U, where k; is the fraction field of the strict henseliza-
tion of Og, and 7 is its closed point. Then 63 is completely determined by defining 9, to
be the residue map (0.1.1), i.e., as ord, ® Z/p™, where ord, : k> — Z is the normalized
discrete valuation. (Compare also section 0.8.)

Moreover, we will show that the mapping fiber of 6% is unique up to unique isomor-
phism in the derived category of sheaves on Sg. In other words, Z/p™(1)’ is the unique
complex .# with Z |y = Z/p"(1), Ri'# = Z/p"[—2], and for which the canonical mor-
phism Rj..Z|y — i.Ri'.%[1] is the morphism 5 described above. See the remarks after
Definition 1.1.1 for details.

Now we list the properties of Px n = Rf'Ds,m = Rf'Z/p"(1)s[2] for f : X — S
separated and of finite type.
(ii) For pinvertible on X, Zx , is the usual dualizing sheaf for the ‘prime-to-p theory’

over ox[p!]. In particular, Zx o = Q,/Z,(d)[2d] if X is regular of pure dimension d.
Here we use the absolute purity due to Gabber [FG].

(ii1) For X of characteristic p, i.e., of finite type over the prime field IF,,, and of dimen-
sion d, Dx p is represented by the explicit complex

024) Ay : P, — P Wi — - — P Q/Z,
reXy r€EXg_1 xz€Xo

introduced by Moser [Mo] p. 128 (except that we put the rightmost term in degree zero,
while Moser rather considers the complex 17207 x = AMx[—d]). In fact, we generalize
Moser’s duality over finite fields

H(Zn(Xv ﬂ) X EXt?_l_m(ﬂ’%X[_d]) — Hg+1(X7 %X[_d]) - QP/ZP

in the following way: We extend the duality to arbitrary perfect ground fields % of char-
acteristic p, and show that ./ is in fact Rg'Q,/Z,, where g : X — Spec(F,) is the
structural morphism. Together with the well-known Tate duality of the Galois cohomol-
ogy of finite fields, this immediately gives back Moser’s theorem. By Gros and Suwa
[GrSu] 1.6, one has .Zx = Wi Q% ., [d], if X is regular.

(iv) Finally, for X flat over S = Spec(o ), consider the closed immersion
1Y =X @ F,——X
and the open immersion
J:U=X[p X
of the complement. There is a morphism
O = 033  Rj Do — 1 Dy poo1]

obtained from §% (cf. (i)) via Rf', where f : X — S denotes the structural map. The
source and target are studied in (i1) and (ii1) above, respectively, and it is clear from the
definitions that Px ,~ is a mapping fiber of 65**. In general, such a mapping fiber is
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not unique (for the lack of the unicity of isomorphisms), but one of our main results is
the following: Zx , is a unique mapping fiber of 65*% up to unique isomorphism (cf.
Theorem 4.11.1 and Remark 4.11.2) and moreover when U is smooth, 65" is uniquely
characterized by the following property: For every generic point y € Y and every generic
point £ € U which specializes to y, the induced map

Hd<§7 Qp/Zy(d)) — qu(y’ Qp/Zp(d - 1)) = H()(y, Wao S )

y,log

coincides with the residue map in (0.1.1), cf. Theorem 4.2.1 (3), and the same holds with
X replaced by any X' étale over X. When X is proper (but U arbitrary), we have a similar
uniqueness property.

There is another morphism

005 (Dxpe) : RjuDupre — 1. Dy (1]

the connecting morphism of localization theory for Zx ,~. We will also prove that this
morphism agrees with 653 up to a sign, cf. (4.9.2).

0.3. Etale homology. Let k be a perfect field, and let X be a separated scheme of finite
type over k. For integers n > 0, a and b, we define the étale homology of X by

Ho(X,Z/n(b)) = H™*(X, Rf'Z/n(~b)),

where f : X — Spec(k) is the structural morphism. Note that for ch(k) = p > 0, we
have Z/p"(—b) = WZQ,;lfog [b], which is the constant sheaf Z/p" for b = 0, zero for b < 0
(because k is perfect), and zero by definition for b > 0. Therefore we will either assume
that n is invertible in &, or that b = 0. These groups satisfy all properties of a (Borel-
Moore type) homology theory, cf. [BO] 1.2, [JS] 2.1 (a). Thus the method of Bloch and

Ogus provides a converging niveau spectral sequence ([BO] 3.7)
(0.3.1) EL(X.Z/n(b)) = @ Hewe(2,Z/n(b)) = Hort(X, Z/n(D)).
r€EXs

Here we put

Ho(w,Z/n(b)) = lim  Ho(V,Z/n(b))
Vc{z}

and the limit is taken over all non-empty open subvarieties V' C {z}. If V' is smooth of
pure dimension d over k, then one has a canonical purity isomorphism

H,(V,Z/n(b)) = H*=*(V,Z/n(d — b))

between homology and cohomology. This is one of the main results of the Artin-Verdier
duality [SGA4] in the case n is invertible in k, and follows from our results in §3 for the
other case. As a consequence, one has canonical isomorphisms

D Howile, Z/n(bv) = @ H* (2, Z/n(s — b)),

re€Xs r€Xs
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and the complex Ei’t of E'-terms of the spectral sequence can be identified with a com-
plex

o — P H 2, Z/n(s = b)) — P HT N2, Z/n(s —b— 1)) —

rz€Xs reEXs_1

(0.3.2) o — @ H (2, Z/n(-D)),

r€Xo
where we place the last term in degree zero. Another main result of this paper is that
this complex coincides with the Kato complex C;;%~*(X ) mentioned in §0.1, up to well-
defined signs. In §2 we also give an absolute variant of this result, for the case that X is a
regular excellent noetherian scheme and n is invertible on X.

Finally let X be a separated scheme of finite type over S = Spec(0y ), where K is a
number field, and let n, a and b be integers. If n is invertible on X, we define the étale
homology as

Ho(X,Z/n(b)) = H™*(X, Rf'Z/n(~b)),
where f : X — S[n~!] is the structural morphism. If n is not invertible on X, we just
consider the case b = —1 and define

Hy(X,Z/n(~1)) = H*(X, Rf'Z/n(1)§)

where f : X — S'is the structural morphism, and Z /n (1)’ has the p-primary components
Z/p™ (1) from (i) for n = [ p'». Again, in both cases this defines a homology theory
in the sense of [JS] 2.1 (a) (cf. [BO] 1.2), and one gets a niveau spectral sequence with
exactly the same numbering as in (0.3.1). By the purity isomorphisms explained above,
the complex of E'-terms is identified with a complex

= @B BTz -b-1) - @ BT, Z/n(s —b-2) -

z€(X/S)s 2€(X/S)s—1

(0.3.3) = @B H'(2,Z/n(-b-1)),
ze(X/S)o

cf. [JS]. The difference in numbering between (0.3.2) and (0.3.3) is explained by the
purity results for the inclusion of the fibers Xp < X over closed points P € S. A
third main result of this paper is that, also in this mixed characteristic case, this complex
coincides with a Kato complex, viz., C;"%>7°71(X). In fact, this gives an alternative
definition of the Kato complexes under consideration, which is very useful for working
with them.

0.4. Notations and conventions. For an abelian group M and a positive integer n, M /n
(resp. , M) denotes the cokernel (resp. the kernel) of the map M M.

In this paper, unless indicated otherwise, all cohomology groups of schemes are taken
for the étale topology.

For a scheme X, we will use the following notation. For a point x € X, k(x) denotes
its residue field, and T denotes Spec(x(x)), the spectrum of a separable closure of k(z).
For a point z € X and an étale sheaf .# on X, we define

H}(X,%):= H:(Spec(Ox ), F).
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For a non-negative integer ¢, we use the notation X7 and X, only in the following cases.
If X is pure-dimensional, then X“ denotes the set of points on X of codimension g. If
X 1is a scheme of finite type over a field, then X, denotes the set of points on X whose
closure in X has dimension q.

0.5. Connecting morphism of localization sequences. Let X be a scheme and let n be
a non-negative integer. Let 7 : Z — X be a closed immersion, and let j : U — X be the
open complement X \ Z. For an object # € D" (Xg,Z/n), we define the morphism

S04 (H) : Rjj* A — i Ri' (1] in D (Xe, Z/n)

as the connecting morphism associated with the semi-splitting short exact sequence of
complexes

0 — i d'[* — I* — j,j*I° — 0
([SGA4%] Catégories Dérivées 1.1.2.4), where I° is a resolution of . by injective Z/n-
sheaves on X. It induces the usual connecting morphisms

S04 (H) : RIjj* — i, R
or the connecting morphisms in the localization sequence for (X, Z,U):

05 (A ) HUUj* A ) — HET (X, ).

The morphism 6%, (%) is functorial in %", but does not commute with shift functors in
general. In fact, we have

(0.5.1) 507 (A )g) = (=1)7- 0954 (Aq)  for q € Z.

By the convention in [SGA4] XVII.1.1.1 (which we follow and is usually taken, but which
is opposite to the one in [SGA4%] Catégories Dérivées 1.1.2.1), the following triangle is
distinguished in D (Xg, Z/n):

35, ()

(0.5.2) LRI e o L R iR,

where the arrow i, (resp. j*) denotes the adjunction morphism 4, Ri' — id (resp. id —
Rj.5"). We generalize the above definition of connecting morphisms to the following
situation. Let x be a point on X and let ¢, be the natural map  — X. We define a
functor
Ri\, : DY (X&, Z/n) — DT (x4, Z/n)

as % Ri', where i denote the natural closed immersion m — X and ¢, denotes the
natural map x — m Note that Ri', is not right adjoint to 4, unless z is a closed point
on X. Now let y and = be points on X such that x has codimension 1 in the closure
T :={y} C X. PutY := Spec(0r,), and let i, (resp. iy, iy, ir, ty) be the natural
mapx — X (resp.y — X, Y — X, T — X, Y — T). Then we define a connecting
morphism

8 (A) : RiyuRiy X — Rig Ri, #'[1] in DY(Xg,Z/n)
as Riy.(0,°%(Riy¢)). Here we defined Riy, as 13 Rirp.

T
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0.6. Derived categories. We shall often use the following facts. Let <7 be an abelian
category, and let D* (.7 ) be its derived category with boundary condition * € {(), +, —, b}.
0.6.1. A sequence A % B LAY Al[l] in D*(.</) is a distinguished triangle if and only

it B 5 ¢ 2% apn) Y B[] is a distinguished triangle. (This is the axiom (TR2) for
triangulated categories, [SGA4%] Catégories Derivées 1.1.1.)

0.6.2. Given a diagram
A—4~B-L.(C A[1]

f l i h J/ £
A Yo A
in which the rows are distinguished triangles and the last square commutes, there is a mor-

phism g : B — B’ making the remaining squares commutative, i.e., giving a morphism
of distinguished triangles. Moreover one has

Lemma 0.6.3. The morphism g is unique in the following three cases:
(1) HomD(d)(B, A,) =0.
(2) HomD(d)(C, B/) =0.
(3) Homp()(C, A') = 0 and Homyp, (A, C") = 0.

Proof. There is an induced commutative diagram with exact rows and columns

Hom(C, A’) —— Hom(B, A’)

i |

Hom(C, B’) LN Hom(B, B') - Hom(A, B)

b;l b;l

Hom ™ *(A, C'") — Hom(C, C") LN Hom(B, C").

Suppose g; and g, both make the previous diagram commutative. Then the element g; —
g2 € Hom(B, B’) is mapped to zero in Hom(A, B’) and Hom(B, C’). Under conditions
(1) and (2), either the right hand b’ or a* is injective, so the claim follows. Under condition
(3), the left hand b, and the lower b* are both injective, and again we get gy — g = 0. [

0.6.4. Let ¢, r be integers, and let M be an object in D(%7) which is concentrated in
degrees < r. Let N be an object in D(.2) which is concentrated in degrees > 0. Then
we have

Hom,, (1(M), #°(N)) Gfg=r) -+ - (1)

0 (fg>r) - --- (2)
Here for s € Z, 5¢*(M) denotes the s-th cohomology object of M. These facts are well-
known and easily proved, using [BBD] 1.3.2 and [SGA4%] Catégories Dérivées 1.1.2.

Homp o) (M, N{—q]) = {
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0.7. Kato’s residue maps. We recall Kato’s definition of the residue maps in (0.1.1).
Consider a noetherian excellent scheme X and points =,y € X suchthat z liesin Z = {y}
and has codimension 1 in Z. The construction only depends on Z (with the reduced
subscheme structure). Put A := 0 ,, a local domain of dimension 1. We may further
replace Z with Spec(A).

(I) Regular case. First consider the case that A is regular, i.e., a discrete valuation

ring. Then K := k(y) = Frac(A) is a discrete valuation field and &k := x(x) is the residue
field of A, i.e., of the valuation. The residue map

0" = Oy + H (K, Z/p"(r + 1)) — H'(k, Z/p" (1))
is obtained by restricting to the henselization K™ (which corresponds to restricting to the
henselization A" = ﬁg}x) and defining a map for the discrete valuation field K™ which has
the same residue field k. Hence we may and will assume that K is henselian (i.e., A = A"

and K = K"). Let K*" be the maximal unramified extension of K (corresponding to the
strict henselization A" = 0 7).

(I.1) If p # ch(k), we first have a map
HY(K,Z/p"(1)) «= K /(K*)" — Z[p" = H*(k, Z/p"),
where the first arrow is the Kummer isomorphism, and the second is induced by the
valuation. This is 9" for (7,7) = (0,0). In general 9** is the composition
H*NK,Z/p"(r +1)) — H'(k, H"(K*™ Z/p"(r +1))) — H'(k,Z/p"(r)) .

Here the first map is an edge morphism from the Hochschild-Serre sequence for K*'/ K
(note that cd(K Sh) = 1), and the second map is induced by (the Tate twist of) the previ-
ously defined map.

(I.2) Now let p = ch(k) (and recall that K is henselian). In this case H'(k,Z/p"(r))
= 0 fori # r,r + 1. Assume that i = r. Then 9"¥ is defined by the commutativity of the
diagram

0.7.1) H (K, Z)p(r + 1) -2 H7 (k, Z)p" (1))
KM (K)/p" ———= KM (k) /p".

Here KM (F) is the r-th Milnor K-group of a field F', h" is the symbol map into Galois
cohomology, and O is the suitably normalized residue map for Milnor K-theory. By
definition,

h"({ai,...,a,}) = h'(a1)U---Uh'(a,) € H(F, Z/p"(r)),
where h' : F*/p* — HY(F,Z/p"(1)) is defined as follows: it is the Kummer isomor-
phism if p is invertible in F', and it is the isomorphism dlog : F* /p" — H°(F, W, Qp,,,)
if ch(F) = p. It is known that, under our assumptions, the symbol maps A° in (0.7.1) are
isomorphisms ([BK] §2, §5). Finally, if 7 is a prime element for K, then 0 is determined

by the property that
a({ﬂ—7a17' .- aaT}) = {a_h - 7(1_7«},
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for units aq, ..., a, € A*, where a@; denotes the residue class of a; in the residue field k.

(I.3) Now leti = r + 1. In this case we assume [k : k7] < p". Then the residue map
0" is defined as the composition (k denotes the separable closure of k)

HY(k, HH (K™, Z/p0 (r + 1)) 2 HY(k, HY (R, Z/p" (1))

() T? (%) Tz

HT‘*‘?(K, Z/p”(r + 1)) A . Hr-i—l(k’ Z/p”(?")) ‘

Here the isomorphisms () come from the Hochschild-Serre spectral sequences and the
fact that cd, (k) < 1 and

HITY(K™® Z/p"(r +1)) = 0= H/(k,Z/p"(r)) for j>r.
The map (*x) is induced by the map
HY K™ Z/p"(r + 1)) — H"(k,Z/p"(r))

defined in (I.2). In [KCT] the completion K is used instead of the henselization K " but
this gives the same, because the map

HI (K™, Z/p"(r 4+ 1)) — HI(K™, Z/p"(r + 1))

is an isomorphism ([KaKu] proof of Theorem 1). Indeed K /K*" is separable by excel-
lency of X.

(IT) General case. Now consider the case that A is not necessarily regular. In this case
let Z/ — Z = Spec(A) be the normalization. Note that Z' is finite over Z because the
latter is excellent. Then we define

Oy(a) = Cotutaryue)(Oyn(a)  (a € H (y, Z/p"(r +1)))
|z
where the sum is taken over all points 2’ € Z’ lying over «,
val . 1+1 n 1 n
ay,:p’ t H (y7Z/p (T + 1)) — H (J}/,Z/p (T))
is the residue map defined for the discrete valuation ring 0’z ./, and
(0.7.2) COry (o) /m() - H' (@', Z/p"(r)) — H'(z,Z/p"(r))

is the corestriction map in Galois cohomology. For p invertible in «(x) this last map is
well-known. For x(x) of characteristic p and ¢ = r, this corestriction map is defined as
the composition
(}Q_l M / n Nelse o n
) — K7 (s(2")/p" — K" (k(2))/p
2 HO(2, W, ).

z,log

(0.7.3) HO (2, W,

’,log

This implies that the diagram (0.7.1) is also commutative in this case. For the remaining
case © = r + 1 we may proceed as follows. It is easy to see that the map (0.7.3) is
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compatible with étale base-change in «(x). Therefore we get an induced corestriction or
trace map

(0.7.4) /et T W Q1 — WS

z,log *
Then we define the corestriction (0.7.2) for ch(k(x)) = pandi =r + 1 as

(0.7.5) try e 2 H (2, W, Q) — H (2, W, 2
the map induced by (0.7.4). If x(z) is finitely generated over a perfect field k, the mor-

phisms (0.7.3), (0.7.4) and (0.7.5) agree with the trace map in logarithmic Hodge-Witt
cohomology defined by Gros [Gr]. See the appendix for this and further compatibilities.

