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ABSTRACT. Let X be a projective algebraic manifold and let CH"(X) be the Chow group of algebraic cycles of
codimension r on X, modulo rational equivalence. Working with a candidate Bloch-Beilinson filtration {F*},~¢
on CH"(X) ® Q due to the second author, we construct a space of arithmetic Hodge theoretic invariants V.J"™" ()_()
and corresponding map ¢ : Gr%.CH"(X)® Q — VJ""(X), and determine conditions on X for which the kernel
and image of (bg’(y are “uncountably large”.
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§0. INTRODUCTION

Let X be a projective smooth variety over C and let CH"(X) be the Chow group of algebraic cycles of
codimension r on X modulo rational equivalence. A fundamental problem is to search for a reasonable set
of invariants (e.g. Hodge theoretic) that provides us with a good understanding of the structure of CH" (X).
The first significant step towards this problem was taken by Griffiths (1969) who defined Abel-Jacobi maps

Px : CHjon (X) = J7(X)

where CHI_ (X)) = ker{CH" (X) — H?*"(X,Z)} is the subgroup of those cycle classes that are homologically
equivalent to zero, and where J"(X) is the r-th intermediate Jacobian of X in the sense of Griffiths [Gri].
If the Griffiths Abel-Jacobi map were an isomorphism, then there would not be much to explore in the

world of algebraic cycles. That the map is not surjective follows from the work of Griffiths (op. cit.), using
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Hodge theory and monodromy arguments; that the kernel is far from injective in general is a consequence
of Mumford’s seminal work [Mu].
An important observation is the following natural isomorphism discovered by Carlson [Cal,
J(X) = Extyys(Z, H 71X, Z(r))),
where MHS denotes the category of graded polarizable Q@-mixed Hodge structures introduced by Deligne
[De3]. This implies that an element of CH}__(X)/ker(p’) is detected by an extension in MHS. One

hom
may then have a nalve expectation that there may be a secondary cycle class map from ker(p%) to higher
y p y y ¢y p Px g

extension groups Ext};;q, which fails due to the fact that Ext{;yq = 0 for p > 2 ([Bei] (Cor. 1.10)). (Note
that Exti;gg = 0 for p > 2 also follows from the fact that Extiyq(A4, —) is exact, using Carlson’s explicit
description of Extiyg ([Ca). See also [As1] 2.5.) It was A. Beilinson who had an innovative idea to remedy
the situation. He postulated the existence of a category (called the category of mixed motives) whose higher
extension groups capture all elements of Chow groups. A more precise formulation is the following conjecture.
In this paper we only consider Chow groups with rational coefficients:
CH"(X;Q)=CH (X)® Q.
Conjecture 0.1. For every projective smooth variety X over C, there exists a canonical and functorial
filtration (called the Bloch-Beilinson filtration)
CH (X;Q)= F'CH (X;Q) D F'CH (X;Q) D F*CH (X;Q) D ---
such that the following formula holds for each integer v > 0:
FYCH (X;Q)/FY T CH (X;Q) =~ Extip (1, R 77 (X)(1r)).

Here MM denotes the (still conjectural) category of mized motives over C which contains as a full subcategory
Grothendieck’s category M of (pure) motives over C, h*(X)(r) € M denotes the cohomological object with
Tate twist associated to X and 1 = hY(Spec(C)).

In [Ja] and [Sa2] it is proven that the Bloch-Beilinson filtration is unique if it exists under the assumption
of Grothendieck’s standard conjectures. Several candidates for the Bloch-Beilinson filtration have been
proposed. From these we adopt the filtration

FRCH (X;0) € CH(X;0) (v > 0)
defined in [Sa2], Def.(1-3). We recall the definition of this filtration in §2.

The main results of this paper can be explained as follows. We introduce the spaces VJ"¥ (X)) of Mumford-
Griffiths tnvariants in §3, which are defined in terms of arithmetic de Rham cohomology. It 1s given by the
cohomology of the complex

QLo P HETY (X)) < QY g @ IV HE Y (X/0) 5 Q@ PP T HE Y (X)),

where H{, (X/C) is the de Rham cohomology of X/C with the Hodge filtration F? H{(X/C) and V is the

arithmetic Gauss-Manin connection. Then there is a cycle map (Proposition 3.7)
¢y Grp, CH'(X;Q) — VJ™(X).
By “forgetting” the Hodge filtration, we also have a map
qS;’(l;DR 1 Grp CH"(X;Q) = VDR (X),
where VDR™Y(X) is the coarser space of de Rham invariants given by the cohomology of the complex

v—1 2r—v v v 2r—v v v+1 2r—v
Q75 © Hor "(X/C) = Q5@ Hpg " (X/C) — Q(_J@ © Hig P (X/C).
The first main result affirms that under various assumptions on X, the image of ¢y, 5 is large, where “large”
has a similar meaning to that in the following theorem of Mumford [Mu]:
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Theorem. Let X be a projective smooth surface over C. Let Ag(X) C CHy(X;Q) denote the subgroup of the
classes of zero-cycles of degree zero. Assume H°(X, Qg(/@) # 0. Then Ag(X) is infinite dimensional, viz.,

it 1s wmpossible to find Y1, ... Y, proper smooth connected curves with a morphism f:Y = Hf\;l Yi—> X
such that f. @ Ag(Y) = Ao(X) is surjective.
We will give the following refinement of the above result:

Theorem 0.2. Let X be a projective smooth variety of dimension d over C and consider
¢ pr 1 F5CHy(X;Q) — VDR (X).

Assume that there exists a dominant rational map 7 : X —-» X such that the hard Lefschetz conjecture B()?)

for X holds (see Notation (v)). Assume further that H°(X, QVX/(C) #+ 0 for an integer v > 2. Then it is

impossible to find {f; 1 Y; — X}ien, a countable set of morphisms of proper smooth varieties over C such
that dim(Y;) < v —1 and

F4CHy(X;0) C Image{@Ao(m ELN AO(X)} +ker(6% pr),
iEN

where f. 1s induced by f; fori e N.

We recall that for a smooth projective variety W, B(W) is known to hold if W is obtained under successive
operations of products and hypersurface sections starting from curves, surfaces, Abelian varieties, smooth
complete intersections.

Our next result is an analogue of Theorem 0.2 for algebraic equivalence on a hypersurface. By a general
hypersurface X of dimension d and of degree m, we mean a hypersurface corresponding to a point in a
certain nonempty Zariski open subset of the universal family of hypersurfaces of degree m in P4+1,

Theorem 0.3. Let X C P! be a smooth hypersurface of degree m > 3 over C. Put

kz:|:d—|_—1:| and r:d—]{f,I/IQT—dId—Qk

m

and assume k > 1, v > 2, and the numerical condition:

k(d—i—?—k)—i—l—(m;—k) >0,

Constider
QSS{’DR :FPLCH (X;Q) = VDR (X).

Assume that X is general. Then it is impossible to find {f; : Vi = X}ien, a countable set of morphisms
of proper smooth varieties over C such that dim(Y;) < k+v —1 and

A"(X) C Image{@Ak(Yi) ELN AT(X)} +ker(¢% pg),
i€N

where fy is induced by f; for i € N. Here A"(X) C CH; . (X;Q) denotes the subgroup of the cycle classes

algebraically equivalent to zero.

Remarks 0.3.1. (1) We will see in Proposition 2.7 that CH}__(X;Q) = FLCH"(X;Q) = F{CH"(X;Q) in
Theorem 0.3.
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(2) The hypersurfaces in question in Theorem 0.3, albeit very interesting geometrically, are of a low degree.
In particular, since k > 1 it follows that H%(X, le(/(c) =0.

For the proof of the above results, we will introduce an integral invariant rk(Z) for 2 C A”(X), called the
rank of = modulo ker(qS;’(l;DR), which measures the “size” of the image of =N F{CH"(X; Q) under (/)S{DR.
The main technical result in this direction 1s stated in Theorem 4.2, whose proof is based on an arithmetic
version of Salberger’s duality pairing, and the essential ideas rely on the constructions in [Sal]. By working
with the coarser de Rham invariants, we arrive at similar statements for the Mumford-Griffiths invariants.

With regard to ker(¢y"), if X = X, X3 C with X, smooth projective over Q, we introduce arithmetic
Hodge theoretic invariants Hé_V’T(XO/@) C H'(X, QS(_/E) which serve as an obstruction to countability of
ker(¢’y"”). We will deduce the following:

Theorem 0.4. Let X, be a smooth projective variety over Q and X = X, xqg C. Assume that the Kiunneth
components of the diagonal class of X are algebraic. If v > 2 and if H%_V’T(XO/@) + 0, then there are an

uncountable number of classes in the kernel of ¢y

We will show how to construct a class of examples for which the assumptions of Theorem 0.4 are satisfied.
The examples arise from products involving I-motives over @, in particular the product of smooth projective
curves defined over Q, and an Abelian variety defined over @. The precise statements of the main results
appear in §7 and §8. We believe that these theorems provide the strongest results to date on the properties
of ¢'y’. For instance, Theorem 0.2 generalizes and strengthens Theorem 4.1 in [MSa2]. We note that it was
Asakura ([As2]) who first found an example of a nontrivial cycle with trivial Mumford-Griffiths invariant.

To provide the reader with a better understanding of the results of this paper, we briefly discuss the
technique of taking a Q-spread. This technique abounds in a number of works (e.g. [Gr-Gr], [Le3], [MSal-2],
[Asl]). The basic idea of the construction is the following. Given X, smooth projective over C, we can find
a Q-spread, namely a smooth affine variety S over Q with

f : X5—>S,

a projective smooth morphism of varieties over Q, with a morphism 7 : Spec(C) — S whose image is the
generic point of S, such that Xg xg Spec(C), the base change via #, is isomorphic to X. Similarly, if
& € CH"(X;Q) is given, then after making a base change if necessary, ¢ has a lifting fe CH"(Xg; Q). We
then have the following variational version of ¢'y”:

$veys - FpCH (Xs/S;Q) = VI (Xs/S).

We may retrieve ¢’y from (b;é:/s via the base change by 1 (see §3 for the details).
A key to the proof of Theorem 0.4 is the following construction: Put

A" (Xs/S) = homyms (Q(0), HY(S/C, R* ™ £.Q(r))),

=M (Xs/S) = Extyys (Q(0), HY~H(S/C, RV £.Q(r))),
where S/C = § xg €, which we identify with its underlying complex manifold, and H*(S/C, R* £,.Q(r))
denotes the cohomology of S/C with coefficients in a local system, which is endowed in a canonical way with
a mixed Hodge structure by the theory of mixed Hodge modules ([MSal]). (Alternatively, the reader can
consult [A] for a different point of view.) Then one defines the natural maps

/\Sél;/s : FRCH"(X5/S;Q) — A" (Xs/9),
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6;’:/5 : ker(/\;é:/s) — B (Xg/S).

Broadly speaking, the construction is given in terms of an extension class in the category of arithmetic
mixed Hodge modules. We then construct the following commutative diagram under a suitable assumption
on Xg/S (see Proposition 6.3)

rv

FYCH™ (Xs/S; Q) —2=L2 VI (Xs)S)
0.5 . .
(0.5) 1 /\XS/S 1
A" (Xs)S) B vIr(Xs/S) @ C.

Now the cycle classes in Theorem 0.4 are constructed in ker(/\;é:/s) and captured by 6;’:/5.

