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Abstract

We give an example of a projective smooth surface X over a p-adic field K such
that for any prime ` different from p, the `-primary torsion subgroup of CH0(X),
the Chow group of 0-cycles on X, is infinite. A key step in the proof is disproving
a variant of the Bloch-Kato conjecture which characterizes the image of an `-adic
regulator map from a higher Chow group to a continuous étale cohomology of X by
using p-adic Hodge theory. With the aid of the theory of mixed Hodge modules, we
reduce the problem to showing the exactness of the de Rham complex associated
to a variation of Hodge structure, which is proved by the infinitesimal method in
Hodge theory. Another key ingredient is the injectivity result on the cycle class
map for Chow group of 1-cycles on a proper smooth model of X over the ring of
integers in K, due to K. Sato and the second author.

1 Introduction

Let X be a smooth projective variety over a base field K and let CHm(X) be the Chow
group of algebraic cycles of codimension m on X modulo rational equivalence. In case K
is a number field, there is a folklore conjecture that CHm(X) is finitely generated, which
in particular implies that its torsion part CHm(X)tor is finite. The finiteness question
has been intensively studied by many authors, particularly for the case m = 2 and m =
dim(X) (see nice surveys [27] and [8]).
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When K is a p-adic field (namely the completion of a number field at a finite place),
Rosenschon and Srinivas [29] have constructed the first example where CHm(X)tor is
infinite. They prove that there exists a smooth projective fourfold X over a p-adic field
such that the `-torsion subgroup CH1(X)[`] (see Notation) of CH1(X), the Chow group
of 1-cycles on X, is infinite for each ` ∈ {5, 7, 11, 13, 17}.

A purpose of this paper is to give an example of a projective smooth surface X over
a p-adic field such that for any prime ` different from p, the `-primary torsion subgroup
CH0(X){`} (see Notation) of CH0(X), the Chow group of 0-cycles on X, is infinite. Here
we note that for X as above, CH0(X){`} is known to always be of finite cotype over
Z` (namely the direct sum of a finite group and a finite number of copies of Q`/Z`.
The fact follows from Bloch’s exact sequence (2.3)). Thus our example presents infinite
phenomena of different nature from the example in [29]. Another noteworthy point is
that the phenomena discovered by our example happens rather generically.

To make it more precise, we prepare a notion of ‘generic surfaces’ in P3. Let

M ⊂ P(H0(P3
Q,OP(d))) ∼= P(d+3)(d+2)(d+1)/6−1

Q

be the moduli space over Q of the nonsingular surfaces in P3
Q (the subscription ‘Q’ indicates

the base field), and let
f : X −→M

be the universal family over M . For X ⊂ P3
K , a nonsingular surface of degree d defined

over a field K of characteristic zero, there is a morphism t : SpecK → M such that
X ∼= X ×M SpecK. We call X generic if t is dominant (i.e. t factors through the generic
point of M). In other words, X is generic if it is defined by an equation

F =
∑

I

aIz
I (aI ∈ K)

([z0 : z1 : z2 : z3] is the homogeneous coordinate of P3, I = (i0, · · · , i3) are multi-indices
and zI = zi0

0 · · · zi3
3 ) satisfying the following condition:

(∗) aI 6= 0 for ∀I and {aI/aI0}I 6=I0 are algebraically independent over Q where I0 =
(1, 0, 0, 0).

The main theorem is:

Theorem 1.1 Let K be a finite extension of Qp and X ⊂ P3
K a nonsingular surface of

degree d ≥ 5. Suppose that X is generic and has a projective smooth model XOK
⊂ P3

OK

over the ring OK of integers in K. Let r be the Picard number (i.e. the rank of the
Néron-Severi group) of the smooth special fiber of XOK

. Then we have

CH0(X){`} ∼= (Q`/Z`)
⊕r−1 ⊕ (finite group)

for ` 6= p.

One can construct a surface with infinite torsion in the Chow group of 0-cycles in the
following way. Let k be the residue field of K. Let Y be a smooth surface of degree d ≥ 5 in
P3

k defined by an equation
∑

I cIz
I (cI ∈ k) such that the Picard number r ≥ 2. Note that
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there exist such surfaces for each d. (For example if (p, d) = 1, one may choose a Fermat
type surface defined by zd

0 − zd
1 + zd

2 − zd
3 . Then the intersection of Y with the hyperplane

H ⊂ P3
k defined by z0 − z1 is not irreducible so that r ≥ 2.) Take any liftings c̃I ∈ OK

and choose aI ∈ OK with ord(aI) > 0 for each indices I such that {aI}I are algebraically
independent over Q(c̃I), the subfield of K generated over Q by c̃I for all I. Let X ⊂ P3

