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ABSTRACT. For an arithmetical scheme X, K. Kato introduced a certain complex of
Gersten-Bloch-Ogus type whose component in degree a involves Galois cohomology
groups of the residue fields of all the points of X of dimension a. He stated a con-
jecture on its homology generalizing the fundamental exact sequences for Brauer groups
of global fields. We prove the conjecture over a fintie field assuming resolution of sin-
gularities. Thanks to an established result on resolution of singularities for embedded
surfaces, it implies the unconditional vanishing of the homology up to degree 4 for X
projective smooth over a finite field. We give an application to finiteness questions for
some motivic cohomology groups over finite fields.

INTRODUCTION

Let C be a category of schemes of finite type over a fixed base scheme B. Let C, be the
category with the same objects as C, but where morphisms are just the proper morphisms
in C. Let Ab is the category of abelian groups. A homology theory H = {H,}aez on C is
a sequence of covariant functors:

Hy(—=): C. — Ab

satisfying the following conditions: If i : Y < X is a closed immersion in C, with open
complement j : V < X there is a long exact sequence (called localization sequence)

oD H (V) s Hy (X)L Hy(V) -2 Hy (YY) — -

which is functorial with respect to proper morphisms and open immersions in an obvious
sense.

Given such H, Bloch and Ogus [BO] constructed a spectral sequence of homological
type for every X € Ob(C), called the niveau spectral sequence

Eyy(X) = @ Hasplr) = Hopp(X) with Hy(z) = lim Hy(V). (0.1)

2EX () vz}
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where X(4) denotes the set of the points + € X of dimension a (see §1 for our definition
of dimension) and the limit is over all open non-empty subschemes V' C {z}.

In this paper we are interested in such H that satisfy the condition:
E,,(X)=0 forallb<0andall X € Ob(C). (0.2)
We then write KCy(X) for the complex:

d! dt dt
Eol,o(X) : E&,O(X) — E11,0(X) — Ezl,o(X) A

and K H,(X) for its homology group in degree a, called the Kato homology of X for the
given homology theory H.

The most typical example is the homology theory H = H®(—,Z/nZ)[—1] on the cate-
gory C of separated schemes over a finite field F', defined by

HY(X,Z/nZ)[~1]:= H"*(X¢, R f'Z/nZ), for f: X — Spec(F) in C
(0.3)

(where Rf' is the right adjoint of Rf, defined in [SGA 4], XVIII, 3.1.4.). In this case
KCpy(X) is the following complex introduced by Bloch-Ogus [BO] and Kato [K]:

. @ Ha+1(/§(x),Z/nZ(a))—> @ H(k(x),Z/nZ(a— 1)) — ---

oo @ HX(k(2),Z/nZ(1)) — @ H'(k(z),Z/nZ). (0.4)
TeX (1) z€X (o)

Here we use the following notations. For a field L and an integer n > 0, define the following
Galois cohomology groups: If n is invertible in L, let H*(L,Z/nZ(j)) = H'(L, n27) where
fn is the Galois module of n-th roots of unity. If n = mp" and (p,m) = 1 with p =
ch(L) > 0, let

HY(L,2/n(j) = H(L, Z/mZ(j)) & H' (LW, ,,). (0.5)

where WTQ%JOQ is the logarithmic part of the de Rham-Witt sheaf W, [II, I 5.7]. In
the complex (0.4) the term in degree a is the direct sum of the Galois cohomology of the
residue fields k(z) of x € X,.

In [K] a complex of the same shape as (0.4) is defined for any scheme X of finite type
over Spec(Z) and it is shown in [JSS] that this complex also arises from a certain homology
theory (on the category of schemes of finite type over Spec(Z)) via the associated spectral
sequence (1.2).

The Kato homology associated to H = H®(—,Z/nZ)[—1], as well as its variant for
schemes of finite type over Spec(Z) studied in [K], is denoted by K H¢* (X, Z/nZ), which
is by definition the homology group in degree a of the conmplex (0.4). A remarkable
conjecture proposed by Kato is the following:

Conjecture 0.1. Let X be either proper smooth over B = Spec(F) where F is a finite
field (geometric case), or reqular proper flat over B = Spec(Oy) where k is a number field
(arithmetic case). Assume either n is odd or k is totally imaginary. Then

Z/nZ a=0

KHjt(X,Z/nZ):{ 0 00
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In case dim(X) =1, i.e., if X is a proper smooth curve over a finite field with function
field k or X = Spec(Oy) as above, the conjecture 0.1 rephrases the classical fundamental
fact in number theory that there is an exact sequence :

0 — Br(k)[n] = € H'(k(z),Z/nZ) — Z/nZ — 0.
z€Xo
Here Br(k)[n] is the n-torsion subgroup of the Brauer group of k& and X is the set of
the closed points of X or the finite places of k. Kato proved the conjecture in case
dim(X) = 2. For X of dimension 2 over a finite field, the vanishing of K H$*(X,Z/nZ) in
the conjecture had been earlier established in [CTSS] (prime-to-p-part), and completed
by M. Gros [Gr] for the p-part. The following result has been shown by Colliot-Thélene
[CT] and Suwa [Sw] (geometric case) and Jannsen-Saito [JS1] (arithmetic case):

Theorem 0.2. Let ¢ be a rational prime. Let the assumption be as in 0.1 and assume X
s projective over B. In the arithmetic case we further assume X has good or semistable
reduction at each prime of Oy and that { is odd or k is totally imaginary. Then

Q@/Z@ a=0

KHft(XvQZ/Zf): { 0 0<a<3

where

KHMX, Qu/Z) = lim KHG'(X,Z/0"Z).

In this paper we propose a method to approach the geometric case of conjecture 0.1 in
general. The main result of this paper is the following:

Theorem 0.3. Let X be projective smooth of dimension d over a finite field F'. Lett > 1
be an integer. Then we have

. Q/Z a=0
KHat(XaQ/Z)Z{ 0 O<a<t

if either t < 4 or condition (RS)g, or (RES);_» (see below) holds. Moreover the same
conclusion holds if Q/Z is replaced by Z/0"Z for a prime ¢, provided (BK), holds (see
below).

Now we explain the conditions used in the above theorem. The first two concern
resolution of singularities:

(RS)4 : For any X integral and proper of dimension < d over F, there exists a proper
birational morphism 7 : X' — X such that X’ is smooth over F. For any U
smooth of dimension < d over F', there is an open immersion U < X such that

X is projective smooth over F' with X — U, a simple normal crossing divisor on
X.

(RES); : For any smooth projective variety X over F', any simple normal crossing divisor Y’

on X with U = X —Y, and any integral closed subscheme W C X of dimension< ¢

such that W N U is regular, there exists a smooth projective variety X' over F’

and a birational proper map 7 : X' — X such that 7 : 7 1(U) ~ U, and

Y = X' — 771(U) is a simple normal crossing divisor on X', and the proper
transform of W in X' is regular and intersects transversally with Y.

We note that a proof of (RES); is given in [CJS] based on ideas of Hironaka. This en-

ables us to obtain the unconditional vanishing of the Kato homology with Q/Z-coefficient
in degrees a < 4 in Theorem 0.3.
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Let ¢ be a prime and L be a field. Recall that there is a symbol map ([Mi] and [BK],
§2):
e KM (L) — H' (L, Z/UL(t))
where K (L) denotes the Milnor K-group of L. It is conjectured that hf , is surjective.
The conjecture is called the Bloch-Kato conjecture in case [ # ch(L). We introduce the
following condition:

(BK);, : For any finitely generated field L over F, htw is surjective.

The surjectivity of hf , is known if #+ = 1 (the Kummer theory) or t = 2 (Merkurjev-
Suslin [MS]) or £ = ch(L) (Bloch-Gabber-Kato [BK]) or £ = 2 (Voevodsky [V1]). Recently
a complete proof of the conjecture has been announced by Rost and Voevodsky ([SJ] and
[V2], see also [HW], [V3], [W1] and [W2]).

In fact Theorem 0.3 will be deduced from the following more general result:

Theorem 0.4. Let H be a homology theory on the category C of separated schemes over
B = Spec(k) for a field k, which satisfies (0.2). Assume the following conditions:
(H1) If f : X — B = Spec(k) is smooth projective of dimension <1 with X connected
(but not necessarily geometrically irreducible over k), then

f* : H()(X) —>H0(B)
is an isomorphism if dim(X) = 0 and injective if dim(X) = 1.
(H2) If X is smooth projective of dimension > 1 over B, Y C X is an irreducible
smooth ample divisor, and U = X =Y, then

H,(U)=0 fora<d=dim(X).

(H3) If X is a smooth projective curve over B and U C X is a dense affine open subset,
then
H,(U)=0 fora<o,

and the boundary map Hy(U) 2 Hy(Y') is injective, where Y = X —U with reduced
subscheme structure.

Let X be projective smooth of dimension d over B. Let t > 1 be an integer with t < d.
Assume either t < 4 or (RS)q or (RES)¢_2. Then we have

KH,(X)=0 forall0<a<t.

Theorem 0.3 follows from 0.4 by verifying that the homology theory H = H®(—, Q/Z)[—1]
(see (0.3)) satisfies the conditions of 0.4. This is done by using the affine Lefschetz the-
orem and the Weil conjecture proved by Deligne [D]. We will also give an example of a
homology theory other than H®(—, Q/Z)[—1], which satisfies the conditions of 0.4 (see
Lemma 3.4).

In what follows we explain an application of Theorem 0.3 to finiteness result for motivic
cohomology of smooth schemes over a finite field.
Let X be a connected smooth scheme over a finite field F' and let

HE, (X, 2(r)) = CH(X, 2 — g) = oy y((X, )
be the motivic cohomology of X defined as Bloch’s higher Chow group, where 2"(X, o) is
Bloch’s cycle complex [B1]. We will review the definition in §6. A ‘folklore conjecture’,

generalizing the analogous conjecture of Bass on K-groups, is that Hj,(X,Z(r)) should
be finitely generated. Except for the case of dim(X) = 1 where this is known for all ¢
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and r (Quillen), the only other general case where the finite generation is is known is
H24(X,Z(d)) = CHY(X) = CHy(X) where d = dim(X), which is a consequence of higher
dimensional class field theory ([B3], [KS1] and [CTSS]).
One way to approach the problem is to look at an étale cycle map constructed by Bloch

[B1] and Geisser and Levine [GL2] :

" CH'(X,q;Z/nZ) — HY (X, Z/nL(r)), (0.6)
Here

CH'(X,q;Z/nZ) = Hy(2" (X, 8) ®" Z/nZ),
is the higher Chow group with finite coefficients, which fits into a short exact sequence:

0 — CH"(X,q)/n — CH"(X,q;Z/nZ) — CH"(X,q — 1)[n] — 0,
and Z/nZ(r) is the complex of étale sheaves on X:
Z/TLZ(T) ®W QXlog[ ]?

if n = mp" and (p,m) = 1 with p = ch(F) (cf. (0.5) and (2.8)). Using finiteness results on
étale cohomology, the injectivity of p%” would imply a result which relates to the folklore
conjecture like the weak Mordell-Weil theorem relates to the strong one.

In case r > d := dim(X) it is easily shown that p%y? is an isomorphism assuming the
Bloch-Kato conjecture (see 6.2). An interesting phenomenon emerges for py? with r = d.
The Bloch-Kato conjecture implies that there is a long exact sequence (see 6.2):

.= KH®,(X,Z/nZ) — CHY(X, ¢; Z/nZ) A (X 7, (d)

— KH® (X, Z/p"Z) = -~ (0.7)
Hence Theorem 0.3 implies the following:

Theorem 0.5. Let X be smooth projective of pure dimension d over a finite field F'. Let

t,n > 1 be integers. Assume (BK);io, for all primes l|n. Assume further either t < 2

or (RS)q or (RES) . Then

. CHY(X, q,Z/nZ) — H2"YX,Z/nZ(d)) for all ¢ < t.
In particular CHd(X, q,Z/nZ) is finite under the assumption.

Using results of [Kah], [Gel] and [J2] generalizing a seminal result of Soulé [So], we
deduce from 0.5 the following:

Corollary 0.6. Let the assumption be as in 0.5. Assume further that X is finite-
dimensional in the sense of Kimura [Ki] and O’Sullivan [OSu] (which holds if X is a
product of abelian varieties and curves). Then there is an isomorphism of finite groups

CHY(X,q) ~ @ HX X, Z(d) foralll<q<t.

all prime |

Finally we explain briefly the strategy to prove Theorem 0.4. The first key observation
is that the conclusion of 0.4 implies the following fact: For X, projective smooth over
B = Spec(k), and for a simple normal crossing divisor Y on X, the Kato homology
KH,(U) of U = X —Y has a combinatoric description as the homology of the complex

(A)Wo(y(d)) N (A)WO(Y(d_I)) B (A)wo(y(l)) N (A)TI'O(X) ,

where A = Hy(B) and mo(Y (@) is the set of the connected components of the sum of
all a-fold intersections of the irreducible components Yi,..., Yy of Y. Conversely the
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vanishing of the Kato homology of X is deduced from such a combinatoric description of
KH,(U) for a suitable choice of U = X — Y.

On the other hand, the conditions (H1) through (H3) of 0.4 imply that if one of the
divisors Yi,...,Yy on X is very ample, H,(U) for a < d has the same combinatoric
description. Recalling that the spectral sequence (1.2)

E(U) = @D Hoso(r) = Hapn(U)
zeU,
satisfies £, ,(U) = 0 for b < 0 and E? ,(U) = KH,(U) for b = 0, the desired combinatoric
desription of K H,(U) is then deduced from the following vanishing:

(2°°/B")ap(U) := Z34(U)/Bgy(U) =0 forb> 1. (0.8)
Here
Eoy(U) = Zay(U) D Z,(U) D Z35,(U) 2 B (U) D By (U) D Byy(U) =0,
is the standard notation for the spectral sequence so that
ELJNU) = Z0,(0)/BL,(U). Z35(U) = 0 Z0,(U). BSU) = U Bl,(U).

In order to show the vanishing, we pick up any element
a € (Z2%/B")a(U)

and then take a hypersurface section of high degree Z C X containg the support Supp(«)
of o so that « is killed under the restriction

(2%/B")ap(U) = (2%/B")ap(U\Z).

