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Introduction

These lectures are based on a joint work with Alberto Merici and Kay Rülling.
Let K be a field and k ⊆ K be the algebraic closure of its prime subfield. A consequence

of the result of this paper is the following:
1
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Theorem 0.1. Let X/K be a smooth and proper variety and let φ ∈ Aut(X). Then for
all i ∈ N the number dét(φ∗|H i(X,OX)) lies in k×. If ch(K) = 0, it lies in O×k , where
Ok is the integral closure of Z ⊆ k.

The assertion is reduced to the case K is finitely generated over the prime subfield so
that k is a finite filed Fq or a number field. Then Fq and Ok are the integral closure of
the image of the characteristic map Z → K, which in turns is the intersection of all the
discrete valuation rings whose fraction field is K. Therefore, it is enough to show that
for every discrete valuation ring OK ⊆ K and every X smooth and proper over K, there
exists an OK-lattice W ⊂ H i(X,O), which is preserved by φ∗ for any φ ∈ Aut(X).

In case resolutions of singularities hold, we φ extends to a morphism of regular models
X ′ → X , and by results of Chatzistamatiou–Rülling ([?, Theorem 2] for ch(K) = p and
[?, Theorem 1.1.] for ch(K) = 0), we have that H i(X ,O)→ H i(X ′,O) is an isomorphism
so we can choose W as the image of H i(X ,O) → H i(X,O), which implies the desired
assertion.

Our aim is to provide an unconditional proof of a stronger result on the existence of a
canonical integral structure on H i(X,O). A Key idea is to use rigid analytic geometry to
by pass resolution of singularities.

Let K be a complete discrete valuation field with the ring R = OK of integers and a
prime element π. Let SmK be the category of smooth schemes separated of finite type
over K and PrSmK ⊂ Smk be the full subcategory of proper K-schemes.

Let ModR be the abelian category of R-modules and Mod0R (resp. ModfR) be the Serre
subcategory of ModR consisting of such M that annihilated by πe for some e > 0 (resp.
such M that Mtor ∈ Mod0R and M/Mtor is finite over R). Let D(R) be the derived (or
∞) category of complexes of R-modules and D(R)f be its full subcategory of consisting

of complexes whose cohomology groups are in ModfR.
In the following theorem, we consider Q as a category by the total order.

Theorem 0.2. There is an object of Fun(Qop × PrSmop
K ,D(R)f )):

(0.2.1) r ∈ Qop → F(r) ∈ Fun(PrSmop
K ,D(R)

f )

equipped with natural equivalences in Fun(PrSmop
K ,D(K))

lim−→
s→−∞

F(s) ≃ RΓ(−,O) ≃ F(r)⊗R K,

where the latter equivalence is compatible with transition maps F(r)→ F(r′) for r > r′.
If ch(K) = 01, the above functors extend to an object of Fun(Qop × Smop

K ,D(R)f )):

(0.2.2) r ∈ Qop → F(r) ∈ Fun(Smop
K ,D(R)

f )

enjoying the following properties:

(i) For X ∈ SmK , we have an equivalence

lim−→
s→−∞

F(s)(X) ≃ RΓ(X,O) ≃ F(r)(X)⊗R K,

for every smooth compactification X of X over K, where the latter equivalence is

compatible with transition maps F(r) → F(r′) for r > r′. For a map X
′ → X of

such compactifcations, the above equivalences are compatible in an obvious sense.
(ii) (A1-invariance) F(r)(X) ≃ F(r)(X ×K A1

K) for X ∈ SmK .
(iii) (Birational invariance) F(r)(X) ≃ F(r)(U) for any dense open immersion U ↪→

X in SmK .

1But the characteristic of the residue field of OK may be positive.
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(iv) (Tame descent) For X ∈ SmK and Y → X an OK-tame covering in the sense of
[17], we have an equivalence

F(r)(X) ≃ lim←−
∆

(
F(r)(Y )

−→
−→
←−F(r)(Y ×X Y )

−→
−→
−→
←−
←−
F(r)(Y ×X Y ×X Y ) · · ·

)
and a descent spectral sequence

Epq1 = Hq(F(r)(Y ×X(q+1)))⇒ Hp+q(F(r)).
Here, a morphism of schemes f : Y → X is an OK-tame covering if it is an étale
covering and for any x ∈ X and a valuation v on κ(x) trivial over OK , there exists
y ∈ Y lying over x and a valuation w on κ(y) extending v such that Ow/Ov is tame, i.e.
[Frac(Oshw ) : Frac(Oshv )] is prime to the exponential characteristic of the residue field of
Ov, where (−)sh denotes the strict henselization.

To construct such F(r), we introduce a variant of the tame topology defined by Hübner
and Schmidt [17]. For a scheme S, let SchS be the category of schemes separated of finite

type over S. For a morphism U → Ũ of schems, let Spa(U, Ũ) be the set of triples (x, v, ε)

such that x ∈ U , v is a valuation on κ(x) and ε : Spec(Ov)→ Ũ is a map compatible with
Spec(κ(x))→ X (see Definition 5.1).

Definition 0.3. Let K be a complete discrete valuation field with the ring R = OK of
integers and put S = Spec(OK) and η = Spec(K). Let Sch(η,S) be the category whose

objects are pairs (U, Ũ) equipped with an open immersion U ↪→ Ũ over S such that U → S

factors through η ↪→ S. Morphisms (V, Ṽ )→ (U, Ũ) are pairs of morphisms f : V → U in

SchK = Schη and f̃ : Ṽ → Ũ in SchS satisfying the obvious compatibility..

The tame topology on Sch(η,S) is generated by a family {(fi, f̃i) : (Vi, Ṽi)→ (U, Ũ)}i of
maps such that for every (x, v, εv) ∈ Spa(U, Ũ), there is i ∈ I and (y, w, εw) ∈ Spa(Vi, Ṽi)
such that fi(y) = x, w|k(x) = v, and Ow/Ov is tame and the following diagram commutes:

Spec(Ow) Ṽi

Spec(Ov) Ũ .

εw

f̃i

εv

The corresponding sites are denoted by Sch(η,S),t. For (X, X̃) ∈ Sch(η,S), let (X, X̃)t
be the site whose underlying category is the category of objects (U, Ũ) over (X, X̃) with
U → X étale, endowed with the induced topology.

For X ∈ SchK , choose a Nagata compactification X ↪→ X̃ of X → S and define

RΓt(X/OK , F ) = RΓ((X, X̃)t, F|(X,X̃)t
) for F ∈ Shv(Sch(η,S),t).

We prove that RΓt(X/OK , F ) does not depend on the choice of X̃ and extends to a
functor (Lemma 6.7)

RΓt(−/OK ,−) : (SchK)op × Shv(Sch(η,S),t)→ D(Z).

We also prove that the following persheaf on Sch(η,S) belong to Shv(Sch(η,S),t).

Example 0.4. (1) The presheaf O given by O(U, Ũ) = O(U).

(2) The presheaf Ot given by Ot(U, Ũ) = O(Ũ int), where Ũ int is the integral closure

of Ũ in U (Lemma 7.6).
(3) For r = n/m ∈ Q with m ∈ Z≥0 and n ∈ Z, the presheaf given by

Ot(r)(U, Ũ) = {a ∈ O(U)| am ∈ πn
√
πO(Ũ int)}



4 SHUJI SAITO

(cf. Lemma ??). Note Ot(r) ⊂ Ot(r′) ⊂ O for r ≥ r′ and

lim−→
s→−∞

Ot(s) ≃ O ≃ Ot(r)⊗OK
K.

(4) The presheaf Ωq,t given by

Ωq,t(U, Ũ) :=

a ∈ Γ(U,ΩqU )

∣∣∣∣∣∣
for all (x, v, ε) ∈ Spa(U, Ũ) there exists
a finite tame extension (L,w)/(k(x), v),
such that aL ∈ ΩqOw

(log) ⊂ ΩqL

 ,

where aL ∈ ΩqL denotes the pullback of a ∈ F (U) along SpecL → Spec k(x) → U
and ΩqOw

(log) is the degree q-part of the graded Ω∗Ow
-subalgebra of Ω∗L generated

by Ω∗Ow
and dlog(L×) (see Lemma 7.5).

Definition 0.5. F(r) := RΓt(−/OK ,Ot(r)) ∈ Fun((SchK)op,D(Z)).

We will prove F(r) satisfies the properties of Theorem 0.2: The properties (i) and (iv)
follows immediately from the definition. A key ingredient of the proof of (ii), (iii) and the
fact that F(r) for X ∈ SmK takes values in D(R)f is the following comparison theorem:

Fixing c ∈ (0, 1), equip a norm | − | = cvK(−) on K with vK the normalized valuation of
K.

Theorem 0.6. (Theorem ??) Let X ∈ SchK and X ↪→ X̃ ∈ N (X/OK). Let Xrig be the

rigid space over K associated to the formal completion ̂̃X of X̃ along the special fiber. If
X is proper over K, there exists a canonical equivalence

F(r)(X) ≃ RΓ(Xrig,O(s)),

where s = cr and O(s) is a sheaf on Xrig given by O(s)(U) = {f ∈ B| |f |sup < s} for an
affinoid subdomain U = Sp(B) ⊂ Xrig, where | − |sup is the sup norm on B:

|f |sup = sup
x∈Sp(B)

|f(x)|.

The same holds if ch(K) = 0 and X is smooth (not necessarily proper) over K.

Theorem 0.6 in case X proper over K is a special case of the following more general
statement, Theorem 0.7: For (X, X̃) ∈ Sch(η,S) with X = X̃ ⊗OK

K, we will introduce

a subcategory Shv((X, X̃)t)Oint−coh of Shv((X, X̃)t) consisting of coherent Oint-modules

on (X, X̃)t and construct a functor (see (??))

(̂−)
rig

: Shv((X, X̃)t)Oint−coh → Shv(Xrig) : F → F̂ rig

such that Ôt(r)
rig

= O(s) with s = cr. We have the following integral refinement of GAGA
(cf. [10, II, 9.4.2]):

Theorem 0.7. (Theorem ??) If X̃ is proper over OK , (̂−)
rig

induces an equivalence

RΓ((X, X̃)t, F ) ≃ RΓ(Xrig, F̂ rig) for F ∈ Shv((X, X̃)t)Oint−coh.

(iii) of Theorem 0.2 follows immediately from Theorem 0.6 and (ii) follows from an
equivalence

RΓ(Xrig,O(s))→ RΓ(Xrig ×P1,rig
K ,O(s)),

where P1,rig
K is the rigid projective line over K, which follows from the following.

Lemma 0.8. (Lemma ??) For a rigid space V and the projection q : Pn,rig × V → V , we
have Riq∗O(s) = 0 for i > 0.
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Using the base change theorem in rigid geometry (see [9, Th.2.7.4]), the lemma is
deduced from the following theorem due to Bartenwerfer [5, Theorem] and van der Put
[26, Thm. 3.15]. Note that even though K is assumed to be a discrete valuation field in
Theorem 0.2, we need the following theorems 0.9 and 0.10 for K with a non-archimedean
norm which corresponds to a non-discrete valuation of rank one since we need consider
stalks of sheaves over analytic points.

Theorem 0.9. Let K be a non-archimedean field, i.e. a field which is complete with
respect to a nontrivial non-archimedean absolute value | − | : K → R≥0. For a generalized
polydisk D ⊂ BdK = Sp(K⟨z1, . . . , zd⟩), we have

H i(D,O(r)) = 0 for all r > 0 and integers i > 0.

Again, using the base change theorem in rigid geometry, Theorem 0.9 is reduced to the
case d = 1, which is proved by using the Mittag-Leffler decomposition of analytic functions
on the unit disc B1

K : For c1, . . . , cm ∈ K and r1, . . . , rm ∈ R>0, an analytic function f on
B1
K − ∪1≤ν≤m{|z − cν | < rν} is written as

f = g +
∑

1≤ν≤m

∞∑
i=1

aν,i
(z − cν)i

with g ∈ K⟨z⟩, aν,i ∈ K.

Finally, the fact that F(r) forX ∈ SmK takes values in D(R)f follows from the following
theorem which was first shown by Bartenwerfer in [4], [5, Folgerung 3] (see [21, Th.18 and
Cor.18]).

Theorem 0.10. Let K be as in Theorem 0.9 and X be a smooth affinoid space over K.
For r ∈ R>0, there exists π ∈ F with |π| < 1 such that πH i(X,O(r)) = 0 for all i > 0.

Now we explain the strategy of the proof of Theorems 0.6 and 0.7. A key ingredient is
the following.

Theorem 0.11. Let X ↪→ X̃ be an open immersion of noetherian schemes. Let F be a
sheaf of abelian groups on (X, X̃)t

2 such that the following condition is satisfied:

(p) for every (U, Ũ) ∈ (X, X̃)t and x ∈ Ũ , F (Spec(OŨ ,x)×Ũ U,Spec(OŨ ,x)) is a Z(px)-

module, where px is the exponential characteristic of κ(x).

Then, we have a canonical equivalence

H i((X, X̃)t, F ) ∼= lim−→
(Y,Ỹ )→(X,X̃)

H i
ét(Ỹ , FỸét), i ≥ 0,

where FỸét is the étale sheaf on Ỹét given by Ṽ /Ỹ 7→ F (Y ×Ỹ Ṽ , Ṽ ) and the colimit is

indexed by the (cofiltered) category ΛX̃ of modifications (Y, Ỹ )→ (X.X̃).

For F ∈ Shv((X, X̃)t)Oint−coh, Theorem 0.7 follows from a series of equivalences:

RΓ((X, X̃)t, F )
(∗1)
≃ lim−→

(Y,Ỹ )∈ΛX̃

RΓét(Ỹ , FỸét)
(∗2)
≃ lim−→

(Y,Ỹ )∈ΛX̃

RΓzar(Ỹ , FỸzar)

(∗3)
≃ lim−→

(Y,Ỹ )∈ΛX̃

RΓzar(
̂̃Y , F̂Ỹ ) (∗4)

≃ lim−→
Y→ ̂̃X

RΓzar(
̂̃Y , F̂Ỹ ) (∗5)

≃ RΓ(Xrig, F̂ rig)

where FỸzar is the Zariski sheaf on Ỹ defined by the same way as FỸét which is a coherent

OỸ -module by the definition of Shv((X, X̃)t)Oint−coh, and
̂̃Y (resp. F̂Ỹ ) is the formal

completion of Ỹ (resp. FỸzar) along the special fiber and Y→ ̂̃X range over all admissible

2This tame site is defined for any quasi-compact open immersion X ↪→ X̃ of qcqs schemes not only for
(X, X̃) ∈ Sch(η,S) as in Definition 0.3 (see Definition 6.1).
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blowup of ̂̃X. (∗1) follows from Theorem 0.11, (∗2) from the étale (flat) descent for quasi-

coherent sheaves on Ỹét ([35, 03P2]), (∗3) from GAGF ([10, Ch.I Th.9.2.1]), (∗4) from the

fact that by Raynaud-Gruson [35, Tag 081R], any modification Ỹ → X̃ is refined by an

admissible blowup of X̃ which induces an admissible blowup of ̂̃X while any admissible

blowup of ̂̃X is a base change of an admissible blowup of X̃, and (∗5) from natural
equivalences of categories (see Theorem 2.32 and [10, Ch.0, 4.4.3])

Shv(Xrig) ≃ Shv(RZ( ̂̃X)) ≃ lim←−
Z→ ̂̃X

Shv( ̂̃Y zar).

.
Theorem 0.11 is proved using the following comparison of the tame cohomology with

the Čech cohomology

Theorem 0.12. Let F be a sheaf of abelian groups on (X, X̃)t, and assume that every

finite set of points in X̃ is contained in an affine open. Then the natural map

Ȟq((X, X̃)t, F )→ Hq((X, X̃)t, F ).

is an isomorphism for all q, where the left hand side is the Čech cohomology.

The proof of Theorem 0.12 is similar to Artin’s proof that the étale cohomology is
computed as the Čech cohomology ([1]). For this, we need the following result describing

the local rings of the tame topology: We let ˜(X, X̃)τ be the category of pairs T = (T, T̃ )

of affine schemes such that that there exists a cofiltered system {Ti = (Ti, T̃i)}i∈I of

affine objects of (X, X̃)τ such that T = lim←−i∈I Ti and T̃ = lim←−i∈I T̃i. We say that a pair

T = lim←−i∈I Ti ∈
˜(X, X̃)τ is tame local if for every tame covering V u−→ U in (X, X̃)t, the

morphism of sets
lim−→
i∈I

Hom(X,X̃)τ
(Ti,V)→ lim−→

i∈I
Hom(X,X̃)τ

(Ti,U)

is surjective.

Proposition 0.13. A pair T = lim←−i∈I Ti ∈
˜(X, X̃)τ is tame-local if and only if T is

a coproduct of objects of the form (Spec(S), Spec(S̃)) such that S̃ is strictly henselian

local and S is henselian local with S = S̃[1/f ] for a non-zero divisor f ∈ S̃, and that

S̃ = S ×k Ov, where k is the residue field of S equipped with a valuation v such that (k, v)
is tamely closed and Ov is its valuation ring.

https://stacks.math.columbia.edu/tag/081R
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Part 1. Reviews on basic theories

1. Topos theory

1.1. Functoriality of presheaves. A functor u : C → D induces

up : PSh(D)→ PSh(C)

given by upF = F ◦ u, in other words upF (V ) = F (u(V )) for V ∈ C.

Proposition 1.1. There exists a functor called the left Kan extension of F along u

up : PSh(C)→ PSh(D)

which is a left adjoint to the functor up. In other words

HomPSh(C)(F, u
pG) = HomPSh(D)(upF,G)

holds bifunctorially in F ∈ PSh(C) and G ∈ PSh(D).

For V ∈ D, let Iu(V ) denote the category whose objects are pairs (U,φ) with U ∈ C
and φ : V → u(U) and

HomIu(V )((U,φ), (U
′, φ′)) = {f : U → U ′ in C| u(f) ◦ φ = φ′}.

We sometimes drop the superscript u from the notation and we simply write I(V ). For
F ∈ PSh(C), we define

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U) = lim−→
I(V )op

FV ,

where FV ∈ PSh(I(V ),Sets) given by

FV : I(V )op → Sets : (U,φ)→ F (U).