K

be the surface defined by the equation
∑

I c̃Iz
I +

∑
I aIz

I . Then it is clear that X is
generic and has a smooth projective model over OK whose the special fiber is Y . Since
Y has the Picard number r ≥ 2, CH0(X) has an infinite torsion subgroup by Theorem
1.1. It is proved in [28] that if the special fiber satisfies the Tate conjecture for divisors,
the geometric Picard number is congruent to d modulo 2. Thus if d is even, CH0(X) has
an infinite torsion subgroup after a suitable unramified base change. Theorem 1.1 may
be compared with the finiteness results [9] and [28] on CH0(X)tor for a surface X over a
p-adic field under the assumption that H2(X,OX) = 0 or, more generally, that the rank of
the Néron-Severi group does not change by reduction. For a nonsingular surface X ⊂ P3

K

of degree d ≥ 1, the last condition is satisfied if d ≤ 3. Hence Theorem 1.1 leaves us an
interesting open question whether there is an example of a nonsingular surface X ⊂ P3

K

of degree 4 for which CH0(X){`} is infinite.

A distinguished role is played in the proof of Theorem 1.1 by the `-adic regulator map

ρX : CH2(X, 1)⊗Q` −→ H1
cont(Spec(K), H2(XK , Q`(2))) (XK = X ×K K)

from higher Chow group to continuous étale cohomology ([21]), where K is an algebraic
closure of K and ` is a prime different from ch(K). It is known that the image of ρX is
contained in the subspace

H1
g (Spec(K), V ) ⊂ H1

cont(Spec(K), V ) (V = H2(XK , Q`(2)))

introduced by Bloch and Kato [6]. In case ` 6= p this is obvious since H1
g = H1 by

definition. For ` = p this is a consequence of a fundamental result in p-adic Hodge theory,
which affirms that every representation of GK = Gal(K/K) arising from the cohomology
of a variety over K is a de Rham representation (see the discussion after [6], (3.7.4)).

When K is a number field or a p-adic field, it is proved in [31] that CH2(X){`} is finite
in case the image of ρX coincides with H1

g (Spec(K), V ). Bloch and Kato conjecture that
it should be always the case if K is a number field.

The first key step in the proof of Theorem 1.1 is to disprove the variant of the Bloch-
Kato conjecture for a generic surface X ⊂ P3

K over a p-adic field K (see Theorem 3.6). In
terms of Galois representations of GK = Gal(K/K), our result implies the existence of a
1-extension of Q`-vector spaces with continuous GK-action:

(#) 0→ H2(XK , Q`(2))→ E → Ql → 0,

such that E is a de Rham representation of GK but that there is no 1-extension of motives
over K:

0→ h2(X)(2)→M → h(Spec(K))→ 0

which gives rise to (#) under the realization functor. The rough idea of the proof of
the first key result is to relate the `-adic regulator map to an analytic regulator map
by using the comparison theorem for étale and analytic cohomology and then to show
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that the analytic regulator map is the zero map. With the aid of the theory of mixed
Hodge modules ([33]), this is reduced to showing the exactness of the de Rham complex
associated to a variation of Hodge structure, which is proved by the infinitesimal method
in Hodge theory. This is done in §3 after in §2 we review some basic facts on the cycle
class map for higher Chow groups.

Another key ingredient is the injectivity result on the cycle class map for the Chow
group of 1-cycles on a proper smooth model of X over the ring OK of integers in K due to
Sato and the second author [30]. It plays an essential role in deducing the main theorem
1.1 from the first key result, which is done in §4.

Finally, in §5 Appendix, we will apply our method to produce an example of a curve
C over a p-adic field such that SK1(C)tor is infinite.

Acknowledgment. The authors are grateful to Dr. Kanetomo Sato for stimulating discus-
sions and helpful comments. The authors thank the referee for constructive comments
which have improved the presentation of our paper very much.
Notations. For an abelian group M , we denote by M [n] (resp. M/n) the kernel (resp.
cokernel) of multiplication by n. For a prime number ` we put

M{`} :=
⋃
n

M [`n], Mtor :=
⊕

`

M{`}.

For a nonsingular variety X over a field CHj(X, i) denotes Bloch’s higher Chow groups.
We write CHj(X) := CHj(X, 0) for the (usual) Chow groups.

2 Review of the cycle class map and `-adic regulator

In this section X denotes a smooth variety over a field K and n denotes a positive integer
prime to ch(K).

