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INTRODUCTION

These lectures are based on a joint work with Alberto Merici and Kay Riilling.
Let K be a field and k C K be the algebraic closure of its prime subfield. A consequence
of the result of this paper is the following:
1
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Theorem 0.1. Let X/K be a smooth and proper variety and let ¢ € Aut(X). Then for
all i € N the number dét(p*|H" (X, Ox)) lies in k*. If ch(K) = 0, it lies in O, where
Oy, is the integral closure of Z C k.

The assertion is reduced to the case K is finitely generated over the prime subfield so
that £ is a finite filed Iy, or a number field. Then F, and O}, are the integral closure of
the image of the characteristic map Z — K, which in turns is the intersection of all the
discrete valuation rings whose fraction field is K. Therefore, it is enough to show that
for every discrete valuation ring O C K and every X smooth and proper over K, there
exists an Ok-lattice W C H*(X, ©), which is preserved by ¢* for any ¢ € Aut(X).

In case resolutions of singularities hold, we ¢ extends to a morphism of regular models
X" — X, and by results of Chatzistamatiou-Riilling ([?, Theorem 2] for ch(K) = p and
[?, Theorem 1.1.] for ch(K) = 0), we have that H' (X, O) — H'(X’, O) is an isomorphism
so we can choose W as the image of H'(X,0) — H*(X,0), which implies the desired
assertion.

Our aim is to provide an unconditional proof of a stronger result on the existence of a
canonical integral structure on H*(X, ). A Key idea is to use rigid analytic geometry to
by pass resolution of singularities.

Let K be a complete discrete valuation field with the ring R = Ok of integers and a
prime element 7w. Let Smpg be the category of smooth schemes separated of finite type
over K and PrSmpg C Smy be the full subcategory of proper K-schemes.

Let Modpg be the abelian category of R-modules and Mod% (resp. Modé) be the Serre
subcategory of Modpg consisting of such M that annihilated by 7€ for some e > 0 (resp.
such M that M, € ModOR and M /Mo, is finite over R). Let D(R) be the derived (or
o0) category of complexes of R-modules and D(R)/ be its full subcategory of consisting
of complexes whose cohomology groups are in Modé.

In the following theorem, we consider Q as a category by the total order.

Theorem 0.2. There is an object of Fun(Q° x PrSm%’, D(R)/)):
(0.2.1) r € Q% — F(r) € Fun(PrSm%, D(R)’)
equipped with natural equivalences in Fun(PrSm7?, D(K))

lim F(s) ~ RI'(—,0) ~ F(r) ®r K,

S§—>—00

where the latter equivalence is compatible with transition maps F(r) — F(r') forr >r'.
If ch(K) = 0', the above functors extend to an object of Fun(Q x Sm%?, D(R)/)):

(0.2.2) r € Q% — F(r) € Fun(Sm%, D(R)Y)

enjoying the following properties:
(i) For X € Smg, we have an equivalence
lim F(s)(X) = RT(X,0) = F(r)(X) ®r K,
S§—>—00
for every smooth compactification X of X over K, where the latter equivalence is

compatible with transition maps F(r) — F(r') for r > r'. For a map X X of
such compactifcations, the above equivalences are compatible in an obvious sense.
(ii) (A'-invariance) F(r)(X) ~ F(r)(X xx Ak) for X € Smg.
(i1i) (Birational invariance) F(r)(X) ~ F(r)(U) for any dense open immersion U —
X in Smpg.

1But the characteristic of the residue field of Ok may be positive.
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(iv) (Tame descent) For X € Smg and Y — X an Og-tame covering in the sense of
[17], we have an equivalence

F)(X) 2= lim (FE)(V) ZFE)Y xx V) SFO xx Y xx )+ )

A —

and a descent spectral sequence
BY = HIF(r)(Y*X040)) = HPH(F ()

Here, a morphism of schemes f : 'Y — X is an Og-tame covering if it is an étale
covering and for any x € X and a valuation v on k(x) trivial over Ok, there exists
y €Y lying over x and a valuation w on k(y) extending v such that O, /O, is tame, i.e.
[Frac(OS") : Frac(O:")] is prime to the exponential characteristic of the residue field of
O, where (—)*" denotes the strict henselization.

To construct such F(r), we introduce a variant of the tame topology defined by Hiibner

and Schmidt [17]. For a scheme S, let Schg be the category of schemes separated of finite
type over S. For a morphism U — U of schems, let Spa(U, U) be the set of triples (z, v, ¢)
such that 2 € U, v is a valuation on k(z) and e: Spec(OQ,) — U is a map compatible with
Spec(k(z)) — X (see Definition 5.1).
Definition 0.3. Let K be a complete discrete valuation field with the ring R = Ok of
integers and put S = Spec(Ok) and n = Spec(K). Let Schy, 9) be the category whose
objects are pairs (U, U ) equipped with an open immersion U < U over S such that U — S
factors through n < S. Morphisms (V,V) — (U,U) are pairs of morphisms f: V — U in
Schi = Sch,, and f V — U in Schg satisfying the obvious compatibility..

The tame topology on Schy,, g is generated by a family {(f;, fi): (Vi, Vi) = (U,U)}; of
maps such that for every (z,v,e,) € Spa(U,U), there is i € I and (y,w,e,) € Spa(V;, V;)
such that fi(y) = =, wjy(y) = v, and O, /O, is tame and the following diagram commutes:

Spec(Oy) SN 74

| |7
Spec(0,) —*— U.

The corresponding sites are denoted by Schy, g);. For (X, X) € Sch(ng let (X, X);

be the site whose underlying category is the category of objects (U,U) over (X, X) with
U — X étale, endowed with the induced topology.

For X € Schy, choose a Nagata compactification X < X of X — S and define
RTy(X/Ok, F) = RU((X, X), F x xy,) for F € Shv(Sch, 5),)-

We prove that RT,(X/Og, F) does not depend on the choice of X and extends to a
functor (Lemma 6.7)

th(—/oK, —) : (SChK)Op X ShV(SCh(n’S)J) — D(Z)

We also prove that the following persheaf on Sch, ) belong to Shv(Schy, g).).

Ezample 0.4. (1) The presheaf O given by O(U,U) = O(U).
(2) The presheaf O given by O'(U,U) = O(U™), where U™ is the integral closure
of U in U (Lemma 7.6).
(3) For r =n/m € Q with m € Z>o and n € Z, the presheaf given by

O r)(U,T) = {a € OU)| a™ € 7™/ 7O(Tn)}
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(cf. Lemma ??). Note O'(r) C O(r') C O for r > ' and
lim Ol(s) ~ O ~ O'r) ®p, K.
S§——00
(4) The presheaf Q%! given by
for all (x,v,e) € Spa(U,U) there exists

QY U, U) =S a e T(U, Q}) |a finite tame extension (L,w)/(k(z),v), ¢,
such that ar, € Qf, (log) C QF

where ay, € Q¢ denotes the pullback of a € F(U) along Spec L — Speck(z) — U
and Q%w(log) is the degree g-part of the graded 7, -subalgebra of {7 generated
by QF, ~and dlog(L*) (see Lemma 7.5).

Definition 0.5. F(r) := RTy(—/Ok, O!(r)) € Fun((Schg)°?, D(Z)).

We will prove F(r) satisfies the properties of Theorem 0.2: The properties (i) and (iv)
follows immediately from the definition. A key ingredient of the proof of (ii), (iii) and the
fact that F(r) for X € Smy takes values in D(R)7 is the following comparison theorem:

Fixing ¢ € (0,1), equip a norm | — | = ¢?§(=) on K with vg the normalized valuation of
K.

Theorem 0.6. (Theorem ??) Let X € Schy and X — X € N(X/Ok). Let X% be the

rigid space over K associated to the formal completion X of X along the special fiber. If
X is proper over K, there exists a canonical equivalence

F(r)(X) ~ RT(X"8,0(s)),
where s = ¢ and O(s) is a sheaf on X"¢ given by O(s)(U) = {f € B| |flsup < s} for an
affinoid subdomain U = Sp(B) C X", where | — |sup s the sup norm on B:

‘f‘sup = Ssup )‘f(.%')‘

z€Sp(B
The same holds if ch(K) =0 and X is smooth (not necessarily proper) over K.

Theorem 0.6 in case X proper over K is a special case of the following more general
statement, Theorem 0.7: For (X, X) € Sch, ¢y with X = X ®0,. K, we will introduce
a subcategory Shv ((X, X);)pint_qopn of Shv((X, X);) consisting of coherent O™ -modules
on (X, X); and construct a functor (see (77))

(5)® : Shv((X, X)i)oint_wop, — Shv(X78) : F — Frie

i

such that O!(r) .= O(s) with s = ¢". We have the following integral refinement of GAGA

(cf. [10, II, 9.4.2]):

Theorem 0.7. (Theorem ?7) If X is proper over Ok, (/—\)rlg induces an equivalence
RU((X, X):, F) ~ RT(X"8, F"8) for F € Shv((X, X)¢)oimt_con-

(iii) of Theorem 0.2 follows immediately from Theorem 0.6 and (ii) follows from an
equivalence

RT(X78,O(s)) — RI(X"8 x P} O(s)),
where P}érig is the rigid projective line over K, which follows from the following.