To show that upF ∈ PSh(D), note that for g : V ′ → V in D, we get a functor g : I(V )→
I(V ′) by setting g(U,φ) = (U,φ ◦ g). It induces a map

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U)→ lim−→
(W,ψ)∈I(V ′)op

F (W ) = upF (V
′).

A map of F → F ′ in PSh(C) induces for V ∈ D

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U)→ lim−→
(U,φ)∈I(V )op

F ′(U) = upF (V ).

Thus, we have defined a functor

up : PSh(C)→ PSh(D).

To show that

HomPSh(C)(F, u
pG) = HomPSh(D)(upF,G)

holds bifunctorially in F and G.

Lemma 1.2. Let u : C → D be a functor. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and u commutes with them.

Then, up commutes with fintie limits.

Proof. This follows from the fact that the categories Iu(V )op are filtered by [35, 00X3]. □
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1.2. Sites and sheaves. .

Definition 1.3. A site is given by a pair (C, τ) of a category C and a Grothendieck
pretopology τ which is a function assigning to each object U ∈ C a collection Cov(U) of
families of morphisms {Ui → U}i∈I , called coverings family of U , satisfying the following
axioms:

(i) If V → U is an isomorphism, we have {V → U} ∈ Cov(U).
(ii) If {Ui → U}i∈I ∈ Cov(U) and {Vij → Ui}jinJi ∈ Cov(Ui) for each i ∈ I, we have

then {Vij → U}i∈I,j∈Ji ∈ Cov(U).
(iii) If {Ui → U}i∈I ∈ Cov(U) and V → U is a morphism of C, then Ui×U V exists for

all i ∈ I and we have {Ui ×U V → V }i∈I ∈ Cov(V ).

Example 1.4. For a scheme S, let SchS be the category of schemes of finite presentation
over S.

(i) Let ÉtS be the full subcategory of SchS of étale schemes over S. The big étale site
(SchS)ét is the site whose underlying category is SchS and whose coverings are
étale covering3. The small étale site (SchX)ét is the full subcategory of (SchS)ét
whose objects are those U/S such that U → S is étale. A covering of Sét is any
étale covering {Ui → U} with U ∈ Sét.

Definition 1.5. Let C be a site, and let F be a presheaf of sets on C. We say F is a sheaf
if for every U ∈ C and every covering {Ui → U}i∈I ∈ Cov(U) the diagram

F (U)→
∏
i∈I
F (Ui)

pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗0 and pr∗1. We let Shv(C) ⊂ PSh(C) denote
the full subcategory of sheaves (of sets).

Lemma 1.6. Let F : I → Shv(C) be a diagram. Then lim←−I F exists and is equal to the

limit in PSh(C).

Proposition 1.7. There exists a functor called the sheafification

a : PSh(C)→ Shv(C)
which is a left adjoint to the inclusion functor i : PSh(C)→ Shv(C). In other words

HomPSh(C)(F,G) = HomShv(C)(aF,G)

holds bifunctorially in F ∈ PSh(C) and G ∈ Shv(C). Moreover, a is exact.

Let F ∈ PSh(C). For U = {Ui → U}i∈I ∈ Cov(U), put

H0(U, F ) = equalizer
(∏
i∈I
F (Ui)

pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)
)

There is a canonical map F (U)→ H0(U, F )4.
For U ∈ C, let Cov(U) be the category of all coverings of U in C whose morphisms are

the refinements (see §1.5). Note that Cov(U) is not empty since {id : U → U} is an object
of it. By definition the construction U 7→ H0(U, F ) is an object of PSh(Cov(U)). For
F ∈ PSh(C), we define

F+(U) = lim−→
U∈Cov(U)op

H0(U, F ).

Note that F+(U) = Ȟ0(U,F ) is the zeroth Čech cohomology of F over U (see (1.19.2)).

3For T ∈ SchS , an étale covering of T is a family of morphisms {fi : Ti → T}i∈I in SchS such that
each fi is étale and T = ∪fi(Ti).

4This is the zeroth Čech cohomology of F over U with respect to the covering U.
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Lemma 1.8. (1) For F ∈ PSh(C), F+ is an object of PSh(C) equipped with a canon-
ical map F → F+ in PSh(C). Moreover, the construction is functorial, i.e. a map
f : F → G in PSh(C) induces a map f+ : F+ → G+ such that the following
diagram commutes in PSh(C):

F //

f
��

F+

f+

��
G // G+

(2) The presheaf F+ is separated.

Proof. [35, 00WB]. □

Proposition 1.9. For F ∈ PSh(C), (F+)+ ∈ Shv(C) and the induced functor

a = ((−)+)+ : PSh(C)→ Shv(C)
is a left adjoint to the inclusion functor PSh(C)→ Shv(C). Moreover, a is exact.

Proof. [35, 00WB]. The exactness of a follows from the fact that Cov(U) is filtered (the
point is to show a commutes with finite limits).

□

1.3. Functoriality of sheaves.

Definition 1.10. Let C and D be sites. A functor u : C → D is called continuous if for
every V ∈ C and every {Vi → V }i∈I ∈ Cov(V ), we have the following

(i) {u(Vi)→ u(V )}i∈I ∈ Cov(u(V )),
(ii) for any morphism T → V in C, the morphism u(T ×V Vi) → u(T ) ×u(V ) u(Vi) is

an isomorphism.

Example 1.11. For a map f : T → S of schemes, consider

u : ÉtS → ÉtT : X → X ×S T.
Then, u is continuous for the étale topology.

Lemma 1.12. If u : C → D is continuous, up induces

us : Shv(D)→ Shv(C).

Proof. Exercise. □

Lemma 1.13. If u : C → D is continuous, the functor

us : Shv(D)→ Shv(C) : G→ a(up(G))

is a left adjoint to us.

Proof. Follows directly from Propositions 1.9 and 1.1. □

Definition 1.14. Let C and D be sites. A morphism of sites f : D → C is given by a
continuous functor u : C → D such that the functor us is exact.

.

Proposition 1.15. Let u : C → D be a continuous morphism of sites. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and u commutes with them.

Then, u defines a morphism of sites, i.e. us is exact.

Proof. This follows from Lemma 1.2 and the exactness of a from Proposition 1.9 (see [35,
00X6]). □
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Definition 1.16. A topos is the category Shv(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f : Shv(D)→ Shv(C) is given by a adjoint

pair of functors
f∗ : Shv(C)←−−→ Shv(D) : f∗,

namely we have for G ∈ Shv(C) and F ∈ Shv(D)
HomShv(D)(f

∗G,F ) = HomShv(C)(G, f∗F )

bifunctorially, and the functor f∗ commutes with finite limits, i.e., is left exact.
(2) Let C, D, E be sites. Given morphisms of topoi f : Shv(D) → Shv(C) and

g : Shv(E)→ Shv(D), the composition f ◦ g is the morphism of topoi defined by
the functors (f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)∗ = g∗ ◦ f∗.

Lemma 1.17. Given a morphism of sites f : D → C corresponding to the functor u :
C → D, the pair of functors (f∗ = us, f∗ = us) is a morphism of topoi.

Proof. This is obvious from Definition 1.14. □

1.4. Cohomology.

Theorem 1.18. Let C be a site. Then, the category Shv(C,Ab) of abelian sheaves on a
site is an abelian category which has enough injectives.

Proof. [35, 03NU]. □

By the theorem, we can define cohomology as the right-derived functors of the sections
functor F → F (U) for U ∈ C and F ∈ Shv(C,Ab) defined as

H i(U,F ) := RiΓ(U,F ) = H i(Γ(U, I•)),

where F → I• is an injective resolution. To do this, we should check that the functor
Γ(U,−) is left exact. This is true and is part of why the category Shv(CAb) is abelian, see
Modules on Sites, Lemma 3.1. For more general discussion of cohomology on sites (includ-
ing the global sections functor and its right derived functors), see Cohomology on Sites,
Section 2. The family of functors H i(U,−) forms a universal δ-functor Shv(C,Ab)→ Ab.

It sometimes happens that the site C does not have a final object. In this case, we
define the global sections of F ∈ PSh(C, Sét) over C to be the set

Γ(C, F ) = HomPSh(C)(e, F ),

where e is a final object in PSh(C,Sets). In this case, given F ∈ Shv(C,Ab), we define
the i-th cohomology group of Fon C as follows

H i(C, F ) = H i(Γ(C, I•))).
In other words, it is the i-th right derived functor of the global sections functor. The
family of functors H i(C,−) forms a universal δ-functor Shv(C,Ab)→ Ab.

1.5. Čech cohomology. For U ∈ C and U = {Ui → U}i∈I ∈ Cov(U), write Ui0...ip =
Ui0 ×U · · · ×U Uip for the (p + 1)-fold fiber product over U of members of U. Let F ∈
PSh(C,Ab), set

Čp(U, F ) =
∏

(i0...ip)∈Ip+1

F (Ui0...ip).

For s ∈ Čp(U, F ), we denote si0...ip its value in F (Ui0...ip). We define

d : Čp(U, F )→ Čp+1(U, F )

by the formula

d(s)i0...ip+1 =

p+1∑
j=0

(−1)j(si0...îj ...ip+1
)|Ui0...ip+1

.
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It is straightforward to see that d ◦ d = 0, i.e. Č(U, F ) is a complex, which we call Čech
complex associated to F and U. Its cohomology groups

Ȟ i(U, F ) = H i(Č(U, F ))

are called the Čech cohomology groups associated to F and U.

Lemma 1.19. For U ∈ C and U = {Ui → U}i∈I ∈ Cov(U), there is a transformation of
functors:

Shv(C,Ab)→ D(Z) : Č(U,−)→ RΓ(U,−).
Moreover, there is a spectral sequence for F ∈ Shv(C,Ab):

(1.19.1) Ep,q2 = Ȟp(U,Hq(F ))⇒ Hp+q(U,F ),

which is functorial in F , where Hq(F ) ∈ PSh((X, X̃)t,Ab) is given by U → Hq
t (U , F ).

In particular, if H i(Ui0 ×U · · · ×U Uip , F ) = 0 for all i > 0, p ≥ 0 and i0, . . . , ip ∈ I, then
we have Ȟp(U, F ) = Hp(U,F ).

Proof. [35, 03AX, 03AZ, 03F7]. □

For coverings U = {Ui → U}i∈I and V = {Vj → V }j∈J in C, a morphism U → V is
given by a morphism U → V in C, a map of sets α : I → J and for each i ∈ I a morphism
Ui → Vα(i) such that the diagram

Ui //

��

Vα(i)

��
U // V

is commutative. In the special case U = V and U → V is the identity, we call U a
refinement of V. A remark is that if the above V is the empty family, i.e., if J = ∅, then
no family U = {Ui → V }i∈I with I ̸= ∅ can refine V.

For U ∈ C, let Cov(U) be the category of all coverings of U in C whose morphisms
are the refinements5. Note that Cov(U) is not empty since {id : U → U} is an object of
it. Take F ∈ PSh(C,Ab). By definition the construction U 7→ Č(U, F ) is a preshesaf on
Cov(U) with values in the category of complexes of abelian groups. We define

Č(U,F ) := lim−→
U∈Cov(U)op

Č(U, F ),

(1.19.2) Ȟ i(U,F ) := H i(Č(U, F )) = lim−→
U∈Cov(U)op

Ȟ(U, F ),

where the last equality holds since Cov(U) if cofiltered. By Lemma 1.19, we have a
transformation of functors:

Shv(C,Ab)→ D(Z) : Č(U,−)→ RΓ(U,−).
(1.19.1) induces a spectral sequence

(1.19.3) Ep,q2 = Ȟp(U,Hq(F ))⇒ Hp+q(U,F ).

Lemma 1.20. Let U ∈ C and F ∈ PSh(C,Ab).

(1) Ȟ0(U,Hq(F )) = 0 for q > 0. In particular, for every α ∈ Hq(U,F ), there is
U = {Ui → U}i∈I ∈ Cov(U) such that α 7→ 0 in Hq(Ui, F ) for all i ∈ I.

(2) Ȟ i(U,Hq(F )) = H i(U,F ) for i = 0, 1 and there is an exact sequence

0→ Ȟ2(U,F )→ H2(U,F )→ Ȟ1(U,H1(F ))→ Ȟ3(U,F )→ H3(U,F ).

5By our conventions on sites this is indeed a category, i.e., the collection of objects and morphisms
forms a set.
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Proof. ([29, Ch.III 2.9 and 2.10]) (2) follow formally from (1) using (1.19.3). To prove (1),
we show the following claim. Recall the pair of adjoint functors from Proposition 1.7:

a : PSh(C)→←Shv(C) : i.

Claim 1.21. For q > 0, we have aHq(F ) = 0.

Indeed, take an injective resolution F → I• in Shv(C,Ab). Then, Hq(F ) is the q-th
cohomology presheaf of the complex i(I•) in PSh(C,Ab). Since a is exact and commutes
with taking cohomology, aHq(F ) is the q-th cohomology sheaf of the complex ai(I•) = I•

in Shv(C,Ab) so that it must vanishes.

By Proposition 1.9, we have aHq(F ) = (Hq(F )+)+ = 0. Since Hq(F )+ is separated by
Lemma 1.8, the natural map Hq(F )+ → (Hq(F )+)+ is injective. Thus, we get Hq(F )+ =
0, which implies (1). □

Lemma 1.22. For F ∈ PSh(C,Ab), the following are equivalent.

(1) F is flabby, i.e. H i(U,F ) = 0 for any i > 0 and U ∈ C.
(2) Ȟ i(U, F ) = 0 for any i > 0, U ∈ C and U ∈ Cov(U).
(3) Ȟ i(U,F ) = 0 for any i > 0 and U ∈ C.

Proof. ([29, Ch.III 2.12]) (1)⇒(2). By the assumption, Hq(F ) = 0 for q > 0 so (1.19.1)
implies Ȟ i(U, F ) = H i(U,F ) = 0.

(2)⇒(3). Pass to the colimit over U ∈ Cov(U).
(3)⇒(1). Take any U ∈ C. By the assumption, Ȟq(U,F ) = 0 for any q > 0. By Lemma

1.20(2), we get H1(U,F ) = 0 which implies H1(F ) = 0. By the long exact sequence in
Lemma 1.20(2), we get H2(U,F ) = 0 which implies H2(F ) = 0. Assume now Hi(F ) = 0
for i < q. Since Ȟ0(U,Hq(F )) = 0 by Lemma 1.20, we get Ȟ i(U,Hj(F )) = 0 for all
i, j ≥ 0 with i + j ≤ q. By (1.19.3), it implies Hq(U,F ) = 0 so that Hq(F ) = 0. This
complete the proof by induction.

□
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2. Classical rigid analytic spaces

Good references for this section are [2]. [3] and [10].

2.1. Affinoid K-algebras. Let K be a non-archimedean field, i.e. a field which is com-
plete with respect to a nontrivial non-archimedean absolute value, i.e. a map | − | : K →
R≥0 satisfying

(i) |a| = 0⇔ a = 0.
(ii) |ab| = |a||b|.
(iii) |a+ b| ≤ max{|a|, |b|}.

Note that the map v : K → R ∪ {∞} given by v(a) = − log |a| is a valution and there is
one-to- one correspondence between non-archimedean absolute values and valuations with
value group R on K, where the inverse is given by |a| = e−v(a). We put

OK = {x ∈ K| |x| ≤ 1}
and fix π ∈ K with |π| < 1.

For each n > 0, the Tate K-algebra is

Tn := K⟨T1, . . . , Tn⟩ = {f =
∑
ν∈Nn

aνT
ν1
1 · · ·T

νn
n | aν ∈ K, lim|ν|→∞|aν | = 0}

= OK{T1, . . . , Tn} ⊗OK
K,

where OK{T1, . . . , Tn} is the π-adic completion of OK [T1, . . . , Tn]. The Gauss norm6

|| − || : Tn → R≥0 is given by

||f || = sup
ν∈Nn

|aν |.

Definition 2.1. An affinoid K-algebra is a K-algebra A such that there is a surjective
K-algebra homomorphism α : Tn → A. for some n > 0. Such a K-affinoid algebra A
admits a norm || − ||α given by

||α(f)||α = inf
a∈Ker(α)

||f − a|| for f ∈ Tn.

For another surjectiveK=algebra homomorphism β : Tm → A, there are constants c, c′ > 0
such that || − ||α ≤ c|| − ||β ≤ c′|| − ||α.

Definition 2.2. For an affinoid K-algebra A, let Sp(A) be the set of the maximal ideal of
A. For x ∈ Sp(A), the residue field K(x) of x is a finite extension of K so that it carries a
unique extension of | − | on K. For f ∈ A, let f(x) be the image of f in K(x) and |f(x)|
be its absolute value under this extension. There is a semi-norm |−|sup on A on called the
supremum norm given by

|f |sup = sup
x∈Sp(A)

|f(x)|.

We have the following facts:

(1) |−|sup is power-multiplicative, i.e. |fn|sup = (|f |sup)n for f ∈ A and n > 0.
(2) For a K-homomorphism φ : A→ B of K-affinoid algebras and for f ∈ A, we have
|φ(f)|sup ≤ |f |sup.

(3) On Tn, the supremum norm coincides with the Gauss norm.
(4) For a surjective K-algebra homomorphism α : Tn → A, we have |f |sup ≤ ||f ||α for

all f ∈ A. In particular, |f |sup <∞.

Theorem 2.3. (Maximal Principle) For a K-affinoid algebra A and f ∈ A, there exists
x ∈ Sp(A) such that |f |sup = |f(x)|.

6A map ||−|| : A → R≥0 is called a semi-norm if ||0|| = 0, ||1|| = 1, ||fg|| ≤ ||f ||||g|| and ||f−g|| ≤ ||f ||+
||g|| for f, g ∈ A. It is a norm if ||f || = 0 implies f = 0. It is non-archimedian if ||f − g|| ≤ max{||f ||, ||g||}.
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We put

A◦ = {f ∈ A| |f |sup ≤ 1} and A◦◦ = {f ∈ A| |f |sup < 1}.
It is easy to see that A◦ is a subring of A, which is OK-algebra and A◦◦ is its ideal. We
have the following facts:

(1) A◦ is π-adically complete and A = A◦ ⊗OK
K.

(2) A◦ is the set of power-bounded elements, i.e. those f that {||fn||α (n ∈ N)} ⊂ R
is bounded.