Xs/S
is that if one is willing to forgo the Hodge filtration by replacing the space of Mumford-Griffiths invari-

ants VJ""(Xs/S) in (0.5) by the coarser space of de Rham invariants VDR (Xs/S) (see Definition 3.2),
then for affine S, the diagram corresponding to (0.5) does exist, and one subsequently obtains stronger
results for cycles with trivial de Rham invariant (Theorem 7.2). We conjecture that for affine S, the map

A (Xs/S)

The question now is whether the map & in (0.5) always exists for S affine. What we can say

tele VI (Xs/S) @5 C always exists, where Ag’lg(XS/S) = Image(/\;é:/s). (For a more
precise statement, see Conjecture 6.4.) Roughly speaking, the discussion in the Appendix says that this

conjecture is a consequence of the Hodge conjecture. If we put S = Spec(C) and let

VI (X) := Image{ G CH" (X; Q) o, VJIT(X)}

alg
g
VDRLY(X) := Image{ Gr, CH (X; Q) —2 VDR (X)},

then a consequence of our aforementioned conjecture i1s that the natural map

(0.6) VJ;’;’(X) — VDR:;’IE(X).

is an isomorphism. Put differently, and roughly speaking, the Hodge conjecture implies that to compute the
Mumford-Griffiths invariant of an algebraic cycle, it is sufficient to compute its de Rham invariant. (However
we now remark that since the submission of this paper, M. Saito shared with us his work in [MSa4], where
now the conjectural assumptions, including Conjecture 6.4, are eliminated. Indeed as one of the referees
pointed out, our Appendix seems already to have served as inspiration for [MSa4], and that our discussion
is still valuable.)

We are very grateful to Matt Kerr for meticulously reading parts of a preliminary version of this paper,
and for providing useful comments; and in particular for sharing his ideas in [Ke2]. We are also grateful to
V. Srinivas for pointing out his earlier work in [Sr]. Indeed the ideas presented in section 4 of this paper
share with [Sr] a common methodology. Finally we want to thank the referees for impressing upon us the
need to improve the presentation of our paper, by offering their numerous constructive comments.
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§1. NOTATION

(i) All fields in this paper are considered as subfields of C. For a field k, let Cp be the category of smooth
projective varieties over k. We simply write C for C; when & = C.

(ii) Unless otherwise indicated, X € C; will denote a smooth projective variety of dimension d. (Periodically
we will remind the reader that dimX = d.) Then CH"(X) is the Chow group of codimension r algebraic
cycles on X modulo rational equivalence, and CH"(X;Q) = CH"(X) ® Q. Further, we put A™(X) :=

CHglg(X; Q) C CH™(X; Q) to be the subgroup of cycles algebraically equivalent to zero.
(iii) If A C R is a subring, we denote by A(r), (2m/—1)" A the corresponding Tate twist.

(iv) For Y € Cy, we write Yg := Y X C. Tt is sometimes more convenient to use the notation Y/C for Y,
which we also identify with its underlying complex manifold.

(v) We fix a Weil cohomology theory for Cy:
Cr > Vee; X - H*(X),

where Vec denotes the category of finite dimensional vector spaces over a fixed field of characteristic zero.
Typical examples are given by

X — H*(X/C,Q) (singular cohomology) and X — Hpg(X/k) := H* (X, Q%)

There are well-known standard conjectures with Hg(X) = B(X) = C(X) (where Hg(X) means the Hodge
conjecture for X). Let X € Cx with d = dim X and let Lx € H?(X) be a hyperplane class. Let i < d be an
integer. With regard to the hard Lefschetz isomorphism,

LS HY(X) & H2(X),
the hard Lefschetz conjecture B(X) asserts that the inverse
(%)™ B2 (X) 25 Hi(X),

is algebraic cycle induced. One consequence of B(X) is a weaker conjecture C'(X) which asserts that the
diagonal class [Ax] € H?¥(X x X), has algebraic Kiinneth components:

[Ax]= > [Ax(i,j)]e P HI(X)o H/(X) with Ax(i,j) € CHY(X x X;Q).
i+j=2d i+j=2d

The reader can consult [K1] for more details.

(vi) Let f : X — S be a smooth projective morphism of quasiprojective varieties over a base field k. We
define CH"(X/S;Q) to be CH"(X;Q), and that “/S” will only affect how the filtration on CH"(X/S;Q) in
Definition 2.8 is defined.
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§2. GOOD FILTRATIONS

Fix a base field & C C. Our goal is to work with a given filtration satisfying a number of good properties.
More specifically, we require the following:

Definition 2.1. A filtration F'* CH* of Bloch-Beilinson type on Ci is given by the following data: For all
X € C and all r, there is a descending filtration

CH(X;Q)=F'D>F' > . DF'D>F'*T 5.,

which satisfies the following
(i) F'= CH(X;Q) and F' = CH;,_ (X;Q).
(i1) FY is preserved under the action of correspondences: For V, X € C, and for T € CHI(V x X;Q),

PL(FY CH(V;0)) C FY CH(X;0),
where Ty : CIP(V;Q) = CH'(X; Q) with s = r — ¢+ dim(V) is given by the formula
Ii(a) = (mx)«((rv)"(e) o T)  for o € CH*(V;Q),

where mx 'V x X = X and ny : V x X = V are the projections.

(iii) The property (i1) implies that we have the induced map
Grile : Gr. CIF(V;Q) = Gr, CH (X; Q).

Then GriT, is the zero map if so is i~ where i« HI=20=)(V) — H'(X) with s = r — ¢ + dim(V) is
given by the formula
Pr(8) = (rx)« ()" (B) U [L]) for 8 € HIZ2=)(V),
with [T] € H?*4(V x X), the cohomology class of T.
We point out the following consequences of Definition 2.1.
Proposition 2.2. Let F*CH* be a filtration of Bloch-Beilinson type on Cy.
(i) F¥ CH® is preserved under push-forwards f. and pull-backs f* for a morphism f: X =Y in Cy.

(ii) Let X € Cx with d = dim(X). Assume C(X) holds and let Ax(p,q) € CHY (X x X;Q) be as in §1 (v).
Then

Ax(2d—2r+£,2r — ), = d;,, - Identity.
Gr¥% CH"(X;Q)

(iii) Under the same assumption as (ii),

FYCH (X;Q)e FFCH (X;Q) C FYTHCH ™ (X;0Q),

where e 1s the intersection product.
Proof. Parts (i) and (ii) follows immediately from the definition. Part (iii) is [Sa2], Theorem(0-2). O

The following conjecture is due to Bloch and Beilinson:
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Conjecture 2.3. There exists a filtration F'* CH® of Bloch-Beilinson type satisfying:

() FYCH (X;Q)=0 forall X €Cy and all r.
v>0

In general one can put D" (X;Q) := Ny YCH (X; Q) and work modulo “D-equivalence”. We now
introduce a specific filtration FECH® of Bloch-Beilinson type, which is minimal among all filtrations of
Bloch-Beilinson type, namely it satisfies F3CH®* C F'*CH* for any filtration #*CH®* of Bloch-Beilinson type.
It is given in [Sa2], §1.

Definition 2.4. For v > 0 we define F},CH (X;Q) for all X € Cy and for all » > 0 inductively as follows:
(1) FRCH*(V;Q) = CH*(V;Q) for all V € Cy and for all s > 0.
(2) Assume that we have defined Fy CH*(V;Q) for all V € Ci, and for all s > 0. Then we define

FyH CH(X;0) = Z Image(T. : FCH T ~4(V;Q) — CH (X;Q)),
V,q,T
where V, q, T range over the following data:
(a) V € Cyy of dimension dv,
(b) r<q¢<r+dv,
(c) T e CHY(V x X;Q) satisfying golzf_” =0, where golzf_” cH27Y(V) — H*=¥(X) is as in Def. 2.1 ().
We have the following facts:

Proposition 2.5. ([Sal] §) Let p_: CH

rom (G Q) = T (Xe) @ Q be the Griffiths Abel-Jacobi map.
Then

FECH (X;Q) Cker(p,) and FzCH (X;Q)N A™(X) = ker(py,) N A"(X).
Proposition 2.6. ([Sa2], Thm. (1-1)) Assume C(X) (cf. §1 (v)}) for all X € C; and that Conjecture 2.3
holds. Then Fg CH* 1s the only filtration of Bloch-Beilinson type.

Proposition 2.7. Let X C PV be a smooth complete intersection of dimension d. For integers r,v > 1 we
have:

Grp, CH(X;Q)=0 of 2r—v#d.
Proof. By Lefschetz theory we have for 0 < ¢ < 2d:

{Q.[Y] i # d, even

() H'(X) = 0  i#d odd

where for ¢ = 2m, even, j : Y — X 1s the section by a general linear subspace of codimension m and
[Y] € H?™(X) denotes its cohomology class. Put i = 2r — v and assume i > 1 and i # d. The diagonal
A C X x X induces

A, : Gr¥ CH'(X;Q) — GrY%, CH"(X;Q) and X" : H”Y(X) — H""(X)

and both maps are the identity. If 7 is odd, then gozAr_” = 0 by (%) and hence A, = 0 by the definition of
the filtration F§. If i = 2m, even, then j, : H°(Y) = H?™(X) for j : Y < X as in (*). Since B(X) holds
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for smooth complete intersections, we can find I' € CH% (X x Y;Q) (dy = dim(Y) = d — m) such that the
induced map ¢% : H*™(X) — H°(Y') is the inverse of the above map. Consider the induced maps

Grip, CH (X;Q) 25 G CH (Y Q) 2% Gy, CHT (X;Q),

H™(X) 25 HO(v) L5 5™ (X).

The composite of the maps in the second row is the identity and so is that in the first row by the definition
of the filtration F'3. Noting r —m = v/2 < v, [Sa2] Cor.(3-2) implies Gry, CH"™"(Y;Q) = 0 which needs
the fact that B(Y) holds. This proves the desired assertion. O

There is a variational (or relative) version of the aforementioned filtration. The definition is completely
analogous to that given in [Sa3], Definition (2-1). As a base we fix a localization S of a smooth quasiprojective
variety S over a field and let Cg be the category of f : X — S, smooth projective morphisms. (We remind
the reader that a smooth morphism is a submersion at every point.) For f: X — S in Cg, let Q}/S be the

de Rham complex of (Zariski) sheaves of relative differential forms of X over S. We define the de Rham
cohomology sheaf:

br(X/9) = RIf(Q%s),
which 1s the Zarisiki sheaf of @g-modules.
There 1s a direct generalization of Definition 2.4 to the relative case.
Definition 2.8. For all r,v > 0 and for all X € Cs, we define FLCH (X/S;Q) C CH (X;Q) in the
following inductive way:
(1) FRCH!(V/S;Q) = CH(V;Q) for all V € Cs and for all s > 0.
(2) Assume that we have defined Fy, CH (V/S;Q) for all V € Cs and for all s > 0. Then we define

FRH CH (X/S;0Q) = Y Image(T. : Ff CH v =9(V/S;0) —» CH (X;Q)),
V,q,I
where V, q, T range over the following data:
(a) V € Cs of relative dimension dy,
(b) r<q¢<r+dv,
(c) T € CHYV x X;Q) satisfying the condition 901%7:[_)”3/5 =0, where

ot prys  Hon' O (V/S) = Hbr(X/S) (s =r—g+dy),

is the homomorphism of Og-modules, which is given by the same formula as in Definition 2.1 (iii), though
using [T] € HO(S,"H]Z)(]R(V x X/S)), the cohomology class of T in the de Rham cohomology.