Lemma 0.8. (Lemma ??) For a rigid space V' and the projection q : PPie x V 5 V, we
have R'q,O(s) =0 fori > 0.
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Using the base change theorem in rigid geometry (see [9, Th.2.7.4]), the lemma is
deduced from the following theorem due to Bartenwerfer [5, Theorem| and van der Put
[26, Thm. 3.15]. Note that even though K is assumed to be a discrete valuation field in
Theorem 0.2, we need the following theorems 0.9 and 0.10 for K with a non-archimedean
norm which corresponds to a non-discrete valuation of rank one since we need consider
stalks of sheaves over analytic points.

Theorem 0.9. Let K be a non-archimedean field, i.e. a field which is complete with
respect to a nontrivial non-archimedean absolute value | — | : K — R>q. For a generalized
polydisk D C B = Sp(K(21,...,24)), we have

HY(D,O(r)) =0 for all v > 0 and integers i > 0.

Again, using the base change theorem in rigid geometry, Theorem 0.9 is reduced to the
case d = 1, which is proved by using the Mittag-Leffler decomposition of analytic functions
on the unit disc B}<: For ¢1,...,¢m € K and rq, ..., 71y, € Ryg, an analytic function f on
Bl — Ui<p<m{lz — ¢| <1} is written as

oo
N
Fmot D0 3y v g € KG) an e K
- Ly

1<v<m =1

Finally, the fact that F(r) for X € Smp takes values in D(R)/ follows from the following
theorem which was first shown by Bartenwerfer in [4], [5, Folgerung 3] (see [21, Th.18 and
Cor.18]).

Theorem 0.10. Let K be as in Theorem 0.9 and X be a smooth affinoid space over K.
For r € Ry, there exists m € F with |7| < 1 such that tH*(X,O(r)) =0 for all i > 0.

Now we explain the strategy of the proof of Theorems 0.6 and 0.7. A key ingredient is
the following.

Theorem 0.11. Let X < X be an open immersion of noetherian schemes. Let F' be a
sheaf of abelian groups on (X, X);> such that the following condition is satisfied:

(p) for every (U,U) € (X,X); and z € U, F(Spec(Op ) x5 U, Spec(Op ) is a Z,,)-

module, where p, is the exponential characteristic of k(z).
Then, we have a canonical equivalence
Hi((XvX)taF)g h%In Hét(}}aFYét)v i 20,
(YY) =(X,X)

where Fy. is the étale sheaf on Y given by V)Y w F(Y x4 V,V) and the colimit is
indexed by the (cofiltered) category A of modifications (Y, Y) = (X.X).

For F' € Shv((X, X)) pint_con, Theorem 0.7 follows from a series of equivalences:

RO((X, %) F) '™ lm RUa(V,Fp) % lim ROV, Fp )

zar

(Y,)Y)eAg (V,Y)eA ¢
*3 > A~ *4 = A~ *5 s~
D lm RGO Fp) Y lim RDLG(V, Fy) S RO, FiE)
(Y,?)EAX @4)_)/2'

where Fy, is the Zariski sheaf on Y defined by the same way as FYt which is a coherent

Og-module by the definition of Shv((X, X);)pint —cop, and Y (resp. ﬁf/) is the formal

completion of ¥ (resp. Fy ar) along the special fiber and ) — X range over all admissible

21:his tame site is defined for any quasi-compact open immersion X < X of qegs schemes not only for
(X, X) € Schy, s as in Definition 0.3 (see Definition 6.1).



6 SHUJI SAITO

blowup of X. (x1) follows from Theorem 0.11, (x2) from the étale (flat) descent for quasi-
coherent sheaves on Y ([35, 03P2]), (+3) from GAGF ([10, Ch.I Th.9.2.1]), (x4) from the
fact that by Raynaud-Gruson [35, Tag 081R], any modification ¥ — X is refined by an

admissible tllowup of X which induces an admissible blowup of X while any admissible

blowup of X is a base change of an admissible blowup of X, and (¥5) from natural
equivalences of categories (see Theorem 2.32 and [10, Ch.0, 4.4.3])

Shv(%rig) ~ ShV(RZ(}%)) ~ 1&11 ShV(iizar)-
3—>)A~(

T}}eorem 0.11 is proved using the following comparison of the tame cohomology with
the Cech cohomology

Theorem 0.12. Let F' be a sheaf of abelian groups on (X,X)t, and assume that every
finite set of points in X is contained in an affine open. Then the natural map

HI(X,X), F) — HY((X, X)y, F).
is an isomorphism for all q, where the left hand side is the Cech cohomology.

The proof of Theorem 0.12 is similar to Artin’s proof that the étale cohomology is
computed as the Cech cohomology ([1]). For this, we need the following result describing

the local rings of the tame topology: We let (X, X), be the category of pairs T = (T, T)
of affine schemes such that that there exists a cofiltered system {T (T3, T;) Yier of
affine objects of (X, X), such that T = Im,  T; and T = hm,  T;. We say that a pair

= lim__, T € (X, X), is tame local if for every tame covering V — U in (X, X);, the

morphlsm of sets

lim Hom y ¢ (7;,V) — lim Hom y ) (7;,U)

el iel
is surjective.
Proposition 0.13. A pair T = Hm, ;T € (X, X), is tame-local if and only if T is
a coproduct of objects of the form (Spec(S) Spec(g)) such that S is strictly henselian
local and S is henselian local with S = S[l/f] for a non-zero divisor f € S, and that
S=9 X Oy, where k is the residue field of S equipped with a valuation v such that (k,v)
is tamely closed and O, is its valuation ring.


https://stacks.math.columbia.edu/tag/081R

TAME COHOMOLOGY AND ITS APPLICATIONSLECTURES AT INSTITUTE OF SCIENCE TOKYO IN NOV. 2023

Part 1. Reviews on basic theories
1. ToOPOS THEORY
1.1. Functoriality of presheaves. A functor u : C — D induces
u? : PSh(D) — PSh(C)
given by uPF = F o u, in other words uPF (V') = F(u(V)) for V € C.
Proposition 1.1. There exists a functor called the left Kan extension of F along u
up : PSh(C) — PSh(D)
which is a left adjoint to the functor uP. In other words
Hompgy(c)(F, u’G) = Hompgyp) (upF, G)
holds bifunctorially in F' € PSh(C) and G € PSh(D).

For V € D, let I*(V) denote the category whose objects are pairs (U, ¢) with U € C
and ¢ : V — u(U) and

Hompu(v) (U, ), (U, ¢')) ={f : U = U in Clu(f)op=¢}.

We sometimes drop the superscript u from the notation and we simply write I(V'). For
F € PSh(C), we define

wF(V)= lm  FU)= lm Fy,
(U p)el(V)or 1(vyor

where Fyy € PSh(I(V), Sets) given by
Fy : I(V)?® — Sets : (U,p) — F(U).

To show that u,F € PSh(D), note that for g : V' — V in D, we get a functor g : I(V) —
I(V') by setting g(U, p) = (U, ¢ o g). It induces a map

wF(V)= lim  FU)— D  F(W)=u,F(V").
(Up)el(V)or (Wa)el(v7)or

A map of F — F’ in PSh(C) induces for V € D

wF(V)= lim  FU)— lm  F(U)=uFV)
(UR)EI(V)or (Up)eI(V)or

Thus, we have defined a functor
up, : PSh(C) — PSh(D).
To show that
Hompgpc) (F, u’G) = Hompgyp) (upF, G)
holds bifunctorially in F' and G.

Lemma 1.2. Let u:C — D be a functor. Assume

(i) C has a final object e and u(e) is a final object of D,
(i1) C admits fiber products and u commutes with them.

Then, u, commutes with fintie limits.

Proof. This follows from the fact that the categories I*(V)° are filtered by [35, 00X3]. O
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1.2. Sites and sheaves. .

Definition 1.3. A site is given by a pair (C,7) of a category C and a Grothendieck
pretopology 7 which is a function assigning to each object U € C a collection Cov(U) of
families of morphisms {U; — U };er, called coverings family of U, satisfying the following
axioms:
(i) If V — U is an isomorphism, we have {V — U} € Cov(U).
(ii) If {U; = Utier € Cov(U) and {Vij — Ui;}jing, € Cov(U;) for each i € I, we have
then {sz — U}iel,jeJi € COV(U).
(iii) If {U; — U}ier € Cov(U) and V — U is a morphism of C, then U; xy V exists for
all i € I and we have {U; xpy V — V}ier € Cov(V).

Ezample 1.4. For a scheme S, let Schg be the category of schemes of finite presentation
over S.

(i) Let Etg be the full subcategory of Schg of étale schemes over S. The big étale site
(Schg)et is the site whose underlying category is Schg and whose coverings are
étale covering®. The small étale site (Schy)e; is the full subcategory of (Schg)e
whose objects are those U/S such that U — S is étale. A covering of Sg is any
étale covering {U; — U} with U € Sg.

Definition 1.5. Let C be a site, and let F' be a presheaf of sets on C. We say F is a sheaf
if for every U € C and every covering {U; — U }ier € Cov(U) the diagram
Ty
FU) = []FW) = Il FwixvUy)
il PTY (i iy )ETXT
represents the first arrow as the equalizer of pr§ and pri. We let Shv(C) C PSh(C) denote
the full subcategory of sheaves (of sets).

Lemma 1.6. Let F : I — Shv(C) be a diagram. Then Wm F exists and is equal to the
limit in PSh(C).

Proposition 1.7. There exists a functor called the sheafification
a: PSh(C) — Shv(C)
which is a left adjoint to the inclusion functor i : PSh(C) — Shv(C). In other words
Hompgpc)(F, G) = Homgpy(c) (aF, G)
holds bifunctorially in F € PSh(C) and G € Shv(C). Moreover, a is exact.
Let F' € PSh(C). For U = {U; — U}cr € Cov(U), put

pro
HOWLF) = equalizer ([[FW) = [ F(Ui xv Us))
iel P"T (igyir)€IXT
There is a canonical map F(U) — HO(U, F)%.