2.1: By [18] we have the cycle class map

ci,j
ét : CHi(X, j, Z/nZ)→ H2i−j

ét (X, Z/nZ(i)),

where the right hand side is the étale cohomology of X with coefficients µ⊗i
n , Tate twist

of the sheaf of n-th roots of unity. The left hand side is Bloch’s higher Chow group with
finite coefficient which fits into the exact sequence

0→ CHi(X, j)/n→ CHi(X, j, Z/nZ)→ CHi(X, j − 1)[n]→ 0. (2.1)

In this paper we are only concerned with the map

cét = c2,1
ét : CH2(X, 1, Z/nZ)→ H3

ét(X, Z/nZ(2)). (2.2)

By [7] it is injective and its image is equal to

NH3
ét(X, Z/nZ(2)) = Ker

(
H3

ét(X, Z/nZ(2))→ H3
ét(Spec(K(X)), Z/nZ(2)),

where K(X) is the function field of X. In view of (2.1) it implies an exact sequence

0 −→ CH2(X, 1)/n
cét−→ NH3

ét(X, Z/nZ(2)) −→ CH2(X)[n] −→ 0. (2.3)
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2.2: We also need the cycle map to continuous étale cohomology group (cf. [21]):

ccont : CH2(X, 1) −→ H3
cont(X, Z`(2)),

where ` is a prime different from ch(K). Note that in case K is a p-adic field we have

H3
cont(X, Z`(2)) = lim←−

n

H3
ét(X, Z/`nZ(2))

and ccont is induced by cét by passing to the limit. We have the Hochschild-Serre spectral
sequence

Ei,j
2 = H i

cont(Spec(K), Hj(XK , Z`(2)))⇒ H i+j
cont(X, Z`(2)). (2.4)

If K is finitely generated over the prime subfield and X is proper smooth over K, the Weil
conjecture proved by Deligne implies that H0(Spec(K), H3(XK , Q`(2))) = 0. The same
conclusion holds if K is a p-adic field and X is proper smooth having good reduction
over K (In case ` 6= p this follows from the proper smooth base change theorem for
étale cohomology. In case ` = p one uses comparison theorems between p-adic étale and
crystalline cohomology and the Weil conjecture for crystalline cohomology). Thus we get
under these assumptions the following map

ρX : CH2(X, 1) −→ H1
cont(Spec(K), H2(XK , Q`(2))) (2.5)

as the composite of ccont ⊗Q` and an edge homomorphism

H3
cont(X, Q`(2))→ H1

cont(Spec(K), H2(XK , Q`(2))).

2.3: For later use, we need an alternative definition of cycle class maps. For an integer
i ≥ 1 we denote by Ki the sheaf on XZar, the Zariski site on X, associated to the presheaf
U 7−→ Ki(U). By [23], 2.5, we have canonical isomorphisms

CH2(X, 1) ' H1
Zar(X,K2), CH2(X, 1, Z/nZ) ' H1

Zar(X,K2/n). (2.6)

Let εét : Xét → XZar be the natural map of sites and put

Hi
ét(Z/nZ(r)) = Riεét

∗ µ⊗r
n .

The universal Chern classes in the cohomology groups of the simplicial classifying space
for GLn (n ≥ 1) give rise to higher Chern class maps on algebraic K-theory (cf. [17],
[35]). It gives rise to a map of sheaves:

Ki/n −→ Hi
ét(Z/nZ(i)). (2.7)

By [26] it is an isomorphism for i = 2 and induces an isomorphism

H1
Zar(X,K2/n)

∼=−→ H1
Zar(X,H2

ét(Z/nZ(2))). (2.8)

By the spectral sequence

Epq
2 = Hp

Zar(X,Hq
ét(Z/nZ(2))) =⇒ Hp+q

ét (X, Z/nZ(2)).

together with the fact Hp
Zar(X,Hq

ét(Z/nZ(2))) = 0 for p > q shown by Bloch-Ogus [7], we
get an injective map

H1
Zar(X,H2

ét(Z/nZ(2))) −→ H3
ét(X, Z/nZ(2))

Again by the Bloch-Ogus theory the image of the above map coincides with the coniveau
filtration NH3

ét(X, Z/nZ(2)). Combined with (2.6) and (2.8) we thus get the map

cét : CH2(X, 1, Z/nZ)
∼=−→ H1

Zar(X,K2/n)
∼=−→ NH3

ét(X, Z/nZ(2))
⊂−→ H3

ét(X, Z/nZ(2)).

It is known that this agrees with the map (2.2) (see [10] Proposition 1).
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2.4: Now we work over the base field K = C. Let Xan be the site on the underlying
analytic space X(C) endowed with the ordinary topology. Let εan : Xan → XZar be the
natural map of sites and put

H i
an(Z(r)) = Riεan

∗ Z(r) (Z(r) = (2π
√
−1)rZ).