The point is that the assumption (RES), allows us to make a very careful choice of Z,
after desingularizing Supp(a), so as to ensure by the induction on dim(U) the injectivity
of the restriction map, which implies & = 0. The last step of the argument hinges on a
general lemma proved in §1 concerning the exactness of the following sequence:

(2%/B")ap(Z0U) = (2% /B")ap(U) = (Z2°°/B")ap(U\Z).

Finally we note that taking H = H®(—,Z/nZ)[—1], the vanishing (0.8) may be viewed
as an analog of the weak Lefschetz theorem for cycle modules in the sense of Rost [R].
This will be explained explicitly for terms in lower degrees in Corollary 5.7 in §5.

We note that the Kato conjecture for varieties over finite fields is studied also by a
different method in a paper [J1] by the first author. The method introduced in this paper
was found by the second author independently. It has been applied in [SS] to study cycle
class map for 1-cycles on arithmetic schemes over the ring of integers in a local field to
provide new finiteness results.

It is not difficult to extend the method of this paper to study the Kato conjecture and
motivic cohomology of arithmetic schemes over the ring of integers in a local field, at least
restricted to the prime-to-p part, where p is the residue characteristic of the local field. In
order to deal with the p-part and the case of arithmetic schemes over the ring of integers
in a number field, one need develop a new input from p-adic Hodge theory. This is a work
in progress [JS3].

The authors thank Prof. T. Geisser for helpful comments. The second author is grateful
to the first author for several opportunities to stay in the department of Mathematics at
University of Regensburg where he enjoyed warm hospitality.
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1. FUNDAMENTAL LEMMA

Throughout this paper we fix a regular connected Noetherian base scheme B and work
with a category C of separated schemes of finite type over B such that for any object
X in C, every closed immersion ¢ : ¥ < X and every open immersion j : V — X is
(a morphism) in C. For X € Ob(C) we define dim(X) to be the Krull dimension of any
compactification X of X over B (i.e., X is proper over B and there is an open immersion
X < X of b-schemes). This does not depend on the choice of compactification. For an
integer a > 0 let X(,) denotes the set of such x € X that dim({z}) = a. Then one can
check:

XyNY =Y, forY locally closed in X. (1.1)
Let Ab be the category of abelian groups.

Definition 1.1. (a) Let C, be the category with the same objects as C, but where mor-
phisms are just the proper maps in C. A homology theory H = { H, },c7 on C is a sequence
of covariant functors:
Hy(—=): C. — Ab
satisfying the following conditions:
(i) For each open immersion j : V < X in C, there is a map j* : H,(X) — H,(V),
associated to j in a functorial way.
(ii) If i : Y < X is a closed immersion in X, with open complement j : V' < X, there
is a long exact sequence (called localization sequence)

D (YY) s Hy(X) DS (V) S Hy (YY) — -

(The maps 0 are called the connecting morphisms.) This sequence is functorial
with respect to proper maps or open immersions, in an obvious way.

(b) A morphism between homology theories H and H' is a morphism ¢ : H — H' of
functors on C,, which is compatible with the long exact sequences from (ii).

We give basic examples.

Example 1.2. Let £ be a bounded complex of étale sheaves of torsion groups on B.
Then one gets a homology theory H = H®(—, ) on C by defining

H&(X,K) :== H *(X¢, Rf'K), for f: X — BinC

called the étale homology of X over B with values in . Here Rf' is the right adjoint of
Rf, defined in [SGA 4], XVIII, 3.1.4.

Example 1.3. Let K be as in 1.2. One defines a homology theory H?(—, K) on C by:
HP(X,K) = Hom(H“(B, R fif*K), Q/Z), for f: X - BinC.

We fix a homology theory H on C. For every X € Ob(C), we have the spectral sequence
of homological type, called the niveau spectral sequence:
B, (X)= @ Hpig(r) = Hypo(X) with Hy(z) = lim H,(V). (1.2)
:DEX(p) ng

Here the limit is over all open non-empty subschemes V' C m This spectral sequence
is covariant with respect to proper morphisms in C and contravariant with respect to
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open immersions. We briefly recall the construction of this spectral sequence given by
Bloch-Ogus [BO]. For T' € C let Z,(T") be the set of closed subsets Z C T of dimension
< p, ordered by inclusion, and let Z,/Z, {(T") be the set of pairs (Z,2') € Z, X Z,4
with Z' C Z, again ordered by inclusion. For every (Z,2') € Z,/2,-1(X), one has the
exact localization sequence

.o Hy(Z") = Hy(Z) —» Hy(Z\ 2 S H, (Z') — ...,
Taking its limit over Z,/2Z,_1(X), we get the exact sequence

Ho(Zy1(X)) = Ha2,(X)) = Ha(2,/2,1(X) D Hy (2, 4() ... .

The collection of these sequences, together with the fact that one has H,(Z,(X)) = 0 for
p<0and H,(Z,(X)) = H.(X) for p > dim X, gives the spectral sequence in a standard
way, e.g., by exact couples. Here

E;,q(X) = Hy(2,/ 2, 1(X)) = @ Hyyg(). (1.4)

:DEX(p)
The E'-differentials are the compositions
5
Hp+q(zp/zp—1(X)) — Hp+q—1(zp—1(X)) - Hp+q—1(Zp—1/Zp—2(X))-
The E"-differentials are denoted by:
dy,(X) B (X) = E)

p—rq+r—1

(X).
We will use the standard notation:
1 o 0 r 0 0 r 0 _
Ep,q(X) = Zp,q(X) D Zp,q(X) D Zpyq(X) D prq(X) D Bp,q(X) D prq(X) =0, (L5)
where

E;;I(X):Z;;,q(X)/B;’q(X), Zy (X)) =07 (X), B (X)=UB (X).

r>0° 7 Ps Py »So P

We also denote
(Z7/B%)pg(X) = Z, ((X)/B, ,(X).

In what follows we fix X € Ob(C), a closed subscheme i : Y < X with j : V = X\Y —
X, the open complement. The property (1.1) allows us to have the following maps of the
spectral sequences (cf. [JS1], Prop.2.9)

i By (Y) > E) (X), j*:E, (X)—>E/(V), 9: Equ(V)H — E;Lq(y),(1 .

where the superscript (7) means that all differentials in the original spectral sequence are
multiplied by —1. We have the short exact sequence

1 Tx 1 _]* 1
0 — EP:Q(Y) Ep,q(X) 7 Ep,q(V) — 0 (17)
and the long exact sequence

2 i 2 J 2 2 2
o= By (Y)— E, (X)) — E, (V) — E

p—Ll,q

Y)—>....

For r > 3 the sequence
T ix T j* r
EY)— E (X)-— E (V)
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is not anymore exact in general. The following result will play a crucial role in the proof
of the main results of this paper.

Theorem 1.4. Fiz integers p,q > 0. Assume that there is an integer e > 1 — q such that
(Z2° /BTt _qra(V) =0 foralla > 1,
(Z%° /BTt qa(Y) =0 for all a with — (g+e—1) <a < —1.
Then the following sequence is exact:

(2% BI79),,(Y) -5 (22 B1+e), (X)L (2%/B1), (V).

We need some preliminaries for the proof of the main theorem. Recall that we have the
exact sequence

Tp, dp.q

Hp+q(Zp*1(X)) - Hp+q(Zp(X)) 5% E;,q(X) — Hp+qf1(Zp71(X)) (1-8)

For each integer r > 0 we put
K} (X) = Ker(Hp1o(Z5(X)) = Hyig(Zp1(X))). (1.9)

Then we have
By o (X) = mp,q(K5,4(X)), (1.10)
ZIZ’Z(X) = Image(m,,4) = Ker(d,,4), (1.11)
- H, - (Z —I—T‘(X))

7" (X)) =§,, (=t : 1.12
p,q( ) p,q ( K;;nfl,r’,rkr (X) ) ( )

T N nis r+1 ta ]
and djt'(X) : E;HY(X) — E;F (X) is induced by

DPyq p—1—rq+r

H _ Z —1—r X Tp—1—r.q+r
23,(x) B B G ) v oy (),
’ Kpflfr,q+r (X)

We now introduce an object that plays a key role in the proof of 1.4.

Definition 1.5. We set,

J Hyptq(Zp4r(V
P = Ker(Herq(ZpH(X)) — Image(;qu(z(p()&)))).

Note
Image(Hp+q(Zp+r(Y)) = Hp-l—q(zp-l—r(X))) C .

Image(Hp+q(Zp(X)) _>Hp+q(Zp+r(X))) C oY1

By definition there is a natural map

) * H Z T
gff’q . q)f,q J_> p+q( p(V)) ﬂ (ZOO/BT)pq(V). (1_13)
Kr (V) ’
Noting Ker (7 4 : Hpq(Z,(V)) — E;,q(V)) = Image(Hp14(Z,-1(V))), we have
Ker(g2%) = 2,17+, (1.14)
There is a natural map
wf’q : Z;-l—r—l—l,q—r(v) — q)g’q/i*K;-i-r,q—r(Y)? (115)
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where i, 1 Hy(Zp1r(Y)) = Hpig(Z,4+(X)). Indeed consider the composite map

= Epirigr(X) bprrprgms Hpq(Zp4r (X))
(V) By gor (V) S, rrtbazr o] brttymr Zotai 2
prrtlg ()=t E;—l—r-l—l,q—r(y) Z*KI}JFNI*T‘(Y)

where we note Image(E},, .\, (Y) = Hyo(Z,4:(Y))) = K., (Y). By (1.12) its
image lies in ®9/i, K} (Y) and the following sequence is exact:

r
Zp+r+1,q—r

+rig-r

Z (V) 25 @b i, I

p+r+l,q—r

(¥) s 24, (1.16)

+7‘,Q7T'

where 7 is induced by the natural map H,4(Z,-(X)) = Hpi4(Zp4r41(X)). The follow-
ing diagram is commutative and all sequences are exact:

r r dlr’+i ,qu(V) r r
Zpi}-l-l,q—r(v) ; Zp+r+1,q7r(v) L (B +1/B )P,Q(V)

lﬁ;i’q“ lwi”q l

q)fjri,q—l—l/i*K;—l—r,q—r(Y) L) q)g’q/i*K;—l—r,q—r(Y) gT—> (ZOO/BT)P,Q(V)

lT f l (1.17)

o7y — o7y —— (2/B)p(V)
Lemma 1.6. Assume r > 1.
(1) There exists a unique map
ff,q : (I)f’q - Z;Jrr,qfr(y)
whose composition with 27, (Y) = E} . (V) N E} . (X) is
B9 5 Hyp (20 (X)) 57 EL ().
(2) The composite map
ik N
Hp'i'lI(Zp-l-?" (Y)) — (I)g")’q - Zp—l—r,q—r(y) — E;—l—r,q—r(y)

is the natural map Hyio(Zp4r(Y)) = Hpro(Zpir/ Zpir—1(Y)).
(3) The following diagram is commutative up to £1.

[ee] r 8 [o¢] r
(Z /B )p,q(v) BE— (Z /B )p—l,q(Y)
]gf’q ]d;;ii,q_m

I
P,q r
(I)r Zp—l—r,q—r

(Y)
(4) (1.16) (with r replaced by r-1) extends to the following exact sequence:

v <I>{,’f1 1

gr ) Y Y X ﬁ zr Y).
prra-r1(V) WKy g 1Y) ' )

p+r.q—T

The proof of 1.6 will be given later in this section.

Theorem 1.7. Let the assumption be as in 1.4. Let x € H, ,(Z,(X)) and assume
*(mpq(2)) € BL(V). Then we have x € KIte(X) + @,/ #HH
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We first deduce 1.4 from 1.7. By (1.10) it suffices to show that the conclusion of 1.7
implies

T e Kg;e(X) + Image(Hy14(Z,-1(X))) + Image(Hp14(Z,(Y)) = Hpq(2,(X))).
This follows from the commutative diagram

Hyrf(Z,(Y)) =% (Z%/B),,(Y)

I |

—Lp+g+1 fP_Jrlip-i_qH; p+1 / Rate
(I)p+1 (Z /B )p,q(y)

together with the fact that m,, is surjective by (1.11) and that Ker(f,""*") lies in the

image of &Pttt € H, (2, 1(X)) due to 1.6(4) and 1.6(4)(2) and (1.10). O

Let e be the integer in 1.4 and set
B9 = 001, KL (V)
For any 2z € H,,,(Z,(X)) and any integer 0 <t < ¢g+e —1, let
20 € B C Hyy(Zyua(X)) i K (V)

be the image of z under the map induced by H,,(Z,(X)) — Hpq(Z,4:(X)) (note
g —t+e>1). By induction 1.7 is deduced from the following claims.

Claim 1.8. Let v € Hy,((Z,(X)) and assume j*(m,4(v)) € BIt¢(V). Assume:
(x1) (Z>°/B1e), 4 0t(V) =0 forall1 <t <p.

(%2) (Z°/B7 ") gt (Y) =0 foralll <t<g+e—1.
Then there exists u € K11¢(X) such that (z —u)@t1) € @, Lrratt ¢ &)Iq]fe—r

Claim 1.9. Fiz an integer 0 < r < ¢+ e —2. Let v € H,,(2,(X)) and assume
2+l ¢ @;j;ﬁ"g“ C OVl . Assume

(¥3) (Z°/BT ") a1 (Y) =0 foralll <t <r.
Then there exists u € Kit¢(X) such that (x —u)") € @;j;ﬁ:—lﬁl C dr,
For the proof of the claims, we need the following lemmas.
Lemma 1.10. If (Z°/B71%¢),.,,(Y) = 0, then &, [PTH — & IPAT s surjective.