For U € C, let Cov(U) be the category of all coverings of U in C whose morphisms are
the refinements (see §1.5). Note that Cov(U) is not empty since {id : U — U} is an object
of it. By definition the construction U — HY(4 F) is an object of PSh(Cov(U)). For
F € PSh(C), we define

FrU)= lmy H(SF).
UeCov(U)°P
Note that F+(U) = H(U, F) is the zeroth Cech cohomology of F over U (see (1.19.2)).

3For T € Schg, an étale covering of T is a family of morphisms {f; : T; — T}icr in Schg such that
each f; is étale and T' = Uf;(T3).
4This is the zeroth Cech cohomology of F' over U with respect to the covering 1.
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Lemma 1.8. (1) For F € PSh(C), F" is an object of PSh(C) equipped with a canon-
ical map F — F* in PSh(C). Moreover, the construction is functorial, i.e. a map
f:+ F — G in PSh(C) induces a map f+ : Ft — G such that the following
diagram commutes in PSh(C):

F——F~"
iy
G——Gt
(2) The presheaf F is separated.
Proof. [35, 00WB|. O

Proposition 1.9. For F € PSh(C), (F*)* € Shv(C) and the induced functor
a=((—=)")*:PSh(C) — Shv(C)
is a left adjoint to the inclusion functor PSh(C) — Shv(C). Moreover, a is exact.

Proof. [35, 00WB]. The exactness of a follows from the fact that Cov(U) is filtered (the
point is to show a commutes with finite limits).
g

1.3. Functoriality of sheaves.

Definition 1.10. Let C and D be sites. A functor u : C — D is called continuous if for
every V € C and every {V; — V}ier € Cov(V'), we have the following
(i) {u(Vi) = u(V)}ier € Cov(u(V)),
(ii) for any morphism 7" — V in C, the morphism u(T' xv V;) — u(T) Xy vy u(Vi) is
an isomorphism.

Ezxample 1.11. For a map f : T — S of schemes, consider
uw:Etg 5 Etp + X = X xgT.

Then, u is continuous for the étale topology.
Lemma 1.12. Ifu:C — D is continuous, uP induces

u® : Shv(D) — Shv(C).
Proof. Exercise. 0
Lemma 1.13. Ifu:C — D is continuous, the functor

us : Shv(D) — Shv(C) : G — a(uy(G))

s a left adjoint to u®.
Proof. Follows directly from Propositions 1.9 and 1.1. g

Definition 1.14. Let C and D be sites. A morphism of sites f : D — C is given by a
continuous functor u : C — D such that the functor u, is exact.

Proposition 1.15. Let u: C — D be a continuous morphism of sites. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and w commutes with them.

Then, u defines a morphism of sites, i.e. us is ezxact.

Proof. This follows from Lemma 1.2 and the exactness of a from Proposition 1.9 (see [35,
00X6]). O
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Definition 1.16. A topos is the category Shv(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f : Shv(D) — Shv(C) is given by a adjoint
pair of functors
f*:Shv(C) = Shv(D) : f.,
namely we have for G € Shv(C) and F' € Shv(D)
Homgpy (p)(f*G, F) = Homgny(c) (G, f+ F)

bifunctorially, and the functor f* commutes with finite limits, i.e., is left exact.

(2) Let C, D, & be sites. Given morphisms of topoi f : Shv(D) — Shv(C) and
g : Shv(€) — Shv(D), the composition f o g is the morphism of topoi defined by
the functors (f o g). = frogs and (f o g)* = g* o f*.

Lemma 1.17. Given a morphism of sites f : D — C' corresponding to the functor u :
C — D, the pair of functors (f* = us, f« = u®) is a morphism of topoi.

Proof. This is obvious from Definition 1.14. O
1.4. Cohomology.

Theorem 1.18. Let C be a site. Then, the category Shv(C, Ab) of abelian sheaves on a
site 1s an abelian category which has enough injectives.

Proof. [35, 03NU]. O

By the theorem, we can define cohomology as the right-derived functors of the sections
functor F' — F(U) for U € C and F € Shv(C, Ab) defined as
HYU,F):= RT(U,F) = H(T(U, I*)),

where F© — I® is an injective resolution. To do this, we should check that the functor
['(U, —) is left exact. This is true and is part of why the category Shv(CAb) is abelian, see
Modules on Sites, Lemma 3.1. For more general discussion of cohomology on sites (includ-
ing the global sections functor and its right derived functors), see Cohomology on Sites,
Section 2. The family of functors H*(U, —) forms a universal -functor Shv(C, Ab) — Ab.

It sometimes happens that the site C does not have a final object. In this case, we
define the global sections of F' € PSh(C, S¢) over C to be the set

F(Ca F) = HomPSh(C) (6, F)u

where e is a final object in PSh(C, Sets). In this case, given F' € Shv(C, Ab), we define
the i-th cohomology group of Fon C as follows

H'(C,F) = H'(L(C,I%))).
In other words, it is the ¢-th right derived functor of the global sections functor. The

family of functors H*(C, —) forms a universal §-functor Shv(C, Ab) — Ab.

1.5. Cech cohomology. For U € C and 4 = {Ui — Utier € Cov(U), write Uy, i, =
Ui, xu --+ xu Uy, for the (p + 1)-fold fiber product over U of members of . Let F' €
PSh(C, Ab), set

CPLF) =[] FUi.s).

(i0...ip)€IPT1
For s € CP(4, F), we denote s, its value in F'(U,..;,). We define
d:CP(U, F) = CPHL (U, F)

by the formula
p+1

d(s)io...ip+1 = Z(_l)j(sio,,_i}_..ip+1)|Ui0”_ip+1 :

§=0
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It is straightforward to see that dod = 0, i.e. C (U, F) is a complex, which we call Cech
complex associated to F' and 4. Its cohomology groups
H'(4,F) = H'(C(4,F))

are called the Cech cohomology groups associated to F and 1.
Lemma 1.19. For U € C and U = {U; — U}icr € Cov(U), there is a transformation of
functors:

Shv(C,Ab) - D(Z) : C(U,—) — RT(U,-).
Moreover, there is a spectral sequence for F' € Shv(C, Ab):
(1.19.1) EY? = HP (U, HY(F)) = HPY(U, F),
which is functorial in F', where HI(F) € PSh((X, X)t, Ab) is given by U — HI(U, F).
In particular, if H'(U;y, ¥y --- xy Uy,, F) = 0 for all i >0, p > 0 and i, ...,ip, € I, then
we have HP(U, F) = HP(U, F).
Proof. [35, 03AX, 03AZ, 03F7). O

For coverings Yl = {U; — U}icr and U = {V; — V}jes in C, a morphism Y — U is
given by a morphism U — V in C, a map of sets o : I — J and for each ¢ € I a morphism
Ui = V() such that the diagram

U Vv

is commutative. In the special case U = V and U — V is the identity, we call { a
refinement of Y. A remark is that if the above U is the empty family, i.e., if J = &, then
no family 8 = {U; — V' },e; with I # @ can refine 0.

For U € C, let Cov(U) be the category of all coverings of U in C whose morphisms
are the refinements®. Note that Cov(U) is not empty since {id : U — U} is an object of
it. Take F' € PSh(C, Ab). By definition the construction 4 + C(4, F) is a preshesaf on
Cov(U) with values in the category of complexes of abelian groups. We define

CUF):= lm CHLF)
steCov (U)oP
(1.19.2) AU, F):=H'(CW F)) = lm H(LF),
seCov(U)eP

where the last equality holds since Cov(U) if cofiltered. By Lemma 1.19, we have a
transformation of functors:

Shv(C,Ab) — D(Z) : C(U,—) — RI(U, ).
(1.19.1) induces a spectral sequence
(1.19.3) EYY = HP(U,HY(F)) = HPTI(U, F).
Lemma 1.20. Let U € C and F' € PSh(C, Ab).

(1) HYU,H4(F)) = 0 for ¢ > 0. In particular, for every o € HY(U,F), there is
U={U; = Utier € Cov(U) such that o+ 0 in H1(U;, F) for all i € I.
(2) H((U,HI(F)) = HY(U,F) fori=0,1 and there is an ezact sequence

0— H*(U,F) - H*(U,F) - H (U H (F)) - H}U,F) = H3(U, F).

5By our conventions on sites this is indeed a category, i.e., the collection of objects and morphisms
forms a set.
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Proof. ([29, Ch.III 2.9 and 2.10]) (2) follow formally from (1) using (1.19.3). To prove (1),
we show the following claim. Recall the pair of adjoint functors from Proposition 1.7:

a:PSh(C), Shv(C) : .

Claim 1.21. For g > 0, we have aH4(F') = 0.

Indeed, take an injective resolution F' — I°® in Shv(C, Ab). Then, HI(F) is the ¢-th
cohomology presheaf of the complex i(1®) in PSh(C, Ab). Since a is exact and commutes
with taking cohomology, aH(F') is the ¢-th cohomology sheaf of the complex ai(1°®) = I*®
in Shv(C, Ab) so that it must vanishes.

By Proposition 1.9, we have aH?(F) = (H4(F)*)*T = 0. Since H?(F)™ is separated by
Lemma 1.8, the natural map HY(F)* — (H4(F)*)" is injective. Thus, we get HI(F)* =
0, which implies (1). O

Lemma 1.22. For F' € PSh(C, Ab), the following are equivalent.
(1) F is flabby, i.e. H'(U,F) =0 for anyi >0 and U € C.
(2) H(U,F) =0 for anyi >0, U € C and i € Cov(U).

