
ÉTALE DUALITY FOR CONSTRUCTIBLE SHEAVES
ON ARITHMETIC SCHEMES

UWE JANNSEN, SHUJI SAITO AND KANETOMO SATO

In this note we relate the following three topics for arithmetic schemes: a general dual-
ity for étale constructible torsion sheaves, a theory of étale homology, and the arithmetic
complexes of Gersten-Bloch-Ogus type defined by K. Kato [KCT].

In brief, there is an absolute duality using certain dualizing sheaves on these schemes,
we describe and characterize the dualizing sheaves to some extent, relate them to symbol
maps, define étale homology via the dualizing sheaves, and show that the niveau spectral
sequence for the latter, constructed by the method of Bloch and Ogus [BO], leads to the
complexes defined by Kato. Some of these relations may have been expected by experts,
and some have been used implicitly in the literature, although we do not know any explicit
reference for statements or proofs. Moreover, the main results are used in a crucial way
in a paper by two of us [JS]. So a major aim is to fill a gap in the literature, and a special
emphasis is on precise formulations, including the determination of signs. But the general
picture developed here may be of interest itself.

0.1. Gersten-Bloch-Ogus-Kato complexes. For a scheme X and a positive integer n
invertible on X , denote by Z/n(1) = µn the étale sheaf on X of n-th roots of unity, and
let Z/n(r) = µ⊗r

n be the r-fold Tate twist, defined for r ∈ Z. As usual, we let

Qp/Zp(r) = lim−→ n≥1 Z/pn(r) (for p invertible on X).

For a smooth variety X over a perfect field of positive characteristic p > 0 and integers
n > 0 and r ≥ 0, WnΩ

r
X,log denotes the étale subsheaf of the logarithmic part of the r-th

Hodge-Witt sheaf WnΩ
r
X ([Ill] Chapter I 5.7), which are Z/pn-sheaves. It is also noted

νrn,X in the literature. We denote

W∞Ωr
X,log = lim−→ n≥1 WnΩ

r
X,log ,

where the transition maps WnΩ
r
X,log → Wn+1Ω

r
X,log are given by factoring the multipli-

cation by p. Let X be a noetherian excellent scheme, and let y and x be points on X
such that x has codimension 1 in the closure {y} ⊂ X . Then for a prime number p, Kato

Date: August, 2011.
The authors are grateful to to the referee for offering numerous constructive comments to improve greatly

the presentation of the paper. The third author carried out the research for this article during his stay at
University of Southern California supported by JSPS Postdoctoral Fellowships for Research Abroad. He
expresses his gratitude to Professors Wayne Raskind and Thomas Geisser for their great hospitality. Thanks
are also due to Atsushi Shiho. The arguments for Theorems 2.1.1 and 3.1.1 were inspired by discussions
with him.



2 U. JANNSEN, S. SAITO AND K. SATO

([KCT] §1) defined ‘residue maps’

H i+1(y, µ⊗r+1
pn ) −→ H i(x, µ⊗r

pn ) (if ch(x) ̸= p)

H i(y,WnΩ
r+1
y,log) −→ H i(x,WnΩ

r
x,log) (if ch(y) = ch(x) = p)(0.1.1)

H i+r+1(y, µ⊗r+1
pn ) −→ H i(x,WnΩ

r
x,log) (if ch(y) = 0 and ch(x) = p),

where the maps of second and third type have non-zero target only for i = 0, 1, and in case
i = 1 they are only defined if [κ(x) : κ(x)p] ≤ pr. For a point x ∈ X , we wrote H∗(x,−)
for étale cohomology of x = Spec(κ(x)), so this is just the Galois cohomology of κ(x),
the residue field at x. The sheaf WrΩ

n
x,log is the inverse image of WrΩ

n
U,log, where U is a

dense smooth open subscheme of {x}. These maps are defined via the Galois cohomology
of discrete valuation fields, symbol maps on Milnor K-theory, and the valuation (see §0.7
below). Therefore we will write ∂val

y,x for these maps, and denote sheafified variants in the
same way. In particular, for i = r = 0 the first and the last maps via Kummer theory
correspond to the map

κ(y)×/(κ(y)×)p
n −→ Z/pn

induced by the discrete valuations on the normalization of O{y},x.
It has become customary to denote

Z/pn(r) := WnΩ
r
X,log[−r]

for an (essentially) smooth scheme over a perfect field of characteristic p. With this nota-
tion, all maps above have the form

∂val
y,x : H

i+1(y,Z/pn(r + 1)) −→ H i(x,Z/pn(r)) .
Suppose now that X is of finite type over a noetherian regular excellent scheme of finite
and pure dimension. Denote by (X/S)q the set of points x ∈ X of ‘virtual dimension q
over S’ (see (2.5.6) below). When S is the spectrum of a field then (X/S)q meansXq, the
set of points on X whose Zariski closure {x} has dimension q. In [KCT], Kato showed
that, for each triple of integers i, j and n > 0, the sequence

· · · −→
⊕

x∈(X/S)r

Hr+i(x,Z/n(r + j)) −→
⊕

x∈(X/S)r−1

Hr+i−1(x,Z/n(r + j − 1)) −→

· · · −→
⊕

x∈(X/S)0

H i(x,Z/n(j)) ,

whose maps have the components ∂val
y,x , forms a complex C i,j

n (X). It was a major moti-
vation for this paper to understand the maps ∂val

y,x and these complexes in terms of étale
duality.

0.2. Étale duality. A very general duality for constructible étale torsion sheaves has
been established in [SGA4]. This is a relative duality, encoded in an adjunction

(0.2.1) HomX(F , Rf !G ) ∼= HomS(Rf!F ,G )

for a separated morphism of finite type f : X → S and bounded complexes of étale tor-
sion sheaves F (on X) and G (on S) (cf. [SGA4] XVIII 3.1.4.9). There is also a derived
version, replacing Hom by RH om. To obtain an absolute duality for the cohomology
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groups of sheaves on X , in the spirit of Poincaré duality, one needs an additional duality
on the base scheme S. For arithmetic applications one is interested in schemes X of finite
type over Z. Therefore we may assume that S = Spec(ok), where ok is the ring of integers
in a number field k. Here one has the Artin-Verdier duality

(0.2.2) Hm
c (S,F )× Ext3−mS (F ,Gm) −→ H3

c (S,Gm) = Q/Z ,
where Hm

c denotes the ‘cohomology with compact support’ [KCT] which takes care of
the archimedean places of k. But the figuring ‘dualizing sheaf’ Gm is not torsion, so the
relative duality above, for a schemeX/S, does not apply. Nevertheless, for such a higher-
dimensional arithmetic scheme X , various absolute duality theorems have been obtained
(cf. [Dn], [Sp], [Mo], [Mi2], [Ge]), although always under some restrictions. For example
n-torsion sheaves for n invertible on X have been considered, or X was assumed to be
smooth over S, or X was assumed to be a scheme over a finite field.

Our approach is to introduce a complex of torsion sheaves Q/Z(1)′S on S (see Defini-
tion 1.1.1, (1.1.5)) so that one has a perfect duality as in (0.2.2) when replacing Gm,S by
Q/Z(1)′S . Next we define the dualizing ‘sheaf’ (it is really a complex of sheaves) on S as

DS = Q/Z(1)′S[2] ,
and on every separated S-scheme X of finite type as

DX = Rf !DS ,

where f : X → S is the structural morphism. Then, by using (0.2.1), (0.2.2) and addi-
tional arguments, one gets a duality (cf. §1)

Hm
c (X,F )× Ext1−mX (F ,DX) −→ H1

c (X,DX) −→ Q/Z .
This is more or less formal, but we make the following three points. First, the duality is
completely general: X and the constructible complex F can be arbitrary. Hence X may
be highly singular, and we may consider p-torsion sheaves even if p is not invertible on
X (so in particular, if X is an algebraic scheme over Fp), and the approach connects this
‘p-case’ and the case ‘away from p’ in a nice way. Secondly, we have a lot of information
on the complex DX . Thirdly, it is this information that we need for the applications we
have in mind, cf. [JS] 2.20, 2.21.

We describe the information on DX separately for each p-primary part DX,p∞ , where p
is a prime. Put

Z/p∞ := Qp/Zp and µp∞ :=
∪
n≥1

µpn .

In the rest of this §0.2, suppose n ∈ N ∪ {∞}. First we describe Z/pn(1)′S .

(i) Let S = Spec(ok) be as before. The complex Z/pn(1)′S is, by definition, the
mapping fiber of a morphism

(0.2.3) δval
S = δval

S,pn : Rj∗µpn −→ i∗Z/pn[−1] .

Here j : U = Spec(ok[p−1]) ↪→ S is the open immersion, i : Z = S r U ↪→ S is
the closed immersion of the complement, Z/pn is the constant sheaf on Z, and µpn is the
sheaf of pn-th roots of unity on U (note that p is invertible on U ). One hasRqj∗µpn = 0 for
q ≥ 2 ([Se] II.3.3 (c)), and hence δval

S is determined by the morphism R1j∗µpn → i∗Z/pn
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it induces. By adjunction and localization, this is in turn completely described by the
induced morphisms

∂x : k
×
x /p

n = H1(kx,Z/pn(1)) −→ H0(x,Z/pn) = Z/pn

for each closed point x ∈ Z = SrU , where kx is the fraction field of the strict henseliza-
tion ofOS,x and x is its closed point. Then δval

S is completely determined by defining ∂x to
be the residue map (0.1.1), i.e., as ordx ⊗ Z/pn, where ordx : k×x → Z is the normalized
discrete valuation. (Compare also section 0.8.)

Moreover, we will show that the mapping fiber of δval
S is unique up to unique isomor-

phism in the derived category of sheaves on Sét. In other words, Z/pn(1)′S is the unique
complex F with F |U = Z/pn(1), Ri!F = Z/pn[−2], and for which the canonical mor-
phism Rj∗F |U → i∗Ri

!F [1] is the morphism δval
S described above. See the remarks after

Definition 1.1.1 for details.

Now we list the properties of DX,pn = Rf !DS,pn = Rf !Z/pn(1)′S[2] for f : X → S
separated and of finite type.

(ii) For p invertible onX , DX,p∞ is the usual dualizing sheaf for the ‘prime-to-p theory’
over oK [p−1]. In particular, DX,p∞ = Qp/Zp(d)[2d] if X is regular of pure dimension d.
Here we use the absolute purity due to Gabber [FG].

(iii) For X of characteristic p, i.e., of finite type over the prime field Fp, and of dimen-
sion d, DX,p∞ is represented by the explicit complex

(0.2.4) MX :
⊕
x∈Xd

W∞Ωd
x,log −→

⊕
x∈Xd−1

W∞Ωd−1
x,log −→ · · · −→

⊕
x∈X0

Qp/Zp

introduced by Moser [Mo] p. 128 (except that we put the rightmost term in degree zero,
while Moser rather considers the complex ν̃d∞,X := MX [−d]). In fact, we generalize
Moser’s duality over finite fields

Hm
c (X,F )× Extd+1−m

X (F ,MX [−d])→ Hd+1
c (X,MX [−d]) = Qp/Zp

in the following way: We extend the duality to arbitrary perfect ground fields k of char-
acteristic p, and show that MX is in fact Rg!Qp/Zp, where g : X → Spec(Fp) is the
structural morphism. Together with the well-known Tate duality of the Galois cohomol-
ogy of finite fields, this immediately gives back Moser’s theorem. By Gros and Suwa
[GrSu] 1.6, one has MX = W∞Ωd

X,log[d], if X is regular.

(iv) Finally, for X flat over S = Spec(oK), consider the closed immersion

i : Y := X ⊗Z Fp � � // X

and the open immersion
j : U := X[p−1] �

� // X

of the complement. There is a morphism

δS-val
X = δS-val

X,p∞ : Rj∗DU,p∞ −→ i∗DY,p∞ [1]

obtained from δval
S (cf. (i)) via Rf !, where f : X → S denotes the structural map. The

source and target are studied in (ii) and (iii) above, respectively, and it is clear from the
definitions that DX,p∞ is a mapping fiber of δS-val

X . In general, such a mapping fiber is
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not unique (for the lack of the unicity of isomorphisms), but one of our main results is
the following: DX,p∞ is a unique mapping fiber of δS-val

X up to unique isomorphism (cf.
Theorem 4.11.1 and Remark 4.11.2) and moreover when U is smooth, δS-val

X is uniquely
characterized by the following property: For every generic point y ∈ Y and every generic
point ξ ∈ U which specializes to y, the induced map

Hd(ξ,Qp/Zp(d)) −→ Hd−1(y,Qp/Zp(d− 1)) = H0(y,W∞Ωd−1
y,log)

coincides with the residue map in (0.1.1), cf. Theorem 4.2.1 (3), and the same holds with
X replaced by anyX ′ étale overX . WhenX is proper (but U arbitrary), we have a similar
uniqueness property.

There is another morphism

δloc
U,Y (DX,p∞) : Rj∗DU,p∞ −→ i∗DY,p∞ [1] ,

the connecting morphism of localization theory for DX,p∞ . We will also prove that this
morphism agrees with δS-val

X up to a sign, cf. (4.9.2).

0.3. Étale homology. Let k be a perfect field, and let X be a separated scheme of finite
type over k. For integers n > 0, a and b, we define the étale homology of X by

Ha(X,Z/n(b)) = H−a(X,Rf !Z/n(−b)) ,

where f : X → Spec(k) is the structural morphism. Note that for ch(k) = p > 0, we
have Z/pr(−b) = WrΩ

−b
k,log[b], which is the constant sheaf Z/pr for b = 0, zero for b < 0

(because k is perfect), and zero by definition for b > 0. Therefore we will either assume
that n is invertible in k, or that b = 0. These groups satisfy all properties of a (Borel-
Moore type) homology theory, cf. [BO] 1.2, [JS] 2.1 (a). Thus the method of Bloch and
Ogus provides a converging niveau spectral sequence ([BO] 3.7)

(0.3.1) E1
s,t(X,Z/n(b)) =

⊕
x∈Xs

Hs+t(x,Z/n(b)) =⇒ Hs+t(X,Z/n(b)).

Here we put

Ha(x,Z/n(b)) = lim−→
V⊂{x}

Ha(V,Z/n(b))

and the limit is taken over all non-empty open subvarieties V ⊂ {x}. If V is smooth of
pure dimension d over k, then one has a canonical purity isomorphism

Ha(V,Z/n(b)) ∼= H2d−a(V,Z/n(d− b))

between homology and cohomology. This is one of the main results of the Artin-Verdier
duality [SGA4] in the case n is invertible in k, and follows from our results in §3 for the
other case. As a consequence, one has canonical isomorphisms⊕

x∈Xs

Hs+t(x,Z/n(b)) ∼=
⊕
x∈Xs

Hs−t(x,Z/n(s− b)) ,
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and the complex E1
∗,t of E1-terms of the spectral sequence can be identified with a com-

plex

· · · −→
⊕
x∈Xs

Hs−t(x,Z/n(s− b)) −→
⊕

x∈Xs−1

Hs−t−1(x,Z/n(s− b− 1)) −→

· · · −→
⊕
x∈X0

H−t(x,Z/n(−b)) ,(0.3.2)

where we place the last term in degree zero. Another main result of this paper is that
this complex coincides with the Kato complex C−t,−b

n (X) mentioned in §0.1, up to well-
defined signs. In §2 we also give an absolute variant of this result, for the case that X is a
regular excellent noetherian scheme and n is invertible on X .

Finally let X be a separated scheme of finite type over S = Spec(oK), where K is a
number field, and let n, a and b be integers. If n is invertible on X , we define the étale
homology as

Ha(X,Z/n(b)) = H−a(X,Rf !Z/n(−b)),
where f : X → S[n−1] is the structural morphism. If n is not invertible on X , we just
consider the case b = −1 and define

Ha(X,Z/n(−1)) = H−a(X,Rf !Z/n(1)′S) ,
where f : X → S is the structural morphism, and Z/n(1)′S has the p-primary components
Z/prp(1)′S from (i) for n =

∏
prp . Again, in both cases this defines a homology theory

in the sense of [JS] 2.1 (a) (cf. [BO] 1.2), and one gets a niveau spectral sequence with
exactly the same numbering as in (0.3.1). By the purity isomorphisms explained above,
the complex of E1-terms is identified with a complex

· · · →
⊕

x∈(X/S)s

Hs−t−2(x,Z/n(s− b− 1))→
⊕

x∈(X/S)s−1

Hs−t−3(x,Z/n(s− b− 2))→

· · · →
⊕

x∈(X/S)0

H−t−2(x,Z/n(−b− 1)),(0.3.3)

cf. [JS]. The difference in numbering between (0.3.2) and (0.3.3) is explained by the
purity results for the inclusion of the fibers XP ↪→ X over closed points P ∈ S. A
third main result of this paper is that, also in this mixed characteristic case, this complex
coincides with a Kato complex, viz., C−t−2,−b−1

n (X). In fact, this gives an alternative
definition of the Kato complexes under consideration, which is very useful for working
with them.

0.4. Notations and conventions. For an abelian group M and a positive integer n, M/n

(resp. nM ) denotes the cokernel (resp. the kernel) of the map M ×n→M .
In this paper, unless indicated otherwise, all cohomology groups of schemes are taken

for the étale topology.
For a scheme X , we will use the following notation. For a point x ∈ X , κ(x) denotes

its residue field, and x denotes Spec(κ(x)), the spectrum of a separable closure of κ(x).
For a point x ∈ X and an étale sheaf F on X , we define

H∗
x(X,F ) := H∗

x(Spec(OX,x),F ).
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For a non-negative integer q, we use the notation Xq and Xq only in the following cases.
If X is pure-dimensional, then Xq denotes the set of points on X of codimension q. If
X is a scheme of finite type over a field, then Xq denotes the set of points on X whose
closure in X has dimension q.

0.5. Connecting morphism of localization sequences. Let X be a scheme and let n be
a non-negative integer. Let i : Z ↪→ X be a closed immersion, and let j : U ↪→ X be the
open complement X r Z. For an object K ∈ D+(Xét,Z/n), we define the morphism

δloc
U,Z(K ) : Rj∗j

∗K −→ i∗Ri
!K [1] in D+(Xét,Z/n)

as the connecting morphism associated with the semi-splitting short exact sequence of
complexes

0 −→ i∗i
!I• −→ I• −→ j∗j

∗I• −→ 0

([SGA41
2
] Catégories Dérivées I.1.2.4), where I• is a resolution of K by injective Z/n-

sheaves on Xét. It induces the usual connecting morphisms

δloc
U,Z(K ) : Rqj∗j

∗K −→ i∗R
q+1i!K ,

or the connecting morphisms in the localization sequence for (X,Z, U):

δloc
U,Z(K ) : Hq(U, j∗K ) −→ Hq+1

Z (X,K ) .

The morphism δloc
X,U(K ) is functorial in K , but does not commute with shift functors in

general. In fact, we have

(0.5.1) δloc
U,Z(K )[q] = (−1)q · δloc

U,Z(K [q]) for q ∈ Z.
By the convention in [SGA4] XVII.1.1.1 (which we follow and is usually taken, but which
is opposite to the one in [SGA41

2
] Catégories Dérivées I.1.2.1), the following triangle is

distinguished in D+(Xét,Z/n):

(0.5.2) i∗Ri
!K

i∗ // K
j∗ // Rj∗j

∗K
−δloc

U,Z(K )
// i∗Ri

!K [1] ,

where the arrow i∗ (resp. j∗) denotes the adjunction morphism i∗Ri
! → id (resp. id →

Rj∗j
∗). We generalize the above definition of connecting morphisms to the following

situation. Let x be a point on X and let ix be the natural map x ↪→ X . We define a
functor

Ri!x : D
+(Xét,Z/n) −→ D+(xét,Z/n)

as ι∗xRi
!, where i denote the natural closed immersion {x} ↪→ X and ιx denotes the

natural map x ↪→ {x}. Note that Ri!x is not right adjoint to ix∗ unless x is a closed point
on X . Now let y and x be points on X such that x has codimension 1 in the closure
T := {y} ⊂ X . Put Y := Spec(OT,x), and let ix (resp. iy, iY , iT , ιY ) be the natural
map x → X (resp. y → X , Y → X , T ↪→ X , Y ↪→ T ). Then we define a connecting
morphism

δloc
y,x(K ) : Riy∗Ri

!
yK −→ Rix∗Ri

!
xK [1] in D+(Xét,Z/n)

as RiY ∗(δ
loc
y,x(Ri

!
Y K )). Here we defined Ri!Y as ι∗YRi

!
T .
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0.6. Derived categories. We shall often use the following facts. Let A be an abelian
category, and letD∗(A ) be its derived category with boundary condition ∗ ∈ {∅,+,−, b}.

0.6.1. A sequence A α→ B
β→ C

γ→ A[1] in D∗(A ) is a distinguished triangle if and only

if B
β→ C

γ→ A[1]
−α[1]→ B[1] is a distinguished triangle. (This is the axiom (TR2) for

triangulated categories, [SGA41
2
] Catégories Derivées I.1.1.)

0.6.2. Given a diagram

A
a //

f

��

B
b // C //

h
��

A[1]

f [1]

��
A′ a′ // B′ b′ // C ′ // A′[1]

in which the rows are distinguished triangles and the last square commutes, there is a mor-
phism g : B → B′ making the remaining squares commutative, i.e., giving a morphism
of distinguished triangles. Moreover one has

Lemma 0.6.3. The morphism g is unique in the following three cases:
(1) HomD(A )(B,A

′) = 0.
(2) HomD(A )(C,B

′) = 0.
(3) HomD(A )(C,A

′) = 0 and Hom−1
D(A )(A,C

′) = 0.

Proof. There is an induced commutative diagram with exact rows and columns

Hom(C,A′) //

��

Hom(B,A′)

��
Hom(C,B′)

b∗ //

b′∗
��

Hom(B,B′)
a∗ //

b′∗
��

Hom(A,B′)

Hom−1(A,C ′) // Hom(C,C ′)
b∗ // Hom(B,C ′) .