We note the following functoriality of the above filtration: Let 7 : T"— S be a morphism of schemes which
are localizations of smooth quasiprojective varieties over a field. For f: X — SinCg let Xp = X xgT € Cr
be the base change via 7. Then, we have r*(F{CH"(X/S;Q)) C FECH" (X7 /T;Q) under the pull-back
™ CH"(X;Q) = CH"(X7;Q). If 7 : T = Spec(k) — S is the generic point of S, this gives the compatibility
of absolute and relative versions of the filtrations on Chow groups in Definition 2.4 and 2.8.



10 J. D. LEWIS & S. SAITO

§3. ARITHMETIC DE RHAM COHOMOLOGY

Many of the ideas presented here in this section are inspired by the lectures of M. Green [Gr]. Fix a base
field & C C. Let S be the category of the affine integral schemes which are localizations of smooth schemes
over k. For example, for a finitely generated separable extension of fields K/k, Spec(K) is an object of Sj.

3. 1. Arithmetic Gauss-Manin connection. We recall the definition of the arithmetic Gauss-Manin connection.
Take S = Spec(R) € Sk and let f: X — 5 be smooth projective. Let Q%(S/k (resp. Q%(/S) be the Zariski

sheaf of relative differential forms of X over k (resp. S) and put Qg(s/k = ;(ka/k (resp. Qg(/s = })\Qﬁ(/s)'
Note that Q}S/k is a complex under d. We define the de Rham cohomology groups:

Hpp(Xs/k) = B (Xzar, @k pp) = H' (Szar BEQ 1),

Hpp(X/S) =W (Xzar, Q% 5) = H'(Szar, RO 5).

Put

Filt" Q% = Im (Qg/k © QT Qé{s/k)'
Then:

Grmﬁg(s/k ~ O © Qﬁ{/ﬁ;

Moreover:

| oy, Ve Do

Filt? Qs Filt?Qg_ o Filt'Qg
E I l
Q% /n

X/s

Taking hypercohomology, we get a natural connecting map:
V= Vo Hon(X/S) > Qe © Hpm(X/5),
called the arithmetic Gauss-Manin connection. By imposing Leibniz’ rule, viz.,
Viwoe)=dw®e+ (—1)"w @ Ve,

one extends V to:

V Q) © Hhp(X/S) = QFA © Hiyp(X/5).

It satisfies the following properties, which are consequences of the fact that V is identified with d; of the
spectral sequences (3.1.1) and (3.1.2) below by [KO].

(i) V? = 0 (viz., flat connection),

(ii) (Griffiths transversality)
V(P bn(X/9)) € Ry © P i (X/5),

where FPHAR(X/S) :=H"* (Q;(Z/%) C H* (%) is the usual Hodge filtration.
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Note that Q}S/k is a filtered complex using Filt™. The corresponding spectral sequence is:
(3.11) DT = Qb Hi(X/S) = HER (Xs/b),

with dy = Vx./r ([KO]). This is really the Leray spectral sequence, which by Deligne ([Del]), is known to
degenerate E5. Likewise, the analogous Leray spectral sequence

q r— r >r
(3.1.2) EYY = Q) © FITPHER(X/S) = H (%)

degenerates at E5. We denote the corresponding Leray filtrations by:

(3.1.3) FYHE (%) CH (%), FEH(QE7,) CHE(QE,).

Definition 3.2. (i) We put VJ"(X/S) = GT%LH” (Q;(Zsr/k), called the space of Mumford-Griffiths invari-

ants of X/S. It is given by the cohomology of:

v— r—u r—u v v r—u r—v v v r—p— r—v
QR/;®F TG (X/S) = Q) © FT7VHETY (X/S) _>QR-I/—;®F PHER T (X/8).

(ii) We put VDR (X/S) = GT%LHzr(QB(S/k)’ called the space of de Rham wnvariants. It is given by the
cohomology of:

v— r—u v v r—u v v r—v
QR/; ® Hiyg ¥ (X/S) = Qp/k ® HE " (X/S) = QR-I/—; ® Hiyp Y (X/S).

(iii) In case S = Spec(C) we simply write VJ™ (X) = VJ"(X/S) and VDR (X) = VDR (X/S).
Note that there is a natural map V.J""(X/S) - VDR (X/S), where one forgets the Hodge filtration.

3.3. Arithmetic cycle class map. Let f: X — S = Spec(R) be as before. Let
KMy =050 - 005/(ne - 0r0 05005 | n+7=1,i#]),
be the Milnor K-sheaf of X, and put

KYy = Image (K%X — KM (k(X))).

where k(X) is the function field of X. By the results of Gabber (or Miiller-Stach, Elbaz-Vincent, see [E-M])
CH(X) = Hpoo( X, KM ) = (KM 50— 0—--).

o>r

Xs/k[r] given by

By torsion considerations (Suslin), the natural map IC%X - Q
{1, FY = Ndlogfy, fi € OF,
J

factors through a morphism of complexes

(KM =050 -) = Q7,0
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(&%X and Qg(s/k are in degree 0) and hence determines a morphism
(3.3.1) o o CHI(X;0Q) — Hz’“(Q;(ZS’"/k),

called the arithmetic cycle class map. The same construction also appears in [Gr], based on the discussion
on p. 68 in [E-P] and Théorém 5 in [So]. (The reader can also consult the treatment by El-Zein [EZ].) We
will also use

(3.3.2) Xs/kDR CH"(X;Q) — " ( /)

which is the composite of ok and HZ’“(Q;(ZJM) — HZT(Q}S/k), the natural map. These maps satisfy

functoriality with respect to a base change 7 : S — S in Sk, namely we have the commutative diagrams

(X' = X x5

r
¢Xq/k,DR

CH'(X;Q) —=% mE(Qi2h,) CH(X;Q) B (D% 1)

r
c
X’g,/k,DR

r >r r = r
BT Q). CH(X5Q) ——— B (%, 50),

r
Cxt
XL, /k

CH"(X’;Q)
Definition 3.5. We introduce filtrations of Leray type on CH (X/S) as follows:

Fy, CH (X/S) = (ck. /k)—l(FLVHW(Q;;S’“/k)),

FSR/k CH (X/S) = (CS(S/k,DR)_1<FEH2T( 3(5/1@))~
By definition we have F?, CH"(X/S) C FSR/kCHT(X/S).

Pk
Lemma 3.6. Let 7 : 5" — S be a morphism in S and put X' = X xg 5'. We have

™ (Fy, CH (X/S)) C Fg/kCHT(X’/S'), ™ (Fprys CH (X/S5)) C Fogrys CH (X'/S").
If ™ 1s finite etale, then
T (P CH(X')S")) C iy CH(X/S),  mu(Fpgyp CH(X'/S)) C Fpyg CH (X/S).
Proof. This follows from the corresponding functoriality for (3.1.1) and (3.1.2). O
Now recall {F{CH"(X/S;Q)},>0 as introduced earlier in Definition 2.4 of §2.
Proposition 3.7. For allv >0, FRCH (X/5;Q) C Fy CH (X/S). Hence there exists a natural map

Os t Fy I (X/S:Q) = VI (X/S)

satisfying (b}l;S(FEH CH (X/S;Q)) = 0. Itis functorial for morphismsY — X of projective smooth schemes
over S, also for base change S" — S.
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Proof. This is shown by the same argument as [Sa3], Prop.(2-1): Let T' € CH4(V x X;Q) be as Definition
2.8 (¢). It induces a commutative diagram:

r
Cvg/k

CH*(V;Q) H2 (9727,
LT, I T,
r c;fs/k r o>r
CH'(X;Q) —== B (Q¥),)

where the vertical maps respect F'y; on Chow groups and F} introduced in (3.1.3). The induced map

G, T s Grlp, F* (QV27) — G, P (Q327,)

is then identified with the map induced by T, : H35(V/S) — HEwV(X/S) via the identification of the

above spaces with the cohomology of the complex in Definition 3.2 (i). The proposition follows by the
induction on v. O

We let
(3.7.1) ¢}7S,DR : FRCH™(X/S;Q) = VDR (X/S),

denote the composite of (b;’(l;s and VJ"(X/S) = VDR (X/S), the natural map.
In the case S = Spec(C) and X € C we get the maps

(3.7.2) oY = (/&7@ : FECH (X;Q) — VJ"Y(X).

(3.7.3) ¢}7DR = ¢§é7<c : FCH(X;Q) = VDR (X).

Remark 3.8. If X € C and v = 1, ¢}” is related to the Griffiths Abel-Jacobi map p' as follows. It is the
Griffiths construction of infinitesimal invariant of normal functions. We recall

JN(X) = H" " Y Xan, O/ (FTH” "N (Xan, C) + H ™1 Xan, Z(r))).

We have the comparison isomorphism H9(X,,,C) ~ H{.(X/C) preserving the Hodge filtrations and the
arithmetic Gauss-Manin connection V annihilates the image of the subspace HY(Xg,, Q(r)) C HY(X4n, C)
for every r. Hence V induces

T JN(X) = VJIH(X),

and one can check that qbg’(l =Top.
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§4. CAPTURING NONTRIVIAL CLASSES VIA ¢y

Let F denote the set of the subfields Q@ C & C C whose transcendental degree over ) is at most countable
(bear in mind that C has uncountable transcendence degree over Q). We want to prove infinite dimensionality
statements about the image of ¢ (from (3.7.2)) under certain conditions on X. In this section, we will
actually prove infinite dimensionality results for the de Rham invariants, which immediately imply the same
for the Mumford-Griffiths invariants.

First, we need to introduce some integral invariants. We pick a base field k£ € F.

Definition 4.1. Let X € C be a projective smooth variety of dimension d over C. Fix an integer v > 1, =
a subset of A™(X) (ef. §1 (i1)). We define rk]()yf){/k(E) to be the least of the integers p for which the following
holds: There exists {f; : Yo Xt C — X}ien, a countable sel of morphisms in C with Y,; € Cy such that
dimY, <d—r+ p for alli and

2 C Image{@CHd_r(Yi) EAN CH’“(X)} + By, CH (X/0),
1EN
where f, is induced by f; for i € N, FSE}RCH’”(X/C) is as in Definition 3.5 with S = Spec(C), and
Y; =Y, xp C. We also define
rk%(2) = min{rkly  (2) | k € F}.

Note that rk(l’)

Sae(®) 2 rkip 0 (E) i kK € F and k C K, and that

DR/E

Our main result is the following:

Theorem 4.2. Let W, X € C withdimX =d and T' € CH (W x X) be given. Write
rkpa(l) = rkgp (U (Ao(W)))
where Ty : Ag(W) = A" (X) is induced by T'. Then we have the implication
rk]()yf){(F) <v—1=TImage(p}) C F*HR(W/C),

with of ¢ le)(f{l_r)-l_y(X/C) — H{r(W/C) as in Def. 2.1 (iii), and where F* is the Hodge filtration.

The proof of this theorem proceeds in the same way as [Sal], §7 and §8. It hinges on the following key
lemma, which is an arithmetic counterpart of [Sal], Theorem 7.1:

Lemma 4.3. Let W, X € C,, T' € CH (W x X)) be given with d = dim X. Introduce m = d —r in Definition
4.1. Let n be the generic point of W and put K = k(n) and Xg = X xi K. Assume given a k-rational point
a € W and put

E=Te(nxX)—Te(ax X)e CH (Xg).

where o denotes the intersection product. Suppose thatl there exists {f; : Y; — X}ien, a countable set of
morphisms in Cy such that dimY; < m+v —1 for all i and

¢ € Image((P CH (Yir; Q) L5 CH (X, Q) + Fit ), CH (X [K),  (Yig = Yi x5 K)
1€N
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where fi is induced by f; for i € N and FSE}k CH (Xg/K) is defined as in Definition 3.5 for S = Spec(K).