(8) H(U,F) =0 for anyi >0 and U € C.

Proof. ([29, Ch.IIT 2.12]) (1)=(2). By the assumption, H4(F) = 0 for ¢ > 0 so (1.19.1)
implies H' (4, F) = H'(U,F) = 0.

(2)=(3). Pass to the colimit over i € Cov(U).

(3)=(1). Take any U € C. By the assumption, H9(U, F) = 0 for any ¢ > 0. By Lemma
1.20(2), we get H'(U, F) = 0 which implies #!(F) = 0. By the long exact sequence in
Lemma 1.20(2), we get H?(U, F) = 0 which implies H?(F) = 0. Assume now H!(F) =0
for i < q. Since HO(U,H9(F)) = 0 by Lemma 1.20, we get H' (U, H’(F)) = 0 for all
i,j > 0 with i + j < ¢. By (1.19.3), it implies HY(U, F) = 0 so that H(F') = 0. This
complete the proof by induction.

g
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2. CLASSICAL RIGID ANALYTIC SPACES
Good references for this section are [2]. [3] and [10].

2.1. Affinoid K-algebras. Let K be a non-archimedean field, i.e. a field which is com-
plete with respect to a nontrivial non-archimedean absolute value, i.e. a map | —|: K —
R>¢ satisfying

(i) l[a] =0 a=0.

(ii) |ab| = a||b].

(iii) |a + b| < max{|al, |b|}.
Note that the map v : K — R U {00} given by v(a) = —log|a| is a valution and there is
one-to- one correspondence between non-archimedean absolute values and valuations with
value group R on K, where the inverse is given by |a| = e~¥(®). We put

Og ={z e K||z| <1}
and fix 7 € K with || < 1.
For each n > 0, the Tate K-algebra is

T, :=K(T,....T,) ={f= > aT{" - Ty" | ay € K, lim}|_c]ay| = 0}
veN®
= OK{Tl, .. ,Tn} ®@K K,

where Ox{T1,...,T,} is the 7m-adic completion of Og[T1,...,T,]. The Gauss norm®

|| = || : T, = Rxo is given by
£l = sup |ay|.
veNm

Definition 2.1. An affinoid K-algebra is a K-algebra A such that there is a surjective
K-algebra homomorphism « : T, — A. for some n > 0. Such a K-affinoid algebra A
admits a norm || — ||, given by
la(f)lla = inf |[|f —al| for f € T,.
a€Ker(a)
For another surjective K=algebra homomorphism f3 : T}, — A, there are constants ¢, ¢ > 0
such that || — |la < cf| = [[g < || = [[a-

Definition 2.2. For an affinoid K-algebra A, let Sp(A) be the set of the maximal ideal of
A. For z € Sp(A), the residue field K (x) of x is a finite extension of K so that it carries a
unique extension of | — | on K. For f € A, let f(x) be the image of f in K(z) and |f(x)|
be its absolute value under this extension. There is a semi-norm |—|s,, on A on called the
supremum norm given by

|f|sup: sup ‘f(ﬂ?)‘

z€Sp(A)

We have the following facts:

(1) |=|sup is power-multiplicative, i.e. |f"|sup = (| f|sup)” for f € A and n > 0.

(2) For a K-homomorphism ¢ : A — B of K-affinoid algebras and for f € A, we have
lo(f)lsup < |flsup-

(3) On T, the supremum norm coincides with the Gauss norm.

(4) For a surjective K-algebra homomorphism « : T,, = A, we have | f|sup < || f||o for
all f € A. In particular, |f|sp < co.

Theorem 2.3. (Mazimal Principle) For a K-affinoid algebra A and f € A, there exists
x € Sp(A) such that | flsup = | f()].

OAmap || - || : A = Rz is called a semi-norm if ||0]| = 0, [[1]| = L, [|£gl| < ||fIll|gl| and [|f —gl| < ||fI|+
llg]| for f,g € A. It is a norm if || f|| = 0 implies f = 0. It is non-archimedian if || f — g|| < max{||f]|, ||gl|}-
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We put
A° ={f € Al |flsup <1} and A ={f € A| |f|sup < 1}.

It is easy to see that A° is a subring of A, which is Ok-algebra and A°° is its ideal. We
have the following facts:

(1) A° is m-adically complete and A = A° ®p, K.

(2) A° is the set of power-bounded elements, i.e. those f that {||f"||lo (n € N)} C R

is bounded.
(3) A°° is the set of topologically nilpotent elements, i.e. those f that li_>m [|lf™le = 0.
n [e.9]

2.2. Affinoid K-spaces. We let AffAlg; denote the category of affinoid K-algebras and
K-algebra homomorphisms. For a morphism ¢ : A — B in AffAlg,, we have the induced
map ¢* : Sp(B) — Sp(A) sending a maximal ideal m C B to ¢~ !(m). Thus, we get a
functor

Sp : AffAlgy; — Sets.

In this subsection, we introduce a G-topology in the sense of Definition 2.8 to make Sp(A)
for A € AffAlg, a G-topological space.

Definition 2.4. For fi,---, fr,g € A which generate the unit ideal, let

U(W) = {z € Sp(A)| |fi(2)| < l9(x)| (i =1,....7)}

This is called a rational subdomain of X = Sp(A).
We have the following facts:

Lemma 2.5. (1) For a rational subdomain U C Sp(A) and a morhpism ¢ : A — B
in AffAlg, inducing ¢* : Sp(B) — Sp(A), (¢*)'(U) is a rational subdomain of
Sp(B).
(2) For rational subdomain domains U,V C Sp(A), UNV is a rational subdomain.
(3) As a set, U(%) is identified with Sp(Ay) with

fl fr

AU = A<?aa;> = A<’U)1,...,’LUT>/(QUJ1 - fla"'agwr 7f1”)’
where A{wy, ..., wy) = A°{wi, ..., w} @40 A with A°{w1,...,w,} the m-adic com-
pletion of A°wy,...,wy].

(4) For rational subdomain domains U C Sp(A) and V C Sp(Ay), V is a rational
subdomain of Sp(A).

Definition 2.6. A subset U C Sp(A) is called an affinoid subdomain if the functor
Fy o AffAlgy — Sets defined by

Fy(B) = {y € Homagalg, (4, B)| ¢"(Sp(B)) C U} for B € AffAlgy

is representable by Ay € AffAlgy: In other words, there is a map ¥ : A — Ay in AffAlg,
such that the image of 1* : Sp(Ay) — Sp(A) is contained in U and the following universal
property holds: Any morphisms ¢ : A — B such that the image of ¢* : Sp(B) — Sp(A) is
contained in U, there is a unique morphism Ay — B in AffAlg, which factors A — B.

We have the following facts:

Lemma 2.7. (1) Under the above notation, 1¥* is injective and Image(y*) = U.
(2) A rational subdomain is an affinoid subdomain.
(3) For an affinoid subdomain U C Sp(A) and a morhpism ¢ : A — B in AffAlgy
inducing ¢* : Sp(B) — Sp(4), (¢*)~Y(U) is an affinoid subdomain of Sp(B).
(4) If U is an affinoid subdomain of Sp(A) and V is an affinoid subdomain of U, then
V' is an affinoid subdomain of Sp(A).
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(5) (Gerritzen-Grauert) Any affinoid subdomain of Sp(A) is a finite union of rational
subdomains.

(6) See Theorem 2.27 for a characterization of affinoid subdomains in terms of formal
models.

Definition 2.8. A G-topology 7 on a topological space X consists of the following datum:

(i) A category Cat, whose objects are open subsets of X and whose morphisms are
open immersions. An object of Cat, is called an admissible open subset.
(ii) For every U € Cat,, a family Cov,(U) of open coverings {U; — U };c;. A member
of Cov,(U) is called an admissible covering of U.
It is required to satisfy the following conditions:

(1) If V. — U is an isomorphism in Cat,, then {V — U} € Cov,(U).
(2) If {Uj — Ulier € Cov,(U) and {Vj; — Ui}jes, € Cov(U;), then {V;; —
U}ie].je(]i € COVT(U).
(3) {U; — Ulier € Cov,(U) and V. — U is a morphism in Cat,, then {U;NV —
V}ier € Cov (V).
A G-topological space is a topological space X with a Grothendieck topology 7. A mor-
phism (X,7) — (Y, \) of G-topological spaces is a continuous morphism ¢ : X — Y of
topological spaces such that for any U € Caty and {U; — U}ier € Covy(U), we have
0 Y(U) € Cat, and {1 (U;) = ¢ Y (U)}ier € Cov. (¢~ 1(U)).

We let Top® denote the category of G-topological spaces.

Definition 2.9. A sheaf F' on a G-topological space (X, 7) is a presheaf (of sets) on Cat,
such that for every U € Cat, and every {U; — U}icr € Cov,(U) the diagram

pro
F(U) - [[F(U:) — II Fwi,xvUsy)
icl Py (igir)eIxI

represents the first arrow as the equalizer of prj and prj. We let Shv((X, 7)) denote the
category of sheaves (of sets) on (X, 7).

Definition 2.10. For a K-affinoid algebra A, we equip X = Sp(A) with a G-topology T
for which the objects of Cat, are affinoid subdomains and Cov.(U) for U € Cat, is the
family of finite coverings of U by affinoid subdomains. We call the G-topological space
(X, 7) an affinoid K -space associated to A and denote it simply by Sp(A).