" log T log)

0.8. Sheafified residue maps. We further define residue maps for sheaves by sheafifing
the above residue maps of Galois cohomology groups. The setting remains as in §0.7.
Consider a noetherian excellent scheme X and points x,y € X such that x liesin Z = @
and has codimension 1 in Z. Let ¢, : v <— X and ¢, : y < X be the natural maps. We
would like to define homomorphisms of sheaves on X

Ry il — Rlig,pSh (if ch(z) # p)
(0.8.1) Gy (WU ) — e (WY, 1) (if ch(y) = ch(x) =
Ry ™ — i, (WL ) (if ch(y) = 0 and ch(z) = p).

To define the first map, it is enough to construct a morphism
Riy il ™ — Riguil[—1]  in D*(Xe, Z/p").

By adjunction, to define the maps in (0.8.1) it is enough to construct

i Rly*u®r+l N M?r[_l]
(0.8.2) Uiy (Wa 1) — W2,
i RT+1Zy*M§T+1 — W Q; Tog>
respectively, on z¢. Let A be the strict henselization of &7, at =. Let Z1,. .., Z, be the

distinct irreducible components of Spec(A). Let A; be the affine ring of Z;, which is a
strict henselian local domain of dimension 1 with residue field (). Let n; be the generic
point of Z;. Noting the fact cdp(m) = 1 in the first case (cf. [SGAS] 1.5) and looking at
stalks, it is enough to construct

@ H (n;, pr ™) — HO(T, i)

(0.8.3) @ H (s, W, Qr+L Yy —s HO(T, W, Q0"

y,log T log)
a

@ HrJrl(Th,lLL?TJrl) N HO(.I' W, Q"

T log)
i=1

where we have used the fact that cd,(;) = 1 if p # ch(k). We define these maps as the
sum of the maps in (0.1.1) for the Z;’s, which provide us with the maps in (0.8.1).
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1. DUALITY FOR ARITHMETIC SCHEMES

The aim of this section is to prove a general duality for constructible sheaves on sep-
arated schemes of finite type over Z. The main result of this section will be stated in
Theorem 1.1.2 below.

1.1. Dualizing complex and higher-dimensional duality. Let £ be a number field with
ring of integers o0, and let S = Spec(o;). Let p be a prime number, let n € NU {co} and
put U := Spec(ox[p']). Let j : U = Spec(og[p~']) — S be the open immersion, and
leti: Z =S~ U < S be the closed immersion of the complement. Let Z/p" be the
constant sheaf on 7, and let 1,» be the sheaf of p”-th roots of unity on U. We consider
the following diagram:

Ul-5<to7.
Definition 1.1.1. For each integer n > 1 define
Z)p" (1) = Cone(3%" : Rjuptyn — i Z/p"[~1))[~1] € D(Sa, Z/p").
the mapping fiber of the morphism 6% defined in (0.2.3).

Here D°(Sg, Z/p™) denotes the derived category of bounded complexes of étale sheaves
on .S whose sections are torsion of p-power order.

In general, mapping cone or fiber of a morphism in a derived category is only well-
defined up non-canonical isomorphism. However in our case it is well-defined up to a
unique isomorphism, because we can apply the criterion of Lemma 0.6.3 (1). Indeed the
complex Rj.u,n is concentrated in [0, 1], A[1] = i.Z/p"[—1] is concentrated in degree
1, and d5 induces a surjection R'j,ji,n — i.Z/p™ so that the mapping fiber B is con-
centrated in [0, 1] as well. Therefore Hompsz/n) (5B, A) = 0. (This argument should
replace the reasoning in [JS] p. 497, where the criterion is misstated.)

By the above, there is a canonical exact triangle

val

. n n . J . n
(1.1.2) B Z/p"[~2) = Z/p"(1)y == Rjupipn — i.2/p" 1],

which induces canonical isomorphisms

(1.1.3) t:7(Z/p"(1)s) =2 e and g :Z/p"[-2] = Ri'(Z/p"(1)%) .
We write
(1.1.4) Q,/Z,(1)s :=Z/p>=(1) € D"(S&,Z/p>),
and often also regard this complex as an object of D°(Sy). We further define
(1.1.5) Q/Z(1)s == P Q,/Z,(1) € D*(Sa),

p

where p runs through all rational prime numbers. We will explain a version of Artin-
Verdier duality using Q/Z(1)’s below.



ETALE DUALITY FOR CONSTRUCTIBLE SHEAVES 13

Now let X be a separated scheme of finite type over S, with structural morphism f :
X — S. We define

Dxp = RIQ/Zy(1)s[2] and  Zx =D Px, (cf.§0.2).
p
One of the main purposes of this paper is to analyze the object Zx , for each prime number
p. We will describe Zx,, over X [p~!] and X ®z F,. The restriction of Zx , to X[p~'] is
the usual étale dualizing complex. Zx ,, is obtained by glueing the étale dualizing complex
on X [p~'] and Moser’s complex (0.2.4) of X ®z F,. We prove that there is a unique way
to glue them when we impose some compatibilities concerning residue maps associated
to specializations from a point in X [p~!] to a point in X ® F, (see §4.11 below).

For ¢ € D*(Xg), we define the m-th étale cohomology group with compact support
as

HM'(X, Z) = H"(S, Rf.ZL),

where for an étale sheaf or a complex of étale sheaves .% on S, H'(S,.#) denotes the
m-th étale cohomology group with compact support (see e.g., [Mi2] I1.2, [KCT] §3 for
generalities). The main result of this section is the following duality (see also [Dn], [Sp]):

Theorem 1.1.2. (1) There is a canonical trace map
try : HX(X, Zx) — Q/Z.
(2) For £ € D(Xg) with constructible torsion cohomology sheaves, the pairing
H™(X,2) x Exty ™(Z, Ix) — HY (X, 9x) =5 Q/Z
induced by Yoneda pairing is a non-degenerate pairing of finite groups.

The proof of this theorem will cover the following subsections and will be completed
in subsection 1.5.

1.2. Artin-Verdier duality. We review the Artin-Verdier duality for number fields (cf.
[AV], [Ma], [Mi2] I1.2-3). Let Gy, := Gy, s be the sheaf on S¢ given by the multiplicative
group. By global class field theory, we have

Q/Z (m = 3)

(1.2.1) H'(S,Gn) & {0 (m =2o0rm > 4).

We normalize the isomorphism for m = 3 as follows. For a closed point y of S, let GG, be
the absolute Galois group of x(y), and let

try Q/z : H'(y,Q/Z) — Q/Z

be its trace map, i.e., the unique homomorphism that evaluates a continuous character
x € Homeou (G, Q/Z) = H'(y,Q/Z) at the arithmetic Frobenius substitution ¢, € G,,.
Then for any closed point 7, : y < .S of .S’ the composition

GyS;y G (1.2.1)

H'(y,Q/Z) —~ H*(y,Z) H3(B,Gy) ——> Q/Z




14 U. JANNSEN, S. SAITO AND K. SATO

coincides with tr, ,z, where Gys; ¢ denotes the Gysin map Z[-1] — Ri;@m defined

in [SGA4%] Cycle 2.1.1 (see also Proposition 1.4.1 (1) below), and the map ¢ is the con-
necting homomorphism associated with the short exact sequence

0—72Z—Q—Q/Z—0.

The Artin-Verdier duality shows that for an integer m and a constructible sheaf .% on S,
the pairing
(122)  HP(S,F) x Exty™(F,Cn) —> H(S,Gn) “=> Q/Z

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

1.3. Artin-Verdier duality revisited. We formulate a version of Artin-Verdier duality
replacing Gy, by a complex of torsion sheaves. Let n be a positive integer, let p be a
prime, and let 7" be any scheme. For any étale sheaf ¢ on T let

4, = Homp(Z/n,9) = Ker(9 - 9)

be the subsheaf of sections annihilated by n, let ¢, = @nzlgpn be the subsheaf of
sections annihilated by a power of p (also called the p-primary torsion subsheaf of ¥),
and let %, = liglnzl 9, = @p %, be the torsion subsheaf of ¢.

Denote by Sh(7y), Sh(Ty, Z/n), Sh(Ty, p™) and Sh(Ty, tors) the categories of étale
sheaves, étale Z /n-sheaves, étale p-primary torsion sheaves and étale torsion sheaves on
T, respectively. The exact inclusion functors

(1.3.1) Sh(Ty,Z/n) — Sh(Ty), Sh(Ty,p™)— Sh(Ty), Sh(Ty,tors) — Sh(Ty)
have the left exact right adjoints
(1.3.2) G—9, ., Y9~ , 9= Yo,

respectively, and these functors derive to triangulated functors & — R%Y,,, RY 00, R ors
(1.3.3)

of the corresponding derived categories. The functors (1.3.2) preserve injectives, because
their left adjoints (1.3.1) are exact. Hence we have

(1.3.4) RAomgyz (e, 7,) = R omg(e,?)

as bifunctors from D~ (Sg, Z/n)® x D¥(Sg) to D (Se, Z/n) by [SGA41] Catégories
Dérivées 11.1.2.3 (3). The analogous result holds for the functors 7, and 7. In par-
ticular (taking zero degree sections), the functors (1.3.3) are right adjoint to the natural
functors 4,, ¢y, iors in the opposite direction which are induced by the functors (1.3.1).

For ¢ in D*(Ty), the objects RY,,, RY,~ and RY, can also be regarded in D (T)
(Vi %y, ipoo, and ¢y, Which are omitted in the following), and the adjunctions gives canon-
ical morphisms R%Y,, 5% in Dt (T%) and canonical factorizations for them, for positive
integers n | n’ and primes p,

RY, — RY, — R%s — RY and RY» — RY — R%os — 9.
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These induce isomorphisms
Rgn :> R<Rgtors>n :> Rgn and Rgpn ; R(Rgpoo )pn :> Rgpn .

The first claim holds by the following observation. If ¢ — [- is an injective resolution,
then one has an exact sequence 0 — I3 — I° — I* — 0 in which the components of
I* are uniquely divisible and hence acyclic for the functor 4 +— ¢,,. This gives an exact
sequence 0 — (12 )n — I3 — f,; = 0 and hence the result. The second claim follows in

a similar way. Note however, that R(R%Y,, ), does not in general agree with RY,,.

Corollary 1.3.1. Assume that T is noetherian. For £ € D~ (Ty) with constructible tor-
sion cohomology sheaves and 9 in D" (Ty,), the morphism %, — ¢ induces a functorial
isomorphism

R#omp (L, % os) = Romr(L,9)

Proof. We may assume that . is a constructible torsion sheaf, by a standard argument
using spectral sequences. Then by the constructibility we may further assume that .Z" is
annihilated by some positive integer n, and then the claim follows from (1.3.4). 0

Lemma 1.3.2. Let & be an object in DV (Ty).
(1) For any positive integer n there is a canonical distinguished triangle

8
xn 0y

G ——9 9 Z,[1].
(2) If T is quasi-compact, then one has isomorphisms

HY(T, %) 2 it o H(T,Gn)  and  H'(T, Gors) = liny o1 HY(T, %) -

Proof. The exact sequence of sheaves 0 — Z —» Z — Z/n — 0 induces a canonical
distinguished triangle

tr
Xn 6Z

(1.3.5) Z /Ay )

Z/].

Claim (1) folllows from applying the exact functor R#om(—,%) to this triangle. Alter-
natively, if ¢ is represented by a bounded below complex I with injective components,
then ¢, is represented by the complex I,,, and the distinguished triangle in (1) is repre-
sented by the exact sequence of complexes

xXn

0 I, ——~1 1 0.

In these terms, %, is represented by the complex I,,, and the second claim in (2) follows
from the fact that / = %ﬂ n>11,, and that the cohomology commutes with filtered direct
limits for a quasi-compact scheme 7'. The proof for the first claim in (2) is analogous. [

Applying these results to the sheaf G,, we get the following variant of Artin-Verdier
duality.

Corollary 1.3.3. (1) There is a canonical trace isomorphism
trs : H2(S, R(Gp)iors) == Q/7Z.
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(2) For £ € D"(Sg) with constructible torsion cohomology sheaves, the pairing
H'(S,2) % Bxt3™ (2, R(Gu)iow)) — HX(S, R(Cun)ors) > Q/Z

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

Proof. By Lemma 1.3.2 (1), we have a long exact sequence

oo — H(S, R(Gm)n) — HI(S,Gn) = H'(S, G)
— H"(S, R(Gyp)p) — -+ -
By (1.2.1) and this exact sequence, we obtain H* (S, R(Gy,),) = 0 for m > 4 and a trace
isomorphism
trs, : H2(S, R(Gy)n) == Z/n.

We get the trace isomorphism in (1) by passing to the limit on n > 1. In fact, 1.3.2 (2)
easily extends to the cohomology with compact support H:(S, —).
The claim (2) follows from the non-degeneracy of (1.2.2) and Proposition 1.3.1. ]

1.4. Kummer theory. We establish canonical isomorphisms
R(Gp)pr = Z/p" (1) (neN or n=o00)
where we let Z/p> (1) = Q,/Z,(1)’, by definition.
Proposition 1.4.1. Let p be a prime number and let n be a positive integer or co. Let i

be the closed immersion Y := S xz F, — S, and let j be the open immersion of the
complement U := S[p~'| < S. Finally let R(Gy,)» be as above. Then:

(1) There is a canonical isomorphism Py : pn —= 7*R(Gp)pn on Ug.
(2) For any closed subscheme iy : Z — S of codimension 1 there are canonical
Gysin isomorphisms on Zg

Gys,, g, : Z|—-1] = Ri,Gyn and Gys,; . : Z/p"[-2] == RiyR(Gn)p -
(3) There is a unique isomorphism (3 : Z/p"(1)s == R(Gy)n completing the fol-

lowing diagram to an isomorphism of distinguished triangles
(1.4.2)

val

Rjuftpn . i Z/p"[—1]
1+ (Gys; pn)[1] J{z
—6"¢(R(Gm)pn

) R R(Gon) e [1].

i Z)p"[—2] —2=Z./p" (1) —
i*(Gysi,pn)lz ,Blz Rj«(Bv) ik

i, Ri'R(G)pr —= R(Gu)pr ——> Rjj* R(Gpy)pe

Here the top triangle comes from the definition of Z/p"(1)’s, and the bottom tri-
angle from the localization sequence (0.5.2) for R(Gy,)pn.
(4) Forn < oo there is a canonical distinguished triangle (in Db(Sét))

Z/p"(1)s — G <25 G — Z/p™(1)4[1] .
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Proof. First let n < oo. Applying Lemma 1.3.2 (1) to ¥4 = G,,, we get a canonical
distinguished triangle

tr

xp" Gm

(1.4.3) R(Gyy)pr ‘> Gy Gn R(G)pr[1]
On the other hand, since p is invertible on U, there is an exact sequence

xXp™

(1.4.4) 0 Ly Gt Gy —0.

This gives canonical isomorphisms j*R(Gy)yn = RAZomy(Z/p",Guy) = pipn, as
claimed. Since we have sheaves on both sides we also get a canonical isomorphism
J*R(G)pe = 00 by passing to the direct limit.
(2) First one notes that
A =1
R™i},Gp (=1

0 (m#1)

(cf. e.g., [Mi2] p. 185, bottom). Therefore
Homy (Z[~1], Riy,Gy) = Hy(S,Gn) = P Z,
z2€Z

and to get a canonical isomorphism Gys, ¢ it suffices to replace Z by a point z € Z and
to find a canonical generator of H!(S, Gy,). This is done by the localization sequence

0%, — k< 25 HY(S,Gp) — H'(k,Gp) =0

for the discrete valuation ring 0s.. Now we take J(7) as a generator for any prime
element 7 of O .
As for the second Gysin isomorphism in (2), consider a diagram on Z

xp" can =67 [-1]

(1.4.5) 7Z[-1] Z|-1] Z/p"[—1] 7
Gys lz (%) Gys lz Bz Gys|[1] ll
Xp™ 7R7;! (5“) v Ri! L 1
RiL G — o R G — 2 Rit R(Go)e[1] — 2 RiL G,

where Gys denotes Gys, ¢ . The top sequence is a distinguished triangle by (1.3.5) and
the rule recalled in §0. 6 1. The bottom distinguished triangle is obtained by applying
Ri' to (1.4.3) and shifting suitably. Now the commutativity of the square (*) implies the
existence of a morphism (7 making the diagram commutative (cf. §0.6.2), which then
necessarily is an isomorphism. Moreover, since

Homp s, (Z/p"[~1], RizGn) = Homps,) (Z/p", Z[—1]) = 0 (cf. §0.6.4(2)),

such Bz is unique by Lemma 0.6.3 (1). So Gys; := [z gives the desired canonical
isomorphism.

(The sign —1 on Ri', (8% ) is motivated by the fact that the restriction (—d% )|y is the
connecting morphism G,y — p,»[1] associated with the short exact sequence (1.4.4),
which appears in the definition of Deligne’s cycle class [SGA4%] Cycle. In particular, by

our choice, Gys; . agrees with the Gysin morphism in §2.1 when Z is contained in U.)

1z,p"
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(3) Since Z/p"(1)/ is concentrated in [0, 1], we have
Homps, (Z/p" (1), s Ri' R(Gu)pn) = Homp s, (Z/p" (1), 3. Z/p"[~2]) = 0.