(3) A◦◦ is the set of topologically nilpotent elements, i.e. those f that lim
n→∞

||fn||α = 0.

2.2. Affinoid K-spaces. We let AffAlgK denote the category of affinoid K-algebras and
K-algebra homomorphisms. For a morphism φ : A→ B in AffAlgK , we have the induced
map φ∗ : Sp(B) → Sp(A) sending a maximal ideal m ⊂ B to φ−1(m). Thus, we get a
functor

Sp : AffAlgK → Sets .

In this subsection, we introduce a G-topology in the sense of Definition 2.8 to make Sp(A)
for A ∈ AffAlgK a G-topological space.

Definition 2.4. For f1, · · · , fr, g ∈ A which generate the unit ideal, let

U
(f1, . . . , fn

g

)
= {x ∈ Sp(A)| |fi(x)| ≤ |g(x)| (i = 1, . . . , r)}

This is called a rational subdomain of X = Sp(A).

We have the following facts:

Lemma 2.5. (1) For a rational subdomain U ⊂ Sp(A) and a morhpism φ : A → B
in AffAlgK inducing φ∗ : Sp(B) → Sp(A), (φ∗)−1(U) is a rational subdomain of
Sp(B).

(2) For rational subdomain domains U, V ⊂ Sp(A), U ∩ V is a rational subdomain.

(3) As a set, U
(f1,...,fn

g

)
is identified with Sp(AU ) with

AU = A⟨f1
g
, . . . ,

fr
g
⟩ := A⟨w1, . . . , wr⟩/

(
gw1 − f1, . . . , gwr − fr

)
,

where A⟨w1, . . . , wr⟩ = A◦{w1, . . . , wr}⊗A◦A with A◦{w1, . . . , wr} the π-adic com-
pletion of A◦[w1, . . . , wr].

(4) For rational subdomain domains U ⊂ Sp(A) and V ⊂ Sp(AU ), V is a rational
subdomain of Sp(A).

Definition 2.6. A subset U ⊂ Sp(A) is called an affinoid subdomain if the functor
FU : AffAlgK → Sets defined by

FU (B) = {φ ∈ HomAffAlgK (A,B)| φ∗(Sp(B)) ⊂ U} for B ∈ AffAlgK

is representable by AU ∈ AffAlgK : In other words, there is a map ψ : A→ AU in AffAlgK
such that the image of ψ∗ : Sp(AU )→ Sp(A) is contained in U and the following universal
property holds: Any morphisms φ : A→ B such that the image of φ∗ : Sp(B)→ Sp(A) is
contained in U , there is a unique morphism AU → B in AffAlgK which factors A→ B.

We have the following facts:

Lemma 2.7. (1) Under the above notation, ψ∗ is injective and Image(ψ∗) = U .
(2) A rational subdomain is an affinoid subdomain.
(3) For an affinoid subdomain U ⊂ Sp(A) and a morhpism φ : A → B in AffAlgK

inducing φ∗ : Sp(B)→ Sp(A), (φ∗)−1(U) is an affinoid subdomain of Sp(B).
(4) If U is an affinoid subdomain of Sp(A) and V is an affinoid subdomain of U , then

V is an affinoid subdomain of Sp(A).
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(5) (Gerritzen-Grauert) Any affinoid subdomain of Sp(A) is a finite union of rational
subdomains.

(6) See Theorem 2.27 for a characterization of affinoid subdomains in terms of formal
models.

Definition 2.8. A G-topology τ on a topological space X consists of the following datum:

(i) A category Catτ whose objects are open subsets of X and whose morphisms are
open immersions. An object of Catτ is called an admissible open subset.

(ii) For every U ∈ Catτ , a family Covτ (U) of open coverings {Ui → U}i∈I . A member
of Covτ (U) is called an admissible covering of U .

It is required to satisfy the following conditions:

(1) If V → U is an isomorphism in Catτ , then {V → U} ∈ Covτ (U).
(2) If {Ui → U}i∈I ∈ Covτ (U) and {Vij → Ui}j∈Ji ∈ Covτ (Ui), then {Vij →

U}i∈I.j∈Ji ∈ Covτ (U).
(3) {Ui → U}i∈I ∈ Covτ (U) and V → U is a morphism in Catτ , then {Ui ∩ V →

V }i∈I ∈ Covτ (V ).

A G-topological space is a topological space X with a Grothendieck topology τ . A mor-
phism (X, τ) → (Y, λ) of G-topological spaces is a continuous morphism φ : X → Y of
topological spaces such that for any U ∈ Catλ and {Ui → U}i∈I ∈ Covλ(U), we have
φ−1(U) ∈ Catτ and {φ−1(Ui)→ φ−1(U)}i∈I ∈ Covτ (φ

−1(U)).

We let TopG denote the category of G-topological spaces.

Definition 2.9. A sheaf F on a G-topological space (X, τ) is a presheaf (of sets) on Catτ
such that for every U ∈ Catτ and every {Ui → U}i∈I ∈ Covτ (U) the diagram

F (U)→
∏
i∈I
F (Ui)

pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗0 and pr∗1. We let Shv((X, τ)) denote the
category of sheaves (of sets) on (X, τ).

Definition 2.10. For a K-affinoid algebra A, we equip X = Sp(A) with a G-topology τ
for which the objects of Catτ are affinoid subdomains and Covτ (U) for U ∈ Catτ is the
family of finite coverings of U by affinoid subdomains. We call the G-topological space
(X, τ) an affinoid K-space associated to A and denote it simply by Sp(A).

Let AffSpK ⊂ TopG denote the full subcategory of affinoid K-spaces and morphismsm
of G-topological spaces.

By Lemma 2.5(3), any morphism φ : A → B in AffAlgK induces a morphism φ∗ :
Sp(B)→ Sp(A) in AffAlgK . Thus, we get a functor

(AffAlgK)op → AffSpK : A→ Sp(A).

Theorem 2.11. (Tate) Let OX be the presheaf on (X, τ) given by OX(U) = B for an
affinoid subdomain U = Sp(B) ⊂ X. Then, OX is a sheaf on (X, τ).

Example 2.12. Let X = Sp(A) be an affinoid K-space. Using Theorem 2.11, one can show
that the following presheaves on X is a sheaves.

(1) The presheaf O◦ ⊂ OX given by

O◦(B) = {f ∈ B| |f |sup,B ≤ 0} for an affinoid subdomain Sp(B) ⊂ Sp(A),

(2) For r ∈ R>0, the presheaf O(r) ⊂ OX given by

O(r)(B) = {f ∈ B| |f |sup,B < r} for an affinoid subdomain Sp(B) ⊂ Sp(A).

where | − |sup,B is the supremum norm on B.
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2.3. Rigid analytic K-spaces.

Definition 2.13. A G-ringed K-space is a pair (X,OX), where X is a G-topological space
and OX is a sheaf of K-algebras on it. (X,OX) is called a locally G-ringed K-space if,
in addition, all stalks OX,x for x ∈ X are local rings. A morphism of G-ringed K-spaces
(X,OX) → (Y,OY ) is a pair (φ,φ∗), where φ : X → Y is a morphism of G-topological
spaces, and φ∗ is a system of K-homomorphisms φ∗V : OY (V ) → OX(φ−1(V )) with V
varying over the admissible open subsets of Y . It is required that the φ∗V are compatible
with restriction map, i.e. for W ⊂ V , the following diagram commutes:

OY (V )
φ∗
V //

��

OX(φ−1(V ))

��
OY (W )

φ∗
W // OX(φ−1(W ))

If (X,OX) and (Y,OY ) are locally G-ringed K-spaces, a morphism(φ,φ∗) is called a
morphism of locally G-ringed K-spaces if the ring homomorphisms

φ∗x : OY,φ(x) → OX,x for x ∈ X
induced from the φ∗V are local.

If X = Sp(A) is an affinoid K-space, we can consider the associated locally G-ringed
K-space (X,OX), where X is the affinoid K-space associated to A from Definition 2.10
and OX is the structure sheaf from Theorem 2.11.

Definition 2.14. A rigid (analytic) K-space is a locally G-ringed K-space (X,OX) such
that X admits an admissible covering X = ∪i∈IXi such that (Xi,OX |Xi

) is an affinoid
K-space for all i ∈ I. A morphism of rigid K-spaces (X,OX)→ (Y,OY ) is a morphism of
locally G-ringed K-spaces. Let RigK be the category of rigid K-spaces and morphismsm
of locally G-ringed K-spaces. The G-topology on a rigid (analytic) K-space (X,OX) is
called the admissible topology. For an admissible open subset U ⊂ X, the induced locally
G-ringed K-space (U,OX |U ) is a rigid K-space again, which is called an open subspace of
(X,OX).
Remark 2.15. It is clear that every morphism of affinoid K-spaces φ : X → Y induces a
morphism (X,OX) → (Y,OY ) between associated locally G-ringed K-spaces. Thus, we
get a functor

(AffAlgK)op → RigK : A→ (X = Sp(A),OX),
Remark 2.16. By a formal reason, the sheaves O◦ and O(r) defined on affinoid spaces
from Example 2.12 extends to sheaves O◦ and O(r) on rigid K-spaces.

2.4. Formal schemes and Raynaud’s theorem.

Definition 2.17. An OK-algebra A is called of topologically finite type if there is a surjec-
tive homomorphism φ : OK{T1, . . . , Tn} → A of OK-algebras. It is of topologically finite
presentation if, furthermore Ker(φ) is finitely generated. It is admissible if furthermore,
A does not have π-torsion .

Lemma 2.18. (1) An OK-algebra A of topologically finite type is π-adically comoplete
and separated.

(2) An OK-algebra A of topologically finite type with no π-torsion is of topologically
finite presentation.

Proof. [3, §.3 Cor.5 and Cor. 7]. □

Definition 2.19. A formal OK-scheme X is called locally of topologically finite type
(resp. locally of topologically finite presentation, resp. admissible) if there is an open
affine covering X = ∪ı∈IUi with Ui = Spf(Ai), where Ai is an OK-algebra of topologically
finite type (resp. of topologically finite presentation, resp. an admissible OK-algebra).



TAME COHOMOLOGY AND ITS APPLICATIONSLECTURES AT INSTITUTE OF SCIENCE TOKYO IN NOV. 202517

Let fSchtftOK
be the category of formal OK-schemes locally of topologically finite type

and fSchaff,tftOK
be its full subcategory of affine formal OK-schemes . We have an association

(2.19.1) rig : fSchaff,tftOK
→ AffSpK : X = Spf(A)→ Xrig = Sp(A⊗OK

K).

Note that A⊗OK
K is an affinoidK-algebra since OK{T1, . . . , Tn}⊗OK

K = K⟨T1, . . . , Tn⟩.
Since any morphism Spf(A)→ Spf(B) in fSchaff,tftOK

is induced by a uniqueOK-homomorphism
B → A of OK-algebras, this is a functor. Moreover, this functor commutes with localiza-
tions: For f ∈ A, we have

(2.19.2) A{f−1} ⊗OK
K =

(
A{T}/(1− fT )

)
⊗OK

K

= (A⊗OK
K)⟨T ⟩/(1− fT ) = (A⊗OK

K)⟨f−1⟩.
From these, we can deduce the following (see [3, §7.3]).

Proposition 2.20. The functor (2.19.1) extends to a functor

(2.20.1) rig : fSchtftOK
→ RigK : X→ Xrig.

Remark 2.21. If X = Spf(A), Xrig coincides pointwise with the set of all closed points of
Spec(A⊗OK

K), which is the generic fiber of the ordinary scheme Spec(A) although it is
not visible in Spf(A) on the level of points. By this, Xrig is called the generic fiber of X.

In view of Proposition 2.20, one would like to describe all formal OK-schemes X whose
generic fiber Xrig coincides with a given rigid K-space X. Such a formal OK-scheme is
called a formal model of X. To answer this question, we introduce the following.

Definition 2.22. Let X = lim−→n∈N Spec(OX/(π
n)) ∈ fSchtftOK

and let A ⊂ OX be a coherent

open7 ideal. Then the formal OK-scheme

XA = lim−→
n∈N

Proj
( ∞⊕
d=0

Ad ⊗OX
OX/(π

n))
)

together with the canonical projection XA → X is called the formal blowup of X in A.
Any such blowup is referred to as an admissible formal blowup of X. Note XA ∈ fSchtftOK

by the construction.

Definition 2.23. Let C be a category and S be a class of morphisms in C. A localization
of C by S is a category CS together with a functor LS : C → CS such that:

(i) LS(s) is an isomorphism in CS for every s ∈ S.
(ii) If F : C → D is a functor such that F (s) is an isomorphism for every s ∈ S, then

F admits a unique factorization as follows:

C LS //

F
��

CS

G~~
D

where the commutativity of the diagram, as well as the uniqueness of G are meant
up to natural equivalence of functors.

It is known that localizations of categories do always exist.

Proposition 2.24. For X ∈ fSchtftOK
and an admissible blowup Y → X, the induced map

Yrig → Xrig is an isomorphism in RigK . In particular, the functor (2.20.1) factors through

the localization fSchtftOK
→ (fSchtftOK

)Σ by the class Σ of admissible blowups.

Proof. See [3, §8.4, Pr. 2]. □

7namely, πn ∈ A for some n > 0.
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Theorem 2.25. (Raynaud) Let RigqcqsK ⊂ RigK be the full subcategory of quasi-compact

quasi separate rigid K-spaces. Let fSchadOK
⊂ fSchtftOK

be the full subcategory of quasi-

compact quasi-separate admissible OK-formal schemes and (fSchadOK
)Σ be its localization by

the class of admissible blowups. Then, the functor rig from (2.20.1) induces an equivalence
of categories

(2.25.1) rig : (fSchadOK
)Σ ≃ RigqcqsK .

Proof. See [3, §8.4, Th.3]. □

Remark 2.26. For X ∈ fSchadOK
, the category ΣX of admissible blowups X′ → X admits

finite limits so that is cofiltered. This implies that for Y ∈ fSchadOK
, there is a natural

isomorphism

(2.26.1) HomRigK (X
rig,Yrig) = lim−→

X′→X∈ΣX

HomfSchtftOK

(X′,Y).

Theorem 2.27. (Geritzen and Grauert) Let X = Spf(A) ∈ fSchaff,tftOK
and X = Xrig =

Sp(A⊗OK
K). A subset U ⊂ X is an affinoid subdomain in the sense of Definition 2.6 if

and only if there is Y ∈ ΣX and an affine open U ↪→ Y such that U = Urig.

2.5. Riemann-Zariski spaces.

Definition 2.28. Let X ∈ fSchtftOK
and ΣX be the category of admissible blowups Y→ X.

Let RZ(X) ⊆ Arr(fSchtftOK
) be the category whose objects are morphisms U → Y where

Y → X ∈ ΣX and U → Y is a Zariski open immersion. We abbreviate U → Y to (U/Y).

The morphism (U′/Y′)→ (U/Y) in RZ(X) are commutative squares in fSchtftOK
:

U′

��

// U

��
Y′ // Y

Remark 2.29. RZ(X) admits finite limits, and they are calculated termwise. Indeed, the

category Arr(fSchtftOK
) of arrows admits finite limits and they are calculated component

wise: lim←−(Ai/Bi) = (lim←−Ai/ lim←−Bi). If each (Ai/Bi) is in RZ(X), then one checks that

lim←−(Ai/Bi) is again in RZ(X).

Definition 2.30. We equip RZ(X) with the Grothendieck topology τ generated by:

(1) families of {(Ui/Y)→ (U/Y)}i∈I such that {Ui → U}i∈I is a Zariski covering,
(2) families of {(Y′ ×Y U/Y′)→ (U/Y)} for morphisms Y′ → Y in ΣX.

The site (RZ(X), τ) is called the Riemann-Zariski space of X. We will write Shv(RZ(X))
for the topos associated to the topology generated by coverings of the form (1) and (2).

Remark 2.31. Using that for Y′ → Y in ΣX, the diagonal Y′ → Y′ ×Y Y′ is a morphism
in ΣX, one can show that a presheaf on RZ(X) satisfies descent for all families of the form
(2) if and only if it sends each (Y′ ×Y U/Y′)→ (U/Y) to an isomorphism. This implies

(2.31.1) Shv(RZ(X)) ≃ lim←−
Y∈ΣX

Shv(Yzar)

where the limit is along pushforwards f∗ : Shv(Y′zar) → Shv(Yzar) for morphisms f :
Y′ → Y in ΣX, namely an object of the RHS of (2.31.1) is given by a system

(2.31.2) F = {FY ∈ Shv(Yzar)}Y→X∈ΣX

such that

(♠) FY′(U×Y Y′) = FY(U) for every (U/Y) ∈ RZ(X) and Y′ → Y in ΣX.
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If FY are all sheaves of abelian groups, this implies that we have a natural isomorphism

(2.31.3) lim−→
Y→X∈ΣX

H i(Y, FY) ≃ H i(RZ(X),FRZ(X)),

where FRZ(X) = lim←−Y∈ΣX
FY ∈ Shv(RZ(X)) (see [10, Ch.0, 4.4.1]).

Now, we look at a relation of Shv(RZ(X)) and Shv(Xrig) for X ∈ fSchtftOK
. Using

Proposition 2.24, the functor (2.20.1) gives a functor on the categories of open subsets:

RZ(X)→ Xrig : (U/Y)→ Urig ⊂ Yrig = Xrig.

By the construction, this is continuous, i.e. maps coverings to coverings so that it defines
a morphism of sites

γ : Xrig → RZ(X)

which induces a pair of adjoint functors

(2.31.4) γ∗ : Shv(RZ(X))
−→
←−Shv(Xrig) : γ∗,

where γ∗F (U/Y) = F (Urig) for F ∈ Shv(Xrig) and (U/Y) ∈ RZ(X).

Theorem 2.32. (2.31.4) induces a natural equivalence of topoi

Shv(Xrig) ≃ Shv(RZ(X)).

In particular, for FRZ(X) = lim←−Y∈ΣX
FY ∈ Shv(RZ(X)) from (2.31.3), we have

(2.32.1) lim−→
Y→X∈ΣX

H i(Y, FY) ≃ H i(Xrig, γ∗FRZ(X)).