Let AffSpy € Top® denote the full subcategory of affinoid K-spaces and morphismsm
of G-topological spaces.

By Lemma 2.5(3), any morphism ¢ : A — B in AffAlgy induces a morphism ¢* :
Sp(B) — Sp(A) in AffAlg,. Thus, we get a functor

(AffAlg ) — AffSpy : A — Sp(A).

Theorem 2.11. (Tate) Let Ox be the presheaf on (X,T) given by Ox(U) = B for an
affinoid subdomain U = Sp(B) C X. Then, Ox is a sheaf on (X, 7).

Ezample 2.12. Let X = Sp(A) be an affinoid K-space. Using Theorem 2.11, one can show
that the following presheaves on X is a sheaves.

(1) The presheaf O° C Ox given by

O°(B) ={f € B| |f|sup,p < 0} for an affinoid subdomain Sp(B) C Sp(A4),
(2) For r € Ry, the presheaf O(r) C Ox given by

O(r)(B) = {f € B| |f|sup,B < r} for an affinoid subdomain Sp(B) C Sp(A).

where | — |sup, B is the supremum norm on B.
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2.3. Rigid analytic K-spaces.

Definition 2.13. A G-ringed K-space is a pair (X, Ox), where X is a G-topological space
and Oy is a sheaf of K-algebras on it. (X, Ox) is called a locally G-ringed K-space if,
in addition, all stalks Ox , for € X are local rings. A morphism of G-ringed K-spaces
(X,0x) — (Y,0Oy) is a pair (¢, p*), where ¢ : X — Y is a morphism of G-topological
spaces, and ¢* is a system of K-homomorphisms ¢} : Oy (V) — Ox(p~1(V)) with V
varying over the admissible open subsets of Y. It is required that the ¢j, are compatible
with restriction map, i.e. for W C V, the following diagram commutes:

Oy (V) 2 O (671(V))

L

Oy (W) > Ox (72 (W)

If (X,0x) and (Y,0Oy) are locally G-ringed K-spaces, a morphism(p, ¢*) is called a
morphism of locally G-ringed K-spaces if the ring homomorphisms

(p; : OY,go(x) — OX,:L’ forx e X
induced from the ¢, are local.

If X = Sp(A) is an affinoid K-space, we can consider the associated locally G-ringed
K-space (X, Ox), where X is the affinoid K-space associated to A from Definition 2.10
and Ox is the structure sheaf from Theorem 2.11.

Definition 2.14. A rigid (analytic) K-space is a locally G-ringed K-space (X, Ox) such
that X admits an admissible covering X = U;c;X; such that (X, OX| x,) is an affinoid
K-space for all ¢ € I. A morphism of rigid K-spaces (X, Ox) — (Y, Oy) is a morphism of
locally G-ringed K-spaces. Let Rigy be the category of rigid K-spaces and morphismsm
of locally G-ringed K-spaces. The G-topology on a rigid (analytic) K-space (X,Ox) is
called the admissible topology. For an admissible open subset U C X, the induced locally
G-ringed K-space (U, O X|U) is a rigid K-space again, which is called an open subspace of

Remark 2.15. Tt is clear that every morphism of affinoid K-spaces ¢ : X — Y induces a
morphism (X, Ox) — (Y, Oy) between associated locally G-ringed K-spaces. Thus, we
get a functor

(AffAlgp )P — Rigy : A — (X = Sp(A), Ox),

Remark 2.16. By a formal reason, the sheaves O° and O(r) defined on affinoid spaces
from Example 2.12 extends to sheaves O° and O(r) on rigid K-spaces.

2.4. Formal schemes and Raynaud’s theorem.

Definition 2.17. An Og-algebra A is called of topologically finite type if there is a surjec-
tive homomorphism ¢ : O {Th,...,T,} — A of Ok-algebras. It is of topologically finite
presentation if, furthermore Ker(y) is finitely generated. It is admissible if furthermore,
A does not have m-torsion .

Lemma 2.18. (1) An Ok-algebra A of topologically finite type is w-adically comoplete
and separated.
(2) An Og-algebra A of topologically finite type with no mw-torsion is of topologically
finite presentation.

Proof. [3, §.3 Cor.5 and Cor. 7). O

Definition 2.19. A formal Og-scheme X is called locally of topologically finite type
(resp. locally of topologically finite presentation, resp. admissible) if there is an open
affine covering X = U,¢4l; with 4; = Spf(A;), where A; is an Ok-algebra of topologically
finite type (resp. of topologically finite presentation, resp. an admissible Og-algebra).
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Let fSchgtK be the category of formal Og-schemes locally of topologically finite type
and fSchgi;;tft be its full subcategory of affine formal O-schemes . We have an association
(2.19.1) rig : fSch " — AffSp : X = Spf(A) — X" = Sp(4 ®o,, K).

Note that A®e, K is an affinoid K-algebra since Ox{T1,...,Th}®0 K = K(T1,...,Ty).
Since any morphism Spf(A) — Spf(B) in fSchZEBﬂ;;tft is induced by a unique O g-homomorphism

B — A of Og-algebras, this is a functor. Moreover, this functor commutes with localiza-
tions: For f € A, we have

(2.19.2) A{f '} ®o, K = (A{T}/(1 - fT)) ®0, K
= (A®o, K)T)/(1 = fT) = (A®o, K){f7).
From these, we can deduce the following (see [3, §7.3]).
Proposition 2.20. The functor (2.19.1) extends to a functor
(2.20.1) rig : fSch{ll — Rigy @ X — XU,

Remark 2.21. If X = Spf(A), X' coincides pointwise with the set of all closed points of
Spec(A ®p, K), which is the generic fiber of the ordinary scheme Spec(A) although it is
not visible in Spf(A) on the level of points. By this, X" is called the generic fiber of X.

In view of Proposition 2.20, one would like to describe all formal Of-schemes X whose
generic fiber X™¢ coincides with a given rigid K-space X. Such a formal Og-scheme is
called a formal model of X. To answer this question, we introduce the following.

Definition 2.22. Let X =lim o Spec(Ox /(7)) € fSchgtK and let A C Ox be a coherent
open’ ideal. Then the formal Og-scheme

X4 = lim Proj ((PA? @0, Ox/(7")))

neN d=0

together with the canonical projection X 4 — X is called the formal blowup of X in A.
Any such blowup is referred to as an admissible formal blowup of X. Note X 4 € fSchgtK
by the construction.

Definition 2.23. Let C be a category and S be a class of morphisms in C. A localization
of C by S is a category Cg together with a functor Lg : C — Cg such that:
(i) Ls(s) is an isomorphism in Cg for every s € S.
(ii) If F': C — D is a functor such that F(s) is an isomorphism for every s € S, then
F admits a unique factorization as follows:

Ci)(js

%

where the commutativity of the diagram, as well as the uniqueness of G are meant
up to natural equivalence of functors.

It is known that localizations of categories do always exist.

Proposition 2.24. For X € fSchgtK and an admissible blowup ) — X, the induced map
N'ie — X18 js an isomorphism in Rigy . In particular, the functor (2.20.1) factors through
the localization fSchgtK — (fSChgtK)z by the class ¥ of admissible blowups.

Proof. See [3, §8.4, Pr. 2]. O

"namely, " € A for some n > 0.
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Theorem 2.25. (Raynaud) Let ngchs C Rigy be the full subcategory of quasi-compact
quasi separate rigid K-spaces. Let fSch%lK C fSchgtK be the full subcategory of quasi-

compact quasi-separate admissible O -formal schemes and (fSch?QdK)g be its localization by
the class of admissible blowups. Then, the functor rig from (2.20.1) induces an equivalence
of categories

(2.25.1) rig : (fSchl )x ~ Righ®.
Proof. See [3, §8.4, Th.3]. O

Remark 2.26. For X € fSchadK, the category Xy of admissible blowups X’ — X admits
finite limits so that is cofiltered. This implies that for ) € fSch?QdK, there is a natural
isomorphism
(2.26.1) Hompg, (X78,97) = lim Homgg (x',9).

X'—>XeXx
Theorem 2.27. (Geritzen and Grauert) Let X = Spf(A) € fSch‘r(j‘Qﬁ}fft and X = X' =

Sp(A®p, K). A subset U C X is an affinoid subdomain in the sense of Definition 2.6 if
and only if there is ) € Xx and an affine open  — ) such that U = {18,

2.5. Riemann-Zariski spaces.

Definition 2.28. Let X € fSchtft and Xy be the category of admissible blowups ) — X.

Let RZ(%X) C Arr(fSchtftK) be the category whose objects are morphisms ${ — 2) where
2 — X € ¥x and Y — 2 is a Zariski open immersion. We abbreviate 4 — 9) to (4/2).
The morphism (4'/9)') — (/) in RZ(X) are commutative squares in fSchtft :

s—

]

Y —9

Remark 2.29. RZ(X) admits finite limits, and they are calculated termwise. Indeed, the
category AH(fSchtft ) of arrows admits finite limits and they are calculated component
wise: L (Ai/B;) LA /L m B;). If each (A;/B;) is in RZ(X), then one checks that
L(A /Bi) is again in RZ(X)
Definition 2.30. We equip RZ(X) with the Grothendieck topology 7 generated by:

(1) families of {(44;/)) — (/D) }ier such that {Ll; — U};er is a Zariski covering,

(2) families of {(2)’ xg9 $4/Y") — (14/)} for morphisms 2’ — ) in Xx.
The site (RZ(X), 7) is called the Riemann-Zariski space of X. We will write Shv(RZ(X))
for the topos associated to the topology generated by coverings of the form (1) and (2).