Suppose g1 and g2 both make the previous diagram commutative. Then the element g1 −
g2 ∈ Hom(B,B′) is mapped to zero in Hom(A,B′) and Hom(B,C ′). Under conditions
(1) and (2), either the right hand b′∗ or a∗ is injective, so the claim follows. Under condition
(3), the left hand b′∗ and the lower b∗ are both injective, and again we get g1− g2 = 0. �

0.6.4. Let q, r be integers, and let M be an object in D(A ) which is concentrated in
degrees ≤ r. Let N be an object in D(A ) which is concentrated in degrees ≥ 0. Then
we have

HomD(A )(M,N [−q]) =

{
HomA (H q(M),H 0(N)) (if q = r) · · · · · · (1)
0 (if q > r) · · · · · · (2)

Here for s ∈ Z, H s(M) denotes the s-th cohomology object of M . These facts are well-
known and easily proved, using [BBD] 1.3.2 and [SGA41

2
] Catégories Dérivées I.1.2.
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0.7. Kato’s residue maps. We recall Kato’s definition of the residue maps in (0.1.1).
Consider a noetherian excellent schemeX and points x, y ∈ X such that x lies inZ = {y}
and has codimension 1 in Z. The construction only depends on Z (with the reduced
subscheme structure). Put A := OZ,x, a local domain of dimension 1. We may further
replace Z with Spec(A).

(I) Regular case. First consider the case that A is regular, i.e., a discrete valuation
ring. Then K := κ(y) = Frac(A) is a discrete valuation field and k := κ(x) is the residue
field of A, i.e., of the valuation. The residue map

∂val = ∂val
y,x : H

i+1(K,Z/pn(r + 1)) −→ H i(k,Z/pn(r))

is obtained by restricting to the henselization Kh (which corresponds to restricting to the
henselizationAh = Oh

Z,x) and defining a map for the discrete valuation fieldKh which has
the same residue field k. Hence we may and will assume that K is henselian (i.e., A = Ah

and K = Kh). Let Ksh be the maximal unramified extension of K (corresponding to the
strict henselization Ash = OZ,x).

(I.1) If p ̸= ch(k), we first have a map

H1(K,Z/pn(1)) ∼←− K×/(K×)p
n −→ Z/pn = H0(k,Z/pn) ,

where the first arrow is the Kummer isomorphism, and the second is induced by the
valuation. This is ∂val for (i, r) = (0, 0). In general ∂val is the composition

H i+1(K,Z/pn(r + 1)) −→ H i(k,H1(Ksh,Z/pn(r + 1))) −→ H i(k,Z/pn(r)) .
Here the first map is an edge morphism from the Hochschild-Serre sequence for Ksh/K
(note that cd(Ksh) = 1), and the second map is induced by (the Tate twist of) the previ-
ously defined map.

(I.2) Now let p = ch(k) (and recall that K is henselian). In this case H i(k,Z/pn(r))
= 0 for i ̸= r, r + 1. Assume that i = r. Then ∂val is defined by the commutativity of the
diagram

(0.7.1) Hr+1(K,Z/pn(r + 1))
∂val

// Hr(k,Z/pn(r))

KM
r+1(K)/pn

hr+1 ≀

OO

∂ // KM
r (k)/pn .

hr ≀

OO

Here KM
r (F ) is the r-th Milnor K-group of a field F , hr is the symbol map into Galois

cohomology, and ∂ is the suitably normalized residue map for Milnor K-theory. By
definition,

hr({a1, . . . , ar}) = h1(a1) ∪ · · · ∪ h1(ar) ∈ Hr(F,Z/pn(r)) ,
where h1 : F×/pn → H1(F,Z/pn(1)) is defined as follows: it is the Kummer isomor-
phism if p is invertible in F , and it is the isomorphism dlog : F×/pn → H0(F,WnΩ

1
F,log)

if ch(F ) = p. It is known that, under our assumptions, the symbol maps hi in (0.7.1) are
isomorphisms ([BK] §2, §5). Finally, if π is a prime element for K, then ∂ is determined
by the property that

∂({π, a1, . . . , ar}) = {a1, . . . , ar} ,
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for units a1, . . . , ar ∈ A×, where ai denotes the residue class of ai in the residue field k.

(I.3) Now let i = r + 1. In this case we assume [k : kp] ≤ pr. Then the residue map
∂val is defined as the composition (k denotes the separable closure of k)

H1(k,Hr+1(Ksh,Z/pn(r + 1))
(∗∗)

// H1(k,Hr(k,Z/pn(r)))

Hr+2(K,Z/pn(r + 1))

(∗) ≀

OO

∂val
// Hr+1(k,Z/pn(r)) .

(∗) ≀

OO

Here the isomorphisms (∗) come from the Hochschild-Serre spectral sequences and the
fact that cdp(k) ≤ 1 and

Hj+1(Ksh,Z/pn(r + 1)) = 0 = Hj(k,Z/pn(r)) for j > r.

The map (∗∗) is induced by the map

Hr+1(Ksh,Z/pn(r + 1)) −→ Hr(k,Z/pn(r))

defined in (I.2). In [KCT] the completion K̂ is used instead of the henselization Kh, but
this gives the same, because the map

Hj(Ksh,Z/pn(r + 1)) −→ Hj(K̂sh,Z/pn(r + 1))

is an isomorphism ([KaKu] proof of Theorem 1). Indeed K̂sh/Ksh is separable by excel-
lency of X .

(II) General case. Now consider the case that A is not necessarily regular. In this case
let Z ′ → Z = Spec(A) be the normalization. Note that Z ′ is finite over Z because the
latter is excellent. Then we define

∂val
y,x(a) =

∑
x′|x

Corκ(x′)/κ(x)(∂val
y,x′(a)) (a ∈ H i+1(y,Z/pn(r + 1)))

where the sum is taken over all points x′ ∈ Z ′ lying over x,

∂val
y,x′ : H

i+1(y,Z/pn(r + 1)) −→ H i(x′,Z/pn(r))

is the residue map defined for the discrete valuation ring OZ′,x′ , and

(0.7.2) Corκ(x′)/κ(x) : H i(x′,Z/pn(r)) −→ H i(x,Z/pn(r))

is the corestriction map in Galois cohomology. For p invertible in κ(x) this last map is
well-known. For κ(x) of characteristic p and i = r, this corestriction map is defined as
the composition

H0(x′,WnΩ
r
x′,log)

(hr)−1

∼−→ KM
r (κ(x′))/pn

Nx′/x−→ KM
r (κ(x))/pn(0.7.3)

hr−→ H0(x,WnΩ
r
x,log) .

This implies that the diagram (0.7.1) is also commutative in this case. For the remaining
case i = r + 1 we may proceed as follows. It is easy to see that the map (0.7.3) is
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compatible with étale base-change in κ(x). Therefore we get an induced corestriction or
trace map

(0.7.4) trx′/x : π∗WnΩ
r
x′,log −→WnΩ

r
x,log .

Then we define the corestriction (0.7.2) for ch(κ(x)) = p and i = r + 1 as

(0.7.5) trx′/x : H1(x′,WnΩ
r
x′,log) −→ H1(x,WnΩ

r
x,log) ,

the map induced by (0.7.4). If κ(x) is finitely generated over a perfect field k, the mor-
phisms (0.7.3), (0.7.4) and (0.7.5) agree with the trace map in logarithmic Hodge-Witt
cohomology defined by Gros [Gr]. See the appendix for this and further compatibilities.

0.8. Sheafified residue maps. We further define residue maps for sheaves by sheafifing
the above residue maps of Galois cohomology groups. The setting remains as in §0.7.
Consider a noetherian excellent schemeX and points x, y ∈ X such that x lies inZ = {y}
and has codimension 1 in Z. Let ix : x ↪→ X and iy : y ↪→ X be the natural maps. We
would like to define homomorphisms of sheaves on Xét

Rj+1iy∗µ
⊗r+1
pn −→ Rjix∗µ

⊗r
pn (if ch(x) ̸= p)

iy∗(WnΩ
r+1
y,log) −→ ix∗(WnΩ

r
x,log) (if ch(y) = ch(x) = p)(0.8.1)

Rr+1iy∗µ
⊗r+1
pn −→ ix∗(WnΩ

r
x,log) (if ch(y) = 0 and ch(x) = p).

To define the first map, it is enough to construct a morphism

Riy∗µ
⊗r+1
pn −→ Rix∗µ

⊗r
pn [−1] in D+(Xét,Z/pn).

By adjunction, to define the maps in (0.8.1) it is enough to construct

i∗xRiy∗µ
⊗r+1
pn −→ µ⊗r

pn [−1]
i∗xiy∗(WnΩ

r+1
y,log) −→WnΩ

r
x,log(0.8.2)

i∗xR
r+1iy∗µ

⊗r+1
pn −→ WnΩ

r
x,log,

respectively, on xét. Let A be the strict henselization of OZ,x at x. Let Z1, . . . , Za be the
distinct irreducible components of Spec(A). Let Ai be the affine ring of Zi, which is a
strict henselian local domain of dimension 1 with residue field κ(x). Let ηi be the generic
point of Zi. Noting the fact cdp(ηi) = 1 in the first case (cf. [SGA5] I.5) and looking at
stalks, it is enough to construct

a⊕
i=1

H1(ηi, µ
⊗r+1
pn ) −→ H0(x, µ⊗r

pn )

a⊕
i=1

H0(ηi,WnΩ
r+1
y,log) −→ H0(x,WnΩ

r
x,log)(0.8.3)

a⊕
i=1

Hr+1(ηi, µ
⊗r+1
pn ) −→ H0(x,WnΩ

r
x,log),

where we have used the fact that cdp(ηi) = 1 if p ̸= ch(k). We define these maps as the
sum of the maps in (0.1.1) for the Zi’s, which provide us with the maps in (0.8.1).
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1. DUALITY FOR ARITHMETIC SCHEMES

The aim of this section is to prove a general duality for constructible sheaves on sep-
arated schemes of finite type over Z. The main result of this section will be stated in
Theorem 1.1.2 below.

1.1. Dualizing complex and higher-dimensional duality. Let k be a number field with
ring of integers ok, and let S = Spec(ok). Let p be a prime number, let n ∈ N∪ {∞} and
put U := Spec(ok[p−1]). Let j : U = Spec(ok[p−1]) ↪→ S be the open immersion, and
let i : Z = S r U ↪→ S be the closed immersion of the complement. Let Z/pn be the
constant sheaf on Z, and let µpn be the sheaf of pn-th roots of unity on U . We consider
the following diagram:

U � � j // S Z .? _ioo

Definition 1.1.1. For each integer n ≥ 1 define

Z/pn(1)′S := Cone(δval
S : Rj∗µpn → i∗Z/pn[−1])[−1] ∈ Db(Sét,Z/pn),

the mapping fiber of the morphism δval
S defined in (0.2.3).

Here Db(Sét,Z/p∞) denotes the derived category of bounded complexes of étale sheaves
on S whose sections are torsion of p-power order.

In general, mapping cone or fiber of a morphism in a derived category is only well-
defined up non-canonical isomorphism. However in our case it is well-defined up to a
unique isomorphism, because we can apply the criterion of Lemma 0.6.3 (1). Indeed the
complex Rj∗µpn is concentrated in [0, 1], A[1] = i∗Z/pn[−1] is concentrated in degree
1, and δS induces a surjection R1j∗µpn � i∗Z/pn so that the mapping fiber B is con-
centrated in [0, 1] as well. Therefore HomD(S,Z/pn)(B,A) = 0. (This argument should
replace the reasoning in [JS] p. 497, where the criterion is misstated.)

By the above, there is a canonical exact triangle

(1.1.2) i∗Z/pn[−2]
g−→ Z/pn(1)′S

t−→ Rj∗µpn
δval
S−→ i∗Z/pn[−1] ,

which induces canonical isomorphisms

(1.1.3) t : j∗(Z/pn(1)′S) ∼= µpn and g : Z/pn[−2] ∼= Ri!(Z/pn(1)′S) .

We write

(1.1.4) Qp/Zp(1)′S := Z/p∞(1)′ ∈ Db(Sét,Z/p∞),

and often also regard this complex as an object of Db(Sét). We further define

(1.1.5) Q/Z(1)′S :=
⊕
p

Qp/Zp(1)′ ∈ Db(Sét),

where p runs through all rational prime numbers. We will explain a version of Artin-
Verdier duality using Q/Z(1)′S below.
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Now let X be a separated scheme of finite type over S, with structural morphism f :
X → S. We define

DX,p := Rf !Qp/Zp(1)′S[2] and DX :=
⊕
p

DX,p (cf. §0.2).

One of the main purposes of this paper is to analyze the object DX,p for each prime number
p. We will describe DX,p over X[p−1] and X ⊗Z Fp. The restriction of DX,p to X[p−1] is
the usual étale dualizing complex. DX,p is obtained by glueing the étale dualizing complex
on X[p−1] and Moser’s complex (0.2.4) of X ⊗Z Fp. We prove that there is a unique way
to glue them when we impose some compatibilities concerning residue maps associated
to specializations from a point in X[p−1] to a point in X ⊗Z Fp (see §4.11 below).

For L ∈ D+(Xét), we define the m-th étale cohomology group with compact support
as

Hm
c (X,L ) := Hm

c (S,Rf!L ) ,

where for an étale sheaf or a complex of étale sheaves F on S, Hm
c (S,F ) denotes the

m-th étale cohomology group with compact support (see e.g., [Mi2] II.2, [KCT] §3 for
generalities). The main result of this section is the following duality (see also [Dn], [Sp]):

Theorem 1.1.2. (1) There is a canonical trace map

trX : H1
c (X,DX) −→ Q/Z .

(2) For L ∈ Db(Xét) with constructible torsion cohomology sheaves, the pairing

Hm
c (X,L )× Ext1−mX (L ,DX) −→ H1

c (X,DX)
trX−→ Q/Z

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

The proof of this theorem will cover the following subsections and will be completed
in subsection 1.5.

1.2. Artin-Verdier duality. We review the Artin-Verdier duality for number fields (cf.
[AV], [Ma], [Mi2] II.2–3). Let Gm := Gm,S be the sheaf on Sét given by the multiplicative
group. By global class field theory, we have

(1.2.1) Hm
c (S,Gm) ∼=

{
Q/Z (m = 3)
0 (m = 2 or m ≥ 4).

We normalize the isomorphism for m = 3 as follows. For a closed point y of S, let Gy be
the absolute Galois group of κ(y), and let

try,Q/Z : H1(y,Q/Z) −→ Q/Z

be its trace map, i.e., the unique homomorphism that evaluates a continuous character
χ ∈ Homcont(Gy,Q/Z) = H1(y,Q/Z) at the arithmetic Frobenius substitution φy ∈ Gy.
Then for any closed point iy : y ↪→ S of S the composition

H1(y,Q/Z) δ // H2(y,Z)
Gysiy,Gm // H3

c (B,Gm)
(1.2.1) // Q/Z
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coincides with try,Q/Z, where Gysiy,Gm
denotes the Gysin map Z[−1] → Ri!yGm defined

in [SGA41
2
] Cycle 2.1.1 (see also Proposition 1.4.1 (1) below), and the map δ is the con-

necting homomorphism associated with the short exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0.

The Artin-Verdier duality shows that for an integer m and a constructible sheaf F on Sét,
the pairing

(1.2.2) Hm
c (S,F )× Ext3−mS (F ,Gm) // H3

c (S,Gm)
(1.2.1) // Q/Z

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

1.3. Artin-Verdier duality revisited. We formulate a version of Artin-Verdier duality
replacing Gm by a complex of torsion sheaves. Let n be a positive integer, let p be a
prime, and let T be any scheme. For any étale sheaf G on T let

Gn = H omT (Z/n,G ) = Ker(G n−→ G )

be the subsheaf of sections annihilated by n, let Gp∞ = lim−→ n≥1Gpn be the subsheaf of
sections annihilated by a power of p (also called the p-primary torsion subsheaf of G ),
and let Gtors = lim−→ n≥1 Gn =

⊕
p Gp∞ be the torsion subsheaf of G .

Denote by Sh(Tét), Sh(Tét,Z/n), Sh(Tét, p
∞) and Sh(Tét, tors) the categories of étale

sheaves, étale Z/n-sheaves, étale p-primary torsion sheaves and étale torsion sheaves on
T , respectively. The exact inclusion functors

(1.3.1) Sh(Tét,Z/n) ↪→ Sh(Tét), Sh(Tét, p
∞) ↪→ Sh(Tét), Sh(Tét, tors) ↪→ Sh(Tét)

have the left exact right adjoints

(1.3.2) G 7→ Gn , G 7→ Gp∞ , G 7→ Gtors ,

respectively, and these functors derive to triangulated functors G 7→ RGn, RGp∞ , RGtors

(1.3.3)
D+(Tét)→ D+(Tét,Z/n), D+(Tét)→ D+(Tét, p

∞), D+(Tét)→ D+(Tét, tors)

of the corresponding derived categories. The functors (1.3.2) preserve injectives, because
their left adjoints (1.3.1) are exact. Hence we have

(1.3.4) RH omS,Z/pn(•, ?n) = RH omS(•, ?)

as bifunctors from D−(Sét,Z/n)op × D+(Sét) to D+(Sét,Z/n) by [SGA41
2
] Catégories

Dérivées II.1.2.3 (3). The analogous result holds for the functors ?p∞ and ?tors. In par-
ticular (taking zero degree sections), the functors (1.3.3) are right adjoint to the natural
functors in, ip∞ , itors in the opposite direction which are induced by the functors (1.3.1).

For G in D+(Tét), the objects RGn, RGp∞ and RGtors can also be regarded in D+(Tét)
(via in, ip∞ , and itors, which are omitted in the following), and the adjunctions gives canon-
ical morphismsRGn

ι−→ G inD+(Tét) and canonical factorizations for them, for positive
integers n | n′ and primes p,

RGn → RGn′ → RGtors → RG and RGpn → RGp∞ → RGtors → G .
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These induce isomorphisms

RGn
∼→R(RGtors)n

∼→RGn and RGpn
∼→R(RGp∞)pn

∼→RGpn .

The first claim holds by the following observation. If G → I . is an injective resolution,
then one has an exact sequence 0 → I•tors → I• → Ĩ• → 0 in which the components of
Ĩ• are uniquely divisible and hence acyclic for the functor G 7→ Gn. This gives an exact
sequence 0→ (I•tors)n → I•n → Ĩ•n = 0 and hence the result. The second claim follows in
a similar way. Note however, that R(RGn′)n does not in general agree with RGn.

Corollary 1.3.1. Assume that T is noetherian. For L ∈ D−(Tét) with constructible tor-
sion cohomology sheaves and G inD+(Tét), the morphism Gtors → G induces a functorial
isomorphism

RH omT (L ,Gtors) = RH omT (L ,G )

Proof. We may assume that L is a constructible torsion sheaf, by a standard argument
using spectral sequences. Then by the constructibility we may further assume that L is
annihilated by some positive integer n, and then the claim follows from (1.3.4). �

Lemma 1.3.2. Let G be an object in D+(Tét).
(1) For any positive integer n there is a canonical distinguished triangle

Gn
ι // G

×n // G
δtr
G // Gn[1] .

(2) If T is quasi-compact, then one has isomorphisms

H i(T,Gp∞) ∼= lim−→ n≥1H
i(T,Gpn) and H i(T,Gtors) ∼= lim−→ n≥1H

i(T,Gn) .

Proof. The exact sequence of sheaves 0 → Z ×n−→ Z → Z/n → 0 induces a canonical
distinguished triangle

(1.3.5) Z ×n // Z can // Z/n
δtr
Z // Z[1] .

Claim (1) folllows from applying the exact functor RH om(−,G ) to this triangle. Alter-
natively, if G is represented by a bounded below complex I with injective components,
then Gn is represented by the complex In, and the distinguished triangle in (1) is repre-
sented by the exact sequence of complexes

0 // In
ι // I

×n // I // 0 .

In these terms, Gtors is represented by the complex Itors, and the second claim in (2) follows
from the fact that I = lim−→ n≥1In and that the cohomology commutes with filtered direct
limits for a quasi-compact scheme T . The proof for the first claim in (2) is analogous. �

Applying these results to the sheaf Gm we get the following variant of Artin-Verdier
duality.

Corollary 1.3.3. (1) There is a canonical trace isomorphism

trS : H3
c (S,R(Gm)tors)

∼−→ Q/Z .
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(2) For L ∈ Db(Sét) with constructible torsion cohomology sheaves, the pairing

Hm
c (S,L )× Ext3−mS (L , R(Gm)tors) −→ H3

c (S,R(Gm)tors)
trS−→ Q/Z

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

Proof. By Lemma 1.3.2 (1), we have a long exact sequence

· · · −→ Hm
c (S,R(Gm)n) −→ Hm

c (S,Gm)
×n−→ Hm

c (S,Gm)

−→ Hm+1
c (S,R(Gm)n) −→ · · · .

By (1.2.1) and this exact sequence, we obtain Hm
c (S,R(Gm)n) = 0 for m ≥ 4 and a trace

isomorphism
trS,n : H3

c (S,R(Gm)n)
∼−→ Z/n .

We get the trace isomorphism in (1) by passing to the limit on n ≥ 1. In fact, 1.3.2 (2)
easily extends to the cohomology with compact support H i

c(S,−).
The claim (2) follows from the non-degeneracy of (1.2.2) and Proposition 1.3.1. �

1.4. Kummer theory. We establish canonical isomorphisms

R(Gm)pn ∼= Z/pn(1)′ (n ∈ N or n =∞)

where we let Z/p∞(1)′ = Qp/Zp(1)′, by definition.

Proposition 1.4.1. Let p be a prime number and let n be a positive integer or∞. Let i
be the closed immersion Y := S ×Z Fp ↪→ S, and let j be the open immersion of the
complement U := S[p−1] ↪→ S. Finally let R(Gm)pn be as above. Then:

(1) There is a canonical isomorphism βU : µpn
∼−→ j∗R(Gm)pn on Uét.

(2) For any closed subscheme iZ : Z ↪→ S of codimension 1 there are canonical
Gysin isomorphisms on Zét

GysiZ ,Gm
: Z[−1] ∼−→ Ri!ZGm and GysiZ ,pn : Z/pn[−2] ∼−→ Ri!ZR(Gm)pn .