Then we have
Image(er) C F'Hpg (W/k),
where % : HoS™ T (X k) — HYg (W/k) is as in Def. 2.1 (iii).
Proof. The idea of the proof originates from Salberger’s duality interpretation of Mumford’s theorem (cf.
[Bl] §1 Appendix): Writing for K = k(n) and defining

I (K/K) = lim g (U),
UgW

with U ranging over all nonempty Zariski open subsets of W, put

_ g (W/) |
er (Hpp (W/) — Hp(K/0))

pr(W)
The idea is to use a pairing defined for any X € Cy:
(o)W O (Xks Q) @ HERF (X/ k) — @i (W),

which satisfies the following properties:

(i) Let £ € CH"(Xg;Q) be as in Lemma 4.3. Then
(€&, )y = 0 for any § € HERH (X/k) = Image(gf) C F' Hyp(W/h).

(i) (, >%?X annihilates FSE}kCHT(XK/I() placed on the left-hand side.

(i) If f:Y — X is a morphism in C, there is a commutative diagram
(oW o CHI(Yk) @ HERP(Y/K) — @pp(W)
o) b 1« A l
(wx © CH'(Xk) © Hpp*™(X/k) — ®hp(W)
(iv) Recall m =d — r. Then (, >%?Y is trivial if dim(Y) < m+v — 1.
Lemma 4.3 follows immediately from this. To construct the pairing, we note the decomposition
(43.1)  H"(Xk, %) = D HBp(K/k) ok Hip(Xi/K)= P HBg(K/k) ©p Hhg(X/k),
ptg=2r pg=2r

which is a consequence of the degeneration at F; of the Leray spectral sequence

EPT = Q) ok Hiy (X /K) = BPY (X, Q% 10y 0)

following from the product structure W x X over k, and de Rham base change (alternatively, one may apply
the Kiinneth formula to Q}K(K)/k ~ Q;(/k Rk Q}/k, where the differential d on the left hand side is induced

by dg/x @14 (=1)*(1 ® dx/x) on the right hand side). Thus from the product structure W x X over k, we
have the Leray filtration

FYEP (Xie, Qe (rcyy0) = @ H{g (K/k) @k Hpg(X/k).
p>v,p+qg=2r
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Then by composing CS(K(K)/R pr for Xg in 3.3.2 with the projection
B (Xk, Qe 50)/6) — Hbr(K/k) O Hp ¥ (X/k),
and by using the natural pairing
2(d—r)+v r—uv
iy ™ (X k) © Hi (X/k) = HEQ(X/R) = k.
(v)

we arrive at ( , )i x. The above properties are now verified by the same argument as that in [Sal] §7. O

Proof of Theorem 4.2. Let W, X, T be as in 4.2 and assume rk]()yf){(F) < v — 1. Since the assertion does not
specify a ground field, we may select & € F so that X is defined over k£ and the following further conditions
hold:

(a) There exists X,, W, € C;, and T' € CH" (W, x X,, Q) which give rise to W, X, T in 4.2 respectively by the
base change via k — C.
(b) W, has a k-rational point a.

(¢) There exists {fi : Yoi = X, }ien, a countable set of morphisms in Cy such that dimY,; < m+ v — 1 for
all 7 and

I (Ao(W)) c 2= Image{@CHmm; Q) L5 onr(x, @)} + P CHY(X/C). (¥i = Yos x4 ©)
1€N

Let n € W, be the generic point and put K = k(n) and
E=Te(nxX,) —Te(axX,) € CH (X,x;Q).
Theorem 4.2 follows from Lemma 4.3 if we show:
(*) ¢€e Image{@CHm (Yoir; Q) L52 CH’“(XoK,Q)} + Pl CHY (X o /K). (Yoir = Yoi xi K)
1EN
Take an embedding ¢ : K < C of k-algebras, which is possible by the assumption k& € F, and let &¢ €
CH"(X; @) be obtained from £ by the base change. By definition ¢ € T'x(Ag(W)) and hence & € = by (c).

To deduce (x) from this, we consider the commutative diagram

. Fre CH, (Xox;Q)
ee% CHyn (Yoirc; Q) FEt e CHo (Xoxe [K)
\l/ L* \l/ L*
. foa CH. (X;0)
CHyp (Y35 7 FE CH.(X/0)
ee% (Yi; Q) FEE), CH,. (X/C)

Tt suffices to show the injectivity of the induced map coker(fx.) — coker(fcs). This is shown by the same
argument as [Sal], Lemma (2.9), which we recall for convenience of the readers. Let S; be as in §3. For
S € 8; we put

foe. CHp(Xos;Q)
AS = coker{ CHm (YOiS; Q) v ’
® gt CHon(Xos/5)

It suffices to show the injectivity of the induced map ¢* : Ax — Ag for any morphism ¢ : S — Spec(K)
in Sk, where for notational convenience Ax means Agpec(x). We may assume g is of finite type, for if
S = Spec(L) for a finite field extension L of K, then we have the functorial map g. : Ap — Ag such that
g+g* is multiplication by the degree of L/K, which implies the desired injectivity. Here we used Lemma 3.6.
In general, by what is just shown, we may assume that there exists a section ¢ : Spec(K) — S of g. Then the

composite Ag 25 Ag RN A is the identity and hence ¢* is injective. This completes the proof of Theorem
4.2. 0O

Recall {FECH"(X;Q)},>0 as introduced earlier in Definition 2.4 of §2. Theorem 0.2 follows from the
following:
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Corollary 4.4. Let X € C with dim X = d. Assume that either v < 2 or that there exists a dominant
rational morphism X — X such that the condition B(X) holds (¢f. §1 (v)). Then

rkia (Fh CHy(X;Q)) < v —1 = HO(X, Q%/0) = 0.

Proof. This is an immediate consequence of Theorem 4.2 applied to the case W = X and I' = Ax, together
with the following result ([Sal], Theorem (6.2)). O

Theorem 4.5. Let the assumption be as in 4.4. Then there exists a morphism f:Y — X in C such that
dimY <v—1 and
Ap(X) C Fp CHo(X;Q) + fu (Ao (Y)).

Theorem 0.3 follows from the following result:

Corollary 4.6. Let X C P4 be a general hypersurface of degree m > 3 over C, where “general” means
corresponding to a point in a certain nonempty Zariski open subset of the uniwersal family of hypersurfaces
of degree m in P, Let k = [d;;—l] (greatest integer) and r = d — k and v = d — 2k, and assume that the
following numerical condition holds:

k(d—i—?—k)—i—l—(m;—k) >0,

Then rk]()yf){(A’“ (X)) = v (Note that A"(X) C FCH (X) by Proposition 2.7).

Proof. Let Gx (k) be the moduli space of the linear subspaces of dimension k contained in X. Then there
exists a smooth projective subvariety W C Gx (), of dimension v, such that the induced cylinder map

[[].: HY=?*(W,C) — HY(X,C),

is surjective, where I' € CH” (W x X)) is the incidence correspondence ([Lel]). The numerical condition implies
H* (X, Q;l(_/é) # 0 (see [Le2]) so that Image([T].) ¢ F*T1H4(X,C). It implies Image([[']*) ¢ FLHY(W,C),
where [[]* : H4(X,C) — HY(W,C) is the dual of [I']. ([Sal], Cor.(8.4)). It follows from Theorem 4.2 that

rk]()yf){(F) = v. In fact, it is also the case that ', (Ag(W)) = A"(X) ([Lel]), thus rk]()yf){ (A"(X))=v. O

Remark 4.7. The assumption of X being general in Corollary 4.6 is needed in [Lel] to arrive at results on
the level of Chow groups, in particular our above assertion I'. (AO(W)) = A"(X). For instance, we need
(among other things), the nonsingularity and predicted dimension of the Fano variety of k-planes on X.
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§5.(3YCLE CLASSES IN HIGHER EXTENSION GROUPS

In this section we give a brief explanation of cycle classes in higher extension groups in suitable categories
following the works of Green-Griffiths, M. Asakura and M. Saito (cf. [Gr], [As]] and [MSa2]). It is motivated
by Beilinson’s conjectural formula in §0. Fix a base field & C C as in the previous sections.

5.1. Mumford-Griffiths invariants as higher extensions. Let R be a localization of a smooth algebra over
k and let Dp C Endg(R) be the ring of differential operators generated as a subring by O = Derg (R, R)
(derivations) and R (scalars). If R has a local coordinate {z;}1<i<, and {0;}1<i<n is the dual basis of
{dx;}1<i<n, we have

Dr= P R-0% (8% :=07052---095).

QEZ$
It 1s endowed with the filtration of differential order:

n

FDr= P R-0% (lal=> o).

|l <p i=1

A filtered Dg-module is a pair (M, F') consisting of a Dr-module M and an increasing filtration of finite
R-modules F, M C M (p € Z) satisfying

(1) M=Uyez M (F,M=0 p<<0),
(2) F,Dg - F,M C FypyM.

Let MF(R) be the category of filtered Dg-modules. For an object M = (M, F') of MF(R) its Tate twist
M(r) is defined to be (M, F(r)) with F(r), = F,_,. Let R(m) € MF(R) be the Dr-module R endowed
with the filtration F,R = 0if p < m and F,R = R if p > m. MF(R) becomes an exact category by defining
a complex in MF(R)

(My, F1) — (Mg, F3) — (Ma, Fs)

to be exact if and only if
Gri" My — Grf> My — GrfeM;

is an exact sequence of R-modules. Thus we can consider higher extension groups in the sense of Yoneda in
MEF(R).

Let f : X — S = Spec(R) be a smooth projective morphism. The de Rham cohomology M =
HIL(X/S) = H?(Q2%,5) with the filtration F, M := F~PHEL(X/S) gives rise to an object of MF(R):
We let # € O act on M via Vy, the covariant derivative of § with respect to the arithmetic Gauss-Manin
connection

Vo Hpp (X/9) — Q}%/k @ Hpgp(X/S).

Proposition 5.2. (c¢f. [Gr] and [Asl], 3.2) For integers p,q > 0, Emt‘?\/l}.(R)(R(O),H%R(X/S)(r)) is 180-
morphic to the cohomology of the following complex

Qb Frortl S (X/S) 5 QP

i be © FTPHL L (X/S) 5 QL@ Fror=l i (X)),

R/k
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Corollary 5.3. We recall that S = Spec(R). For integers r,v > 0 there is a canonical isomorphism

V(X)) = Ertyyz gy (R(0), Hig " (X/S)(r)).

5.4. Arithmetic mized Hodge modules. In the above construction, the (Q-structure is not taken into account.
The theory of arithmetic mixed Hodge modules remedies the defect and gives a refinement of the Mumford-
Griffiths invariants.