Remark 2.31. Using that for 9)' — 2) in Xy, the diagonal 9’ — 2’ xg 2’ is a morphism
in Xy, one can show that a presheaf on RZ(X) satisfies descent for all families of the form
(2) if and only if it sends each ()’ xg £4/9) — (£4/2) to an isomorphism. This implies

(2.31.1) Shv(RZ(X)) ~ ££n Shv (D ,ar)
PeTx

where the limit is along pushforwards f, : Shv(9),..) — Shv(9),ar) for morphisms f :
2’ — 9 in Xy, namely an object of the RHS of (2.31.1) is given by a system

(2312) F = {FQJ c ShV(Q‘jzar)}mﬁxGEx
such that
(W) Fyy (U x99 Q") = Fy () for every (4/9) € RZ(X) and Q' — ) in x.
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If Fy are all sheaves of abelian groups, this implies that we have a natural isomorphism

(2.31.3) lim  H'(Y), Fy) ~ H (RZ(X), Frz(x)):
@—)}:623

where Frzx) = @@sz Fy € Shv(RZ(X)) (see [10, Ch.0, 4.4.1]).
Now, we look at a relation of Shv(RZ(X)) and Shv(X"8) for X € fSchgtK. Using
Proposition 2.24, the functor (2.20.1) gives a functor on the categories of open subsets:
RZ(X) — X8 : (4/9) — U's C Y"'s = X7,

By the construction, this is continuous, i.e. maps coverings to coverings so that it defines
a morphism of sites

v X" RZ(X)

which induces a pair of adjoint functors
(2.31.4) Vo Shv(RZ(ae)): Shv(X"8) : 7,

where v, F (/) = F(U"8) for F € Shv(X"8) and (/) € RZ(X).
Theorem 2.32. (2.31.4) induces a natural equivalence of topoi

Shv(X"8) ~ Shv(RZ(X)).
In particular, for Fryx) = @@ezx Fy € Shv(RZ(X)) from (2.31.3), we have

(2.32.1) lig  H'(Y, Fy) ~ H' (X", 7" Fryx))-
V-XEXy
Proof. [10, Th.B.2.5]. O
Remark 2.33. By definition, we have
¥ Frz) (U€) = Fy(Y) for (81/9) € RZ(X).

Since such '8 form a basis of the admissible topology of X8, this determines v Frz(x)-

Ezample 2.34. For ) € ¥ and affine open U C 2), define O%’t (40) to be the integral closure
of Oy (i) in Oy(U) ®o, K. Then, one can check that this assignment extends to a sheaf
Oi@m on Yyar and satisfies fLOPF = Oignt for f:9" — 9 € Xx. By Remark 2.31, it gives

rise to a sheaf Oig{%(x). on RZ(X). Moreover, we can show 7*01;{1%(%) = O%ue» Where the
latter is a sheaf on X™® from Example 2.12 (see also Remark 2.16).
2.6. Base change theorem. Let X = Sp(A4) be a K-affinoid space.
Definition 2.35. An analytic point a of is a semi-norm | — |, : A — R>( satisfying:

(1) [f + gla < max{|fla, [gla} for f,g € A,

(2) |fg‘a = ‘f’a‘g‘a for f,g € A.

(3) For A € K, |Alo = |A|, where the latter is the norm on K.

(4) | — |a is continuous with respect to the norm topology on A.

A filter of the analytic point a consists of the affinoid subdomain U = Sp(B) C X for

which | — |, extends to B — Rxq, i.e. a is also an analytic point of U. For a sheaf F' on

X, the stalk F' at an analytic point a is F,, = ligU F(U), where the colimit is indexed by
the filter of a.

The set m, = {f € A| |f|o = 0} is a maximal ideal of the stalk O, of the structure sheaf
Ox on X and | — |, induces a norm on k, = Oy/m,. We let F, denotes the completion of
kq with respect to this norm.
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Definition 2.36. An element U = Sp(B) of the filter of an analytic point a of X is
a wide open neighborhood of a if there are fi,...,f, € B which generate B over A
such that |f;|, < 1 for all . For affinoid subdomains V' C U C X, we say that U is a
wide neighborhood of V' in X, if for any analytic point of V, there is an affinoid wide
neighborhood U, of a in X such that U, C U. In this case, we write V' CCx U. This is
equivalent to that there are f1,..., f, € O(U) generating O(U) over O(X) such that

Vc{zeUll|filr)) <lfori=1,...,n},
For a rational subdomain

V=A{zeX||filz)| <lg(x)| (i=1,...,m)}

from Definition 2.4 with fi,---, fr, g € A which generate the unit ideal, the family of the
affinoid subdomains

V(r) ={z e X|[fi(x)| <rlg@)| (i =1,....7)} (r > 1,7 € V|KX])}

forms a cofinal family of wide open neighborhood of V in X%,

Definition 2.37. A presheaf F' on X is called overconvergent if for any admissible open
V C X, we have
F(V)= hg FU).
VcexU

Lemma 2.38. ([9, Lem.2.3.2])

(1) A constant sheaf is overconvergent. For r,s € R with s < r, O(r,00) = O/O(r)
and O(s,r) = O(r)/O(s) are overconvergent.
(2) If X = 'UIUi is a finite affinoid covering, a sheaf F' on X is overconvergnet if and
1€

only if so is ils restriction Fy, for everyi € I.

(8) The category of overconvergnet sheaves (of abelian groups) on X is an exact sub-
category of the category of all sheaves.

(4) For a map f :Y — X of rigid space over K and an overconvergnet sheaf F of
abelian groups on' Y, R'f.F is overconvergent for all i

(5) An overconvergent sheaf F' on X is zero if and only if Fy, = 0 for all analytic points
a of X.

Theorem 2.39. ([9, Thm.2.7.4]) Let f : Y — X be a quasi-compact morphism of rigid
analytic spaces over K and F be a sheaf of abelian groups on Y. Then, for any analytic
point a of X, there is a canonical isomorphism for all n > 0

(Rnf*F)a = Hn(Yaa ﬂYa)7
where Yy is the fiber of f over a, which is a rigid analytic space over F, (see [9, §2.7]).

8For A € K with [\ =7, O(V(r)) :A(f—lg,..‘ Inyand V = {z € V(r)| |5% ()] < Lfori=1,...,n}

> Ag
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3. VALUATION THEORY
3.1. Valuations. We fix some notations and recall definitions from, e.g., [11, 6.2], [17, 2].

Definition 3.1. A valuation field (K, v) consists of a field K endowed with a surjective
group homomorphism v : K* — T, onto a totally ordered abelian group I',”, such that

(3.1.1) v(z +y) < max{v(x),v(y)}

whenever x +y # 0. We denote by 1 the unit of I" and the composition law of I" is denoted
by (z,y) — xy. It is easy to check that O, = {x € K| v(z) < 1} is a subring of K and we
called it the valuation ring of (K,v).

It is customary to extend v to K, by adding a new element 0 to ', setting v(0) := 0.
One can then extend the ordering of T, to T', := I',U{0} by declaring that 0 is the smallest
element of T',. By the convention, (3.1.1) holds for every = € K.

We have the following facts (see [11, 6.1,12])

Lemma 3.2. Let (K,v) be a valuation field with the valuation ring O,.

(1) Every finitely generated ideal of O, is principal.

(2) Let L be a field extension of K. Then the integral closure W of O, in L is the
intersection of all the valuation rings of L containing O,. In particular, O, is
integrally closed.

(3) If L is an algebraic extension of K and W be the integral closure of O, in L. Then,
for every prime ideal p C W, the localization Wy is a valuation ring. Moreover,
the assignment m — Wy, gives a bijection between the set of maximal ideals of W
and the set of valuation rings Oy of L whose associated valuation w extends v.

(4) Let OF be the henselization of O, with the maximal ideal mP and K" = Frac(O").
Then, Of} contains the integral closure W of O, in K" and we have Of} = Wy,
where q ;= m! N W. By (8), this implies that OF is again a valuation ring. The
same argument works also for strict henselizations.

(5) Any finitely generated torsion-free O,-module is free and any torsion-free O,-
module is flat. Hence every O,-module is of Tor-dimension< 1.

(6) A local subring of a field L is a valuation ring of L if and only if it is mazximal for
the dominance relation on the set of local subrings of L'.

Definition 3.3. Let (K,v: K — T',) be a valuation field. An extension of valued fields
(E,w: E — I'y) consists of a field extension E/K and a valuation w : E — Iy, together
with an embedding j : Iy, < I'y, such that w = jow.

Ezample 3.4. Let (K,v: K* —I',) be a valuation field and E/K be a field extension.

(1) There always exist valuations on E which extends v ([30, Ch.VI, §1, n.3, Cor.3]).

(2) If E/K is algebraic and purely inseparable, then the extension of v to E is unique.
([30, Ch.VI, §8, n.7, Cor.2]).

(3) If E is the polynomial ring K[X], we can construct extensions of v on E as follows:
Let T'y, < I be an embedding of ordered groups. For every zginK and p € T, we
define the Gauss valuation centered at zy and with radius p:

U(zg,p) * K[X] —Tu {O},

sending ag + a1 (X —x) + - -+ an(X — 20)" to max{v(a;) - p*| i = 0,1,...,n} ([30,
16, Ch.VI, §10, n.1, Lemma 1]).

