RECENT PROGRESS ON THE KATO CONJECTURE

SHUJI SAITO

ABsTRACT: This is a survey paper on recent works [J], [JS2] and [KeS]
in progress by Jannsen, Kerz and the author on the Kato conjecture on
the cohomological Hasse principle. In [J] and [JS2], general approaches are
proposed to solve the conjecture for schemes over a finite field assuming
resolution of singularities. Based on the idea in [JS2], a new approach is
proposed in [KeS] to solve the conjecture for schemes over a finite field or
the ring of integers in a local field, restricted to the prime-to-characteristic
part. A key ingredient in [KeS], which replaces resolution of singularities,
is a recently announced result on refined alterations due to Gabber (see
[112]). We will give an outline of the proof. As an application, it implies
a finiteness result on higher Chow groups of arithmetic schemes using the

Bloch-Kato conjecture whose proof has been announced by Rost and Vo-
evodsky ([SJ] and [V2], see also [HW], [V3], [W1] and [W2]).
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1. STATEMENTS OF THE KATO CONJECTURES

— =
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We start with a review on the following fundamental fact in number theory. Let k be a

global field, namely either a finite extension of Q or a function field in one variable over

a finite field. For simplicity we assume that ch(k) > 0 or k is totally imaginary. Let P be

the set of all finite places of k, and denote by k, the completion of k£ at v € P. For a field

L let Br(L) be its Brauer group, and identify the Galois cohomology group H'(L,Q/Z)

(1-1) For v € P there is a natural isomorphism

Br(k,) — H'(F,,Q/Z) —> Q/Z,

1

with the group of continuous characters on the absolute Galois group of L with values in

Q/Z.

where F), be the residue field of v and «, is the residue map and [, is the evaluation of
characters at the Frobenius element.
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(1-2) There is an exact sequence
0 — Br(k) » PH'(F,,Q/Z) — Q/Z — 0,
veP
where the first map is the composite of the restriction maps and «, and the second map is

the sum of 3,. The injectivity of the first map is the so-called Hasse principle for central
simples algebras of &k, which is a celebrated theorem of Hasse-Brauer-Noether.

In [K] K. Kato proposed a fascinating framework of conjectures that generalizes the
above facts to higher dimensional arithmetic schemes. In order to review these conjectures,
we introduce some notations. Let L be a field with p = ch(L). Let n be an integer n > 0
and write n = mp” with (p,m) = 1. We define the following Galois cohomology groups:

H'(L,Z/nZ(j)) = H'(L, pi,}) & H'™ (L, W, 15,) (1.1)

where i, is the Galois module of n-th roots of unity and W,«Q"L,log is the logarithmic part
of the de Rham-Witt sheaf W, Q% [Il], I 5.7. Note that there is a canonical identification
H?*(L,7Z/nZ(1)) = Br(L)[n] where [n] denotes the n-torsion part.

Now let X be a scheme of finite type over I, or the integer ring of a number field or a
(p-adic) local field. Kato introduced the following complex K C,(X,Z/nZ) which we call
the Kato complex:

o= P H (2, Z/nZ(a)) > @ H*(x,Z/nZ(a—1)) — -

2€X(a) 2€X(a-1)
o= P H*(z,Z2/nZ(1))— € H'(z,Z/nZ) (1.2)
CEGX(l) .’EEX(O)

where X(,) = {z € X | dim {z} = a} and the term @ is put in degree a. We will also
:DEX(Q)

use the complexes:
KC.(X,Q/Z) = li_r)n KCJ.(X,Z/nZ),

KCW(X, Qu/Zy) = lim KCu(X, Z/("Z),

where /¢ is a prime. Their homology groups
KH,(X,A) := H,(KC.(X,\)) (A=Z/nZ, Q/Z, Q;/Zy) (1.3)

is called the Kato homology of X with coefficient A (It is indeed a homology theory in
the sense of Definition 3.1 below).

Now let X be a projective smooth connected curve over a finite field I, with the function
field k = F,(X), or X = Spec(Oy) for the integer ring Oy of a number field or a local
field. Then the Kato complex KC,(X,Q/Z) is identified with the following complex:

Br(k) — @ H'(z,Q/Z)
z€X (o)
Hence the above facts (1-1) and (1-2) are equivalent to the following:
0 if k£ is local,
KH\(X,Q/2) =0 and  KHy(X,Q/Z) = {Q/Z if k is global.

