shuji_saito

Yatsugatake Workshop, 2025

Wild Ramification and Etale Homotopy

Date: 17(Thu)-21(Sun)/September/2024

Place: Wellness Garden in Goddess Forest : Kobuchizawa, Hokuto city, Yamanashi, JAPAN

Workshops in the past

2014 | 2016 | 2017 | 2018 | 2019 | 2023 | 2024 |

Organizing Committee:

Ko Aoki (MPIM), Federico Binda (Milano), Wataru Kai (Sendai), Alberto Merici (Heidelberg), Hiroyasu Miyazaki (NTT), Shuji Saito (Tokyo)

Scientific Committee:

Piotr Achinger (Warszawa)

Speakers

Tomoyuki Abe (University of Tokyo)

Piotr Achinger (Warszawa)

Teppei Nakamura (Kyoto)

Fei Ren (Wuppertal)

Daichi Takeuchi (Institute of Science Tokyo)

Takeshi Tsuji (University of Tokyo)

Yuri Yagawasa (Institute of Science Tokyo)

This workshop is supported by

JSPS Grant-in-Aid (S) 24H00015 representative Nobuo Tsuzuki

JSPS Grant-in-aid (Early-Career Scientists) #21K13783 representative Hiroyasu Miyazaki,

JSPS Grant-in-Aid (C) #24K06699 representative Hiroyasu Miyazaki

JSPS Grant-in-aid (B) #25K00904 representative Shuji Saito.

Program

17(Wed)/Sep:

9:30-10:45 Achinger, "Overview"

11:15-12:30 , "Background on ramification theory"

14:30-15:45 , "Nearby cycles"

16:15-17:30 , "Variation of the Swan conductor"

18(Thu)/Sep:

9:30-10:45 , "The singular support and the Radon transform (I)"

11:15-12:30 , "The singular support and the Radon transform (II)"

14:30-15:45 , "Characteristic cycle (I): the Milnor formula and integrality"

16:15-17:30 , "Characteristic cycle (II): the index formula and compatibility with pull-back"

19(Fri)/Sep:

9:30-10:45 -, "Recap talk"

11:15-12:30 , "The K(,1) theorem (I): the Bertini theorem"

14:30-15:45 , "Gabberfs affine analog of proper base change"

16:15-17:30 "The K(,1) theorem (II): the end of the proof, corollaries"

20(Sat)/Sep:

9:30-10:45 , "The Frobenius-Witt cotangent bundle"

11:15-12:30 , "Singular support in mixed characteristic (I)"

14:30-15:45 , "Singular support in mixed characteristic (II)"

16:15-17:30 , "Quantitative sheaf theory"

21(Sun)/Sep:

10:00-12:00 "Concluding remarks":