Higher Chern class map then gives a map of sheaves

Ki −→ Hi
an(Z(i)). (2.9)

By the same argument as before, it induces a map

can : CH2(X, 1)
∼=−→ H1

Zar(X,K2) −→ H3
an(X(C), Z(2)) (2.10)

Lemma 2.1 The image of can is contained in F 2H3
an(X(C), C), the Hodge filtration de-

fined in [14]. In particular if X is complete, the image is torsion.

Proof. Let Hr
D(Z(i)) be the sheaf on XZar associated to a presheaf

U 7→ Hr
D(U, Z(i))

where H•
D denotes Deligne-Beilinson cohomology (cf. [15], 2.9). Higher Chern class maps

to Deligne-Beilinson cohomology give rise to the map K2 → H2
D(Z(2)) and can factors as

in the following commutative diagram

H1
Zar(X,K2) −−−→ H1

Zar(X,H2
D(Z(2))) −−−→ H1

Zar(X,H2
an(Z(2)))

a

y y
H3

D(X, Z(2))
b−−−→ H3

an(X(C), Z(2)).

Here the map a is induced from the spectral sequence

Epq
2 = Hp

Zar(X,Hq
D(Z(2))) =⇒ Hp+q

D (X, Z(2))

in view of the fact Hp
Zar(X,H1

D(Z(2))) = 0 for ∀p > 0 since H1
D(Z(2)) ∼= C/Z(2) (constant

sheaf). Since the image of b is contained in F 2H3
an(X(C), C) (see [15], 2.10), so is the

image of can. Q.E.D.

Lemma 2.2 We have the following commutative diagram

CH2(X, 1)
can−−−→ H3

an(X(C), Z(2))y y
CH2(X, 1, Z/nZ)

cét−−−→ H3
ét(X, Z/nZ(2))

(2.11)

Here the right vertical map is the composite

H3
an(X(C), Z(2))→ H3

an(X(C), Z(2)⊗ Z/nZ)
∼=−→ H3

ét(X, Z/nZ(2))

and the isomorphism comes from the comparison isomorphism between étale cohomology
and ordinary cohomology (SGA41

2
, Arcata, 3.5) together with the isomorphism

Z(1)⊗ Z/nZ ' (εan)∗µn

given by the exponential map.

6



Proof. This follows from the compatibility of (2.7) and (2.9), namely the commutativity
of the diagram

Ki −−−→ Hi
an(Z(i))y y

Ki/n −−−→ Hi
ét(Z/nZ(i)),

and it follows from the compatibility of the universal Chern classes ([17] and [35]). Q.E.D.

3 Counterexample to the Bloch-Kato conjecture over

p-adic field

In this section K denotes a p-adic field and let X be a proper smooth surface over K. We
fix a prime ` (possibly ` = p) and consider the map (2.5)

ρX : CH2(X, 1) −→ H1
cont(Spec(K), V ) (V = H2

ét(XK , Q`(2)))). (3.1)

Define the primitive part Ṽ of V by:

Ṽ := H2
ét(XK , Q`(2))/V0, V0 = [HX ]⊗Q`(1), (3.2)

where [HX ] ∈ H2
cont(XK , Q`(1)) is the cohomology class of a hyperplane section. Noting

Ṽ ' Ker
(
H2

ét(XK , Q`(2))
∪[HX ]−→ H4

ét(XK , Q`(3))
)
,

we get a decomposition as GK-modules:

V = Ṽ ⊕ V0. (3.3)

Let
ρ̃ : CH2(X, 1) −→ H1

cont(Spec(K), Ṽ )

be the induced map.

Theorem 3.1 Let X ⊂ P3
K be a generic smooth surface of degree d ≥ 5. Then ρ̃ is the

zero map for arbitrary `.

Remark 3.2 (1) This is an analogue of [38] 1.6 (where she worked on Deligne-Beilinson
cohomology).

(2) Bloch-Kato [6] considers regulator maps such as (3.1) for a smooth projective variety
over a number field and conjectures that its image coincides with H1

g . We will see
later (see Theorem 3.6) that the variant of the conjecture over a p-adic field is false
in general.