Proof This follows from the exact sequence

S lptgtl | G—lpigtl Frini 1

QT = I T (2P BT ()
which is deduced from 1.6(4) and (1.10), together with the facts that

JrAmT T LK (V) = B (V)

by 1.6(2) and (1.10) and that Z21{1L,(V) = 755, (V).

p+t,q—t
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Lemma 1.11. Consider the maps

7/771«)’[1 F it gr(V) = 6£’qa v Hyg(Z,(X)) — &,;;),q,

where the first map is induced by Y29 (1.15) and the second by the natural map Hpo(Z,(X)) —
Hyio(Zpir(X)). Assuming r < g+ e — 1, we have

Image(y2?) N Image(1) C o(KZH(X)).
Proof We have the commutative diagram

Hp-l-q(Zp (X)) — Hp+q(Zp+q+e (X))
| I

(V) 25 @re S Hy(Z,4,(X) /i KR (Y)

pHTg—T

r
Zp+r+1,q—r

where 3 exists since Ky, 2% (V) = Ker(Hyiq(Zp40(Y)) = Hpig(Zpigie(Y))). By the

ptrg—r
assumption we have p+ 1+ 1 < p+ ¢ + e so that (1.16) implies Image(¢??) C Ker(f).
Therefore 1.10 follows by noting that Ker(a) = K21°(X).

Now we show 1.8. We use the following commutative diagram with exact horizontal
sequences, which is deduced from (1.17):

q+e+ts
V)
gtets - gte+s—1 — +e+s +et+s—1
Zp+q+e,—e+1(v) ’ Zp+q+e,—e+1(v) (Bq /Bq )pfsqurS(V)
—s—1,q+s+1 —s,q+s
lwqureJrs ! lws+e+qsl l
—s,q+s

(T)P*S*LIIJrSJrI — (T)P*S,quS g5+6+‘1371 70 | Batets—1 V

qte+s 7 qtet+s—1 } ( / )P*S,quS( )

Take y1 € Ziie e _epr(V) such that j*(mp4(2)) = diie o _os1(V)(y1). By the above

diagram with s = 0 we have
-1 bl Y 717 +1 Y )
e =2l — Pt () € BT C By

Let s > 1 be an integer and assume that there exists z; € Zgig;el,_eJrl(V) such that

 (gte=1) _ 1pa FP—5,q+s HP-q
€s := T q;efl(ZS) < <I)que,Jrsfl C (I)qzrefl'

By the assumption (1) we can find y, € ZZ <270, (V) such that g 207 (e,) =

p
diets o 1(V)(ys). By the above diagram we get

. P—5,q+$ HP—s—1,q+s+1 HP-4
€s1 i — €5 — q-l—e-l—s—l(ys) € q)q+e+s C q)q—l—e—l'
By induction this shows that there exists z € Z/{¢ . _..1(V) such that
— +e—1 D,q & Lp+a+1 HP-a
€= x(q ) — q-l—e—l(z) S (I)p-l-q—l—e - (I)q-l—e—l-
By the assumption (*2) 1.10 implies @;jf’”“ — @;gﬂ;ﬁl is surjective. Since @;jf’”“ C

Hyyo(Z,(X)) /1. KZEE(Y) we get e € &, P N Image(H,yy o (2,(X))) so that Yyie1(2) €
Image(H,,4(Z,(X))). By 1.11, ¢, (2) € Image(KZ (X)), which completes the proof
of 1.8.
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Next we show 1.9. We use the following commutative diagram deduced from (1.17):
r+s+1 ( )

p+r+l,g—r v r+s r+4s
Ziith (V) == Zptn o (v) e iy (1) —— 0

p p
wp;slll,q+s+1 wP;S,q+s
p—s,q+s
HP—s—Lats+l = HP—sats Irs ; (Z%/B+) (V)
r+s+1 r+s P—5,q+s
T T
p—s,q+s
HP—s—Lg+s+1 il Fp—5,q+s Irs+1 5 00 [ Rr+s+1
(I)r-l—s-i-? q)r—l—s—l—l (Z /B )P*S,quS(V)

where the vertical and horizontal sequences are exact. By the diagram with s = 0 the
assumption z(t1) ¢ @;j;’félﬂ implies that there exists y; € 7] (V) such that

gP 1z =dit) ) . (V)(y1) and hence
er =2 —yPi(y)) € P C B

Let p > s > 1 be an integer and assume that there exists 2, € Z] ., . .(V) such that
€ =2 — YPi(z,) € PPTIITS C P,

By (1.16) the assumption z("*+!) ¢ é;;’fzqﬂ implies the image of €, in @fijﬁfs lies in

&, LPHH! Hence the same argument as before shows that there exists y, € Z715,, (V)

p
such that

+r+1,g—r

._ D—58,q+s FP—s—1,q+s+1 FHD>
€st1 =€ — Yy (Ys) € Pryoin C oY1

By induction this shows that there exists z € 27, (V) such that

: T —1ptatl
e =20 —yPi(z) € d, P

By the assumption (*3) 1.10 implies é;}f’ﬂ“ — é;}’rpﬁﬁl is surjective. Now 1.9 follows

from 1.11 by the same argument as before.

Proof of 1.6.

First we show (1). The uniqueness of fP7 is a direct consequence of the injectivity
of B} (Y) — E} (X). To show its existence, we consider the following commutative
diagram:

HPa SELSEIN Hy,o(Z,4,(X)) 2 Hypq(Zp10(V))

r

l”err,qr(X) l”err,qr(V)
0 — E}%«H‘,qfr(y) l—*> E;+r,q7r(X) ]—*> EIaH",qfr(V) — 0
We have j* o 7,4y 4—r (X)(P27) = 0 since Ker(mpi,4—r(V)) contains Image(H,,(Z,(V)))
for » > 1 (cf. (1.8)). Hence we get the induced map fP9: @4 — E., (V). It remains
to show that its image lies in Z7, ~ (Y'). We consider the following diagram:

-k

P — = Hpi(Zpir(V)) 6 Hpiy(Z,(V))

J l l

6p r,g—r
(Y) S Hp+q71(Zp+r71(Y)) A Hp+q71(Zp71(Y))
where 0 is the map inducing 0 in (1.6). Noting Z7 (V) =46} . (Image(H, (2, 1(Y)))

p+r.g—T p+Tg—T
(cf. 1.12), it remains to show that the squares are commutative. For this we need to recall

(1.18)

1
Epirgr
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the definition of 9. For a closed subset 7 C V let T be the closure. For ' € Z,(V) one
then has TNY € Z,_4(Y), and we have the localization sequences

i > Hy(TNY) = Hy(T) — Ho(T) -2 H, (TNY) = - -
Taking the limits over T € Z,.(V'), one gets
0:Hy(2,(V)) = Ho—1 (2,21 (Y)).

From the definition, the commutativity of the right square of (1.18) is obvious. For the
left square, it suffices to check that the following diagram is commutative:

Ts,t

Hy(2:(X)) —— B (X) s By (Y)

I \

Ho(ZJV)) =2 Hop 1 (2o4(Y)) <2 BL(Y)

where p;,; is the projection arising from the decomposition

Esl,t(X) = @ Hgyy(r) = Esl,t(y) @ Esl,t(v)a

zE€X(s)

which comes from the fact X,y = Y{5) U V() since X5y NV = Vi) (cf. 1.1). Represent
an element of H,;(Z,(X)) by an element of Hy, (W U Z), where W € Z,(V) with its
closure W in X and Z € Z,(Y). We may enlarge Z to assume Z O W NY, and hence
WNY =WnZ. We write S = WUZ and T = WNZ. We have the localization sequence
for the pair (S, T):

Hoa(8) = Hoa(S = T) 3 Hyoa (T).
Noting S — T = (W —T)[1(Z — T), we have the decomposition
Hyi(S—T) = Hyoo(W = T)® Hyot(Z — T)

and then J(g ) is identified with 3(W,T) -pw + Oz1) - pz, where

pw : Hey(S—T) = Hoy(W —T) and py:Hyy(S—T)—= Hoo(Z - T)
are the projections and

Oy : Hopt(W —T) = Hypy ((T) and 9zry : Hopo(Z = T) = Hyyy o (T)
are the boundary maps for the pairs (W,T) and (Z,T) respectively. Thus we get

Ow,ry pw v+ 0zr) Pz v=0,.

where v : Hy(S) — Hy (S —T). Note W — T = SNV and pyw - v is identified with j*
for the open immersion j : SNV < S. Hence we get

Ow,r) J"+0zr)  pz-v=0.
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Now the desired commutativity follows from the following diagram where all squares are
commutative up to sign:

Ts,t

Hyt(Z,/Z,1(X)) <2 Hoi(Z(X) —2—  Hyu(Z,(V)

E!,(X) —— H.(S) -5 H,(W-T) —— H.(Z,(V))
Ds,t pPz-v 8(VV,T) la
EL(Y) —— Hu(Z2-T) 25  H (T) —— Heyo(Ze(Y))

65,1&
Hoi(2:/Z2,0(Y)) == E,(Y)  —= Hoya(Za(Y))
This completes the proof of 1.6(1).

1.6(2) follows immediately from the definition of f?¢ and 1.6(3) from the commutativity
of (1.18). Finally we show 1.6(4). It suffices to show the exactness at ®7?. In view of the

(V) = E} (X), we have

injectivity of E! A

p+r,q—r
Ker(f29) = @29 Ker(Hyq(Z,1,(X)) 725 Bl , (X))
)

Hyyo(Zpir1(X)) 5 Hp+q( p+r(V)
- s (e Image<Hp+q<zp(v>>>)

Consider the commutative diagram

K;+r 1g—rt1(X) —— K]%Jrrfl,qfrJrl(V)
, " Hpyg(Zpyr1(V

0 ? (I)f—ql ” Hp+q (Zp+r—1 (X)) : ’ Im:gz%;]pp;(zlp((v)))))
D,q \ Hp+q(Zp+r—l(X)) J" \ Hp+q(Zp+r(V))

0 » Ker(fP0) T K (X * Tmage(Hp1q(Zp(V))

where all vertical and horizontal sequences are exact. Thus, to show the surjectivity of 7 in

the diagram, it suffices to prove the surjectivity of K, . (X)L K1 rin(V).
By noting

5p r,q—r+1
K} irotgerin(X) = Tmage(Ey, 0y (X) 255 Hy (2,0 1(X))),

6p r,g—r+1
K;+r 1,q— r+1(V) = Image(E;Jrr,qfrJrl(V) % HP+II(ZP+7‘71(V)))7

it follows from the surjectivity of E .~ r+1(X) E;H.q ++1(V). This completes the
proof of 1.6. [J
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2. KATO COMPLEX OF A HOMOLOGY THEORY

Let C be as in the previous section. We assume B = Spec(k) for a field k. Let S C C
be the subcategory of smooth projective schemes over k.

Definition 2.1. (|GS])
(1) Let ZS (resp. CorS) be the category with the same objects as S, but with

Homzs(X,Y) @ ZHoms(X;,Y))

iel,jed

(resp. Homeys(X,Y) = @ CH™Y(X; xV;) )
iel,jed
for X,Y € OB(S), where X, (j € J) and Y; (i € I) are the connected components
of X and Y respectively and ZHomg (X}, Y;) denotes the free abelian group on
Homg(X;,Y;). It is easy to check that ZS and CorS are additive categories and
the coproduct X @Y of X,Y € Ob(S) is given by X [[Y. There are natural

functors

S - 7ZS — CorS, (2.1)
where the second functor is additive and it maps f € Homg(X,Y") to the class of
its graph.

(2) For a simplicial object in S:

do

—
S0 do
01

—

X, - Xo X &2 X
enom,
L2,
we define the complex in ZS:
ZX, : o =Xy I X, o (0,=Y (-
j=0

(3) Let A be an abelian group. To a chain complex in CorS:
Xe ot Xy 2 X 5= Xy -5 X,
we associate a complex of abelian groups called the configulation complex of X,:
C(mp(Xa), A) + AT Lrmy Amo(Xnon) iy Am0(X0) Eey pmo(Xo),

Here, for X,Y € S connected and for ¢ € CH™)(X x V), ¢, : A — Ais
the multiplication by SN, n;[k(c;) : k(X)] where ¢ = ¥ n;c; with n; € Z and
¢; C X xY, closed integral subschemes. For a chain complex X, in ZS, we let

C(mo(X.), A) denote the configulation complex associated to the image of X, in
CorS (cf. (2.1)).

Definition 2.2. Fix an integer e > 0.
(1) Let H be a homology theory on C, and let

Eib EB Ha+b :> Ha+b(X)
:DEX(Q)
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be the niveau spectral sequence associated to H. Then H is leveled above e if
E,,(X)=0 forallb< —e and all X € Ob(C). (2.2)

We write Ay = H_.(B) and call it the coefficient group of H.
(2) Let H be as in (1). For X € Ob(C) with d = dim(X), define the Kato complex of
X by
KCy(X) 1 By o(X) = By o(X) = = B (X) = B (X),

where E! __(X) is placed in degree a and the differentials are the d!-differentials.

(3) We denote by KH,(X) the homology group of KCpg(X) in degree a called the
Kato homology of X. By (2.2), we have the edge homomorphism

€ @ HeofX) = KH,(X) = E>__(X). (2.3)

a,—e

Remark 2.3. If H is leveled above e, then the homology theory H = H[—e] given by
H,(X) = H,—(X) for X € Ob(C) is leveled above 0. Thus we may consider only a
homology theory leveled above 0 without loss of generality.

In what follows we fix a homology theory H as in 2.2.

A proper morphism f : X — Y and an open immersion j : V' — X induce maps of
complexes
respectively. For a closed immersion ¢ : 7 < X and its complement j : V < X, we have
the following exact sequence of complexes due to (1.7):

0— KCp(Z) =5 KCp(X) L5 KCr(V) = 0. (2.4)
By definition we have
KCy(B) = Ayl0] (B = Spec(k))

where Ay[0] is the complex with components Ay in degree 0, and 0 in the other degrees.
Thus, if f: X — B is proper, we get a map of complexes

fe @ KCyx(X)— Agl0]. (2.5)
For a chain complex in ZS:

Xo: X, I x, o Mo x IS X

we denote by KCp(X,) the total complex of the double complex
KCr(X,) & KCp(X, 1) ™% - = KOp(X)) L5 KCx(X,).