In view of Lemma 0.6.3 (1) and the fact that Sy and Gys, . are isomorphisms, our task
is to show that the right hand square of (1.4.2) is commutative. Since this comes down to
morphisms of sheaves (see 0.2.3), it suffices to show this for n < oo, and the case n = oo
follows by passing to the inductive limit. For n < oo there is a commutative diagram of
distinguished triangles

. . Tx Jj* . 7610C(R(Gm)p")
(1.4.6) iR’ R(Gy)pr — R(Gy)pr — Rjj* R(Gp)pp ————
i N . —38"(Gm
i Ri'G,, Gy — Rj.j*Gyy ()
Xpn Xpn ><p77,
s sk T 75]0(: Gm
i Ri'G,, Gy — Rj.j*Gy )
s a s

where the columns are the distinguished triangles coming from (1.4.3), and the rows are
localization triangles. We now obtain the following diagram of sheaves on Sg:

val
65

R jfipr WZ[p"
&A (@ i
R R(Ga) e ) e it R (G e
-8 () @ng (©) Té&m () can
"G —— iR Gy
/ © m
J+Gm,ur 17 .

ord

The middle square (c) with the four §’s comes from diagram (1.4.6) and anti-commutes,
because §' is functorial for the morphism 0¢, : Gy, — R(Gp),»[1] and we have

§°(R(Gp)pn[1]) = —0"(R(G)pn)[1]  (cf. (0.5.1)).

The top arrow 6% is induced by residue maps, so the outer square of the diagram com-
mutes by the remark after the proof of (2). The diagram (b) commutes by the definition of
Bu, and the diagram (d) commutes by the definition of Gys, ., i.e., by the commutativity
of the diagram (1.4.5). The bottom arrow is induced by the normalized discrete valua-
tions for the points y € Y, and the diagram (e) commutes by the definition of the Gysin
map Gys, ¢ . Consequently the diagram (a) anti-commutes, and the right hand square of
(1.4.2) commutes by §0.6.4 (1). Thus we obtain (3).

Finally (4) follows from (1.4.3) and the isomorphism [ in (3) by letting v := 1o 3. [
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L.5. Proof of the duality. By using the canonical isomorphisms R(Gy,)y~ = Q,/Z, (1)’
from Proposition 1.4.1 and the deduced isomorphism

R(G)iors = BpR(CG)pe = @,Q,/Z,(1) = Q/Z(1),
we immediately get the following from Corollary 1.3.3
Corollary 1.5.1. (1) There is a canonical trace isomorphism
trs « H7(S, Q/Z(1)") = Q/Z.
(2) For £ € D"(Sg) with constructible torsion cohomology sheaves, the pairing
HI'(S, ) x Exty ™ (£, Q/Z(1))) — HJ(S,Q/Z(1)) = Q/Z
induced by Yoneda pairing is a non-degenerate pairing of finite groups.

With this we are now ready to prove Theorem 1.1.2:

() Lettry : RfiZx = RARf'Ps — Ps = Q/Z(1)'[2] be the canonical trace map, i.e.,
the adjunction morphism for the adjunction between Rf' and R f, ((SGA4] XVIIL.3.1.4).
We then define the trace map trx as the composite

try - HI(X, ) 5 HI(S, 75) = HY(S, Q/2(1)s) =5 Q/2.
(2) There is a commutative diagram of Yoneda pairings
H™(X,%) x Exty ™(F,Rf'Ds) — HXNX, Rf'PDs)
|
H™(B,Rf.%) x Exty ™(Rf.L, Ps) — HL(S, Ds),

and the assertion follows from Corollary 1.5.1.
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2. THE CASE WHERE p IS INVERTIBLE ON THE SCHEME X

In this section, we work in the following setting. Let X be a noetherian excellent
regular scheme, let n be a positive integer invertible on X and put A := Z/n. For integers
q € Z,put A(q) := u®, the g-fold Tate twist of the étale sheaf A on X or X -schemes. Let
Z C X be aregular closed subscheme of pure codimension c. By Gabber’s construction
[FG] 1.1.2, there is a cycle class clx(Z) in the étale cohomology group HZ (X, A(c))
(without using the absolute purity), which satisfies the following three properties:

(G1) For an étale morphism X’ — X and Z’' := Z x x X', the pull-back of clx(Z) to
HZ(X', A(c)) agrees with clx/(Z).

(G2) For regular closed subschemes Z C Y C X, we have clx(Y)Ncly(Z) = clx(2)
in HZ(X, A(c)).

(G3) The image of clx(Z) in H°(Z, R?*i'/A(c)) coincides with Deligne’s cycle class
[SGA4%] Cycle §2.2. Here © = iz denotes the closed immersion Z < X.

2.1. Gysin maps and compatibility. For ¢, € Z, one defines the Gysin map Gys, as
Gys, : HI(Z, A(r)) — HL™(X, A(r +¢)), aw—clx(Z)Ua.
The main aim of this section is the following compatibility result:

Theorem 2.1.1. Let c be a positive integer, and let i, : ¥ — X and i, : y — X be points

on X of codimension c and c — 1, respectively, with x € m Then the following square
commutes for integers q,r > 0:

aval
_dy,w

(2.1.2) H (y, A(r + 1))

H(x, A(r))

Gysiy \L \L Gyszz
8% (A(r+e) x)

HIT2"1(X, A(r + ¢)) HIP?e(X, Ar + 0)).

To prove the theorem, we may assume that
(2.1.3) X is local with closed point .

Put Z := {y} C X, which has dimension 1 and consists of two points {y,z}. Let iy
(resp. t,) be the closed immersion Z — X (resp. x < Z). The proof will be finished in
§2.4 below.

2.2. Regular case. We first prove Theorem 2.1.1, assuming that Z is regular. In this case
Z is the spectrum of a discrete valuation ring A, and we have the cycle classes

cy(Z) € HAU(X, Alc—1))  and  cly(z) € HX(Z, A(1))
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by Gabber’s construction, where clz(z) agrees with Deligne’s construction in [SGA4%]
Cycle §2.2 by (G3). There is a diagram of boundary maps

Gys;
HI (y, A(r + 1)) —% HI2L(X, A(r + ¢))

_8valz
/ lg‘;fz (A(r+1)z) lag’fmm(wc)x)

Hq<x7 A(T)) W H:g+2(Z7 A(?” + 1)) o Hg+26(X7 A(?” + C)) :

Gys; 7

Here Gys, is the map taking the cup-product with clx (Z)|spec(o ), by the property (G1),
and hence the right square commutes by the naturality of cup products and (0.5.1). The
composite of the bottom row agrees with Gys, by (G2). Thus we obtain the commutativ-
ity of the diagram (2.1.2), once we show the left triangle commutes. But this commuting
follows from (G3) and [SGA4%] Cycle 2.1.3. Indeed, by noting that

Rij,A(r+1)=0 forq>2,wherej:y— Z,
the left triangle is induced by the following square in D°(z4, A):
VRV A(r + 1)[—1] <22 R A+ 1)
o |t e
A1) —— 25— R+ 1)),

where O : 2 R'j,A(r + 1) — A(r) denotes a map of sheaves on z induced by the
valuation of A. We note Ri'/A(r + 1)[1] is concentrated in degree 1. Therefore it suffices
to show its commutativity after taking the cohomology sheaves .7#!(—) in degree 1, so
that we are reduced to showing the commutativity of the diagram

RV A(r 4+ 1) R A(r + 1)
_ava]l ié};ﬁc(/l(r-‘rl)z)
Gyslz 2.1
A(r) R, A(r+1),

where Gys, : A(r) — R*'A(r + 1) is given by a > clz(z) U a. By looking at the
stalks, we are now reduced to the case that A is strictly henselian and to showing the
anti-commutativity of

K(y)* n ——— H'(y, A(1))
ordAl J/(SZ),CI(A(TJFUZ)

Gys, .
H2(Z,A(1)),

1!—)012(92)

which is a consequence of [SGA4%] Cycle 2.1.3 (k! is the Kummer isomorphism). Note
that we have 9" = ordy o (h')~' by §0.7(I.1), and that Gys, o ord4 sends a prime
element 7 of A to clz(x) and hence agrees with the map induced the composition

K(y) = HY(Z,Gn) -2 H2(Z,A(1))  (loc. cit. 2.1.2).
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2.3. General case. We prove Theorem 2.1.1 in the case that Z is not regular. Take the
normalization f : T — Z. Put X := f~!(x) C T with the reduced subscheme structure,
which is the set of all closed points on 7’ by the assumption (2.1.3). Note that 7" is regular
and that f is finite by the excellence of Z. Since a finite morphism is projective ([EGAI]
6.1.11), the map 7' — X factors as T' < P4 — X for some integer d > 1. Let ¢, be the
composite map y — T < P%. There is a commutative diagram of schemes

(2.3.1) Yy T T P:=P%

where i, i, and all horizontal arrows are closed immersions cf. (2.1.3). Now put ¢ :=
¢+ d = codimp(X), and consider the diagram in Figure 1.

78“1
HO (y, A(r + 1)) il - HY(Z,A(r))

GysLy o Gysi./

HYP =L (P, Ar + ) HEP (B, Ar + )

S (A(r +¢'))
2) (e 3) B “4) try,

8% (A(r + ¢))

Hfj”c*l(X,A(r—i—c)) HZ+2C(X7A(7’+C))

G)’Siy ) Gys, I
H (y, A(r + 1)) > H(z, A(r))

__Aval
8'5171

FIGURE 1. A diagram for the proof in the general case

In the diagram, the arrows « and 3 are induced by the composite morphism

* Ri! g
o RERSA(r + )p2d] — > R, RguA(r + ¢ )o[2d] —2) L RiL A(r + ¢)x
in D% (Zg, A), where () is the cobase-change morphism (cf. [SGA4] XVIIL3.1.13.2) for
the right square of (2.3.1). More precisely, « is obtained by restricting ~ to y, and [ is
defined as the composite

B : Rh Ri'sA(r + ¢ )p[2d] Rk Ri\ Rf.Rity A(r + ¢)p[2d] ) Ri\ A(r +¢)x ,

where () is the cobase-change morphism for the left square of (2.3.1). Therefore the
square (3) is commutative by (0.5.1). On the other hand, the diagram (1) is commutative
by the regular case §2.2, and moreover, the outer large square of Figure 1 commutes by
the definition of 8;*‘:}: (cf. §0.7 (II)) and the fact that the trace map tr;, coincides with the
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corestriction map of Galois cohomology groups (cf. [SGA4] XVIIL.2.9 (Var 4)). There-
fore, once we show that the diagrams (2) and (4) commute, we will have obtained the
commutativity of (5), i.e., Theorem 2.1.1. One can easily deduce the commutativity of
(2) and (4) from a compatibility result of Riou [R] 2.34. However we include a simple
proof of the commutativity of (4) here for the convenience of the reader (the diagram (2)
is simpler and left to the reader).

2.4. Commutativity of (4). Put

Q=P
and take a section s : X — P. Let? :  — () be the restriction of s to x, and let i¢ (resp.
t5;) be the closed immersion ) < P (resp. ) — (). Consider the following diagram:

G Si
2.4.1) Ho(z, A(r)) ——=~ HI2(X, A(r + ¢))
Gyst (6) Gysg i
q Gys. q+2d O¥sig q+2c /
HI(X, A(r)) —= H?NQ, A(r + d)) —— H4 ™ (P, A(r + )
- D © B,i
G Sip
H(z, A(r)) ——— HI(X, A(r + ¢)).

Here the square (6) commutes by (G2). The arrow (3’ is a trace map defined in a similar
way as for 3. The diagram (4) in question is related to the large tetragon (7)+(8) in (2.4.1)
by a diagram

Gys;

(2.4.2) HY(X, A(r)) > HEP (P, A(r 4 )

Gysiz otry, x i [5>M
M+
6/

HTP2e(X A(r + ¢)) Hg;?C’ (P, A(r 4+ ¢)) .

Here the arrow ¢ denotes the composite of the middle row of (2.4.1), and the upper right
triangle of (2.4.2) commutes obviously. The composition 3’ o s, is 3, and the square
agrees with the diagram (4) in Figure 1. To prove the commutativity of (4), it thus suffices
to check that of the lower left triangle of (2.4.2), i.e., the tetragon (7)+(8) in (2.4.1). To
prove this, it suffices to check the following claims concerning the diagram (2.4.1):

Lemma 2.4.3. (a) The triangle (7) is commutative.
(b) The triangle (8) is commutative.

Proof. The claim (a) follows from standard arguments using [SGA4%] Cycle 2.3.8 (1), (i1).
To prove prove (b), we use the notation fixed in (2.3.1) By the absolute purity [FG], we
have
HIP(X, Alr + ¢)) ~ H(x, RQci!x/l(r +¢c)),
and the problem is reduced to the case that ¢ = 0 and x(x) is separably closed. Then the
Gysin map
H(z, A(r)) — H*(Q, A(r + d))
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is bijective. Therefore the diagram (8) commutes by the following facts concerning the
diagram (2.4.1):

(c) the composite of the right vertical column is the identity map,
(d) the composite of the middle vertical column is the identity map,

which are consequences of [SGA4%] Cycle 2.3.8 (1), (ii). ]
This completes the proof of Theorem 2.1.1.

2.5. Bloch-Ogus complexes and Kato complexes. We use Theorem 2.1.1 to identify
the Kato complexes with those defined via the method of Bloch and Ogus. Keep the
assumptions as in the beginning: X is a noetherian excellent regular scheme, n is a
positive integer invertible on X, and A(q) (¢ € Z) is the g-fold Tate twist of the étale
sheaf A on X or X-schemes. Assume that X is has pure dimension d < oo, and let
Z C X be a closed subscheme. For a non-negative integer ¢ > 0, we define

(2.5.1) (Z/X)y ={x € Z | codimx(x) =d — ¢}

By a standard argument using localization and an exact couple (cf. [BO] 3.10), there is a
localization spectral sequence
(252)  EL(Z/X,A0) = @ HTUX A=) = H (X, A(-b)),
:EE(Z/X)S
which induces a filteration on H,**(X, A(—b)) with respect to the dimension of support.
It is regarded as the niveau spectral sequence on Z (cf. [BO] (3.7) and [JS] 2.7), for the
homology theory which is defined on all subschemes V' on X by
H,(V/X, A(b)) = Hy"(U, A(~b)),
if V' is a closed subscheme of an open subscheme U C X. By definition,
Hxa(X7A<_b)) = hgl H?T}QU(UvA(_b)) )
zeUCX
where the limit is taken over all open subsets U C X containing x. Hence we have
(2.5.3) EL(Z/X Ab) = € H'(x,Als —d—))
z€(Z/X)s
by the absolute purity [FG]. For a complex of abelian groups C* denote by (C*)(~) the

complex with the same components, but with the differentials multiplied by —1.

Theorem 2.5.4. The Bloch-Ogus complex E ,(Z/X, A(b)) agrees with the sign-modified
Kato complex C;7=24=4=5(7)(2) via the Gysin isomorphisms (2.5.3).

Proof. By the construction of the spectral sequence (2.5.2), its d*-differentials have the
components
loc . —s—t —s+1—t

fory € Xgand z € X, ; withx € m (cf. [JS] Remarks 2.8). Therefore the claim
directly follows from Theorem 2.1.1. U
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Remark 2.5.5. For Z = X it is often customary in literature to renumber the spectral

sequence (2.5.2) into a cohomological coniveau spectral sequence (with ¢ = —b)
EP(X, Ae) = @ H"P(x, Alc - p)) = HP (X, A(c)).
zeXP

See §0.4 for the definition of X?. This does not change the differentials, and so the E\-
terms compare in a similar way to the Kato complexes. More precisely one obtains that
E7X, A(c)) coincides with C1~%¢=4( X)),

By this method, we only get Bloch-Ogus complexes for schemes Z which can be glob-
ally embedded in a regular scheme X. But the following slight variant covers all the cases
considered in [JS] p.494, case (i) of 2.B.

Let S be a noetherian excellent regular base scheme of pure dimension d, let n be
invertible on .S, and let b be an integer. Similarly as in §0.3 we define a homology theory
(in the sense of [JS] 2.1) for all separated S-schemes of finite type f : X — S by defining

H,(X/S, A(b)) :== H(X, Rf'A(=D)).
For a non-negative integer ¢ > 0, we define a set (X/5), as
(2.5.6) (X/S)y :={xr € X | codimg(f(z)) — tr.deg(z/f(x)) = d — ¢},

where for points € X and y € S with y = f(x), we wrote tr.deg(z/y) for the transcen-
detal degree of x(x) over k(y). The set (Z/S), for a closed subscheme Z C S agrees
with that in the sense of (2.5.1). When S is the spectrum of a field, (X/5), agrees with
X, in the sense of §0.4. Under this definition, one gets a niveau spectral sequence

(2.5.7) EL(X/S, A1) = @ Hapilw/S, Ab)) = Hoyo(X/S, A(D)),
z€(X/S)s

where H,(z/S, A(b)) is defined as the inductive limit of H,(V/S, A(b)) over all non-
empty open subschemes V' C {z}. Since {z}, being of finite type over .S, is again
excellent, there is a non-empty open subset V' which is regular. Then, for all non-empty
open V' C V one has a canonical isomorphism due to the absolute purity [FG] p. 170

(2.5.8) H,(V'/S, A(b)) = H>*=D=(V' A(s — b — d))
with s = tr.deg(xz/f(x)) + d — codimg(f(x)), by the construction in [FG] p. 157. This
induces an isomorphism
(2.5.9) EL(X/S,Ab) = €@ H 'z, A(s —b—d))
z€(X/S)s
The following theorem generalizes Theorem 2.5.4 (which is the case X = 5).

Theorem 2.5.10. The Bloch-Ogus complex E; (X/S, A(b)) agrees with the sign-modified
Kato complex C;;*~2:=2=4( X)) yiq the isomorphisms (2.5.9).