Iwritten multiplicatively

10For 1ocal subrings R and S of L, one says that R dominates S if S C R and mg = mgr NS, where mp
and mg are the maximal ideals of R and S respectively. The relation of dominance defines a partial order
structure on the set of local subrings of L.
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3.2. Tame extensions of valuation fields. Let (K,v) be a valuation field with the
valuation ring O0,,. Fix an embedding of (K, v) into (K,v), where K is a separable closure
of K and ¥ is an extension of v to K. We denote by (K" v*") the strict henselization
of (K,v) (inside (K, )). A finite separable extension (L,w)/(K,v) of valuation fields is
called unramified (resp. tame), if K" = L3P (resp. ([L:" : K3"],p) = 1, where p is the
exponential characteristic of the residue field of O,). The tame closure (K v') of (K,v)
is the union of all finite tame Galois extensions of (K", v*"). The field K is also the fixed
field of K under the tame ramification group
o(x)

Ry, :={0 € Gal(K/K) | 0(O3) C Oy and ——= — 1 € m; for all z € K*}.
T
We record the following well-known lemma for later reference.

Lemma 3.5. (1) Let (L,w)/(K,v) be a finite separable extension of valuation fields.
Let N/K be a Galois hull of L/K and let w be an extension of w to N. Then
(L,w)/(K,v) is tame if and only if (N,w)/(K,v) is tame.

In particular (L,w)/(K,v) is tame if and only if (L,w) is a subextension of
(K, 0)/(K, v).
(2) Let (L,w)/(K,v) be a tame extension and let (K',v")/(K,v) be any algebraic ex-
tension of valuation fields. Let L-K' be the composition field in an algebraic closure
of K and let w' be a valuation extending v'. Then (L - K',w")/(K',v") is tame.

Proof. (1). Note that N2" is a Galois hull of Ls"/K3". Therefore we may assume K, L, N
are strictly henselian valuation fields of characteristic p > 0. Thus if (N, w)/(K,v) is tame
then [N : K] =[N : L]-[L : K] is prime to p and hence (L, w)/(K,v) is tame as well. Now
assume (L, w)/(K,v) is tame. Denote by Gx D G, D G the absolute Galois groups with
respect to a fixed separable closure K of K, and by P the pro-p-Sylow subgroup of G,
which is a normal subgroup. The indices satisfy the following equality (of supernatural
numbers)
[GKIGL]~[GLZPQGL] = [GK:P]-[P:PQGL].

As P is a normal subgroup of G, the intersection P N G, is a normal subgroup of G,
and we have an inclusion of profinite groups Gr/Gr N P — G/P. Hence [G : P] and
[Gr : PN Gy are prime to p. By assumption [Gg : G| = [L : K] is prime to p as well.
Thus [P: PNGL) =1, ie., P=PNGL. The Galois hull of L/K is the composition field
(inside K) of all the o(L), where ¢ runs through all the embeddings L — K. Extending
these ¢’s to K-automorphisms of K, we find GG(L) = o0Gro~!. Hence Gy = N,oGro 1.
As P is a normal subgroup of Gk it follows that P is contained in G as well. Thus
[Gk : P] =[Gk : GN] - [Gn : P] is prime to p and hence so is [V : K| = [Gk : GN].

(2) follows from (1) and the fact that K'* = K’ - K*, see [11, 6.2.18]. O

4. SPECTRAL SPACES

Definition 4.1. A topological space is called spectral if it is sober'!, quasi-compact, the
intersection of two quasi-compact opens is quasi-compact, and the collection of quasi-
compact opens forms a basis for the topology.

Lemma 4.2. For a topological space X, the following conditions are equivalent.

(1) X is spectral.
(2) X is a directed inverse limit of finite sober topological spaces.
(8) X is homeomrophic to Spec(R) for some commutative ring R.

Definition 4.3. Let X be a spectral space. The constructible topology on X is the
topology which has as a base of opens, the sets U and U* for a quasi-compact open U C X.

Hj e, every nonempty irreducible closed subset has a unique generic point.
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Note that an open U in a spectral space X is retrocompact'? Hence, the constructible

topology can also be characterized as the coarsest topology such that every constructible
subset' of X is both open and closed. It follows that a subset of X is open (resp. closed)
in the constructible topology if and only if it is a union (resp. intersection) of constructible
subsets. Since the collection of quasi-compact opens is a basis for the topology on X, we
see that the constructible topology is stronger than the given topology on X.

Lemma 4.4. The constructible topology on a sepctral sapce is Hausdorff, totally discon-
nected, and quasi-compact.

Proof. [35, Tag 0901] O
5. ADIC SPACES

Definition 5.1. For a morphism of schemes X — X, let Spa(X, X ) be the set of triples
(z,v,€) such that = € X, v is a valuation on k(z) and e: Spec(Q,) — X is a map
compatible with Spec(k(z)) — X. Let ¥ — Y be a morphism of schemes and (¢, @) :
(Y,Y) — (X, X) be morphisms such that the following diagram commutative:

(5.1.1) y 2o X

V2~ X
Then, we have an induced map Spa(Y, fi) — Spa({(, X)M. We equip Spa(X,f() with a
topology as follows: If X = Spec(A) and X = Spec(A) are affine, the topology is generated
by the subset of the form'®

{(z,v,e)|v(fi) <w(g) #0Vi=1,...,m} for fi,..., fm,g € A.
In general, we declare ghat a subset V' C Spa(X, X ) is open if for any commutative diagram
(5.1.1) where Y and Y are affine, ¢ is an open immersion and ¢ is locally of finite type,
the inverse image of V' in Spa(Y.Y’) is open.

Lemma 5.2. (1) If X and X are quasi-compact and quasi-separated, then Spa(X, X)
is a spectral space, i.e. homeomorphic to Spec(R) for some commutative ring R.
In particular, Spa(X, X ) is a quasi-compact and quasi-separated topological space.
(2) Let (p,p) be as (5.1.1) and assume that ¢ is étale and ¢ is locally of finite
type. Then, the set of points (y,w,e,) € Spa(Y, 57) such that the extension
(k(y), w)/(k((y)), Wik(p(y))) 5 tame is open as well as the set of points (z,v,&,) €
Spa(X, X) such that there exists (y,w,e,) € Spa(Y,Y) mapping to (z,v,&,) such

that the extension (k(y),w)/(k(x),v) is tame.

Proof. (1) follows from [17, Lem.4.3] and (2) from [15, Cor.4.4] and [14, Pr.1.7.8]. O

12 . the inclusion map U — X is quasi-compact.

13 e. a finite union of subsets of the form U N V¢ where U,V C X are open and retrocompact in X.
Msending (y,w,e') to (z = o(y),v = W)k (z), €) With € : Spec(Oy) — X induced by Spec(k(z)) — X —

X, Spec(k(y)) = Y — X and Spec(O,,) — Y — X noting Spec(O,,) = Spec(O.,) Uspec(k(y)) Spec(k(x).
15T his dictates that both {(z,v,)| v(f) < 1} and {(z,v,)| v(f) # 0} be open for f € A.
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Part 2. Tame cohomology
6. TAME TOPOS

The site below is very much inspired by the definition of the étale and tame site of
a Huber pair (see [14] and [17]). For a scheme S, let Schg be the category of schemes
separated of finite type over S.

Definition 6.1. Let X — X be an open immersion of noetherian schcemes!S.

(1) Let (X,X), be the category of pairs (U,U) equipped with an open immersion
U — Uin Sch ¢ such that U — X factors through an étale morphism U — X.
Morphisms (V, ‘7) — (U, [7) are pairs of morphisms f: V — U in Xg and f: V —
U in Sch  satisfying the obvious compatibility. This category has fiber products
given by

Vi, V1) X (0.0 (Va, Vo) = (Vi xp Va, Vi x5 Va),

and terminal object (X, X).

(2) A morphism (f, f) : (V,V) — (U,U) in (X, X); is a modification if f is an isomor-
phism and f is proper.

(3) A morphism (f, f) : (V,V) = (U,U) in (X, X), is strict étale if f is étale, V =

V xzUand f=fxgId.
(4) A morphism (f, ) (V,V) = (U,D) in (X, X), is is tame over (z,v,&,) €
Spa(U,U) if there is (y,w,ey) € Spa(V,V) such that f(y) = @, wy) = v, and

w/v is tamely ramified and the following diagram commutes:

Spec(0y) —4s V

Spec(0,) —*— U.

It is tame if it is tame over any (x,v,&,) € Spa(U,U).
On this category, we will consider the following three topologies:
(1) The strict étale topology which is generated by strict étale coverings
(2) The v-étale topology which is generated by strict étale coverings and modifications.
(3) The tame topology generated by tame coverings, where a family {(fis fi) : Vi, Vi) —
(U,U)}ier in (X, X); is a tame covering if for every (x,v,&,) € Spa(U,U), there
is ¢ € I such that (V;,V;) — (U,U) is tame over (x,v,&,).
We let (X,):()Sét, (X,X')Vét and (X,X)t denote the strict étale, the v-étale and the tame
site on (X, X); respectively.

(611) (X’X)t A(XaX)Vét L> (XvX)sét
corresponding to the inclusion functors.

Remark 6.2. Note that by the valuative criterion, if f . U' — U is separated and universally
closed and U — U’ is any map, we have a bijection Spa(U,U) = Spa(U,U’), which is a
homeomorphism if f is of finite type (hence proper), see [15, Lemma 2.2]. In particular,
every modification in (X, X); is a tame covering.