Proof. [10, Th.B.2.5]. □

Remark 2.33. By definition, we have

γ∗FRZ(X)(U
rig) = FY(U) for (U/Y) ∈ RZ(X).

Since such Urig form a basis of the admissible topology of Xrig, this determines γ∗FRZ(X).

Example 2.34. For Y ∈ ΣX and affine open U ⊂ Y, define Oint
Y (U) to be the integral closure

of OY(U) in OY(U)⊗OK
K. Then, one can check that this assignment extends to a sheaf

Oint
Y on Yzar and satisfies f∗Oint

Y′ = Oint
Y for f : Y′ → Y ∈ ΣX. By Remark 2.31, it gives

rise to a sheaf Oint
RZ(X) on RZ(X). Moreover, we can show γ∗Oint

RZ(X) = O◦
Xrig , where the

latter is a sheaf on Xrig from Example 2.12 (see also Remark 2.16).

2.6. Base change theorem. Let X = Sp(A) be a K-affinoid space.

Definition 2.35. An analytic point a of is a semi-norm | − |a : A→ R≥0 satisfying:

(1) |f + g|a ≤ max{|f |a, |g|a} for f, g ∈ A.
(2) |fg|a = |f |a|g|a for f, g ∈ A.
(3) For λ ∈ K, |λ|a = |λ|, where the latter is the norm on K.
(4) | − |a is continuous with respect to the norm topology on A.

A filter of the analytic point a consists of the affinoid subdomain U = Sp(B) ⊂ X for
which | − |a extends to B → R≥0, i.e. a is also an analytic point of U . For a sheaf F on
X, the stalk F at an analytic point a is Fa = lim−→U

F (U), where the colimit is indexed by
the filter of a.

The set ma = {f ∈ A| |f |a = 0} is a maximal ideal of the stalk Oa of the structure sheaf
OX on X and | − |a induces a norm on ka = Oa/ma. We let Fa denotes the completion of
ka with respect to this norm.
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Definition 2.36. An element U = Sp(B) of the filter of an analytic point a of X is
a wide open neighborhood of a if there are f1, . . . , fn ∈ B which generate B over A
such that |fi|a < 1 for all i. For affinoid subdomains V ⊂ U ⊂ X, we say that U is a
wide neighborhood of V in X, if for any analytic point of V , there is an affinoid wide
neighborhood Ua of a in X such that Ua ⊂ U . In this case, we write V ⊂⊂X U . This is
equivalent to that there are f1, . . . , fn ∈ O(U) generating O(U) over O(X) such that

V ⊂ {x ∈ U | |fi(x)| < 1 for i = 1, . . . , n},
For a rational subdomain

V = {x ∈ X| |fi(x)| ≤ |g(x)| (i = 1, . . . , r)}
from Definition 2.4 with f1, · · · , fr, g ∈ A which generate the unit ideal, the family of the
affinoid subdomains

V (r) = {x ∈ X| |fi(x)| ≤ r|g(x)| (i = 1, . . . , r)} (r > 1, r ∈
√
|K×|)}

forms a cofinal family of wide open neighborhood of V in X8.

Definition 2.37. A presheaf F on X is called overconvergent if for any admissible open
V ⊂ X, we have

F (V ) = lim−→
V⊂⊂XU

F (U).

Lemma 2.38. ([9, Lem.2.3.2])

(1) A constant sheaf is overconvergent. For r, s ∈ R with s < r, O(r,∞) = O/O(r)
and O(s, r) = O(r)/O(s) are overconvergent.

(2) If X = ∪
i∈I
Ui is a finite affinoid covering, a sheaf F on X is overconvergnet if and

only if so is its restriction F|Ui
for every i ∈ I.

(3) The category of overconvergnet sheaves (of abelian groups) on X is an exact sub-
category of the category of all sheaves.

(4) For a map f : Y → X of rigid space over K and an overconvergnet sheaf F of
abelian groups on Y , Rif∗F is overconvergent for all i

(5) An overconvergent sheaf F on X is zero if and only if Fa = 0 for all analytic points
a of X.

Theorem 2.39. ([9, Thm.2.7.4]) Let f : Y → X be a quasi-compact morphism of rigid
analytic spaces over K and F be a sheaf of abelian groups on Y . Then, for any analytic
point a of X, there is a canonical isomorphism for all n ≥ 0

(Rnf∗F )a ≃ Hn(Ya, F|Ya),

where Ya is the fiber of f over a, which is a rigid analytic space over Fa (see [9, §2.7]).

8For λ ∈ K with |λ| = r, O(V (r)) = A⟨ f1
λg

, . . . , fn
λg

⟩ and V = {x ∈ V (r)| | fi
λg

(x)| ≤ 1
r
for i = 1, . . . , n}
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3. Valuation theory

3.1. Valuations. We fix some notations and recall definitions from, e.g., [11, 6.2], [17, 2].

Definition 3.1. A valuation field (K, v) consists of a field K endowed with a surjective
group homomorphism v : K× → Γv onto a totally ordered abelian group Γv

9, such that

(3.1.1) v(x+ y) ≤ max{v(x), v(y)}

whenever x+y ̸= 0. We denote by 1 the unit of Γ and the composition law of Γ is denoted
by (x, y)→ xy. It is easy to check that Ov = {x ∈ K| v(x) ≤ 1} is a subring of K and we
called it the valuation ring of (K, v).

It is customary to extend v to K, by adding a new element 0 to Γv setting v(0) := 0.
One can then extend the ordering of Γv to Γv := Γv∪{0} by declaring that 0 is the smallest
element of Γv. By the convention, (3.1.1) holds for every x ∈ K.

We have the following facts (see [11, 6.1,12])

Lemma 3.2. Let (K, v) be a valuation field with the valuation ring Ov.
(1) Every finitely generated ideal of Ov is principal.
(2) Let L be a field extension of K. Then the integral closure W of Ov in L is the

intersection of all the valuation rings of L containing Ov. In particular, Ov is
integrally closed.

(3) If L is an algebraic extension of K and W be the integral closure of Ov in L. Then,
for every prime ideal p ⊂ W , the localization Wp is a valuation ring. Moreover,
the assignment m→ Wm gives a bijection between the set of maximal ideals of W
and the set of valuation rings Ow of L whose associated valuation w extends v.

(4) Let Ohv be the henselization of Ov with the maximal ideal mh
v and Kh = Frac(Ohv ).

Then, Ohv contains the integral closure W of Ov in Kh and we have Ohv = Wq,
where q := mh

v ∩W . By (3), this implies that Ohv is again a valuation ring. The
same argument works also for strict henselizations.

(5) Any finitely generated torsion-free Ov-module is free and any torsion-free Ov-
module is flat. Hence every Ov-module is of Tor-dimension≤ 1.

(6) A local subring of a field L is a valuation ring of L if and only if it is maximal for
the dominance relation on the set of local subrings of L10.

Definition 3.3. Let (K, v : K → Γv) be a valuation field. An extension of valued fields
(E,w : E → Γw) consists of a field extension E/K and a valuation w : E → Γw together
with an embedding j : Γv ↪→ Γw such that w|K = j ◦ v.

Example 3.4. Let (K, v : K× → Γv) be a valuation field and E/K be a field extension.

(1) There always exist valuations on E which extends v ([30, Ch.VI, §1, n.3, Cor.3]).
(2) If E/K is algebraic and purely inseparable, then the extension of v to E is unique.

([30, Ch.VI, §8, n.7, Cor.2]).
(3) If E is the polynomial ring K[X], we can construct extensions of v on E as follows:

Let Γv ↪→ Γ′ be an embedding of ordered groups. For every x0inK and ρ ∈ Γ, we
define the Gauss valuation centered at x0 and with radius ρ:

v(x0,ρ) : K[X]→ Γ ∪ {0},

sending a0+a1(X−x0)+ · · ·+an(X−x0)n to max{v(ai) ·ρi| i = 0, 1, . . . , n} ([30,
16, Ch.VI, §10, n.1, Lemma 1]).

9written multiplicatively
10For local subrings R and S of L, one says that R dominates S if S ⊂ R and mS = mR ∩ S, where mR

and mS are the maximal ideals of R and S respectively. The relation of dominance defines a partial order
structure on the set of local subrings of L.
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3.2. Tame extensions of valuation fields. Let (K, v) be a valuation field with the
valuation ring Ov. Fix an embedding of (K, v) into (K̄, v̄), where K̄ is a separable closure
of K and v̄ is an extension of v to K̄. We denote by (Ksh

v , v
sh) the strict henselization

of (K, v) (inside (K̄, v̄)). A finite separable extension (L,w)/(K, v) of valuation fields is
called unramified (resp. tame), if Ksh

v = Lshw (resp. ([Lshw : Ksh
v ], p) = 1, where p is the

exponential characteristic of the residue field of Ov). The tame closure (Kt, vt) of (K, v)
is the union of all finite tame Galois extensions of (Ksh, vsh). The field Kt is also the fixed
field of K̄ under the tame ramification group

Rv̄/v := {σ ∈ Gal(K̄/K) | σ(Ov̄) ⊂ Ov̄ and
σ(x)

x
− 1 ∈ mv̄ for all x ∈ K̄×}.

We record the following well-known lemma for later reference.

Lemma 3.5. (1) Let (L,w)/(K, v) be a finite separable extension of valuation fields.
Let N/K be a Galois hull of L/K and let w̃ be an extension of w to N . Then
(L,w)/(K, v) is tame if and only if (N, w̃)/(K, v) is tame.

In particular (L,w)/(K, v) is tame if and only if (L,w) is a subextension of
(Kt, vt)/(K, v).

(2) Let (L,w)/(K, v) be a tame extension and let (K ′, v′)/(K, v) be any algebraic ex-
tension of valuation fields. Let L·K ′ be the composition field in an algebraic closure
of K and let w′ be a valuation extending v′. Then (L ·K ′, w′)/(K ′, v′) is tame.

Proof. (1). Note that N sh
w̃ is a Galois hull of Lshw /K

sh
v . Therefore we may assume K,L,N

are strictly henselian valuation fields of characteristic p > 0. Thus if (N, w̃)/(K, v) is tame
then [N : K] = [N : L] · [L : K] is prime to p and hence (L,w)/(K, v) is tame as well. Now
assume (L,w)/(K, v) is tame. Denote by GK ⊃ GL ⊃ GN the absolute Galois groups with
respect to a fixed separable closure K̄ of K, and by P the pro-p-Sylow subgroup of GK ,
which is a normal subgroup. The indices satisfy the following equality (of supernatural
numbers)

[GK : GL] · [GL : P ∩GL] = [GK : P ] · [P : P ∩GL].
As P is a normal subgroup of GK , the intersection P ∩ GL is a normal subgroup of GL
and we have an inclusion of profinite groups GL/GL ∩ P ↪→ G/P . Hence [G : P ] and
[GL : P ∩ GL] are prime to p. By assumption [GK : GL] = [L : K] is prime to p as well.
Thus [P : P ∩GL] = 1, i.e., P = P ∩GL. The Galois hull of L/K is the composition field
(inside K̄) of all the σ(L), where σ runs through all the embeddings L ↪→ K̄. Extending
these σ’s to K-automorphisms of K̄, we find Gσ(L) = σGLσ

−1. Hence GN = ∩σσGLσ−1.
As P is a normal subgroup of GK it follows that P is contained in GN as well. Thus
[GK : P ] = [GK : GN ] · [GN : P ] is prime to p and hence so is [N : K] = [GK : GN ].

(2) follows from (1) and the fact that K ′t = K ′ ·Kt, see [11, 6.2.18]. □

4. Spectral spaces

Definition 4.1. A topological space is called spectral if it is sober11, quasi-compact, the
intersection of two quasi-compact opens is quasi-compact, and the collection of quasi-
compact opens forms a basis for the topology.

Lemma 4.2. For a topological space X, the following conditions are equivalent.

(1) X is spectral.
(2) X is a directed inverse limit of finite sober topological spaces.
(3) X is homeomrophic to Spec(R) for some commutative ring R.

Definition 4.3. Let X be a spectral space. The constructible topology on X is the
topology which has as a base of opens, the sets U and U c for a quasi-compact open U ⊂ X.

11i.e. every nonempty irreducible closed subset has a unique generic point.
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Note that an open U in a spectral space X is retrocompact12 Hence, the constructible
topology can also be characterized as the coarsest topology such that every constructible
subset13 of X is both open and closed. It follows that a subset of X is open (resp. closed)
in the constructible topology if and only if it is a union (resp. intersection) of constructible
subsets. Since the collection of quasi-compact opens is a basis for the topology on X, we
see that the constructible topology is stronger than the given topology on X.

Lemma 4.4. The constructible topology on a sepctral sapce is Hausdorff, totally discon-
nected, and quasi-compact.

Proof. [35, Tag 0901] □

5. Adic spaces

Definition 5.1. For a morphism of schemes X → X̃, let Spa(X, X̃) be the set of triples

(x, v, ε) such that x ∈ X, v is a valuation on k(x) and ε : Spec(Ov) → X̃ is a map

compatible with Spec(k(x)) → X. Let Y → Ỹ be a morphism of schemes and (φ, φ̃) :

(Y, Ỹ )→ (X, X̃) be morphisms such that the following diagram commutative:

(5.1.1) Y
φ //

��

X

��
Ỹ

φ̃ // X̃

Then, we have an induced map Spa(Y, Ỹ ) → Spa(X, X̃)14. We equip Spa(X, X̃) with a

topology as follows: If X = Spec(A) and X̃ = Spec(Ã) are affine, the topology is generated
by the subset of the form15

{(x, v, ε)| v(fi) ≤ v(g) ̸= 0 ∀i = 1, . . . ,m} for f1, . . . , fm, g ∈ A.
In general, we declare that a subset V ⊂ Spa(X, X̃) is open if for any commutative diagram

(5.1.1) where Y and Ỹ are affine, φ is an open immersion and φ̃ is locally of finite type,

the inverse image of V in Spa(Y.Ỹ ) is open.

Lemma 5.2. (1) If X and X̃ are quasi-compact and quasi-separated, then Spa(X, X̃)
is a spectral space, i.e. homeomorphic to Spec(R) for some commutative ring R.

In particular, Spa(X, X̃) is a quasi-compact and quasi-separated topological space.
(2) Let (φ, φ̃) be as (5.1.1) and assume that φ is étale and φ̃ is locally of finite

type. Then, the set of points (y, w, εw) ∈ Spa(Y, Ỹ ) such that the extension
(k(y), w)/(k(φ(y)), w|k(φ(y))) is tame is open as well as the set of points (x, v, εv) ∈
Spa(X, X̃) such that there exists (y, w, εw) ∈ Spa(Y, Ỹ ) mapping to (x, v, εv) such
that the extension (k(y), w)/(k(x), v) is tame.

Proof. (1) follows from [17, Lem.4.3] and (2) from [15, Cor.4.4] and [14, Pr.1.7.8]. □

12i.e. the inclusion map U → X is quasi-compact.
13i.e. a finite union of subsets of the form U ∩ V c where U, V ⊂ X are open and retrocompact in X.
14sending (y, w, ε′) to (x = φ(y), v = w|k(x), ε) with ε : Spec(Ov) → X̃ induced by Spec(k(x)) → X →

X̃, Spec(k(y)) → Y → X̃ and Spec(Ow) → Ỹ → X̃ noting Spec(Ov) = Spec(Ow) ⊔Spec(k(y)) Spec(k(x).
15This dictates that both {(x, v, ε)| v(f) ≤ 1} and {(x, v, ε)| v(f) ̸= 0} be open for f ∈ A.

https://stacks.math.columbia.edu/tag/08KQ


24 SHUJI SAITO

Part 2. Tame cohomology

6. Tame topos

The site below is very much inspired by the definition of the étale and tame site of
a Huber pair (see [14] and [17]). For a scheme S, let SchS be the category of schemes
separated of finite type over S.

Definition 6.1. Let X → X̃ be an open immersion of noetherian schcemes16.

(1) Let (X, X̃)τ be the category of pairs (U, Ũ) equipped with an open immersion

U → Ũ in SchX̃ such that U → X̃ factors through an étale morphism U → X.

Morphisms (V, Ṽ )→ (U, Ũ) are pairs of morphisms f : V → U in Xét and f̃ : Ṽ →
Ũ in SchX̃ satisfying the obvious compatibility. This category has fiber products
given by

(V1, Ṽ1)×(U,Ũ) (V2, Ṽ2) = (V1 ×U V2, Ṽ1 ×Ũ Ṽ2),

and terminal object (X, X̃).

(2) A morphism (f, f̃) : (V, Ṽ )→ (U, Ũ) in (X, X̃)τ is a modification if f is an isomor-

phism and f̃ is proper.
(3) A morphism (f, f̃) : (V, Ṽ ) → (U, Ũ) in (X, X̃)τ is strict étale if f̃ is étale, V =

Ṽ ×Ũ U and f = f̃ ×Ũ Id.

(4) A morphism (f, f̃) : (V, Ṽ ) → (U, Ũ) in (X, X̃)τ is is tame over (x, v, εv) ∈
Spa(U, Ũ) if there is (y, w, εw) ∈ Spa(V, Ṽ ) such that f(y) = x, w|k(x) = v, and
w/v is tamely ramified and the following diagram commutes:

Spec(Ow) Ṽ

Spec(Ov) Ũ .

εw

(f)|y,w≥0 f̃

εv

It is tame if it is tame over any (x, v, εv) ∈ Spa(U, Ũ).

On this category, we will consider the following three topologies:

(1) The strict étale topology which is generated by strict étale coverings
(2) The v-étale topology which is generated by strict étale coverings and modifications.

(3) The tame topology generated by tame coverings, where a family {(fi, f̃i) : (Vi, Ṽi)→
(U, Ũ)}i∈I in (X, X̃)τ is a tame covering if for every (x, v, εv) ∈ Spa(U, Ũ), there

is i ∈ I such that (Vi, Ṽi)→ (U, Ũ) is tame over (x, v, εv).

We let (X, X̃)sét, (X, X̃)vét and (X, X̃)t denote the strict étale, the v-étale and the tame

site on (X, X̃)τ respectively.

(6.1.1) (X, X̃)t
ν−→ (X, X̃)vét

µ−→ (X, X̃)sét

corresponding to the inclusion functors.