(3) There is a unique isomorphism β : Z/pn(1)′S ∼−→ R(Gm)pn completing the fol-
lowing diagram to an isomorphism of distinguished triangles

(1.4.2)

i∗Z/pn[−2]
g //

i∗(Gysi,pn ) ≀
��

Z/pn(1)′S
t //

β ≀
��

Rj∗µpn
δval
S //

Rj∗(βU ) ≀
��

i∗Z/pn[−1]
i∗(Gysi,pn )[1] ≀

��
i∗Ri

!R(Gm)pn
i∗ // R(Gm)pn

j∗ // Rj∗j
∗R(Gm)pn

−δloc(R(Gm)pn )// i∗Ri
!R(Gm)pn [1] .

Here the top triangle comes from the definition of Z/pn(1)′S , and the bottom tri-
angle from the localization sequence (0.5.2) for R(Gm)pn .

(4) For n <∞ there is a canonical distinguished triangle (in Db(Sét))

Z/pn(1)′S
γ−→ Gm

×pn−→ Gm −→ Z/pn(1)′S[1] .
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Proof. First let n < ∞. Applying Lemma 1.3.2 (1) to G = Gm, we get a canonical
distinguished triangle

(1.4.3) R(Gm)pn
ι // Gm

×pn // Gm

δtr
Gm // R(Gm)pn [1] .

On the other hand, since p is invertible on U , there is an exact sequence

(1.4.4) 0 // µpn // Gm,U
×pn // Gm,U // 0 .

This gives canonical isomorphisms j∗R(Gm)pn = RH omU(Z/pn,Gm,U) ∼= µpn , as
claimed. Since we have sheaves on both sides we also get a canonical isomorphism
j∗R(Gm)p∞ ∼= µp∞ by passing to the direct limit.

(2) First one notes that

Rmi!ZGm
∼=

{
Z (m = 1)
0 (m ̸= 1)

(cf. e.g., [Mi2] p. 185, bottom). Therefore

HomZ(Z[−1], Ri!ZGm) = H1
Z(S,Gm) ∼=

⊕
z∈Z

Z ,

and to get a canonical isomorphism GysiZ ,Gm
it suffices to replace Z by a point z ∈ Z and

to find a canonical generator of H1
z (S,Gm). This is done by the localization sequence

O×
S,z −→ k×

δ−→ H1
z (S,Gm) −→ H1(k,Gm) = 0

for the discrete valuation ring OS,z. Now we take δ(π) as a generator for any prime
element π of OS,z.

As for the second Gysin isomorphism in (2), consider a diagram on Zét

(1.4.5) Z[−1] ×pn //

Gys ≀
��

(∗)

Z[−1] can //

Gys ≀
��

Z/pn[−1]
−δtr

Z [−1]
//

βZ
��

Z

Gys[1] ≀
��

Ri!ZGm
×pn // Ri!ZGm

−Ri!Z(δtr
Gm

)
// Ri!ZR(Gm)pn [1]

Ri!Z(ι)[1]
// Ri!ZGm ,

where Gys denotes GysiZ ,Gm
. The top sequence is a distinguished triangle by (1.3.5) and

the rule recalled in §0.6.1. The bottom distinguished triangle is obtained by applying
Ri! to (1.4.3) and shifting suitably. Now the commutativity of the square (∗) implies the
existence of a morphism βZ making the diagram commutative (cf. §0.6.2), which then
necessarily is an isomorphism. Moreover, since

HomD(Sét)(Z/p
n[−1], Ri!ZGm) ∼= HomD(Sét)(Z/p

n,Z[−1]) = 0 (cf. §0.6.4 (2)),

such βZ is unique by Lemma 0.6.3 (1). So GysiZ ,pn := βZ gives the desired canonical
isomorphism.

(The sign −1 on Ri!Z(δ
tr
Gm
) is motivated by the fact that the restriction (−δtr

Gm
)|U is the

connecting morphism Gm,U → µpn [1] associated with the short exact sequence (1.4.4),
which appears in the definition of Deligne’s cycle class [SGA41

2
] Cycle. In particular, by

our choice, GysiZ ,pn agrees with the Gysin morphism in §2.1 when Z is contained in U .)
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(3) Since Z/pn(1)′S is concentrated in [0, 1], we have

HomD(Sét)(Z/p
n(1)′S, i∗Ri

!R(Gm)pn) ∼= HomD(Sét)(Z/p
n(1)′S, i∗Z/pn[−2]) = 0 .

In view of Lemma 0.6.3 (1) and the fact that βU and Gysi,pn are isomorphisms, our task
is to show that the right hand square of (1.4.2) is commutative. Since this comes down to
morphisms of sheaves (see 0.2.3), it suffices to show this for n <∞, and the case n =∞
follows by passing to the inductive limit. For n < ∞ there is a commutative diagram of
distinguished triangles

(1.4.6) i∗Ri
!R(Gm)pn

i∗ //

ι
��

R(Gm)pn
j∗ //

ι

��

Rj∗j
∗R(Gm)pn

−δloc(R(Gm)pn )//

ι

��
i∗Ri

!Gm
i∗ //

×pn
��

Gm
j∗ //

×pn

��

Rj∗j
∗Gm

−δloc(Gm) //

×pn

��
i∗Ri

!Gm
i∗ //

δtr
Gm

��

Gm
j∗ //

δtr
Gm

��

Rj∗j
∗Gm

−δloc(Gm) //

δtr
Gm

��

,

where the columns are the distinguished triangles coming from (1.4.3), and the rows are
localization triangles. We now obtain the following diagram of sheaves on Sét:

R1j∗µpn
δval
S //

βU

''NN
NNN

NNN
NNN

(a)

i∗Z/pn
Gysi,pn

wwppp
ppp

ppp
pp

R1j∗R(Gm)pn
δloc(R(Gm)pn ) //

(c)

i∗R2i!R(Gm)pn

j∗j
∗Gm

−δtr
Gm

OO

δloc(Gm)

(e)

// i∗R
1i!Gm

−δtr
Gm (d)

OO

j∗Gm,U

−δtr
Gm (b)

OOOO

oooooooooooo

oooooooooooo

ord
// i∗Z .

can

OO

Gysi,Gm

ggOOOOOOOOOOOOO

The middle square (c) with the four δ’s comes from diagram (1.4.6) and anti-commutes,
because δloc is functorial for the morphism δtr

Gm
: Gm → R(Gm)pn [1] and we have

δloc(R(Gm)pn [1]) = −δloc(R(Gm)pn)[1] (cf. (0.5.1)).

The top arrow δval
S is induced by residue maps, so the outer square of the diagram com-

mutes by the remark after the proof of (2). The diagram (b) commutes by the definition of
βU , and the diagram (d) commutes by the definition of Gysi,pn , i.e., by the commutativity
of the diagram (1.4.5). The bottom arrow is induced by the normalized discrete valua-
tions for the points y ∈ Y , and the diagram (e) commutes by the definition of the Gysin
map Gysi,Gm

. Consequently the diagram (a) anti-commutes, and the right hand square of
(1.4.2) commutes by §0.6.4 (1). Thus we obtain (3).

Finally (4) follows from (1.4.3) and the isomorphism β in (3) by letting γ := ι ◦β. �
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1.5. Proof of the duality. By using the canonical isomorphisms R(Gm)p∞ ∼= Qp/Zp(1)′
from Proposition 1.4.1 and the deduced isomorphism

R(Gm)tors = ⊕pR(Gm)p∞ ∼= ⊕pQp/Zp(1)′ = Q/Z(1)′ ,
we immediately get the following from Corollary 1.3.3

Corollary 1.5.1. (1) There is a canonical trace isomorphism

trS : H3
c (S,Q/Z(1)′) ∼−→ Q/Z .

(2) For L ∈ Db(Sét) with constructible torsion cohomology sheaves, the pairing

Hm
c (S,L )× Ext3−mS (L ,Q/Z(1)′) −→ H3

c (S,Q/Z(1)′)
trS−→ Q/Z

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

With this we are now ready to prove Theorem 1.1.2:
(1) Let trf : Rf!DX = Rf!Rf

!DS → DS = Q/Z(1)′[2] be the canonical trace map, i.e.,
the adjunction morphism for the adjunction between Rf ! and Rf! ([SGA4] XVIII.3.1.4).
We then define the trace map trX as the composite

trX : H1
c (X,DX)

trf−→ H1
c (S,DS) = H3

c (S,Q/Z(1)′S)
trS∼−→ Q/Z .

(2) There is a commutative diagram of Yoneda pairings

Hm
c (X,L ) × Ext1−mX (F , Rf !DS) // H1

c (X,Rf
!DS)

trf
��

Hm
c (B,Rf!L ) × Ext1−mS (Rf!L ,DS) // H1

c (S,DS) ,

and the assertion follows from Corollary 1.5.1.
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2. THE CASE WHERE p IS INVERTIBLE ON THE SCHEME X

In this section, we work in the following setting. Let X be a noetherian excellent
regular scheme, let n be a positive integer invertible on X and put Λ := Z/n. For integers
q ∈ Z, put Λ(q) := µ⊗q

n , the q-fold Tate twist of the étale sheaf Λ onX orX-schemes. Let
Z ⊂ X be a regular closed subscheme of pure codimension c. By Gabber’s construction
[FG] 1.1.2, there is a cycle class clX(Z) in the étale cohomology group H2c

Z (X,Λ(c))
(without using the absolute purity), which satisfies the following three properties:

(G1) For an étale morphism X ′ → X and Z ′ := Z ×X X ′, the pull-back of clX(Z) to
H2c
Z′(X ′, Λ(c)) agrees with clX′(Z ′).

(G2) For regular closed subschemes Z ⊂ Y ⊂ X , we have clX(Y )∩ clY (Z) = clX(Z)
in H2c

Z (X,Λ(c)).
(G3) The image of clX(Z) in H0(Z,R2ci!Λ(c)) coincides with Deligne’s cycle class

[SGA41
2
] Cycle §2.2. Here i = iZ denotes the closed immersion Z ↪→ X .

2.1. Gysin maps and compatibility. For q, r ∈ Z, one defines the Gysin map Gysi as

Gysi : H
q(Z,Λ(r)) −→ Hq+2c

Z (X,Λ(r + c)), α 7→ clX(Z) ∪ α .

The main aim of this section is the following compatibility result:

Theorem 2.1.1. Let c be a positive integer, and let ix : x ↪→ X and iy : y ↪→ X be points
on X of codimension c and c − 1, respectively, with x ∈ {y}. Then the following square
commutes for integers q, r ≥ 0:

(2.1.2) Hq+1(y, Λ(r + 1))
−∂val

y,x //

Gysiy
��

Hq(x, Λ(r))

Gysix
��

Hq+2c−1
y (X,Λ(r + c))

δloc
y,x(Λ(r+c)X)

// Hq+2c
x (X,Λ(r + c)) .

To prove the theorem, we may assume that

(2.1.3) X is local with closed point x.

Put Z := {y} ⊂ X , which has dimension 1 and consists of two points {y, x}. Let iZ
(resp. ιx) be the closed immersion Z ↪→ X (resp. x ↪→ Z). The proof will be finished in
§2.4 below.

2.2. Regular case. We first prove Theorem 2.1.1, assuming that Z is regular. In this case
Z is the spectrum of a discrete valuation ring A, and we have the cycle classes

clX(Z) ∈ H2(c−1)
Z (X,Λ(c− 1)) and clZ(x) ∈ H2

x(Z,Λ(1))
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by Gabber’s construction, where clZ(x) agrees with Deligne’s construction in [SGA41
2
]

Cycle §2.2 by (G3). There is a diagram of boundary maps

Hq+1(y, Λ(r + 1))
Gysiy //

−∂val
y,x

vvlll
lll

lll
lll

ll
δloc
y,x(Λ(r+1)Z)

��

Hq+2c−1
y (X,Λ(r + c))

δloc
y,x(Λ(r+c)X)

��
Hq(x, Λ(r))

Gysιx

// Hq+2
x (Z,Λ(r + 1))

GysiZ

// Hq+2c
x (X,Λ(r + c)) .

Here Gysiy is the map taking the cup-product with clX(Z)|Spec(OX,y), by the property (G1),
and hence the right square commutes by the naturality of cup products and (0.5.1). The
composite of the bottom row agrees with Gysix by (G2). Thus we obtain the commutativ-
ity of the diagram (2.1.2), once we show the left triangle commutes. But this commuting
follows from (G3) and [SGA41

2
] Cycle 2.1.3. Indeed, by noting that

Rqj∗Λ(r + 1) = 0 for q ≥ 2, where j : y ↪→ Z,

the left triangle is induced by the following square in Db(xét, Λ):

ι∗xR
1j∗Λ(r + 1)[−1]

−∂val[−1]
��

τ≤1 ι
∗
xRj∗Λ(r + 1)

canonicaloo

δloc
y,x(Λ(r+1)Z)

��
Λ(r)[−1]

Gysιx // Rι!xΛ(r + 1)[1] ,

where ∂val : ι∗xR
1j∗Λ(r + 1) → Λ(r) denotes a map of sheaves on xét induced by the

valuation of A. We note Ri!Λ(r + 1)[1] is concentrated in degree 1. Therefore it suffices
to show its commutativity after taking the cohomology sheaves H 1(−) in degree 1, so
that we are reduced to showing the commutativity of the diagram

ι∗xR
1j∗Λ(r + 1)

−∂val

��

ι∗xR
1j∗Λ(r + 1)

δloc
y,x(Λ(r+1)Z)

��
Λ(r)

Gysιx // R2ι!xΛ(r + 1) ,

where Gysιx : Λ(r) → R2i!Λ(r + 1) is given by a 7→ clZ(x) ∪ a. By looking at the
stalks, we are now reduced to the case that A is strictly henselian and to showing the
anti-commutativity of

κ(y)×/n

ordA
��

h1

∼
// H1(y, Λ(1))

δloc
y,x(Λ(r+1)Z)

��
Λ

Gysιx

1 7−→ clZ(x)
// H2

x(Z,Λ(1)) ,

which is a consequence of [SGA41
2
] Cycle 2.1.3 (h1 is the Kummer isomorphism). Note

that we have ∂val = ordA ◦ (h1)−1 by §0.7 (I.1), and that Gysιx ◦ ordA sends a prime
element π of A to clZ(x) and hence agrees with the map induced the composition

κ(y)×
δ−→ H1

x(Z,Gm)
δ−→ H2

x(Z,Λ(1)) (loc. cit. 2.1.2).
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2.3. General case. We prove Theorem 2.1.1 in the case that Z is not regular. Take the
normalization f : T → Z. Put Σ := f−1(x) ⊂ T with the reduced subscheme structure,
which is the set of all closed points on T by the assumption (2.1.3). Note that T is regular
and that f is finite by the excellence of Z. Since a finite morphism is projective ([EGAII]
6.1.11), the map T → X factors as T ↪→ PdX → X for some integer d ≥ 1. Let ιy be the
composite map y ↪→ T ↪→ PdX . There is a commutative diagram of schemes

(2.3.1) Σ � � //

h

��

iΣ

&&
T � � iT //

f

��

P := PdX
g

��
x � � ιx //

ix

99Z � � iZ // X ,

where ix, iΣ and all horizontal arrows are closed immersions cf. (2.1.3). Now put c′ :=
c+ d = codimP(Σ), and consider the diagram in Figure 1.

�����*

HHHHHY

������

HHHHHj

?

-

-

? ?

-

-

Gysiy Gysix

GysiΣGysιy

trh

−∂val
y,Σ

−∂val
y,x

α β

δloc
y,Σ(Λ(r + c′))

δloc
y,x(Λ(r + c))

(1)

(2) (3) (4)

(5)

Hq(Σ,Λ(r))Hq+1(y, Λ(r + 1))

Hq+1(y, Λ(r + 1)) Hq(x,Λ(r))

Hq+2c′

Σ (P, Λ(r + c′))Hq+2c′−1
y (P, Λ(r + c′))

Hq+2c−1
y (X,Λ(r + c)) Hq+2c

x (X,Λ(r + c))

FIGURE 1. A diagram for the proof in the general case

In the diagram, the arrows α and β are induced by the composite morphism

γ : Rf∗Ri
!
TΛ(r + c′)P[2d]

(∗)
// Ri!ZRg∗Λ(r + c′)P[2d]

Ri!Z(trg) // Ri!ZΛ(r + c)X

in D+(Zét, Λ), where (∗) is the cobase-change morphism (cf. [SGA4] XVIII.3.1.13.2) for
the right square of (2.3.1). More precisely, α is obtained by restricting γ to y, and β is
defined as the composite

β : Rh∗Ri
!
ΣΛ(r + c′)P[2d]

(∗∗)
// Rι!xRf∗Ri

!
TΛ(r + c′)P[2d]

Rι!x(γ)// Ri!xΛ(r + c)X ,

where (∗∗) is the cobase-change morphism for the left square of (2.3.1). Therefore the
square (3) is commutative by (0.5.1). On the other hand, the diagram (1) is commutative
by the regular case §2.2, and moreover, the outer large square of Figure 1 commutes by
the definition of ∂val

y,x (cf. §0.7 (II)) and the fact that the trace map trh coincides with the
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corestriction map of Galois cohomology groups (cf. [SGA4] XVIII.2.9 (Var 4)). There-
fore, once we show that the diagrams (2) and (4) commute, we will have obtained the
commutativity of (5), i.e., Theorem 2.1.1. One can easily deduce the commutativity of
(2) and (4) from a compatibility result of Riou [R] 2.34. However we include a simple
proof of the commutativity of (4) here for the convenience of the reader (the diagram (2)
is simpler and left to the reader).

2.4. Commutativity of (4). Put
Q := Pdx

and take a section s : X ↪→ P. Let t : x ↪→ Q be the restriction of s to x, and let iQ (resp.
ιΣ) be the closed immersion Q ↪→ P (resp. Σ ↪→ Q). Consider the following diagram:

(2.4.1) Hq(x, Λ(r))
Gysix //

Gyst
��

(6)

Hq+2c
x (X,Λ(r + c))

Gyss
��

Hq(Σ,Λ(r))
GysιΣ //

trh

(7)

((RR
RRR

RRR
RRR

RRR
Hq+2d(Q,Λ(r + d))

GysiQ //

trQ/x

��
(8)

Hq+2c′

Q (P, Λ(r + c′))

β′

��
Hq(x, Λ(r))

Gysix // Hq+2c
x (X,Λ(r + c)) .

Here the square (6) commutes by (G2). The arrow β′ is a trace map defined in a similar
way as for β. The diagram (4) in question is related to the large tetragon (7)+(8) in (2.4.1)
by a diagram

(2.4.2) Hq(Σ,Λ(r))
GysiΣ //

φ

(7)+(8) **VVV
VVVV

VVVV
VVVV

VVV

Gysix◦trh
��

Hq+2c′

Σ (P, Λ(r + c′))

ιΣ∗
��

Hq+2c
x (X,Λ(r + c)) Hq+2c′

Q (P, Λ(r + c′)) .
β′

oo

Here the arrow φ denotes the composite of the middle row of (2.4.1), and the upper right
triangle of (2.4.2) commutes obviously. The composition β′ ◦ ιΣ∗ is β, and the square
agrees with the diagram (4) in Figure 1. To prove the commutativity of (4), it thus suffices
to check that of the lower left triangle of (2.4.2), i.e., the tetragon (7)+(8) in (2.4.1). To
prove this, it suffices to check the following claims concerning the diagram (2.4.1):

Lemma 2.4.3. (a) The triangle (7) is commutative.
(b) The triangle (8) is commutative.

Proof. The claim (a) follows from standard arguments using [SGA41
2
] Cycle 2.3.8 (i), (ii).

To prove prove (b), we use the notation fixed in (2.3.1) By the absolute purity [FG], we
have

Hq+2c
x (X,Λ(r + c)) ≃ Hq(x,R2ci!xΛ(r + c)),

and the problem is reduced to the case that q = 0 and κ(x) is separably closed. Then the
Gysin map

H0(x, Λ(r)) −→ H2d(Q,Λ(r + d))
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is bijective. Therefore the diagram (8) commutes by the following facts concerning the
diagram (2.4.1):

(c) the composite of the right vertical column is the identity map,
(d) the composite of the middle vertical column is the identity map,

which are consequences of [SGA41
2
] Cycle 2.3.8 (i), (ii). �

This completes the proof of Theorem 2.1.1.

2.5. Bloch-Ogus complexes and Kato complexes. We use Theorem 2.1.1 to identify
the Kato complexes with those defined via the method of Bloch and Ogus. Keep the
assumptions as in the beginning: X is a noetherian excellent regular scheme, n is a
positive integer invertible on X , and Λ(q) (q ∈ Z) is the q-fold Tate twist of the étale
sheaf Λ on X or X-schemes. Assume that X is has pure dimension d < ∞, and let
Z ⊂ X be a closed subscheme. For a non-negative integer q ≥ 0, we define

(2.5.1) (Z/X)q := {x ∈ Z | codimX(x) = d− q}.
By a standard argument using localization and an exact couple (cf. [BO] 3.10), there is a
localization spectral sequence

(2.5.2) E1
s,t(Z/X,Λ(b)) =

⊕
x∈(Z/X)s

H−s−t
x (X,Λ(−b)) =⇒ H−s−t

Z (X,Λ(−b)),

which induces a filteration onH−s−t
Z (X,Λ(−b)) with respect to the dimension of support.

It is regarded as the niveau spectral sequence on Z (cf. [BO] (3.7) and [JS] 2.7), for the
homology theory which is defined on all subschemes V on X by

Ha(V/X,Λ(b)) := H−a
V (U,Λ(−b)) ,

if V is a closed subscheme of an open subscheme U ⊂ X . By definition,

Ha
x(X,Λ(−b)) = lim−→

x∈U⊂X
Ha

{x}∩U(U,Λ(−b)) ,

where the limit is taken over all open subsets U ⊂ X containing x. Hence we have

(2.5.3) E1
s,t(Z/X,Λ(b))

∼=
⊕

x∈(Z/X)s

Hs−t−2d(x, Λ(s− d− b))

by the absolute purity [FG]. For a complex of abelian groups C∗ denote by (C∗)(−) the
complex with the same components, but with the differentials multiplied by −1.