(3) The construction of a counterexample mentioned in (2) hinges on the assumption
that the surface X ⊂ P3

K is generic. One may still ask whether the image of l-adic
regulator map coincides H1

g for a proper smooth variety X over a p-adic field when
X is defined over a number field.
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Proof. Let f : X →M be as in the introduction and let t : Spec(K)→M be a dominant
morphism such that X ' X ×M Spec(K). For a morphism S → M of smooth schemes
over Q let fS : XS = X ×M S → S be the base change of f . The same construction of
(2.5) give rise to the regulator map

ρS : CH2(XS, 1)→ H1
cont(S, VS),

where VS = R2(fS)∗Ql(2) is a smooth Ql-sheaf on S. Define the primitive part of VS:

ṼS = R2(fS)∗Ql(2)/[H]⊗Ql(1),

where [H] ∈ H0(S, R2(fS)∗Ql(1)) is the class of a hyperplane section. Let

ρ̃S : CH2(XS, 1)→ H1
cont(S, ṼS),

be the induced map. Note

CH2(X, 1) = lim−→
S

CH2(XS, 1),

where S → M ranges over the smooth morphisms which factor t : Spec(K) → M . Note
also that we have the commutative diagram for such S:

CH2(XS, 1)
ρ̃S−−−→ H1

cont(S, ṼS)y y
CH2(X, 1)

ρ̃−−−→ H1
cont(Spec(K), Ṽ ).

Thus it suffices to show
H1

cont(S, ṼS) = 0.

Without loss of generality we suppose S is an affine smooth variety over a finite extension
L of Q.

Claim 3.3 Assume d ≥ 4. The natural map

H1
cont(S, ṼS) −→ H1

ét(SQ, ṼS) (SQ := S ×L Spec(Q))

is injective.

Indeed, by the Hochschild-Serre spectral sequence, it is enough to see H0
ét(SQ, ṼS) = 0,

which follows from [3], Th.6.1. (2).

By SGA41
2
, Arcata, Cor.(3.3) and (3.5.1) we have

H1
ét(SQ, ṼS) ∼= H1

ét(SC, ṼS) ' H1
an(S(C), Ṽ an

S )⊗Ql, (SC := S ×L Spec(C))

where Ṽ an
S is the primitive part of V an

S = R2(f an
S )∗Q(2) with f an

S : (XSC)an → (SC)an,

the natural map of sites. By definition Ṽ an
S is a local system on S(C) whose fiber over

s ∈ S(C) is the primitive part of H2
an(Xs(C), Q(2)) for Xs, the fiber of XS → S over s.

Due to Lemma 2.2, it suffices to show the triviality of the image of the map

ρ̃an
S : CH2(XSC , 1) −→ H1

an(S(C), Ṽ an
S )
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which is induced from

can : CH2(XSC , 1) −→ H3
an(XS(C), Q(2))

by using the natural map

H3
an(XS(C), Q(2))→ H1

an(S(C), V an
S )

arising from the Leray spectral sequence for f an
S : (XSC)an → (SC)an and the vanishing

R3(f an
S )∗Q(2) = 0.

Claim 3.4 The image of ρ̃an
S is contained in the Hodge filtration F 2H1

an(S(C), Ṽ an
S ⊗ C)

defined by the theory of Hodge modules [33] §4.

This follows from the functoriality of Hodge filtrations and Lemma 2.1.

It is quite complicated to describe the Hodge filtration on H1
an(S(C), Ṽ an

S ⊗C) precisely.
However, all that we need is the following property:

Claim 3.5 For integers m, p ≥ 0 there is a natural injective map

F pHm
an(S(C), Ṽ an

S ⊗ C)→ Hm
Zar(SC, G

pDR(Ṽ an
S ))

where GpDR(Ṽ an
S ) is the complex of Zariski sheaves on SC:

F pH2
dR(XS/S)prim ⊗OSC → F p−1H2

dR(XS/S)prim ⊗ Ω1
SC/C → · · ·

· · · → F p−rH2
dR(XS/S)prim ⊗ Ωr

SC/C → F p−rH2
dR(XS/S)prim ⊗ Ωr+1

SC/C → · · ·

Here H•
dR(XS/S) denotes the de Rham cohomology of XS/S, and H•

dR(XS/S)prim is its
primitive part defined by the same way as before, and the maps are induced from the
Gauss-Manin connection thanks to Griffiths transversality.

This follows from [1] Lemma 4.2. We note that its proof hinges on the theory of mixed
Hodge modules. Key points are Deligne’s comparison theorem for algebraic and analytic
cohomology of a vector bundle with integrable connection with regular singularities (cf.
[12], §6) and degeneration of the Hodge spectral sequence for cohomology with coefficients
(cf. [33], (4.1.3)).