The maps (2.5) for each n € Z induces a natural map of complexes called the configulation
homomorphism:

Yx., : KCu(X.) = C(mo(Xa), Am) (2.6)

Example 2.4. Assume B = Spec(K) where K is a finite field with the absolute Galois
group G = Gal(K/K). Fix a torsion Gg-module A, which is viewed as a sheaf on By.
Taking K = A in the example 1.2, one gets a homology theory H = H®(—,A) on C:

HH(X,A) := H*(Xg, Rf'A) for f: X — BinC.
For X smooth of pure dimension d over k, we have (cf. [BO] and [JS1], Th.2.14)
Hst(Xa A) = Hgtdia(Xa A(d)) ) (27)
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where, for an integer r > 0, A(r) is defined as follows. If A is annihilated by an integer
n > 1, define A(r) = A ® Z/nZ(r) where Z/nZ(r) is a bounded complex of sheaves on
X, defined as follows: Writing n = mp® with p = ch(K) and (p,m) =1,

ZnL(r) = o & Wikl 1o [, (2.8)
where p,,, is the étale sheaf of m-th roots of unity, and W, ,, is the logarithmic part of
the de Rham-Witt sheaf W, [Il], I 5.7. This definition does not depend on the choice
on n. In the general case case we define A(r) = lim A,(r) where A, = Ker(A 5 A).

Here the inductive limit is taken for the transition ;norphisms
Ap @ Z/0Z(r) = Ay @ Z/0'Z(r) =8 A @ Z/0'Z(r)
for n | n'.
By (2.7) we get for X general
E,y(X)= @ H"(z,A(a)).
:L‘GX(a)
This is a homology theory leveled above 1: The condition (2.2) follows from the fact that
cd(k(z)) = a+1for a € X, since cd(K) = 1. The coefficient group Ay of H = H®(—, A) is
H'(K,A) ~ Ag,., where Ag, is the coinvarint of A by Gg. The arising complex KCy(X)
is written as:

o P HE Nz, Aa) - P He(z,Ala—1)) — -

:L‘GX(a) meX(a—l)
o= P Hi(x,A(1) = €D Hel(z, A).

z€X(1) z€X (o)

Here the term @ is placed in degree i. In case A = Z/nZ it is identified up to sign
:L‘GX(a)

with the complex considered by Kato in [K] thanks to [JSS].

Example 2.5. Assume B = Spec(K) where K is any field. Let Gx and A be as in 2.4
and assume A is finite. We consider the homology theory HP”(—, A) in the example 1.3:

HP (X, A) == Hom(HZ(X,A"),Q/Z) for X € Ob(C).

where AY = Hom(A, Q/Z). This homology theory is leveled above 0: The condition (2.2)
follows from the fact that HI(X,AY) = 0 for ¢ < dim(X) if X is affine scheme over K
due to the affine Lefschetz theorem. The coefficient group Ay of H = HP(—, A) is equal
to Ag,. If K is finite, H”(—, A) shifted by degree 1 coincides with H¢*(—, A) in 2.4 due
to the Poincaré duality for étale cohomology and the Tate duality for Galois cohomology
of finite field (cf. the proof of 2.8 below).

Example 2.6. We will consider the following variants of the homology theories in 2.4
and 2.5. Fix a prime [ and assume given a free Z,-module T of finite rank on which Gg
acts continuously. For each integer n > 1 put

Av=T@ZL/I"L and Ny =T®Q/Z =lim A,.

We then consider the homology theories
H%(— Ay) and H”(— AL).
For later use, we always assume that we are in either of the following cases:
(a) €# p = ch(K),



(b)
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K is finite and T' = Z,, on which Gk acts trivially.

For the example 2.5, there does not seem to be an evident way to compute the associated
Kato complex in general while we have the following description in case K is finitely
generated over a prime field. Let £} ,(X) be the FE'-term associated to the niveau spectral
sequence for the homology theory in 2.5.

Proposition 2.7. Let the notation be as in 2.5 and E, ,(X) be E'-term of the associated
spectral sequence.

(1)

(2)

Assume K is a finite field. Then we have

Ely(X) — @ H"''(z,A(a)) for X €C.

:L‘GX(a)

Assume K is a global field, namely a number field or a function field in one variable
over a finite field. Let Pk be the set of the places of K and K,, for v € Pk, the
henselization of K at v. Consider the homology theory in 2.5. For a scheme Z
over K write Z, = Z Xgpec(k) Spec(K,). Then we have

Ely(X)— @ C, for X €C,

:L‘GX(a)
where C(x) (x € X,) is the cokernel of the diagonal map
H*?(z,Aa+1)) = @ H*"*(z,, A(a+1)).

veEPKk
Assume K is the function field of S, which is a connected regular proper flat scheme
of relative dimension one over Spec(Z). We assume for simplicity either that A is
annihilated by an odd integer n or that there is no R-valued point in S. For s € S
let Ag be the henselization of Og, and K, be its field of fractions. For m € Sy
A 1s a henselian reqular ring of Krull dimension two and we let Py be the set of
prime ideals of height one in Ay. Let A, for p € Py be the henselization of Ay at
p and K, be its field of fractions. For a scheme Z over K and for s € S (resp.
p € Pu) write Zy = Z Xspee(i) SPeC(K) (resp. Zy = Z Xgpec(i) SPeC(Ky)). Then
we have
Ely(X)—= P C, for X e,
2€X(q)

where C,, (v € X,) is the cokernel of the diagonal map

P H P (wm Ala+2))d P HP(2r,Aa+2)) > B B H (2, A(a+2)).

meS (o) AES (1) meS(g)PEPm

Note that it is not evident that the image of the above diagonal maps lies in the direct
sum. It is easy but tedious to extend the above result to the case where K is a general
finitely generated field over a prime field but we do not pursue it in this paper (see for
example [KS2]).

Recall that A is a finite Gg-module annihilated by an integer n > 1. We denote
MY = Hom(M,Q/Z) for a Z/nZ-module M. By definition, 2.7 follows from the following:

Proposition 2.8. Let X be a connected smooth affine scheme of dimension d over K.

(1)

If K s finite, there is a canonical isomorphism
HY(X,AY)Y ~ H"H (X, A(d)).
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(2) If K is a global field, there is a canonical isomorphism
HY(X, AY) ~ Coker(H*"?(X, A(d +1)) —» @ H*(X,, A(d+1))).
vEPk
(3) Let K be as in 2.7(3). There is a canonical isomorphism HY(X, AV)Y ~ Cx, where
Cx s the cokernel of the diagonal map

P HP(Xm, A[d+2)® P HP(X\Ad+2) = P P H™ (X, Ald+2)).

meS (o) AES (1) meS(o)pEPm

Proof 2.8(1) follows from the Poincaré duality for étale cohomology and the Tate duality
for Galois cohomology of finite fields. As for 2.8(2) and (3), we only give the proof of the
latter. The proof of the former is similar and easier. By SGA4%, Th. finitude, one can
take a dense affine open subscheme j : U — S with n invertible on S, and a smooth affine
morphism f : X — U such that X xyn ~ X and Rf,A is constructible and commutes
with any base change of U. Write Xy =S — U. For any dense open subscheme V' C U,
write 4y : Xy = S —V < S. Let L = RfiAY which is an object of D%(U,Z/nZ), the
derived category of bounded complexes of Z/nZ-modules whose cohomology sheaves are
constructible. Let n = Spec(K) be the generic point of S. Noting H'(n, L) ~ H(X,AY),
the localization sequence for étale cohomology provides a long exact sequence
- = lim Hy, (S, jiL) — H'(S, jiL) — Hy(X,AY) — lim Hg N (S, jiL) —
14 14
Set Dy (L) = RHompuqr (L, Z/nZ(2)) € DY(U,Z/nZ). By the Poincaré duality for the
smooth morphism f, we have Rf'Z/nZ(2) = Z/nZ(d+ 2) and
Dy (L) ~ Rf.RHompsxy (A, Z/nZ(d + 2)) ~ Rf.A(d + 2)[2d] € D(U, Z/nZ).
By the duality theorem for constructible sheaves on S ([JSS]), we have canonical isomor-
phisms . . .
H'(S,jiL)" = H°™(U, Dy(L)) = H*™7 (X, A(d + 2)),
H;)V (Sa j!L)v = H57i(EV7 Z;R]*DU(L))
Recalling that X is an affine scheme of finite type over Spec(Z[1/n]) with dim(X) = d+2,

H'(X,A(d+2)) =0 for t > d+4 by the affine Lefschetz theorem for arithmetic schemes
due to Gabber (cf. [Fu], §5). Therefore we get the exact sequence

HTH X, A(d+2)) = lim H(Sy, iy Rj. Dy (L)) — HI(X,A")" = 0.
14

Claim 2.9. Writing ¥ =Xy =S — U, we have a canonical isomorphism
H*"YSy, 5 Rj.Dy(L)) =~ Cx /.
Here Cyy is the cokernel of the diagonal map
P HP(Xu, A(d+2)d P HP(X\Ad+2) = P P H™ (X, Ald+2)),

meL o) Yo MES(0)PEPrm 5
where Xy = X Xg Spec(An) and Py is the subset of Py of those p lying over . In
particular H*=%(Sy, i Rj, Dy (L)) is independent of V.
By the claim we get the exact sequence
H" (X, A(d+2)) = Cyjy — HI(X,AY)Y — 0.

Noting cd(K) = 3, we have H4™*(X, A(d+2)) = 0 by the affine Lefschetz theorem. Thus
2.8(3) follows by shrinking U to 7.
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Proof of the claim. Let F = i}, Rj.Dy(L) € D%(Xy,Z/nZ). By the localization theory
we have the long exact sequence

D H"'(Spec(4)), Rj.Dy(L)) = € HL(Sv,F)— H'(Zy,F)
AE(Zv) (1) me(Sv) (o)
- @ Ht(SpeC(A)\)aR]*DU(L))
AE(Zv )1y

Writing Y\ = X xy A for A € U, we have

H'(Spec(K»), Du(L)) (A € %),
H'(Spec(4,), Dy(L)) (A€ U),

X Ad+2) (Aew),
T H2Y Ad+2) (A e D),

H'(Spec(A,), Rj.Dy(L)) ~ {

where we have used the base change property of Rf.A(d + 2). Noting that cd(K,) = 3
and cd(k()\)) = 2, the affine Lefschetz theorem implies H*(Spec(A,), Rj.Dy (L)) = 0 for
t > 4 — d and a canonical isomorphism

H™3(X\,A(d+2)) (AeX),

H*~"(Spec(Ay), Rj.Dy(L)) =~ {o (A eD).

Hence the claim is reduced to establishing a canonical isomorphism, for m € (Xy/):

Ha™(Sy, F) ~ Coker(H*3 (X, A(d+2)) = @ H™(X,, Ad +2))).
per,E (29)

For this we use the localization sequence

H'" '(Spec(Aw), Rj.Dy(L)) = @ H'(Spec(A,), Rj.Dy(L)) — HL(Sv, F)

pEPm,EV

- Ht(SpeC(Am)a R]*DU(L))
By the same argument as before we get

Hd+3(Xp7A(d+2)) (p € Pm,2)7

H*"(Spec(A,), Rj.Dy (L)) ~ {O (b & Pauyx).

In case m € Y, we have
H'(Spec(Aw), Rj.Dy(L)) =H'(Spec(Ay) xs U, Rf.A(d + 2)[2d])
=H*"(X xg Spec(An), A(d +2)).
In case m € U, writing Y, = X Xy m, we have
H'(Spec(An), Rj.Dy (L)) = H'(Spec(An), Rf.A(d + 2)[2d])) = H**™ (Y, A(d + 2))

by the base change property of Rf,A(d + 2) and it vanishes for ¢ > 2 — d by the affine
Lefschetz theorem. This shows the desired isomorphism (2.9) and completes the proof of
the claim.
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3. STATEMENTS OF THE MAIN THEOREMS

Let the notations and assumption be as in the previous section and fix a homology
theory H leveled above e with coefficient group Ay. Recall that S is the category of
smooth projective schemes over B = Spec(k) where k is a field.

Definition 3.1.

(1) A log-pair is a couple ® = (X,Y’) where X € Ob(S) is connected and ¥ C X is
a simple normal crossing divisor. We call U = X — Y the complement of & and
denote sometime ® = (X,Y;U). A log-pair ® = (X,Y) is ample if one of the
irreducible components of Y is an ample divisor on X.

(2) Let @ = (X,Y;U) and &' = (X', Y";U’) be two log-pairs. A map of log pairs
m: ® — P is a proper morphism 7 : X' — X such that #(Y') C Y. It is
admissible if 7 induces an isomorphism U’ = 7~ }(U) — U.

(3) Let ® = (X,Y) be a log pair and let Y7,..., Yy be the irreducible components of
Y. For an integer a > 1 write

vl = I v
1<i;<<ig <N
For1 <v <qalet
5, : Yl — yla-l]
be induced by the inclusions Y;,
in ZS:

d, = (X,Y), : Y Zyyld-1 2y 0 2oyl Ly ¥ (d = dim(X))

.. and we define a chain complex

aaaaaa

where

0=>(-1)%6, : Yl yl-ll
i=1

and ¢ is induced by the inclusion ¥ < X. We denote by Cor(®,) the associated
complex in CorS. A map of log pairs 7w : ' — & induces a map =, : ¢, — P, of
complexes in ZS.

For a log-pair ® = (X,Y; U) it is easy to check that the natural map of complexes

KCy(®,) — KCy(U) (3.1)

is a quasi-isomorphism. Combined with the map of complexes KCp (®.) — C(mo(X,), Anr)
(cf. (2.6)) we get natural maps

Yo.  KHo(U) — Hy(mo(®), Ar), (3.2)
where the right hand side is the homology in degree in a of C'(mo(®s), Ay). Let
vey ¢+ Hoo(U) = Hy(mo(Po), Arr) (3.3)

be the composite of the above map with the edge homomorphism (2.3).
Definition 3.2. A log pair ® = (X,Y;U) is H-clean in degree ¢ for an integer ¢ if
g < dim(X) and ~e} is injective for a = ¢ and surjective for a = g + 1.

We now consider the following condition (called the Lefschetz condition) for our ho-
mology theory H:

(L) : Every ample log pair is H-clean in degree ¢ for all ¢ < dim(X).
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Lemma 3.3. A homology theory H leveled above e satisfies the Lefschetz condition, if the
following conditions holds:

(H1) For f: X — B = Spec(k), smooth projective of dimension < 1 with X connected
(but not necessarily geometrically irreducible over B), f. : H (X) — H .(B) =
Ay is an isomorphism if dim(X) = 0 and injective if dim(X) = 1.