Kato [K] proposed the following vast generalizations of these facts.
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Conjecture 1.1. Let X be a connected proper smooth variety over a finite field F,. Then
0 ifa#0,
Z/nZ if a=0.

Conjecture 1.2. Let X be a connected regular scheme proper and flat over Spec(Oy)
where Oy, is the integer ring of a number field k. Assume

KH,(X,Z/nZ) = {

(x) either n is odd or k is totally imaginary.
Then .
0 if a # 0,
Z/nZ  if a=0.
We note that the assumption (x) may be removed by modifying K H,(X,Q/Z) (see
[JS1] Conjecture C on page 482).

KH,(X,Z/nZ) — {

Conjecture 1.3. Let X be a reqular scheme proper and flat over Spec(Qy) where O is
the integer ring of a local field k. Then

KH,(X,Z/nZ)=0 fora>0.

2. KNOWN RESULTS AND ANNOUNCEMENT OF NEW RESULTS

As is already noticed, the Kato conjectures in case dim(X) = 1 rephrase the classical
fundamental facts on the Brauer group of a global field and a local field.

Kato [K] proved Conjectures 1.1, 1.2, and 1.3 in case dim(XX) = 2. He deduced it from
higher class field theory for X proved in [KS2] and [Sal]. For X of dimension 2, the
vanishing of K Hy(X,Z/nZ) in Conjectures 1.1 had been earlier established in [CTSS]
(prime-to-p-part), and completed by M. Gros [Gr| for the p-part.

We note that it is easy to show the isomorphism for ¢ = 0 in the conjectures (see (3.4)
in §3). So we are only concerned with the isomorphisms for a > 0. The first result after
[K] is the following:

Theorem 2.1. (Saito [Sa2]) Let X be a smooth projective 3-fold over a finite field F.
Then KH3(X,Q/Z¢) = 0 for any prime £ # ch(F).

This result was immediately generalized to the following:

Theorem 2.2. (Colliot-Théléne [CT], Suwa [Sw]) Let X be a smooth projective variety
over a finite field F'. Then

KH,(X,Q/Z)=0 for0<a<3

[CT] handled the prime-to-p part where p = ch(F'), and Suwa in [Sw] later adapted the
technique of [CT] to handle the p-part. A tool in [Sa2] is a class field theory of surfaces
over local fields, while the technique in [CT] is global and different from that in [Sa2].

The arithmetic version of the above theorem was established in the following:

Theorem 2.3. (Jannsen-Saito [JS1]) Let X be a regular projective flat scheme over S =
Spec(Ox) where k is a number field or a p-adic field. Assume that k is totally imaginary
if k is a number field. Fixz a prime p. Assume that for any closed point v € S, the reduced
part of X, = X Xg v is a simple normal crossing divisor on X and that X, s reduced if
v|p. Then we have

KH,(X,Q,/Z,) =0 for0<a<3
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Recently general approaches to Conjecture 1.1 were proposed assuming resolution of
singularities.

Theorem 2.4. (Jannsen [J], Jannsen-Saito [JS2]) Let X be a projective smooth variety
of dimension d over a finite field F'. Let t > 1 be an integer. Then we have

KH,(X,Q/Z)=0 for0<a<t
if either t <4 or (RS)4, or (RES); 2 (see below) holds.

(RS)4 : For any X integral and proper of dimension< d over F, there exists a proper
birational morphism 7 : X' — X such that X’ is smooth over F. For any U
smooth of dimension< d over F, there is an open immersion U — X such that X
is projective smooth over F' with X — U, a simple normal crossing divisor on X.

(RES); : For any smooth projective variety X over F', any simple normal crossing divisor Y’
on X with U = X —Y | and any integral closed subscheme W C X of dimension< ¢
such that W N U is regular, there exists a projective smooth X’ over F' and a
birational proper map 7 : X’ — X such that 771(U) ~ U, and that Y’ = X' —
7 1(U) is a simple normal crossing divisor on X', and that the proper transform
of W in X' is regular and intersects transversally with Y.

We note that a proof of (RES)» is given in [CJS] based on an idea of Hironaka, which en-
ables us to obtain the unconditional vanishing of the Kato homology with Q/Z-coefficient
in degree a < 4.

Finally the above approach has been improved to remove the assumptions (RS),; and
(RES); on resolution of singularities, at least if we are restricted to the prime-to-ch(F)
part:

Theorem 2.5. (Kerz-Saito [KeS|) Let X be a projective smooth variety over a finite field
F. For a prime { # ch(F'), we have KH,(X,Qy/Z¢) =0 for a > 0.