Theorem 2.5.4. The Bloch-Ogus complex E1
∗,t(Z/X,Λ(b)) agrees with the sign-modified

Kato complex C−t−2d,−d−b
n (Z)(−) via the Gysin isomorphisms (2.5.3).

Proof. By the construction of the spectral sequence (2.5.2), its d1-differentials have the
components

δloc
y,x : H

−s−t
y (X,Λ(−b)) −→ H−s+1−t

x (X,Λ(−b))

for y ∈ Xs and x ∈ Xs−1 with x ∈ {y} (cf. [JS] Remarks 2.8). Therefore the claim
directly follows from Theorem 2.1.1. �
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Remark 2.5.5. For Z = X it is often customary in literature to renumber the spectral
sequence (2.5.2) into a cohomological coniveau spectral sequence (with c = −b)

Ep,q
1 (X,Λ(c)) =

⊕
x∈Xp

Hq−p(x, Λ(c− p)) =⇒ Hp+q(X,Λ(c)) .

See §0.4 for the definition of Xq. This does not change the differentials, and so the E1-
terms compare in a similar way to the Kato complexes. More precisely one obtains that
E−∗,q

1 (X,Λ(c)) coincides with Cq−d,c−d
n (X)(−).

By this method, we only get Bloch-Ogus complexes for schemes Z which can be glob-
ally embedded in a regular schemeX . But the following slight variant covers all the cases
considered in [JS] p.494, case (i) of 2.B.

Let S be a noetherian excellent regular base scheme of pure dimension d, let n be
invertible on S, and let b be an integer. Similarly as in §0.3 we define a homology theory
(in the sense of [JS] 2.1) for all separated S-schemes of finite type f : X → S by defining

Ha(X/S,Λ(b)) := H−a(X,Rf !Λ(−b)) .

For a non-negative integer q ≥ 0, we define a set (X/S)q as

(2.5.6) (X/S)q := {x ∈ X | codimS(f(x))− tr.deg(x/f(x)) = d− q},

where for points x ∈ X and y ∈ S with y = f(x), we wrote tr.deg(x/y) for the transcen-
detal degree of κ(x) over κ(y). The set (Z/S)q for a closed subscheme Z ⊂ S agrees
with that in the sense of (2.5.1). When S is the spectrum of a field, (X/S)q agrees with
Xq in the sense of §0.4. Under this definition, one gets a niveau spectral sequence

(2.5.7) E1
s,t(X/S,Λ(b)) =

⊕
x∈(X/S)s

Hs+t(x/S, Λ(b)) =⇒ Hs+t(X/S,Λ(b)) ,

where Ha(x/S, Λ(b)) is defined as the inductive limit of Ha(V/S, Λ(b)) over all non-
empty open subschemes V ⊂ {x}. Since {x}, being of finite type over S, is again
excellent, there is a non-empty open subset V which is regular. Then, for all non-empty
open V ′ ⊂ V one has a canonical isomorphism due to the absolute purity [FG] p. 170

(2.5.8) Ha(V
′/S, Λ(b)) ∼= H2(s−d)−a(V ′, Λ(s− b− d))

with s = tr.deg(x/f(x)) + d − codimS(f(x)), by the construction in [FG] p. 157. This
induces an isomorphism

(2.5.9) E1
s,t(X/S,Λ(b))

∼=
⊕

x∈(X/S)s

Hs−t−2d(x, Λ(s− b− d))

The following theorem generalizes Theorem 2.5.4 (which is the case X = S).

Theorem 2.5.10. The Bloch-Ogus complexE1
∗,t(X/S,Λ(b)) agrees with the sign-modified

Kato complex C−t−2d,−b−d
n (X)(−) via the isomorphisms (2.5.9).

Proof. The question is local on X and S. Thus we can assume that there is a factorization
f = p ◦ i, where p : P → S is a smooth morphism of relative dimension N (e.g.,
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P = AN
S ) and i : X ↪→ P is a closed immersion. Then there is a canonical isomorphism

from Poincaré duality ([SGA4] XVIII 3.2.5)

Rp!Λ(−b) ∼= Λ(N − b)[2N ],

which induces an isomorphism

Ha(X/S,Λ(b)) = H−a(X,Rf !Λ(−b))
∼= H−a(X,Ri!Λ(N − b)[2N ]) = H2N−a

X (P,Λ(N − b)) .
Similarly, for a locally closed subset V ⊂ P , say a closed immersion iV : V ↪→ U with
jU : U ↪→ P open, there is an isomorphism

Ha(V/S, Λ(b)) = H−a(V,R(f ◦ jU ◦ iV )!Λ(−b))
∼= H−a(V,R(iV )

!Λ(N − b)[2N ])(2.5.11)

= H2N−a
V (U,Λ(N − b)) .

Moreover, this is compatible with localization sequences. If V is regular and of dimension
s (hence of codimension d+N − s in P ), then by [FG](§8 first Consequence and Lemma
4.1.1), the isomorphism (2.5.8) is the composition of this map with the inverse of the
Gysin isomorphism

GysiV : H2s−2d−a(V, Λ(s− d− b)) ∼−→ H2N−a
V (U,Λ(N − b)) .

This shows the following: Via the maps (2.5.11), we get an isomorphism between the ho-
mology theory H∗(−/S, Λ(∗′)), restricted to subschemes of X , and the homology theory
H∗−2N(−/P, Λ(∗′ + N)) from (2.5.2), restricted to subschemes of X , and therefore an
isomorphism of the corresponding spectral sequence. Moreover, via this isomorphisms,
the isomorphisms (2.5.3) and (2.5.9) correspond. Therefore the claim follows from The-
orem 2.5.4. �
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3. THE CASE OF p-TORSION OVER A PERFECT FIELD OF CHARACTERISTIC p

Throughout this section, k always denotes a perfect field of positive characteristic p
and n denotes a positive integer. We will often write s for Spec(k).

3.1. Gros’ Gysin map. Let us recall that Gros has defined Gysin morphisms

Gysf : Rf∗WnΩ
r
Y,log −→ WnΩ

r+c
X,log[c]

for any proper morphism f : Y → X of smooth equidimensional varieties over k, where
c = dim(X)− dim(Y ) ([Gr] II.1). These induce maps

Gysf : H
q(Y,WnΩ

r
Y,log) −→ Hq+c(X,WnΩ

r+c
X,log) .

If i : Y ↪→ X is a closed immersion of smooth k-schemes, it also induces Gysin maps

Gysi : H
q(Y,WnΩ

r
Y,log) −→ Hq+c

Y (X,WnΩ
r+c
X,log) ,

where c is now the codimension of Y in X . The following result is a p-analogue of
Theorem 2.1.1, cf. Remark 3.5.5.

Theorem 3.1.1. Let X be a smooth variety over k. Let n and c be positive integers. Let
ix : x ↪→ X and iy : y ↪→ X be points on X of codimension c and c − 1, respectively,
with x ∈ {y}. Then the following diagram commutes:

H0(y,WnΩ
r−c+1
y,log )

(−1)r ∂val
y,x //

Gysiy
��

H0(x,WnΩ
r−c
x,log)

Gysix
��

Hc−1
y (X,WnΩ

r
X,log)

δloc
y,x(WnΩr

X,log)// Hc
x(X,WnΩ

r
X,log) .

In [Sh] 5.4, Shiho proved this compatibility property assuming n = 1, but in a more
general situation. The proof of Theorem 3.1.1 given below relies on the following prop-
erties of the Gysin maps:

(P1) Local description of Gysin maps. See [Gr] II.3.3.9, but we will only need the case
of a regular prime divisors, where one can give a simpler proof.

(P2) Transitivity of Gysin maps [Gr] II.2.1.1.
(P3) For a finite map h : z → x of spectra of fields which are finitely generated over

k, the Gysin map Gysh : H0(z,WnΩ
r
z,log) → H0(x,WnΩ

r
x,log) agrees with the

corestriction map (0.7.2), cf. Lemma A.1.1 in the appendix.

To prove the theorem, replacing X with Spec(OX,x), we suppose that

(3.1.2) X is local with closed point x.

The proof proceeds in three steps, which will be finished in §3.4 below.
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3.2. Divisor case. We first prove Theorem 3.1.1 assuming c = 1. In this case,A := OX,x

is a discrete valuation ring. Let π be a prime element of A, and put K := Frac(A) = κ(y)
and F := κ(x). By the Bloch-Gabber-Kato theorem [BK] 2.1, the group H0(y,WnΩ

r
y,log)

is generated by elements of the forms

(i) dlog(f1) · · · · · dlog(fr) and (ii) dlog(π) · dlog(f1) · · · · · dlog(fr−1) ,

where each fj belongs to A×, and for a ∈ A, a ∈ Wn(A) denotes its Teichmüller repre-
sentative. The diagram in question commutes for elements of the form (i) obviously. We
consider the element

α := dlog(π) · dlog(f1) · · · · · dlog(fr−1)

with each fj ∈ A×, in what follows. By [CTSS] p. 779 Lemma 2, we have

WnΩ
r
X/WnΩ

r
X,log

∼= WnΩ
r
X/dV

n−1Ωr−1
X ,

which is a finitely successive extension of (locally) free OX-modules by [Ill] I.3.9. Hence
the natural map

ϱ : H1
x(X,WnΩ

r
X,log) −→ H1

x(X,WnΩ
r
X)

is injective, and our task is to show the equality

(3.2.1) (−1)r
(
ϱ ◦ Gysix ◦ ∂

val
y,x

)
(α) =

(
ϱ ◦ δloc

y,x(WnΩ
r
X,log)

)
(α)

in H1
x(X,WnΩ

r
X). We regard the complex

WnΩ
r
A

i∗y−→WnΩ
r
K

as a representative ofRΓx(X,WnΩ
r
X), whereWrΩ

n
A is placed in degree 0, cf. [Gr] II.3.3.3.

This identification induces an isomorphism

φ : WnΩ
r
K/WnΩ

r
A

∼−→ H1
x(X,WnΩ

r
X).

Now consider a commutative diagram

WnΩ
r−1
F

ω 7→ ω̃·dlog(π)
//

(1)

WnΩ
r
K/WnΩ

r
A

(2)φ ≀
��

WnΩ
r
K

(−1)× natural projection
oooo

H0(x,WnΩ
r−1
x )

Gys′ix //

(3)

H1
x(X,WnΩ

r
X)

(4)

H0(y,WnΩ
r
y)

δloc
y,x(WnΩr

X)
oo

H0(x,WnΩ
r−1
x,log)

Gysix //
?�

OO

H1
x(X,WnΩ

r
X,log)

?�

ϱ

OO

H0(y,WnΩ
r
y,log) ,

δloc
y,x(WnΩr

X,log)oo
?�

OO

where for ω ∈ WnΩ
r−1
F , ω̃ ∈ WnΩ

r−1
A denotes a lift of ω. The square (1) commutes by

the property (P1) mentioned before. The square (2) commutes by a simple (but careful)
computation of boundary maps, cf. [Sh] p. 612. By these commutative squares we have

RHS of (3.2.1) = (−1)r−1
(
ϱ ◦ δloc

y,x(WnΩ
r
X,log)

)(
dlog(f1) · · · · · dlog(fr−1) · dlog(π)

)
(4)
= (−1)r−1

(
δloc
y,x(WnΩ

r
X)

)(
dlog(f1) · · · · · dlog(fr−1) · dlog(π)

)
(2)+(1)
= (−1)r Gys′ix

(
dlog(g1) · · · · · dlog(gr−1)

) (3)
= LHS of (3.2.1),
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where gj ∈ Wn(F )
× denotes the residue class of fj for each j. We thus obtain Theorem

3.1.1 in the case c = 1.

3.3. Regular case. We next treat the case that c is arbitrary but the closure Z := {y} ⊂
X is regular at x. Let ιx : x ↪→ Z and i : Z ↪→ X be the natural closed immersions. Let
us consider the following diagram:

H0(y,WnΩ
r−c+1
y,log )

Gysiy //

(−1)r ∂val
y,x

uullll
llll

llll
ll

(−1)c−1δ

��

Hc−1
y (X,WnΩ

r
X,log)

δloc
y,x(WnΩr

X,log)

��
H0(x,WnΩ

r−c
x,log) Gysιx

// H1
x(Z,WnΩ

r−c+1
Z,log )

Gysi
// Hc

x(X,WnΩ
r
X,log) ,

where we put δ := δloc
y,x(WnΩ

r−c+1
Z,log ) for simplicity. The right upper arrow and the right

lower arrow are induced by the Gysin morphism for i, so the right square commutes by
(0.5.1). The left triangle commutes by the previous case. The composite of the bottom
row coincides with Gysix by (P2). Hence the assertion follows in this case.

3.4. General case. We finally consider the general case. The arguments here proceed
similarly as for §2.3. Let Z = {y} ⊂ X be as in the previous step. We assume that
Z is not regular. Take the normalization f : T → Z. Put Σ := f−1(x) ⊂ T with the
reduced subscheme structure, which is the set of all closed points on T by the assumption
(3.1.2). Note that T is regular and that f is finite by the excellence of Z. Since a finite
morphism is projective ([EGAII] 6.1.11), the map T → X factors as T ↪→ PeX → X for
some integer e ≥ 1. Let ιy be the composite map y → T → PeX . There is a commutative
diagram of schemes

(3.4.1) Σ � � //

h

��

iΣ

%%
T � � iT //

f

��

P := PeX
g

��
x � � ιx //

ix

99Z � � iZ // X ,

where ix, iΣ and all horizontal arrows are closed immersions cf. (3.1.2). Now put c′ :=
c + e = codimP(Σ), and consider the diagram in Figure 2. The square (3) commutes by
(0.5.1). Moreover, the diagrams (2) and (4) commute by the transitivity property (P2). On
the other hand, the diagram (1) is commutative by the result in the previous case. Finally,
the outer large square of Figure 2 commutes by Lemma A.1.1 in the appendix and the
definition of ∂val

y,x, cf. §0.7 (II). Thus the diagram (5) commutes, i.e., Theorem 3.1.1. �

Corollary 3.4.1. Let X be a smooth variety of pure dimension d over k, and let c be a
positive integer. Let ix : x → X and iy : y → X be points on X of codimension c and
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�����*

HHHHHY

������

HHHHHj

?

-

-

? ?

-

-

Gysiy Gysix

GysiΣGysιy

Gysh

(−1)r ∂val
y,Σ

(−1)r ∂val
y,x

Gysg Gysg

(−1)e δloc
y,Σ(WnΩr+e

P,log)

δloc
y,x(WnΩr

X,log)

(1)

(2) (3) (4)

(5)

H0(Σ,WnΩ
r−c
Σ,log)H0(y,WnΩ

r−c+1
y,log )

H0(y,WnΩ
r−c+1
y,log ) H0(x,WnΩ

r−c
x,log)

Hc′
Σ (P,WnΩ

r+e
P,log)Hc′−1

y (P,WnΩ
r+e
P,log)

Hc−1
y (X,WnΩ

r
X,log) Hc

x(X,WnΩ
r
X,log)

FIGURE 2. A diagram for the proof of the general case

c− 1, respectively, with x ∈ {y}. Then the following diagram commutes:

H1(y,WnΩ
d−c+1
y,log )

(−1)d ∂val
y,x //

Gysiy
��

H1(x,WnΩ
d−c
x,log)

Gysix
��

Hc
y(X,WnΩ

d
X,log)

δloc
y,x(WnΩd

X,log)// Hc+1
x (X,WnΩ

d
X,log) .

Proof. First of all we note that [κ(x) : κ(x)p] = pd−c, because κ(x) has transcendence
degree d − c over the perfect field k. Therefore the upper map is well-defined. For the
prove of the corollary we just have to consider the case c = 1. In fact, the reduction to
this case works as in §3.3 and §3.4 for Theorem 3.1.1; we only have to consider the case
n = c, and to raise the degrees of all cohomology groups by 1. Furthermore we have to
replace Lemma A.1.1 by Lemma A.2.8.

In the case c = 1 we again may replace X by the spectrum of the discrete valuation
ring A = OX,x. By the definition of Kato’s residue maps (cf. §0.7 (I)), and since

H2
x(X,WnΩ

d
X,log)

∼−→ H2
x(X

h,WnΩ
d
Xh,log)

for the henselization Xh of X at x, we may furthermore replace X by Xh. Then y =
Spec(K) for a henselian discrete valuation field K with residue field κ(x). Let y′ =

Spec(Ksh), where Ksh is the strict henselization of K. Put x := Spec(κ(x)) for the
separable closure κ(x) of κ(x). Then we get a diagram in Figure 3.
Here the isomorphisms a, b and c come from Hochschild-Serre spectral sequences for the
pro-étale covering X sh → X (= Xh) given by the strict henselization of X . See §0.7 (I.3)
for a and b, and note the isomorphism

H i+1
x (X sh,WnΩ

d
X,log)

∼= H i(x,WnΩ
d−1
x,log) (= 0 for i ̸= 0)

for c, cf. [Mo] Corollary to 2.4. Then the diagram (1) commutes by the definition of
Kato’s residue maps. The diagram (2) commutes trivially, and the diagrams (4) and (5)
commute, because the vertical maps and the two lower horizontal maps are induced by
morphisms of sheaves (Gys and δloc), and hence are compatible with the Hochschild-Serre
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�����*

HHHHHY

������

HHHHHj

?

-

-

?

-

-

a
≃

c
≃

b ≃a≃

Gys

(−1)d ∂val

δloc(WnΩd
X,log)

H1(x,Gys)

(−1)d ∂val

H1(x, δloc(WnΩd
X,log))

(1)

(2) (3) (4)

(5)

H1(x,WnΩ
d−1
x,log)H1(y,WnΩ

d
y,log)

H1(y,WnΩ
d
y,log) H2

x(X,WnΩ
d
X,log)

H1(x,H0(x,WnΩ
d−1
x,log))H1(x,H0(y′,WnΩ

d
y,log))

H1(x,H0(y′,WnΩ
d
y,log)) H1(x,H1

x(X
sh,WnΩ

d
X,log))

FIGURE 3. A diagram for the proof of Corollary 3.4.1

spectral sequence. Finally, it follows from Theorem 3.1.1 that the square (3) commutes.
This implies the commutativity of the outer square and hence the corollary. �

3.5. The complex M •
n,X . Building on work of Moser [Mo], and motivated by Theorem

3.1.1, we introduce a complex of étale sheaves and prove a duality result for it (cf. §3.6
below).

Definition 3.5.1. Let X be a scheme of finite type over s. For a point x on X , let ix be
the canonical map x ↪→ X . We define the complex M •

n,X of étale sheaves on X as

M •
n,X :=

({⊕
x∈X−q ix∗WnΩ

−q
x,log

}
q,
{
−∂−q

}
q

)
,

where ∂−q has the components ∂val
y,x with y ∈ X−q and x ∈ X−q−1 (cf. §0.8). We often

write Mn,X for the image of M •
n,X in Db(Xét,Z/pn). See Remark 3.5.5 below for the

reason of the sign of the differentials.

The complex M •
n,X coincides with the complex ν̃r,X defined in [Mo] up to signs of

boundary operators and a shift. If X is smooth over s of pure dimension d, then, by
a theorem of Gros and Suwa [GrSu], the embedding WnΩ

d
X,log ↪→

⊕
x∈Xd

ix∗WnΩ
d
x,log

induces a canonical quasi-isomorphism

(3.5.2) WnΩ
d
X,log[d]

qis.−→M •
n,X .

Note also the following simple facts: For a closed immersion i : Z ↪→ X of schemes of
finite type over s, there is a natural map of complexes

(3.5.3) i∗M
•
n,Z −→M •

n,X .

If X and Z are smooth of pure dimension d and d′, respectively, then this map induces a
morphism

(3.5.4) Gys◦i : i∗WnΩ
d′

Z,log[d
′] −→ WnΩ

d
X,log[d] in Db(Xét,Z/pn)

via (3.5.2) for X and Z, which we call the modified Gysin morphism for i.
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Remark 3.5.5. The reason we put the sign −1 on the differentials of M •
n,X is as follows.

Because of these signs, the modified Gysin map (3.5.4) agrees with Gros’ Gysin map
Gysi only up to the sign (−1)d−d′ , cf. [Sa] 2.3.1. However by this fact, if we define
Z/pn(r) := WnΩ

r
X,log[−r] for (essentially) smooth schemes X over k and note property

(0.5.1), Theorem 3.1.1 for r = d and Corollary 3.4.1 become a commutative diagram

Hm−c+1(y,Z/pn(d− c+ 1))
−∂val

y,x //

Gys◦iy
��

Hm−c(x,Z/pn(d− c))
Gys◦ix
��

Hm+c−1
y (X,Z/pn(d))

δloc
y,x(Z/pn(d)) // Hm+c

x (X,Z/pn(d)) .

Note that the groups in the top row are only non-zero for m = d, d + 1. This shows the
perfect analogy with Theorem 2.1.1.

The following lemma shows that the complex M •
n,X is suitable for cohomological opera-

tions:

Lemma 3.5.6. Let x be a point on X of dimension q ≥ 0. Then:
(1) The sheaf WnΩ

q
x,log on xét is ix∗-acyclic.

(2) For a closed immersion i : Z ↪→ X , the sheaf ix∗WnΩ
q
x,log on Xét is i!-acyclic.

(3) For an s-morphism f : X → Y , the sheaf ix∗WnΩ
q
x,log on Xét is f∗-acyclic.

Proof. For (1) and (2), see [Mo] 2.3 and 2.4. We prove (3). For a point y ∈ Y , we have(
Rmf∗(ix∗WnΩ

q
x,log)

)
y
∼= Hm(X ×Y Spec(O sh

Y,y), ix∗WnΩ
q
x,log)

(1)∼= Hm(x×Y Spec(O sh
Y,y),WnΩ

q
x,log)

and the last group is zero for m > 0 by the same argument as in loc. cit. 2.5. �

Corollary 3.5.7 (cf. [Mo] Corollary to Theorem 2.4). For a closed immersion i : Z ↪→ X ,
the map (3.5.3) induces an isomorphism

Gys◦i : Mn,Z
∼−→ Ri!Mn,X in D+(Zét,Z/pn).