(H2) For X, projective smooth of dimension > 1 over B, and Y C X, an irreducible
smooth ample divisor, and U = X — Y, one has

Hyo(U)=0 fora<d=dim(X).
(H3) For a projective smooth curve X over B and for a dense affine open subset U C X,
H, (U)=0 fora<o0

and Hy_.(U) 2, H_.(Y) is injective, where Y = X —U with the reduced subscheme

structure.

Lemma 3.4. Consider the homology theories H(—, Ay) and HP(—, Ay) in 2.6. In the
case (a) of 2.6, assume the following:

(i) K is finitely generated over a prime field and T is mized of weights < 0 (ID]),
(ii) TEx =TSt for any finite separable extension L/K with G, = Gal(K /L) C Gk-.

Then they satisfy the conditions in 3.3 and hence the Lefschetz condition.

The proofs of 3.3 and 3.4 will be given in the last part of this section.

We restate (RES), in the introduction. Let ¢ > 0 be an integer.

(RES), : For any log pair (X,Y;U) and for any irreducible closed subscheme W C X
of dimension < ¢ such that W N U is regular, there exists an admissible map of
log-pairs 7 : (X', Y'") — (X,Y) such that the proper transform of W in X' is
regular and intersects transversally with Y.

(RES)q holds if ch(F) = 0 by Hironaka’s theorem. It is shown in general for ¢ = 2 in
[CIS].

Theorem 3.5. Let H be a homology theory leveled above e which satisfies (L). Let ¢ > 1
be an integer and assume (RES)q_2. Then, for any log-pair ®, the map induced by (3.2):
Yoo © KHo(U) = Ho(mo(Pa), Anr).
is an isomorphism for all a < q. In particular, if X € Ob(S)

KH,(X)=0 for0<a<g.

The proof of 3.5 will be completed in the next section.

We also consider a variant of the main theorem 3.5, where we replace (RES), by a
condition (RS)q4 introduced below. Let d > 1 be an integer and let C; C C be the full
subcategory of the schemes of dimension< d.

(RS)q : For any X € Ob(Cy) integral and proper over k, there exists a proper birational
morphism 7 : X’ — X such that X' is smooth over k. For any U € Ob(C4) smooth
over k, there is an open immersion U — X such that X is projective smooth over
k with X — U, a simple normal crossing divisor on X.
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For an additive category A we denote by Hot(A) the category of complexes in A up
to homotopy. It is triangulated by defining the triangles to be the diagram isomorphic in
Hot(A) to diagrams of the form:

A, -Ls B, = Cone(f) = AJ[1],
where f is any morphism of complexes in A.

Now assume (RS)q. Fix X € Ob(C;) and take a compactification j : X — X, namely
4 is an open immersion and X € C which is proper over k. Let i: Y = X — X — X be
the closed immersion for the complement. By [GS] 1.4, one can find a diagram

y, X

Wyl lm (3.4)
X

y —
where Y, and X, are simplicial objects in S and 7y and 7y are hyperenvelopes. To this
diagram one associates

We(X) == [Yu = X.] := Cone(ZY, = ZX.) € Hot(ZS).
The weight complex of X:
W.(X) = Cor([Y. 25 X.]) € Hot(CorS)

is defined as the image of W,(X) under Cor : ZS — CorS. By the definition of hyperen-
velopes we have a natural quasi-isomorphism of complexes of abelian groups

KCyu([Ys 225 X.]) = KCp(X). (3.5)
By [GS], 1.4, we have the following facts:

Theorem 3.6. Assume (RS)q and that all schemes are in Cy.

(1) Up to canonical isomorphism, Wo(X) depends only on X and not on a choice of
the diagram (3.4).

(2) A proper morphism f : X — Y and an open immersion j : V. — X induce
canonical maps in Hot(CorS)

fa i Wo(X) = WL(Y), J": W (X)—= W, (V).

For a closed immersion v : Z — X and its complement j : V — X, there is a
natural distinguished triangle in Hot(CorS)

Wa(Z) —= Wa(X) L5 WL (V) = Wa(2)[1].
By extending the results in [GS], the following is shown in [J1] 5.13, 5.15 and 5.16.

Theorem 3.7. Assume (RS)q and that all schemes are in Cq. Let A be an abelian group.
(1) There is a canonical homology theory X —— H,(mo(X),A) on Cy such that
Ho(mo(X), A) = Ho(mo(We (X)), A)  (a € Z), (3.6)

and the localization sequences are induced by the exact triangles in 3.6 (2).

(2) For any log-pair ® = (X,Y;U) one has Hy(mo(U), ) = Ho(mo(Ps), A).
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(3) Let Ay be the coefficient group of H. There is a canonical morphism of homology
theories on Cq

Vi s KH.(=) = Hi(mo(=), Au)
such that for any log- pair ® = (X,Y;U) the map

v+ KHy(U) = Hy(mo(U), Ay) (3.7)
coincides with the map defined in (3.2).

By definition, in the situation of (3.4) one has
Hy(mo(X), A) = Ha(mo([Ye = X)), A),
and the maps 7% are induced by the natural map of complexes
KCp([Ye = X)) — Clmo([Ye = X)), Aw) (3.8)

together with the quasi-isomorphism (3.5). For a closed subscheme i : Z — X and its
open complement j : V' — X we have the commutative diagram

KH, (V) —— KH,(Z) —— KHJ(X) —— KH,(V)

lﬁ“ lv% lvﬁ% lﬁ
Hyp1(mo(V),Ag) —— Hy(mo(Z),Ayp) —— Hy(mo(X),Ag) —— Ha(wo(V),AHSB'g)

Since the cone is not a well-defined functor in the homotopy category, this diagram does
not directly follow from Theorem 3.6, but by following the construction in [GS] more
closely.

Theorem 3.8. Let H be a homology theory leveled above e. Assume (RS)q. For any
X € Ob(Cy) we have

V. s KH,(X) = Ho(mo(X),Ay) for all a.
In particular, if X € Ob(S) of dimension < d,
KH,(X)=0 foralla>1.

The proof of 3.8 will be completed in the next section. We will now prove Lemmas 3.3
and 3.4. Here and later we will use the following result.

Lemma 3.9. Let (X,Y;U) be a log-pair. Let v: Z < X be a smooth prime divisor such
that (X,Z UY) is a log-pair. Note that it implies that (Z,Y N Z) is a log-pair and ¢
induces a map of log-pairs (Z,ZNY) — (X,Y). Then there is a natural isomorphism of
complexes in Z.S:

Cone((Z,Z2N0Y). - (X,Y).) — (X, ZUY)..
Proof There are direct sum decompositions in ZS
Yuz)il =yllg (vi-UnZz),

where the right-hand side is the i-th component of the cone, and it is easily checked that
the differentials coincide.

Proof of Lemma 3.5.
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By shift of degree we may assume H is leveled above 0. Let ® = (X,Y;U) be an ample
log pair with d = dim(X). Let Y;,..., Yy be the irreducible components of Y~ and assume
Y] is an ample divisor on X. We want to show

veg @ Hy(U) ~ Hy(mo(Pe), Agr) for a < d = dim(X). (3.10)

First assume d = 1 so that X is a projective smooth curve over B = Spec(k) and Y is
smooth of dimension 0. Then it is easy to see

Ho(mo(®),Ar) =0 fora#1, Hy(m(®.), Ar) ~ Ker(AFY) — AR,

Considering the exact sequence H;(U) N Hy(Y) — Hy(X), (3.10) in this case follows
from (H1) and (H3). Next assume that d > 1 and N = 1. In this case it is obvious from
the definition that H,(m(®P.), Ax) = 0 for all a. Hence (3.10) follows from (H2). Finally
we prove (3.10) in general by induction on N. We may assume d > 1 and N > 1. Write
Z =Y1U---UYx_; and consider the log pairs ¥ = (X, Z; V) and ¥' = (Yy, Yy N Z; W).
There is a natural map of log pairs ¥ — ¥ induced by Yy < X and by Lemma 3.9
we have ®, ~ Cone(¥, — W¥,), which induces the lower exact sequence in the following
commutative diagram

H,W) —— H,(V) —— H((U) —— H, (W) —— H,1(V)

| e | = =
Ho(mo(¥,)) —— Ha(mo(¥e)) —— Ha(mo(Pe)) —— Ha—1(m0(¥,)) —— Ha—1(mo(Ve))

For a < d = dim(X), the isomorphisms in the diagram follow from the induction hypoth-
esis. The leftmost map e, is an isomorhism for a < d — 1 by the induction hypothesis
and surjective for a = d since Hy(m(¥,)) = 0 by reason of dimension. A diagram chase
proves (3.10) and the proof of 3.3 is complete.

Proof of Lemma 3.4.

In case (b) of 2.6 we only have to consider H*(—,Q,/Z,) by 2.8(1). Then (H1) is
obvious and the other conditions are shown by the same argument as the proof of [JS1],
Theorem 3.5. The details are left to the readers. Assume we are in the case (a) of 2.6.
By 2.8(1) it suffices to consider only HP(— Ay). (H1) follows easily from the second
assumption in 3.4. In order to show (H2), let f: X — B = Spec(K) be geometrically
irreducible smooth projecitve of dimension d > 1 and let Z C X be a smooth ample
divisor with U = X — Z. Let K be a separable closure of K and G = Gal(K/K). For a
scheme W over K, write Wz = W xx K. Since U is affine by the assumption, the affine
Lefschetz theorem implies H:(Uz, AY) = 0 for i < d. By the Hochschild-Serre spectral
sequence:

Eg,b = HG(GKa HS(U?? AX)) - Hg+b(U7 AX)a
it implies H” (U, A,,) = 0 for a < d — 1 and HY(U, A)) ~ H3(Uz, AY)9%. By the Poincaré
duality
Hy' (U, Ay) = Hom(H;(Ug, A,) 7%, Q/Z) = H(Ugr, Au(d)) e
where Mg, is the module of coinvariants of Gk for a G x-module M. Thus we have to
show the vanishing of the last group with A,, replaced by A,,. By the localization theory
we have the exact sequence

HY( X%, Ao (d)) = H Uz, Aoo(d)) — H* ™ (Z7, Aoo(d — 1)). (3.11)

By the affine Lefschetz theorem H4(Uzw, Aoo(d)) = HY(Uw, T(d)) ® Q,/Z, is divisible. By
Deligne’s fundamental result [D] the first assumption in 3.4 implies that H(X%, T'(d)) is of
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weights < —d and H¥!(Z#, T(d—1)) of weights < —(d—1). Hence HY(Uz, A (d))q
noting d > 1. This proves (H2).

Finally we show (H3). Let X,U,Y be as in (H3). By the localization theory we have
the exact sequence

0 — H' (X, Aoo(1)) = H' (U, Ao (1)) =5 H* (Y, Asy) = Ao — 0.

=0

K

(3.12)

where we have used the trace isomorphism H?( X7, Aso(1)) =~ As. We have the commu-
tative diagram

HP(U,As)  —2 HP(Y,Ay)

al: Bl:
mo(Y
H'(Ug, A (D) —— (M)
where « is an isomorphism shown by the same argument as before and [ is the sum of
the isomorphisms H (y, Awo) =~ HP (B, As) =~ (Aso)a, for all points y € Y. The map v
is the composite of 0 in (3.12) and the natural isomorphism
HO(Yf; Aoo)GK ~ (Aoo)go}EY)a
which follows from the identification
HO(Y?, Aoo) = @IndK(x)/KAoo; (313)
zeY
where K (z) is the residue field of # € ¥ and Ind g (4)/x Aso denotes the G'x-module induced
from the G (z-module A (Gg(y) = Gal(K/K (z)) C Gk). Thus it remains to show that
0 in (3.12) induces an injection after taking coinvariants for Gx. Since H'(X%, As(1))
is divisible and H'(X3, T(1)) is of weights < —1 by [D], we have H' (X%, Ax(1))c, = 0.
Hence (3.12) induces an isomorphism H'(Ugw, Ao(1))g, =~ Image(d)q, and the exact
sequence
0 — Image(d) — H° (Y, Aso) = Ao — 0.
We thus need to show that the last exact sequence remains exact after taking the coin-
variants for Gg. In view of (3.13), there exists a finite Galois extension L/K such that
the above sequence splits as a sequence of G-modules. Hence
0— Image(a)GL — HO(Yf, Aoo)GL — (Aoo)GL —0

is exact and it remains so after taking the coinvariant of G /x := Gk/G due to the
divisibility of A,,. This proves the desired assertion and the proof of 3.4 is complete.

4. PROOF OF THE MAIN THEOREMS

Let the assumption be as in the previous section. In this section we prove the main
theorems 3.5 and 3.8. We start with 3.8. Its proof is much simpler and conveys the basic
idea more clearly.

Definition 4.1. (Compare 3.2) X € Ob(C4) is H-clean in degree ¢ if ¢ < dim(X) and
the composite of (3.7) and (2.3):

ve&% ¢ Hy o(X) — Hy(mo(X), Ay)
is injective for a = ¢ and surjective for a = ¢ + 1.

Theorem 3.8 follows from the following theorem.
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Theorem 4.2. Let H be a homology theory leveled above e which satisfies (L), and let
EL(X) = @ Hele) = HyofX)

:L‘GX(a)
be the niveau spectral sequence associated to H. Assume (RS)q. If X € Ob(Cy) is H-clean
in degree ¢ — 1 for an integer ¢ > 0, we have

(Z%/B")up(X) =0 ifa+b=qg—1—candb>1—e.

In fact, Theorem 3.8 for X is deduced as follows: By the definition of 7% it suffices to
show 3.8 in case X € Ob(S). Then, by the commutative diagram (3.9), it suffices to show
3.8 for X — Y where Y C X is a smooth hypersurface section. Then X —Y is H-clean in
degree a for all @ < dim(X) since H satisfies (L). Thus we may assume that X is H-clean
in degree a for all a < dim(X). By the factorization

veh © Hy_o(X) -5 E? (X)) = KH,(X) 25 Hy(mo(X), Apr), (4.1)

a,—e

the H-cleanness of X in all degrees a < dim(X) and the fact that H is leveled above e
imply that E5%(X) = 0 for b > 1 —e. Moreover Theorem 4.2 implies that the differentials

& i B (X) = (2/B)areira(X) C B (X) (4.2)

a—r,—e+r—1

are zero for all » > 2. Thus ¢, above is an isomorphism, and so is 7%, as claimed in 3.8.