A key to the proof is the following refinement of de Jong’s alteration theorem due to
Gabber (see [112]).

Theorem 2.6. (Gabber) Let F' be a perfect field and X be a variety over F. Let W C X
be a proper closed subscheme. Let { be a prime different from ch(F'). Then there exists a
projective morphism w : X' — X such that

e X' is smooth over F and the reduced part of 7= (W) is a simple normal crossing
dwisor on X.
e 7 is generically finite of degree prime to (,

The same technique proves the following arithmetic version as well:

Theorem 2.7. (Kerz-Saito [KeS]) Let X be a reqular projective flat scheme over a
henselian discrete valuation ring with finite residue field F. Then, for a prime £ # ch(F),
we have KH,(X,Qy/Z¢) = 0 for a > 0.

Finally we remark that one can prove the above results with Z/{"Z-coefficient instead
of Qy/Z-coefficient by using the Bloch-Kato conjecture: For a prime ¢ and a field L, we
have the symbol map

hiy: KM(L) /¢ — HY(L,Z/VL(t))
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where K (L) denotes the Milnor K-group of L. It is conjectured that hf , is surjective.
The conjecture is called the Bloch-Kato conjecture in case [ # ch(L). For a scheme X,
we introduce the following condition:

(BK)%, : For any field L finitely generated over a residue field of X, hf , is surjective.

The surjectivity of hf , is known if # = 1 (the Kummer theory) or t = 2 (Merkurjev-
Suslin [MS]) or ¢ = ch(L) (Bloch-Gabber-Kato [BK]) or £ = 2 (Voevodsky [V1]). It
is conjectured (the Bloch-Kato conjecture) that hf , is always an isomorphism for any

field L. Recently a complete proof of the conjecture has been announced by Rost and
Voevodsky ([SJ] and [V2], see also [HW], [V3], [W1] and [W2]).

Theorem 2.8. (see [JS2] §5) Let X and { be as in either of Theorem 2.5 or Theorem
2.7. Assume (BK)Y% , holds. Then we have KH (X, Z/("Z) =0 for 0 < a < t.

3. OUTLINE OF PROOF OF THEOREM 2.5

In this section we give an outline of the proof of Theorem 2.5. We fix a finite field F'
with p = ch(F') and work in the category C of schemes separated of finite type over F.
We first recall the following:

Definition 3.1. Let C, be the category with the same objects as C, but morphisms are
just the proper maps in C. Let Mod be the category of modules. A homology theory
H = {H,}.cz on C is a sequence of covariant functors:

H.(—=): C. — Mod
satisfying the following conditions:
(i) For each open immersion j : V < X in C, there is a map j* : H,(X) — H,(V),
associated to j in a functorial way.
(ii) If i : Y < X is a closed immersion in X, with open complement j : V < X, there
is a long exact sequence (called localization sequence)

= Hy(Y) = Hy(X) o Ho(V) = Hoa (V) — -

(The maps 0 are called the connecting morphisms.) This sequence is functorial
with respect to proper maps or open immersions, in an obvious way.

It is an easy exercise to check that the Kato homology (1.3)
KH(—,A) = {KH,(—,\)}ucz

provides us with a homology theory on C.

Given a homology theory H on C, we have the spectral sequence of homological type
associated to every X € Ob(C), called the niveau spectral sequence (cf. [BO]):

Euy(X) = @ Hawolr) = Hopp(X) with Hy(z) = lim Hy(V). (3.1)
2€X(a) VC{a}

Here the limit is over all open non-empty subschemes V' C m This spectral sequence is
covariant with respect to proper morphisms in C and contravariant with respect to open

immersions. The functoriality of the spectral sequence is a direct consequence of that of
the homology theory H.



6 SHUJI SAITO
In what follows we assume A = Z/nZ with n prime to p or A = Q;/Z, with ¢ # p.

Step 1: Kato homology and étale homology
We now consider the étale homology on C given by
H,(X,A) := H*(Xg,Rf'A) for f: X — Spec(F) in C.

Here Rf' is the right adjoint of Rf, defined in [SGA 4], XVIII, 3.1.4. This is a homology
theory in the sense of Definition 3.1. For X smooth of pure dimension d over F', we have
(cf. [BOJ and [JS1], Th.2.14)

H3' (X, A) = H;' (X, A(d)), (3.2)
where, for an integer r > 0, A(r) is the Tate twist by the étale sheaf of roots of unity.