For a smooth variety X over k, the category MHM(X) of mixed Hodge modules on X was defined by
Morihiko Saito ([MSa3]). Let X(C) be the set of C-valued points over & endowed with the usual analytic
topology. An object of MHM(X), called a mixed Hodge module on X, is given by a triple (Kq, (M, F),t)
satisfying certain properties, where Kg is a perverse sheaf of QJ-vector spaces of finite rank on X(C), and
(M, F) is afiltered Dx-module which is holonomic and has regular singularities, and ¢ is a quasi-isomorphism
(Riemann-Hilbert correspondence)

DR(M) ~ Kq© C  with DR(M) = M ©j Q% ¢ [dim(X)].

(To be more precise, a mixed Hodge module is equipped with a weight filtration. Since it is not used in this
paper, we have omitted it for the sake of simplicity. The reader may consult the brief exposition in [AS1] §2.)
The category MHM(X) of mixed Hodge modules on X is an abelian category. For a morphism f: X —» Y
there are the standard operations f., f*, fi, f', etc., on the derived category of bounded complexes of mixed
Hodge modules on X and Y. There exists a cycle class map

Py - CH(X;Q) = ExtﬁHM(X)(QX(O)aQX(T))’

where Qx(r) is the Tate object in MHM (X)) whose underlying perverse sheaf is Qx[dim(X)] (the constant
local system with a degree shift) and whose underlying Dx-module is Ox with the filtration given by
F_TOX = OX and F—r—loX =0.

Let f : X — S be a morphism of quasiprojective smooth varieties over k. The standard operations provide
us with the Leray spectral sequence

B9 = Extygs) (Qs(0), R1L.Qx (r) = EXti/[-l—}(I]M(X)(QX(O)a Qx (1)),

where RYf. : MHM(X) — MHM(S) is the derived functor on the categories of mixed Hodge modules.
The decomposition theorem for mixed Hodge modules implies that the spectral sequence degenerates at the
Eo-term, provided f is proper.

In what follows we assume further that f is proper and smooth. Letting

FEEthz\/?HM(X) (Qx(0),0x(r)) C Ethz\/?HM(X) (Qx(0),Qx(r))
be the filtration inducing the spectral sequence, we can show
P (FECH(X/5:Q)) C Fy Extijyyx) (Qx(0), Qx(r))
by the same argument as in [Sa3], Prop.(2-1) (also see the proof of Prop.3.7). Hence we get the induced map
Pyys + GrpCH(X/S;Q) = Extis) (Qs(0), R 7 £.Qx ().
If S = Spec(R), there is a natural functor

TAMF - MHM(S) %Mf(R)
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which sends a mixed Hodge module to its underlying filtered Dg-module. We have r a7 (Qg(m)) = R(m)
and rar (R4 Qx (7)) = HLr(X/S)(r) and the map (b;’(l;s in Proposition 3.7 coincides with the composite
of p;’(l;s and the map induced by rap#:

Extyypns) (Qs(0), B ™" f.Qx(r)) = Extiz g (R(0), Hpg " (X/8)(r)) = VJ™(X/S),

where the last isomorphism is given in Corollary 5.3.

Let  : Spec(C) — S be a k-morphism and X, = X xg Spec(C) be the base change. Noting that
MHM (Spec(C)) is the category MHS of graded polarized @-mixed Hodge strucutres, 7 induces a natural
functor

(5.4.1) re, © MHM(S) — MHS.

It satisfies
7,y (Qs(m)) = Q(m) and rg, (R f.Qx(r)) = HU(X;y,an, Q(r)),

and the composite of pg’(l with the map
Extyrmms)(@s(0), B~ fQx (1) —= Extams (Q(0), B~ (X an, Q(r))) = J7(Xy),

coincides with the Griffiths Abel-Jacobi map for X, where the first map is induced by 77, and the second
map is Carlson’s isomorphism ([Cal]).

Remark 5.5. As pointed out by one of the referees, the map induced by rax into VJ™1(X/S) functions as
an infinitesimal invariant for the map induced by rg, (as  varies). For v > 1, rar’s induced map serves
as a “higher infinitesimal invariant”.
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§6. A MAP FROM CYCLE CLASSES TO DE RHAM/MUMFORD-GRIFFITHS INVARIANTS

In order to prove Theorem 0.4, we need cycle classes which capture cycles with trivial Mumford-Griffiths
invariants. In this section we construct it by using the arithmetic cycle classes in higher extension groups
in the category of arithmetic mixed Hodge modules. We then apply these ideas to to a particular setting in
87, by proving Theorem 7.2 below, which in turn implies Theorem 0.4.

Let the notation be as in §5. Let f : X — S be a proper smooth morphism of quasiprojective smooth
varieties over k and let ¢ : S — Spec(k) be the natural morphism. Recall the notation in §1(iv). For
L € MHM(S) we have the Leray spectral sequence

EY® = Ext} rngspecqey) (Q0), R L) = Extifill ¢ (Qs(0), L)

associated to the derived functor Rg. : D (MHM(S)) — D°(MHM(Spec(k))). Note that MHM (Spec(k)) is
identified with a subcategory of MHS via the functor rg , (5.4.1) with 5 : Spec(C) — Spec(k) induced by the
natural embedding k¥ — C, and Q(0) denotes the usual Hodge structure. Noting that Exti/IHM(Spec(k)) =0

for p > 2, we get the short exact sequence
0 — Extypmaspec() (Qs(0), R g L) = Bxt s (Qs(0), L) — homuis (spec() (Q(0), R g, L) — 0.
Apply this to L = R~ f.Qx(r) € MHM(S) and we get natural maps
™ Ext{rmacs) (Qs(0), R fQx(r)) = A" (X/S) := homymus (Q(0), H(S/C, R~ £.Q(r))),

ker(m) — E"7(X/S) := Extyns (Q(0), HY=HS/C, R* ™" £.Q(r))),

where H*(S/C, R*= f.Q(r))), the cohomology of Sa, with coefficients in a local system, is endowed in a
canonical way with a mixed Hodge structure by the theory of mixed Hodge modules ([MSal]). The composite
of p;’(l; gand 7

(6.1) N s s FRCH (X/5:Q) — A7 (X/S)

is given as follows. Let

¢t CH™(X;Q) — H* (X/C,Q(r))

be the cycle class map. We have ¢% (FECH” (X/S;Q)) C FYH*(X/C,Q(r)), (again, by the same argument
as [Sa3], Prop. 2.1), where F} denotes the filtration inducing the Leray spectral sequence

ED? = HP(S/C, RIf.Q(r)) = HPY(X/C,Q(r)),
which degenerates at Fy by Deligne’s criterion ([Del]). Thus the projection to the graded quotient induces
FECH™(X/S;Q) — HY(S/C, R* ™ p.Q(r))

which is identified with /\;’(75 composed with A" (X/S) — H"(S/C, R*~" p.Q(r)), the natural inclusion.
In particular we get the natural map

(6.2) 6;’(75 : FRCH™ (X/S; Q)N CHy W (X5 Q) = EMV(X/S)

for which we have
s (FETICHT (X/S;Q) N CH,p (X3 0)) = 0.

The reader can also consult [Le3] for the similar construction in terms of absolute Hodge cohomology.
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Proposition 6.3. (i) Assume S = Spec(R) is an affine variety. There is an injective map

O o NV(X/S) = VDR™(X/S) @ C,

which fits into the commutative diagram

Y s
FYCH(X/S;Q) —22% VDR (X/S)
L !
%/s

AT (X/S) VDR (X/S) @ C

where cb;’(l;s bR 18 defined in (3.7.1).

(i) Suppose that S and X are projective, and U C S is an open affine subvariety over k. Then there is a
map

<I>;’(7U S AT(X/S) = VI (X /U)o C, (X =X xgU)
which fits into the commutative diagram

rov
¢XU/U

FpCH (X/5;Q) VI ( Xy /U)

LAY !
ATV (X/S)

X/U

VI (Xy JU) @ C

Proof. Part (i). Recall the notation in §1(iv). The complex of holomorphic forms on S/C with values in
R?—v#,C furnishes a resolution of R? ¥ f,C. Since S is affine, a variant of the Grothendieck Algebraic de
Rham Theorem implies that HY(S/C, R*~" f.C) can be computed from algebraic differential forms ([De2]
(§6, pp. 98-99)). Specifically

HV(S/C’ RZT_Vf*C) = Hy( :‘5/!« ®os RZT_Vf*QB(/S) @r C,

where the latter term is computed in the Zariski topology. Since S is affine and Q’S/k Qo RTVE, Q}/S is
coherent, HV(Q’S/k R0 4 }Rz’“_”f*Q}/S) Is computed as

ker (V2 HO(S, 9%, @ RV L,Q% o) = HO(S, Q¢f @ RT™[.Q% o))
V(H(S, Q4 @ RV £.Q% )

bl

which coincides with VDR™ (X/S) by definition (Def. 3.2). Thus we have
A"Y(X/S) C HY(S/C,R* ™" f.C) ~ VDR (X/S) @y C,
which defines the injection A™¥(X/S) — VDR (X/S) @ C.
Part (ii). From the work of Deligne (see [B-Z]), the complex

r—u *>r—
(Q.S/k ®R? f*Qx;/s;, V)
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computes F"H”(S/C, R* = f.C). This is in the strong topology, but using the second spectral sequence on
hypercohomology given in [G-H] (p. 446):

B = 1Y (1Y (@, 0 BY TV LO5ZT50) = B (0, 0 BY L2,

and the assumed projectivity of S, together with Serre’s work (GAGA), the same result holds in the Zariski
topology. Specifically, we get

FTHY(S/C, R [.C) ~ T (QY, @ 7 L.Q3F57") @ C.
Next, by restriction there is a map

Hl/( A.S‘/k; ®R2T—Vf*9}2/g—0> %HV< [.]/k; ®R2T—Vf*Q}ZUT/—UO)

ker (V : H(U, Q%) @ RV FQE ) = HOYS, QL @ R =V £,Q827 7))

Xu/U U/k Xy /U
- v— r—1 >r—v ’
V(HO(U, Q7 © R L0587 7)

where the isomorphism uses the fact that U is affine. The last term is identified with V.J"" (X1 /U) by Def.
3.2. This gives rise to the desired map. O

It would be nice if one could have Proposition 6.3 (ii) without assuming X and S are projective. Indeed
we will provide strong evidence in support of the following:

Conjecture 6.4. Put

rv

A S
ALY (X/S) = Image(F CHT (X/8; Q) —55 A (X/S).

Then, for any dense affine open U C S, there is a map

<I>;’(7U : Ag’lg(X/S) > VI Xy /U)o, C, (X=X xgU)
which fits into the commutative diagram

rov
¢XU/U

Fi CH (X/;0) VI (X0 U)
LN !
AL (X/5) My (X [U) @5 ©

Our approach to the above conjecture involves L?-cohomology techniques, where the case dim S = 1 has
been worked out by Zucker (see [B-Z]). The story for dim.S > 1 is rather complicated, and is clarified to
some degree in the Appendix to this paper. Indeed, the above conjecture is a consequence of other “very
reasonable” conjectures.

Choose a morphism 7 : Spec(C) — S whose image is the generic point and let X, be the base change
via 7. By definition X, is proper smooth over C. Recall VJ""(X,) := VJ"" (X, /C) and VDR""(X,) =
VDR (X, /C) in Definition 3.2.
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Proposition 6.5. (i) There is a map
<I>;(: cA"Y(X/S) = VDR (X,) @ C,

which fits into the commutative diagram

A

FyRCH (X/S;Q) AP (X/S)

b Loy

FECH (X,:Q) —2VJ™(X,) ®x C— VDR™(X,)®;C

In particular we have

o5, pron (FgCH (X/S;Q) N CHpor (X5Q)) = 0.