3.6. Relative duality theory. Let Vs be the category of schemes separated of finite type
over s and separated s-morphisms of finite type.

Theorem 3.6.1. Suppose that there exists an assignment of morphisms

Tr : (f : Y → X in Vs) 7−→ (Trf : Rf!Mn,Y →Mn,X in D+(Xét,Z/pn))
which satisfy the following three conditions (i) – (iii):

(i) If f is étale, then Trf agrees with the composite morphism

Rf!Mn,Y = Rf!f
∗Mn,X

f!−→Mn,X ,

where the arrow f! denotes the adjunction morphism Rf!f
∗ = Rf!Rf

! → id (cf.
[SGA4] XVIII.3, the equality Mn,Y = f ∗Mn,X is straight-forward).
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(ii) If f is a closed immersion, then Trf agrees with the composite morphism

Rf∗Mn,Y

Rf∗(Gys◦f ) // Rf∗Rf
!Mn,X

f∗ // Mn,X ,

where the arrow f∗ denotes the adjunction morphism Rf∗Rf
! = Rf!Rf

! → id.
(iii) For morphisms g : Z → Y and f : Y → X with h := f ◦ g, Trh agrees with the

composition

Rh!Mn,Z = Rf!Rg!Mn,Z

Rf!(Trg) // Rf!Mn,Y

Trf // Mn,X .

Then for a map f : Y → X in Vs, the adjoint morphism Trf of Trf is an isomorphism:

Trf : Mn,Y
∼−→ Rf !Mn,X in D+(Yét,Z/pn).

This theorem is a variant of Moser’s duality [Mo] 5.6 (which itself generalizes Milne’s
duality for smooth projective varieties [Mi3]). However, because Theorem 3.6.1 looks
quite different from Moser’s formulation, we outline a proof of our statement below in
§3.7. The main result of this section is the following theorem:

Theorem 3.6.2. There exists a unique assignment of morphisms

tr : (f : Y → X in Vs) 7−→ (trf : Rf!Mn,Y →Mn,X in D+(Xét,Z/pn))
that satisfies the conditions (i) – (iii) in Theorem 3.6.1 with Tr := tr. Consequently, for
a map f : Y → X in Vs, the morphism trf : Mn,Y → Rf !Mn,X adjoint to trf is an
isomorphism.

We will prove Theorem 3.6.2 in §§3.8–3.9 below.

3.7. Proof of Theorem 3.6.1. By the transitivity property (iii) of Tr, the assertion is
reduced to the case of a structure morphism f : X → s, and moreover, by the property (i)
of Tr, we may suppose that s = s (i.e., k is algebraically closed) and that f is proper. In
this situation, we claim the following:

Theorem 3.7.1. Let X be a proper scheme of finite type over the algebraically closed
field k of characteristic p > 0, with structural morphism f : X → Spec(k). Then, for any
constructible Z/pn-sheaf F on Xét and any integer m, the pairing

αX(m,F ) : Hm(X,F )× Ext−mX,Z/pn(F ,Mn,X) −→ H0(X,Mn,X)
Trf−→ Z/pn

induced by Yoneda pairing is a non-degenerate pairing of finite groups.

We first prove Theorem 3.6.1, admitting Theorem 3.7.1: Applying 3.7.1 to F =
j!Z/pn with j : U → X étale, and noting the isomorphisms

Ext−mX,Z/pn(j!Z/p
n,Mn,X) ∼= Ext−mU,Z/pn(Z/p

n,Mn,U) ∼= H−m(U,Mn,U) ,

we obtain isomorphisms

H−m(U,Mn,U)
a∼= HomZ/pn-mod(H

m(X, j!Z/pn),Z/pn)
b∼= H−m(U,Rg!Z/pn)

for any m ∈ Z, where g = f ◦ j, the first isomorphism comes from the pairing, and
the second isomorphism comes from the adjunction between Rg! and Rg! and the fact
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that Z/pn is an injective object in the category of Z/pn-modules. We verify that this
composite map agrees with that coming from Trf — then the morphism Trf is bijective
on cohomology sheaves, and we obtain Theorem 3.6.1. Indeed, by the definition of the
pairing, the map a sends x ∈ H−m(U,Mn,U) = HomD(X,Z/pn)(j!Z/pn,Mn,X [−m]) to
the composition

Hm(X, j!Z/pn)
x−→ H0(X,Mn,X) = H0(s,Rf∗Mn,X)

Trf−→ Z/pn,

which, by 3.6.1 (i) and (iii), coincides with the map induced by

Rg!Z/pn[m]
x−→ Rg!Mn,U

Trg−→ Z/pn .

By definition (and functoriality of adjunction), the map b sends this to the composition

Z/pn[m]
x−→Mn,U

Trg−→ Rg!Z/pn ,

which shows the claim, again by 3.6.1 (i) and (iii). �

As for Theorem 3.7.1, it follows from the arguments in [Mo] 5.6. More precisely, it
follows from the properties (i) – (iii) of Tr, the steps (a) – (c), (f) – (k) of loc. cit. 5.6, and
the following lemma:

Lemma 3.7.2. Let f : X → s(= s) be a proper smooth morphism with X connected.
Then for an integer m and a positive integer t ≤ r, the pairing αX(m,Z/pt) (cf. Theorem
3.7.1) is a non-degenerate pairing of finite groups.

Proof of Lemma 3.7.2. The problem is reduced to the case t = r by (3.5.2) and [Mo] 5.4.
Now we note that Milne duality [Mi3] 1.11 gives an isomorphism of finite groups in our
case. Indeed, with the notation of [Mi3] p. 305, the unipotent part of the group scheme
Hm(X,Z/pn) is trivial, which follows from the short exact sequence

0 −→ Hm(X,Z/pn) −→ Hm(X,WnOX)
1−F−→ Hm(X,WnOX) −→ 0

and the fact that 1− F is étale. Therefore it is enough to show that the composite map

Tr′f : H
d(X,WnΩ

d
X,log)

(3.5.2)∼= H0(X,Mn,X)
Trf−→ Z/pn

with d := dim(X) coincides with the trace map ηn in [Mi3] p. 308, up to a sign. But, for
a closed point ix : x ↪→ X , Tr′f sends the cycle class Gys◦ix(1) ∈ H

d(X,WnΩ
d
X,log) (= the

image of 1 under Gys◦ix) to 1 by the properties (ii), (iii) of Tr, and hence Tr′f = (−1)d·ηn by
Remark 3.5.5 (1). This completes the proof of Lemma 3.7.2, Theorem 3.7.1 and Theorem
3.6.1. �

Remark 3.7.3. Note that step (j) of [Mo] 5.6 uses de Jong’s alteration theorem [dJ] 4.1.

Corollary 3.7.4. Suppose that there exist two assignments σ : f 7→ σf and τ : f 7→ τf
satisfying (i) – (iii) in Theorem 3.6.1 with Tr := σ and τ , respectively. Then we have
σ = τ .
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Proof. Let f : Y → X be a morphism in Vs. We show that σf = τf as morphisms
Rf!Mn,Y →Mn,X in D+(Xét,Z/pn), in two steps. We first prove the case X = s (hence
Mn,X = Z/pn). By the properties (i) and (iii), we may suppose that f is proper. Then
Rf!Mn,Y = Rf∗Mn,Y is computed by the complex f∗M •

n,Y by Lemma 3.5.6 (3), and
the morphisms σf and τf are determined by maps f∗M 0

n,Y → Z/pn of sheaves on sét

by §0.6.4 (1). Hence in view of the properties (ii) and (iii) and the assumption that s is
perfect, the problem is reduced to the case where f is étale, and we obtain σf = τf by
the property (i). This completes the first step. Next we prove the general case. Let σf

and τ f be the adjoint morphisms of σf and τf , respectively. By adjunction, it is enough
to show σf = τ f as morphisms Mn,Y → Rf !Mn,X in D+(Yét,Z/pn). Let g : X → s be
the structure map and put h := g ◦ f . By the first step and the property (iii), we have

Rf !(σg) ◦ σf = σh = τh = Rf !(τ g) ◦ τ f

as morphisms Mn,Y → Rh!Z/pn. On the other hand, we have Rf !(σg) = Rf !(τ g) by
the first step, and these are isomorphisms in D+(Yét,Z/pn) by Theorem 3.6.1. Hence we
have σf = τ f . This completes the proof of Corollary 3.7.4. �

3.8. Covariant functoriality. In this subsection, we prove Lemma 3.8.2 stated below
(cf. [Mo] 4.1), which is a key ingredient of Theorem 3.6.2. Let f : Y → X be a morphism
in Vs. Let q be a non-negative integer and let x (resp. y) be a point on X (resp. on Y ) of
dimension q. Let fy (resp. ix) be the composite map y → Y → X (resp. x → X). We
define a map of sheaves on Xét

trf,(y,x) : fy∗WnΩ
q
y,log −→ ix∗WnΩ

q
x,log

as Gros’ Gysin map for y → x ([Gr] II.1.2.7), if y is finite over x via f . We define trf,(y,x)
as zero otherwise. Collecting this map for points on Y and X , we obtain a map of graded
abelian sheaves on Xét

tr•f : f∗M
•
n,Y −→M •

n,X .

By definition and [Gr] II.2.1.1, this map of graded sheaves satisfies transitivity, that is, for
morphisms g : Z → Y and f : Y → X in Vs, we have the equality

(3.8.1) tr•f ◦ f∗(tr•g) = tr•f◦g
of maps of graded sheaves on Yét. We prove the following lemma:

Lemma 3.8.2. Suppose that f is proper. Then tr•f is a map of complexes. Consequently,
tr•f induces a morphism

trf : Rf∗Mn,Y −→Mn,X in Db(Xét,Z/pn)
by Lemma 3.5.6 (3).

Proof. We have to show the commutativity of the following diagram for each q ≤ −1:

f∗M
−q
n,Y

∂−q
//

tr−q
f

��

f∗M
−q−1
n,Y

tr−q−1
f

��

M−q
n,X

∂−q
// M−q−1

n,X ,



36 U. JANNSEN, S. SAITO AND K. SATO

Fix a negative integer q, and a point w ∈ Y−q. Put z := f(w). There happen the following
three cases:

(i) z ∈ X−q (ii) z ∈ X−q−1 (iii) otherwise.

In the third case, we see that all points y in the closure {w} map to points on X of
dimension ≤ −q − 2. Hence the maps ∂−q ◦ tr−q−1

f and tr−qf ◦ ∂−q are both zero on the
direct summand iw∗W−qΩ

n
w,log of f∗M

−q
n,Y . We next treat the case (ii). In this case, we are

ought to show that the following sequence is a complex:

fw∗WnΩ
−q
w,log −→

⊕
y∈Y−q−1 ∩{w}∩ f−1(z)

fy∗WnΩ
−q−1
y,log −→ iz∗WnΩ

−q−1
z,log .

We put C := f−1(z) ∩ {w} endowed with reduced subscheme structure. Since C is
proper over z by the properness of f , C is a proper curve over z with generic point w
([Ha] III.9.6). By Lemma A.1.1, the assertion is reduced to the case that C is a projective
line over z. The assertion then follows from Claim in the proof of Lemma A.1.1.

We finally prove the case (i). Fix an arbitrary point x ∈ X−q−1 ∩ {z}. Our task is to
show the commutativity of the diagram

(3.8.3) fw∗WnΩ
−q
w,log

⊕
y ∂

val
w,y //

trf,(w,z)

��

⊕
y∈Y−q−1∩f−1({x})

fy∗WnΩ
−q−1
y,log

∑
y trf,(y,x)

��

iz∗WnΩ
−q
z,log

∂val
z,x // ix∗WnΩ

−q−1
x,log .

Let T be the localization of {z} at x, and put

Zw := {w} ×X T (= {w} ∩ f−1(T )) .

If y ∈ Y−q−1∩f−1({z}) is away from Zw, then y is outside of {w}∩f−1(x) and hence at
least one of ∂val

w,y and trf,(y,x) is zero. Thus the commutativity of (3.8.3) is reduced to that
of the following diagram:

(3.8.4) fw∗WnΩ
−q
w,log

⊕
y ∂

val
w,y //

trf,(w,z)

��

⊕
y∈Y−q−1∩Zw

fy∗WnΩ
−q−1
y,log

∑
y trf,(y,x)

��

iz∗WnΩ
−q
z,log

∂val
z,x // ix∗WnΩ

−q−1
x,log .

We claim here the following:

Claim. The canonical morphism fT : Zw → T is finite, and Y−q−1 ∩ Zw agrees with the
set of all closed points on Zw.

Proof of Claim. By the properness of fT and [EGAIII] 4.4.2, it suffices to show that fT
is quasi-finite. Note that κ(w) is a finite field extension of κ(z). Let ν : U → T be the
normalization of T in κ(w). Then ν is finite (cf. [Ha] I.3.9A) and U is the spectrum of
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a Dedekind ring, which imply that ν factors as U → Zw → T by the valuative criterion
for proper morphisms (cf. loc. cit. II.4.7). Here the map U → Zw is surjective, because it
is proper and dominant. Hence fT is quasi-finite by the finiteness of ν and we obtain the
assertion. The second assertion immediately follows from the finiteness of fT . �

We turn to the proof of Lemma 3.8.2 and prove the commutativity of (3.8.4). Since
the problem is étale local at x ∈ T , we assume that T and Zw are strictly henselian
by replacing them with Spec(O sh

T,x) and a connected component of Zw ×T Spec(O sh
T,x),

respectively. Then by the Bloch-Gabber-Kato theorem ([BK] 2.1) and Lemma A.1.1 in
the appendix, we are reduced to the commutativity of residue maps of Milnor K-groups
(§0.7 (I.2)) via norm maps due to Kato [Ka2], Lemma 3 (which assumes the domains
concerned are normal, but is easily generalized to our situation by a standard argument
using normalization):

KM
−q(κ(w))/p

n

⊕
y ∂w,y

//

Nκ(w)/κ(z)

��

⊕
y∈(Zw)0

KM
−q−1(κ(y))/p

n

∑
y Nκ(y)/κ(x)

��
KM

−q(κ(z))/p
n

∂z,x // KM
−q−1(κ(x))/p

n .

Hence (3.8.4) commutes in this case. This completes the proof of Lemma 3.8.2. �

Remark 3.8.5. If f is finite and étale, then tr•f coincides with the adjunction map

f∗ : f∗M
•
n,Y = f∗f

∗M •
n,X −→M •

n,X .

Indeed, the claim is reduced to the case of a finite separable extension of a point, which
follows from a standard base-change argument and [Mi1] V.1.12.

3.9. Proof of Theorem 3.6.2. By Corollary 3.7.4, it remains to show the existence of a
desired assignment. For a map f : Y → X in Vs, we define the morphism trf as follows.
If f is proper, then we define trf as that constructed in Lemma 3.8.2. Next suppose that
f is not proper. Take a compactification of f , i.e., an open immersion j : Y ↪→ Z and a
proper map g : Z → X with f = g ◦ j, and define trf,(Z,j,g) as the composite morphism

(3.9.1) trf,(Z,j,g) : Rf!Mn,Y = Rg∗Rj!j
∗Mn,Z

j!−→ Rg∗Mn,Z
trg−→Mn,X ,

where the arrow j! is defined by the adjunction morphism Rj!j
∗Mn,Z → Mn,Z . We are

going to define
trf := trf,(Z,j,g) .

To verify the well-definedness, it suffices to show the following:

Lemma 3.9.2. Let Y
ϱ
↪→ V

h→ X be another compactification of f . Then we have

trf,(Z,j,g) = trf,(V,ϱ,h) .
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Proof. Replacing Z by the closure of the image of Y
(j,ϱ)−→ Z ×X V , we may suppose

that there exists a proper morphism π : Z → V fitting into a commutative diagram with
cartesian square

Y � � j //

�

Z
g

  A
AA

AA
AA

π
��

Y � � ϱ // V
h // X .

Since trg = trh◦Rh∗(trπ) by (3.8.1) and Lemma 3.5.6 (3), it remains to show that trϱ,(Z,j,π)
agrees with the adjunction morphism

ϱ! : ϱ!Mn,Y = ϱ!ϱ
∗Mn,V −→Mn,V .

Indeed, since π−1(Y ) = Y , ϱ∗(trϱ,(Z,j,h)) is the identity morphism of Mn,Y (cf. (3.9.1)),
which implies that trϱ,(Z,j,h) = ϱ!. This completes the proof of the lemma. �

Thus we obtained a well-defined assignment f 7→ trf . We show that this satisfies the
conditions (i)–(iii) in Theorem 3.6.1. The condition (ii) holds obviously by definition (cf.
(3.5.3), §3.8). We next show the condition (i). Suppose that f : Y → X is étale. Take an
open immersion j : Y ↪→ Z and a finite map g : Z → X with f = g ◦ j (cf. [Mi1] 1.8).
We claim that the morphism trf,(Z,j,g) coincides with the adjunction f!, which implies (i).
Indeed, since f is étale and g is finite, trf,(Z,j,g) is represented by the composite map of
complexes

f!M •
n,Y = g∗j!j

∗M •
n,Z

g∗(j!) // g∗M •
n,Z

tr•g // M •
n,X ,

which agrees with f! by a similar argument as for Remark 3.8.5 (see also [Mi1] II.3.18).
We finally show the condition (iii), that is, for two maps g : Z → Y and f : Y → X in
Vs, we prove

(3.9.3) trh = trf ◦Rf!(trg) with h := f ◦ g.

If f and g are open immersions, (3.9.3) follows from the property (i) and the transitivity of
adjunction maps for open immersions. If f and g are proper, (3.9.3) follows from (3.8.1)
and Lemma 3.5.6 (3). Hence, if g is an open immersion or f is proper, then we obtain
(3.9.3) by the previous two cases. We show the general case. Take compactifications of f
and g as follows:

T
q

��?
??

??
??

? V
π

��@
@@

@@
@@

@

Z g
//

/�

j
??��������

Y
f

//
/�

ϱ
??��������

X ,

where j and ϱ are open immersions and q and π are proper maps which make the triangles
commutative. Because we already know, by the previous cases, that

trh = trπ ◦Rπ∗(trα) ◦R(f ◦ q)!(trj) with α := ϱ ◦ q,
it remains to show the following composite morphism agrees with trα:

Rα!Mn,T

Rϱ!(trq) // Rϱ!Mn,Y
ϱ! // Mn,V .
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We prove this equality. Take an open immersion β : T ↪→ W with dense image and a
proper map γ : W → V satisfying α = γ ◦ β. Then one can easily check that the square

T � � β //

q
��

W

γ
��

Y � � ϱ // V

is cartesian. Hence we have

ϱ∗(Rγ∗(β!)) = idRq∗ (β! denotes Rβ!β∗ → id)

ϱ∗(trγ) = trq (cf. §3.8)

and thus ϱ∗(trα,(W,β,γ)) = trq, which implies ϱ! ◦ Rϱ!(trq) = trα,(W,β,γ) = trα. This
completes the proof of Theorem 3.6.2. �

3.10. Purity for logarithmic Hodge-Witt sheaves. Theorem 3.6.2 implies the following
purity result, whose special case was needed in [JS] 2.14.

Corollary 3.10.1. Let f : X → Y be a morphism of smooth varieties of pure dimension
d and e, respectively over s = Spec(k). Then there is a canonical Gysin isomorphism

trf : WnΩ
d
X,log[d]

∼−→ Rf !WnΩ
e
Y,log[e] .

Especially, for g : X → s smooth of dimension d we get a canonical isomorphism

trg : WnΩ
d
X,log[d]

∼−→ Rg!Z/pn .

Proof. The first claim follows from the isomorphisms

WnΩ
d
X,log[d]

∼−→
(3.5.2)

Mn,X
∼−→

3.6.2
Rf !Mn,Y

∼←−
(3.5.2)

Rf !WnΩ
e
Y,log[e] .

For the special case note that WnΩ
0
s,log = Z/pn. �

Remark 3.10.2. With the notation Z/pn(r)X :=WnΩ
r
X,log[−r] the purity isomorphism in

Corollary 3.10.1 becomes

(3.10.3) trf : Z/pn(d)X [2d] ∼−→ Rf !Z/pn(e)Y [2e] .

When f is a closed immersion, trf is adjoint to the modified Gysin morphism (3.5.4). When
f is proper, trf is adjoint to Gros’ Gysin morphism Gysf only up to the sign (−1)d−e, cf.
Remark 3.5.5.

3.11. Bloch-Ogus complexes and Kato complexes. Finally we have the following ap-
plication to Kato complexes, which is analogous to Theorem 2.5.10. Let S be a scheme
which is smooth of finite type over k and of pure dimension d. (Most interesting is the
case S = Spec(k), d = 0, which was needed in [JS] 2.14.) For a separated scheme of
finite type over S, f : X → S, define its homology with coefficients in Z/pn(−d) by

(3.11.1) Ha(X/S,Z/pn(−d)) := H−a(X,Rf !Z/pn(d)S) .
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These groups define a homology theory on the category of separated S-schemes of finite
type, in the sense of [JS] 2.1 (cf. loc. cit. 2.2), and in a standard way one obtains a niveau
spectral sequence

(3.11.2) E1
q,t(X/S,Z/pn(−d)) =

⊕
x∈Xq

Hq+t(x/S,Z/pn(−d))⇒ Hq+t(X/S,Z/pn(−d))

for X as above (cf. §2.5 and [JS] 2.7). Note that Xq agrees with (X/S)q in the sense of
(2.5.7), because S is of finite type over k.

Theorem 3.11.3. Let X be a separated S-scheme of finite type.
(1) There is a canonical isomorphism

E1
q,t(X/S,Z/pn(−d)) ∼=

⊕
x∈Xq

Hq−t−2d(x,Z/pn(q)) =
⊕
x∈Xq

H−t−2d(x,WnΩ
q
x,log) .

(2) Via these isomorphisms, the Bloch-Ogus complexE1
∗,t(X/S,Z/pn) coincides with

the sign-modified modified Kato complex C−t−2d,0
pn (X)(−).