Proof of Theorem 4.2: By shift of degree we may assume e = 0. Fix an integer ¢ > 0. In
what follows we write for an integer [ > 1

0y(X) = (Z2%°/B" 1 14(X) for X € Ob(C). (4.3)

We prove ©;(X) =0 for all [ > 1 by induction on dim(X) and by (descending) induction
on [. In case that [ sufficiently large the assertion is obvious. The assumption that X is
H-clean in degree ¢ — 1 implies dim(X) > ¢ — 1 and, by using (4.1) as before, that the
edge homomorphism (2.3):

g1 Hy1(X) = KH, 1(X) = EZ | (X)

is injective and hence that E5,(X) = 0ifa+b=¢—1and b > 1. In case dim(X) = ¢—1
it implies the desired assertion by noting that £} ,(X) =0if b < 0 (cf. 2.2 (1)) and that
B o(X) = 0 by reasons of dimension. Assume dim(X) > ¢ and fix ¢ > 1. By induction it
suffices to show ©4(X) = 0 under the following assumption.
(x) : For X' € Ob(C), H-clean in degree ¢ — 1, ©;(X’) = 0 if dim(X’) < dim(X) or
[>t+1.
Choose a € ©,(X). By definition there exists a closed subscheme W C X with
dim(W) = g—t—1 < ¢—2 < dim(X) such that the restriction of a to ©,(U — W)
vanishes. Thus it suffices to show the following:

Claim 4.3. Let X be as above. Let W C X be any closed subscheme with dim(W') <
dim(X). Then there exists a closed subscheme W C Z C X with dim(Z) < dim(X
satisfying the following:
(1) V:= X — Z is H-clean in degree < q.
(2) The induce map j* : O X) — O,(V) is injective, where j : V. — X is the open
mmersion.
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Proof First we show that 4.3 (1) implies (2). Consider the commutative diagram:

l%}“ biZ lv}} lv{,
Hi(mo(V),Am) —— Hi(mo(Z),Ag) —— Hi(mo(X),Ay) —— Hi(mo(V),Ag) ——

By the assumption on X, 7% is injective for ¢ = ¢ — 1 and surjective for i = ¢. By 4.3(1)
74 is injective for ¢ < ¢ and surjective for 1 = ¢ + 1. The diagram chase now shows that
7% is injective for 1 = ¢ — 1 and surjective for i = ¢ so that Z is H-clean in degree in ¢ — 1.
By the induction hyothesis (x) we have ©,(V) =0if l > t+ 1 and 0,(Z) = 0 for VI > 1.
By the fundamental lemma 1.4 this implies 4.3(2).

Now we prove (1). We may clearly assume that X is reduced. By (RS)q there is a
dense open subscheme U C X — W such that there is a compactifcation U < X such
that X € S and that Y := X — U is a simple normal crossing divisor on X. By Bertini’s
theorem (here we use [P] if the base field is finite), we can find a smooth hypersurface
section Z' C X such that (X,Y UZ’) is an ample log-pair. Put V =U\Z"= X — (YU Z')
and Z = X — V. By the construction it is obvious that dim(Z) < dim(X) and W C Z.
Since (X,Y U Z’; V) is an ample log-pair, the assumption (L) implies that V is H-clean
in degree< ¢ by noting dim(V) = dim(X) > ¢. This completes the proof. [J

Next we prove 3.5. The basic idea is the same as in the proof of 3.8 but the application
is more technical. By the same argument as before, the proof is reduced to showing the
following:

Theorem 4.4. Let H be a homology theory leveled above e which satisfies (L). Let ¢ > 1
be an integer and assume (RES)q 2. If a log-pair ® = (X,Y;U) is H-clean in degree
q — 1 (Definition 3.2), we have

(Z2%/B")p(U) =0 ifa+b=q—1—candb>1—e.

Proof By shift of degree we may assume e = 0. Let the notations be as (4.3). As before
we prove ©;(U) = 0 for all [ > 1 by induction on dim(U) and by (descending) induction
on [. For [ sufficiently large or for the case dim(U) < ¢ — 1 the assertion can be shown
in the same way as before. Assume dim(U) > ¢ and fix ¢ > 1. By induction it suffices to
show ©;(U) = 0 under the following assumption.

(xx) : For a log-pair ® = (X', Y";U’), H-clean in degree ¢ — 1, ©,(U") = 0 if dim(U") <

dim(U) or I >t + 1.

Choose a € ©O,(U). By definition there exists a closed subscheme W C U with
dim(W) =g—t -1 < ¢ — 2 < dim(X) such that the restriction of o to ©,(U — W)
vanishes. We note that there is a stratification W > W; D --- D W)y, with W; closed in
U such that W; — W, is irreducible regular. Hence it suffices to show the following.

Claim 4.5. Let ® = (X,Y;U) be as above. Assume dim(U) > q. Let W C X be an
wrreducible closed subscheme of dimension < q — 2 such that Wy := W N U 1is reqular.
Assume (RES)q_2. Then there ezists a log pair U = (X', Y"; V) satisfying the following:

(1) W is H-clean in degrees < q.

(2) There is an open immersion j : V < U such that Wy C U = V.

(3) The induced map j* : ©,(U) — ©,(V) is injective.

We need some preliminaries for the proof of the claim.
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Lemma 4.6. Let ® = (X,Y) and &' = (X', Y') be log-pairs. Let m : ® — & be an
admissible map of log-pairs. Then the induced map m, : Cor(®,) — Cor(®,) is an
isomorphism in Hot(CorS).

Lemma 4.7. Let (X,Y;U) be a log-pair. Let . : W — X be a closed irreducible smooth
subscheme and assume that (W, W NY') is a log-pair. Let wx : X = X be the blowup of
X along W, and let 17, E C X be the proper transform of Y and the exceptional divisor,
respectively. Let

iE:E%Y, g E—-W, iy W —>X
be the natural morphisms. Then ()7, Y) and (E,ENY) are log-pairs, and there is a
natural isomorphism in Hot(ZS):

Cone((E,ENY), 55 (X, ¥)e@ (W, W NY).) ™28 (X,Y)..

Both Lemmas follow from [GS], theorem 1. In fact, with the notation of loc. cit. we
have a complex of complexes
Rov(X,)Y): . =R (VxYE) 5 R (VxYWH)— R (VX X)

for every log pair (X,Y), every ¢ > 0 and every smooth projective variety V. For Lemma
4.6 it suffices to show that the canonical morphism R, . v (X', Y') — R,. v (X,Y) induces
a quasi-isomorphism of the associated total complexes for all ¢ and V. Then [GS] Theorem
1 (see its Corollary 1) implies Lemma 4.6. But it is easy to see that one has an exact
sequence for every log pair (X,Y;U =X —Y)

o= R (VxYE)y 5 R (VYY) 5 R (VX X) = Ry (V xU) =0,
(4.4)

i.e., amorphism totR, . v(X,Y) — R,.(V xU) of complexes which is a quasi-isomorphism.
Since X' —Y" = X — Y in Lemma 4.6, the claim follows.

As for Lemma 4.7, one has a commutative diagram of complexes in ZS:
(B, ENY). 22 (X,7).
lm lwx,* (4.5)

i

W, WnyY), 4= (X,Y),,

and we have to show that the associated total complex has a contracting homotopy.
By [GS] Thm. 1 it suffices to show that for each ¢ > 0 and each V' € S the induced
commutative diagram

Rq,*,V(Ev En ?) L Rq,*,V(ya ?)
lnE, Jm (4.6)
Rq7*7V(W’ W ﬂ Y) iW’* Rq7*7V(X’ Y)

has the property that the cone of the upper line is quasi-isomorphic to the cone of the
lower line. But by (4.4) the upper cone is quasi-isomorphic to the cone of

RV 5 (B — (ENT))) = Ryu(V x (X ~ 7)),
so by the obvious exact sequence

0= R (VX(E-—ENY)) = R.(VX(X=Y)) = Ry (VX (X—(EUY))—0
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the upper cone is quasi-isomorphic to R, .(V x (X — (EUY))). Similarly, the lower
cone is quasi-isomorphic to R,.(V x (X — (W UY))), and one checks that one has a
commmutative diagram

Cone(ip,) —— Ry.(V x (Y— (EUY)))

| l

OOR@(Z‘Wy*) E— Rq,*(v X (X - (W U Y))) )

in which the vertical morphisms are induced by morphisms 7g, and 7x . and the func-

toriality of the Cone on the left, and the projection 7' : X — (EUY) =5 X — (W UY)
induced by 7wy on the right. Now the claim follows, because 7’ is an isomorphism.

Now we start the proof of 4.5. By (RES)q_2 and 4.6 we may assume that W is regular
of dimension < g — 2 intersecting transversally with Y. Consider the following diagrams:

E — X < Y X < U « Ey
b O In l and | O | O |
W — X < Y X <« U « Wy

where X is the blowup of X along W, E'is the exceptional divisor, Y is the proper
transform of ¥ in X, U=X— Y Wy=WnU, Ey = ENU. Note that Y UE is a
simple normal crossing divisor on X. By Bertini’s theorem (as extended to finite fields by
Poonen [P]) we can find hypersurface sections Hy, - -+, Hy C X with N = dim(X) —g+1
(recall that we have assumed dim(X) > ¢) such that Y UEUH, U---U Hy is a simple
normal crossing divisor on X. Then the morphism £, = ENH, N---NH, - W
is surjective for v = 0,...,N. In fact, it follows by induction that the fibers are of
dimension > dim(X) —v —1—dim(W) =N —v+q¢—2 —dim(W) > N —v > 0: This
holds for E = Ej, and if shown for E, with v < N it follows for F, 1, because the fibers of
E, are proper of dimension > 0 and contain the fibers of E,,; = E, N H, 1, as non-empty
divisors, because F, — (E, N H,,1) is affine, and so are its fibers. We get the diagram:

U= © 0, ¢ 0 ¢ - « Oy
_ + + +
Xy © 2 © 7y ¢ - Iy

I I I I
X=27y < 7, & Zy < --- < Iy

T T T T
U=l © U ¢ Uy ¢ - + Uy

where Z,,:Hlﬂ---ﬂH,,, Z, is its image in X, [7,,:2,0[7, U,=72,NUforl <v<N.
Let

Y,=2,nY, E,=Z,NE (0<v<N), V,=2,—(Z,; UY,UE,) (0<v <N -1).

We note that V,, = U, — U, for 0 < v < N and that dim(Z,) = ¢+ N — v — 1 and that
7, is regular off W but may be singular along it. We have the following log pairs:

v, =(Z,, Z,, UY, UE,;V,), (Z,,Y,;U,), (E,,E,NY;E,NU), (W,WnY;WnU).

We claim that ¥, = (X, Z; UY U E) satisfies the desired properties of 4.5. Indeed 4.5(1)
follows from the assumption (L) since H; = Z; is an ample divisor on X = Z,. 4.5(2)
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follows from the fact that W C Zy and Vy = U\ Z;. It remains to show 4.5(3). We set
o OB oTE) 5 o
®yy = Cone((E,, B,NY)e " (Z,,,)e ® (W, WNY).),

where ip, : E, — Z, and 7g, : E, — W are the natural morphisms. There is a natural
morphism

KCy(®,.) — KCy(U,) (4.7)

which is a quasi-isomorphism for 0 < v < N. In fact, we have a commutative diagram

KCu((Ey, B,NY)) 2% KCu((Z,,Y,)s)

WEu*l J/TFZV*

KCu(W,WNY)) 2 KCy(Zo, Z,0Y).)
and, by (3.1), the upper row is quasi-isomorphic to
KCu(E, — (E,NY,)) = KCu(Z, - Y,)
while the lower row is quasi-isomorphic to
KCy(W —(WnNY)) = KCyx(U,) .

Now the claim follows, because by (2.4) the associated total complexes are quasi-isomorphic
to KCy(Z, — (E,UY,)) and KCy(Z, — (W UY,)), respectively, and 7 induces an iso-
morphism Z, — (E, U }7,,) = 7,— (WUuUY,).

By 4.7 we have the natural isomorphism

®yy — (X,Y), in Hot(ZS). (4.8)
Moreover we claim that there are natural isomorphisms

Cone(®y11, " @,.) =5 U, (4.9)

in the category C'(ZS) of complexes in ZS where ¢ : Z,,H — 7, is the natural morphism.
Indeed, for a morphism of complexes f : A — B call the natural sequence of complexes

ALsp Cone(f) a cone sequence. Then we have the following commutative diagram
in C(ZS):

(Eu—l—la El/+1 N ?). —_— (Zz/-i—l; Yu-}—l)o SY (VV, wn Y)o - (1)1/—1—1.
(E,,E,NY), — (Z,Y).eo(W,WNY), — ®,,
(Ey,(E,NY)UEy41)s — (Z, Yy U Zyi1)e —— (Z,,Y,UZ, . UE,).

where the two left vertical sequences and the bottom horizontal sequence are cone se-
quences by 3.9 and by noting that (E, NY)UE,,; = E,N(Y,UZ,1). Now (4.9) follows
from the following elementary lemma.
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Lemma 4.8. Consider a diagram of cone sequences (in any additive category A)

A L, B — Cone(f)

a b Cl

/U S U N Cone(f")

Cone(a) —% Cone(b)

in which the morphisms ¢ and d come from the functoriality of the cone. Then there is a
canonical isomorphism Cone(c) — Cone(d) in the category of complezes in A.

To wit: In degree n it is (B')"® (A) "M@ B" " @ A" — (B)"® B "l (A) g A2
given by “(0',d’,b,a) — (V',b,d’, —a)”.