(i) Suppose that X and S are projective over k or that Conjecture 6.4 is true. Then there is a morphism

ALR(X/S) = VI (Xy) @, C©

which is compatible with the diagram in 6.5. In particular, we have

O3 o (P CIT (X/S;0) N Clyory(X50)) = 0.

Remarks 6.7. The construction of the map A" (X/S) — VJ""(X,) @i C, also appears in [Kel] in the special
case where X =Y x S with Y, S € C;. In this case, for an affine open subscheme U C S, we have

A" (X x5 UJU) = homyms(Q(0), H*(U/C,Q) @ H*(Y/C,Q)) = H (Qf,) © F* ™ HE" (Y/k) @ C
= HY(L(U, Q) @ T HE " (V/k) @ C,

via the comparison isomorphism HYg (Y/k) @, C ~ H*(Y/C,C) and Grothendieck’s algebraic de Rham
theorem. One then applies the morphism

HY (DU, Q) @ F ™ Hpg " (Y/k) @ C = Hy (Qy, © '™ Hpp " (Y/k)) @ C.

§7 DETECTING NONZERO CLASSES WITH TRIVIAL DE RHAM/MUMFORD INVARIANT

In this section we take the base field k = Q. Take X € C with dimX =d. For T € C@ with dimI' = 1
and S € C and £ € CH"(T'/C x S x X;Q), consider the cycle induced map

(7.0) [€] : HY(T/C,Q) @ H*7H(S,0) = H (X, Q).
where dg = dim S. It is easy to see that

(€. (HY(T/C,Q) @ H*~+1(S,Q)) C H“(X,Q)N FT~"H*(X,C).
Now introduce:

Definition 7.1. Write H" 7" (X) = H"(X, QS(_/E)
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(i) Define H%_V’T(X) C H™""(X) as the C-vector space generated by the Hodge projected images of [€]« in
7.0, over all I € Cg of dimension 1, and all S € C, and all § € CH (T/Cx S x X;0Q).

(i) For X, € Cg: we introduce a variant H%_V’T(XO/@) CH (X)) (X=X, X@C) of the above definition,

where we only consider S € Cg and where we allow § € CH (T xS x X)/C,Q).
For X € C we recall the maps (see (3.7.2) and (3.7.3))
qS;’(l;DR :Gryp CH'(X;Q) - VDR"(X) and ¢ : Grp, CH (X;Q) — VJ™(X).

The main result is the following;:

Theorem 7.2. Assume C(X) (cf. §1 (v)).
(i) If v > 2 and if Hé_V’T(X) + 0, then there are an uncountable number of classes in ker(qS;’(l;DR).

(i) Let X = X, xgC with X, € Cz. Ifv > 2 and if H%_V’T(Xo/@) # 0, then there are an uncountable

number of classes in ker(¢'y").

(iii) Assume Conjecture 6.4 is true. If v > 2 and if Hé_V’T(X) # 0, then there are an uncountable number

of classes in ker(¢'y”).

Proof of Theorem. Since the proofs of (ii) and (iii) are similar to and simpler than (i), we will just prove (i).
By assumption, one can find I'/Q, S and a cycle & € CH(I'/C x S x X) such that the map

(7.2.1) & HYT/C,C) — HY=H(S,C) @ (H* (X, C)/Fr~rt g ~"(X,0C)),

is nonzero. Note that v > 2 implies dim .S > 1, which will be exploited later.
In what follows, for a Z- or ()-module H of finite rank endowed with a mixed Hodge structure, we denote

J(H) = Wol © C/ (FOWoH © C+ WoH).

It is naturally endowed with a structure of a complex Lie group and for a morphism H — H’, the induced
map J(H) — J(H') is a homomorphism of complex Lie groups. We note that

J(S x X) = J(H* (S x X,Z)(r))
and the canonical isomorphism due to Carlson for a Q-mixed Hodge structure H
Extyps(Q(0), H) = J(H).
Consider the composite map
g : CHY, o(D/Q) = JHT/C) £ 7 (S % X) = J(HTNS, Z)© BV (X, Z)(r)),

where the last map is induced by the projection to the Kiinneth component. For dense (Zariski) open U C S
let
®e v : CHlp o (F/Q) — J(HY (U, Z) @ H ~"(X, Z)(r))

be the composite of ®; with the natural map
JHY™HS,Z) @ H*~V(X,Z)(r)) = J(H'~ YU, Z) @ H* 7% (X, Z)(r)).

A key to the proof of Theorem 7.2 is the following:



26 J. D. LEWIS & S. SAITO
Lemma 7.3. Under the above assumption,

lim Image(®; 17),
UES

has infinite rank.

We now finish the proof of Theorem 7.2 assuming Lemma 7.3. We choose spreads of X and S: Choose M
smooth over Q and proper smooth morphisms X — M and § — M such that for a suitable 7 : Spec(C) - M
whose image is the generic point, we have X' x 3 Spec(C) ~ X and § x 3y Spec(C) ~ S by the base change
via 7. Correspondingly we have éE CH™(T' x X xp §;Q) whose image under

" CH(T'x X xpr §;Q) = CH'(T x X x S;0)

coincides with £. By [Ja], 7.2 (see also [Sa2], 5-1) one can lift the the Kiinneth components of the cohomology
classes of the diagonal class [Ax] € H24(X x X,Q) (which are algebraic by C'(X)) to

Ax(i,j) € CHYX xp X;Q)/[ | FECHY(X xy X/M;Q) (i +j = 2d)
w21

such that their restrictions to the fiber X for every s : Spec(C) —» M

Ax,(i,§) € CHY (X, x X,;Q)/[ | FECHY(X, x X,;Q) (i +j = 2d)
w21

give a Cbow—Kﬁnneth decomposition of the diagonal. Then we can let A:’V(Qd —2r4v,2r—v)act on é (and
replace & by the result) without changing (7.2.1). This will ensure that £ induces

®; : CHgoyo(T/Q) = FECH (X x 3 8/8;Q) = Grp, CH' (X x 3 8/8;Q)

and its image is contained in CH} __ (X xar S;Q). By the construction in §6, this means

rov
XXpr5/8,DR

(*) Image(®;) C ker (Gry, CH (X x3r 8/8;Q) VDR (X xp S/8)).

By construction, ®¢ coincides with the composite of ®; and the map (cf. (6.2))

FLCHT (X %3 8/8;Q) A CHL (X xar 83 Q) —2050S2m (x4 8/8)
::Ethl\/IHS (Q(O)’ Hy_l(s/c’ RZT_Vf*Q(r)))’
where f: X xp § = & is the projection, and the map
EX % 8/8) — Extyus(Q(0), H7H(S,Q) © H (X, Q)(r)) = J(H"~'(S,Q) @ H (X, Q)(r))

which is the restriction via S — §/C induced by n (Recall that n : Spec(C) — M gives rise to ng :
Spec(C) — M/C and S ~ S8/C x p1/¢ Spec(C) by the base change via n¢). Noting that €'’ annihilates

Xxm8/S
FPICHT (X %3 8/8;Q)), Lemma 7.3 implies that the image of

— ®; -
CH}p o(T/Q) = Grlp, CH (X x 3 §/8;Q) Lo Grip CH™ (X x5 UJU;Q)
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has infinite rank in the limit over any dense open j : if — §. Identify a point p € S with a morphism
p : Spec(C) — S and let j : Spec(C) — S be the composite of p and S — § induced by 5. Then the
composite of p and S — M is 5 so that we have X ~ X x5 § x5 Spec(C) by the base change via p. If the
image of p is the generic point, it induces the map

P lim Grip, CH™(X x3 U; Q) = Grp CH"(X;Q),
UcCs

where U ranges over the dense open subschemes of &, and it is injective by [Sa3], Rem.(2-1)(3). Therefore
the composite map
_ @ "
@z CHiyo(I/Q) — Grip, CH™ (X x 31 §/8;Q) = Grip, CH™ (X;Q)

has the image of infinite rank and it is contained in ker((/);’(l;DR) by (*) and Proposition 6.5. Noting that P,
coincides with

CHego(I'/T) = CHuy (/) © CHo(5;Q) < Grip, CHT (X Q)
where the first map sends a € CHéegO(F/@) to a @ [p], we have thus shown that the image of
& : CHjp o(T/Q) ® CHo(S;Q) — G, CH™(X;Q),

is nontrivial and lies in ker(¢'y", ). Thus for suitable P — @ € CHéegO(F/@), we have a nontrivial cycle
induced map

CHo(5;Q) — ker(¢¥ pr) C Grp, CH'(X;Q).
This induces a nontrivial composite map
A:S = CHy(S/CQ) — ker((/);’(l;DR) — Grp, CH"(X;Q),

whose 1mage by an easy argument using dim S > 1, 1s more than a point. The standard arguments in the
theory of Chow varieties imply that the fibers of A are c-closed (countably closed). T.e. the fibers of A are
countable unions of proper subvarieties of S. This is the import of the theory in [R1-2], (also cf. [Sch1]), and
it basically hinges on Lemma 7.4 below. Thus if the image of A were countable, then S would be a countable
union of proper subvarieties. This is impossible by Baire’s Theorem, which completes the proof of Theorem

7.2. O
Lemma 7.4. Let X € C and Y be a projective variety over C, and assume given a cycle induced map
k:Y = CH(X;Q).

Then I{_1<F§ C’H’“(X;Q)) is a c-closed subset of Y. Furthermore, if k(Y) C FRCH (X;Q), then the fibers
of the induced map Y — Gry, CH (X;Q) are c-closed.

Proof. Omitted. O

Now we prove Lemma 7.3.
Sublemma 7.3.1. Consider the map
& HYD/C,Q) = H'™H(S,Q) @ HY (X, Q)
induced by & (as in eqn. (7.2.1)). Then its image is not contained in
N HYYS,0) @ B (X, 0) + H71(S,0) @ N+ B (X, 0),
where we recall NY, H* (X, Q) is the largest subHodge structure of H*(X,Q) lying in FPH*(X,C)NH* (X, Q).
Proof of Clazm. Obvious. O
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Sublemma 7.3.2. The image of
JHT/C) LN J(S x X) = J(H"HS,Z) o H" (X, Z)(r)) = J(H* YU, Z) @ H* (X, Z)(r)))
18 NONzZero.

Proof. Recall that
J(H"YS,Z)® H" (X, Z)(r)) = V/L
with
V= (H""'(S,C) @ H*7"(X,C)) /F"(H"~1(S,C) ® H”¥(X,0))
and L C V a lattice. We observe that
Fr(HY=YS,C) @ H¥(X,C)) C H"~1(S,C) @ F"~"* H*~7(X,C).
By the assumption (cf. (7.2.1)) the image of J1(I'/C) LN JT(S x X) = J(HY=YS,2) @ H*" =7 (X, Z)(r)))

is nonzero. By Sublemma 7.3.1 1t now suffices to show that the kernel of
JHYNS, Z) @ H (X, Z)(r)) — J(H"" YU, Z) ® H 7% (X, Z)(r)).

is contained in the image of

J(NFHY™H(S, Q)@ H*~7(X,Q)) + J(H"™'(S,Q) @ NiH' "V H” ¥ (X, Q)).
Indeed one has a surjective map

H"7H(S,Q) 0 H"(X,Q)(r) » Wy HY~HU,Q) @ H* 7"(X,Q)(r),

whose kernel is contained in N, HY~1(S,Q) ® H*~¥(X,Q)(r). Correspondingly the kernel of

JHY™HS, Q)@ H 77 (X,Q)(r) = J (W1 H'7HU,Q) @ H7(X,Q)(r))
is contained in the image of J(N} HY~1(S,Q)® H*"=*(X,Q)). Next, there is a short exact sequence

0= Wyo  HV"HU,Q) @ H=7(X,Q)(r) — Wo (H"H(U,Q) @ H* ¥ (X,Q)(r))
— Griy (H"H(U,Q) @ H*7"(X,Q)(r)) — 0.
Taking global Extyg, 1t gives us the exact sequence
homus (Q(0), Griy (HY~1(U,Q) @ H* 7% (X,Q)(r))) =

J(WytHY=HU,Q) @ H (X, Q)(r)) — J(H""H (U, Q)@ H (X, Q)(r)).