(3) Especially, for a separated k-scheme X of finite type, purity induces an isomor-
phism E1

∗,t(X/k,Z/pn) ∼= C−t,0
pn (X)(−).

Proof. (1) follows from the purity isomorphism

Ha(V/S,Z/pn(−d)) = H−a(V,Rf !Z/pn(d)S)
∼=

(3.10.3)
H−a+2q−2d(V,Z/pn(q)V )(3.11.4)

for f : V → S with V smooth of pure dimension q.
Since (3) is a special case of (2), we prove (2) in what follows, by similar arguments

as in the proof of Theorem 2.5.10. The question is local in S and X . Therefore we may
assume that f : X → S factors as follows:

X � � i // P
π // S ,

where π is a smooth morphism of pure relative dimension N and i is a closed immersion.
The Gysin isomorphism Z/pn(d + N)[2N ] ≃ Rπ!Z/pn(d) from (3.10.3) induces an
isomorphism of homology theories

γ : H∗−2N(−/P,Z/pn(−d−N)) ∼−→ H∗(−/S,Z/pn(−d))
on all subschemes of P , and therefore an isomorphism between the corresponding spectral
sequences. Moreover, for an open subscheme jU : U ↪→ P and a closed subscheme
iV : V ↪→ U of dimension q, the purity isomorphism (3.10.3) for the composition

g = π ◦ jU ◦ iV : V � � iV // U � � jU // P
π // S

factors as
Z/pn(q)V [2q]

triV−−−−−−→ Ri!VZ/pn(d+N)U [2(d+N)]
Ri!V j

∗
U (trπ)

−−−−−−→ Ri!V j
∗
URπ

! Z/pn(d)S[2d]

Rg!Z/pn(d)S[2d] .
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The first morphism here induces the modified Gysin map

Gys◦iV : Hm+2q(V,Z/pn(q)V ) −→ H
m+2(d+N)
V (U,Z/pn(d+N)U)

in (3.5.4). Thus the compatibility facts in Remark 3.5.5 implies the claim. �
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4. THE CASE OF p-TORSION IN MIXED CHARACTERISTIC (0, p)

Let S be the spectrum of a henselian discrete valuation ring A with fraction field K of
characteristic zero and perfect residue field k of characteristic p > 0. Consider a diagram
with cartesian squares

Xη
� � jX //

fη

��
�

X

f

��
�

Xs
? _

iXoo

fs

��
η � � j // S s ,? _ioo

where η (resp. s) is the generic point (resp. closed point) of S, and f is separated of finite
type. Let n be a positive integer, and let Eη (resp. Es) be the étale sheaf µpn on η (resp. the
constant étale sheaf Z/pn on s). We define

EXη := Rf !
ηEη ∈ D+(Xη,ét,Z/pn),

EXs := Rf !
sEs ∈ D+(Xs,ét,Z/pn).

We recall some standard facts on EXη (compare Theorems 3.6.2 and 3.1.1 for EXs)

4.0.1. If Xη is smooth over η of pure dimension d, then there is a canonical isomorphism

trfη : µ⊗d+1
pn [2d] ∼−→ EXη

in D+(Xη,ét,Z/pn) by the relative Poincaré duality [SGA4] XVIII.3.25.

4.0.2. For points y ∈ (Xη)q and x ∈ (Xη)q−1 with x ∈ {y} ⊂ Xη, there is a commutative
diagram

ι∗xRιy∗µ
⊗q+1
pn [2q]

−∂val
y,x //

ι∗xRιy∗(τy) ≀
��

µ⊗q
pn [2q − 1]

≀ τx[1]
��

ι∗xRιy∗Rι
!
yEXη

ι∗x{δloc
y,x(EXη )} // Rι!xEXη [1]

in D+(xét,Z/pn). Here for a point v ∈ (Xη)m, ιv denotes the canonical map v ↪→ Xη

and τv denotes the canonical isomorphism µ⊗m+1
pn [2m] ∼= Rι!vEXη obtained from §4.0.1

for a smooth dense open subset of {v}. See (0.8.2) for the top arrow. One can check
this commutativity in the following way. Localizing and embedding Xη into an affine
space, we may suppose that Xη is smooth. Because Rι!xEXη [1] (resp. ι∗xRιy∗µ

⊗q+1
pn [2q]) is

concentrated in degree−2q+1 (resp.≤ −2q+1), the problem is reduced, by §0.6.4 (1), to
the commutativity at the (−2q+1)-st cohomology sheaves, which follows from Theorem
2.1.1 and [SGA41

2
] Cycle, 2.3.8 (i).

4.1. Condition Kq. The complexes EXη and EXs are important for the theory of duality
and homology over η and s, as we have seen in §2 and §3. For working over S, we study
morphisms

RjX∗EXη −→ iX∗EXs [−1] ,
see §4.2 and §4.6 below. In particular, we want to investigate local conditions. For a
point v ∈ X , let iv be the canonical map v ↪→ X . Let q be a non-negative integer, and
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take points y ∈ (Xη)q and x ∈ (Xs)q with x ∈ {y} ⊂ X . Put Y := Spec(O{y},x) and
x′ := Y ×X Xs and let π : Y ↪→ X be the natural map. Then we have cartesian squares

y � � jY //

ιy

��
�

Y

π

��
�

x′? _
iYoo

ϵx′

��
Xη

� � jX // X Xs ,? _
iXoo

and a canonical nilpotent closed immersion x ↪→ x′. Now let

δX : RjX∗EXη −→ iX∗EXs [−1]

be a morphism in D+(Xét,Z/pn). Applying Rπ∗Rπ! to δX , we obtain a morphism

(4.1.1) Rπ∗Rπ
!(δX) : Riy∗Rι

!
yEXη −→ Rix∗Rϵ

!
xEXs [−1] ,

where ϵx denotes the canonical map x ↪→ Xs, and we have used base-change isomor-
phisms

Rπ!RjX∗ = RjY ∗Rι
!
y and Rπ!iX∗ = iY ∗Rϵ

!
x′ ,

and the isomorphism
Rϵx′∗Rϵ

!
x′ = Rϵx∗Rϵ

!
x

by the invariance of étale topology. Furthermore, we haveRι!yEXη
∼= µ⊗q+1

pn [2q] by §4.0.1,
and we have Rι!xEXs

∼= WnΩ
q
x,log[q] by Theorem 3.6.2. Therefore the morphism (4.1.1) is

identified with a morphism Riy∗µ
⊗q+1
pn [2q]→ Rix∗WnΩ

q
x,log[q − 1], which induces a map

of cohomology sheaves in degree −q + 1:

δX(y, x) : R
q+1iy∗µ

⊗q+1
pn −→ ix∗WnΩ

q
x,log .

We are going to compare this map of sheaves onXét with Kato’s residue map (cf. (0.8.1)):

∂val
y,x : R

q+1iy∗µ
⊗q+1
pn −→ ix∗WnΩ

q
x,log .

Definition 4.1.2. We say that δX satisfies Kq if the induced map δX(y, x) agrees with ∂val
y,x

for all points y ∈ (Xη)q and x ∈ (Xs)q with x ∈ {y}.

Remark 4.1.3. In view of §0.6.4 (1), the morphism (4.1.1) is determined by δX(y, x). In
fact, we have Rmiy∗µ

⊗q+1
pn = 0 for any m > q + 1 by a similar argument as for Lemma

4.5.1 below.

4.2. Functoriality of Kato’s residue maps. Let

δval
S : Rj∗Eη −→ i∗Es[−1]

be the composite morphism

Rj∗Eη ∼= τ≤1Rj∗Eη −→ R1j∗Eη[−1] −→ i∗Es[−1]

inDb(Sét,Z/pn), where the first isomorphism follows from a theorem of Lang: cd(η) = 1
(cf. Lemma 4.5.1 below) and the last morphism is induced by Kummer theory and the
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normalized valuation vA on K×, i.e., Kato’s residue map (cf. §0.1). By the base-change
isomorphisms

Rf !Rj∗Eη = RjX∗EXη and Rf !i∗Es = iX∗EXs ,

we obtain a morphism

δS-val
X := Rf !(δval

S ) : RjX∗EXη −→ iX∗EXs [−1] in Db(Xét,Z/pn).

The first main result of this section is the following theorem:

Theorem 4.2.1. (1) The morphism δS-val
X satisfies Kq for all q ≥ 0.

(2) δS-val
X is the only morphism that satisfies Kq for all q ≥ 0.

(3) If Xη is smooth of pure dimension d, δS-val
X is the only morphism satisfying Kd.

The proof of this result will be finished in §4.8 below.

4.3. First reductions. We first note that, to prove Theorem 4.2.1, we may assume that
X is reduced and the closure of Xη. In fact, let X ′ ⊂ X be the closure of Xη with the
reduced subscheme structure. Then we get cartesian squares

(Xη)red
� � jX′ //

κη

��
�

X ′

κ

��
�

X ′
s

? _
iX′oo

κs

��
Xη

� � jX // X Xs ,? _
iXoo

where κ is the closed immersion. They induce a commutative diagram

κ∗RjX′∗EX′
η

κ∗Rκ!(δX)
//

κη∗ ≀
��

κ∗iX′∗EX′
s

κs∗

��
RjX∗EXη

δX // iX∗EXs ,

for any given morphism δX at the bottom. The left adjunction map is an isomorphism by
topological invariance of étale cohomology. Moreover, Rκ!(δS-val

X ) = δS-val
X′ , and evidently

δX satisfies Kq if and only if Rκ!(δX) does. This shows that the claims of Theorem 4.2.1
hold for X if and only if they hold for X ′. We also note the following reduction:

Lemma 4.3.1. A morphism δX satisfies Kq if and only if for all integral closed subschemes
ιZ : Z ↪→ X of dimension q + 1 the morphism Rι!Z(δX) satisfies Kq. In particular,
Theorem 4.2.1 (1) holds for X if and only if δS-val

Z satisfies Kq for all integral subschemes
Z ⊂ X of dimension d.

Proof. Let X be arbitrary. Take a point y ∈ (Xη)q (0 ≤ q ≤ d := dim(Xη)), let Z be
its closure in X , and take an x ∈ (Xs)q with x ∈ Z. Let ιZ : Z ↪→ X be the natural
inclusion. We have base-change isomorphisms

Rι!ZRjX∗EXη = RjZ∗EZη and Rι!ZiX∗EXs = iZ∗EZs ,
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and it follows from the definitions in §4.1 that δX(y, x) = (Rι!Z(δX))(y, x), if we regard
these as maps ι∗xR

q+1ιy∗µ
⊗q+1
pn → WnΩ

q
x,log. This shows the first claim. The second claim

follows, because Rι!Z(δ
S-val
X ) = δS-val

Z . �
Finally we note:

Remark 4.3.2. To prove that δS-val
X satisfies Kq it suffices to assume that f : X → S is

proper by taking a compactification of f .

4.4. Criterion in the proper case. Suppose that we are given two morphisms

δS : Rj∗Eη −→ i∗Es[−1] in D+(Sét,Z/pn),
δX : RjX∗EXη −→ iX∗EXs [−1] in D+(Xét,Z/pn).

Assuming that f is proper, we give a simple criterion as to when δX agrees with Rf !(δS),
that is, as to when the following diagram commutes in D+(Xét,Z/pn):

(4.4.1) RjX∗EXη

δX // iX∗EXs [−1]

Rf !Rj∗Eη
Rf !(δS) // Rf !i∗Es[−1] ,

where the equalities mean the identifications by base-change isomorphisms.

Proposition 4.4.2. Suppose that f is proper. Then the diagram (4.4.1) commutes if and
only if the following diagram is commutative:

(4.4.3) H1(Xη̃, EXη)
δX //

f∗
��

H0(Xs, EXs)

f∗
��

H1(η̃, Eη)
δS // H0(s, Es) ,

where η̃ denotes the generic point of the maximal unramified extension S̃ of S (s is the
closed point of S̃); the vertical maps are defined by the adjunction map Rf!Rf ! → id and
the properness of f , that is, Rf! = Rf∗.

Proof. By the adjointness between Rf ! and Rf!, we have the adjunction maps f ! : id →
Rf !Rf! and f! : Rf!Rf ! → id, which satisfy the relation that the composite

Rf ! f !−→ Rf !Rf!Rf
! f!−→ Rf !

is the identity map. By these facts, it is easy to see that the commutativity of (4.4.1) is
equivalent to that of the following diagram in D+(Sét,Z/pn):

(4.4.4) Rf!RjX∗EXη

Rf!(δX)
//

α

��

Rf!iX∗EXs [−1]

β

��
Rj∗Eη

δS // i∗Es[−1] ,
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where α is defined as the composite

α : Rf!RjX∗EXη

base-change
Rf!Rf

!Rj∗Eη
f! // Rj∗Eη

and β is defined in a similar way (note that we do not need the properness of f for this
equivalence). We prove that the commutativity of (4.4.4) is equivalent to that of (4.4.3).
For this, we first show the following:

Claim. i∗Rf!RjX∗EXη = i∗Rf∗RjX∗EXη is concentrated in degrees ≤ 1.

Proof of Claim. Because the stalk at s of the m-th cohomology sheaf is

H m(i∗Rf∗RjX∗EXη)s
∼= Hm(Xη̃, EXη)

by the properness of f , it suffices to show that the group on the right hand side is zero
for m > 1. Take an open subset Uη ⊂ Xη which is smooth over η of pure dimension
d := dim(Xη) and such that dim(Zη) < d, where Zη denotes the closed complement
Xη r Uη. By (0.5.2), there is a localization exact sequence

(4.4.5) · · · −→ Hm(Zη̃, EZη) −→ Hm(Xη̃, EXη) −→ Hm(Uη̃, EUη) −→ · · · .

Now we have EUη
∼= µ⊗d+1

pn [2d] by §4.0.1 for Uη, so that

Hm(Uη̃, EUη)
∼= Hm+2d(Uη̃, µ

⊗d+1
pn ) ,

which vanishes for m > 1 because cd(Uη̃) ≤ 2d+1, cf. the proof of Lemma 4.5.1 below.
Thus the vanishing of Hm(Xη̃, EXη) for m > 1 is shown by induction on dim(Xη) and
we obtain the claim. �
We turn to the proof of Proposition 4.4.2. By the above claim and §0.6.4 (1), a morphism
i∗Rf!RjX∗EXη → Es[−1] is determined by the map of the 1st cohomology sheaves, and
thus determined by the associated map of their stalks at s. Hence by the adjointness
between i∗ and i∗, the diagram (4.4.4) commutes if and only if the diagram (4.4.3) does.
This completes the proof of Proposition 4.4.2. �

4.5. Result for smooth generic fiber. In Proposition 4.5.2 below we obtain a first step
towards part (3) of Theorem 4.2.1 which will also be used for the other parts. We first
show:

Lemma 4.5.1. Let F be a torsion sheaf on (Xη)ét. Then RmjX∗F = 0 for any m >
dim(Xη) + 1.

Proof. Clearly RmjX∗F is trivial on Xη if m > 0. Hence the problem is étale local on
Xs and we may suppose that s = s. Let x be a point on Xs. The stalk of RmjX∗F at x is
isomorphic toHm(Spec(O sh

X,x[p
−1]),F ), where Spec(O sh

X,x[p
−1]) is written as a projective

limit of affine varieties over η of dimension≤ dim(Xη). Hence the assertion follows from
the affine Lefschetz theorem ([SGA4] XIV.3.2) and Lang’s theorem: cd(η) = 1 ([Se]
II.3.3). �

Proposition 4.5.2. If Xη is smooth of pure dimension d, then there exists a unique mor-
phism δX : RjX∗EXη → iX∗EXs [−1] satisfying Kd.
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Proof. By §4.3 we may assume that dim(Xs) ≤ d. We have EXη
∼= µ⊗d+1

pn [2d] by §4.0.1,
and RjX∗EXη is concentrated in [−2d,−d + 1] by Lemma 4.5.1. On the other hand,
iX∗EXs [−1] is concentrated in degree [−d + 1, 1] by Theorem 3.6.2 and the assumption
dim(Xs) ≤ d. Hence a morphism δX : RjX∗EXη → iX∗EXs [−1] is determined by the
map H −d+1(δX) of the (−d + 1)-st cohomology sheaves by §0.6.4 (1). Moreover, for a
given δX , there is a commutative diagram of sheaves on Xét:

H −d+1(RjX∗EXη)

H −d+1(δX)

��

Rd+1jX∗µ
⊗d+1
pn

α //
⊕

y∈(Xη)d

Rd+1iy∗µ
⊗d+1
pn

γ

��

H −d+1(iX∗EXs [−1]) iX∗H −d(EXs)
� � β // ⊕

x∈(Xs)d

ix∗WnΩ
d
x,log ,

where α is the adjunction map, β is an inclusion obtained from Theorem 3.6.2 and γ is
the sum of δX(y, x)’s. These facts show the uniqueness of δX satisfying Kd. Next we
prove its existence. For this, let us consider the following diagram of sheaves:

Rd+1jX∗µ
⊗d+1
pn

α //

ϱ

��

⊕
y∈(Xη)d

Rd+1iy∗µ
⊗d+1
pn

∂2

��

∂1 //
⊕

w∈(Xη)d−1

Rdiw∗µ
⊗d
pn

∂3

��

0
//
iX∗H −d(EXs)

β // ⊕
x∈(Xs)d

ix∗WnΩ
d
x,log

∂4 // ⊕
z∈(Xs)d−1

iz∗WnΩ
d−1
z,log ,

where α and β are the same maps as above, and each ∂i (i = 1, . . . , 4) is the sum of
Kato’s residue maps. We have the following facts for this diagram: the right square is
anti-commutative by [KCT] 1.7 for X; the upper row is a complex by §4.0.2; the lower
row is exact by Theorem 3.6.2. Hence ∂2 induces a map ϱ as in the diagram, and we obtain
a morphism δX satisfying Kd by extending this map (cf. §0.6.4 (1)). This completes the
proof. �

4.6. Case of points. We will prove Theorem 4.2.1 (1) by induction on dim(Xη). We start
with:

Lemma 4.6.1. Theorem 4.2.1 is true for X with dim(Xη) = 0.

Proof. First we show 4.2.1 (1). By Lemma 4.3.1 and Remark 4.3.2 we may assume thatX
is integral and proper. Then f : X → S is flat and finite by [EGAIII] 4.4.2, and moreover,
Xs is irreducible because S is henselian and X is irreducible. Let j′ : η′ ↪→ X (resp.
i′ : s′ ↪→ X) be the generic (resp. closed) point. Then η′ = Xη and η′ → η is finite
étale, because X is integral and ch(K) = 0. On the other hand, s′ → s is finite étale as
well by the perfectness of k, and this map factors as the composite of a nilpotent closed



48 U. JANNSEN, S. SAITO AND K. SATO

immersion s′ ↪→ Xs with fs : Xs → s. Therefore we have EXη = µpn and EXs = Z/pn.
Now let

δX : RjX∗EXη −→ iX∗EXs [−1]

be the composite morphism RjX∗µpn → R1jX∗µpn [−1] → iX∗Z/pn[−1], where the last
morphism is given by the map ∂val

η′,s′ . Because δX satisfies K0 by definition, our task is
to show the equality δX = δS-val

X (:= Rf !(δval
S )). Moreover, by the finiteness of f and

Proposition 4.4.2, we have only to show the commutativity of the diagram

(4.6.1) H1(η′, µpn)
∂val
η′,s

''OO
OOO

OOO
OOO

trf
��

H1(η, µpn)
∂val
η,s

// H0(s,Z/pn) ,

assuming that s = s′ = s (that is, k is algebraically closed). We show this commutativity.
Let B0 be the affine ring of X , let B be the normalization of B0, let L be the fraction field
of B and let x be the closed point of Spec(B). By definition, ∂val

η′,s is the composite

H1(η′, µpn) −→ H0(x,Z/pn) ∼−→ H0(s,Z/pn) .

where the first map is given by the normalized valuation vB on L× and the second map is
induced by the isomorphism x ∼= s. On the other hand, there is a commutative diagram

L×/pn
∼= //

NL/K

��

H1(η′, µpn)

trf
��

K×/pn
∼= // H1(η, µpn) ,

where NL/K denotes the norm map (cf. [SGA4] XVIII.2.9 (Var 4)), and the horizontal
arrows are boundary maps coming from the Kummer theory for η′ and η, respectively.
Therefore the commutativity of (4.6.1) follows from the fact that vB = vA ◦NL/K . Now
we prove the other parts of Theorem 4.2.1 for X . By §4.3 we may assume that X is
reduced. Then, since dim(Xη) = 0, Xη is smooth, and Proposition 4.5.2 implies that
δS-val
X is the only morphism satisfying K0. �

4.7. Induction step. Consider the following situation. Suppose that X is reduced, sep-
arated of finite type over S, that Xη has dimension d ≥ 1, and that Xη is dense in X .
Choose a smooth affine dense open subset Uη ⊂ Xη. Let Zη := XηrUη with the reduced
structure, let Z be the closure of Zη in X , and let U = X r Z. Then the composite
morphism fZ : Z → X → S is flat, and hence we have

(4.7.1) (Us)d = (Xs)d .
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We name the canonical immersions as follows:

Uη
� � jU //

_�

ϕη
��

�

U
_�

ϕ

��
�

Us? _
iUoo

_�

ϕs
��

Xη
� � jX // X Xs

? _
iXoo

Zη
� � jZ //

?�

ψη

OO

�

Z
?�

ψ

OO

�

Zs .? _
iZoo

?�

ψs

OO

Consider a diagram of the following type in D+(Xét,Z/pn):

(4.7.2) ψ∗RjZ∗EZη

ψ∗ //

δSZ
��

(1)

RjX∗EXη

ϕ∗ //

δ1
��

(2)

Rϕ∗RjU∗EUη

−ϵ1 //

δ2
��

(3)

ψ∗RjZ∗EZη [1]

δSZ [1]

��
ψ∗iZ∗EZs [−1]

ψ∗ // iX∗EXs [−1]
ϕ∗ // Rϕ∗RiU∗EUs [−1]

ϵ2[−1]
// ψ∗iZ∗EZs .