By (4.9), we get the following commutative diagram with exact rows (the coefficients
Ap are omitted):

KHi+1(VV) — KHZ'(UV+1) — KHZ(UI/) — KHZ(VV)

! ) ) )
KHz'Jrl(\IJuo) — KHi(q)qulo) — KHz(q)lu) - KHZ(\IJVO)
) ] ) )

Hii(mo(V0a)) = Hi(mo(Pui1.)) = Hi(mo(Pua)) — Hi(mo(Vya))

Here the upper vertical maps come from the quasi-isomorphism (3.1) and (4.7), and the
upper long exact sequence comes from the exact sequence of complexes

0— KCy(U,41) - KCy(U,) - KCyx(V,) =0

due to (2.4) and the fact that V,, = U, — U, 1.
By composing with the edge homomorphisms (2.3) we get the commutative diagram
with exact rows

Hi+1 (U,,) e Hi+1 (V,,) e Hi(U,,+1) e HZ(U,,) e HZ(V,,)

s s |50 |5 |5
Hip1(mo(Pue)) —— Hip1(m0(¥0,)) —— Hi(mo(Put1,)) — Hi(mo(Pus)) —— Hi(mo(¥y,))

In view of (4.8) the assumption that (X,Y") is H-clean in degree ¢ — 1 implies that 73,

is injective for i = ¢ — 1 and surjective for i = ¢. Since ¥, is ample and dim(V},) > ¢
(v < N—1), 7§ is an isomorphism for i < ¢ and surjective for i = ¢+1 by the assumption
(L). The diagram chase now shows that for all ¢ with 0 < v < N, fyfby is injective for
t = q — 1 and surjective for ¢+ = q. Then the following facts hold:

(x1) ©;(V,) =0foralll/>1andforalll <v <N —1.

(x2) ©;(Vp) =0foralll > t+1,

(x3) ©,(Uy) =0 for all I > 1.
(x1) and (*2) follow from the induction hypothesis (**) by noting that dim(V},) < dim(U)
if v > 1. (x3) holds since dim(Uy) = ¢ — 1 and 7&1,;1 is injecitve (cf. the argument in the
first step of the induction). Recall V,, = U, — U,;; for 0 < v < N. By the fundamental
lemma 1.4, (x1) and (*3) imply that ©,(U,) = 0 for VI > 1 and for 1 < Vv < N. By
1.4 this assertion for v = 1 together with (*2) implies the injectivity of ©,(U) — ©.(V4),
which proves 4.5(3).
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5. RESULTS WITH FINITE COEFFICIENTS

The main results in §3 show, under the assumption of resolution of singularities, the
vanishing of the Kato homology of a projective smooth variety for a certain homology
theory with infinite coefficient group A (see 2.6). In this section we improve it to the
case of finite coefficient group A,,.

Fix a rational prime ¢. Assume given an inductive system of homology theories:

H = {H(_, An), Lm,n}nZla

where H(—, A,) are homology theories leveled above e on C, a category of schemes over
the base B = Spec(k). It gives rise to a homolgy theory

H(= Ax) © X = Hy(X, M) i=Tlim H(X,A,) for X € Ob(C)

n>1

with ¢, : H(—,A,) — H(—,Ay), a functor of homology theories. We assume that it
induces an exact sequence for each n > 1:

0 — Ho(B, Ay) 2 Hy(B, Aso) > Ho(B, As) — 0. (5.1)

We further assume given, for each integer n > 1, a map of homology theories of degree
-1

By © H(—, Ax) — H(—,Ay) (5.2)

such that for any X € Ob(C) and for any integers m > n, we have the following commu-
tative diagram of exact sequences

0 —— Hy1(X,Ag) /0" =2 H (X, N\,) — Hy(X,Ay)[("] — 0

0 — Hy1(X,Ap) /0™ —— H,(X,A,) —— H,(X,Ax)[{"] —— 0.

Welet KH,(X,A,) and KH,(X,Ay) denote the Kato homology associated to H(—, A,,)
and H(—, Ay) respectively. By definition KH,(X, As) = lim K H,(X, Ay).

n>1

Remark 5.1. The homology theories {H*(—, A,)}n>1 and {HP(—, Ap) }ns1 in 2.6 satisfy
the above assumption.

We now consider the following condition for H(—, A):
(D)4, = For any X € Ob(C) which is connected regular of dimension ¢ with n € X, the
generic point, H, .1(n, A) is divisible by 2.
Remark 5.2.

(1) For the homology theory in 2.4 the condition (D), is implied by the Bloch-Kato
conjecture. We will explain this later in this section.

(2) Inview of (5.3) (D), is equivalent to the injectivity of H,_.(n, An) = Hy—e(n, Aso),
which implies the injectivity of KH (X, A,) - KH, (X, As) for X connected reg-
ular of dimension ¢ since by definition K H,(X, A,,) is a subgroup of H, .(n, A,).

Let
E;ab(X’A”) - @ Ha+b(x7An) = Ha+b(X7An)

:DEX(Q)
be the niveau spectral sequence associated to H(—, A,).
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Theorem 5.3. Let q,d > 1 be integers. Assume that H = H(—, Ay satisfies (L) and
(D) g Assume either (RES)q—2 or (RS)4.

(1) Let ® = (X,Y;U) be a log-pair with dim(X) < d and assume that it is H-clean
in degree ¢ — land q. Then we have for any integer n > 0

(Z=)B") (U, N\,) =0 ifa+b=qg—1—ecandb>1—e.
(2) For any X € Ob(S) of dimension < d, KH,(X,A,) =0 for any integer n > 0.

Proof By shift of degree we may assume e = 0. First we prove (1). Recall that the
H-cleanness of ® in degree ¢ implies ¢ < dim(U). Once (1) is shown in case dim(U) = ¢,
then the case dim(U) > ¢ + 1 is shown by the same argument as in the proof of 4.4 and
4.2. We thus treat the case dim(U) = ¢. It suffices to show that

Yeoa, © Hy1(U,An) = Hy o (mo(@a), Ay)
is injective and that the edge homomorhpsim
¢y + Hy(U,A\,) — KHy(U,Ay) = E;_ (U, A\y)
is surjective. To show the first assertion, we consider the commutative daigram

0 ——  H,(UAL)/" 2% H,(UAN) —— H(UA["] —— 0

zl'ye?i, l'ye‘é ! ‘%lve‘é !

0 —— H,(mo(Pe), A) /0" —— Hy 1(m0(Ps), Ny)) —— Hy1(m0(Ps), Aoo)[("] —— 0

Here Ho(mo(—), An) and He(mo(—), As) are the graph homologies associated to H(—, A,)
and H(—,Ay) (cf. (2.6)), respectively, and the lower exact sequence comes from (5.1).
The commutativity of the left square follows from the assumption that 0, (cf. (5.2)) is
a map of homology theories. The left vertical arrow is an isomorphism and the right
vertical one is injective by the assumption that ® is H-clean in degree ¢ — 1 and ¢. The
desired assertion follows from this. In order to show the second assertion, we consider the
commutative diagram

H,(UA,) —— H,(U,Ax)["]

le% gle%
KH,(U,A,) —2— KH, (U, As)[("]

The right vertical arrow is an isomorphism due to 3.5 and 3.8 in view of the assumption
that ® is H-clean in degree ¢. The map « is surjective by (5.3). Noting dim(U) = ¢,
(D), implies that J is injective. This shows the desired surjectivity.

We now deduce 5.3(2) from (1). We may assume that X is connected of dimension
> ¢. Assume dim(X) = ¢. (D), implies KH,(X,A,) — KH,(X,Aw) and thus the
assertion follows from 3.5 and 3.8. Assume dim(X) > ¢ and proceed by induction on
dim(X). Let Y C X be a smooth hyperplane section and consider the log-pair & =
(X,Y;U) with U = X — Y. By induction KH,(Y,A,) = 0 and the exact sequence
(2.4) implies KH,(X,A,) — KH,(U,A,). Thus it suffices to show KH,(U,A,) = 0.
Since @ is H-clean in degree ¢ — 1 and ¢ by (L), 5.3(1) implies the edge homomorphism
H,(U,A,) = KH,(U, A,,) is surjective so that it suffices to show H,(U, A,,) = 0. Consider
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the commutative diagram

0 —  Hen(U A" =25 H(UN,) ——  HyUAQ" — 0

lee‘éfl l’ye% Nl'ye‘é
0 —— Hyp1(mo(Pe), Aoo) /0" —— Hy(mo(Ps), Ar) —— Hy(mo(Ps), As)[("] —— 0
The left and right vertical arrows are isomorphisms by (L) and the assumption dim(U) =

dim(X) > ¢. By definition H,(m(®.),A,) = 0 for all @ > 1. This shows the desired
assertion and completes the proof of 5.3. [

In the rest of this section we consider the homology theory in Example 2.4: We take
the base B = Spec(F') for a finite field F'. For an integer n > 0 define

H%(X,Z/nZ) = H *(X&, R f'Z/nZ) for f: X — Bin C.
This homology theory is leveled above e = 1 and the Kato complex KCy(X) for X €
Ob(C) is the complex (0.4) in Introduction. We have

HY(X,Z/nZ) = H**“(X,Z/nZ(q)) for X € Ob(C) smooth over B of dimension q.
(5.4)

Now apply Theorem 5.3 to the inductive system {H®(—, A,)}n>1 with A, = Z/("Z.
By (5.4), if X is regular and connected with € X, the generic point, we have

Hyt oy (0, Mo) = Hy' (0, Aoo) = HE (0, Qe/Ze(q)) = lim HE, (n, Z/€"Z(q))-

One easily sees that the surjectivity of the symbol map for a field L:

hi e Ky (L) — H(L, Z,/(Z(q))
implies HY(L, Qy/Z(q)) is [-divisible. Hence condition (BK),, in the introduction implies
(D), in this case. Therefore 5.3 implies the following:

Theorem 5.4. Let X be projective smooth of dimension d over a finite field F'. Lett > 1
be an integer. Assume either t < 4 or (RS)q, or (RES);—o. Assume further (BK);,.
Then we have for any integer n > 0

Z/0"Z a=0

KHYX,Z7)0"7) ~ { 0 0<a<t

Corollary 5.5. Let X be a separated scheme of finite type of dimension d over a finite
field F. Let g,n > 1 be integers. Assume (RS)q and let
V% KHMNX,Z/nZ) — H,(mo(X), Z/nZ)

be the map (3.7) defined for the étale homology theory H®(—,Z/nZ). Assume (BK);,
for all primes l|n. Then ~% is an isomorphism for Ya < t.

Proof By the assumed resolution of singularities and the commutative diagrams (3.9),
5.5 is reduced to the case where X is smooth projective, which follows from 5.4. [

Recall that 5.3 shows not only the vanishing of Kato homology for X smooth projective
but also that of (Z°/B"¢),,(U) for an ample log-pair ® = (X,Y;U). In order to see
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the consequences of this more clearly, we look at E'-terms in lower degrees associated to
the homology theory H®(—, A) with A = Z/nZ:

deg 0 deg 1 deg 2
E},I(U,Z/nZ) : 0 ~ Hgt(x,A(l)) ~ Hélt(x,A(Q)) —
:L‘GU(I) :L‘GU(Q)
Eyo(U,Z/nZ) : ® Hi(z,A) « @ Hy(r,A(1)) « @ Hi(r,A2) «
z€U ) zeU( r€U(2)
E; (U, Z/nZ) : @ Hy(r,A) « @ Hi(x,A(1) « @& H(x,A(2) «
zeU o) zely) z€U(z)

Recall ,
H,(E,_,(U,Z/nZ)) = E._,(U,Z/nZ) = KH* (U, Z/nZ).
We are now interested in
H,(E, (U Z/nZ)) = E?,(U,Z/nZ) and H,(E,y(U,Z/nZ)) = EZ (U, Z/nZ).

Under the assumption of the Bloch-Kato conjecture, E, | (U, Z/nZ) and E, ,(U, Z/nZ) are
identified with the following complexes:

Co(U,Z/nZ) : 0+ @ CH'(z,2;Z/nZ)«+ P CH*(z,3;Z/nZ) <+ P CH(z,4;,Z/nZ) +

z€lq) z€U(2) z€U(3)

CQU,Z/nZ) : P Z/nZ+ P CH'(x,1,Z/nZ)

z€U(g) z€U(1)
+~ P CH*(2,2,Z/nZ)+ P CH(z,3,Z/nZ)+ ---,
:DEU(Q) CUEU(B)

where the terms @ are in degree a and CH®(x, b; Z/nZ) is Bloch’s higher Chow group
Z'EU(a)

with finite coefficient. More precisely, we have the following (see Theorem 6.1 in §6):
Lemma 5.6. There are natural map of complexes
Ci(U,Z/nZ) — E,;(U,Z/nZ) fori=0,1.

The maps are isomorphism for the terms in degrees < t if (BK), holds for all primes
[|n.

We note also that C?(U, Z/nZ) is isomorphic to the following complex due to Nesterenko-
Suslin [NS] and Totaro [To]

P z/nZ + P K (k(x)/n+ P K)(k@)/n+ P K (x(x))/n + -

:DEU(O) CEEU(I) CEEU(Q) CEEU(g)

Now the following result is an immediate consequence of 5.3.

Corollary 5.7. Let X be projective smooth of dimension d over a finite field and let Y C
X be a simple normal crossing divisor on X such that one of its irreducible components
is an ample divisor. Put U =X —Y. Let n > 1 be an integer. Let d = dim(U).

(1) Ho(CY(U,Z/nZ)) = CH*(U)/n = 0 for d > 2.
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(2) H\(CY(U,Z/nZ)) = CHYU,1;Z/nZ) = 0 for d > 3, assuming (BK)s, for all
primes [|n.
(3) Ho(CAUU,Z/nZ)) =0 for d > 4, assuming (BK)4, for all primes l|n.

(4) H3(CYU(U,Z/nZ)) ~ H,(CLU,Z/nZ)) for d > 5, assuming (BK)s, for all primes
[|n and either of (RS)q or (RES)3.

(5) Hy(CAUU,Z/nZ)) ~ Hy(CHU,Z/nZ)) for d > 6, assuming (BK)g, for all primes
[|n and either of (RS)q or (RES),.

6. ETALE CYCLE MAP FOR MOTIVIC COHOMOLOGY OVER FINITE FIELDS

In this section we give an application of the results in the previous section to étale cycle
map for motivic cohomology over finite fields. First we recall briefly some fundamental
facts on motivic cohomology.