Hence it suffices to show that the image of the first map is contained in
J(Wyot HY=HU,Q) @ Nyt 7V HP = (X, Q) ().
We have a short exact sequence
0— Wy 1 HHU, Q)@ N =V B~ H(X, Q) (r) = Wo (HY"H(U,Q) @ N " H* (X, Q)(r))
— Gryy (H*™HU,Q) @ N =" H*~"(X,Q)(r)) — 0.

Moreover, by using the fact FPH*~Y(U,C)/FP*T! =0 for p > v — 1, one sees that the natural inclusion:

homums (Q(0),Grly (HY=1(U,Q@NL " H> =¥ (X,Q)(r))) C  homyms (Q(0),Grl, (H¥=1(U,Q)@H>"~*(X,Q)(r))),
is an equality. Finally the desired assertion follows from the commutative diagram:
homnirs (Q(0),Gréy (HY=1 (U, Q@ NG H>r ~(X,Q)(r))) 7 J(Woms H¥=1 (U Q)@ NG~ H2r—v (X,Q)(r))
I !
homwins (Q(0),Gré(H ™ (UQ)@H> ~(X,Q)(r))) . J(Woo H LU Q)@H> (X, Q)(r))
O

In order to complete the proof of Lemma 7.3 we need the following key result.
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Lemma 7.5. Let W be an Abelian variety over Q, and suppose that W/C contains an Abelian subvariety
V over C. Then W contains an Abelian subvariety over Q of dimension = dimV.

Proof. Construct a Q-spread
V = MxW

p v

M
where M, V are defined over © and there is 7 : Spec(C) — M whose image is the generic point of M, such

that V xr Spec(C) ~ V. Let s € M(Q) be a general choice of closed point. Then the desired Abelian
subvariety of W is given by V,. O

The following is probably well-known, but is an immediate consequence of Lemma 7.5.
Corollary 7.6. W/Q is simple < W X@C 1s simple.

Now we complete the proof of Lemma 7.3. Notice that CHéegO(F/@) has the structure of an Abelian

variety over Q. By Sublemma 7.3.2 and Corollary 7.6 together with Poincaré’s complete reducibility theorem,
there exists a simple Abelian subvariety A/Q C CHéegO(F/Q), for which the composite

A/C e CHjoyo(T/C) ~ JHT/C) — J(H""NU,Z) @ H" (X, Z)(r))

is an isogeny onto its image. Now Lemma 7.3 follows from the fact that A(Q) has infinite rank ([F-G]).

Example 7.7. Let X = C x C, where C is a smooth projective curve defined over Q. In this case C(X)
trivially holds. Let

[Ax]= > [Ax(p.g)le P H (X x X,Q) with Ax(p,q) € CH*(X x X;0Q),
ptg=4 ptg=4

be the Kunneth decomposition of the diagonal X < X x X. Using the notation in Theorem 7.2, we take

'=S=Candr=v=2and & = Ax(2,2). Let 5 be the generic point of C' and take P, @ € C(Q). Noting
Ax .= Ax(0,4). +Ax(1,3)s + Ax(2,2). on CH*(X;Q),
we get
E((P=Q) xn) = (P-Q)xn—Ax(L3).((P-Q) xn).
Next, we expand Ax(1,3) in terms of the diagonal A of C' — C x C. Fix a rational point O € C(Q). Let
T:OxCxCxC—CxCxCxC bethe map given by T'(¢1,%2,15,14) = (t1,13,%2,t4). Then
Ax(L,3)((P=Q)xn) =[T*(Cx 0 x Ac+ Ac x C x O)]*((P—Q) x 1)

= [T"(Acx Cx O)] (P =Q) x1) = (P-Q) x O.
Thus we get
E((P-Q)xn) =(P-Q)x(n-0),

which is the cycle that was studied earlier by A. Rosenschoen and M. Saito [RS], and later by Matt Kerr
[Kel]. Tt should be pointed out that their results about a given 0-cycle satisfying a certain condition, are
more specific than what 1s presented here.
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§8 A CLASS OF EXAMPLES WITH TRIVIAL MUMFORD-GRIFFITHS INVARIANT

We first recall that if V, W € Cp, then ([K1])
B(V) + B(W) = B(V x W).
Another fact that we use is the following. Let m = dim W, and assume that j : V < W is of dimension

¢, being the cutout of W by m — £ hyperplane sections. By the Lefschetz theorem, j* : HY(W) — H*(V) is
injective. Then B(W) = B(V) and the surjective left inverse

() H (V) = HEW),
1s cycle induced. Indeed, one checks that
Jeojt = LT HY W) S HP W),

where Ly is the cup product with the polarizing class. If A”ml,_Z is the inverse to anz/—z’ then we obtain

(j*)_l = A%_Z o jx from the formula
(j*)_l o = Aj oot = A o L7 = Identity.
The following diagram makes the above construction transparent:
HYW) ——
ity 1l anz/—z

HYV)Y 3 HPTYW) | Identity

HYW) —

ot N\ VLARTS

Lemma 8.1. (i) Let X, Y €Cand T € Cg withdim X =d, dimI'=1, dimY =d — 1. Assume that B(Y)
and C(X) hold. Further, suppose that we are given a dominating morphism

A TexY =X,

such that the induced map
HYN(T/C) @ HOV~HY) — HOV(X),

1s nonzero for some integer v > 2. Then Hé_V’T(X) Z0 forv<r<d.
(i) Purther, if X = X, xgCandY =Y, xg C with X,, Y, € Cg, then Hé_V’T(XO/Q) #£0 forv <r<d.

Proof. We only prove (i). The proof of (ii) is similar. The hard Lefschetz isomorphism implies that

LY HOY(X) — H™0 (X)),
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is injective. Now let S be a smooth cutout of Y by d — v hyperplane sections, where dim S = v — 1. By what
we said in the beginning of this section, there is a nontrivial cycle induced map

HONT/C) @ HOY~YH(S) — H™™""(X).

More explicitly, by the above discussion, the cycle inducing this map is given as follows: Let Ar be the
diagonal of ' in I' x I'. If j : § — Y is the inclusion, and if we identify a map 7, with its associated
correspondence {7}, then the cycle is

£= 1 o o (et o P o (1) ) eC (/e s x x:0),

I'xSxI'xY

This gives a nonzero element of H%_V’T(X). O

By Theorem 7.2, we arrive at the following:

Corollary 8.2. (i) Let the assumption be as in Lemma 8.1(1). Then, for v < r < d, Gry, CH(X;0Q)
contains an uncountable number of classes with trivial de Rham invariant.

(ii) Let the assumption be as in Lemma 8.1(ii). Then, forv <r < d, Grp, CH (X;Q) contains an uncount-
able number of classes with trivial Mumford-Griffiths invariant.

Corollary 8.3. Let X, € C@ of dimension d, and write X = X, X3 C. Assume given smooth curves
I/Q,...,T4/Q and a dominating morphism
'y x---xT'y—> X,.
Further assume that C(X) holds. If HY(X, Q”X/@) # 0 for some v > 2, then forv <r <d, Gry CH(X;Q)
contains an uncountable number of classes with trivial Mumford-Griffiths invariant.
Since any Abelian variety is dominated by a product of curves, we arrive at the following:

Corollary 8.3. Let X, be an Abelian variety over Q, of dimension d and write X = X, X@C . Then for any

2<v<r<d, Grp, CH(X;Q) contains an uncountable number of classes with trivial Mumford-Griffiths
wmvariant.

One can also arrive at similar results for Fermat hypersurfaces, using the fact that they are dominated
by products of Fermat curves by [KS].
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APPENDIX: A CONJECTURAL OVERVIEW

We would like to convey our thoughts about the possibility of a map from the space of algebraic cocycles

Ag’llé(X/S) to the space of Mumford-Griffiths invariants VJ""(X/S) @ C, where p : X — S is a smooth

proper morphism of smooth quasiprojective varieties over Q. In a nutshell, we believe that it ought to exist.
We base our observations on the situation with intersection cohomology considerations, and the various
conjectures in the literature that seem to imply this.

(I) The issue is whether there is a map from
A"Y(X/S) = homyms (Q(0), HY(S, R* ¥ p.Q(r)) C H” (S, R*" ™" p,C)

at least on the space of algebraic cocycles Ag’llé(X/S), (which is Hodge conjecturally all of A" (X/S)) to the
space of Mumford-Griffiths invariants VJ""(X/S) @ C. As already explained in §8, if there is such a map,
and if S is affine, then such a map must be injective. This is because, for S affine, the de Rham invariants

VDR (X/S) @ C compute HY(S, R*~"p,(C), and the inclusion of A" (X/S) in the de Rham invariants
factors through the map to VJ"(X/S) @ C.

Whether or not there exists a map to the Mumford-Griffiths invariants, we can still say that for S affine,
there is always a map

VJITY(X/)S) — ATV (X/S) C AT (X/S),

alg alg
where VJ;;’(X/S) is the image of FYCH"(X/S;Q) in VJ"(X/S). One simply deduces this from the
commutative diagram below, where ®"" is injective.
AT
FYCH"(X/S;Q) —%5 A"V(X/S)
\l/ \l/ @T,V

VI (X/S) — VDRV (X/S)®C
The question then is; in more precise terms, 1s the following.
Question A.0. For S quasiprojective, does there exist a map going the other way, viz.,
Ag’lg(X/S) = VJI"(X/U) & C,

where UJQ C S is any affine open subvariety? [Note: If S = U is affine, then this map must necessarily be
injective, if it exists.]

(IT) Enter intersection cohomology: We work with this diagram:

X = X
P v
s <4 3

where ¥ := X\ X, ¥ := S\S are NCD’s, p is smooth and proper, and X, S are smooth projective over Q.
We recall a conjecture of Zucker and Brylinski. First, let V= R p,C over S. Put

G ={g€ Q%<10g2> @V | Resg g € NsV},

where V is the privileged extension of the bundle associated to V over S to S (see [B-Z] p. 63 for the
definition of V), and N, for a multiindex J corresponds to monodromy. (See (III) below for a definition of
the MHS V.) All terminology in the conjecture below can be found in [B-Z]. Then according to [B-Z], “We
suspect, that the means are available to verify:
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Conjecture A.1. ([B-Z](3.19)) The complex G* together with the [Hodge] filtration induced from (3-8) [of
[B-Z]], completes [the middle perversity cochain complex] IC*(S,V 4) to a cohomological A-Hodge compler
of weight m, such that the Hodge structure it gives on TH'(S,V) coincides with that of (3.16) [of [B-Z]].”