We then look at the spectral sequence (3.1) arising from this homology theory. The
first step of the proof is the following lemma:

Lemma 3.2. For X € Ob(C), we have E,,(X) = 0 if b < —1 and there is a natural
1somorphism of complexes
KCJ(X,A) ~ B}, (X)
where the right hand side denotes the complex
e By (X) 5 Bl (X)) S S B () S B (X)),
In particular we have a natural isomorphism
KH,(X,\) ~ E; _(X).
The first assertion follows easily from the fact cd(F) = 1 and the second from [JSS],
Theorem 1.1.1.
By the above lemma we get the edge homomorphism
¢k @ Hoo1(X,A) = KH,(X,A) = EZ_|(X) (3.3)

which is an isomorphism for @ = 0 by the first assertion of the lemma. For X connected
smooth projective of dimension d over F', it gives rise to canonical isomorphisms

KHy(X,A) ~ H_|(X,\) ~ H** (X4, A(d)) ~ H' (F,A) ~ A, (3.4)

where the second isomorphism is due to (3.2) and the third is the trace map and the last
is the natural isomorphism in (1-1).

Step 2: Log-pairs and Graphication

Let the assumption be as above. Let & C C be the subcategory of irreducible smooth
projective schemes over Spec(F).

Definition 3.3. A log-pair is a couple ® = (X,Y") where X € Ob(S), and Y =0 or Y is
a divisor with simple normal crossings on X. We call U = X — Y the complement of ®
and denote sometimes & = (X,Y;U).

Let ® = (X,Y) be a log-pair and let Y7,..., Yy be the irreducible components of Y.
For an integer a > 1 write

y(e) — H Y;

1<i; < <ig <N

1,...,ia (Yvil,...,ia — Y; ﬂ e m }/ia)' (35)

We also denote YO = X. For 1 < v < a the proper morphism
6, : V@ 5 ylb (3.6)
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is induced by the inclusions Y;, _;, — Y,

Llyeensluyeensla

Definition 3.4. The graph complex of a log-pair ® = (X,Y) is the complex:
Go(®,A) : AT 2y Amo((D) 0y £mo(Y(®) 9, Amo(X),

where mo(Y @) is the set of connected components of Y@ and A™® ™) is put in degree
a. Here 9 : A™) 5 Am(" ™) g defined as

9= (-1, 3.7

8, : A7)y gmo(v T (@4)ieng(voy = ( > ai)
oy (i)=7
where 4, : mo(Y(@) — 75(Y(@= ) is induced by the map (3.6).

jemo(Y(a1)

Now a key construction (see [JS2], (3.2)) is to define a natural map of complexes
Yo : KCo(U,A) = Go(®,A) for & = (X,Y;U)

which induces the natural homomorphism

e KHo (U, A) — GHy (P, A) := Hy(Go(P, N)). (3.8)
which we call the graphication of the Kato homology. In order to control 7§, we use
veq + Hoo1 (U, A) = GHy (@, A) (3.9)

which is defined as the composite of 7§ with €}, (cf. (3.3)). We note that the right hand
side of (3.9) is nonzero only if 0 < a < d = dim(X) while the left side could be nonzero
for any a with 0 < a < 2d + 1.

Definition 3.5. A log-pair ® = (X,Y) is clean in degree ¢ for a non-negative integer
q < dim(X) if €4 is injective for a = ¢ and surjective for a = ¢ + 1.

Now the following theorem ([JS2], Lemmas 3.3 and 3.4) is crucial.

Theorem 3.6. Take A = Q;/Z,. Let ® = (X,Y;U) be an ample log-pair, which means
by definition that one of the irreducible components of Y is an ample divisor on X. Then
® is clean in degree q for all ¢ < dim(X).

The proof of the above theorem hinges on the affine Lefschetz theorem and the Weil
conjecture proved by Deligne [D].

The above theorem implies that for an ample log-pair ® and for any integer a with
0 < a < dim(X), 7§ is surjective, and an isomorphism if €}, is surjective. This is already
a big step in the proof of Theorem 2.5.

We will need a variant of the above construction.
Definition 3.7. The reduced graph complex of a log-pair ® = (X,Y) is the complex:
Go(D,A) ¢ AT Ly Amo(ETY) 8y A0,
where AT g put in degree a. We have evident maps of complexes
ATCO0] = Go(®,A) == Go(D, A)
which induce an isomorphism

L GH,(®,A) — GH,(®,A) for a # 1, (3.10)
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and an exact sequence
0 — GHy(®,A\)) - GH(®,A) = A — 0. (3.11)
In the same way as above, one may also define the natural homomorphism ([KeS])

¥4 KH, 1 (Y,A) = GH,(®,A) (3.12)
which fits into the commutative diagram

KH,(U,A) —2~ KH, |(Y,A)

l% l”%

GH,(®,A) —— GH,(d,A)

where 0 is the boundary map for the Kato homolgy.