Here we put

δSZ := ψ∗(δ
S-val
Z ) = ψ∗Rf

!
Z(δ

val
S ) , ϵ1 := δloc

U,Z(RjX∗EXη) , ϵ2 := δloc
U,Z(iX∗EXs) ,

the horizontal rows are the distinguished triangles deduced from the obvious localization
triangles (cf. (0.5.2)) and the base-change isomorphisms

Rψ!RjX∗EXη = RjZ∗EZη , ϕ∗RjX∗EXη = RjU∗EUη ,

Rψ!iX∗EXs = iZ∗EZs , ϕ∗iX∗EXs = RiU∗EUs .

Lemma 4.7.3. If δ2 is given, there is at most one morphism δ1 making the squares (1) and
(2) in (4.7.2) commutative.

Proof. We want to apply Lemma 0.6.3 (3). Because Uη is smooth and affine, we have
EUη
∼= µ⊗d+1

pn [2d] by §4.0.1, and C = R(ϕjU)∗EUη is concentrated in [−2d,−d + 1] by a
similar argument as for Lemma 4.5.1. On the other hand, because dim(Xs) ≤ d, iX∗EXs is
concentrated in [−d, 0] by Theorem 3.6.2 (note that iX is a closed immersion). Similarly,
A′ = ψ∗iZ∗EZs is concentrated in [−d + 1, 0], because we have dim(Zs) ≤ d − 1 by the
flatness of fZ : Z → S. Therefore we get

HomD(X,Z/pn)(C,A
′) = 0.

On the other hand, for A = ψ∗RjZ∗EZη and C ′ = Rϕ∗RiU∗EUs [−1] we have

Hom−1
D(X,Z/pn)(A,C

′) = HomD(X,Z/pn)(ψ∗RjZ∗EZη , Rϕ∗RiU∗EUs [−2])
= HomD(X,Z/pn)(ϕ

∗ψ∗RjZ∗EZη , RiU∗EUs [−2]) (adjunction)
= 0 (ϕ∗ψ∗ = 0)

So the lemma follows from Lemma 0.6.3 (3). �

Lemma 4.7.4. Consider the diagram (4.7.2) and assume that δ2 = Rϕ∗(δU) where δU :
RjU∗EUη → RiU∗EUs denotes the morphism obtained by applying Proposition 4.5.2 to U .
Assume that Kd−1 holds for δS-val

Z .
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(i) If X is integral, then the square (3) in (4.7.2) commutes. Consequently, there
exists a morphism δ1 which makes the squares (1) and (2) in (4.7.2) commutative
at the same time.

(ii) If f : X → S is proper, then any morphism δ1 making the square (1) in (4.7.2)
commutative necessarily coincides with δS-val

X .

Proof of Lemma 4.7.4. (i) As we have seen in the proof of lemma 4.7.3, R(ϕjU)∗EUη is
concentrated in [−2d,−d+1] and ψ∗iZ∗EZs is concentrated in [−d+1, 0]. By these facts,
the square (3) commutes if and only if the square of the induced homomorphisms on the
(−d+1)-st cohomology sheaves commutes. We prove this commutativity on cohomology
sheaves. By Theorem 3.6.2, we have

H −d+1(ψ∗iZ∗EZs) = ψ∗iZ∗H
−d+1(EZs) ↪→

⊕
x∈(Zs)d−1

ix∗WnΩ
d−1
x,log .

Hence we may suppose that (Zs)d−1 is not empty, and the problem is local at each point
in (Zs)d−1. Now fix a point x ∈ (Zs)d−1, and define B (resp. C, D) as Spec(OX,x) (resp.
U ×X B, Z ×X B), and let σ be the open immersion Cη ↪→ B. Note that B is integral
local of dimension two and that Dη and E := (Cs)red are finite sets of points in B1 ⊂ X1.
Our task is to show the commutativity of the following diagram on Bét:

(4.7.5) Rd+1σ∗µ
⊗d+1
pn

δ3 //

δ4

��

⊕
z∈Dη

Rdiz∗µ
⊗d
pn

δ5

��⊕
y∈E

iy∗WnΩ
d
y,log

δ6 //
ix∗WnΩ

d−1
x,log ,

where for a point v ∈ B, we wrote iv for the map v → B and we have used the iso-
morphisms EZη |Dη

∼= µ⊗d
pn [2(d − 1)] (cf. §4.0.1) and EUs|Cs

∼= WnΩ
d
E,log (cf. Theorem

3.6.2). Each δi (i = 3, . . . , 6) denotes the map obtained by restricting the corresponding
morphism in the square (3) of (4.7.2). Now let w be the generic point of B and let α be
the adjunction map Rd+1σ∗µ

⊗d+1
pn → Rd+1iw∗µ

⊗d+1
pn . We have the following facts for the

maps in (4.7.5).
• δ3 factors, by §4.0.2, as

δ3 : R
d+1σ∗µ

⊗d+1
pn

α−→ Rd+1iw∗µ
⊗d+1
pn

⊕
z ∂

val
w,z

−−−−→
⊕
z∈Dη

Rdiz∗µ
⊗d
pn .

• δ4 factors as

δ4 : R
d+1σ∗µ

⊗d+1
pn

α−→ Rd+1iw∗µ
⊗d+1
pn

⊕
y ∂

val
w,y

−−−−→
⊕
y∈E

iy∗WnΩ
d
y,log

by the construction of δU (cf. Proposition 4.5.2).
• δ5 =

∑
z∈Dη

∂val
z,x by the assumption of the lemma.

• δ6 = −
∑

y∈E ∂val
y,x by Theorem 3.6.2 and the construction of M •

n,Xs
, cf. §3.5.
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Therefore we obtain the commutativity of (4.7.5) from a result of Kato [KCT] 1.7 for B,
by noting that B1 = (Cη)

1
⨿
Dη

⨿
E and that Im(α) is contained in the kernel of the

map ⊕
v

∂val
w,v : R

d+1iw∗µ
⊗d+1
pn −→

⊕
v∈(Cη)1

Rdiv∗µ
⊗d
pn

(cf. proof of Proposition 4.5.2). This completes the proof of Lemma 4.7.4 (i), because its
second claim follows with §0.6.2.

(ii) By the properness of f and Proposition 4.4.2, we have only to show the commuta-
tivity of the right square (1)′′ of the following diagram, assuming that s = s:

(4.7.6) H1(Zη, EZη)
ψ∗ //

Rf∗(δSZ)
��

(1)′

H1(Xη, EXη)
f∗ //

Rf∗(δ1)
��

(1)′′

H1(η, Eη)

δval
S
��

H0(Zs, EZs)
ψ∗ // H0(Xs, EXs)

f∗ // H0(s, Es) ,

where for a proper morphism g of schemes, we wrote g∗ for the adjunction mapRg∗Rg! →
id. The outer square of this diagram commutes, because δSZ = ψ∗Rf

!
Z(δ

val
S ) and the com-

posite

RfZ∗Rf
!
Z = Rf∗ψ∗Rψ

!Rf ! ψ∗−→ Rf∗Rf
! f∗−→ id

is functorial (in fact, this coincides with fZ∗). On the other hand, the square (1)′ com-
mutes, because δ1 makes the square (1) in (4.7.2) commutative. Moreover, in view of
the exact sequence (4.4.5), the upper horizontal arrow ψ∗ in (1)′ is surjective, because we
have

H1(Uη, EUη)
∼= H2d+1(Uη, µ

⊗d+1
pn ) = 0

by the assumptions that s = s and that Uη is smooth affine of dimension d ≥ 1 (cf.
Lemma 4.5.1). Therefore (1)′′ is commutative, and we obtain Lemma 4.7.4 (ii). �

4.8. Proof of Theorem 4.2.1. First consider Theorem 4.2.1 (1). By Lemma 4.3.1 and
Remark 4.3.2 it suffices to show:

(♯) For integral X , δS-val
X := Rf !(δval

S ) satisfies Kd with d := dim(Xη).

We show this property by induction on d = dim(Xη). The case d = 0 is settled by Lemma
4.6.1. Now let dim(Xη) ≥ 1 and choose U and Z = X r U as in §4.7. Assume that
δ2 = Rϕ∗(δU) with δU as in Lemma 4.7.4. The assumption of this lemma holds because
(♯) holds for Z by induction assumption. Therefore there is a morphism δ1 making (4.7.2)
commutative, and this morphism is δ1 = δS-val

X . We conclude that δU = ϕ∗(δS-val
X ) =

δS-val
U . Hence δS-val

U satisfies Kq (by choice of δU ), and δS-val
X satisfies Kq as well, because

(Xη)d = (Uη)d by density of U in X , and (Xs)d = (Us)d as noted in (4.7.1).
Theorem 4.2.1 (3) now follows from Proposition 4.5.2, because δS-val

X satisfies Kd.
Theorem 4.2.1 (2) follows once more by induction on d = dim(Xη), the case d = 0

being given by Lemma 4.6.1. If d ≥ 1 we may assume that X is reduced and then again
choose U and Z = X r U as in §4.7. Assume that a morphism

δ1 : RjX∗EXη −→ iX∗EXs [−1]
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satisfies Kq for all q ≥ 0. Then Rψ!(δ1) satisfies Kq for all q ≥ 0 and agrees with δS-val
Z

by induction assumption. On the other hand, ϕ∗(δ1) satisfies Kd and thus coincides with
δS-val
U by Theorem 4.2.1 (3) just proved. The conclusion is that δ1 makes the square (1)

of (4.7.2) commutative with δSZ = ψ∗(δ
S-val
Z ), and the square (2) of (4.7.2) commutative

with δ2 = Rϕ∗(δ
S-val
U ). Since obviously δS-val

X makes these diagrams commutative as
well, Lemma 4.7.3 implies δ1 = δS-val

X as wanted. This concludes the proof of Theorem
4.2.1. �

4.9. Dualizing complexes. We apply our results to the study of dualizing complexes as
indicated in part §0.2 of the introduction. Let f : X → S be separated of finite type, and
define

EX := Rf !Z/pn(1)′S ∈ D+(Xét,Z/pn).
Also, let EXη = Rf !

ηµpn and EXs = Rf !
sZ/pn, as we defined at the beginning of this

section. Then, by applying Rf ! to the exact triangle (1.1.2) and using the base-change
isomorphisms as in (4.4.1) we get a canonical isomorphism of exact triangles

(4.9.1) iX∗EXs [−2]
gX // EX

tX //

(def)

RjX∗EXη

δS-val
X // iX∗EXs [−1]

Rf !i∗Z/pn[−2]
Rf !(g)

// Rf !Z/pn(1)′S
Rf !(t)

// Rf !Rj∗µpn
Rf !(δval

S )
// Rf !i∗Z/pn[−1] ,

where gX and tX are the adjunction maps for iX and jX , respectively. By Theorem 4.2.1
the morphism δS-val

X satisfies the localization property Kq for all q ≥ 0 (i.e., is locally
given by Kato’s residue maps), and is determined by this property (and just by Kd if Xη is
smooth of dimension d). Moreover, by Lemma 4.9.5 below (see also (1.4.2) below), we
see that

(4.9.2) δS-val
X = −δloc

Xη ,Xs
(EX) .

Because the dualizing complex is DX,pn = EX [2] by definition (cf. §0.2), this equality
implies the last claim in the part (iv) of §0.2. In fact, it is easy to see that the local
version treated in this section can be extended to the more global situation described in
the introduction.

Lemma 4.9.5. Consider cartesian squares of schemes

XZ
� � i //

��
�

X

f
��

�

XU
? _

joo

��
Z � � i′ // Y U ,? _

j′oo

where i′ is a closed immersion and j′ is the open immersion of the complementU = YrZ.
Then, for any complex of torsion sheaves K ∈ D+(Yét) the base-change isomorphisms
give an identification

Rf !(δloc
U,Z(K )) = δloc

XU ,XZ
(Rf !K ) .
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Proof. There is a commutative diagram with distinguished rows

i∗Ri
!(Rf !K )

i∗ //

β ≀
��

Rf !K
j∗ // Rj∗j

∗(Rf !K )
−δloc

XU,XZ
(Rf !K )

//

α
��

i∗Ri
!(Rf !K )[1]

β[1] ≀
��

Rf !(i′∗Ri
′!K )

Rf !(i′∗)// Rf !K
Rf !(j′∗)

// Rf !(Rj′∗j
′∗K )

−Rf !(δloc
U,Z(K ))

// Rf !(i′∗Ri
′!K )[1] ,

where the top row is the localization exact triangle (0.5.2) for Rf !K , the bottom row
is obtained by applying Rf ! to a localization exact triangle for K and the arrow β is
a base-change isomorphism. By adjunction, the left hand square commutes. Therefore
there exists a morphism α which makes the other squares commute (see §0.6.2). By
the commutativity of the middle square, α is mapped to the identity under the canonical
isomorphisms

HomD(X)(Rj∗j
∗Rf !K , Rf !Rj′∗j

′∗K ) ∼= HomD(U)(j
∗Rf !K , j∗Rf !Rj′∗j

′∗K )

= HomD(U)(j
∗Rf !K , j∗Rf !K ) .

But this means that α is the base-change isomorphism, and the claim follows. �

4.10. Bloch-Ogus complexes and Kato complexes. As an application, used in [JS]
2.20, 2.21, we deduce the following result on Kato complexes, analogous to §2.5 and
§3.11. As in [JS] p. 497, we define a homology theory on all separated S-schemes
f : X → S of finite type by letting

Ha(X/S,Z/pn(−1)) := H−a(X,Rf !(Z/pn(1)′S)) ,
and, following the method of Bloch and Ogus, a niveau spectral sequence
(4.10.1)

E1
q,t(X/S,Z/pn(−1)) =

⊕
x∈(X/S)q

Hq+t(x/S,Z/pn(−1))⇒ Hq+t(X/S,Z/pn(−1)),

where Ha(x/S;Z/pn(−1)) is defined as the inductive limit over all Ha(U/S,Z/pn(−1)),
for all non-empty open subschemes V ⊂ {x}. See (2.5.6) for the definition of (X/S)q.
Then we have

Theorem 4.10.2. (1) For X = Xη the spectral sequence (4.10.1) is canonically iso-
morphic to the spectral sequence

E1
q−1,t+1(Xη/η,Z/pn(−1)) =

⊕
x∈(Xη)q−1

Hq+t(x/η,Z/pn(−1))

=⇒ Hq+t(Xη/η;Z/pn(−1)) .
obtained from (2.5.7) after shifts in the both degrees.

(2) For X = Xs the spectral sequence (4.10.1) is canonically isomorphic to the spec-
tral sequence

E1
q,t+2(Xs/s,Z/pn) =

⊕
x∈(Xs)q

Hq+t+2(x/s,Z/pn) =⇒ Hq+t+2(Xs/s;Z/pn)

obtained from (3.11.2) after a shift in the second degree.
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(3) Let x ∈ (X/S)q ∩Xs = (Xs)q and y ∈ (X/S)q+1 ∩Xη = (Xη)q with x ∈ {y}.
Then there are canonical purity isomorphisms

Hq+1+t(y/S,Z/pn(−1)) ∼= Hq−t−1(y,Z/pn(q + 1)) ,

Hq+t(x/S,Z/pn(−1)) ∼= Hq−t−2(x,Z/pn(q)) .

Via these isomorphisms, the (y, x)-component

d1q+1,t(y, x) : H
q−t−1(y,Z/pn(q + 1))→ Hq−t−2(x,Z/pn(q))

of the differential d1q+1,t in (4.10.1) coincides with −∂val
y,x.

(4) The isomorphisms in (1), (2) and (3) induce isomorphisms

E1
∗,t(X/S,Z/pn(−1)) ∼= C−t−2,0

pn (X)(−)

between Bloch-Ogus complexes and sign-modified Kato complexes.

Proof. (1) and (2) are obvious from the isomorphisms (1.1.3). The first claim in (3) is
clear from the fact that {y} meets Xs, and the isomorphisms then follow from (1) and (2)
and the purity isomorphisms (2.5.8) and (3.11.4), respectively. For the third statement of
(3) we recall that the upper exact triangle in (4.9.1) induces isomorphisms

tX : j∗XEX ∼= EXη and gX : EXs
∼= Ri!XEX

identifying δS-val
X with the connecting morphism −δloc

Xη ,Xs
(EX), cf. (4.9.2). Since δS-val

X

induces Kato’s residue maps, we get the claim. As for (4), the compatibility d1(y, x) =
−∂val

y,x between the differentials and Kato’s residue maps follow from (1) and Theorem
2.5.10 for y, x ∈ Xη, and from (2) and Theorem 3.11.3 for y, x ∈ Xs. The remaining
case is covered by (3). �

Remark 4.10.3. It is easy to see that this theorem proves the claims in [JS] 2.20 and 2.21,
except that the signs needed to be corrected. The reason for this lies in the interpretation
of the connecting morphism and the resulting minus sign in (0.5.2).

4.11. Unicity of the cone. As a complement we show the following unicity result for
EX = Rf !(Z/pn(1)′S). Recall the situation at the beginning of this section

Xη
� � jX //

fη

��
�

X

f

��
�

Xs
? _

iXoo

fs

��
η � � j // S s ,? _ioo

and the associated exact triangle, cf. (4.9.1)

iX∗EXs [−2] // EX // RjX∗EXη

δS-val
X // iX∗EX [−1] .

Theorem 4.11.1. The object EX is uniquely determined, up to unique isomorphism, as
the mapping fiber of δS-val

X .
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Remark 4.11.2. There is a similar uniqueness claim in §0.2 (iv) in the situation where S
is the spectrum of the integer ring in a number field. This follows from the same arguments
as the proof of Theorem 4.11.1 below by replacing

j : η ↪→ S with S[p−1] ↪→ S,

i : s ↪→ S with Σ ↪→ S,

jX : Xη ↪→ X with X[p−1] ↪→ X,

iX : Xs ↪→ X with XΣ ↪→ X,

where Σ denotes the set of all closed points on S of characteristic p.

Proof of Theorem 4.11.1. By Lemma 0.6.3 (3) it suffices to show

(i) Hom−1
D(X,Z/pn)(iX∗EXs [−2], RjX∗EXη) = 0.

(ii) HomD(X,Z/pn)(RjX∗EXη , iX∗EXs [−2]) = 0.

(i) follows by adjunction for jX , because j∗XiX∗ = 0. As for (ii), since

HomD(X,Z/pn)(RjX∗EXη , iX∗EXs [−2]) = HomD(s,Z/pn)(Rfs!i
∗
XRjX∗EXη , Z/pn[−2])

by adjunction for iX and fs, it suffices to show

Lemma 4.11.3. Rfs!i∗XRjX∗EXη is concentrated in [−2d, 1], where d = dim(Xη).

We first show the following result, which may be of own interest.

Lemma 4.11.4. Let k be a field, and let f : X → Spec(k) be separated of finite type, and
let n be a positive integer which is invertible in k. Then Rf!Rf !Z/n(i) is concentrated in
[−2d, 0], where d := dim(X).

Proof. We proceed by induction on d = dim(X). We may assume that k is separably
closed, that i = 0 and that X is reduced, and then the case d = 0 is clear. Choose
an affine open subset U ⊂ X which is smooth of pure dim d and whose complement
Z := X r U has dimension e ≤ d− 1. We get a commutative diagram

U � � ϕ //

fU ##H
HH

HH
HH

HH
X

f
��

Z? _
ψoo

fZ{{vv
vv
vv
vv
v

Spec(k) ,

where ϕ (resp. ψ) denotes the natural open (resp. closed) immersion, and we defined
fU := f ◦ ϕ and fZ := f ◦ ψ. We note that ϕ is affine, because X is separated over k (if
V ⊂ X is affine, then ϕ−1(V ) = U ∩ V is affine). There is an exact triangle

Rf!ψ∗Rψ
!Rf !Z/n −→ Rf!Rf

!Z/n −→ Rf!Rϕ∗ϕ
∗Rf !Z/n +1−→ .

Since U is smooth of pure dimension d, we have

ϕ∗Rf !Z/n = Rf !
UZ/n ∼= Z/n(d)[2d] .

Moreover we have Rψ!Rf ! = Rf !
Z . Therefore we can identify the above triangle with

(4.11.4) RfZ!Rf
!
ZZ/n −→ Rf!Rf

!Z/n −→ Rf!Rϕ∗Z/n(d)[2d]
+1−→ .
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Since RfZ!Rf !
ZZ/n is concentrated in [−2d + 2, 0] by induction, it is enough to show

that A := Rf!Rϕ∗Z/n(d)[2d] is concentrated in [−2d, 0]. Obviously A is concentrated
in degrees ≥ −2d, because this holds for Z/n(d)[2d]. On the other hand, we note that
Z/n(d)[d] is a perverse sheaf on U ([BBD] p. 102), so that Rϕ∗Z/n(d)[d] is perverse,
because ϕ is an affine open immersion (and hence t-exact for the perverse t-structure loc.
cit. 4.1.10 (i)), and that A = Rf!Rϕ∗ Z/n(d)[d] is of perversity ≤ d (loc. cit. 4.2.4), i.e.,
lies in Dp≤d

c (k,Z/n) = Dp≤0
c (k,Z/n)[−d]. This means that

A ∈ Dp≤0
c (k,Z/n).