Proof. The question is local on X and S. Thus we can assume that there is a factorization
= poi, where p : P — S is a smooth morphism of relative dimension N (e.g.,
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P =A%Y)andi: X — P isaclosed immersion. Then there is a canonical isomorphism
from Poincaré duality ([SGA4] XVIII 3.2.5)
Rp' A(—b) = A(N — b)[2N],
which induces an isomorphism
HL(X/S, A(b) = H~*(X, Rf' A(~))
~ %X, Ri' AN — b)[2N]) = HZ"(P, A(N —b)).
Similarly, for a locally closed subset V' C P, say a closed immersion ¢y : V' — U with
ju : U = P open, there is an isomorphism
Ha<v/57 A(b>> = Hia(‘/v R(f °© jU © ZV)'A(_b»
(2.5.11) =~ IV, R(iy)' A(N — b)[2N])
= HXN"“(U, A(N - b)) .
Moreover, this is compatible with localization sequences. If V' is regular and of dimension
s (hence of codimension d + N — s in P), then by [FG](§8 first Consequence and Lemma
4.1.1), the isomorphism (2.5.8) is the composition of this map with the inverse of the
Gysin isomorphism
Gys,, : H**47%(V, A(s — d — b)) = HN (U, A(N = b)).
This shows the following: Via the maps (2.5.11), we get an isomorphism between the ho-
mology theory H,(—/S, A(x')), restricted to subschemes of X, and the homology theory
H. on(—/P,A(¥ + N)) from (2.5.2), restricted to subschemes of X, and therefore an
isomorphism of the corresponding spectral sequence. Moreover, via this isomorphisms,

the isomorphisms (2.5.3) and (2.5.9) correspond. Therefore the claim follows from The-
orem 2.5.4. O
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3. THE CASE OF p-TORSION OVER A PERFECT FIELD OF CHARACTERISTIC p

Throughout this section, &£ always denotes a perfect field of positive characteristic p
and n denotes a positive integer. We will often write s for Spec(k).

3.1. Gros’ Gysin map. Let us recall that Gros has defined Gysin morphisms
Gysf : Rf*VVTLQ;/,log — W Q;(—i:l%g [C]

for any proper morphism f : Y — X of smooth equidimensional varieties over k, where
¢ = dim(X) — dim(Y") ([Gr] IL.1). These induce maps

Gys; : HY(Y, W, Qy10) — H (X, I/I/;LQ’"X*’{;g) :
Ifi: Y — X is a closed immersion of smooth k-schemes, it also induces Gysin maps
Gysi : Hq<Y7 VVTLQ;/,Iog) — H}Q/JFC(X, WLQTXfI%g) ’

where c is now the codimension of Y in X. The following result is a p-analogue of
Theorem 2.1.1, cf. Remark 3.5.5.

Theorem 3.1.1. Let X be a smooth variety over k. Let n and c be positive integers. Let
iy x — X and 1, 1 y — X be points on X of codimension c and c — 1, respectively,
with x € {y}. Then the following diagram commutes:

(71)7‘ 8val
0 r—c+1 v,z 0 r—c
H (y7 Wle,log ) H (ZE, VV;LQ:C,log)
Gys;,, \L \LGySil
61;7‘12 (WL Q’S(,log)

H;—I(X’ I/I/;lQTX,log> Hﬁ(X> WlQS{,log) .

In [Sh] 5.4, Shiho proved this compatibility property assuming n = 1, but in a more
general situation. The proof of Theorem 3.1.1 given below relies on the following prop-
erties of the Gysin maps:

(P1) Local description of Gysin maps. See [Gr] I1.3.3.9, but we will only need the case
of a regular prime divisors, where one can give a simpler proof.

(P2) Transitivity of Gysin maps [Gr] I11.2.1.1.

(P3) For a finite map h : z — x of spectra of fields which are finitely generated over
k, the Gysin map Gys,, : H°(z, W, ,,,) — H°(z, W, Q) agrees with the
corestriction map (0.7.2), cf. Lemma A.1.1 in the appendix.

To prove the theorem, replacing X with Spec(Ox ..), we suppose that
(3.1.2) X is local with closed point .

The proof proceeds in three steps, which will be finished in §3.4 below.
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3.2. Divisor case. We first prove Theorem 3.1.1 assuming ¢ = 1. In this case, A := Ox
is a discrete valuation ring. Let 7 be a prime element of A, and put K := Frac(A) = k(y)
and F := k(x). By the Bloch-Gabber-Kato theorem [BK] 2.1, the group H®(y, W, 1..)
is generated by elements of the forms

(i) dlog(fy)- -~ - dlog(f,) and (i) dlog(m) - dlog(fy)- --- - dlog(fr_1),

where each f; belongs to A*, and for a € A, a € W,,(A) denotes its Teichmiiller repre-
sentative. The diagram in question commutes for elements of the form (i) obviously. We
consider the element

o = dlog(m) - dlog(fy) - - - dlog(fr—1)
with each f; € A*, in what follows. By [CTSS] p. 779 Lemma 2, we have
W, Q% /W Q1o = WL Q% /dV QT
which is a finitely successive extension of (locally) free & X—modules by [111] 1.3.9. Hence
the natural map
0+ Hy (X, WoQ 1) —> HL (X, W, Q)
is injective, and our task is to show the equality
(3.2.1) (=1)"(e0 Gys;, 0 9y5) (@) = (20 8,5 (W Q1)) ()
in H}(X, W, Q7). We regard the complex

W) 2 W, Q5

as arepresentative of RI',.(X, W, Q% ), where 1.2’} is placed in degree 0, cf. [Gr] 11.3.3.3.
This identification induces an isomorphism

o - W Qe /Wy = H(X, W, Q).
Now consider a commutative diagram

w — w-dlog(mr) —1) X natural projection

W, WZQTK/WZQT
HOG, W) i, W) = oy )
(3) L’J “4) j\
HO o, W 0070) — e H (X T @) e oy, 62,

where for w € W, Q%", & € W, Q" denotes a lift of w. The square (1) commutes by
the property (P1) mentioned before. The square (2) commutes by a simple (but careful)
computation of boundary maps, cf. [Sh] p. 612. By these commutative squares we have

RHS of (3.2.1) = (—1)" (g0 51°° C (W5 10g)) (dlog(fr) - - - - dlog(fr—1) - dlog(x))
2 (—1) 1 (ol (W, %)) (dlog(fy) - -~ - dlog(f,_1) - dlog(x))

PV (1) Gy, (dlog(g) - -+ - dlog(g,—1)) £ LHS of (3.2.1),



ETALE DUALITY FOR CONSTRUCTIBLE SHEAVES 29

where g; € W,,(F)* denotes the residue class of f; for each j. We thus obtain Theorem
3.1.1 in the case ¢ = 1. o

3.3. Regular case. We next treat the case that c is arbitrary but the closure Z := @ C
X isregularatz. Let ¢, : v — Z and i : Z — X be the natural closed immersions. Let
us consider the following diagram:

Gysiy
Ho(yv VVTL QT?CJrl) - H:lj_l (X7 V[/;LQS(,Iog)

y,log

(71)7‘ a;‘t]:r 1 loc r
(_1)67 d 6’!471‘(% Q)(,log)

H0<x7 W@QT?C ) K) H%<Z7 W?QTZTIS;FI) Tys> H;(X7 VVTLQ;(,Iog) )

z,log

where we put § := 8, (W, QY c+!) for simplicity. The right upper arrow and the right
lower arrow are induced by the Gysin morphism for 7, so the right square commutes by
(0.5.1). The left triangle commutes by the previous case. The composite of the bottom

row coincides with Gys, by (P2). Hence the assertion follows in this case.

3.4. General case. We finally consider the general case. The arguments here proceed
similarly as for §2.3. Let Z = @ C X be as in the previous step. We assume that
Z is not regular. Take the normalization f : T — Z. Put X := f~!(z) C T with the
reduced subscheme structure, which is the set of all closed points on 7" by the assumption
(3.1.2). Note that 7" is regular and that f is finite by the excellence of Z. Since a finite
morphism is projective ([EGAI] 6.1.11), the map 17" — X factors as T" — PS5, — X for
some integer e > 1. Let ¢,, be the composite map y — 1" — P%.. There is a commutative
diagram of schemes

(3.4.1) Yo T I P =P

where i,, iy and all horizontal arrows are closed immersions cf. (3.1.2). Now put ¢’ :=
¢+ e = codimp(X'), and consider the diagram in Figure 2. The square (3) commutes by
(0.5.1). Moreover, the diagrams (2) and (4) commute by the transitivity property (P2). On
the other hand, the diagram (1) is commutative by the result in the previous case. Finally,
the outer large square of Figure 2 commutes by Lemma A.1.1 in the appendix and the
definition of 9%, cf. §0.7 (II). Thus the diagram (5) commutes, i.e., Theorem 3.1.1. [

y?x,

Corollary 3.4.1. Let X be a smooth variety of pure dimension d over k, and let c be a
positive integer. Let i, : x — X and i, : y — X be points on X of codimension c and
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(1 o

HO(y’ W‘L Qrfcﬁ»l)

y,log

- HO(Z, W Q5 )

Gysby ) Gysi/

Hy = (P, Wo Q5 1, HE (P, W Qp )

(1) 80, (Mh Q1)

@ Gys, 3) Gys, @ Gysy,

c—1 r 65”%(% QTX’IOg) c T
Hy (Xvw/;LQX,log) . Hw(vaQX,log)

Gys ® Gys

iy Sia

HO (g, W 2 35) i - H (e, W 235)
(_1) ay,x

FIGURE 2. A diagram for the proof of the general case

c — 1, respectively, with x € @ Then the following diagram commutes:

_1)d aval
1 d—c+1 ( vz 1 d—c
H (y7 Wle,log ) H (3:’ I/Vngzm,log)
Gysiy \L \LGysim
6;’:& (WL g(,log)

H;(X’ VVHle(,log) H;—O—l (X7 VVTLQ?(,log) :

Proof. First of all we note that [r(z) : x(z)?] = p?~¢, because x(z) has transcendence
degree d — c over the perfect field k. Therefore the upper map is well-defined. For the
prove of the corollary we just have to consider the case ¢ = 1. In fact, the reduction to
this case works as in §3.3 and §3.4 for Theorem 3.1.1; we only have to consider the case
n = ¢, and to raise the degrees of all cohomology groups by 1. Furthermore we have to
replace Lemma A.1.1 by Lemma A.2.8.

In the case ¢ = 1 we again may replace X by the spectrum of the discrete valuation
ring A = Ox ,. By the definition of Kato’s residue maps (cf. §0.7 (I)), and since

Hz2(X7 WLQ?(,IOg) - H:123(Xh7 WLle(h,log)

for the henselization X" of X at x, we may furthermore replace X by X". Then y =
Spec(K) for a henselian discrete valuation field K with residue field x(z). Let y’ =
Spec(K*"), where K*" is the strict henselization of K. Put T := Spec(r(z)) for the
separable closure x(x) of k(x). Then we get a diagram in Figure 3.

Here the isomorphisms a, b and ¢ come from Hochschild-Serre spectral sequences for the
pro-étale covering X*" — X (= X™) given by the strict henselization of X. See §0.7 (1.3)

for a and b, and note the isomorphism
HEH (X W, 0% 10,) = H (T, W, Q80) (= 0for i # 0)

z,log
for ¢, cf. [Mo] Corollary to 2.4. Then the diagram (1) commutes by the definition of
Kato’s residue maps. The diagram (2) commutes trivially, and the diagrams (4) and (5)
commute, because the vertical maps and the two lower horizontal maps are induced by
morphisms of sheaves (Gys and §'°°), and hence are compatible with the Hochschild-Serre
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(_ 1)d 8val

Hl(y7mﬂz,log) > Hl(manQiI(;lg)
N 0 b2
H @ O s Wh o)) —— o H' (¢, H(2, W, 0 1.,)
2) 3) H*(z, Gys) “4) Gys

0,7 d HY (2, 0% (W 05 10g)) 1 1/ ysh d
H (‘rvH (yv‘/V;LQ )) - H (x7HY(X 7W1QX,log))

y,log

1
% ) X

. Hf (Xa Wl Qc)l(,log)

Hl(yy Wl Q/fi,log)

Y 6]OC(WL Qg(,log)

FIGURE 3. A diagram for the proof of Corollary 3.4.1

spectral sequence. Finally, it follows from Theorem 3.1.1 that the square (3) commutes.
This implies the commutativity of the outer square and hence the corollary. 0

3.5. The complex .Z . x+ Building on work of Moser [Mo], and motivated by Theorem
3.1.1, we introduce a complex of étale sheaves and prove a duality result for it (cf. §3.6
below).

Definition 3.5.1. Let X be a scheme of finite type over s. For a point v on X, let i, be
the canonical map x — X. We define the complex ./  of étale sheaves on X as

X = ({@xEX_q ix*WLQ;fog} " {—8*"}(]) ,

where 0~ has the components 8;"‘1 withy € X_,and x € X_,_ (cf. §0.8). We often

write M, x for the image of //n'X in D*(X,Z/p"). See Remark 3.5.5 below for the
reason of the sign of the differentials.

The complex .Z; y coincides with the complex v, x defined in [Mo] up to signs of
boundary operators and a shift. If X is smooth over s of pure dimension d, then, by
a theorem of Gros and Suwa [GrSu], the embedding W, Q% ,,, = D,cx, a0 U 1y
induces a canonical quasi-isomorphism

(3.5.2) W, Q% opld] 5 a2

Note also the following simple facts: For a closed immersion ¢ : Z — X of schemes of
finite type over s, there is a natural map of complexes

(3.5.3) Z*%T:,Z H %;,X .

If X and Z are smooth of pure dimension d and d’, respectively, then this map induces a
morphism

(3.5.4) Gys; : i, W, Q% 1o,[d] — Wi Q% 1,ld]  in DP(Xa, Z/p")

via (3.5.2) for X and Z, which we call the modified Gysin morphism for i.
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Remark 3.5.5. The reason we put the sign —1 on the differentials of A, x is as follows.
Because of these signs, the modified Gysin map (3.5.4) agrees with Gros’ Gysin map
Gys, only up to the sign (—1)d_d/, cf. [Sa] 2.3.1. However by this fact, if we define
Z]p™(r) == WoQx 1og[—7] for (essentially) smooth schemes X over k and note property
(0.5.1), Theorem 3.1.1 for r = d and Corollary 3.4.1 become a commutative diagram

__Aval

H™= <y, Z/p"(d — ¢+ 1)) —— H"(, Z/p"(d — ¢))

Gysfy J/ \LGysj’I
8y, (Z/p™(d))

Hy*eY(X, Z/p"(d)) H (X, Z/p"(d)) -

Note that the groups in the top row are only non-zero for m = d,d + 1. This shows the
perfect analogy with Theorem 2.1.1.

The following lemma shows that the complex .#,; y is suitable for cohomological opera-
tions:

Lemma 3.5.6. Let x be a point on X of dimension q > 0. Then:
(1) The sheaf W, QL. on x4 is i,-acyclic.

z,log
(2) For a closed immersion i : Z — X, the sheaf ix*W;linlog on Xg is i*-acyclic.
(3) For an s-morphism f : X —'Y, the sheaf ix*I/VnQi’log on Xy is f-acyclic.

Proof. For (1) and (2), see [Mo] 2.3 and 2.4. We prove (3). For a point y € Y, we have
(R felioeWi 2 1)), = H™ (X Xy Spec(Oys), i Wi Q1 1)

z,log z,log
Q)

= H™(x xy Spec(0yy), W, Q)

z,log
and the last group is zero for m > 0 by the same argument as in loc. cit. 2.5. UJ

Corollary 3.5.7 (cf. [Mo] Corollary to Theorem 2.4). For a closed immersioni : 7 — X,
the map (3.5.3) induces an isomorphism

Gys; : My = Ri' My x  in DY (Zg, Z/p").

)

3.6. Relative duality theory. Let 7; be the category of schemes separated of finite type
over s and separated s-morphisms of finite type.

Theorem 3.6.1. Suppose that there exists an assignment of morphisms
Tr:(f:Y = Xin¥,) — (Try : Rfidlny — My x in DY (Xg, Z/D"))
which satisfy the following three conditions (i) — (iii):
(i) If f is étale, then Tr; agrees with the composite morphism
Rftlyy = RAf My = i x,

where the arrow fi denotes the adjunction morphism Rf, f* = RfiRf' — id (cf.
[SGA4] XVIIL3, the equality M,y = f* M, x is straight-forward).
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(ii) If f is a closed immersion, then Tr; agrees with the composite morphism

Rf+(Gys})

Rf*%n,Y Rf*Rf!%n,X i> %TL,X )

where the arrow f, denotes the adjunction morphism Rf.Rf' = RfiRf' — id.
(i) For morphisms g : Z — Y and f :' Y — X with h := f o g, Try, agrees with the
composition
Rfi(Trg) Try

Rhttyz = Rf\Rgitly 2 Rf My —— My x .

Then for amap f : Y — X in ¥, the adjoint morphism Tt/ of Try is an isomorphism:
T : My — Rf!///n,x in DY (Yy,Z/p").

This theorem is a variant of Moser’s duality [Mo] 5.6 (which itself generalizes Milne’s
duality for smooth projective varieties [Mi3]). However, because Theorem 3.6.1 looks
quite different from Moser’s formulation, we outline a proof of our statement below in
§3.7. The main result of this section is the following theorem:

Theorem 3.6.2. There exists a unique assignment of morphisms
tr: (f:Y = Xin¥)— (tty: RfvMlpy — My x in DY (Xg, Z/D"))
that satisfies the conditions (i) —(iii) in Theorem 3.6.1 with Tr := tr. Consequently, for

amap f Y — X in ¥, the morphism ! : M,y — Rf'.#, x adjoint to try is an
isomorphism.

We will prove Theorem 3.6.2 in §§3.8-3.9 below.

3.7. Proof of Theorem 3.6.1. By the transitivity property (iii) of Tr, the assertion is
reduced to the case of a structure morphism f : X — s, and moreover, by the property (i)
of Tr, we may suppose that s = 5 (i.e., k is algebraically closed) and that f is proper. In
this situation, we claim the following:

Theorem 3.7.1. Let X be a proper scheme of finite type over the algebraically closed
field k of characteristic p > 0, with structural morphism [ : X — Spec(k). Then, for any
constructible 7./ p"-sheaf F on X¢ and any integer m, the pairing

ax(m, F): H(X, F) x EXtZ", (F, Mox) — H(X, Myx) —5 L)p"

X,Z/p™
induced by Yoneda pairing is a non-degenerate pairing of finite groups.