Step 3: Pullback map for Kato homology

Another key ingredient to the proof of Theorem 2.5 is the construction of the pullback
map for Kato homology, which is stated in the following form:

Lemma 3.8. For any dominant morphism f : X — Y where X, Y € Ob(C) are integral
smooth of the same dimension over F', we have the pullback maps for all q:

f*rHy(Y,A) = H(X,A), f":KH/(Y,\) = KHy,(X,A\)
which satisfy the following conditions:

e For a dominant morphism g :Y — Z with Z integral smooth over F' of the same
dimension, we have (g- f)* = f* - g*.
e The following diagram is commutative (cf. (3.3))

Hyo(Y,A) —— KHy(Y,A)
| |-
H,_(X,A) —= KH,(X,A)
e If f is proper, the composite map
KH,(Y,A) L5 KH(X,A) L5 KH,(V,A)

is the multiplication by the degree [F(X) : F(Y)] of the extension of the function
fields.

In [KeS] the above lemma is shown based on the intersection theory on cycle modules
due to Rost [R] (the theory was originally developed over a field but it may be extended
to a more general base).

Step 4: The condition (LG),

Let ¢ > 1 be an integer. For a log-pair ® = (X,Y; U) consider the condition:
(LG)q: The composite map

O¢s : Ho (U, A) 2 KH,(U,A) -2 KH,_ (Y, A)

is injective for a = ¢ and surjective for a = ¢ + 1.
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Lemma 3.9. Let ¢ > 1 be an integer. Let ® = (X,Y;U) be a log-pair which satisfies
the condition (LG),. Let j* : KHy(X,A) — KHy(U,A) be the pullback via j : U — X
and €}, : Hy1(U,A) — KH,(U,A) be as in (3.3). Then the map j* is injective and
Image(j*) N Image(ef,) = 0.

Proof First we claim that j* is injective. Indeed we have the exact sequence
KHy (U A) -2 KH,(Y,\) = KH,(X,A) 5 KH,(U).

Since ae?fl is surjective by the assumption, 0 is surjective and the claim follows. By the
above claim it suffices to show Image(j*) N Image(ef;) = 0. We have the exact sequence

KH,(X,A) —L— KH,(UA) —2 KH, ,(Y,A)
Let € H,—1(U,A) and assume o = €},(8) € KH,(U,A) lies in Image(j*). It implies

d(a) = e, (B) = 0. Since Jef; is injective by the assumption, this implies 3 = 0 so that
a=0.01

For integers ¢ > 1 and d > 0, consider the condition:
KC(q,d): KH,(X,A) =0 for all X € Ob(S) with dim(X) < dand 0 < a <gq.

Lemma 3.10. Take A = Q;/Zy. Fiz integers d and q with d > q¢ > 1, and assume
KC(q,d — 1). For any log-pair ® = (X,Y) with d = dim(X), there ezists a log-pair
" = (X,Y') with Y CY" such that ®" satisfies the condition (LG),.

Proof It follows from Bertini’s theorem ([AK] and [P]) that for any log-pair ® = (X,Y)
with dim(X) = d, one can take Z C X, a smooth section of a sufficiently ample line
bundle on X, such that ® = (X,Y U Z) is an ample log-pair so that it is clean in degree
q for all ¢ < dim(X) by Theorem 3.6. Hence it suffices to show that if ® = (X,Y;U)
is clean in degree ¢, then it satisfies the condition (LG)q. We consider the commutative
diagram

q+1

H,(U,A) -2~ KH, (U A) —2— KH,(Y,\)

J/,ygj—l J/,Yg)-i-l
GHy1(P,A) —— GHypa(D,0)

where ¢ is an isomorphism by (3.10), and ve4™ = 72 o €& is surjective by the as-

sumption. Moreover, vgfl is an isomorphism. Indeed we have the spectral sequence
(Mayer-Vietoris for homology of closed coverings):