Remark 6.2. Note that by the valuative criterion, if f̃ : Ũ ′ → Ũ is separated and universally
closed and U → Ũ ′ is any map, we have a bijection Spa(U, Ũ) ∼= Spa(U, Ũ ′), which is a

homeomorphism if f̃ is of finite type (hence proper), see [15, Lemma 2.2]. In particular,

every modification in (X, X̃)τ is a tame covering.

16The construction can be done for qsqs schemes. Here, we only treat noetherian case for simplicity.
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Lemma 6.3. Consider a commutative diagram of rings

R̃
φ //

f̃
��

R

f

��
Ã

ψ // A

where f and f̃ are of finite presentation. Let {(Bi, B̃i)}i∈I be a filtered system of pairs

of rings and (gi, g̃i)i∈I : (R, R̃)→ {(Bi, B̃i)}i∈I be a system of pairs of maps of rings. Let

B = lim−→Bi and B̃ = lim−→ B̃i and (g, g̃) = lim−→(gi, g̃i) : (R, R̃) → (B, B̃). Then, we have an
isomorphism

lim−→
i∈I

Hom
(R,R̃)

((A, Ã), (Bi, B̃i)) ≃ Hom
(R,R̃)

((A, Ã), (B, B̃)),

which means that for all (h, h̃) : (A, Ã)→ (B, B̃) compatible with (f, f̃) and (g, g̃), there is

i ∈ I and (hi, h̃i) fitting into the following commutative squares of pairs of rings:

(R, R̃) (A, Ã)

(Bi, B̃i) (B, B̃).

(f,f̃)

(gi,g̃i) (h,h̃)(hi
,̃hi

)

Proof. An exercise to use [35, Tag 00QO]. □

Remark 6.4. (1) As X is quasicompact, the tame topology is finitary: any covering

can be refined by a covering of the form g : (V, Ṽ )→ (U, Ũ) for (V, Ṽ ) and (U, Ũ)

in (X, X̃)t.

(2) Let (U, Ũ) ∈ (X, X̃)t and let U be the closure of U in Ũ . Then (U,U)→ (U, Ũ) is
a modification, hence it is a v-étale covering and a tame covering.

(3) Note that for any (U, Ũ) ∈ (X, X̃)t, there exists a finitely generated ideal sheaf

I ⊂ OŨ such that the support of OŨ/I is equal to Ũ \ U . Thus, blowing up Ũ in

such an ideal we obtain a modification (U, Ū)→ (U, Ũ) such that the complement
Ū \ U is the support of an effective Cartier divisor.

Lemma 6.5. Let (X, X̃ ′)→ (X, X̃) be a modification. Then, for any sheaf F ∈ Shv((X, X̃)vét)

and (U, Ũ) ∈ (X, X̃)τ , we have an isomorphism

F (U, Ũ) ∼= F (U, Ũ ×X̃ X̃ ′).

In particular, for γ ∈ {vét, t}, the functors

Shv((X, X̃)γ)→ Shv((X, X̃ ′)γ)

induced by the inclusion (X, X̃ ′)τ → (X, X̃)τ is an equivalence of topoi so that we have
equivalences

RΓγ((X, X̃), F ) ∼= RΓγ((X, X̃
′), F ) for F ∈ Shv((X, X̃)γ ,Ab).

Proof. It suffices to prove it for γ = vét. Let F be a sheaf of sets on (X, X̃)vét. For

(U, Ũ) ∈ (X, X̃)τ with Ũ
′ = Ũ×X̃ X̃

′, (U, Ũ ′)→ (U, Ũ) and the diagonal map δ : (U, Ũ ′)→
(U, Ũ ′ ×Ũ Ũ

′) are modifications so coverings in (X, X̃)vét. Hence,

δ∗ : F (U, Ũ ′ ×Ũ Ũ
′)→ F (U, Ũ ′)

https://stacks.math.columbia.edu/tag/00QO
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is injective and we find

F (U, Ũ) ∼= eq

(
F (U, Ũ ′)

pr∗1
⇒
pr∗2

F (U, Ũ ′ ×Ũ Ũ
′)

)
∼= eq

(
F (U, Ũ ′)

id
⇒
id
F (U, Ũ ′)

)
= F (U, Ũ ′).

Hence, the functor

Shv((X, X̃ ′)vét)→ Shv((X, X̃)vét) : G 7→
(
(U, Ũ) 7→ G(U, Ũ ×X̃ X̃ ′)

)
gives a quasi-inverse of the restiction functor Shv((X, X̃)vét)→ Shv((X, X̃ ′)vét). □

6.1. Tame cohomology over a base. Let η ↪→ S be an open immersion of noetherian
schemes. A basic example is η = Spec(K) and S = Spec(OK) for a complete discrete
valuation field K with the ring OK of integers, or η = S = Spec(k) for a field k.

Definition 6.6. Let Sch(η,S) be the category whose objects are pairs (U, Ũ) equipped with

an open immersion U ↪→ Ũ over S such that U → S factors through η ↪→ S. Morphisms
(V, Ṽ ) → (U, Ũ) are pairs of morphisms f : V → U in Schη and f̃ : Ṽ → Ũ in SchS
satisfying the obvious compatibility.. For (X, X̃) ∈ Sch(η,S), there is a functor ι(X,X̃) :

(X, X̃)τ → Sch(η,S), which is the identity on objects. We define the tame topology on
Sch(η,S) by declaring that the covering families are the images under ι(X,X̃) of the covering

families in (X, X̃)t for all (X, X̃) ∈ Sch(η,S). Let Sch(η,S),t denote the corresponding site.

For F ∈ Shv(Sch(η,S),t) and X ∈ Schη, we define

RΓt(X/S, F ) = lim←−
(X,X̃)

RΓ((X, X̃)t, F|(X,X̃)t
)

where the limit is indexed by the categoryN (X/S) of all Nagata compactificationsX ↪→ X̃

of X → S. By Lemma 6.5, for every X̃ ∈ N (X/S), the projection induces an equivalence

(6.6.1) RΓt(X/S, F ) ≃ RΓ((X, X̃)t, F|(X,X̃)t
).

Lemma 6.7. The association X → RΓt(X/S, F ) extends to a functor

RΓt(−/S, F ) : Schη → D(Z).

Proof. For a morphism f : U → V in Schη, we can construct a commutative diagram

U //

f

��

Ũ

f̃
��

V // Ṽ

where U ↪→ Ũ (resp. V ↪→ Ṽ ) is a Nagata compactifications of U → S (resp. V → S).
Using (6.6.1), this induces a map

f∗ : RΓt(V/S, F ) = RΓt((V, Ṽ ), F )
(f,f̃)∗−→ RΓt(U/S, F ) = RΓt((U, Ũ), F ).

It is standard to check that the construction gives the desired functor.
□
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6.2. Comparison with the tame site of Hübner-Schmidt. Now we compare our
tame site (X, X̃)t with the tame site (X/S)t from [17].

Definition 6.8. Let X → S be a morphism of schemes and let Xét be the category of étale
morphisms U → X. Consider the following Grothendieck topology. A family {Ui → U}i∈I
in Xét is a covering if it is an étale covering and for every (x, v, εv) ∈ Spa(U, S), there is
i ∈ I and (y, w, εw) ∈ Spa(Vi, S) lying over (x, v, εv) such that (k(y), w)/(k(x), v) is tame.
We let (X/S)t denote the site of Xét with the above topology.

Proposition 6.9. Let X → S and X ↪→ X̃ be as before such that there exists a separated
and proper map X̃ → S. Then there are adjoint functors

Shv((X, X̃)t) Shv((X/S)t),u∗

u∗

with u∗ exact, such that for F ∈ Shv((X, X̃)t) and U ∈ (X/S)t affine, u∗F (U) = F (U, Ũ)

for any choice of a Nagata compactification U ↪→ Ũ of U → X̃, and for G ∈ Shv((X/S)t),

u∗G is the sheafification of the presheaf (U, Ũ) 7→ G(U). If (U, Ũ) ∈ (X, X̃)t with Ũ → X̃

separated and proper, then u∗G(U, Ũ) = G(U), in particular G ∼= u∗u
∗G.

Proof. See [24]. □

Example 6.10. Consider the sheaf Ot ∈ Shv((X, X̃)t) from Example 0.4. Then,

u∗Ot(U) = Ot(U, Ũ) = O(Ũ) = O(T ) for U ∈ Xét,

where U ↪→ Ũ is a Nagata compactification of U → X̃ with Ũ normal and Ũ → T → S
is the Stein factorization of the proper morphism Ũ → S. Thus, the functor u∗ loses
information on Ot.

6.3. Affine objects.

Definition 6.11. Let (X, X̃)affine,τ (resp. (X, X̃)int,τ ) be the full subcategory of (X, X̃)τ
whose objects are affine pairs (U, Ũ) = (Spec(A),Spec(Ã)) (resp. such that Ã → A
injective and integrally closed). We make them sites by the restriction of v-étale and tame
topologies.

Lemma 6.12. The inclusions of sites (X, X̃)affine,vét → (X, X̃)vét (resp. (X, X̃)affine,t →
(X, X̃)t) induce equivalence on the topoi. The similar fact holds for (X, X̃)int,τ .

Proof. We write the proof for vét, the proof for t is analogous. We need to check the
properties (1)-(5) of [35, Tag 03A0]: the inclusion is clearly continuous and fully faithful,
therefore (2), (3) and (4) are satisfied. In order to check (1), we need to prove that

every (V, Ṽ ) ∈ (X, X̃)τ can be covered by objects in (X, X̃)affine Consider an affine open

cover ∪i∈I Spec(Bi) of Ṽ , so that (V, Ṽ ) is covered by (Spec(Bi) ∩ V,Spec(Vi)). Since

Ṽ is quasi-separated V ∩ Spec(Bi) is quasi-compact. Consider a basic open cover of
Spec(Bi) ∩ V = ∪j∈Ji Spec(Bi[1/fij ]), with Ji finite and fij not nilpotent: let Ii be the
ideal of Spec(Bi) generated by fij : then V (Ii) is disjoint from Spec(Bi) ∩ V , so that
(Spec(Bi)∩ V,Spec(Bi)) is covered by the modification (Spec(Bi)∩ V,BlV (Ii)(Spec(Bi))).

Finally, BlV (Ii)(Spec(Bi)) is covered by the affine blow-up algebras Spec(Bi[
Ii
fij

]) whose

intersection with Spec(Bi) ∩ V is Spec(Bi[1/fij ]): putting everything together we have a

cover {(Spec(Bi[1/fij ]),Spec(Bi[ Iifij ])) → (V, Ṽ )}i∈I,j∈Ji . Then (5) also holds in a similar

manner. □

6.4. Computation of the v-étale topology.

Lemma 6.13. Every composition V φ1−→ U φ2−→ Y in (X, X̃)τ with φ2 strict étale and φ1 a
modificatioon, there is a modification ψ2 : T → Y such that U ×Y T → Y factors through
a modification U ×Y T → V.

https://stacks.math.columbia.edu/tag/03A0
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Proof. We may assume V → U → Y is of the form (U, Ṽ )
(id,f̃1)−−−−→ (U, Ũ)

(f2,f̃2)−−−−→ (Y, Ỹ ),

where f̃2 is étale and f2 = f̃2 ×Ỹ Y and f̃1 is proper and the identity on U . The following
argument is classical (see [23, Proposition 12.27]): As observed in Remark 6.4, we can

assume that Y is dense in Ỹ is dense. By Raynaud-Gruson [35, Tag 081R], there exists

g̃1 : T̃ → Ỹ a Y -admissible blow-up such that the strict transform Ṽ ′ of Ṽ over T̃ is flat of

finite presentation over T̃ . Note that the map Ṽ ′ → T̃ factors as Ṽ ′
α−→ Ũ×Ỹ T̃

β−→ T̃ , where

β is étale and α is proper inducing an isomorphism over the dense open U = Ũ×Ỹ T̃ ×Ỹ Y .
Moreover, α is flat by [20, Lem.4.15] so it is an isomorphism by [20, Lem.4.16]. Hence, we

get a morphism Ũ×Ỹ T̃ → Ṽ , which is proper and an isomorphism over U . This completes
the proof. □

Lemma 6.14. For F ∈ Shv((X, X̃)sét) and U ∈ (X, X̃)τ , we have

(6.14.1) avét(F )(U) = lim−→
V→U

F (Ṽ )

where the colimit runs along all modifications of U .

Proof. Let αF be the presheaf on (X, X̃)τ defined by the right hand side of (6.14.1).

First, we claim that αF ∈ Shv((X, X̃)vét): By the definition, αF sends modifications
to isomorphisms, so it has descent for those coverings. It remains to prove that αF has
descent for every strict étale covering {Ui → U}i∈I . By a standard reduction, we may

assume I = {1, 2}. Using F ∈ Shv((X, X̃)sét), for any modification V → U , we have

F (V) = F (V ×U U1)×F (V×UU12) F (V ×U U2),
where U12 = U1×U U2. Taking the colimit over V and using Lemma 6.13 and the fact that
filtered colimits commute with fiber products, we get

αF (U) = αF (U1)×αF (U12) αF (U2),
which proves the claim.

Thus, we get a functor α : Shv((X, X̃)sét) → Shv((X, X̃)vét). It suffices to show that

it is a left adjoint of the inclusion i : Shv((X, X̃)vét)→ Shv((X, X̃)sét). By construction
we have a natural transformation id→ iα and by Lemma 6.5 also a natural isomorphism

αi
≃−→ id. The statement thus follows from [28, IV, §1, Theorem 2(v)]. □

Lemma 6.15. Let F be a sheaf of abelian groups on (X, X̃)sét. If I is flabby, i.e.

H i
sét(V, F ) = 0 for any i > 0 and V ∈ (X, X̃)τ , then avétI is flabby as a vét sheaf.

Proof. By Lemma 1.22, for any U ∈ (X, X̃)τ and a strict étale covering U ′ → U , the Čech
complex

0→ I(U)→ I(U ′)→ I(U ′ ×U U ′)→ · · ·
is exact. This implies that for any modification V → U , the Čech complex

0→ I(V)→ I(V ×U U ′)→ I(V ×U U ′ ×U U ′)→ · · ·
is also exact. Noting that filtered colimits are exact, Lemmas 6.13 and 6.14 implies

0→ avétI(U)→ avétI(U ′)→ avétI(U ′ ×U U ′)→ · · ·
is exact. Noting avétI(U) ≃ avétI(V) for any modification V → U , this implies that avétI

is flabby on (X, X̃)vét again by Lemma 1.22. □

Definition 6.16. For U = (U, Ũ) ∈ (X, X̃)vét, let λ
U : (U, Ũ)vét → Ũét be the morphism

of sites defined by the functor

Ũét → (U, Ũ)vét : Ṽ 7→ (Ṽ ×Ũ U, Ṽ ).

It is clear by construction that

(6.16.1) Hq
sét((U, Ũ), F ) = Hq

ét(Ũ , λ
U
∗ F ).

https://stacks.math.columbia.edu/tag/081R
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Lemma 6.17. For F ∈ Shv((X, X̃)vét,Ab) and U = (U, Ũ) ∈ (X, X̃)τ , there is a natural
isomorphism

H i
vét(U , F ) = lim−→

V→U
H i

ét(Ṽ , λ
V
∗ F ),

where the colimit is over the cofiltered category of modifications V → U .

Proof. This is very similar to [6, Th. 1.2.2]. Take a flabby resolution F|(X,X̃)sét
→ I• of the

restriction of F on (X, X̃)sét. By Lemma 6.15, this gives a flabby resolution F → avétI
•

on (X, X̃)vét. Therefore,

H i
vét(U , F ) = H i(avétI

•(U)) (∗1)
= H i( lim−→

V→U
I•(V))

= lim−→
V→U

H i(I•(V)) = lim−→
V→U

H i
sét(V, F )

(∗1)
= lim−→
V→U

H i
ét(Ṽ , λ

V
∗ F ),

where (∗1) follows from Lemma 6.14 and (∗2) from (6.16.1). □
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7. Construction of tame sheaves

Let X ↪→ X̃ be an open immersion of noetherian schemes. We give a method to extend
étale sheaves defined over Xét to sheaves on (X, X̃)t.

7.1. For X = (X, X̃), we let ValsX be the category whose objects are triples (L,w, ε),
where L is a finite separable field extension of a residue field k(x) of a point x ∈ X, w is a

valuation on L, and ε : Spec(Ow)→ X̃ is a morphism, which restricts to the map SpecL→
Spec k(x)→ X, and morphisms (L,w, ε)→ (L′, w′, ε′) are given by valued extensions (the

compatibility with ε is automatic). Note that for any (x, v, ε) ∈ Spa(X, X̃) and any finite
separable extension of valuation fields (L,w)/(k(x), v) uniquely determines an element

(L,w, ε′) ∈ ValsX with ε′ equal to the composition ε′ : SpecOw → SpecOv
ε−→ X̃.

For (L,w, ε) ∈ ValsX we set

(7.1.1) OhX,L = lim−→
SpecL→U→X

O(U) and Oh
X̃,L,w

= OhX,L ×L Ow,

where the direct limit is over all étale maps U → X which factor SpecL → X. Note
that OhX,L is the unique henselian local ring with residue field L which is finite étale

over OhX,x, corresponding to the field extension L/k(x). In particular, the association

(L,w, ε) 7→ OhX,L defines a functor from ValsX to the category of henselian local rings
which are ind-étale over X.

Let F be a sheaf on Xét. We write F (OhX,L) := lim−→SpecL→U étale−→X
F (U). Let

β = {Fw ⊂ F (OhX,L)}(L,w,ε)∈ValsX ,
be a collection of subsets such that

(β1) for any (L,w, ε) → (L1, w1, ε1) in ValsX , the pullback map F (OhX,L) → F (OhX,L1
)

restricts to Fw → Fw1 .

For (U, Ũ) ∈ (X, X̃)t we define

Fβ(U, Ũ) :=

a ∈ F (U)

∣∣∣∣∣∣
for all (x, v, ε) ∈ Spa(U, Ũ) there exists
a finite tame extension (L,w)/(k(x), v),
such that aL ∈ Fw

 ,

where aL denotes the pullback of a ∈ F (U) along SpecOhX,L → U .

Note that by Lemma 3.5 and (β1) it suffices to consider in the definition of Fβ(U, Ũ)
only the finite tame Galois extensions (L,w)/(k(x), v).