We first prove Theorem 3.6.1, admitting Theorem 3.7.1: Applying 3.7.1 to F =
J1Z/p" with j : U — X étale, and noting the isomorphisms
Ext)}’z/pn(ng/p”, M x) = Extgfg/pn(Z/p",e///mU) = H "™U, Mny),

we obtain isomorphisms

a b
H_m(U> %n,U) = HomZ/p”—mod<Hm(X7j! Z/pn)’Z/pn) = H_m(Ua Rglz/pn)

for any m € Z, where g = f o j, the first isomorphism comes from the pairing, and
the second isomorphism comes from the adjunction between Rg' and Rg, and the fact
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that Z/p" is an injective object in the category of Z/p"-modules. We verify that this
composite map agrees with that coming from Tr/ — then the morphism Tt/ is bijective
on cohomology sheaves, and we obtain Theorem 3.6.1. Indeed, by the definition of the
pairing, the map a sends x € H"™(U, #,, ;) = Hompxz/pm) (1 Z/p", My x|—m]) to
the composition

H™X, JZ/p") 25 H(X, Myx) = H(s, Rfstly x) —5 T/p",

which, by 3.6.1 (i) and (iii), coincides with the map induced by
RgZ/p"[m] = Rgutlyy —% Z/p".
By definition (and functoriality of adjunction), the map b sends this to the composition
Z/p"Im] = Moy — Rg'Zp",
which shows the claim, again by 3.6.1 (i) and (iii). [

As for Theorem 3.7.1, it follows from the arguments in [Mo] 5.6. More precisely, it
follows from the properties (i) — (iii) of Tr, the steps (a)—(c), (f) — (k) of loc. cit. 5.6, and
the following lemma:

Lemma 3.7.2. Let f : X — s(= 35) be a proper smooth morphism with X connected.
Then for an integer m and a positive integer t < r, the pairing a.x(m,Z/p") (cf. Theorem
3.7.1) is a non-degenerate pairing of finite groups.

Proof of Lemma 3.7.2. The problem is reduced to the case ¢ = r by (3.5.2) and [Mo] 5.4.
Now we note that Milne duality [Mi3] 1.11 gives an isomorphism of finite groups in our
case. Indeed, with the notation of [Mi3] p. 305, the unipotent part of the group scheme
H™(X,Z/p"™) is trivial, which follows from the short exact sequence

0 — H™(X,Z/p") — H™(X,W,0x) =5 H™(X,W,0x) — 0

and the fact that 1 — F' is étale. Therefore it is enough to show that the composite map

/ d d (3;2;2) 0 TI'f n
TI'f . H <X7WLQX710g) == H (X, %H,X) — Z/p
with d := dim (X)) coincides with the trace map 7,, in [Mi3] p. 308, up to a sign. But, for
a closed point i, : x < X, Tr’ sends the cycle class Gys; (1) € H*(X,W,Q%,,,) (= the
image of 1 under Gys; ) to 1 by the properties (ii), (iii) of Tr, and hence Tr’f = (=1)%n, by
Remark 3.5.5 (1). This completes the proof of Lemma 3.7.2, Theorem 3.7.1 and Theorem
3.6.1. O

Remark 3.7.3. Note that step (j) of [Mo] 5.6 uses de Jong’s alteration theorem [dJ] 4.1.

Corollary 3.7.4. Suppose that there exist two assignments o : f — opand T : f +— T
satisfying (1)—(ii1) in Theorem 3.6.1 with Tr := o and T, respectively. Then we have
o=T.
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Proof. Let f : Y — X be a morphism in #;. We show that 0y = 7, as morphisms
RfiMyy — M, x in DT (Xg, Z/p™), in two steps. We first prove the case X = s (hence
My x = Z/p™). By the properties (i) and (iii), we may suppose that f is proper. Then
Rfitl,y = Rf.. M,y is computed by the complex f..#, by Lemma 3.5.6(3), and
the morphisms o and 7; are determined by maps f*//ﬁy — Z/p™ of sheaves on sg
by §0.6.4 (1). Hence in view of the properties (ii) and (iii) and the assumption that s is
perfect, the problem is reduced to the case where f is étale, and we obtain oy = 7 by
the property (i). This completes the first step. Next we prove the general case. Let o/
and 7/ be the adjoint morphisms of o and 7/, respectively. By adjunction, it is enough
to show o/ = 7/ as morphisms .4,y — Rf'.#, x in D* (Y, Z/p"). Let g : X — s be
the structure map and put h := g o f. By the first step and the property (iii), we have

Rf' (09 ool =" =1" = Rf'(r9) o 7/

as morphisms .#,y — Rh'Z/p". On the other hand, we have Rf'(c9) = Rf'(79) by
the first step, and these are isomorphisms in Dt (Y, Z/p™) by Theorem 3.6.1. Hence we
have o/ = 77/. This completes the proof of Corollary 3.7.4. O

3.8. Covariant functoriality. In this subsection, we prove Lemma 3.8.2 stated below
(cf. [Mo] 4.1), which is a key ingredient of Theorem 3.6.2. Let f : Y — X be a morphism
in 7,. Let ¢ be a non-negative integer and let x (resp. y) be a point on X (resp. on Y') of
dimension ¢. Let f, (resp. i,) be the composite map y — Y — X (resp. z — X). We
define a map of sheaves on X

trf,(y,z) : fy*Wqu — Zm*Wqu

y,log z,log
as Gros’ Gysin map for y — x ([Gr] I1.1.2.7), if y is finite over x via f. We define try,(, )
as zero otherwise. Collecting this map for points on Y and X, we obtain a map of graded
abelian sheaves on X
'l fodlyy — My x
By definition and [Gr] 11.2.1.1, this map of graded sheaves satisfies transitivity, that is, for
morphisms g : Z — Y and f : Y — X in 7, we have the equality

(3.8.1) tr o fu(try) = trf,,
of maps of graded sheaves on Y. We prove the following lemma:

Lemma 3.8.2. Suppose that [ is proper. Then tr$ is a map of complexes. Consequently,
tr} induces a morphism

trf : Rf*%n,Y — %n,X in Db(Xét7 Z/pn>
by Lemma 3.5.6 (3).

Proof. We have to show the commutativity of the following diagram for each ¢ < —1:

_ o4 Ca—
fodl = [l

—q —q—1
trf \L \Ltrf

—q 04 —q—1
My — My

n
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Fix a negative integer ¢, and a point w € Y_,. Put z := f(w). There happen the following
three cases:

1) ze X, (i) z € X_4 (iii) otherwise.
In the third case, we see that all points y in the closure {w} map to points on X of
dimension < —q — 2. Hence the maps 979 o trJTq_1 and tr;? o 0~ are both zero on the

direct summand i,,. W, 2y, |, of f.., 3.. We next treat the case (ii). In this case, we are
ought to show that the following sequence is a complex:

FuolVp Q% — EB Fpn 0 — QT

yEY- g1 N{w}n f~1(2)

We put C' := f~'(2) N {w} endowed with reduced subscheme structure. Since C' is
proper over z by the properness of f, C' is a proper curve over z with generic point w
([Ha] I11.9.6). By Lemma A.1.1, the assertion is reduced to the case that C'is a projective
line over z. The assertion then follows from Claim in the proof of Lemma A.1.1.

We finally prove the case (i). Fix an arbitrary point x € X_,_; N {z}. Our task is to
show the commutativity of the diagram

D, o
(3.8.3) FuV 0, ——— &y FypWa it
veY g anf-1({@)
tl‘f}(w,z) lz trﬁ(y’z)
o,
WL, : G W S0 T log .

Let 1" be the localization of m at x, and put

Zy = {w} xx T (= {w}n f7YT)).

Ify € Y, N f'({z}) is away from Z,, then y is outside of {w} N f~!(z) and hence at
least one of aval and try (, ;) is zero. Thus the commutativity of (3.8.3) is reduced to that
of the followmg diagram:

®y ax}y
(3.8.4) foa 8, ——~ P LWL
yEY,qfﬂjZ,
tr
fi(w,z)
\Lzy s, (y,2)
oy,
WL i W

We claim here the following:

Claim. The canonical morphism fr : Z,, — T is finite, and Y_,_1 N Z,, agrees with the
set of all closed points on Z,,.

Proof of Claim. By the properness of fr and [EGAIN] 4.4.2, it suffices to show that fr
is quasi-finite. Note that x(w) is a finite field extension of x(z). Let v : U — T be the
normalization of 7" in x(w). Then v is finite (cf. [Ha] I.3.9A) and U is the spectrum of
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a Dedekind ring, which imply that v factors as U — Z,, — 1" by the valuative criterion
for proper morphisms (cf. loc. cit. I1.4.7). Here the map U — Z,, is surjective, because it
is proper and dominant. Hence fr is quasi-finite by the finiteness of v and we obtain the
assertion. The second assertion immediately follows from the finiteness of f7. 0

We turn to the proof of Lemma 3.8.2 and prove the commutativity of (3.8.4). Since
the problem is étale local at z € 7', we assume that 7" and Z,, are strictly henselian
by replacing them with Spec(ﬁSh ) and a connected component of Z,, X Spec(ﬁ%hx)
respectively. Then by the Bloch- Gabber-Kato theorem ([BK] 2.1) and Lemma A.1. 1 in
the appendix, we are reduced to the commutativity of residue maps of Milnor K-groups
(§0.7 (I1.2)) via norm maps due to Kato [Ka2], Lemma 3 (which assumes the domains
concerned are normal, but is easily generalized to our situation by a standard argument
using normalization):

KM (s (w) /" Y ls) /"
YE€(Zw)o
Nn(w)/n(z) izy Nm(y)/n(z)
az,m n
KX (k(2))/p" KX (k(2))/p" -
Hence (3.8.4) commutes in this case. This completes the proof of Lemma 3.8.2. 0

Remark 3.8.5. If f is finite and étale, then tr} coincides with the adjunction map

Joi fedlyy = [of "My x — My

Indeed, the claim is reduced to the case of a finite separable extension of a point, which
follows from a standard base-change argument and [Mil] V.1.12.

3.9. Proof of Theorem 3.6.2. By Corollary 3.7.4, it remains to show the existence of a
desired assignment. Foramap f : Y — X in 7, we define the morphism try as follows.
If f is proper, then we define tr; as that constructed in Lemma 3.8.2. Next suppose that
f is not proper. Take a compactification of f, i.e., an open immersion j : ¥ < Z and a
proper map g : Z — X with f = g o j, and define try,( ; 4) as the composite morphism

(3.9.1) Uy (zig) : Rfitlny = ReRjij* Mz = Rgstlyz ~ My x

where the arrow j is defined by the adjunction morphism Rjj*.#, ; — #, 7. We are
going to define

try := 1y (24,9 -
To verify the well-definedness, it suffices to show the following:

Lemma 3.9.2. Let Y <5 V 5 X be another compactification of f. Then we have

Uy (249 = Wr(V,0h) -
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Proof. Replacing Z by the closure of the image of YV M Z Xx V, we may suppose
that there exists a proper morphism 7 : Z — V fitting into a commutative diagram with
cartesian square

2o N

yloy _rox.

Since try = try o Rh,(tr;) by (3.8.1) and Lemma 3.5.6 (3), it remains to show that tr, (7 ; =)
agrees with the adjunction morphism

o 2 oMy = 00 Mpy — My

Indeed, since 7' (Y) =Y, o*(tr, (2, ) is the identity morphism of .#, y (cf. (3.9.1)),
which implies that tr, (7 ; ) = 0. This completes the proof of the lemma. U

Thus we obtained a well-defined assignment f — try. We show that this satisfies the
conditions (i)—(iii) in Theorem 3.6.1. The condition (ii) holds obviously by definition (cf.
(3.5.3), §3.8). We next show the condition (i). Suppose that f : Y — X is étale. Take an
open immersion j : Y — Z and a finite map g : Z — X with f = g o j (cf. [Mil] 1.8).
We claim that the morphism try (7 ; ;) coincides with the adjunction f), which implies (i).
Indeed, since f is étale and g is finite, try 7 ;4 is represented by the composite map of
complexes

o e e 9x(d1) o 5 o
f!’%n,Y = GgxJ1J ’%n,Z — G« n,Z — ’%n,X’

which agrees with f; by a similar argument as for Remark 3.8.5 (see also [Mil] 11.3.18).
We finally show the condition (iii), that is, for twomaps g : 7 — Y and f : ¥ — X in
V., we prove

(3.9.3) tr, =tryo Rfi(tr,) with h:= fog.
If f and g are open immersions, (3.9.3) follows from the property (i) and the transitivity of
adjunction maps for open immersions. If f and g are proper, (3.9.3) follows from (3.8.1)

and Lemma 3.5.6 (3). Hence, if g is an open immersion or f is proper, then we obtain
(3.9.3) by the previous two cases. We show the general case. Take compactifications of f

and g as follows:
T V
NN
7 Y X
9 f

where j and p are open immersions and g and 7 are proper maps which make the triangles
commutative. Because we already know, by the previous cases, that

tr, = tr; o Rm,(tr,) o R(f o q)(tr;) with a:=pogq,
it remains to show the following composite morphism agrees with tr,:

Roy (trq)

Ra!%n,T RQ!%n,Y L' %n,v .
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We prove this equality. Take an open immersion 3 : 1" — W with dense image and a
proper map v : W — V satisfying « = v o 3. Then one can easily check that the square

relow
|
S
is cartesian. Hence we have
0" (Ry.(B)) = idpy, (By denotes RB)5* — id)
0" (try) = tr, (cf. §3.8)
and thus o*(tro,(w,3,)) = trg, which implies o o Roi(tr,) = tro wps,) = trq. This
completes the proof of Theorem 3.6.2. U

3.10. Purity for logarithmic Hodge-Witt sheaves. Theorem 3.6.2 implies the following
purity result, whose special case was needed in [JS] 2.14.

Corollary 3.10.1. Let f : X — Y be a morphism of smooth varieties of pure dimension
d and e, respectively over s = Spec(k). Then there is a canonical Gysin isomorphism

! WL Q% pogld] = RFWLOS €] -
Especially, for g : X — s smooth of dimension d we get a canonical isomorphism

trd : W, Q% 1ogld] = RG'Z/p" .

Proof. The first claim follows from the isomorphisms

Wi, Q% 10g 1] 53 Mx 13 Rf' M,y s RfW, Q5 €] -

For the special case note that W, Q2,,, = Z/p". O

Remark 3.10.2. With the notation Z/p" (1) x == W, Q' \,,[—] the purity isomorphism in
Corollary 3.10.1 becomes

(3.10.3) ! Z/p"(d)x[2d] = Rf'Z/p"(e)y[2¢] .

When f is a closed immersion, tr/ is adjoint to the modified Gysin morphism (3.5.4). When
f is proper; tt/ is adjoint to Gros’ Gysin morphism Gys 7 only up to the sign (=1)4=¢, cf.
Remark 3.5.5.

3.11. Bloch-Ogus complexes and Kato complexes. Finally we have the following ap-
plication to Kato complexes, which is analogous to Theorem 2.5.10. Let S be a scheme
which is smooth of finite type over k£ and of pure dimension d. (Most interesting is the
case S = Spec(k), d = 0, which was needed in [JS] 2.14.) For a separated scheme of
finite type over S, f : X — S, define its homology with coefficients in Z/p™(—d) by

(3.11.1) Ho(X/S, Z/p"(=d)) := H™ (X, Rf'Z/p"(d)s)
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These groups define a homology theory on the category of separated S-schemes of finite
type, in the sense of [JS] 2.1 (cf. loc. cit. 2.2), and in a standard way one obtains a niveau
spectral sequence

(311.2) BL(X/S,Z/p"(~d) = @ Hyro(w/S, Z/p"(~d) = HyutX/S,Z/p"(~d))

r€Xy
for X as above (cf. §2.5 and [JS] 2.7). Note that X, agrees with (X/5), in the sense of
(2.5.7), because S is of finite type over k.
Theorem 3.11.3. Let X be a separated S-scheme of finite type.
(1) There is a canonical isomorphism
E, (X/S.Z/p"(—d)) = @ H'(x,Z/p"(q)) = @ H &, W08 ),,) -
z€Xq z€Xq
(2) Via these isomorphisms, the Bloch-Ogus complex E 7t(X /S, Z/p"™) coincides with

the sign-modified modified Kato complex C,,. f=2d, (X)),
(3) Especially, for a separated k-scheme X of finite type, purity induces an isomor-
phism EL (X /k,Z/p") = C1° (X))

Proof. (1) follows from the purity isomorphism

Ho(V/S,Z/p"(=d)) = H™*(V,Rf'Z/p"(d)s)

3.11.4 >~  poet2a2dy g /pn
( ) ooy V,Z/p"(q)v)

for f: V' — S with V' smooth of pure dimension q.

Since (3) is a special case of (2), we prove (2) in what follows, by similar arguments
as in the proof of Theorem 2.5.10. The question is local in S and X. Therefore we may
assume that f : X — S factors as follows:

XcL>p*”>S7

where 7 is a smooth morphism of pure relative dimension /N and 7 is a closed immersion.
The Gysin isomorphism Z/p"(d + N)[2N| ~ Rx'Z/p"(d) from (3.10.3) induces an
isomorphism of homology theories

v Heoon(=/P,Z[p"(=d — N)) = H.(=/S,Z/p"(~d))
on all subschemes of P, and therefore an isomorphism between the corresponding spectral

sequences. Moreover, for an open subscheme j;; : U — P and a closed subscheme
1y V — U of dimension g, the purity isomorphism (3.10.3) for the composition

g=mojyoiy: vV p T g
factors as _
Z/p"(q)v[2q] ——— Ril,Z/p"(d+ N)y[2(d+ N)]

SIS Ril g R 29" (d)s[24)

_ Rg'Z/p"(d)s[2d) .
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The first morphism here induces the modified Gysin map

Gys®, : H™ PV, Z/p"(q)y) — HI (U, Z/p"(d + N)p)

(A7

in (3.5.4). Thus the compatibility facts in Remark 3.5.5 implies the claim.