Since the perverse t-structure is the classical t-structure on Spec(k), we get that A is
concentrated in degrees ≤ 0. Thus we obtain Lemma 4.11.4. �
Proof of Lemma 4.11.3. We may assume that X is reduced and the closure of Xη. Then
we prove the lemma by induction on d = dimXη. The case d = 0 is easy and left to the
reader. Suppose d > 1. Then there is a commutative diagram

U � � ϕ //

  @
@@

@@
@@

@ X

f
��

Z? _
ψoo

g
~~~~
~~
~~
~~

S ,

where ϕ is an open immersion, Uη is affine, smooth over η and has pure dimension d, ψ is
the closed immersion of the complement Z = XrU (with reduced subscheme structure),
and dimZη ≤ d− 1. We get an exact triangle

(4.11.5) i∗XRjX∗ψη∗Rψ
!
ηEXη −→ i∗XRjX∗EXη −→ i∗XRjX∗Rϕη∗ϕ

∗
ηEXη

+1−→ ,

where we used morphisms in the following diagram:

Uη
� � jU //

_�

ϕη
��

�

U
_�

ϕ

��
�

Us? _
iUoo

_�

ϕs
�� &&MM

MMM
MMM

MMM
MM

Xη
� � jX // X Xs

? _
iXoo fs // s .

Zη
� � jZ //

?�

ψη

OO

�

Z
?�

ψ

OO

�

Zs? _
iZoo

?�

ψs

OO

gs

88qqqqqqqqqqqqq

By the proper base-change theorem for ψ we identify

i∗XRjX∗ψη∗Rψ
!
ηEXη = i∗Xψ∗RjZ∗EZη = ψs∗i

∗
ZRjZ∗EZη .

Because ϕ is étale and Uη is smooth of pure dimension d, we have

Rϕη∗ϕ
∗
ηEXη = Rϕη∗EUη = Rϕη∗µ

⊗d+1
pn [2d] .

Therefore triangle (4.11.5), after application of Rfs!, leads to an exact triangle

Rgs!i
∗
ZRjZ∗EZη −→ Rfs!i

∗
XRjX∗EXη −→ Rfs!i

∗
XRjX∗Rϕη∗µ

⊗d+1
pn [2d]

+1−→ .

Since the first term is concentrated in [−2d+ 2, 1] by induction, it suffices to show that

(4.11.6) A := Rfs!i
∗
XRjX∗Rϕη∗µ

⊗d+1
pn [2d]
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is concentrated in [−2d, 1]. It is clearly concentrated in degrees ≥ −2d, because this
holds for µ⊗d+1

pn [2d]. We prove that A is concentrated in degrees ≤ 1 in what follows. By
the proof of Lemma 4.11.4, Rϕη∗µ⊗d+1

pn [d] is a perverse sheaf, i.e.,

Pq := H q(Rϕη∗µ
⊗d+1
pn [d]) = Rq+dϕη∗µ

⊗d+1
pn

has support in dimension ≤ −q. In particular, it is non-zero only for −d ≤ q ≤ 0. We
will prove

Claim. The sheaf i∗XR
mjX∗Pq is zero for m+ q > 1.

We see that i∗XRjX∗Rϕη∗µ
⊗d+1
pn [d] is concentrated in degrees ≤ 1 by the claim and the

Leray spectral sequence

Ea,b
2 = i∗XR

ajX∗P
b =⇒H a+b(i∗XRjX∗Rϕη∗µ

⊗d+1
pn [d]) .

Moreover since dimXs ≤ d (see the beginning of proof of Lemma 4.11.3) and ch(s) = p,
we see that

A[d] = Rfs!i
∗
XRjX∗Rϕη∗µ

⊗d+1
pn [d]

is concentrated in degrees ≤ d + 1, so that A is concentrated in degrees ≤ 1. Thus it
remains to show the above claim. By the remark before the claim, it suffices to prove

Lemma 4.11.8. If F is an étale sheaf on Xη with dim(Supp F ) ≤ b, then we have

dim(Supp i∗XR
mjX∗F ) ≤ b for m ≥ 0,

and i∗XR
mjX∗F = 0 for m > b+ 1.

Proof. By assumption, there is a closed subset V
ι
↪→ Xη of dimension ≤ b such that

F = ι∗G with G = ι∗F . Let Y = V , the closure of V in X endowed with the reduced
subscheme structure. Then V = Yη, and Ys has dimension ≤ b. We get cartesian squares

Yη
� � jY //

_�

ι=κη

��
�

Y
_�

κ

��
�

Ys? _
iYoo

_�

κs

��
Xη

� � jX // X Xs
? _

iXoo

with κ, κη and κs being closed immersions. Since F = κη∗G , we get

i∗XR
ajX∗F = i∗XR

ajX∗κη∗G = i∗Xκ∗R
qjY ∗G = κs∗i

∗
YR

qjY ∗G ,

where the last equality is a base-change isomorphism. This shows that i∗XR
mjX∗F has

support in Ys, i.e., in dimension ≤ b. Finallly, since RmjY ∗G = 0 for m > b + 1 by
Lemma 4.5.1, we have i∗XR

mjX∗F = κs∗i
∗
YR

mjY ∗G = 0 for m > b+ 1. �
This completes the proof of Lemma 4.11.3 and Theorem 4.11.1. �

By the above results, we obtain the following bounds for EX = Rf !(Z/pn(1)′S).

Corollary 4.11.9. Put d := max(dimXη, dimXs). Then:
(1) i∗Rf!EX is concentrated in [−2d, 2].
(2) j∗Rf!EX is concentrated in [−2d, 0].
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In particular, Rf!EX is concentrated in [−2d, 2].

Proof. (1) Consider the exact triangle

i∗Rf!iX∗EXs [−2] // i∗Rf!EX // i∗Rf!RjX∗EXη

+1 // .

A B C

Here
A = Rfs!EXs [−2] and C = Rfs!i

∗
XRjX∗EXη

by the proper base-change theorem. SinceC is concentrated in [−2d, 1] by Lemma 4.11.3,
it is enough to show thatA is concentrated in [−d+2, 2]. Since EXs

∼= Mn,Xs by Theorem
3.6.2, the complex EXs is concentrated in [−d, 0] and any non-zero section of H q(EXs)
has support of dimension ≤ −q. This implies that

Rmfs!H
q(EXs) = 0 for m+ q > 0.

Indeed, Rfs! commutes with inductive limits of sheaves, and for any separated of finite
type morphism g : Z → s with dim(Z) = e and any p-primary torsion sheaf F on Zét,
the complex Rg!F is concentrated in [0, e]. Therefore Rfs!EXs is concentrated in [−d, 0],
and A is concentrated in [−d+ 2, 2].

(2) Since
j∗Rf!EX = Rfη!EXη = Rfη!Rf

!
ηµpn ,

the assertion follows from Lemma 4.11.4. �
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APPENDIX A. TRACE MAPS FOR LOGARITHMIC HODGE-WITT COHOMOLOGY

For the definition of the Kato complexes one needs corestriction maps

(A.0.1) CorL/K : Hj(L,WnΩ
r
L,log) −→ Hj(K,WnΩ

r
K,log)

for logarithmic Hodge-Witt cohomology and finite extensions L/K of fields of charac-
teristic p > 0 (cf. §0.7 or [KCT]). These are not defined explicitly in [KCT], but Kato
constructed such maps in earlier papers and referred to results in these papers. In this ap-
pendix we discuss Kato’s construction and some alternative descriptions used in the main
body of the paper (cf. Lemmas A.1.1, A.2.6 and Corollary A.2.8 below). Recall that the
groups above are non-zero only for j = 0, 1.

A.1. The case j = 0. First we consider the case j = 0. Here the definition (0.7.3)
works for arbitrary extensions L/K. But in the following situation this corestriction map
coincides with Gros’ Gysin maps.

Lemma A.1.1. Let k be a perfect field of characteristic p > 0, and let r ≥ 0 be an integer.
For a finite extension L/K of finitely generated fields over k, the following diagram is
commutative:

KM
r (L)/pn

NL/K //

hr=dlog
��

KM
r (K)/pn

hr=dlog
��

H0(z,WnΩ
r
z,log)

Gysf // H0(x,WnΩ
r
x,log) ,

where z := Spec(L), x := Spec(K) and Gysf denotes Gros’ Gysin map for the finite
morphism f : z → x, cf. §3.1. The vertical arrows are the differential symbol maps, and
NL/K denotes the norm map of Milnor K-groups. In other words, the corestriction map
CorL/K of (0.7.3) coincides with Gysf .

This property was first shown by Shiho under the assumption r = [K : Kp] (unpub-
lished). Later he gave a proof for general r but under the assumption n = 1 ([Sh] p. 624
Claim 2). We include a simplified proof of Lemma A.1.1 to extend his result to general r
and n, which will be useful in §A.2 below.

Proof. By the transitivity properties of Gros’ Gysin maps (cf. (P2) in §3.1) and the norm
maps ([Ka1] p.626 Proposition 5), we may suppose that L/K is a simple extension, i.e.,
L = K(α) for some α ∈ L. Fix an K-rational point ∞ on P1 := P1

K and an affine
coordinate t on P1 r {∞}. We regard z = Spec(L) as the closed point on P1 r {∞}
corresponding to the minimal polynomial (in t) of α over K. By a result of Bass and Tate
[BT] p. 379 (7), there is an exact sequence

(A.1.2) KM
r+1(K(t))

∂−→
⊕

v∈(P1)0

KM
r (κ(v))

N−→ KM
r (K) −→ 0 ,

where N denotes the sum of the norm maps (Nv/x)v∈(P1)0 of Milnor K-groups. This
sequence yields the upper exact row in the following commutative diagram:
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(A.1.3) KM
r+1(K(t))/pn

∂ //

dlog

��

⊕
v∈(P1)0

KM
r (κ(v))/pn

N // //

dlog

��

KM
r (K)/pn

H0(η,WnΩ
r+1
η,log)

∂′ // ⊕
v∈(P1)0

H0(v,WnΩ
r
v,log)

G //
H0(x,WnΩ

r
x,log) .

Here we put η := Spec(K(t)), and ∂′ is induced by (∂val
η,v)v∈(P1)0 . The square commutes

by the definition of ∂val
η,v’s. The arrow G denotes the sum of the maps (Gv)v∈(P1)0 , where

Gv is Gros’ Gysin map for the morphism v → x. We will show

Claim. The lower row of (A.1.3) is a complex.

This claim implies that the above commutative square induces a map

KM
m (K)/pn −→ H0(x,WnΩ

r
x,log) .

Because the ∞-components of N and G are identity maps, this induced map must be
dlog. In particular, Nz/x commutes with Gz = Gysf via the dlog maps. Therefore it
remains to show the claim.

Proof of Claim. Let g : P1 → x be the structure map, and consider the following diagram:

H0(η,WnΩ
r+1
η,log)

∂′ //
⊕

v∈(P1)0

H0(v,WnΩ
r
v,log)

G //

G′

��

H0(x,WnΩ
r
x,log)

H0(η,WnΩ
r+1
η,log)

// ⊕
v∈(P1)0

H1
v (P1,WnΩ

r+1
P1,log)

//
H1(P1,WnΩ

r+1
P1,log) ,

Gysg

OO

where G′ is induced by the Gros’ Gysin maps and the lower row is the localization exact
sequence. By the results in §3.2, which does not use this lemma, the left square commutes
up to a sign. The right square commutes by the transitivity of Gros’ Gysin maps ((P2) in
§3.1). Hence the upper row is a complex. �

This completes the proof of Lemma A.1.1. �

A.2. The case j = 1. Now we consider the case j = 1 of (A.0.1). Kato again used a
symbol map to define a corestriction map in this case for an arbitrary finite field extension
L/K of fields of characteristic p. Recall that one has an exact sequence of étale sheaves
on x = Spec(K)

0 −→WnΩ
r
x,log −→WnΩ

r
x

1−F
−−→WnΩ

r
x/dV

n−1Ωr−1
x −→ 0 ,
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where F denotes the Frobenius operator and V denotes the Verschiebung operator. We
get an associated ‘long’ exact cohomology sequence

0→ H0(x,WnΩ
r
x,log)→WnΩ

r
K

1−F
−−→ WnΩ

r
K/dV

n−1Ωr−1
K

δ→ H1(x,WnΩ
r
x,log)→ 0 .

This induces an isomorphism

(A.2.1) Coker
(
WnΩ

r
K

1−F−→WnΩ
r
K/dV

n−1Ωr−1
K

) ∼= H1(x,WnΩ
r
x,log) .

We adapt the definitions in [Ka1] (where a discrete valuation field with residue field K
was treated) to directly define a symbol map for H1(x,WnΩ

r
x,log).

Definition A.2.2 ([Ka1]). Define the group P r
n(K) as

P r
n(K) := Wn(K)⊗ (K×)⊗r/J ,

where J is the subgroup of Wn(K) ⊗ (K×)⊗r generated by elements of the following
forms:

(i) (

i times︷ ︸︸ ︷
0, . . . , 0, a, 0, . . . , 0)⊗a⊗ b1⊗· · ·⊗ br−1 (0 ≤ i ≤ r−1, a, b1, . . . , br−1 ∈ K×).

(ii) (F (w)−w)⊗ b1⊗ · · · ⊗ br (w ∈ Wn(K), b1, . . . , br ∈ K×). Here F denotes the
Frobenius operator on Wn(K).

(iii) w ⊗ b1 ⊗ · · · ⊗ br (w ∈ Wn(K), b1, . . . , br ∈ K× with bi = bj for some i ̸= j).

We will construct a map hr : P r
n(K) → H1(x,WnΩ

r
x,log), and show that it is bijective.

First of all, there is a natural map

gr : Wn(K)⊗ (K×)⊗r −→ WnΩ
r
K/dV

n−1Ωr−1
K

w ⊗ b1 ⊗ · · · ⊗ br 7−→ w dlog(b1) · · · · · dlog(br) mod dV n−1Ωr−1
K

(w ∈ Wn(K), b1, . . . , br ∈ K×). For a ∈ K, we wrote a ∈ Wn(K) for its Teichmüller
representative. This map gr annihilates the elements of J of the form (iii).

Lemma A.2.3. Let ω be an element of J of the form (i) or (ii). Then gr(ω) is contained
in the image of 1− F .

Proof. The assertion is obvious for ω of the form (ii). We show the case that ω is of the
form (i). Let a, b1, . . . , br−1 be elements of K× and let i be an integer with 0 ≤ i ≤ n−1.
Put

ωi := (V ia) dlog(a) dlog(b1) · · · · · dlog(br−1) ∈ WnΩ
r
K ,

τi := da dlog(b1) · · · · · dlog(br−1) ∈ Wn−iΩ
r
K .

We will prove

Claim. We have ωi = V iτi in WnΩ
r
K .

We first finish the proof of Lemma A.2.3, admitting this claim. By the proof of [Ill] I.3.26,
τi is contained in the image of 1− F : Wn−i+1Ω

r
K → Wn−iΩ

r
K . Hence ωi is contained in

the image of 1 − F : Wn+1Ω
r
K → WnΩ

r
K by the claim and the equality V F = FV . The

lemma immediately follows from this fact. Thus it remains to show the claim.
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Proof of Claim. Since F dlog(b) = dlog(b) (b ∈ K×) and

V x · y = V (x · F y) (x ∈ Wn−1Ω
r
K , y ∈ WnΩ

r′
K)

by [Ill] I.2.18.4, we have only to show the equality

(V ia) dlog(a) = V ida in WnΩ
1
K .

The case i = 0 is clear. The case i = 1 follows from the equalities

(V a) dlog(a) = (V a1−p) da
(V3)
= V (ap−1 · a1−p) dV a = (V 1) dV a

(V2)
= V da ,

where the first equality follows from loc. cit. 0.1.1.9, and the equalities (V2) and (V3)
mean those in loc. cit. I.1.1. Finally for i ≥ 2, we have

(V ia) dlog(a) = (V i−1(V a)) dlog(a) = V i−1((V a) dlog(a)) = V i−1(V da) = V ida .

This completes the proof of the claim and Lemma A.2.3. �

By the above, we get an induced map

gr : P r
n(K)→ Coker

(
WnΩ

r
K

1−F−→WnΩ
r
K/dV

n−1Ωr−1
K

)
,

and, by composition with the isomorphism (A.2.1), the wanted symbol map

hr : P r
n(K)→ H1(x,WnΩ

r
x,log) .

Proposition A.2.4. hr is bijective.

Proof. The case n = 1 follows from [Ka1] p. 616 Corollary. For the case n ≥ 2, consider
the commutative diagram with exact rows

P r
n−1(K) //

hr

��

P r
n(K) //

hr

��

P r
1 (K) //

hr

��

0

0 // H1(x,Wn−1Ω
r
x,log)

// H1(x,WnΩ
r
x,log)

// H1(x,Ωr
x,log)

// 0 ,

where we put x := Spec(K). The exactness of the lower row follows from [CTSS] p. 779
Lemma 3 and the Bloch-Gabber-Kato theorem [BK] 2.1. The exactness of the upper row
is obtained from the natural isomorphisms

P r
n(K)⊗ Z/pi ∼= P r

i (K) for 1 ≤ i ≤ n.

Therefore the map hr is bijective by induction on n ≥ 1. �
Now we come to the corestriction map defined by Kato. In [Ka1] p. 637 Corollary 4, it

is shown that there is an exact sequence

Cr
n(K) −→ Cr

n(K)/{Cr−1
n (K), T} −→ P r

n(K) −→ 0 ,

where Cr
n(K) is a group defined in terms of the group TĈKr+1(K) considered by Bloch

[B] and T is an indeterminate used in defining TĈKr+1(K). See [Ka1] p. 636 for the
precise definition of Cr

n(K). By this exact sequence P r
n(K) is expressed by algebraic

K-groups, and in loc. cit. p. 637 Proposition 3 (1), (2) and p. 658, Kato defined a transfer
map

TrL/K : P r
n(L) −→ P r

n(K)
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using the transfer map in algebraic K-theory. The crucial claim [KCT] 1.9 then relies on
a result in [Ka2] and the corestriction map CorL/K defined as the composite

(A.2.5) CorL/K : H1(z,WnΩ
r
z,log)

(hr)−1

// P r
n(L)

TrL/K // P r
n(K)

hr // H1(x,WnΩ
r
x,log) ,

where z = Spec(L). We show that this definition agrees with the one given in (0.7.2):

Lemma A.2.6. The following diagram is commutative:

P r
n(L)

TrL/K //

hr ≀
��

P r
n(K)

hr≀
��

H1(z,WnΩ
r
z,log)

trz/x // H1(x,WnΩ
r
x,log) ,

where trz/x denotes the corestriction map in the sense of (0.7.5).

Proof. We prove this lemma in a similar way as for Lemma A.1.1. By the transitivity
properties of the two transfer maps, we may suppose that L/K is a simple extension, i.e.,
z = Spec(L) is a closed point on P1 := P1

x. Let η be the generic point of P1, and consider
a commutative diagram

(A.2.7) P r+1
n (κ(η))

∂ //
⊕

v∈(P1)0

P r
n(κ(v))

Tr // P r
n(κ(x))

H1(η,WnΩ
r+1
η,log)

(hr)−1 ≀

OO

∂′ // ⊕
v∈(P1)0

H1(v,WnΩ
r
v,log)

(hr)−1 ≀

OO

tr //
H1(x,WnΩ

r
x,log)

//
0 .

Here ∂′ is defined as (∂val
η,v)v∈(P1)0 , tr is the sum of the maps trv/x, and Tr is the sum

of the maps Trv/x = Trκ(v)/κ(x). The arrow ∂ is a residue map induced by the residue
maps of algebraic K-groups (cf. [Ka1] §2.1 and p. 637 Proposition 3) and the upper row
is a complex obtained from the localization theory in algebraic K-theory. The square
commutes up to a sign (loc. cit. p. 660 Proof of Lemma 3). By a similar argument as for
Lemma A.1.1, we have only to show that the lower row of (A.2.7) is exact. Consider the
following diagram:

KM
r+1(κ(η))/p

n ∂ //

dlog ≀

��

⊕
v∈(P1)0

KM
r (κ(v))/pn

N //

dlog ≀
��

KM
r (κ(x))/pn

dlog ≀

��

// 0

H0(η,WnΩ
r+1
η,log)

∂′ // ⊕
v∈(P1)0

H0(v,WnΩ
r
v,log)

Cor //
H0(x,WnΩ

r
x,log)

//
0 .

where the maps are defined as in (A.1.3), except that at the bottom we now have the map
Cor, the sum of the corestriction maps Corv/x. Then the left square commutes by the
definition of the residue maps, and the right square commutes by the definition (0.7.3) of
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the corestriction maps. The upper row is exact as we have seen in (A.1.3) and the vertical
maps are all isomorphisms. Therefore the lower sequence is exact as well. Sheafifying
in the étale topology for K we obtain an exact sequence of sheaves whose stalks at the
separable closure K of K are

WnΩ
r+1
η′,log

∂′−→
⊕

v∈(P1)0

WnΩ
r
v′,log

Cor−→WnΩ
r
x′,log −→ 0 ,

with x′ = Spec(K), η′ = η ×x x′ and v′ = v ×x x′. By taking cohomology H1(x,−)
(which is a right exact functor on p-primary torsion sheaves) and applying Shapiro’s
lemma, we obtain an exact sequence

H1(η,WnΩ
r+1
η,log)

∂′−→
⊕

v∈(P1)0

H1(v,WnΩ
r
v,log)

tr−→ H1(x,WnΩ
r
x,log) −→ 0 ,

where tr is the sum of the race maps trv/x and ∂′ coincides with the map ∂′ in (A.2.7), by
the definition of the maps ∂val

η,v. Therefore this sequence coincides with the lower row of
(A.2.7), which shows the exactness of the latter. �

By Lemmas A.1.1 and A.2.6 we immediately obtain:

Corollary A.2.8. Under the same setting as in Lemma A.1.1, the following diagram com-
mutes:

P r
n(L)

TrL/K //

hr ≀
��

P r
n(K)

hr≀
��

H1(z,WnΩ
r
z,log)

Gysf // H1(x,WnΩ
r
x,log) .

In other words, the corestriction map in the sense of (A.2.5) coincides with Gysf .

This property was first shown by Shiho in the case that [K : Kp] = pr and n = 1 ([Sh] p.
630 Claim 3).
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Sci. École Norm. Sup. (4) 40, 519–588 (2007)
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et Cohomologie Étale des Schémas. (Lecture Notes in Math. 269, 270, 305), Springer, Berlin,
1972–73

[SGA4 1
2 ] Deligne, P., with Boutot, J.-F., Grothendieck, A., Illusie, L., Verdier, J.-L.: Cohomologie Étale.

(Lecture Notes in Math. 569), Springer, Berlin, 1977
[SGA5] Grothendieck, A., with Bucur, I., Houzel, C., Illusie, L., Jouanolou, J.-P., Serre, J.-P.: Cohomolo-

gie l-adique et Fonctions L. (Lecture Notes in Math. 589), Springer, Berlin, 1977

Uwe Jannsen:
Fakultät für Mathematik, Universität Regensburg
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