For the benefit of the reader, we will clarify the statement of Conjecture A.1. First of all, we make use of
the identification from [C-K-S2], TH!(S,V) ~ Hfz)(S, V), where the former is intersection cohomology and
the latter is L2-cohomology, which has a pure Hodge structure by [C-K-S2]. This defines the Hodge structure
on TH*(S,V). (Alternatively, one has a Hodge structure on IH*(S,V) from the work of M. Saito ([MSal].)
The privileged extension V has corresponding Hodge filtration subbundles F' CV, which together with the
monodromy weight filtration, determine a MHS on the central fiber V. One has a corresponding filtered

subcomplex FPG C gi, where we observe that FPG* C Q%(log ) ®fp_l, where the latter sheaf is coherent.
The import of Conjecture A.1 is that

F'IH'(?,V) ~H* (F*G*).
Note that

FPG = QL @ FF'R™p,C.
S

Thus an immediate consequence of this conjecture (with m = 2r — v and p = r — v) is the existence of a
map:

(A.2) {H{y (S, RV p. O} — VI (X/U) @ C,

where again U/Q C S is any affine open subvariety.

Remark A.2.1. It would be nice if one could arrive at and prove an analogous conjecture for H” (S, R*" =¥ p,C).
(TIT) Relating this to the original problem: We will now assume given our map in (A.2) above. Note that

there is a natural map

H{,) (S, R p.C) — H"(S, R~ p..C).

Of course, in light of [A], one conjectures this to be a morphism of mixed Hodge structures. Using norm
estimates on the weight filtration that arise from the work of [C-K-S1], one argues that:

Proposition A.3. There is a natural map
HY(S, j. R ™" p.C) — Hiy (S, RV p.C).
Proof. It suffices to construct a map:
HY(S,j«R* " p.C) — IH"(S, R " p.C).
Let IC*(S,V) be the middle perversity intersection cochain complex, where V = R* =¥ p,C. Then
THY(S,V):=H (IC*(5,V));
The “first” hypercohomology spectral sequence ([G-H]) computing H” (E' (S, V)) contains the Ey-term:

/Elz/’0 = HY (?, %O(EO (?, V))
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Therefore, if there is a natural map .
715V = HO(IC* (S, V),
this, together with partial degeneration, leads to maps:
HY(S,j.V) = "EY® — 'E%Y s THY(S,V),

and hence Proposition A.3. To construct 7, by passing to a finite cover of S, one can assume that the
local monodromy transformations about the NCD ¥ C S are unipotent. In a classical neighbourhood
Usn NS ~ (A*)™ x AdmS=m " There is no loss of generality in deleting factors A. Thus we may assume
the local description Uyn NS ~ (A*)™. Let T;, j = 1,...,m be the local monodromy transformations,
and put N; = logT;. Let V = O0g(V), and V the canonical extension over A™. The stalk of V over
0:=(0,...0) € A™ will be denoted by V. Put

Bp(NlaaNﬂ’Lav): @ N] N] N]pv
1<ji<<gpsm

Define the differential -
(—1)*7'Nj, o Ny, - Ny, - Ny, Vo= Ny Ny, - N3,V

on the various summands of BP~1(Ny, ... Ny,; V). This turns B*(Ny, ..., Ny; V) into a complex. Tt is well
known ([C-K-S2]) that

Hio)(Uan, V) = H*(B*(N1, ..., Nyu; V) = TH* (Uap,, V) = (H*(LC*(S, V)))o.
The existence of 7 follows by noticing that the invariant cycles include
(jV), C H*(B*(N1,..., Npm; V).
O

Using the natural map R*~"5,C — j.R* ™" p,C, together with Proposition A.3, we deduce:
Corollary A.4. There is a natural map

HY(S, R ~"p,C) = H{s(S, R~ p.C) ~ [H"(S, R~ p.C).

In light of the mixed Hodge structure results in [A], it is natural to expect the following.
Conjecture A.5. The map in A.4 is a morphism of MHS.
Notice that HY (S, R?"~Vp,C) is the E3 term of the Leray spectral sequence for p.

Corollary A.6. Under the assumption of Conjecture A.5, there is an induced morphism of Hodge structures:
GriyH? (X,C) — H{y (S, R” " p.C),

where GrY. H?" (X, C) is the graded Leray filtration.

Proof. To see this, observe that HE’Z)(S, R*~¥p,C) has a pure Hodge structure of weight 2r, and that by

[A], HP(S, R%p,C) has a mixed Hodge structure of weight < p + ¢; moreover the differentials of the Leray
spectral sequence are morphisms of MHS (see [A]). Granted we accept Conjecture A.5, it follows that the
composite

HY=2(S, R*="H15,0) & HY(S, R ~"5.C) — Hy (S, R p.C),
is zero. Applying this same reasoning to the d,.’s for r > 3 leads to Corollary A.6. O
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Corollary A.7. Let us assume that Conjectures A.1 and A.5 hold. Then for U/Q C S affine, there is a
map

(%) {GrYH? (X, C)}" = VJ"(X/U) @ C.

It is natural then to ask whether one can replace X in (%) by X? The answer appears to be yes, provided
that one restricts to algebraic cocyles. The reason is this. Notice that by purity of Hodge structures, and
polarization, Gr% H*" (X,C) C H?"(X,C) as Hodge structures. Let’s assume the Hodge conjecture for Y.
More specifically, if we write the NCD Y in the formY = Uj Y;, where Y} is smooth, then we are assuming the

Hodge conjecture for each Y;. Then the kernel of Hg{g(Y) — H?"(X) involves algebraic cocycles supported
on Y. But any algebraic cycle supported on Y goes to zero in CH"(X). We want to make this more precise.
We need the following.

Lemma A.8. Consider the composite of the natural maps
T FEHY(X,Q) = FAH”(X,0Q) = GriH (X, Q) ~ H”(S, R ™" p,Q),

where the first map s the restriction and the isomorphism comes from the degeneration of the Leray spectral
sequence for p: X — S. Note that it 1s a map of Hodge structures and hence induces the map

GrH*" (X ,Q) = Wa, HY (S, R p,Q) = Griy H” (S, R* " p.Q).

Then the last map s a surjective morphism of HS.

Proof. First of all, by [A], the weight of HY (S, R*" =" p.Q) is < 2r. Hence by duality, the lowest weight space
of HY(S, R*~"p.Q) is 2r. That the above is a morphism of MHS is the import of [A]. This, together with
cohomology with compact supports yields the exact sequence of MHS:

HY= (8, R 5,0) = HY(S, B"p.Q)  HY(S, R ~5,0).

Since Y — ¥ is a morphism of projective varieties, the weight of H*~(X, R*~"p.Q) is < 2r — 1. Thus we
have the inclusion

Grip HY (S, R* " p.Q) — Griy H (S, R*"5,Q).

By compatibility of Leray spectral sequences together with a weight argument similar to the proof of Corollary
A.6, this induces an injection:

Grig HY (S, R 7" p,Q) — Grig Gri H” (X, Q) = Gr. H*" (X, Q).
The Lemma A.8 now follows from duality. O
Corollary A.9. (i) For all v > 0, the kernel of 7 in Lemma A.8 lies in the image

{HY (X, Q)+ FrtE(X,0)) - H”(X,0Q).
(i1) For all v > 0, the natural map
FZHzT(Y’ Q) — WZTFZHzr(Xa Q)a

15 a surjective morphism of HS.

Proof. Part (i): If ¢ € FYH? (X, Q) restricts to a class in FZHHZ’“(X, @), then by a repeated application
of Lemma A.8, one can find & € FZ‘HHZT(Y,Q) such that & — ¢ restricts to zero in H?"(X,Q). This
implies part (i). The proof of part (ii) is again a repeated application of Lemma A.8, and will be left to the
reader. O

We now arrive at the following:
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Theorem A.10. Let us assume that Conjectures A.1 and A.5 hold, and that the Hodge conjecture holds.
Then Question A.0 is answered in the affirmative.

Proof. We have a commutative diagram
CH (X) — CH (X)
bex bex
H*(X,0(r)  —  H”(X,0(r))
U U
FRH(X,Q(r) — FZH?(X,Q(r))

where ¢%- and ¢y are the cycle class maps. One can show that  (FECH™(X/S)) C FELH* (X,Q(r)) by the
same argument as [Sa3], Prop.(2-1) and that /\;’(75 is identified with the composite map:

W FRCHT(X/S) 25 FEH? (X, Q(r)) — HY(S, RZ = p.Q(r).
Our aim is to construct a natural map Image(y) = V.J""(X/S) ® C by using the map () in Corollary A.7.
Put
U CH'(X) D E = ()T (FZHY (X, Q(r)) n H (X, C)"") N (7)™ (FECH (X/9)),
where j* : CH"(X) — CH"(X) is the restriction. We have the following commutative diagrams:
= L pyenr(x/S)
b Ly

FEa* (X, Q(r)n H> (X, 07" = HY(S, R ~p.Q(r)),

= I FECHT(X/S)
e L os
FeH> (X, Q) N B (X, C)rr VI (X/S)
! !
GroH? (X, Oy Y grvx/s) e,

Assuming the Hodge conjecture for the irreducible components of Y, Corollary A.9 (i) implies that the kernel
of 7 in the former diagram is contained in the sum of FLT'H? (X Q(r)) and the image under = of the

subgroup of CH" (X)) of the cycles supported on Y, which goes to zero under the restriction j*. Hence, by
a diagram chase and Hodge conjecture for ¢%, to construct a natural map Image(¢) = VJ™(X/S) @ C, it

suffices to show the surjectivity of = L) FRCH™(X/S).
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Let o € F5CH"(X/S), and consider its image [a] := ¢% (o) € Wa, FXH?"(X,Q(r)). By Corollary A.9 (ii),
there exists L o o
[a] € FEH? (X, Q(r)) N H* (X,0)"",

which restricts to [a]. Next o is the restriction of a class @ € CH"(X; Q). Put [a] = ¢Z(@). Thus

[@] — [a] € ker (H* (X, Q(r)) — H*"(X,Q(r))) N H* (X,C)"",

and hence by the Hodge conjecture, [a] — [a] = c%(ﬁ), where # € CH"(X) is an algebraic cycle supported
on Y. Notice that

(@-8)| =aeF4CH(X/S),
X

as any cycle supported on Y goes to zero under the restriction j* : CH"(X) — CH"(X). Furthermore
(@ —f) = [a] € FEH (X, Q)N H™ (X,0)"",

which proves the desired assertion. O

Recall from §8 that in the case where S is affine, the composite

Ag’llé(X/S) - VJ"(X/S) e C—=VDR"(X/S)®C,
is injective. (Warning: The natural map VJ""(X/S) = VDR (X/S) is not injective, as one can clearly
see from the product case X = X, x S.) Thus the somewhat surprising conclusion from all of this, and
from a conjectural point of view, is that with regard to space of algebraic cycles, one loses no information by
passing from Mumford-Griffiths invariants to de Rham invariants. Thus in particular, this would enable us
to replace classes with trivial de Rham invariant, by trivial Mumford-Griffiths invariant in sections 7 and 8.

Finally, in the case dim .S = 1, Theorem A.10 holds without any conjectural assumption. By [Z], one has
morphisms of MHS:

GryH*(X,C) = H'(S, R 15,C) ~ H' (S, ju R* 1 p.C) — H'(S, R*1p.C).

Note that H2(S, R*~2p,C) = 0 if S is affine.
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