41
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4. THE CASE OF p-TORSION IN MIXED CHARACTERISTIC (O,p)

Let S be the spectrum of a henselian discrete valuation ring A with fraction field K of
characteristic zero and perfect residue field k of characteristic p > 0. Consider a diagram
with cartesian squares

X, P x o,
fnl o f \L O fsi
ne I g5 7
where 7) (resp. s) is the generic point (resp. closed point) of S, and f is separated of finite

type. Let n be a positive integer, and let £, (resp. £;) be the étale sheaf ji,,» on 7 (resp. the
constant étale sheaf Z/p" on s). We define

Ex, = RfE € DY (Xya, Z/p"),
Ex, = Rf\E € DY (X, 0, Z)p").

We recall some standard facts on Ex, (compare Theorems 3.6.2 and 3.1.1 for x.,)

4.0.1. If X,, is smooth over 7 of pure dimension d, then there is a canonical isomorphism
tr/n pi2d) = Ex,
in DT (X, &, Z/p") by the relative Poincaré duality [SGA4] XVIIL.3.25.

4.0.2. Forpoints y € (X,),and z € (X,),_1 withz € {y} C X,), there is a commutative
diagram

_avalz
St 2] " p(2q — 1]

E\LTI[”

RL;EXT? [1]

in D" (zg,Z/p™). Here for a point v € (X)), ¢, denotes the canonical map v — X,

and 7, denotes the canonical isomorphism anm+1[2m] >~ RiE x,, obtained from §4.0.1

for a smooth dense open subset of m See (0.8.2) for the top arrow. One can check
this commutativity in the following way. Localizing and embedding X, into an affine

space, we may suppose that X, is smooth. Because RiLE x, 1] (resp. 1} Riy, u?ﬁ“ [2q]) is
concentrated in degree —2q+1 (resp. < —2¢g+1), the problem is reduced, by §0.6.4 (1), to
the commutativity at the (—2¢ + 1)-st cohomology sheaves, which follows from Theorem

2.1.1 and [SGA4%] Cycle, 2.3.8 (1).

*
Uy Ryt
i Ry« (1y) iz

{0y (Ex,)}
% | z 1%,z n
LxRLy*RLyEXn

4.1. Condition K,. The complexes £x, and £x, are important for the theory of duality
and homology over 7 and s, as we have seen in §2 and §3. For working over .S, we study
morphisms

R]'X*EX" — iX*ng [—1] s
see §4.2 and §4.6 below. In particular, we want to investigate local conditions. For a
point v € X, let ¢, be the canonical map v — X. Let ¢ be a non-negative integer, and
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take points y € (X,), and z € (X,), withz € {y} C X. PutY := Spec(0y5 ) and

=Y xx Xyand let 7 : Y < X be the natural map. Then we have cartesian squares

C Iy Y 1y ).I/

o| oo o]

XWCL))((L)XS’

and a canonical nilpotent closed immersion = < z’. Now let
Ox : Rjx.Ex, — ix:Ex,[—1]

be a morphism in D+ (X, Z/p"). Applying Rm, R7' to §x, we obtain a morphism
(4.1.1) Rm Rr'(6x) : RiyRu,Ex, — RigRe,Ex,[—1],
where €, denotes the canonical map x — X, and we have used base-change isomor-
phisms

Rr'Rjx, = Rjy.Ri, and Rr'ix,=iy.Re,,
and the isomorphism

Rezr*Reiﬁ/ = Rem*Re!x

by the invariance of €tale topology. Furthermore, we have RL;J(C; X, = ufff“ [2¢] by §4.0.1,
and we have Ri\Ex, = W, Q% [q] by Theorem 3.6.2. Therefore the morphism (4.1.1) is

z,log

identified with a morphism Ri,. u?ﬁ“ 2q] = Ri.W, Q4 \..[q — 1], which induces a map

of cohomology sheaves in degree —q + 1:

dx(y,z) : R‘le’y*u?nqﬂ — 1 W, QY

xz,log *

We are going to compare this map of sheaves on X, with Kato’s residue map (cf. (0.8.1)):

val +1 ®q+1 . q
ay,:r : R4 lysflpn — — 1o W, Q2

z,log *
Definition 4.1.2. We say that 0x satisfies K, if the induced map 6x (y, x) agrees with 8;";
for all points y € (X)), and x € (X,), with € {y}.

Remark 4.1.3. In view of §0.6.4 (1), the morphism (4.1.1) is determined by 0x (y, z). In

fact, we have R™i, u?nqﬂ = 0 for any m > q + 1 by a similar argument as for Lemma

4.5.1 below.

4.2. Functoriality of Kato’s residue maps. Let
S8 RjLE, — 1.Es[—1]
be the composite morphism
Rj.E) 2 <1 RjE) — R'GE[-1] — i.E]—1]

in D®(Sg, Z/p™), where the first isomorphism follows from a theorem of Lang: cd(n) = 1
(cf. Lemma 4.5.1 below) and the last morphism is induced by Kummer theory and the
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normalized valuation v4 on K, i.e., Kato’s residue map (cf. §0.1). By the base-change
isomorphisms

Rf'Rj.E, = Rjx.Ex, and Rfi.E =ix.Ex,,
we obtain a morphism
o5 = RF(6%") : Rjx.Ex, — ix«Ex,[-1] in D"(X&, Z/p").
The first main result of this section is the following theorem:

Theorem 4.2.1. (1) The morphism 63 satisfies K, for all ¢ > 0.
(2) 63 is the only morphism that satisfies K, for all ¢ > 0.
(3) If X, is smooth of pure dimension d, 63 is the only morphism satisfying K.

The proof of this result will be finished in §4.8 below.

4.3. First reductions. We first note that, to prove Theorem 4.2.1, we may assume that
X is reduced and the closure of X,. In fact, let X’ C X be the closure of X, with the
reduced subscheme structure. Then we get cartesian squares

Jxs iy
(Xn)redCLXl <X—)X§

Ao ] e

JIX X
C >
X, X X,

where & is the closed immersion. They induce a commutative diagram

. R R (8x) .
K*R]X’*SX;] - H*ZX/*ng

Rnpx lz \LHS*

Rjx.Ex, ix+Ex, ;

Ox

for any given morphism dx at the bottom. The left adjunction map is an isomorphism by
topological invariance of étale cohomology. Moreover, Rrx' (65 4) = §5*4, and evidently
dx satisfies K, if and only if Rx'(dx) does. This shows that the claims of Theorem 4.2.1
hold for X if and only if they hold for X’. We also note the following reduction:

Lemma 4.3.1. A morphism 0x satisfies K, if and only if for all integral closed subschemes
Ly + Z — X of dimension q + 1 the morphism Ri',(5x) satisfies K, In particular,
Theorem 4.2.1 (1) holds for X if and only if 65" satisfies K, for all integral subschemes
Z C X of dimension d.

Proof. Let X be arbitrary. Take a point y € (X)), (0 < ¢ < d := dim(X,)), let Z be
its closure in X, and take an x € (X;), withz € Z. Let 1z : Z — X be the natural
inclusion. We have base-change isomorphisms

RiyRjx.Ex, = Rjz€z, and  Riyix.Ex, =iz.Ez,,
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and it follows from the definitions in §4.1 that dx (y, z) = (Ri5(x))(y, x), if we regard

these as maps 5 R7™ 1. ,ufqﬂ — W, log- This shows the first claim. The second claim

follows, because Rul, (55 ¥4) = §5val, O

Finally we note:

Remark 4.3.2. To prove that 65" satisfies K, it suffices to assume that f : X — S is
proper by taking a compactification of f.

4.4. Criterion in the proper case. Suppose that we are given two morphisms
s : Rj.Ey — i.&[—1]  in DY (Sg, Z/p"),
5)( : RJX*an — ZX*SXS[—l] in D+(Xét,Z/pn).

Assuming that f is proper, we give a simple criterion as to when Jy agrees with Rf'(ds),
that is, as to when the following diagram commutes in Dt (X, Z/p™):

(4.4.1) Rjx.Ex, — > ix.Ex, [~
Rf'Rj.E, — T ppie 1],

where the equalities mean the identifications by base-change isomorphisms.

Proposition 4.4.2. Suppose that [ is proper. Then the diagram (4.4.1) commutes if and
only if the following diagram is commutative:

4.43) HY (X7, Ex,) — = H(Xy, £x,)
H(5,€,) ——— H(5,£.),

where 1 denotes the generic point of the maximal unramified extension S of S (5 is the
closed point of S); the vertical maps are defined by the adjunction map RfiRf' — id and
the properness of f, that is, Rfi = Rf..

Proof. By the adjointness between Rf' and Rf,, we have the adjunction maps f' : id —
Rf'Rfiand f, : RfiRf' — id, which satisfy the relation that the composite
Rf' L RFRARS L5 RY

is the identity map. By these facts, it is easy to see that the commutativity of (4.4.1) is
equivalent to that of the following diagram in D" (Sg, Z/p"):

(44.4) RRjx.Ex, — " Rfiix.Ex,[~1
al lﬁ
RJ*S”I s Z*gs[_]-] )
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where « is defined as the composite

base-change

a: RfiRjx.Ex, RARS'R).E, —1~ Rj.E,

and [ is defined in a similar way (note that we do not need the properness of f for this
equivalence). We prove that the commutativity of (4.4.4) is equivalent to that of (4.4.3).
For this, we first show the following:

Claim. i*RfiRjx.Ex, = " Rf.Rjx.Ex, is concentrated in degrees < 1.
Proof of Claim. Because the stalk at s of the m-th cohomology sheaf is
%m(l*Rf*R]X*an)g = Hm(X777 gX'r])

by the properness of f, it suffices to show that the group on the right hand side is zero
for m > 1. Take an open subset U, C X, which is smooth over 7 of pure dimension
d := dim(X,) and such that dim(Z,) < d, where Z, denotes the closed complement
X, N\ U,. By (0.5.2), there is a localization exact sequence

(4.4.5) e — H"(Z5,E5,) — H™(X5,Ex,) — H™(Uy, Ey,) — -+
Now we have &, = p&t![2d] by §4.0.1 for Uy, so that
H™(Uy, Eu,) = H™ Uy, pii*)

which vanishes for m > 1 because cd(Uy) < 2d + 1, cf. the proof of Lemma 4.5.1 below.
Thus the vanishing of H™ (X3, £x, ) for m > 1 is shown by induction on dim(X,) and
we obtain the claim. U

We turn to the proof of Proposition 4.4.2. By the above claim and §0.6.4 (1), a morphism
i*Rfi Rjx«Ex, — E[—1] is determined by the map of the 1st cohomology sheaves, and
thus determined by the associated map of their stalks at 5. Hence by the adjointness
between i, and ¢*, the diagram (4.4.4) commutes if and only if the diagram (4.4.3) does.
This completes the proof of Proposition 4.4.2. 0J

4.5. Result for smooth generic fiber. In Proposition 4.5.2 below we obtain a first step
towards part (3) of Theorem 4.2.1 which will also be used for the other parts. We first
show:

Lemma 4.5.1. Let .% be a torsion sheaf on (X,)«. Then R"jx..# = 0 for any m >
dim(X,) + 1.

Proof. Clearly R"jx,.% is trivial on X, if m > 0. Hence the problem is étale local on
X, and we may suppose that s = 5. Let = be a point on X. The stalk of R™jy,..%# atT is
isomorphic to H™(Spec(O z[p~"]), F), where Spec(O% ;[p~']) is written as a projective
limit of affine varieties over 7 of dimension < dim(.X,)). Hence the assertion follows from
the affine Lefschetz theorem ([SGA4] XIV.3.2) and Lang’s theorem: cd(n) = 1 ([Se]
11.3.3). OJ

Proposition 4.5.2. If X, is smooth of pure dimension d, then there exists a unique mor-
phism dx : Rjx.Ex, — ix.Ex,[—1] satisfying K.
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Proof. By §4.3 we may assume that dim(X,) < d. We have Ex, = p5¢+'[2d] by §4.0.1,
and Rjx.Ex, is concentrated in [—2d, —d + 1] by Lemma 4.5 1. On the other hand,
ix«Ex,|—1] is concentrated in degree [—d + 1, 1] by Theorem 3.6.2 and the assumption
dim(X,) < d. Hence a morphism dx : Rjx.£x, — ix«Ex,[—1] is determined by the
map 741 (§x) of the (—d + 1)-st cohomology sheaves by §0.6.4 (1). Moreover, for a
given 0, there is a commutative diagram of sheaves on Xg:

e%”_d—H(ij EX ) Rd+1 N®d+1 @ Rd+12y N®d+1

* n * n * p
Y€(Xn)a

f*d+1(5x) 'VL

B
fr—— — C%

A ix.Ex,[-1]) ixe I (Ex,) P iy,

x€(Xs)d

where « is the adjunction map, S is an inclusion obtained from Theorem 3.6.2 and -y is
the sum of dy(y,x)’s. These facts show the uniqueness of dx satisfying K;. Next we
prove its existence. For this, let us consider the following diagram of sheaves:

d+1 ; ®d+1 @ d+1,; ®d+1 1 d:
B e @ P e @ R
ye€(Xn)a we(Xn)da—1

4
32 83

i B 04
0 Z.X*jf_d(gxs) @ ZﬂC*W Q;i: Jlog @ ZZ*W Qg 101g )

2€(Xs)d—1

where o and [ are the same maps as above, and each 0; (: = 1,...,4) is the sum of
Kato’s residue maps. We have the following facts for this diagram: the right square is
anti-commutative by [KCT] 1.7 for X'; the upper row is a complex by §4.0.2; the lower
row is exact by Theorem 3.6.2. Hence 0, induces a map g as in the diagram, and we obtain
a morphism ¢y satisfying K, by extending this map (cf. §0.6.4 (1)). This completes the
proof. U

4.6. Case of points. We will prove Theorem 4.2.1 (1) by induction on dim(.X,,). We start
with:

Lemma 4.6.1. Theorem 4.2.1 is true for X with dim(X,) = 0.

Proof. First we show 4.2.1 (1). By Lemma 4.3.1 and Remark 4.3.2 we may assume that X
is integral and proper. Then f : X — S is flat and finite by [EGAIN] 4.4.2, and moreover,
X is irreducible because S is henselian and X is irreducible. Let ;' : ' — X (resp.
i’ + s/ — X) be the generic (resp. closed) point. Then " = X, and ' — 7 is finite
étale, because X is integral and ch(K’) = 0. On the other hand, s’ — s is finite étale as
well by the perfectness of k, and this map factors as the composite of a nilpotent closed
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immersion s’ < X, with f, : X; — s. Therefore we have £x, = i,» and Ex, = Z/p".
Now let

Ox : Rjx«Ex, — ix«Ex,[—1]

be the composite morphism Rjx.fiyn — R'jxapin|[—1] — ix.Z/p"[—1], where the last
morphism is given by the map 8}72“}5/. Because 0x satisfies K, by definition, our task is
to show the equality x = 63 "(:= Rf'(6¥")). Moreover, by the finiteness of f and
Proposition 4.4.2, we have only to show the commutativity of the diagram

(4.6.1) HY (1, i)

8val
n’,s
trf \L \

Hl(nnup") HO(S7Z’/pn)7

assuming that s = s’ = 5 (that is, & is algebraically closed). We show this commutativity.
Let By be the affine ring of X, let B be the normalization of By, let L be the fraction field
of B and let x be the closed point of Spec(B). By definition, 8;‘?}8 is the composite

H' (0, ) — H (2, Z/p") == H°(s,Z/p").

where the first map is given by the normalized valuation vp on L™ and the second map is
induced by the isomorphism = = s. On the other hand, there is a commutative diagram

L*[p* ——= H' (', jip)

NL/K\L ltrf

K>*/p" —— H'(n, pym)

where Np,/x denotes the norm map (cf. [SGA4] XVIIL2.9 (Var 4)), and the horizontal
arrows are boundary maps coming from the Kummer theory for ' and 7, respectively.
Therefore the commutativity of (4.6.1) follows from the fact that vp = v4 o N /. Now
we prove the other parts of Theorem 4.2.1 for X. By §4.3 we may assume that X is
reduced. Then, since dim(X,) = 0, X, is smooth, and Proposition 4.5.2 implies that
554 is the only morphism satisfying Ko. O

4.7. Induction step. Consider the following situation. Suppose that X is reduced, sep-
arated of finite type over .S, that X, has dimension d > 1, and that X, is dense in X.
Choose a smooth affine dense open subset U,, C X,,. Let Z,, := X, \ U,, with the reduced
structure, let Z be the closure of Z, in X, and let U = X ~ Z. Then the composite
morphism f : Z — X — S'is flat, and hence we have

4.7.1) (Us)a = (Xs)a-
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‘We name the canonical immersions as follows:

UC]U iU )U

Consider a diagram of the followmg type in DV (X, Z / p"):

4.72)  uRjz.Ez, Rjx.Ex, Ro,Rju.Eu, —= . Rjz.E7,[1]
6§l OIS @ 5 ®) agmi
. ve o) ¢* Y e2[-1]
Veizlz,[—1] —ix.Ex,[~1] — R Rip. &y, [—1] —— .iz&z7, .

Here we put

55 = u(05) = uRFL(GE), e = B5(Rix.Ex,), = 655 (ixEx.),
the horizontal rows are the distinguished triangles deduced from the obvious localization
triangles (cf. (0.5.2)) and the base-change isomorphisms
Rw‘RJ’X*an = Rjz.E7, , ¢*Rjx.Ex, = Rjv.&u, ,
Rlix.Ex, = iz.E7, P ix.Ex, = Riy.&u, .

Lemma 4.7.3. If 0 is given, there is at most one morphism 6, making the squares (1) and
(2) in (4.7.2) commutative.