Fix a base field F'. Let X be a quasi-projective scheme over F'. For an integer ¢ > 0,
let

q
A7 = Spec(Zlto, ..., t]/(D_t, —1)
v=0
be the algebraic g-simplex. We have Bloch’s cycle complex ([B1])
Zo(X,0) 1= 20(X,2) B 2, (X, 1) D 2,(X, 0).

Here z5(X, q) is the free abelian group on closed integral subschemes of dimension s + ¢
on A% := X x A? which intersect all faces properly where a face of A% is a subscheme
defined by an equation t;, = ---¢;, = 0 for some 0 < 4; < --- < i, < ¢. The boundary
maps of z,(X, e) are given by taking the alternating sum of the pullbacks of a cycle to the
faces. The complex z,(X, ®) is contravariant for flat morphisms (with appropriate shift of
degree) and covariant for proper morphisms. The higher Chow groups of X (resp. with
finite coefficient for an integer n > 1) are defined by

CH,(X,q) = Hy(2,(X,e)) (resp. CH (X, q;Z/nZ) = H,(2,(X,e) @ Z/nZ))).
We have an exact sequence
0 — CH4(X,q)/n — CH,(X,q; Z/nZ) — CH,(X,q — 1)[n] — 0. (6.1)
Assume now that X is equi-dimensional and write
CH"(X,q) = Hy(2"(X,0)), 2'(X,®) = Ziimx)-+ (X, ®).
Assuming further that X is smooth over F', the motivic cohomology of X is defined as:
Hy (X, Z(r)) = CH" (X, 2r — s) = Hy_(2"(X, 0)).
The finite-coefficient versions are also defined similarly. Note
H;(X,Z(r)) =CH"(X,2r —s) =0 for s > 2r.
It is known ([Ge2], Lem.3.1) that the presheaves
2" (—,8) : U— 2" (U,e)

are sheaves for the étale topology on X. We define the complex Z(r)x of sheaves on
the site Xz, as the cohomological complex with z"(—,2r — i) placed in degree i. It is
shown in [B1] and [Ge2], Thm.3.2 that Hj,(X,Z(r)) agrees with H}, (X,Z(r)x), the
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hypercohomology group of Z(r)x. We now recall the following result on the Beilinson-
Lichtenbaum conjecture due to Suslin-Voevodsky [SV] and Geisser-Levine [GL2], Thm.1.5
and [GL1], thm.8.5. For an integer n > 0, let Z/nZ(r) be the object of D’(X;) defined
in (2.8).

Theorem 6.1. Let X be a smooth scheme over F'. Let € : X5y — Xz, be the continuous
map of sites.
(1) There is an étale cycle map
by : €L(r)x @ Z/nZ — T/nZL(r),
which is an isomorphism in D™ (Xg), the derived category of bounded-above com-
plexes of étale sheaves on X.
(2) The map cl%, induces a map
o%  Z(r)x @ Z/nZ — 1<, Re.Z/nZ(r),

which is an isomorphism if (BK),, holds for all primes lln. In particular it
induces

H3,(X,Z/nZ(r)) = CH"(X,2r — s; Z/nZ) ~ H}(X,Z/nZ(r)) for Vs <.

For X smooth over F', we get by 6.1 the canonical map from motivic cohomology to
étale cohomology:

oY Hy(X,Z/nZ(r)) — H(X,Z/nZ(r)).
We rewrite ¢%” 7 by using higher Chow group as:
9. CH"(X,q;Z/nZ) — H (X, Z/nZ(r)). (6.2)

Lemma 6.2. Let F be a finite field and X be smooth of pure dimension d over F Let
q¢ > 0 be an integer and assume (BK) 41, for all primes lln. If r > d, py is an
isomorphism for Vt < q. Forr = d there is a long exact sequence

KHE (X, Z/nZ) — CHY(X, ¢; Z/nZ) AT - q(X Z/nZ(d))

— KH® (X,Z/nZ) — CHY(X,q — 1;Z/n7Z) AT HN (X, Z/nZ(d)) —

q+1

Proof Write ¢ = r — d. By the localization theorem for higher Chow groups ([B2] and
[L]), we have the niveau spectral sequence

Mg, = @ CH"(z,a+b;Z/nZ) = CH' (X, a + b; Z/n7).
:DEX(Q)
By the purity for étale cohomology, we have the niveau spectral sequence

etEab = P HL"(2,Z/nZ(a+c)) = HZ (X, Z/nZ(r)).

z€X(a)

The cyle map py* b preserves the induced filtrations and induces maps on ES%, compatible
with the cycle maps for x € X,:

pireatt o CHY (2, a + b; Z/nZ) — HE"%(x, Z/nZ(a + c)).
By 6.1 (BK)41, for all primes l|n imply that p®™©¢® is an isomorphism if b > ¢ and
a+b<q+1. We note that CHEab =0 for b < c and “E,, = 0 for b < 2¢ — 1 since for

z € X,, cd(k(z)) =a+ 1 and W,Q¥,, =0 for u > a. In case ¢ > 1 it implies that p5*

z,log
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induces CHEZ?,, o~ étEZ?b for a + b < ¢. In case ¢ = 0 it implies that we have an exact
sequence:
ét 2 d e 2d—q
E,, —CH (X,q;Z/nZ) —— H (X,Z/nZ(d))
d,2d—q+1

, +
— 4B, = CHYX,q — 1;Z/nZ) X H2=" (X, Z/nZ(d)) — - --
This completes the proof of the lemma since EZ | = KH'(X,Z/nZ) by definition.
Note that Theorem 0.5 follows immediatelly from Theorem 5.4 and Lemma 6.2.

Theorem 6.3. Let F' be a finite field of characteristic p. Let X be a quasi-projective
equidimensional scheme of pure dimension d over F'.

(1) Assume r > d and (BK)gy1, for all primes ln. Then CH"(X,t;Z/nZ) is finite
for Vt < q.

(2) Assume (RS)q and (BK),yo0 for all primes l|n. Then CHY(X,t;Z/nZ) is finite
for Vt < q.

Proof In fact we show the finiteness of CHy(X,q;Z/nZ) for s < 0 in (1) and that for
s = 0 in (2) without assuming that X is equi-dimensional. In case X is smooth over F
6.3 follows from 6.2 and 5.5 in view of finiteness of étale cohomology H¢, (X, Z/nZ(r)) (For
the prime-to-p part it follows from SGA4%, Th. finitude. For the p-part we need assume
r > d and it follows from a result of Moser [Mo]). We now proceed by the induction
on dim(X). Assume 6.3 is proved in dimension< d. Take a closed subschcme Z C X
such that U := X — Z is smooth over F' and dense in X. We have the localization exact
sequence ([B2] and [L])

CH,(Z,t;Z/nZ) — CH4(X,t; Z/nZ) — CH,(U, t; Z/nZ).
This completes the proof by induction. [

REFERENCES

[B1] S. Bloch, Algebraic cycles and higher algebraic K -theory, Adv. Math. 61 (1986), 267-304.

[B2] S. Bloch, The moving lemma for higher Chow groups, J. Algebraic Geometry 3 (1994), 537—
568.

[B3] S. Bloch, Higher Algebraic K-theory and class field theory for arithmetic surfaces, Ann. of
Math. 114 (1981), 229-265.

[BK] S. Bloch and K. Kato, p-adic etale cohomology, Publ. Math. THES 63 (1986), 107-152.

[BO] S. Bloch and A. Ogus, Gersten’s conjecture and the homology of schemes, Ann. Ec. Norm.
Sup. 4 serie 7 (1974), 181-202.

[CIS] V. Cossart, U. Jannsen and S. Saito, Resolution of singularities for embedded surfaces, in
preparation (see www.mathematik.uni-regensburg.de/Jannsen).

[CT] J.-L. Colliot-Thélene, On the reciprocity sequence in the higher class field theory of function

fields, Algebraic K-Theory and Algebraic Topology (Lake Louise, AB, 1991), (J.F. Jardine
and V.P. Snaith, ed), 35-55, Kluwer Academic Publishers, 1993.

[CTSS]  J.-L. Colliot-Thélene, J.-J. Sansuc and C. Soulé, Torsion dans le groupe de Chow de codimen-
sion deux, Duke Math. J. 50 (1983), 763-801.

[D] P. Deligne, La conjecture de Weil II, Publ. Math. IHES 52 (1981), 313-428.
u . Fujiwara, proof of the absolute purity conjecture (after Gabber), Algebraic Geometry
F K. Fuji A f of the absol ; j fter Gabb Algebraic G
(Azumino, JAPAN, 2001), Advanced Studies in Pure Math. 36 (2002), 153-184
e . Geisser, Tate’s conjecture, algebraic cycles and rationa -theory n characteristic p, K-
Gel T. Gei Tate’ j lgebra: l d jonal K-th in ch 5th K

Theory 13 (1998), 109-122.
[Ge2] T. Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004), 773-794.
[GL1] T. Geisser and M. Levine, The K -theory of fields in characteristic p, Invent. Math. 139 (2000),

459-493.



KATO CONJECTURE AND MOTIVIC COHOMOLOGY OVER FINITE FIELDS 41

T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J.
Reine Angew. 530 (2001), 55-103.

M. Gros, Sur la partie p-primaire du groupe de Chow de codimension deuz, Comm. Algebra
13 (1985), 2407-2420.

H. Gillet and C. Soulé, Descent, motives and K -theory, J. Reine Angew. 478 (1996), 127-176.
C. Weibel, Axzioms for the Norm Residue Isomorphism, K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0809/

L. Nlusie, Compleze de De Rham-Witt et cohomologie cristalline, Ann. Scient. ENS 12 (1979),
501-661.

U. Jannsen, Hasse principles for higher dimensional fields, in preparation (see
www.mathematik.uni-regensburg.de/Jannsen).

U. Jannsen, Some remarks on finite dimensional motives and Murre’s conjecture, in prepara-
tion, www.mathematik.uni-regensburg.de/Jannsen.

U. Jannsen and S. Saito, Kato homology of arithmetic schemes and higher class field theory,
Documenta Math. Extra Volume: Kazuya Kato’s Fiftieth Birthday (2003), 479-538

U. Jannsen and S. Saito, Bertini and Lefschetz theorems for schemes over discrete valuation
rings, in preparation (see www.mathematik.uni-regensburg.de/Jannsen).

U. Jannsen and S. Saito, Finiteness results on motivic cohomology of arithmetic schemes, in
preparation.

U. Jannsen, S. Saito and K. Sato, Etale duality for constructible sheaves on arithmetic schemes,
in preparation (see www.mathematik.uni-regensburg.de/Jannsen).

K. Kato, A Hasse principle for two dimensional global fields, J. fiir die reine und angew. Math.
366 (1986), 142-183.

B. Kahn, équivalences rationnelle et numérique sure certaines variétés de type abélien sur un
corps fini, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), 977-1002.

S.-I. Kimura, Motives are finite dimensional, in some sense, Math. Ann. 331 (2005), 173-201.
K. Kato and S. Saito, Unramified class field theory of arithmetic surfaces, Ann. of Math. 118
(1985), 241-275.

K. Kato and S. Saito, Global class field theory of arithmetic schemes, Am. J. Math. 108 (1986),
297-360.

M.. Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geometry
10 (2001), 299-363.

J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318-344.

T. Moser, A duality theorem for étale p-torsion sheaves on complete varieties over a finite
field, Compositio Math. 117 (1999), 123-152.

A.S. Merkurjev and A.A. Suslin, K-cohomology of Severi-Brauer Varieties and the norm
residue homomorphism, Math. USSR Izvestiya 21 (1983), 307-340.

Y.P. Nesterenko and A.A. Suslin, Homology of the full linear group over a local ring and
Milnor’s K -theory, Math. USSR Izvestiya 34 (1990), 121-145.

O. O’Sullivan, Letters to Y. André and B. Kahn, 29/4/02 and 12/5/02.

B. Poonen, Bertini theorems over finite fields, Ann. of Math. 160 (2004), 1099-1127.

M. Rost, Chow groups with coefficients, Doc. Math. J. 1 (1996), 319-393.

S. Saito and K. Sato, A finite theorem for zero-cycles over p-adic fields, , to appear in Annals
of Mathematics (2009).

A. Suslin, Higher Chow groups and etale cohomology, in: Cycles, Transfer, and Motivic Ho-
mology Theories, Annals of Math. Studies, Princeton University Press.

C. Soulé, Groupes de Chow et K -théorie de variétés sur un corps fini, Math. Ann. 268 (1984),
317-345.

A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite co-
efficients, in: Cycles, Transfer, and Motivic Homology Theories, Annals of Math. Studies,
Princeton University Press.

A. Suslin and S. Joukhovitski, Norm Varieties K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0742/

N. Suwa, A note on Gersten’s conjecture for logarithmic Hodge- Witt sheaves, K-theory 9
(1995), 245-271.

B. Totaro, Milnor K-theory is the simplest part of algebraic K -theory, K-theory 6 (1992),
177-1809.

V. Voevodsky, The Milnor conjecture, Preprint, http://www.math.uiuc.edu/K-theory/170/



42 UWE JANNSEN AND SHUJI SAITO

[V2] V. Voevodsky, On motivic cohomology with Z/l-coefficients, K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/

[V3] V. Voevodsky, Motivic FEilenberg-MacLane spaces, K-theory Preprint Archives,
http://www.math.uiuc.edu/K-theory/0864/

[W1] C. Haesemeyer and C. Weibel, Norm Varieties and the Chain Lemma (after Markus Rost),
K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0900/

[W2] C. Weibel, Patching the Norm Residue Isomorphism Theorem, K-theory Preprint Archives,

http://www.math.uiuc.edu/K-theory/0844/

[EGAII] A. Grothendieck, J. Dieudonné, Eléments de Géométrie Algébrique, II Etude globale
élémentaire de quelques classes de morphismes, Publ. Math. LH.E.S. 8 (1961).

[EGAIII] A. Grothendieck, J. Dieudonné, Eléments de Géométrie Algébrique, IIT Etude cohomologique
des faisceaux cohérent Publ. Math. LH.E.S. 11 (1961) and 17 (1963).