El, = KH,(Y®,A) = KHyp 1(Y,A) (cf. (3.5))
where we put E}, = 0 for s < 0, so that KC(g,d — 1) implies KH,(Y® A) = 0 for
0 <t <gqand s> 0. The assertion follows easily from this and (3.4). Now a diagram

chase shows that del;" is surjective.
Next we consider the commutative diagram

H, (U AN —%s KH,(UA) —2— KH, |(Y,\)

—1
l% l”i

GHy(P,A) —= GHy(d,A)
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where ¢ is injective by (3.10) and (3.11), and ve§ = 4 o€f; is injective by the assumption.
As before one can show by using KC(q,d — 1) that 72:1 is an isomorphism. This shows
Jef; is injective and the proof is complete. [

Step 5: Enters Gabber’s theorem to end the proof

We fix a prime ¢ # ch(F) and take A = Qy/Z,. We finish the proof of Theorem 2.5
by the induction on d = dim(X) > 0. The case d = 0 is trivial. Assume d > 1 and that
KC(g,d—1) holds for 1 < ¢ <d. Let X € Ob(S) with d = dim(X). Let « € KH,(X, A).
By recalling that

¢l H, (X, A) = KH,(X,\) = B2

q,—1
is an edge homomorphism and by looking at the differentials

dg 1 By _1(X) = Eg (X),

q—r,r—2
we conclude that there exists a closed subscheme W C X such that dim(IV) < ¢ —2, and
that putting U = X — W, the pullback oy € KH(U, A) of o via U — X lies in the image
of €/;, namely there exists § € H,_;(U,A) such that a;y = €;(3). Take 7 : X' = X as
in Theorem 2.6 and put U’ = 7 }(U) and Y’ = 71 (W),¢g which is a divisor with simple
normal crossings on X'. By Lemma 3.10 there is a log-pair ® = (X', Y"; V) with Y' C Y
which satisfies the condition (LG),. Thanks to Step 3, we have the commutative diagram

(X)

KH,(X,A) —~— KH,(X',A)

KH,(UA) —= KH,(U',A) —“— KH,(

I+
Hy 1(U,A) —"— H, 1(U',A) —L— H, ,(V,A)
where j : V' — U is the open immersion. Put o/ = 7n*(a) € KH, (X', A) and ' = 7*(f) €
Hy 1(U',A). Let of, € KHy(V,A) (resp. By, € Hy-1(V,A)) be the pullback of o (resp.
B) via V e X' (resp. V < U’). By the diagram we get o, = €{,(8),,) € KHy(V,A). By
Lemma 3.9 this implies o/ = 0. Since the composite

KH,(X,A) = KH,(X',A) = KH, (X, A)

is the multiplication of the degree of m which is prime to ¢, we get « = 0. [J

=

A)

q
€ €y

4. APPLICATIONS

Let X be a smooth scheme over a field F' and let
HY(X,2(r) = CH(X,2r = q) = Hyy (' (X,8)) (g, > 0)

be the motivic cohomology of X defined as Bloch’s higher Chow group, where 2" (X, ) is
Bloch’s cycle complex [B1]. Recall that CH"(X,0) is the classical Chow group CH"(X).
A ‘“folklore conjecture’, generalizing the analogous conjecture of Bass on K-groups, is that
in case F is finite, H},;(X,Z(r)) should be finitely generated. Except the case of r =1 or
dim(X) = 1 (Quillen), the only known case is that of H3¥(X,Z(d)) = CH*(X) = CHy(X)
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where d = dim(X). It is a consequence of higher dimensional class field theory ([B2],
[KS1] and [CTSS]).

One way to approach the problem is to look at an étale cycle map constructed by
Geisser and Levine [GL] :

PNz + CH (X, ¢ Z/nZ) — Hy ~"(X,Z/nZ(r)), (4.1)
Here
CH'(X,q; Z/nZ) = Hy(2' (X, 8) ®" Z/nZ),
is the higher Chow group with finite coefficients which fits into an exact sequence
0 — CH"(X,q)/n — CH"(X,q;Z/nZ) — CH"(X,q — 1)[n] — 0,
and Z/nZ(r) is the complex of étale sheaves on X:
Z/TLZ(T) W QXlog[ ]?

where n = mp" and (p,m) = 1 with p = Ch(F) (cf. (1.1)). The same construction has
been carried out for a regular scheme X of finite type over a Dedekind domain by Levine
[L] (see also [Ge]), assuming that n is invertible on X.

We recall the following result due to Suslin-Voevodsky [SV] and Geisser-Levine [GL]:

Theorem 4.1. Let the assumption be as above (the case over a Dedekind domain is
included). Assume (BK)Y, for all t >0 (cf. §1). Then py'; g is an isomorphism for
r < q and injective for r = q + 1.