By the above claims we are reduced to showing the exactness at the middle term of
the following complex:

F 2H2
dR(XS/S)prim⊗OSC → F 1H2

dR(XS/S)prim⊗Ω1
SC/C → H2

dR(XS/S)prim⊗Ω2
SC/C. (3.4)

This is proved by the infinitesimal method in Hodge theory. We sketch the proof. Let
f : XS → S be the natural morphism. The assertion follows from the exactness at the
middle term of the complex:

f∗Ω
2
XS/S ⊗OSC −→ (R1f∗Ω

1
XS/S)prim ⊗ Ω1

SC/C −→ R2f∗OXS
⊗ Ω2

SC/C (3.5)
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and the injectivity of the complex:

f∗Ω
2
XS/S ⊗ Ω1

SC/C −→ (R1f∗Ω
1
XS/S)prim ⊗ Ω2

SC/C. (3.6)

These complexes are induced by the complex (3.4) by Griffiths transversality. In case S =
M ⊂ P(H0(P3

Q,OP(d))), these assertions are proved as follows: Let P = C[z0, z1, z2, z3]
and P n ⊂ P be the subspace of the homogeneous polynomials of degree n. Take a
point x ∈ M(C) and choose F ∈ P d which defines the surface corresponding to x. Let
R = C[z0, z1, z2, z3]/(

∂F
∂z0

, · · · , ∂F
∂z3

) be the Jacobian ring and Rn ⊂ R be the image of P n

in R. Then the fibers over x of (3.5) and (3.6) are identified with the following Koszul
complexes:

Rd−4 −→ R2d−4 ⊗ (Rd)∗ −→ R3d−4 ⊗
2
∧(Rd)∗, (3.7)

Rd−4 ⊗ (Rd)∗ −→ R2d−4 ⊗
2
∧(Rd)∗ (3.8)

where (Rd)∗ denotes the dual space of R and the maps are induced from the multiplication
R ⊗ R → R. Then the Donagi symmetrizer lemma (cf. [19], p.76) implies that (3.7) is
exact at the middle term if d ≥ 5 and (3.8) is injective if d ≥ 3, which proves the desired
assertion in case S = M . The assertion in case S is dominant over M is reduced to the
case S = M by an easy argument (cf. [4] §9). This completes the proof of Theorem 3.1.
Q.E.D.

Let OK ⊂ K be the ring of integers and k be the residue field. In order to construct
an example where the image of the regulator map

ρX : CH2(X, 1)
ρX−→ H1

cont(Spec(K), V ) (V = H2
ét(XK , Q`(2))))

is not equal to H1
g (Spec(K), V ), we now take a proper smooth surface X having good

reduction over K so that X has a proper smooth model XOK
over Spec(OK). We denote

the special fiber by Y . By [24] (see the diagram below 5.7 on p.341), there is a commutative
diagram

CH2(X, 1)
ρ̃−−−→ H1

g (Spec(K), V )y∂

y
CH1(Y )

α−−−→ H1
cont(Spec(K), V )/H1

f (Spec(K), V )

(3.9)

where H1
f ⊂ H1

g ⊂ H1
cont are the subspaces introduced by Bloch-Kato [6] and ∂ is a

boundary map in localization sequence for higher Chow groups.

Theorem 3.6 Let X ⊂ P3
K be a generic smooth surface of degree d ≥ 5. Assume that X

has a projective smooth model XOK
⊂ P3

OK
over OK and let Y ⊂ P3

k be its special fiber.

(1) The image of ∂ ⊗ Q is contained in the subspace of CH1(Y ) ⊗ Q generated by the
class [HY ] of a hyperplane section of Y .

(2) Let r be the Picard number of Y . Then

dimQ`

(
H1

g (Spec(K), V )/Image(ρX)
)
≥ r − 1.
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Proof. Recall V = Ṽ ⊕ V0, a decomposition as GK-modules (cf. (3.3)). Let W ⊂
CH2(X, 1) be the image of Z · [HX ] ⊗ K× under the product map CH1(X) ⊗ K× →
CH2(X, 1). Then it is easy to see ρX induces an isomorphism

W ⊗Q` ' H1
g (Spec(K), V0) = H1

cont(Spec(K), V0)

and that ∂(W ) = Z · [HY ] ⊂ CH1(Y ). Hence (1) follows from Theorem 3.1 together with
injectivity of α in (3.9) proved by [24], Lemma 5-7.

As for (2) we first note that dimQ`

(
H1

cont(Spec(K), V0)/H
1
f (Spec(K), V0)

)
= 1 (see [6],

3.9). Moreover the same argument (except using the Tate conjecture) in the last part of
§5 of [24] shows

dimQ`
(CH1(Y )⊗Q`) ≤ dimQ`

(
H1

g (Spec(K), V )/H1
f (Spec(K), V )

)
.