Proposition 7.2. The assignment (U, Ũ) 7→ Fβ(U, Ũ) defines a sheaf on (X, X̃)t.

Proof. We start by showing that Fβ is a presheaf. Let (u, ũ) : (U ′, Ũ ′) → (U, Ũ) be a

morphism in (X, X̃)t and take a ∈ Fβ(U, Ũ). Let (y, v, ε) ∈ Spa(U ′, Ũ ′). Set x := u(y) ∈ U
and denote by vx = v|k(x) the restriction of v to k(x). NoteOvx = Ov∩k(x) = Ov×k(y)k(x).
Hence ε : SpecOv → Ũ ′ → Ũ factors uniquely via a map εx : SpecOvx → Ũ so that we

obtain a point (x, vx, εx) ∈ Spa(U, Ũ). By definition there exists a finite tame extension
(L,w)/(k(x), vx) such that aL ∈ Fw. Denote by L1 the composition field of L and k(y) in a
separable closure of k(x) and choose a valuation v1 on L1 extending v. Then the extension
(L1, v1)/(k(y), v) is tame, by Lemma 3.5(2). Now u∗(a)L1 , the pullback of u∗(a) ∈ F (U ′)
along F (U ′) → F (OhX,L1

), is equal to the image of the pullback of aL ∈ F (OhX,L) under

F (OhX,L) → F (OhX,L1
). As aL ∈ Fw we find u∗(a)L1 ∈ Fv1 by (β1) in 7.1. This shows

u∗(a) ∈ Fβ(U ′, Ũ ′). Hence Fβ is a presheaf.

As F is an étale sheaf on X, Fβ will be a sheaf on (X, X̃)t if we show the following: Let

{(Ui, Ũi)→ (U, Ũ)}i∈I be a tame covering in (X, X̃)t and let a ∈ F (U), then

(7.2.1) a|Ui
∈ Fβ(Ui, Ũi), for all i =⇒ a ∈ Fβ(U, Ũ).
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Let (x, v, ε) ∈ Spa(U, Ũ). By definition of tame coverings, we find i ∈ I and a point

(y, w, ε′) ∈ Spa(Ui, Ũi) over (x, v, ε) such that (k(y), w)/(k(x), v) is a finite tame extension.

As a|Ui
∈ Fβ(Ui, Ũi), we find a finite tame extension (L,w1)/(k(y), w) such that (a|Ui

)L =
aL ∈ Fw1 . Hence, we get (7.2.1). □

Remark 7.3. By definition, for all F , β as in 7.1 above, we have a pullback diagram

Fβ(U, Ũ)
∏

lim−→Fw

F (U)
∏

lim−→F (OhU,L)

where:

• the product ranges over all elements (x, v, ε) of Spa(U, Ũ)
• the colimit ranges over all (k(x), v) ⊆ (L,w) finite tame.

This implies that if φ : F → G is a map of sheaves onXét and F and G are equipped with
β-families βF := {Fw} and βG := {Gw} such that for every (U, Ũ) ∈ (X, X̃)t and every

(x, v, ε) ∈ Spa(U, Ũ) there is a cofinal system of tame extensions S(x,v,ε) := {(k(x), v) ⊆
(L,w)} such that the map φ : F (OhX,L)→ G(OhX,L) restricts to a map φw : Fw → Gw for

all (L,w) ∈ Sx,v,ε, then φ induces a map FβF → GβG of sheaves on (X, X̃)t, denoted by φ
as well.

Remark 7.4. Given a collection β as in (7.1) on a sheaf F , we can define a new family

βdiv = {F divw ⊂ F (AL)}(L,w,ε)∈ValsX
by setting

F divw :=

Fw if SpecL maps to a generic point of X
and w is a discrete valuation,

F (AL) else.

If β satisfies (β1), then so does βdiv. Here note that if (L,w, ε)→ (L′, w′, ε′) is a morphism
in ValsX and w is discrete, then w′ is discrete as well. We denote by F divβ := Fβdiv the

corresponding tame sheaf. For sections in F divβ (U, Ũ), we only put conditions induced by
β along tame extensions of discrete valuations on the generic points of U with center in
Ũ , hence Fβ ⊂ F divβ .

Example 7.5. In the following (L,w, ε) is always in ValsX . We set AL = OhX,L and AL,w =

Oh
X̃,L,w

, see (7.1.1) for notation

(1) Let F be a sheaf on Xét. Set Fw,0 = F (AL), if (L,w, ε) ∈ Vals(X,X), and Fw,0 = 0,

else. Set Fw,triv = F (AL), for all (L,w, ε). Then β0 = {Fw,0}(L,w,ε) and βtriv =
{Fw,triv} are families as in 7.1 and we have

ı∗Fβ0 = j!F and ı∗Fβtriv = j∗F,

where j : X → X̃ is the open immersion and ı : (X, X̃)t → X̃ét is the morphism of

sites induced by the functor Ũ 7→ (Ũ/X̃ ×X̃ X, Ũ).
(2) Given a collection β as in (7.1) on a sheaf F , we can define a new family

βdiv = {F divw ⊂ F (AL)}(L,w,ε)∈ValsX
by setting

F divw :=

Fw if SpecL maps to a generic point of X
and w is a discrete valuation,

F (AL) else.
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If β satisfies (β1), then so does βdiv. Here note that if (L,w, ε) → (L′, w′, ε′) is
a morphism in ValsX and w is discrete, then w′ is discrete as well. We denote by

F divβ := Fβdiv the corresponding tame sheaf. For sections in F divβ (U, Ũ) we only
put conditions induced by β along tame extensions of discrete valuations on the
generic points of U with center in Ũ , hence Fβ ⊂ F divβ .

(3) Let F be as above and assume there is a presheaf F̃ on SchX̃ extending F . Then

we can define β
F̃

= {F̃ (AL,w) ⊂ F (AL)}(L,w,ε). We get a sheaf Fβ
F̃
on (X, X̃)t.

Notice that the resulting sheaf ι∗Fβ
F̃
may be different from F̃|X̃ét

, e.g., for F̃ = O,
the structure sheaf on SchX̃ , the sheaf O|X̃ét

is different from ι∗Oβ
F̃
= ι∗Ot, where

Ot is defined in (4) (see Lemma 7.6).
(4) Let F = Ωq be the étale sheaf of qth absolute differential forms on Xét. Denote

by Ω∗AL,w
(log) the graded Ω∗AL,w

-subalgebra of Ω∗AL
generated by dlog(A×L ). Note

ΩqAL,w
⊂ ΩqAL,w

(log). Set

βlog := {ΩqAL,w
(log) ⊂ ΩqAL

}(L,w,ε).

Then βlog satisfies (β1) in 7.1 and we get a sheaf

(7.5.1) Ωq,t := Ωqβlog on (X, X̃)t.

Note for q = 0, we write Ot = Ω0,t. This is a special case of (3), where we take

F̃ to be the structure sheaf O on SchX̃ . Note also that the differential of the de

Rham complex induces a well-defined differential d : Ωq,t → Ωq+1,t giving rise to
a complex of sheaves Ω•,t on (X, X̃)t. Using Remark (2), we get an inlcusion of

sheaves on (X, X̃)t
Ωq,t ⊂ Ωq,div := (Ωqβlog)

div.

Furthermore, given a morphism X̃ → S we can similarly define the complex Ω•,t/S =

Ω•/S,βlog /S
, where βlog /S = {ΩqAL,w/S

(log) ⊂ ΩqAL/S
}(L,w,ε).

(5) Let WnΩ
• denote the p-typical de Rham-Witt complex, it is defined as an étale

sheaf on all schemes by [13]. Denote by WnΩ
∗
AL,w

(log) the graded WnΩ
∗
AL,w

-

subalgebra of WnΩ
∗
AL

generated by dlog[a], a ∈ AL×, where [−] : AL → Wn(AL)

denotes the multiplicative lift. Note WnΩ
q
AL,w

⊂ WnΩ
q
AL,w

(log). Then βlog,n =

{WnΩ
q
AL,w

(log) ⊂ WnΩ
q
AL
}(L,w,ε) satisfies the assumption from 7.1 and we get a

sheaves

WnΩ
q,t :=WnΩ

q
βlog,n

⊂WnΩ
q,div := (WnΩ

q
βlog,n

)div on (X, X̃)t.

Note that the differential, the restriction map, as well as Frobenius and Ver-
schiebung on the de Rham-Witt complex induce well-defined maps on WnΩ

q,t

and WnΩ
q,div. In particular W•Ω

•,t and WnΩ
•,div are Witt complexes in the sense

of [13, Definition 4].

Lemma 7.6. Let Ot := Ω0,t and Odiv := Ω0,div in the notation from 7.5(4). For all

(U, Ũ) ∈ (X, X̃)t we have

Ot(U, Ũ) = O(Ũ int),

where Ũ int denotes the integral closure of Ũ in U . Moreover, if Ũ is a Nagata scheme and
U is normal, then we have

Ot(U, Ũ) = Odiv(U, Ũ).

Proof. By Lemma 6.5 we can assume Ũ = Ũ int. We notice that both sides are contained
in O(U) and that this ”⊃” inclusion holds by definition of the left hand side. As both

sides are sheaves on Ũ , it suffices to check the other inclusion for Ũ affine. As an affine
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open cover U = ∪iUi induces an affine open cover Ũ = Ũ int = ∪iŨ int
i we can assume

(U, Ũ) = (SpecA, Spec Ã) with Ã integrally closed in A. Let x ∈ A \ Ã.

Claim 7.7. There exist a prime ideal p in A and a valuation v on K = Frac(A/p) such

that Ã→ A→ K factors through Ov and v(x) < 0.

Admitting the claim, we also have w(x) < 0 for all (tame) extensions (L,w)/(K, v) of

valuation fields and x cannot lie in Ot(U, Ũ), which completes the proof of the lemma.

We prove the claim. Denote by C = Ã[1/x] the subring of Ax generated by the image

of Ã and 1/x. As x is not integral over Ã it follows from [30, VI, §1, no. 2, Lemma 1], that
Ax is not the zero-ring and that there exists a maximal ideal m ⊂ C such that 1/x ∈ m and

m ∩ Ã is a maximal ideal of Ã. Consider the localization Cm of C. By the flatness of Cm

over C, the inclusion C ↪→ Ax induces an injection of rings Cm = C ⊗C Cm ↪→ Ax ⊗C Cm.
As Cm is not the zero ring, the ring Ax ⊗C Cm is not zero and hence has a prime ideal; it
corresponds to a prime ideal p of A, which does not contain x and has empty intersection
with C \m. Set p0 := C ∩pAx. By construction we have p0 ⊂ m, and in fact this inclusion
is strict as else we would have 1/x ∈ pAx since 1/x ∈ m. Thus, C/p0 is not a field. Set
K0 := Frac(C/p0) ⊂ K := Frac(Ax/pAx) = Frac(A/p). Let v0 be a valuation on K0 such
that C/p0 ⊂ Ov0 ⊂ K0 and that mv0∩C/p0 is the image of m in C/p0. Let v be a valuation
on K extending v0. Thus we obtain a commutative diagram

Ã C/p0 Ov0 Ov

A Ax/pAx K.

Note v(x) = v0(x) < 0 since 1/x ∈ m so that its image in C/p0 is in mv0 . This completes
the proof of the claim.

For the last statement, we observe that as Ũ is Nagata the integral closure Ũ int is finite
over Ũ and hence is locally noetherian again. As U is normal so is Ũ int. We may therefore
assume that Ũ int is noetherian, integral and normal. Hence

Ot(U, Ũ) = O(Ũ int) =
⋂

x∈Ũ int,(1)

OŨ int,x = Odiv(U, Ũ),

where Ũ int,(1) is the set of 1-codimensional points in U int and where the last equality
follows from Odiv(U, Ũ) = Odiv(U, Ũ int) and the definition of Odiv, see Remark (2). □

We give some results on Ωq,t from Example 7.5 without proofs.

Lemma 7.8. Let T be a normal noetherian scheme, X̃ → T a smooth morphism, and
X ⊂ X̃ a dense open, such that X̃ \X is the support of a simple normal crossing divisor
D over T (i.e., all intersections Di1 ∩ . . . ∩ Dir of the irreducible components of D are

smooth over T ). Let j : (X, X̃)t → X̃Zar be the natural morphism of sites induced by the

functor X̃Zar → (X, X̃)t given by Ũ/X̃ 7→ (Ũ ×X̃ X, Ũ). Then

j∗Ω
q,t
/T = j∗Ω

q,div
/T = Ωq

X̃/T
(logD).

Lemma 7.9. Let k be a perfect field of positive characteristic p. Let X̃ be a smooth k-
scheme and X ⊂ X̃ an open subscheme such that the complement X̃ \X is the support of

a simple normal crossing divisor D. Let j : (X, X̃)t → X̃Zar be as above. Then

j∗WnΩ
q,t = j∗WnΩ

q,div =WnΩ
q

X̃
(logD),

where the right hand side denotes q-forms of the logarithmic de Rahm-Witt complex, as-
sociated to the smooth log scheme (X̃, j∗O×X ∩ OX̃), see [18].
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8. Fiber functors

In this section, we characterise fibre functors of the topoi of the sheaves of sets on
(X, X̃)vét and (X, X̃)t. First, we recall the following.

Definition 8.1. Let (C, γ) be a site admitting finite limits. Recall that a fibre functor of
a topos Shv(C, γ) of sheaves of sets, is a functor φ : Shv(C, γ) → Sets which preserves
colimits and finite limits. Let Fib(Shv(C, γ)) denote the category of fiber functors of
Shv(C, γ).

In what follows, let γ denote either the v-étale topology or the tame topology on (X, X̃)τ .

The main result of this section gives a description of Fib(Shv((X, X̃)γ)). We first introduce
some notations (see Proposition 8.5).

Definition 8.2. We let ˜(X, X̃)τ be the category of pairs T = (T, T̃ ) of affine schemes

such that that there exists a cofiltered projective system {Ti = (Ti, T̃i)}i∈I in (X, X̃)affine,τ

such that T = lim←−i∈I Ti and T̃ = lim←−i∈I T̃i. Notice that in this case the map T → X is

no longer in general étale (but rather, pro-étale), the map T → T̃ is no longer in general

a quasi-compact open immersion and the map T̃ → X̃ is no longer locally of finite type.

We also consider the full subcategory ˜(X, X̃)int,τ of ˜(X, X̃)τ whose objects are cofiltered

limits of objects in (X, X̃)int,τ .

Remark 8.3. For Y = (Spec(A), Spec(Ã)) ∈ ˜(X, X̃)int,t, we observe that:

(1) Ã → A is injective and integrally closed, as filtered colimits are exact and the
integral closure commutes with filtered colimits.

(2) If A = A1×A2 is a product of rings and Ãi are the integral closures of Ã in Ai for

i = 1, 2, we have Y = Y1 ⊔ Y2 with Yi = (Spec(Ai),Spec(Ãi)).

Definition 8.4. We say that T = (T, T̃ ) ∈ ˜(X, X̃)τ is vét (resp. tamely) local if every

vét (resp. tame) covering V = (V, Ṽ )→ U = (U, Ũ) in (X, X̃)τ , the morphism of sets

Hom ˜(X,X̃)τ
(T ,V)→ Hom ˜(X,X̃)τ

(T ,U)

is surjective.

By Lemma 6.12, there is an equivalence of categories of fiber functors

Fib(Shv((X, X̃)affine,γ)) ≃ Fib(Shv((X, X̃)γ)).

Hence, by [27, Pro.7.13], there is a bijection between fibre functors of Shv((X, X̃)γ) and
pro-objects

(8.4.1) P• = “ lim←− ”
λ∈Λ

Pλ with Pλ = (P, P̃ ) ∈ (X, X̃)affine,γ

indexed by a cofiltered category Λ, which satisfies the γ-locality condition: For every

γ-covering V u−→ U , the morphism of sets

lim−→
λ∈Λ

Hom(X,X̃)τ
(Pλ,V)→ lim−→

λ∈Λ
Hom(X,X̃)τ

(Pλ,U)

is surjective. By Lemma 6.3, the latter condition is equivalent to that T = lim←−λ∈Λ P ∈
˜(X, X̃)τ is γ-local in the sense of Definition 8.4 and the corresponding fiber functor is

given by

(8.4.2) φT : Shv((X, X̃)γ)→ Sets ; F → F (T ) := lim−→
λ

F (Pλ).

The proof of the following proposition is analogous to [19, Corollary 3.5] and [17, Lemma
10.7]:
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Proposition 8.5. A pair T = lim←−i∈I Ti ∈
˜(X, X̃)τ is v-étale local (resp. tame local) if and

only if T is a coproduct of objects of the form (Spec(S),Spec(S̃)) such that S̃ is strictly

henselian local and S is henselian local with S = S̃[1/f ] for a non-zero divisor f ∈ S̃, and
that S̃ = S ×k Ov, where k is the residue field of S and Ov is its valuation ring of k such
that (k, v) is strictly henselian (resp. (k, v) is tamely closed). Moreover, in both cases we

have (T, T̃ ) ∈ ˜(X, X̃)int,τ .

Remark 8.6. By Remark 6.4(1) and Deligne’s completeness theorem, [33, Prop.VI.9.0]
or [27, Thm.7.44, 7.17], the fibre functor φT from (8.4.2) for T satisfying the condition

of Proposition 8.5 form a conservative family, i.e. a morphism f in Shv((X, X̃γ) is an
isomorphism if and only if φT (f) is an isomorphism of sets for all γ-local T . Equivalently,
a morphism V → U in (X, X̃)τ is a γ-covering if and only if

Hom ˜(X,X̃)τ
(T ,V)→ Hom ˜(X,X̃)τ

(T ,U)

is surjective for all such T , [32, Expo’e IV, Prop.6.5(a)],

Remark 8.7. Let (Spec(A), Spec(A ×k Ov)) be vét local. Let (Spec(B), Spec(B̃)) →
(Spec(A),Spec(A ×k Ov)) be a tame covering in the sense of Definition 0.3(4). Since
A is henselian local, we can refine it so that B → A is finite étale asssociated to a finite
separable extension of k ↪→ k′. By tameness, there exists a valuation w on k′ extending v
such that (k′, w)/(k, v) is tame and B̃ → B → k′ factors through Ow. This implies that

the map B̃ → B factors through B ×k′ Ow, therefore the covering (Spec(B),Spec(B̃)) is
refined by (Spec(B), Spec(B ×k Ow)). Moreover, by Lemma 3.5(1) we can further refine
it so that we have that k′/k is Galois.