Now we turn our attention to ,07;’(']Z/nZ in case r > d := dim(X). We assume that X
is a regular scheme over either a finite field F' or a henselian discrete valuation ring with
finite residue field /. In case r > d it is easily shown (see [JS2], Lemma 6.2) that p\’; .y

is an isomorphism assuming (BK)%;’K1 . An interesting phenomenon emerges for py?, /07
with r = d. (BK)qul implies a long exact sequence: (see [JS2], Lemma 6.2)

XZ/Z z

KHy»(X,2)0"Z) — CHY(X, q; Z/("Z.) H?=( X, 7,/0"7(d))

d,q—1
PX 7 0m7,
) ——

— KH, (X, Z2/0"Z) — CHY(X,q — 1, Z/0"Z

Hence Theorem 2.8 implies the following:
Theorem 4.2. ([KeS]) Let X be a regular projective scheme over either a finite field F
or a henselian discrete valuation ring with finite residue field F Let ¢ > 0 be an integer

and n > 0 be an integer prime to ch(F) and assume (BK) > for all prime l|n. Let
d =dim(X). Then

Pz CHYX, q;Z/nZ) — H (X, Z/nZ(d)).
In particular CHY(X, q; Z/nZ) is finite.

The above theorem implies the following affirmative result on the finiteness conjecture
on motivic cohomology:

Corollary 4.3. Let X be a quasi-projective scheme over either a finite field F' or a
henselian discrete valuation ring with finite residue field F. Let n > 0 be an inte-
ger prime to ch(F) and assume (BK)Y%, for all primes L|n and integers t > 0. Then
CH' (X, q;Z/nZ) is finite for all r > dim(X) and ¢ > 0.
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Proof For simplicity we only treat the case over a finite field F'. We may assume n = /™
for a prime ¢ # ch(F). We proceed by the induction on dim(X). First we remark that
the localization sequence for higher Chow groups implies that for a dense open subscheme
U C X, the finiteness of CH" (X, ¢;Z/nZ) for all r > dim(X) and ¢ is equivalent to that
of CH"(U, ¢; Z/nZ). Thus it suffices to show the assertion for any smooth variety U over
F. If U is an open subscheme of a smooth projective variety X over F, the assertion
holds for X by Theorem 4.2 and hence for U by the above remark. In general Gabbers’s
theorem 2.6 implies that there exist an open subscheme V' of a smooth projective variety
X over F', an open subscheme W of U, and a finite étale morphism 7 : V' — W of degree
prime to . We know that the assertion holds for V' so that it holds for W by a standard
norm argument. This completes the proof by the above remark. [

Finally we note that the above corollary implies the following affirmative result on the
Bass conjecture. Let K[(X,Z/nZ) be Quillen’s higher K-groups with finite coefficients
constructed from the category of coherent sheaves on X (which coincide with the algebraic
K-groups with finite coefficients constructed from the category of vector bundles when X
is regular).

Corollary 4.4. Under the assumption of Corollary 4.3, K[(X,Z/nZ) is finite for i >
dim(X) — 2.

Proof Theorem 4.1 implies that CH"(X, ¢; Z/nZ) is finite for r < ¢ + 1. Hence the
assertion follows from the Atiyah-Hirzebruch spectral sequence (see [L] for its construction
in the most general case):

Eg’q:CH_q/Q(X, —p—q;Z/n7) = K, (X,Z/nZ)

-p—q
(note E5? may be nonzero only if ¢ <0 and p+ ¢ <0). O

REFERENCES

[AK] A. Altman and S. Kleiman, Bertini theorems for hypersurface sections containing a subscheme,
Comm. Algebra 7 (1979), 775-790.

[B1] S. Bloch, Algebraic cycles and higher algebraic K -theory, Adv. Math. 61 (1986), 267-304.

[B2] S. Bloch, Higher Algebraic K-theory and class field theory for arithmetic surfaces, Ann. of
Math. 114 (1981), 229-265.

[BK] S. Bloch and K. Kato, p-adic étale cohomology, Publ. Math. IHES 63 (1986), 107-152.

[BO] S. Bloch and A. Ogus, Gersten’s conjecture and the homology of schemes, Ann. Ec. Norm.
Sup. 4 série 7 (1974), 181-202.