Hence (2) follows from (1). Q.E.D.

Remark 3.7 Let the assumption be as in Corollary 3.6. Then we have

dimQ`

(
H1

g (Spec(K), V )/Image(ρX)
)
≥

{
r − 1 ` 6= p

r − 1 + (h0,2 + h1,1 − 1)[K : Qp] ` = p

where hp,q := dimKHq(X, Ωp
X/K) denotes the Hodge number. Moreover the equality holds

if and only if the Tate conjecture for divisors on Y holds. This follows from Theorem 3.1
and the computation of dimQ`

H1
g (Spec(K), V ) using [6] 3.8 and 3.8.4. The details are

omitted.

4 Proof of Theorem 1.1

Let K be a p-adic field and OK ⊂ K the ring of integers and k the residue field. Let us
consider schemes

X
j−−−→ XOK

←−−−
i

Yy y y
Spec(K) −−−→ Spec(OK) ←−−− Spec(k)

(4.1)

where all vertical arrows are projective and smooth of relative dimension 2 and the dia-
grams are Cartesian. We have a boundary map in localization sequence for higher Chow
groups with finite coefficients

∂ : CH2(X, 1, Z/nZ)→ CH1(Y )/n.

For a prime number `, it induces

∂` : CH2(X, 1, Q`/Z`)→ CH1(Y )⊗Q`/Z`,

where CH2(X, 1, Q`/Z`) := lim−→
n

CH2(X, 1, Z/`nZ).

11



Theorem 4.1 For ` 6= p := ch(k), ∂` is surjective and has finite kernel. Hence we have

CH2(X, 1, Q`/Z`) ∼= (Q`/Z`)
⊕r + (finite group)

where r is the rank of CH1(Y ).

Theorem 1.1 is an immediate consequence of Theorems 3.6 (1), 4.1, and the exact
sequence (2.1):

0→ CH2(X, 1)⊗Q`/Z` → CH2(X, 1, Q`/Z`)→ CH2(X){`} → 0.

Proof. Write Λ = Q`/Z` We have a commutative diagram:

CH2(X, 1, Λ)
∂−−−→ CH1(Y )⊗ Λ

i∗−−−→ CH2(XOK
)⊗ Λ

j∗−−−→ CH2(X)⊗ Λyc1

yc2

yc3

yc4

H3
ét(X, Λ(2))

∂ét−−−→ H2
ét(Y, Λ(1))

i∗−−−→ H4
ét(XOK

, Λ(2))
j∗ét−−−→ H4

ét(X, Λ(2))

Here the upper exact sequence arises from localization theory for higher Chow groups
with finite coefficient ([25], Theorem 1.7) and the lower from localization theory for étale
cohomology together with absolute purity [16]. The vertical maps are étale cycle class
maps. By (2.3) c1 is injective. Noting CH1(Y ) = H1(Y, Gm), c2 is injective by the
Kummer theory. It is shown in [30] that c3 is an isomorphism. Hence the diagram
reduces the proof of Theorem 4.1 to showing that Ker(∂ét) and Ker(j∗ét) are finite. This
is an easy consequence of the proper base change theorem for étale cohomology and the
Weil conjecture ([13]). For the former we use also an exact sequence

H3
ét(XOK

, Λ(2))→ H3
ét(X, Λ(2))

∂ét−→ H2
ét(Y, Λ(1)).

Q.E.D.

5 Appendix: SK1 of curves over p-adic fields

Let C be a proper smooth curve over a field K and consider CH2(C, 1). By [23], 2.5, we
have an isomorphism

CH2(C, 1) ' H1
Zar(C,K2) ' SK1(C).

By definition

SK1(C) = Coker(K2(K(C))
δ−→

⊕
x∈C0

K(x)×),

where K(C) is the function field of C, C0 is the set of the closed points of C, and K(x)
is the residue field of x ∈ C0, and δ is given by the tame symbols. The norm maps
K(x)× → K× for x ∈ C0 induce

NC/K : SK1(C)→ K×.

We write V (C) = Ker(NC/K).
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When K is a p-adic field, it is known by class field theory for curves over local field
([34]), that V (C) is a direct sum of its maximal divisible subgroup and a finite group. An
interesting question is whether the divisible subgroup is uniquely divisible, or equivalently
whether SK1(C)tor is finite. In case the genus g(C) = 1 affirmative results have been
obtained in [32] and [2]. The purpose of this section is to show that the method in the
previous sections gives rise to an example of a curve C of g(C) ≥ 2 such that SK1(C)tor

is infinite.