8.8. Proof of Proposition 8.5. We need the following technical result.

Lemma 8.9. Let (Y, Ỹ ) = lim←−i∈I(Yi, Ỹi) in ˜(X, X̃)τ . Let (f, f̃) : (U, Ũ) → (Y, Ỹ ) in

˜(X, X̃)τ with f an étale covering. Then there exists a cofiltered category J and a system

of maps (fij , f̃ij) : (Uij , Ũij)→ (Yi, Ỹi) indexed over I×J such that for all (i, j), (Uij , Ũij) ∈
(X, X̃)int,τ and fij is an étale covering, and lim←−(i,j)∈I×J(Uij , Ũij) → (Y, Ỹ ) refines (f, f̃).

Moreover, if (f, f̃) is is a tame covering in the sense of Definition 0.3, then we find such

system that (fij , f̃ij) are tame coverings for all i, j.

Proof. The first assertion follows from Lemma 6.3 by a standard argument and we omit
its proof. We prove the second assertion. Assume that (f, f̃) is a tame covering and

prove that (fij , f̃ij) is a tame covering for a sufficiently large i, j assuming its existence.

We proceed as the proof of [17, Theorem 4.6]. Let Zi ∈ Spa(Yi, Ỹi) be the set of triples

(yi, wi, εwi) such that there is no (xi, vi, εvi) in Spa(Uij , Ũij) tame over (yi, wi, εwi). Since

(f, f̃) is tame, we have lim←−α Zα = ∅. By Lemma 5.2, Zi is closed, which implies that it is

compact in the constructible topology by Lemma 4.4 since Spa(Yi, Ỹi) is spectral. Since
the inverse limit of nonempty compact spaces is nonempty, we must have Zi = ∅ for a
sufficiently large i, which completes the proof.

□

Proof of Proposition 8.5: First of all, we observe that T → T̃ is dense by Remark 6.4,
hence T and T̃ have the same number of connected components. We check that T is local
if and only if every connected component is local. Let T̃ =

∐
i∈I T̃i and T =

∐
i∈I Ti be

the decomposition into the connected components. We claim that T = (T, T̃ ) is local if

and only Ti = (Ti, T̃i) are local for all i. Indeed, assume that T is local and take coverings

Vi → Ui in (X, X̃)τ and maps φi : Ti → Ui in ˜(X, X̃)τ for i ∈ I. Fixing i ∈ I, it gives rise
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to a covering V := ⊔j ̸=iUj ⊔ Vi → U = ⊔i∈IUj and a map φ : T → U in an obvious way.
By the assumption, φ factors through V and the image of the map Ti → T → V lands in
Vi since Ti and T̃i are connected. Thus, φi factors through Vi showing that Ti is local. On
the other hand, assume that Ti are local for all i ∈ I. Let V → U be a covering in (X, X̃)τ

and φ : T → U be a map in ˜(X, X̃)τ . For each i ∈ I, the map Ti → T → U factors
through a map ψi : Ti → V since Ti are local. Then, ψ = ⊔i∈Iψi : T → V gives a lift of φ
showing that T is local. For the rest of the proof, we assume that (T, T̃ ) is connected.

⇒ Recall that every v-étale covering is also a tame covering. Let T = (T, T̃ ) =

(Spec(S),Spec(S̃)) and write

T = lim←−
α∈A
Tα with Tα = (Spec(Sα),Spec(S̃α)) ∈ (X, X̃)affine,t

so S = lim−→α
Sα and S̃ = lim−→α

S̃α. Let (S̃)
int (resp. (S̃α)

int) be the integral closure of S̃ in

S (resp. S̃α in Sα). We have (S̃)int = lim−→α
(S̃α)

int so we have

(Spec(S),Spec((S̃)int)) = lim←−
α∈A

(Tα)int

with T int
α = (Spec(Sα),Spec((S̃α)

int)) ∈ (X, X̃)int,t. Since (Tα)int → Tα is a modification
and T is v-étale local, the projection T → Tα factors through (Tα)int, which implies that

S̃α → S̃ factors through (S̃α)
int. This implies S̃ = (S̃)int and T = lim←−α∈A(Tα)

int so we

may assume S̃α = (S̃α)
int for all α ∈ A.

Noting that the restriction of the v-étale topology on X̃ is finer than the étale topology,

S̃ must be strictly heselian.

We show that S = S̃[1/f ] for a non-zero divisor f ∈ S̃. Fix α0 ∈ A and consider a finite

collection fα0,1 . . . fα0,r ∈ S̃α0 such that S[1/fα0,j ] = S̃[1/fα0,j ] for all 1 ≤ j ≤ r, giving a
standard open covering

⊔j=1...r Spec(S̃α0 [1/fα0,j ])→ Spec(Sα0).

For α ∈ Aα0/, let fα,j (resp. fj) be the image of fα0,j in S̃α (resp. in S̃). Since the ideal
(fα0,1, . . . , fα0,r) of Sα0 is the unit ideal, a fortiori the ideal Iα = (fα,1, . . . , fα,r) is the unit
ideal in Sα, so we have the v-étale covering:

⊔
j=1...r

Uα,j → Tα with Uα,j = (Spec(S̃α[1/fα,j ],Spec(S̃α[
[ Iα
fα,j

]
)).

Since T is local and connected, the projection T → Tα factors through Uα,j for some j,

which implies S = S̃[1/fj ], where fj is the image of fα0,j in S̃. We notice that f is not a

zero-divisor since the map S̃ → S̃[1/f ] = S is injective by Remark 8.3,(1).

Next, we show that S is a local ring (see [19, Proposition 3.3, “⇒ 2”]) Let x1 and x2
closed points in T . Take finite set J1 and J2 and {gj1}j1∈J1 and {gj2}j2∈J2 in S̃ such that
{Spec(S[1/gj1 ])}j1∈J1 is an open cover of T − {x1} and {Spec(S[1/gj2 ])}j2∈J2 is an open
cover of T − {x2}. Up to refining the cover, we can assume that gj1 and gj2 are not units

in S for all j1, j2. If x1 ̸= x2, then the finitely generated ideal I = (gj1 , gj2)j1∈J1,j2∈J2 of S̃
maps to the unit ideal in S. Since I is finitely generated, there exists α such that gj1 , gj2
comes from gα,j1 , gα,j2 ∈ S̃α and that the ideal Iα = (gα,j1 , gα,j2)j1∈J1,j2∈J2 of S̃α maps to
the unit ideal in Sα. Hence, we get the v-étale covering:⊔

j1∈J1

Uα,j1 ⊔
⊔
j2∈J2

Uα,j2 → Tα, where

Uα,j1 = (Spec(Sα[1/gα,j1 ]), Spec(S̃α[
Iα
gα,j1

])), Uα,j2 = (Spec(Sα[1/gα,j2 ]), Spec(S̃α[
Iα
gα,j2

])).
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Since T is local, the projection T → Tα factors through Uα,j1 for some j1 or Uα,j2 for some
j2, which implies that there is a splitting S → S[1/gj1 ]→ S for some j1 or S → S[1/gj2 ]→
S for some j2. This implies that gj1 or gj2 is a unit in S, which is a contradiction, therefore
x1 = x2, hence S is local.

Let p ⊆ S̃ be the prime ideal such that pS is the maximal ideal of S. We show that S̃/p

is a valuation ring (see [19, Proposition 3.3, “⇒ 3”]). Let a, b ∈ S̃ \p. Since pS is maximal,

a and b are invertible in S. There exists α ∈ A such that a, b come from aα, bα ∈ S̃α.
Then, we have the v-étale covering Uα,a ⊔ Uα,b → Tα with

Uα,a = (Spec(Sα), Spec(S̃α

[ bα
aα

]
), Uα,b = (Spec(Sα), Spec(S̃α

[aα
bα

]
).

Since T is local and connected, the projection T → Tα factors through Uα,a or Uα,b, so
S̃α → S̃ factors through either S̃α

[
bα/aα

]
or S̃α

[
aα/bα

]
. Hence, either b = ha or a = hb

for the image h ∈ S̃ of bα/aα or aα/bα, which implies that S̃/p is a valuation ring.

Next, we show S̃ ≃ S ×k(p) S̃/p, where k(p) = S/p is the fraction field of S̃/p (see [19,

Proposition 3.3, “⇒ 4”]). Since S is local and pS is its maximal ideal, we have S = S̃p.

Then, it is enough to check that the map p → pS is an isomorphism. The map S̃ → S

is injective by Remark 8.3,(1), therefore p → pS is injective. Recall that S = S̃[1/f ] for

a non-zero divisor f ∈ S̃. Let x/fn in pS, with x ∈ p. There exists α ∈ A such that

x, f come from xα, fα ∈ S̃α such that fα ∈ S̃α is a unit in Sα. Then, we have the v-étale
covering Uα,f ⊔ Uα,x → T with

Uα,f = (Spec(Sα),Spec(S̃α

[xα
fnα

]
)), Uα,x = (Spec(Sα[1/xα]),Spec(S̃α

[fnα
xα

]
)).

As before, this implies that S̃α → S̃ factors through either S̃[xα/f
n
α ] or S̃[f

n
α/xα]. In the

former case, there is y ∈ S̃ such that yx = fn, but this is impossible since f ̸∈ p. In the

latter case, there is y ∈ S̃ such that yfn = x, so x/fn = y ∈ S̃, which implies that p→ pS
is surjective.

Next, we show that S is henselian (see [19, Proposition 3.4]). We include the argument
of [17, Lemma 10.7] (which is more straightforward). Let S → B be finite with Spec(B)
connected. Then, B is semilocal, and to show that S is henselian, it is enough to show
that B/pB is local. Since it is a finite algebra over the field S/pS, it is enough to check

that Spec(B/pB) is connected. Let B̃ be the integral closure of S̃ in B. Since S̃ → B̃

is integral, B̃ is a filtered union of its subrings B̃i finite over S̃. Since B̃i → B̃ → B are
injective, the maps Spec(B)→ Spec(B̃)→ Spec(B̃i) have dense images by [35, Tag 00FL].

Therefore, Spec(B̃) and Spec(B̃i) are connected since so is Spec(B). Since S̃ is henselian,

B̃i is local henselian for all i. Since the maps B̃i → B̃j are finite, they are local maps of

henselian local rings. Hence, B̃ is henselian by [35, Tag 04GI], so B̃/pB̃ is henselian.

Claim 8.10. Every element of pB is integral over S̃.

Admitting the claim, we have pB ⊆ B̃, so pB̃ = pB. Hence, B̃/pB̃ → B/pB is injective,

so Spec(B/pB) is connected since so is Spec(B̃/pB̃) as proved above.

To show the claim, take y ∈ B and m ∈ p. Since B is integral over S, we can write
yn =

∑n−1
i=0 aiy

n for ai ∈ S so that

(my)n =
n−1∑
i=0

aim
n−i(my)i.

Since n− i ≥ 1 for i ∈ [0, n− 1], we have aim
n−i ∈ pS = p ⊆ S̃ which proves the claim.

https://stacks.math.columbia.edu/tag/00FL
https://stacks.math.columbia.edu/tag/04GI
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To conclude the proof of the implication ⇒, it is enough to further check that (k, v) is
strictly henselian in case the v-étale-topology and tamely closed in case the tame topology,

where k = S/pS and v is the valuation associated to S̃/p. The former case holds since S̃ is
strictly henselian. To show the latter case, take a finite extension k′/k and a valuation v′

on k′ over v such that v′/v is tame. We want to prove k = k′. Since it is separable, there
exists ω ∈ Ov′ such that k′ = k[ω] and Ov′ is the integral closure of Ov[ω]. Let p ∈ Ov[T ]
be the monic minimal polynomial of ω over k. Since S is henselian and S̃ = S ×k Ov,
there is p ∈ S̃[T ] that maps to p in k[T ] giving a finite étale extension S ↪→ S′ = S[T ]/(p),

with S′ henselian local with residue field k′ = S′/pS′. Let S̃′ := S′ ×k′ Ov′ .

Claim 8.11. S̃′ is the integral closure of S̃[T ]/(p) in S′.

Indeed, let R be the integral closure of S̃[T ]/(p) in S′. Note that the image of T in S′

lies in S̃′ since its image ω in k′ = S′/pS′ lies in Ov′ . Hence, we have that the image of

S̃[T ]/(p) in S′ lies in S̃′, so since S̃′ is integrally closed in S′ we have that R ⊆ S̃′. It now
suffices to show that S̃′ is integral over R. By Claim 8.10, we have pS̃′ ⊂ R. We have

S̃′/pS̃′ = Ov′ and Ov′ is integral over Ov[ω]. This concludes the proof of the claim.

Recall T = (Spec(S), Spec(S̃)) = lim←−α Tα with Tα = (Spec(Sα),Spec(S̃α)). We show

T ′ := (Spec(S′),Spec(S̃′)) ∈ ˜(X, X̃)τ . Since S̃ = lim−→ S̃α, there exists α0 ∈ A and pα0 ∈
S̃α0 [T ] mapping to p. Letting pα be the image of pα0 in S̃α[T ], we have S′ = lim−→α≥α0

S′α
with S′α = Sα[T ]/(pα). By construction, S′α = S′α0

⊗Sα0
Sα. By [35, Tag 01SR], Sα → S′α

is étale for α≫ α0, so Spec(S̃′α) is étale over X since Spec(Sα) is étale over X. Let S̃′α be

the integral closure of S̃α[T ]/(pα) in S
′
α. Since Spec(S̃α) is ift over X̃, Spec(S̃′α) is ift over

X̃. By Claim 8.11, we have lim−→α
S̃′α = S̃′ noting that taking integral closures commutes

with filtered colimits. By construction, T ′α := (Spec(S′α), Spec(S̃
′
α)) ∈ (X, X̃)τ and we

have T ′ = lim←−α T
′
α. By Lemma 8.9, T ′α → Tα is a tame covering for α ≫ α0. Since T

is tame local, this implies that for α ≫ α0, the map Sα → S factors through S′α, which
implies k = k′ as desired.

⇐ Take T = (Spec(S),Spec(S̃)) with S̃ = S ×k Ov as in Proposition 8.5. We want to

show that for any covering h : V = (V, Ṽ )→ U = (U, Ũ) in (X, X̃)γ with γ = vét or γ = t,

(8.11.1) Hom ˜(X,X̃)τ
(T ,V)→ Hom ˜(X,X̃)τ

(T ,U)

is surjective. Clearly, it suffices to consider the generator coverings so we may assume that
h is either a modification or strict étale covering in case γ = vét and a tame covering in

case γ = t. Write T = Spec(S), T̃ = Spec(S̃) and take (f, f̃) : (T, T̃ )→ (U, Ũ).

If h is a strict étale covering so that Ṽ → Ũ is an étale covering and V = Ṽ ×Ũ U , f̃

admits a lift g̃ : T̃ → Ṽ since S̃ is strictly henselian. Moreover, the composite T → T̃
g̃−→ Ṽ

and f : T → U induce g : T → V = Ṽ ×Ũ U so that (g, g̃) gives a lift of (f, f̃).
Assume that h is a modification. Then, f : T → U lifts to g : T → V because

V → U is an isomorphism. By the valuative criterion for properness, the composite

Spec(k) ↪→ T
g−→ V → Ṽ extends to a morphism q : Spec(Ov) → Ṽ . These morphisms

factor through some open affine of Ṽ , so q and T
g−→ V → Ṽ glue to give a morphism

g̃ : T̃ = Spec(S̃) → Ṽ since T̃ = Spec(Ov ×k S) = Spec(Ov) ⊔Spec(k) Spec(S) is the

categorical pushout in the category of affine schemes. Thus, we get a lifting (g, g̃) of (f.f̃).
Finally, assume that h is a tame covering and (k, v) is tamely closed. Let x ∈ U

be the image of Spec(k) ↪→ T
f−→ U and vx be the restriction of v to its residue field

κ(x). By the assumption, there is y ∈ V and a valuation vy on κ(y) extending vx such
that (κ(y), vy)/(κ(x).vx) is tame. Since (k, v) is tamely closed, there exists a map of

https://stacks.math.columbia.edu/tag/07RP
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valued fields (κ(y), vy) → (k, v) which factors (κ(x), vx) → (k, v). Since V → U is an
étale covering and S is henselian, this implies that f : T = Spec(S) → U admits a lift

g : T → V . By the same argument as in the case of modifications, g extends to g̃ : T̃ → Ṽ
so that we get a lifting (g, g̃) of (f.f̃). This completes the proof.
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9. Čech comparison

We fix again an open immersion X → X̃ of noetherian schemes. The main theorem of
this section is the following.

Theorem 9.1. Let F ∈ Shv((X, X̃)t,Ab) and let Y = (Y, Ỹ ) ∈ (X, X̃)t such that Ỹ
satisfies the property that every finite set of points is contained in an affine open. Then
the natural map

Ȟq
t (Y, F )→ Hq

t (Y, F )
is an isomorphism.

For the proof of the theorem, we need the following result, which is analogous to [1,
Theorem 4.1] while its proof is closer to the arguments given in the proof of [17, Proposition
7.14 and Theorem 7.16].

Lemma 9.2. Let Y = (Y, Ỹ ) ∈ (X, X̃)t such that Ỹ satisfies the property that every finite

set of points is contained in an affine open. Let U = (U, Ũ)
(φ,φ̃)−−−→ Y be a tame covering.

Then, for a tame covering V → U×Yn, there is a tame covering U ′ → U such that the
composition U ′×Yn → U×Yn factors through V.

The proof will be given later in §9.3.
We are now ready to prove Theorem 9.1. There is a spectral sequence

Ep,q2 = Ȟp
t (Y,Hq(F ))⇒ Hp+q

t (Y, F ),

where Hq(F ) is the presheaf U → Hq
t (U , F ) on (X, X̃)t. It suffices to show Ep,q2 = 0 for

q > 0. Every element of Ep,q2 is represented by

α ∈ Čp(U ,Hq(F )) = Hq(F )(U×Y (p+1)) = Hq
t (U×Y (p+1), F )

for a tame covering U → Y. By Lemma 1.20, we have Ȟ0(W,Hq(F )) = 0 for every W ∈
(X, X̃)t so that there is a tame covering V → U×Y (p+1) such that α 7→ 0 in Hq(F )(V) =
Hq
t (V, F ). By Lemma 9.2, there is a tame covering U ′ → U such that U ′×Y (p+1) →
U×Y (p+1) factors through V. Hence, α 7→ 0 in Hq

t (U ′
×Y (p+1), F ) = Čp(U ′,Hq(F )). This

yields the desired vanishing of Ep,q2 .