[CJS] V. Cossart, U. Jannsen and S. Saito, Resolution of singularities for embedded surfaces, in
preparation (see www.mathematik.uni-regensburg.de/Jannsen).

[CT] J.-L. Colliot-Thélene, On the reciprocity sequence in the higher class field theory of function

fields, Algebraic K-Theory and Algebraic Topology (Lake Louise, AB, 1991), (J.F. Jardine
and V.P. Snaith, ed), 35-55, Kluwer Academic Publishers, 1993.

[CTSS]  J.-L. Colliot-Thélene, J.-J. Sansuc and C. Soulé, Torsion dans le groupe de Chow de codimen-
sion deuzr, Duke Math. J. 50 (1983), 763-801.

[D] P. Deligne, La conjecture de Weil II, Publ. Math. THES 52 (1981), 313-428.

[Ge] T. Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004), 773-794.

[GL) T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J.
Reine Angew. 530 (2001), 55-103.

[Gr] M. Gros, Sur la partie p-primaire du groupe de Chow de codimension deuz, Comm. Algebra
13 (1985), 2407-2420.

[HW] C. Weibel, Axzioms for the Norm Residue Isomorphism, K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0809/

[11] L. Nllusie, Complexe de De Rham- Witt et cohomologie cristalline, Ann. Ec. Norm. Sup. 4 série

12 (1979), 501-661.



2]

[JS1]
[7S2]

7S]

[KS1]
[KS2]

[KeS]

RECENT PROGRESS ON THE KATO CONJECTURE 13

L. Nllusie, On Gabber’s refined uniformization, a preprint available at http://www.math.u-
psud.fr/ illusie/

U. Jannsen, Hasse principles for higher dimensional fields, in preparation (see
www.mathematik.uni-regensburg.de/Jannsen).

U. Jannsen and S. Saito, Kato homology of arithmetic schemes and higher class field theory,
Documenta Math. Extra Volume: Kazuya Kato’s Fiftieth Birthday (2003), 479-538

U. Jannsen and S. Saito, Kato conjecture and motivic cohomology over finite fields, in prepa-
ration (see http://www.lcv.ne.jp/ smaki/en/index.html).

U. Jannsen, S. Saito and K. Sato, Etale duality for constructible sheaves on arithmetic schemes,
in preparation (see www.mathematik.uni-regensburg.de/Jannsen).

K. Kato, A Hasse principle for two dimensional global fields, J. fiir die reine und angew. Math.
366 (1986), 142-183.

K. Kato and S. Saito, Unramified class field theory of arithmetic surfaces, Ann. of Math. 118
(1985), 241-275.

K. Kato and S. Saito, Global class field theory of arithmetic schemes, Am. J. Math. 108 (1986),
297-360.

M. Kerz and S. Saito, Kato conjecture and motivic cohomology for arithmetic schemes, text
in preparation.

M. Levine, K-theory and motivic cohomology of schemes, preprint.

A.S. Merkurjev and A.A. Suslin, K-cohomology of Severi-Brauer Varieties and the norm
residue homomorphism, Math. USSR Izvestiya 21 (1983), 307-340.

B. Poonen, Bertini theorems over finite fields, Ann. of Math. 160 (2004), 1099-1127.

M. Rost, Chow groups with coefficients, Doc. Math. J. 1 (1996), 319-393.

S. Saito Class field theory for curves over local fields, Journal Number Theory 21 (1985),
44-80

S. Saito Cohomological Hasse principle for a threefold over a finite field, in: Algebraic K-
theory and Algebraic Topology, NATO ASI Series, 407 (1994), 229-241, Kluwer Academic
Publishers

A. Suslin and S. Joukhovitski, Norm Varieties J. Pure Appl. Alg. 206 (2006), 245-276.

A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coef-
ficients, in: Cycles, Transfer, and Motivic Homology Theories, Annals of Math. Studies 143,
Princeton University Press, 2000.

N. Suwa, A note on Gersten’s conjecture for logarithmic Hodge- Witt sheaves, K-theory 9
(1995), 245-271.

V. Voevodsky, Motivic cohomology with 7Z /2-coefficients, Publ. IHES 98 (2003), 1-57

V. Voevodsky, On motivic cohomology with Z /l-coefficients, K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0639/

V. Voevodsky, Motivic FEilenberg-MacLane spaces, K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0864/

C. Haesemeyer and C. Weibel, Norm Varieties and the Chain Lemma (after Markus Rost),
K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0900/

C. Weibel, Patching the Norm Residue Isomorphism Theorem, K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0844/