Proof We want to apply Lemma 0.6.3 (3). Because U,, is smooth and affine, we have
Eu, = po2d] by §4.0.1, and C = R(¢jj)+Ey, is concentrated in [—2d, —d + 1] by a
s1m11ar argument as for Lemma 4.5.1. On the other hand, because dim(X) < d, ix.Ex. is
concentrated in [—d, 0] by Theorem 3.6.2 (note that iy is a closed immersion). Similarly,
A" = 1,iz.E4, is concentrated in [—d + 1, 0], because we have dim(Z;) < d — 1 by the
flatness of f; : Z — S. Therefore we get
HOI’I]D(Xz/pn)(C, A/) =0.
On the other hand, for A = ¢, Rjz.Ez, and C" = R¢, Riy.Ey,[—1] we have
HomB%XVZ/p")(A7 C/) = HomD(X,Z/p") (¢*RjZ*an7 R¢*RiU*gUs [_2])
= Homp(x z/pm) ("« Rjz+E 2, , Riv«€u,[-2])  (adjunction)

So the lemma follows from Lemma 0.6.3 (3). [

Lemma 4.7.4. Consider the diagram (4.7.2) and assume that 6o = R¢.(5y) where dy -
Rjy.€u, — Riy.Eu, denotes the morphism obtained by applying Proposition 4.5.2 to U.
Assume that Ky holds for 65
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(1) If X is integral, then the square (3) in (4.7.2) commutes. Consequently, there
exists a morphism 6, which makes the squares (1) and (2) in (4.7.2) commutative
at the same time.

(i) If f :+ X — S is proper, then any morphism 6, making the square (1) in (4.7.2)
commutative necessarily coincides with 65",

Proof of Lemma 4.7.4. (i) As we have seen in the proof of lemma 4.7.3, R(¢jv).Ev, is
concentrated in [—2d, —d + 1] and 1, .E, is concentrated in [—d + 1, 0]. By these facts,
the square (3) commutes if and only if the square of the induced homomorphisms on the
(—d-+1)-st cohomology sheaves commutes. We prove this commutativity on cohomology
sheaves. By Theorem 3.6.2, we have

AN igz,) = Viige N EL) = P WO

xz,log *
2€(Zs)da—1
Hence we may suppose that (Z)4_1 is not empty, and the problem is local at each point
in (Z5)4—1. Now fix a point z € (Z;)4_1, and define B (resp. C, D) as Spec(Ox ;) (resp.
U xx B, Z xx B), and let o be the open immersion C,, — B. Note that B is integral
local of dimension two and that D,, and E := (C}),q are finite sets of points in B* C X*.
Our task is to show the commutativity of the following diagram on By:

o
(4.7.5) R o5t — B Rli.pb!
z€Dy

d
4 5

06
d —_—

. . d—1
@ Zy*m Qy,log Lo W QxJog ’

yeE

where for a point v € B, we wrote ¢, for the map v — B and we have used the iso-
morphisms £z, |p, = py[2(d — 1)] (cf. §4.0.1) and Ey,|c, = W, Q% ., (cf. Theorem
3.6.2). Each §; (i = 3,...,6) denotes the map obtained by restricting the corresponding
morphism in the square (3) of (4.7.2). Now let w be the generic point of B and let « be
the adjunction map R o, St — R4, u55 ! We have the following facts for the
maps in (4.7.5).

e 03 factors, by §4.0.2, as

D. o
. pd+1 d+1 @ pd+l; d+1 : d; d
03 1 R*" a*,uff’nJr 5 R4 zw*p§n+ — @ R zz*uffn .
z€Dy
e ¢, factors as

®, o,
. pd+1 Qd+1 d+1; @d+1 Y M . d
0y : R oupupn ™ — R™ uptyn - —— Gy W 2 1og
yer

by the construction of d; (cf. Proposition 4.5.2).
® 05 =) . D, 8:“}6 by the assumption of the lemma.
® 06 == e dy%. by Theorem 3.6.2 and the construction of .Z; x , cf. §3.5.

y7x
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Therefore we obtain the commutativity of (4.7.5) from a result of Kato [KCT] 1.7 for B,
by noting that B* = (C,)' [ D, || F and that Im(c) is contained in the kernel of the

map
@ azvualu : Rdﬂiw*u?ndﬂ N GB Rdiu*uz?nd
v ve(Cpy)t
(cf. proof of Proposition 4.5.2). This completes the proof of Lemma 4.7.4 (i), because its
second claim follows with §0.6.2.
(ii) By the properness of f and Proposition 4.4.2, we have only to show the commuta-
tivity of the right square (1)” of the following diagram, assuming that s = s:

(4.7.6) HY(Z,,&7,) e HY(X,, Ex,) Lme)

Rf*(éé)l (1Y Rf. (&)l " 6V§“l

H(Z,,E5,) —> HY(X,, Ex,) 2> H(s,E,),
where for a proper morphism g of schemes, we wrote g, for the adjunction map Rg, Rg' —
id. The outer square of this diagram commutes, because 65 = 1, Rf(5%") and the com-
posite

RfzRfy = R RY'RF 5 RERF L5 id
is functorial (in fact, this coincides with fz,). On the other hand, the square (1)’ com-
mutes, because §; makes the square (1) in (4.7.2) commutative. Moreover, in view of
the exact sequence (4.4.5), the upper horizontal arrow 1, in (1)’ is surjective, because we
have
Hl(Unqun) ~ H2d+1(Un,M§yfl+1) =0

by the assumptions that s = 5 and that U, is smooth affine of dimension d > 1 (cf.
Lemma 4.5.1). Therefore (1)” is commutative, and we obtain Lemma 4.7.4 (ii). L]

4.8. Proof of Theorem 4.2.1. First consider Theorem 4.2.1(1). By Lemma 4.3.1 and
Remark 4.3.2 it suffices to show:

() Forintegral X, 63 := Rf'(5") satisfies K, with d := dim(X,,).

We show this property by induction on d = dim(X,,). The case d = 0 is settled by Lemma
4.6.1. Now let dim(X,) > 1 and choose U and Z = X \ U as in §4.7. Assume that
dy = R, (6y) with 0y as in Lemma 4.7.4. The assumption of this lemma holds because
() holds for Z by induction assumption. Therefore there is a morphism ¢; making (4.7.2)
commutative, and this morphism is §; = §5*%. We conclude that 0y = ¢*(65*) =
6o7val. Hence 657 satisfies K, (by choice of d;7), and 65" satisfies K, as well, because
(X,)a = (U,)q by density of U in X, and (X;)q = (Us)q as noted in (4.7.1).

Theorem 4.2.1 (3) now follows from Proposition 4.5.2, because 65 ¥ satisfies K.

Theorem 4.2.1 (2) follows once more by induction on d = dim(X,,), the case d = 0
being given by Lemma 4.6.1. If d > 1 we may assume that X is reduced and then again
choose U and Z = X ~\ U as in §4.7. Assume that a morphism

01 : RjxiEx, — ix«Ex,[—1]
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satisfies K, for all ¢ > 0. Then Ry'(6,) satisfies K, for all ¢ > 0 and agrees with syl
by induction assumption. On the other hand, ¢*(0,) satisfies K, and thus coincides with
657¥ by Theorem 4.2.1 (3) just proved. The conclusion is that §; makes the square (1)
of (4.7.2) commutative with 65 = ,(63"), and the square (2) of (4.7.2) commutative
with 65 = Rg.(05*"). Since obviously §5*% makes these diagrams commutative as
well, Lemma 4.7.3 implies §; = 55 as wanted. This concludes the proof of Theorem
4.2.1. O

4.9. Dualizing complexes. We apply our results to the study of dualizing complexes as
indicated in part §0.2 of the introduction. Let f : X — S be separated of finite type, and
define

Ex == Rf'Z/p"(1)s € DY (Xa, Z/p").
Also, let Ex, = R f,!]upn and £x, = Rf\Z/p", as we defined at the beginning of this

section. Then, by applying Rf' to the exact triangle (1.1.2) and using the base-change
isomorphisms as in (4.4.1) we get a canonical isomorphism of exact triangles

55 -val
49.1)  ix.Ex. |- K ey — L RivEx, —ix.Ex
Rf!( ) n Rf!(t) f ( val
Rf'6.Z/p"[-2) == Rf'Z/p"(1)s —= Rf' Rjupyr —= Rf'i.Z/p"[~1],

where gy and ¢x are the adjunction maps for 7y and jx, respectively. By Theorem 4.2.1
the morphism &5 satisfies the localization property K, for all ¢ > 0 (i.e., is locally
given by Kato’s residue maps), and is determined by this property (and just by K, if X, is
smooth of dimension d). Moreover, by Lemma 4.9.5 below (see also (1.4.2) below), we
see that

(4.9.2) O™ = —0% . (Ex).

Because the dualizing complex is Zx ,» = Ex|[2| by definition (cf. §0.2), this equality
implies the last claim in the part (iv) of §0.2. In fact, it is easy to see that the local
version treated in this section can be extended to the more global situation described in
the introduction.

Lemma 4.9.5. Consider cartesian squares of schemes

XZC—i>X<L>XU

| o o |

7oy <L oU,

where i’ is a closed immersion and j' is the open immersion of the complement U = Y\ Z.
Then, for any complex of torsion sheaves ¥ € D™ (Yy) the base-change isomorphisms
give an identification

Rf!(é}?,cz(%)) = 51)?(;],XZ(Rf!‘%/) .
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Proof. There is a commutative diagram with distinguished rows

_ sloc !1/
XU,XZ( :

L RINRf'H) "= Rf' A = Rj.j*(Rf' )

Blz a ﬁ[l}lz
v —Rf' (815, ()

R R )T R D R Ry ) RFGLRI 1],

where the top row is the localization exact triangle (0.5.2) for Rf'.#", the bottom row
is obtained by applying Rf' to a localization exact triangle for .#  and the arrow f3 is
a base-change isomorphism. By adjunction, the left hand square commutes. Therefore
there exists a morphism « which makes the other squares commute (see §0.6.2). By
the commutativity of the middle square, o is mapped to the identity under the canonical
isomorphisms

Hompx)(Rj.j*Rf' S, Rf Rj.j"* %) = Hompun (j*Rf A, j*Rf Rj.j"™* X )
= Homp ) (j*Rf' A, j*Rf H) .

But this means that « is the base-change isomorphism, and the claim follows. 0J

4.10. Bloch-Ogus complexes and Kato complexes. As an application, used in [JS]
2.20, 2.21, we deduce the following result on Kato complexes, analogous to §2.5 and
§3.11. As in [JS] p. 497, we define a homology theory on all separated S-schemes
f + X — S of finite type by letting

Ho(X/8,Z/p"(-1)) := H™*(X, Rf(Z/p"(1)5)),

and, following the method of Bloch and Ogus, a niveau spectral sequence
(4.10.1)

Ey(X/S.Z/p"(-1)) = € Hewelw/S.Z/p"(=1)) = Heo(X/S, Z/p" (1)),
z€(X/8)q
where H,(z/S;Z/p"(—1)) is defined as the inductive limit over all H,(U/S,Z/p"(—1)),
for all non-empty open subschemes V' C {z}. See (2.5.6) for the definition of (X/5),.
Then we have

Theorem 4.10.2. (1) For X = X,, the spectral sequence (4.10.1) is canonically iso-
morphic to the spectral sequence

E;fl,t+1( ﬁ/naz/p @ Hq+t($/777Z/pn(_1))
z€(Xn)g—1
= Hyt( X/ Z/p" (1))
obtained from (2.5.7) after shifts in the both degrees.

(2) For X = X, the spectral sequence (4.10.1) is canonically isomorphic to the spec-
tral sequence

E;,t+2<Xs/5>Z/Pn) = @ Hyiy2(x/s,Z/p") = Hyy112(Xs/8;Z/p")
2€(Xs)q

obtained from (3.11.2) after a shift in the second degree.
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(3) Letx € (X/S),N X, = (X,),andy € (X/S) 41 N X, = (X)), with z € {y}.
Then there are canonical purity isomorphisms
Hy1(y/ S, Z/p"(=1)) = H*" Ny, Z/p"(q + 1)) ,
Hyye(2/S,Z/p"(=1)) = H""*(2, Z/p"(q)) .

Via these isomorphisms, the (y, x)-component
dyi1e(y, ) - H7H Y, Z/p" (g + 1)) = H™' (2, Z/p"(q))

of the differential d g1 i1 (4.10.1) coincides with 8;3}6
(4) The isomorphisms in (1), (2) and (3) induce isomorphisms

E; (X/S, Z/p"(~1)) = G (X))

between Bloch-Ogus complexes and sign-modified Kato complexes.

Proof. (1) and (2) are obvious from the isomorphisms (1.1.3). The first claim in (3) is
clear from the fact that m meets X, and the isomorphisms then follow from (1) and (2)
and the purity isomorphisms (2.5.8) and (3.11.4), respectively. For the third statement of
(3) we recall that the upper exact triangle in (4.9.1) induces isomorphisms

tX ];}‘C:X = an and gx ng = RZ'XEX

identifying 05" with the connecting morphism —d%°  (Ex), cf. (4.9.2). Since 63"

induces Kato’s residue maps, we get the claim. As for (4), the compatibility d*(y,z) =
8““ between the differentials and Kato’s residue maps follow from (1) and Theorem

2.5. 10 for y,z € X,, and from (2) and Theorem 3.11.3 for y,x € X,. The remaining

case is covered by (3). O

Remark 4.10.3. It is easy to see that this theorem proves the claims in [JS] 2.20 and 2.21,
except that the signs needed to be corrected. The reason for this lies in the interpretation
of the connecting morphism and the resulting minus sign in (0.5.2).

4.11. Unicity of the cone. As a complement we show the following unicity result for
Ex = RfY(Z/p™(1)%). Recall the situation at the beginning of this section

X, 2 x oy,

fnl O fl O fai
J i

n ¢ S ’5,

and the associated exact triangle, cf. (4.9.1)

55‘ -val
ix.Ex,[-2] —= Ex — Rjx.Ex, = ix.Ex[~1].

Theorem 4.11.1. The object Ex is uniquely determined, up to unique isomorphism, as
the mapping fiber of 55 .
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Remark 4.11.2. There is a similar uniqueness claim in §0.2 (iv) in the situation where S
is the spectrum of the integer ring in a number field. This follows from the same arguments
as the proof of Theorem 4.11.1 below by replacing

jin—=S with  S[p~' < S,
1:8— 8 with X — S,

Jx Xy = X with  X[p™'] — X,
ix : Xy — X with Xy — X,

where X denotes the set of all closed points on S of characteristic p.

Proof of Theorem 4.11.1. By Lemma 0.6.3 (3) it suffices to show
(i) Homp, . 5y (ix:Ex, [=2], Rix.Ex,) = 0.
(i) Hompx z/pm)(Rix«Ex,,ix.Ex,[—2]) = 0.
(1) follows by adjunction for jx, because jytx. = 0. As for (i), since
Hompx z/pm) (Rjx«Ex,, ix+Ex,[—2]) = Homp(s z/pm) (R faix Rjx«Ex,, L/p"[—2])
by adjunction for 2x and f, it suffices to show
Lemma 4.11.3. Rfqix Rjx.£x, is concentrated in [—2d, 1], where d = dim(X,).
We first show the following result, which may be of own interest.

Lemma 4.11.4. Let k be a field, and let f : X — Spec(k) be separated of finite type, and
let n be a positive integer which is invertible in k. Then RfiRf'Z/n (i) is concentrated in
[—2d, 0], where d := dim(X).

Proof. We proceed by induction on d = dim(X). We may assume that k is separably
closed, that ¢+ = 0 and that X is reduced, and then the case d = 0 is clear. Choose
an affine open subset U C X which is smooth of pure dim d and whose complement
Z := X ~ U has dimension e < d — 1. We get a commutative diagram

¢ ¥

Uc¢ X > 7
e
Spec(k)

where ¢ (resp. ) denotes the natural open (resp. closed) immersion, and we defined
fu = foo¢and f; := f o1. We note that ¢ is affine, because X is separated over k (if
V C X is affine, then ¢~ (V) = U NV is affine). There is an exact triangle
R RU'RFZ/n — RARFZ/n — RfIRG. O RFZ/n - .
Since U is smooth of pure dimension d, we have
O*Rf'Z/n = Rf,Z/n =2 Z/n(d)[2d] .
Moreover we have Ry Rf' = Rf}. Therefore we can identify the above triangle with

(4.11.4) RfnRfyZ/n — RARFZ/n — RfRG.Z/n(d)[2d] - .
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Since Rfz Rf,7Z/n is concentrated in [—2d + 2,0] by induction, it is enough to show
that A := RfiR¢.Z/n(d)[2d] is concentrated in [—2d, 0]. Obviously A is concentrated
in degrees > —2d, because this holds for Z/n(d)[2d]. On the other hand, we note that
Z/n(d)[d] is a perverse sheaf on U ([BBD] p. 102), so that R¢.Z/n(d)[d] is perverse,
because ¢ is an affine open immersion (and hence ¢-exact for the perverse ¢-structure loc.
cit. 4.1.10 (1)), and that A = Rf R¢. Z/n(d)[d] is of perversity < d (loc. cit. 4.2.4), i.e.,
lies in DP<4(k, 7 /n) = DP<C(k,Z/n)[—d]. This means that

A€ D'k, Z/n).