9.3. Local objects: We show the existence of local pro-covers, which will be used in the
comparison of the tame cohomology with Čech cohomology (see Lemma 9.2).

Lemma 9.4. For every Y ∈ (X, X̃)τ , there is W ∈ ˜(X, X̃)τ v-étale (resp. tamely) local
such that W → Y is a cofiltered limit of v-étale (resp. tame) coverings Wλ → Y in

(X, X̃)affine,τ with Wλ ∈ (X, X̃)int,τ .

Proof. We prove the lemma only for the tame topology. The proof for the v-étale topol-
ogy is the same. We can suppose Y := (Spec(A), Spec(Ã)) ∈ (X, X̃)affine,t. We use the
same strategy of [7, Lemma 2.2.7] (see [17, Proposition 7.12]). Let I be the set of isomor-

phism classes of coverings U → Y in (X, X̃)affine,t. For each i ∈ I, pick a representative

(Spec(Bi), Spec(B̃i))→ Y and set

(9.4.1) A1 := lim−→
J⊂I finite

⊗
j∈J

Bj Ã1 := lim−→
J⊂I finite

⊗
j∈J

B̃j ,

where the tensor products are over A and Ã respectively. By construction, we can write

Y1 := (Spec(A1),Spec(Ã1)) = lim←−
λ1∈Λ1

Yλ1 with Yλ1 = (Spec(Aλ1),Spec(Ãλ1))

as a cofiltered limit of coverings Yλ1 → Y in (X, X̃)affine,t such that for every covering

U → Y in (X, X̃)t, the map Y1 → Y factors through U . For each λ1 ∈ Λ1, let Iλ1
be the set of isomorphism classes of coverings U → Yλ1 in (X, X̃)affine,t and apply the
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same construction as (9.4.1) to (Yλ1 , Iλ1) instead of (Y, I) to get (A2,λ1 , Ã2,λ1) instead of

(A1, Ã1) and put Y2,λ1 = (Spec(A2,λ1), Spec(Ã2,λ1)). Then, for every covering U → Yλ1 ,
the map Y2,λ1 → Yλ1 factors through U . Put

(9.4.2) A2 := lim−→
J⊂Λ1 finite

⊗
λ1∈J

(A2,λ1 ⊗Aλ1
A1), Ã2 := lim−→

J⊂Λ1 finite

⊗
λ1∈J

(Ã2,λ1 ⊗Ãλ1
Ã1),

where the tensor products are over A1 and Ã1 respectively. Noting Y2,λ1 → Yλ1 and
Y1 → Y are cofiltered limits of coverings, we can write

Y2 := (Spec(A2), Spec(Ã2)) = lim←−
λ2∈Λ2

Yλ2

as a cofiltered limit of coverings Yλ2 → Y in (X, X̃)affine,t such that for every λ1 ∈ Λ1 and

covering U → Yλ1 in (X, X̃)t, the map Y2 → Y1 → Yλ1 factors through U . Iterating the

construction, we get a sequence in ˜(X, X̃)τ

· · · → Y3 → Y2 → Y1 → Y with Yn = lim←−
λn∈Λn

Yλn

such that for every λn ∈ Λn, Yλn → Y is a covering in (X, X̃)affine,t and for every covering

U → Yλn in (X, X̃)t, the map Yn+1 → Yn → Yλn factors through U . Set W = lim←−n Yn ∈
˜(X, X̃)τ . By the construction, W is a cofiltered limit of coverings of Y. It suffices to show

that W is tame local. Let V → U be a covering in (X, X̃)affine,t and φ :W → U be a map

in ˜(X, X̃)τ . By Lemma 6.3, φ factors through Yλn for some λn. Since Yλn ×U V → Yλn
is a covering in (X, X̃)t, the map Yn+1 → Yn → Yλn factors through Yλn ×U V so that φ
lifts to a map W → V. This completes the proof. □

Definition 9.5. Let U = (U, Ũ) ∈ (X, X̃)t, let x ∈ U and let Uhx = Spec(OhU,x) be the

henselization at x. An x-local object over U is T := (Spec(B), Spec(B̃)) ∈ ˜(X, X̃)t with a
map T → U such that

(1) B is henselian local with residue field k, Spec(B)→ U factors through Uhx and the
map OhU,x → B is local and ind-étale;

(2) There is a Ũ -admissible valuation v on k such that (k, v) is tamely closed;

(3) B̃ = B ×k Ov, where Ov is the valuation ring of (k, v).

Example 9.6. Let U = (U, Ũ) ∈ (X, X̃)t, let x ∈ U and k(x) be its residue field. Let

(x, v, εv) ∈ Spa(U, Ũ) and choose an extension v to a separable closure k(x) of k(x)
and k(x) ↪→ k(x)tv be the tame closure of k(x) with respect to the valuation v. Let
OhU,x → OtU,x be the ind-étale map corresponding to the field extension k(x) ↪→ k(x)tv
and let Otv ⊆ k(x)tv be the valuation ring of the restriction of v to k(x)tv. Then, U(x,v) :=
(Spec(OtU,x), Spec(OtU,x ×k(x)tv O

t
v)) is an x-local object over U . Moreover, U(x,v) → U is a

cofiltered limit of maps Ui → U in (X, X̃)t which is tame over (x, v, εv).

The following Lemma and its proof is very close to [17, Theorem 11.1 and Corollary
11.7].

Lemma 9.7. Let Y = (Y, Ỹ ) ∈ (X, X̃)t such that Ỹ satisfies the property that every finite
set of points is contained in an affine open. For 1 ≤ i ≤ n, let xi ∈ Y and let Pi be xi-local
objects over Y. Then T = P1 ×Y . . .×Y Pn ∈ ˜(X, X̃)τ is affine and is a disjoint union of
x-local objects, where either x = xi for some i or x is a generization of all xi, i.e., xi lie
in the closure of x.

Proof. Let Pi = (Spec(Ai), Spec(Ãi)) with Ãi = Ai ×k(Ai) Vi and let Spec(Vi) → Ỹ be
the induced map on the valuation rings, and let ỹi be the respective images of the closed
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points. Let Spec(Ã) ⊆ Ỹ be an affine open containing xi and ỹi for all i. As ỹi is a
specialization of xi, we have natural maps

Ã→ OỸ ,ỹi → OỸ ,xi → k(xi)→ k(Ai),

and by the definition of ỹi its composition factors via Vi ↪→ k(Ai). Therefore all the

maps Spec(Vi)→ Ỹ above factor through Spec(Ã), therefore Spec(Ã1)×Ỹ . . . Spec(Ãn) =
Spec(Ã1⊗Ã . . . Ãn). As Spec(Ã)∩Y is quasi-affine we find an open Spec(A) ⊆ Spec(Ã)∩Y
which contains all the xi. Then all maps Spec(Ai)→ Y factor through Spec(A) hence

P1 ×Y . . .×Y Pn = P1 ×(Spec(A),Spec(Ã)) . . .×(Spec(A),Spec(Ã)) Pn.

Therefore we are reduced to the case Y = (Spec(A),Spec(Ã)), and now the general case
follows from the case where n = 2.

Thus it suffices to consider the following situation. Let p and q be prime ideals of A.
Let P = (Spec(B),Spec(B̃)) and Q = (Spec(C), Spec(C̃)) be p-local and q-local objects,

respectively, with B̃ = B ×kB VB and C̃ = C ×kC VC as in Definition 9.5. Denote by
mB ⊂ B and mC ⊂ C the maximal ideals. By [17, Theorem 6.3 and Theorem 6.4], B⊗AC
is a product of henselian local A-algebras and the following holds: let D be a factor of
B ⊗A C and denote by m its maximal ideal and L = D/m its residue field.

(1) If the maps B → D and C → D are not local, then L is separably closed;
(2) if φ : B → D is local, then the residue field extension kB → L is a separable

algebraic extension.

In case (1) the natural map B̃ ⊗Ã C̃ → D is surjective. Indeed, we have mB ⊂ B̃ and

mC ⊂ C̃ and as B → D and C → D are not local we have mB · mC · D = D. Thus D
is integral over B̃ ⊗Ã C̃ and is strictly henselian by [1, Th.3.4(ii)]. Hence (D,D) is an
r-local object, for r = mD ∩ A ⊂ p, q, where we consider the trivial valuation on kD, and
(Spec(D),Spec(D)) is a component of P ×Y Q.

We consider case (2). Denote by m its maximal ideal of D and by L = D/m its residue
field. Let w be the unique valuation on L that extends the valuation v on kB. Thus (L,w)
is a henselian valuation field and its valuation ring Ow is equal to the integral closure of
VB in L, see, e.g., [30, VI, §8, Proposition 6]. As (kB, v) is tamely closed so is (L,w). Let

D̃ be the integral closure of B̃⊗Ã C̃ in D, and letW be the image of the map D̃ → D → L,
so that we have the following commutative diagram

(9.7.1)
B̃ D̃ D

VB W L.

We claim

(9.7.2) m ⊂ D̃.

Assuming (9.7.2) we directly get D̃ = D×LW . MoreoverW contains Ow. Indeed, if a ∈ L
is integral over VB and ã ∈ D is a lift of a, then we find a monic polynomial f ∈ B̃[X] with

f(ã) ∈ m which by the claim is integral over B̃ ⊗Ã C̃, hence so is ã, hence a ∈ W . Thus
W is a henselian valuation ring by [17, Lemma 11.4] and its valuation w′ is a generization

of w, therefore (L,w′) is tamely closed. Hence (SpecD,Spec D̃) is a x1-local object over
Y. It remains to prove the claim (9.7.2).

Let m ∈ m. As φ : B → D is integral, we find a monic polynomial f(X) = Xn +
a1X

n−1+ . . . an in B[X] such that fφ(m) = 0, where fφ = Xn+φ(a1)X
n−1+ . . . φ(an) ∈

D[X]. Denote by f̄ ∈ kB[X] the reduction of f modulo the maximal ideal mB. As
0 = fφ(m) ≡ φ(an) mod m, we have an ∈ φ−1(m) = mB. Thus

f̄ = Xe · ḡ,
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for some e ≥ 1 and g ∈ kB[X] monic with g(0) ̸= 0. As B is henselian, there exist monic
polynomials h, g ∈ B[X] with

f = hg, h ≡ Xe mod mB, g ≡ ḡ mod mB.

It follows that the constant term of gφ is a unit in D and hence so is gφ(m). Thus

hφ(m) = 0 in D. As h ∈ Xe + mB[X] ⊂ B̃[X] we find that m is integral over B̃, hence

m ∈ D̃. This yields claim (9.7.2) and completes the proof of the lemma. □

Prooof Lemma 9.2: By Lemma 9.4, we find a morphism W = (W, W̃ ) → U in ˜(X, X̃)t,

which is a limit of tame coverings Wλ = (Wλ, W̃) → U = (U, Ũ) in (X, X̃)affine,t with

Wλ ∈ (X, X̃)int,t, such that W is tame local. Note that every connected component

P = (P, P̃ ) ofW is a x-local object over Y, for some points x ∈ Y . Indeed, by Proposition
8.5, P satisfies the conditions (2) and (3) of Definition 9.5, so it suffices to check that
P satisfies (1). Denote by x the image in Y of the closed point of P . Then we get a
natural local morphism P → Spec(OhY,x) since P is henselian local. It is ind-étale as P is
a component of lim←−λWλ and Wλ → U and U → Y are étale.

Thus, Wn (product over Y) is a disjoint union of P1×Y ...×Y Pn, where Pj are xj-local
objects for some xj ∈ Y . Hence, by Lemma 9.7 and Proposition 8.5, Wn is tame local.
Thus, for any tame covering V → Un, the map Wn → Un factors via V. Lemma 6.3
implies that there is λ0 and a map Wn

λ0
→ V in (X, X̃)affine,t that factors Wn → V, hence

by choosing U ′ =Wλ0 we conclude the proof.
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10. Computation of tame cohomology

The main result of this section is the following.

Theorem 10.1. Let X ↪→ X̃ be an open immersion of noetherian schemes. For V =
(V, Ṽ ) ∈ (X, X̃)t, let j

V : (V, Ṽ )t → Ṽét be the morphisms of sites induced by the functor

Ṽét → (V, Ṽ )t given by W̃/Ṽ 7→ (V ×Ṽ W̃ , W̃ ). Let F ∈ Shv((X, X̃)t,Ab) be such that
the following condition is satisfied:

(p) for every (U, Ũ) ∈ (X, X̃)t and x ∈ Ũ , F (Spec(OŨ ,x)×Ũ U,Spec(OŨ ,x)) is a Z(px)-

module, where px is the exponential characteristic of κ(x).

Then, for U = (U, Ũ) in (X, X̃)t, we have canonical isomorphisms

H i
t(U , F ) ∼= H i

vét(U , ν∗F ) ∼= lim−→
V→U

H i
ét(Ṽ , j

V
∗ F ), i ≥ 0,

where the colimit is over the filtered category of modifications V = (V, Ṽ )→ U .

Remark 10.2. Note that the condition (p) of Theorem 10.1 is satisfied if F = Ωq,t, see

7.5(4), or F =WnΩ
q,t (see Example 7.5). Also it holds if X̃ is a Z(p)-scheme and F is any

tame sheaf of Z(p)-modules.

For the proof, we need the following.

Proposition 10.3. Let p be a prime and let F be a sheaf of Z(p)-modules on (X, X̃)t.

Let (U, Ũ) ∈ (̃X, X̃)τ connected and v-étale local. By Proposition 8.5, U = (U, Ũ) =

(SpecA,Spec Ã) where A is a henselian local ring with residue field K and Ã = A×K Ov
for a strictly henselian valuation v . Write U as the limit of a cofiltered system {Uλ}λ∈Λ
in (X, X̃)τ with Uλ = (SpecAλ,Spec Ãλ). If the residue characteristic of Ov is p, then

lim−→
λ∈Λ

H i
t(Uλ, F ) = 0, for i ≥ 1.

Proof. By Theorem 9.1, we have that

lim−→
λ∈Λ

H i
t(Uλ, F ) = lim−→

Vλ→Uλ
lim−→
λ∈Λ

H−iF (V×Uλ
•

λ ),

where the colimit is indexed over tame covers of Uλ. By Lemma 8.9, this is equal to

(10.3.1) lim−→
V→U

H−iF (V×U•),

where the colimit is indexed over tame covers of U and F is left Kan extended to (̃X, X̃)τ .

By Remark 8.7, we can further suppose that V are of the form (V, Ṽ ) = (Spec(B),Spec(B̃))
with A → B is a finite étale map of henselian local rings associated to the residue field
extension L/K which is Galois and tame with respect to v and B̃ = B ×L Ow with w the
valuation on L extending v. Set

Bn := B⊗An, Vn := SpecBn and B̃n := B̃⊗Ãn, Ṽn := Spec B̃n.

Let Bint
n be the integral closure of B̃n in Bn and set Ṽ int

n = Spec B̃int
n . As (Vn, Ṽ

int
n ) →

(Vn, Ṽn) is a modification, see Remark 8.317 the desired vanishing follows from the exactness
of the complex

(10.3.2) 0→ F (U, Ũ)→ F (V, Ṽ int)→ F (V2, Ṽ
int
2 )→ F (V3, Ṽ

int
3 )→ · · · .

By [30, VI, §8, No. 6, Proposition 6] ,the ring Ow is also the integral closure of Ov in
L. Hence the Galois group Gal(L/K) is equal to the decomposition group Aut(Ow/Ov).
Moreover, as the category of finite separable field extensions of K is equivalent to the

17Precisely speaking, this is not correct since Ṽn is not noetherian, Indeed, it is a coflitered limit of
modifications.
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category of finite local étale A-algebras, we can identify the A-algebra automorphisms of
B with Gal(L/K). Hence G := Gal(L/K) = Aut(B/A). As in [29, Example 2.6] the
isomorphism B2 →

∏
σ∈GB, b0⊗ b1 7→ (σ(b0)b1)σ and induction give the isomorphism for

n ≥ 2

φn : Bn →
∏

(σ0,...,σn−2)∈Gn−1

B

with

φn(b0 ⊗ . . .⊗ bn−1)(σ0,...,σn−2) = (σn−2 · · ·σ0)(b0) · (σn−2 · · ·σ1)(b1) · · ·σn−2(bn−2) · bn−1.

As B̃ is integral over Ã, so is B̃n, hence B̃
int
n is the integral closure of Ã in Bn and thus

φn restricts to an isomorphism

B̃int
n →

∏
(σ0,...,σn−2)

B̃.

We thus find isomorphisms

(Vn, Ṽ
int
n ) ∼= (V, Ṽ )×Gn−1

as in [29, III, Example 2.6] and can therefore identify the cohomology of (10.3.2) with
Galois cohomology

H−iF (V×Uλ
•

λ ) = H i(G,F (V, Ṽ )).

This vanishes as F (V, Ṽ ) is a Z(p)-module and the order of G is invertible in Z(p) by
tameness. This completes the proof. □

Proof of Theorem 10.1: Note that jV is the composition of the morphism of sites

ν : (V, Ṽ )t → (V, Ṽ )vét

corresponding to the inclusion functor and the morphism of sites

λV : (V, Ṽ )vét → Ṽét

defined by the functor Ṽét → (V, Ṽ )vét : W̃/Ṽ 7→ (W̃ ×Ṽ V, W̃ ). By Lemma 6.17, we have

H i
t(U , F ) = H i

vét(U , Rν∗F ) = lim−→
V→U

H i
ét(Ṽ , λ

V
∗Rν∗F ),

where the limit is indexed over modifications V = (V, Ṽ )→ U . Hence, it suffices to show
Riν∗F = 0 for i ≥ 1. By Remark 8.6, this follows from Proposition 10.3 and the fact that
the assumptions of loc.cite. are satisfied by condition (p). This completes the proof.
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