Let C be as in the beginning of this section and let n be a positive integer prime to
ch(K). We have the cycle class map

cét : CH2(C, 2, Z/nZ)→ H2
ét(C, Z/nZ(2)). (5.1)

The main result of [26] implies that the above map is an isomorphism. In view of the
exact sequence (cf. (2.1)):

0→ CH2(C, 2)/n→ CH2(C, 2, Z/nZ)→ SK1(C)[n]→ 0,

we get the exact sequence ([37] 23.4):

0→ CH2(C, 2)/n→ H2
ét(C, Z/nZ(2))→ SK1(C)[n]→ 0. (5.2)

We will use also cycle class map to continuous étale cohomology:

ccont : CH2(C, 2)⊗Q` → H2
cont(C, Q`(2))

where ` is any prime number different from ch(K). When K is a p-adic field, one easily
shows

H2
cont(C, Q`(2)) ' H1

cont(Spec(K), H1
ét(CK , Q`(2))) (5.3)

by using the Hochschild-Serre spectral sequence (2.4). Hence we get the map

ρC : CH2(C, 2)⊗Q` → H1
cont(Spec(K), H1

ét(CK , Q`(2))). (5.4)

Note that ρC is trivial if C has good reduction and ` 6= p, since the group on the right
hand side is trivial. The last fact is a consequence of the proper smooth base change
theorem for étale cohomology and the weight argument.

Let Mg be the moduli space of tri-canonically embedded projective nonsingular curves
of genus g ≥ 2 over the base field Q (cf. [11]), and let f : C →Mg be the universal family.

Definition 5.1 Let C be a proper smooth curve over a field K of characteristic zero.
We say C is generic if there is a dominant morphism Spec(K) → Mg such that C ∼=
C ×Mg Spec(K).

Theorem 5.2 Let K be a p-adic field and let C be a generic curve of genus g ≥ 2 over
K. Then ρC is the zero map for all `. We have an isomorphism

SK1(C)tor
∼= H2

ét(C, Q/Z(2))
(

:= lim−→
n

H2
ét(C, Z/nZ(2))

)
.

Remark 5.3 Theorem 5.2 is comparable with the main result of [20] where they worked
on Deligne-Beilinson cohomology.
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Proof. The second assertion follows easily from the first in view of (5.2). The first assertion
is shown by the same method as the proof of Theorem 3.1, noting the following fact (cf.
[20] §3): Let S →Mg be a dominant smooth morphism and put f : CS := C ×Mg S → S.
Then the map

f∗Ω
1
CS/S −→ R1f∗OCS

⊗ Ω1
S/Q

induced from the Gauss-Manin connection is injective. Q.E.D.

Corollary 5.4 Let C be as in Theorem 5.2. Assume the Jacobian variety J(C) has
semistable reduction over K. Let J be the Neron model of J with Js, its special fiber. Let
r be the dimension of the maximal split torus in Js. For a prime `, we have

SK1(C){`} ' (Q`/Z`)
r` ⊕ (finite group),

where r` = r for ` 6= p and rp = r + 2g[K : Qp].

For example SK1(C){`} is infinite for any ` if C is a Mumford curve (i.e. a proper
smooth curve with semistable reduction over K such that the irreducible components are
isomorphic to P1

k and that they intersect each other at k-rational points, where k is the
residue field of K), which is generic in the sense of Definition 5.1.

Theorem 5.4 follows from Theorem 5.2 and the following:

Lemma 5.5 Let C be proper smooth curve over a p-adic field K Assume J(C) has
semistable reduction over K and let r` be as above. Then

dimQ`
H2

cont(C, Q`(2)) = dimQ`
H1

cont(Spec(K), V ) = r`.
(
V = H1

ét(CK , Q`(2))
)
.

Proof. The first equality follows from (5.3). By [22], Th. 5 and Cor. 7 (p. 354–355) we
have H0

cont(Spec(K), V ) = 0 and dimQ`
H2

cont(Spec(K), V ) = r. Lemma 5.5 now follows
from computation of Euler-Poincaré characteristic given in [36], II 5.7. Q.E.D.

Remark 5.6 Using [6], 3.8.4 together with a well-known fact on the structure as Gal(K/K)-
module of the Tate module of an abelian variety over K (cf. [39], Exposé IX), one can show
that H1

cont(Spec(K), V ) = H1
g (Spec(K), V ). Hence, if C is a generic curve of genus≥ 2,

then the map ρC (5.4) does not surject on to H1
g if r` ≥ 1. This gives another counterex-

ample to a variant of the Bloch-Kato conjecture for p-adic fields.
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