Since the perverse t-structure is the classical ¢-structure on Spec(k), we get that A is
concentrated in degrees < (. Thus we obtain Lemma 4.11.4. O

Proof of Lemma 4.11.3. We may assume that X is reduced and the closure of X,,. Then
we prove the lemma by induction on d = dim X,. The case d = 0 is easy and left to the
reader. Suppose d > 1. Then there is a commutative diagram

UCLX&)Z
\lf/
S,

where ¢ is an open immersion, U, is affine, smooth over 7 and has pure dimension d, 1) is
the closed immersion of the complement Z = X \ U (with reduced subscheme structure),
and dim Z,, < d — 1. We get an exact triangle

4.11.5) iy Rjxstn: RULEx, — % RjxsEx, — Tx RixeRop:Ex, —,

where we used morphisms in the following diagram:

U, U <oy,

o ae] ™S

Jjx ix
X, P X <O, 5.

of o oo

ZnCLZJL)ZS

By the proper base-change theorem for ¢ we identify
ZE(R]X*@Z)n*RIﬂ;]gXU = Z§(¢*R]Z*8Zn = @st*i}RjZ*an .
Because ¢ is étale and U,, is smooth of pure dimension d, we have
Rn.dnEx, = Royulu, = Ry [2d]

Therefore triangle (4.11.5), after application of R f,, leads to an exact triangle

RgaiyRjz.E2, — Rfaiy Rjx.Ex, — Rfs!i}RjX*R%*M?ndH[?d] AN

Since the first term is concentrated in [—2d + 2, 1] by induction, it suffices to show that

(4.11.6) A= Rfyis Rjx Ryt [2d]

p
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is concentrated in [—2d, 1]. It is clearly concentrated in degrees > —2d, because this
holds for ufnd“ [2d]. We prove that A is concentrated in degrees < 1 in what follows. By

the proof of Lemma 4.11.4, R¢,). /L?nd+1 d] is a perverse sheaf, i.e.,

P = (%pq<R¢n*ﬂ®nd+l[d]) = Rq+d¢n*u®nd+l

p p
has support in dimension < —q. In particular, it is non-zero only for —d < g < 0. We
will prove

Claim. The sheaf i% R™jx. 2% is zero for m + q > 1.

We see that i 2] xR u?ifl“[d] is concentrated in degrees < 1 by the claim and the
Leray spectral sequence

E3® = ix R*jx. 2" = AT (i RixoRoypiii ™ [d])

p

Moreover since dim X < d (see the beginning of proof of Lemma 4.11.3) and ch(s) = p,
we see that
Ald] = Rfai% Rjxe R [d]

p
is concentrated in degrees < d + 1, so that A is concentrated in degrees < 1. Thus it

remains to show the above claim. By the remark before the claim, it suffices to prove

Lemma 4.11.8. If .Z is an étale sheaf on X,, with dim(Supp .%) < b, then we have
dim(Supp iXx R"jx«Z#) <b for m >0,
and i R"jx..# =0 form > b+ 1.

Proof. By assumption, there is a closed subset V' <y X, of dimension < b such that
F =19 with¥ = *Z. LetY =V, the closure of V in X endowed with the reduced
subscheme structure. Then V' = Y),, and Y, has dimension < b. We get cartesian squares

Y, Ir Y PR Y,
L"fn/l O N1 O H;l
X, x B x,
with x, k,, and K, being closed immersions. Since .# = k,,¥, we get
ixR'jxeF = ixR " jxbn¥d = ixk Ry Y = kaiy Ry, 9,
where the last equality is a base-change isomorphism. This shows that i% R"jy..# has

support in Y, i.e., in dimension < b. Finallly, since R™jy,¥ = 0 form > b+ 1 by
Lemma 4.5.1, we have i\, R" jx..# = kgiy R™jy.9 = 0form > b+ 1. O

This completes the proof of Lemma 4.11.3 and Theorem 4.11.1. 0

By the above results, we obtain the following bounds for Ex = Rf'(Z/p"(1)%).

Corollary 4.11.9. Put d := max(dim X, dim X). Then:
(1) i*RfiEx is concentrated in [—2d, 2).
(2) j*RfEx is concentrated in [—2d, 0).
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In particular, RfEx is concentrated in [—2d, 2).

Proof. (1) Consider the exact triangle

PR fix.Ex,|~2] —= " RfEY —= " RiRjx.Ex, —= .

A B C

Here

A= Rfs!gxs [_2] and C= Rfs!i}RjX*gX,,
by the proper base-change theorem. Since C' is concentrated in [—2d, 1] by Lemma 4.11.3,
it is enough to show that A is concentrated in [—d+2, 2]. Since Ex, = .4, x, by Theorem
3.6.2, the complex Ey, is concentrated in [—d, 0] and any non-zero section of ¢ (Ex,)
has support of dimension < —gq. This implies that

R™fa%Ex,) =0 for m+q> 0.

Indeed, Rfs commutes with inductive limits of sheaves, and for any separated of finite
type morphism ¢ : Z — s with dim(Z) = e and any p-primary torsion sheaf .% on Zg,
the complex Rg.% is concentrated in [0, e]. Therefore R fEx, is concentrated in [—d, 0],
and A is concentrated in [—d + 2, 2].

(2) Since

j*Rf!gX = an!an = an[Rf:?,upn s
the assertion follows from Lemma 4.11.4. O
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APPENDIX A. TRACE MAPS FOR LOGARITHMIC HODGE-WITT COHOMOLOGY

For the definition of the Kato complexes one needs corestriction maps
(A.0.1) Cory, i« H’(L, W 10e) — H (K, W Q% 1og)

for logarithmic Hodge-Witt cohomology and finite extensions L/ K of fields of charac-
teristic p > 0 (cf. §0.7 or [KCT]). These are not defined explicitly in [KCT], but Kato
constructed such maps in earlier papers and referred to results in these papers. In this ap-
pendix we discuss Kato’s construction and some alternative descriptions used in the main
body of the paper (cf. Lemmas A.1.1, A.2.6 and Corollary A.2.8 below). Recall that the
groups above are non-zero only for j = 0, 1.

A.1. The case 3 = 0. First we consider the case ;j = (0. Here the definition (0.7.3)
works for arbitrary extensions L /K. But in the following situation this corestriction map
coincides with Gros’ Gysin maps.

Lemma A.1.1. Let k be a perfect field of characteristic p > 0, and let r > 0 be an integer.
For a finite extension L/ K of finitely generated fields over k, the following diagram is
commutative:

N/

KM(L)/p" KM (EK) /p"

hT:dlogl \LhT:dlog

Gys
HO(2, W, ) —> HO(a, W, )

z,log z,log

where z := Spec(L), x := Spec(K) and Gys; denotes Gros’ Gysin map for the finite
morphism f : z — x, cf. §3.1. The vertical arrows are the differential symbol maps, and
N1k denotes the norm map of Milnor K-groups. In other words, the corestriction map
Cory/ i of (0.7.3) coincides with Gys .

This property was first shown by Shiho under the assumption » = [K : K?] (unpub-
lished). Later he gave a proof for general » but under the assumption n = 1 ([Sh] p. 624
Claim 2). We include a simplified proof of Lemma A.1.1 to extend his result to general r
and n, which will be useful in §A.2 below.

Proof. By the transitivity properties of Gros’ Gysin maps (cf. (P2) in §3.1) and the norm
maps ([Kal] p.626 Proposition 5), we may suppose that L /K is a simple extension, i.e.,
L = K(«) for some o € L. Fix an K-rational point oo on P! := PL and an affine
coordinate ¢ on P! \ {oo}. We regard z = Spec(L) as the closed point on P \ {oo}
corresponding to the minimal polynomial (in ¢) of o over K. By a result of Bass and Tate
[BT] p. 379 (7), there is an exact sequence

M 9 M N M
(A.1.2) KM (K1) = @ KM(k(v) = KM (K) — 0,

ve(Pl)g

where N denotes the sum of the norm maps ([V, /x)ve(ﬂbl)o of Milnor K-groups. This
sequence yields the upper exact row in the following commutative diagram:
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(A13)  KM(K@®)/p"—= P KM(x)/p" — = KM(K)/p

UE(HDI)O
dlog dlog
1 8, 0 i>
H ( W Q:]Jlrog> @ H (U W Q:} log) H (l‘ W Qa: log)
ve(Pl)g

Here we put 7) := Spec(K(t)), and @' is induced by (0} ),c(p1),- The square commutes
by the definition of 8,‘;?11)’5. The arrow G denotes the sum of the maps (G,),e(p1),, Where
G, is Gros’ Gysin map for the morphism v — z. We will show

Claim. The lower row of (A.1.3) is a complex.

This claim implies that the above commutative square induces a map

KM(K)/p* — HO(z, W,

T 10g)

Because the co-components of N and G are identity maps, this induced map must be
dlog. In particular, N,/ commutes with G, = Gys; via the dlog maps. Therefore it
remains to show the claim.

Proof of Claim. Let g : P* — x be the structure map, and consider the following diagram:

T 8, T T
QnJlr(}g @ HO(U W Q log) 4> HO(SE W Qz log)
ve(Pl)g
- Gys,
W)~ D HIELWOE,) T H P W),
ve(Pl)g

where GG’ is induced by the Gros” Gysin maps and the lower row is the localization exact
sequence. By the results in §3.2, which does not use this lemma, the left square commutes
up to a sign. The right square commutes by the transitivity of Gros’ Gysin maps ((P2) in
§3.1). Hence the upper row is a complex. OJ

This completes the proof of Lemma A.1.1. 0J

A.2. The case j = 1. Now we consider the case j = 1 of (A.0.1). Kato again used a
symbol map to define a corestriction map in this case for an arbitrary finite field extension

L/K of fields of characteristic p. Recall that one has an exact sequence of étale sheaves
on x = Spec(K)

—F
0 — WL — WL — WL AV — 0,

z,log
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where F' denotes the Frobenius operator and V' denotes the Verschiebung operator. We
get an associated ‘long’ exact cohomology sequence

1-F
0 — HO(x, W, ) — Wo Sl —— W Qe /dVr et S H (2, W, Q0 ,) — 0.

x,log z,log
This induces an isomorphism
(A.2.1) Coker (W, Q5 5 W, Qe /dV™1Q51) = HY (2, W, ) -

We adapt the definitions in [Kal] (where a discrete valuation field with residue field K
was treated) to directly define a symbol map for H!(z, W, Q" ).

z,log

Definition A.2.2 ([Kal]). Define the group P! (K) as
P(E) =W, (K) @ (K*)*"/ ],

where J is the subgroup of W,(K) ® (K*)®" generated by elements of the following
forms:
1 limes
i (0,...,0,a,0,...,00®a®b; Q- Qb1 (0<i<r—1a,by,...,b,_1 € K*).
() (Flw)—w) @b ®- - ®b, (w € W,(K), by,...,b. € K*). Here F denotes the
Frobenius operator on W,,(K).
(i) w®b @ @b, (we W,(K), by,...,b. € KX withb; = b; for some i # j).

We will construct a map h" : Py (K) — H'(x,W, ), and show that it is bijective.
First of all, there is a natural map

g Wo(K)®@ (K*)® — W, Q% /dV" 15t
WwRb ®-- @b, — wdlog(by) - --- - dlog(b,) mod dV" Q!

(w e W,(K), by,...,b. € K*). Fora € K, we wrote a € W,,(K) for its Teichmiiller
representative. This map ¢" annihilates the elements of .J of the form (iii).

Lemma A.2.3. Let w be an element of J of the form (i) or (ii). Then g"(w) is contained
in the image of 1 — F.

Proof. The assertion is obvious for w of the form (ii). We show the case that w is of the
form (i). Leta, by, ..., b._1 be elements of K™ and let ¢ be an integer with 0 <7 < n—1.
Put

w; = (V'a) dlog(a) dlog(by) - --- - dlog(b,—1) € W,

7; = dadlog(by) - -+ - dlog(b,_1) € W,_; Q.

We will prove
Claim. We have w; = V'z; in W}, Q%

We first finish the proof of Lemma A.2.3, admitting this claim. By the proof of [I11] 1.3.26,
7; is contained in the image of 1 — F': W,,_; 11 Q% — W, _; Q. Hence w; is contained in
the image of 1 — F': W, 1 Q% — W, Q% by the claim and the equality V F' = I'V. The
lemma immediately follows from this fact. Thus it remains to show the claim.
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Proof of Claim. Since F dlog(b) = dlog(b) (b € K*) and
Ve-y=V(z-Fy) (@€ W,_1Qs, y € W, Q%)
by [I11] 1.2.18.4, we have only to show the equality
(V'a)dlog(a) = V'da in W, .
The case 7 = 0 is clear. The case : = 1 follows from the equalities
Va) dlog(a) = (Va' ) da 2 V(a"™" - a' ") dVa = (V1) dVa 2 Vda
(Va) dlog 7

where the first equality follows from loc. cit. 0.1.1.9, and the equalities (V2) and (V3)
mean those in loc. cit. I.1.1. Finally for « > 2, we have

(V'a) dlog(a) = (V'™ (Va)) dlog(a) = V'"!((Va) dlog(a)) = V"' (Vda) = V'da.
This completes the proof of the claim and Lemma A.2.3. U

By the above, we get an induced map
g": PI(K) — Coker(W, 0 ©=5 W, Qj /dV" 1051 |
and, by composition with the isomorphism (A.2.1), the wanted symbol map
W' PI(K) = H' (2, W, Q) -

Proposition A.2.4. h" is bijective.
Proof. The case n = 1 follows from [Kal] p. 616 Corollary. For the case n > 2, consider
the commutative diagram with exact rows
By (K) By (K) P (K)
h" J/ h" l h" J/

0 H'(x, Wy ) —— H 2, W, Q) —— H' (2, ) ——0,

z,log z,log z,log

0

where we put z := Spec(K). The exactness of the lower row follows from [CTSS] p. 779
Lemma 3 and the Bloch-Gabber-Kato theorem [BK] 2.1. The exactness of the upper row
is obtained from the natural isomorphisms

P'(K)®Z/p" = P/(K) for 1<i<n.
Therefore the map A" is bijective by induction on n > 1. 0J

Now we come to the corestriction map defined by Kato. In [Kal] p. 637 Corollary 4, it
is shown that there is an exact sequence

Ch(I) — CLE) {CLH(K), T — Pi(K) — 0,

where C"(K) is a group defined in terms of the group TC K, .1 (K) considered by Bloch
[B] and 7' is an indeterminate used in defining T@KTH(K ). See [Kal] p. 636 for the
precise definition of C/(K'). By this exact sequence P! (K) is expressed by algebraic
K-groups, and in loc. cit. p. 637 Proposition 3 (1), (2) and p. 658, Kato defined a transfer
map

TrL/K : P;;(L) — PY:(K)
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using the transfer map in algebraic K -theory. The crucial claim [KCT] 1.9 then relies on
a result in [Ka2] and the corestriction map Cory,x defined as the composite

ry—1 Tr
) pron) SME PRy e H (2, W

T log)

(A25) COI'L/K CH! (Z W QZ Jog
where z = Spec(L). We show that this definition agrees with the one given in (0.7.2):
Lemma A.2.6. The following diagram is commutative:

TrL/K

£y (L) By (K)

h iz zi h

HY (2, Wy ) L% B (2, W,

z,log T 10g)

where tr, . denotes the corestriction map in the sense of (0.7.5).

Proof. We prove this lemma in a similar way as for Lemma A.1.1. By the transitivity
properties of the two transfer maps, we may suppose that L/ K is a simple extension, i.e.,
2 = Spec(L) is a closed point on P! := P, Let ) be the generic point of P!, and consider
a commutative diagram

(A2.7)  Pr(x(n)) P rix Pl (r(x))
ve(Pl)
(hr)71 l (hr‘)—l
. 3/ ) tr
B2 T @ e 2, T ) 0.
ve(Pl)g

Here O’ is defined as (8“‘ )ve p1),» tr is the sum of the maps tr,/,, and Tr is the sum
of the maps Tr,/, = Tr,{(v) /w(z)- The arrow 0 is a residue map induced by the residue
maps of algebraic K-groups (cf. [Kal] §2.1 and p. 637 Proposition 3) and the upper row
is a complex obtained from the localization theory in algebraic K-theory. The square
commutes up to a sign (loc. cit. p. 660 Proof of Lemma 3). By a similar argument as for
Lemma A.1.1, we have only to show that the lower row of (A.2.7) is exact. Consider the
following diagram:

KM (s(m)/p" —2—= @ KM (s@))/p" — = KM (x(x)) /p" — 0

ve(Pl)g
dlog |2 dlog | dlog |2
. a/ 0 Cor
W00 " @ HeW,) T H @ WL, 0,
ve(Pl)g

where the maps are defined as in (A.1.3), except that at the bottom we now have the map
Cor, the sum of the corestriction maps Cor, /.. Then the left square commutes by the
definition of the residue maps, and the right square commutes by the definition (0.7.3) of
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the corestriction maps. The upper row is exact as we have seen in (A.1.3) and the vertical
maps are all isomorphisms. Therefore the lower sequence is exact as well. Sheafifying
in the étale topology for K we obtain an exact sequence of sheaves whose stalks at the
separable closure K of K are

W L D Wl 5 W2y — 0,
’UG(]P’l)()
with 2/ = Spec(K), ¥ = n x, o' and v = v x, 2’. By taking cohomology H'(z, —)

(which is a right exact functor on p-primary torsion sheaves) and applying Shapiro’s
lemma, we obtain an exact sequence
H' (0, Woa) = @D H' (0,592 0) = H' (2, W2 1) — 0,
’I)E(]Pl)()
where tr is the sum of the race maps tr,,, and d' coincides with the map @' in (A.2.7), by

the definition of the maps 8;‘1}) Therefore this sequence coincides with the lower row of
(A.2.7), which shows the exactness of the latter. [

By Lemmas A.1.1 and A.2.6 we immediately obtain:

Corollary A.2.8. Under the same setting as in Lemma A.1.1, the following diagram com-

mutes:
TrL/K

F(L) By (K)

h iz zi h

1 Gysy 1
H'(z, W, Q! ,) —= H'(z, W, Q" ).

z,log z,log
In other words, the corestriction map in the sense of (A.2.5) coincides with Gys ;.

This property was first shown by Shiho in the case that [K : K?] = p" and n = 1 ([Sh] p.
630 Claim 3).
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