16The construction can be done for gsgs schemes. Here, we only treat noetherian case for simplicity.
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Lemma 6.3. Consider a commutative diagram of rings
R—~>R
m
A v, A
where f and f are of ﬁm’te presentation. Let {(BZ,B VYier be a filtered system of pairs
of rings and (gi,gj)ie[ (R R) — {(Bi, By) }ier be a system of pairs of maps of rings. Let

B =lim B; and B = ligrlB and (g,9) = l_n>r1(gz,gz) (R,R) — (B, B). Then, we have an

isomorphism

hﬂHom(R,ﬁ)((Aﬂ A)? (Biy Bz)) ~ Hom ((A7A)7 (Bv B))?

(R,R)

which means that for all (h, h): (A, A) = (B, B) compatible with (f, f) and (g,J), there is
i € I and (hs, h;) fitting into the following commutative squares of pairs of rings:

(fh}z:

(gz,gzl / lhh

(B;, B)) —— (B, B).

v

Proof. An exercise to use [35, Tag 00QO]. O

Remark 6.4. (1) As X is quasicompact, the tame topology is finitary: any covering
can be refined by a covering of the form g : (V,V) — (U, U) for (V,V) and (U, U)
n (X, X)t
(2) Let (U,U) € (X, X); and let U be the closure of U in U. Then (U,U) — (U, U) is
a modification, hence it is a v-étale covering and a tame covering.
(3) Note that for any (U,U) € (X, X), there exists a finitely generated ideal sheaf
T C O such that the support of Op/Z is equal to U\ U. Thus, blowing up U in

such an ideal we obtain a modification (U,U) — (U, U) such that the complement
U\ U is the support of an effective Cartier divisor.

Lemma 6.5. Let (X, X') = (X, X) be a modification. Then, for any sheaf F € Shv((X, X)yet)
and (U,U) € (X, X)., we have an isomorphism

F(U,U) 2 F(U,U x 3 X").
In particular, for v € {vét,t}, the functors
ShV((X, X)’Y) - ShV((X, X/)’Y)

induced by the inclusion (X, X"), — (X, X); is an equivalence of topoi so that we have
equivalences

RI,((X,X),F) = RI,((X,X'), F) for F € Shv((X, X),, Ab).

Proqf. It sufﬁfzes to prove it for v = vét~. Let F lge a sheaf of sets on (X, X )Vét.~ For
(U,U) € (X,X), withU' =Ux 3 X', (U,U") = (U,U) and the diagonal map ¢ : (U,U’) —
(U,U" x5 U') are modifications so coverings in (X, X)y¢. Hence,

§* : F(U,U x5 U') - F(U,U")
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is injective and we find

- pry
F(U,T) = eq (F(U U') = F(U,U" x; U ))
pr3

12

eq <F(U U’ :Z; F(U,U )> = F(U,U").

Hence, the functor
Shv (X, X")ver) = Shv (X, X)vet) : G > ((U, 0)— GU,U x5 X’))
gives a quasi-inverse of the restiction functor Shv((X, X)vs) — Shv((X, X )yet). O

6.1. Tame cohomology over a base. Let n < S be an open immersion of noetherian
schemes. A basic example is 7 = Spec(K) and S = Spec(Ok) for a complete discrete
valuation field K with the ring O of integers, or n = S = Spec(k) for a field k.

Definition 6.6. Let Sch(17 s) be the category whose objects are pairs (U, U) equipped with

an open immersion U < U over S such that U — S factors through < S. Morphisms
(V,V) — (U,U) are pairs of morphisms f : V — U in Sch,, and f:V — U in Schg
satisfying the obvious compatibility.. For (X, X ) € Schy, g), there is a functor LxR)

(X,X)T — Schy, 5y, which is the identity on objects. We define the tame topology on
Sch, 5) by declaring that the covering families are the images under Lix, %) of the covering

families in (X, X); for all (X, X) € Sch, 5). Let Sch, q); denote the corresponding site.

For F' € Shv(Sch, 5),) and X € Sch;,, we define

RTy(X/S,F) = lim RU((X,X)i, Fx x,)
(X,%)

“

where the limit is indexed by the category N (X/S) of all Nagata compactifications X < X
of X — S. By Lemma 6.5, for every X € N(X/S), the projection induces an equivalence

(6.6.1) RTy(X/S, F) ~ RU((X, X)i, F x x),)-
Lemma 6.7. The association X — RI'(X/S, F) extends to a functor
RT'4(—/S,F) : Sch,, — D(Z).
Proof. For a morphism f:U — V in Sch,,, we can construct a commutative diagram
U——=U
b
V—sV

where U < U (resp. V < V) is a Nagata compactifications of U — S (resp. V — ).
Using (6.6.1), this induces a map

f*  RL,(V/S, F) = RU,(V, V), F) Y2 Rry(U/s, F) = RT,(U.0), F).

It is standard to check that the construction gives the desired functor.
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6.2. Comparison with the tame site of Hiibner-Schmidt. Now we compare our
tame site (X, X); with the tame site (X/S); from [17].

Definition 6.8. Let X — S be a morphism of schemes and let X be the category of étale
morphisms U — X. Consider the following Grothendieck topology. A family {U; — U}
in Xg is a covering if it is an étale covering and for every (z,v,&,) € Spa(U, S), there is
i €I and (y,w,ey) € Spa(V;, S) lying over (z,v,&,) such that (k(y),w)/(k(z),v) is tame.
We let (X/S); denote the site of Xg with the above topology.

Proposition 6.9. Let X — S and X — X be as before such that there exists a separated
and proper map X — S. Then there are adjoint functors

Shv((X, X);) £ Shv((X/S),),

with u* ezact, such that for F € Shv((X, X);) and U € (X/S)e affine, u F(U) = F(U, U)
for any choice of a Nagata compactification U < U of U — X, and for G € Shv((X/S) )

u*G is the sheafification of the presheaf (U, U) — GU). If (U U) e (X,X); withU — X
separated and proper, then w*G(U,U) = G(U), in particular G = uu*G.

Proof. See [24]. O

Ezample 6.10. Consider the sheaf O € Shv((X, X);) from Example 0.4. Then,
u, O (U) = OYU,U) = O(U) = O(T) for U € X,
where U < U is a Nagata compactification of U — X with U normal and U — T — S

is the Stein factorization of the proper morphism U — S. Thus, the functor u, loses
information on OF.

6.3. Affine objects.

Definition 6.11. Let (X, X’)aﬁqnw (resp. (X, X’)inm ) be the full subcategory of (X, X),
whose objects are affine pairs (U,U) = (Spec(A),Spec(A)) (resp. such that A — A
injective and integrally closed). We make them sites by the restriction of v-étale and tame
topologies.

Lemma 6.12. The inclusions of sites (X,X)aﬁqnwét — (X,X)vét (resp. (X,X)afﬁnei —
(X, X)t) induce equivalence on the topoi. The similar fact holds for (X, X )int r.

Proof. We write the proof for vét, the proof for ¢ is analogous. We need to check the
properties (1)-(5) of [35, Tag 03AO] the inclusion is clearly continuous and fully faithful,
therefore (2), (3) and (4) are satisfied. In order to check (1), we need to prove that
every (V,V) € (X, X), can be covered by objects in (X, X)amne Consider an affine open
cover Ujer Spec(B;) of V, so that (V,V) is covered by (Spec(B;) N V,Spec(V;)). Since
V is quasi-separated V N Spec(B;) is quasi-compact. Consider a basic open cover of
Spec(B;) NV = Ujey, Spec(B;[1/ fi;]), with J; finite and f;; not nilpotent: let J; be the
ideal of Spec(B;) generated by f;;: then V(J;) is disjoint from Spec(B;) NV, so that
(Spec(B;) NV, Spec(B;)) is covered by the modification (Spec(B;) NV, Bly(5,)(Spec(B;))).

Finally, Bly(5,)(Spec(B;)) is covered by the affine blow-up algebras Spec(Bi[J%]) whose

intersection with Spec(B;) NV is Spec(Bl-[l/fij]): putting everything together we have a
cover {(Spec(B;[1/fij]), Spec(B ‘[fq 1)) = (V,V)}ierjes,- Then (5) also holds in a similar

manner. ]
6.4. Computation of the v-étale topology.

Lemma 6.13. Every composition V 25U 22 Y in (X, X)), with py strict étale and ¢, a
modificatioon, there is a modification Y2 : T — Y such that U xy T — Y factors through
a modification U xy T — V.
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(Zd f1) (f2,f2)

Proof. We may assume V — U — Y is of the form (U, V) —=% (U,U) (V,Y),
where fy is étale and fo = fo Xy Y and f1 is proper and the identity on U. The following
argument is classical (see [23, Proposmon 12.27]): As observed in Remark 6.4, we can
assume that Y is dense in Y is dense. By Raynaud-Gruson [35, Tag 081R] there exists
G1: T — Y aY-admissible blow-up such that the strict transform V' of V over T is flat of

finite presentation over 7. Note that the map V' — T factors as V! = U xf/T LN , where

B is étale and « is proper inducing an isomorphism over the dense open U = U Xy T X3 Y.
Moreover, a is flat by [20, Lem.4.15] so it is an isomorphism by [20, Lem.4.16]. Hence, we
get a morphism U ><YT — V, which is proper and an isomorphism over U. This completes

the proof. O
Lemma 6.14. For F € Shv((X, X)) and U € (X, X),, we have
(6.14.1) ave,(F)(U) = liy F(V)

V—U

where the colimit runs along all modifications of U.

Proof. Let aF be the presheaf on (X, X), defined by the right hand side of (6.14.1).
First, we claim that oF € Shv((X,X)y): By the definition, aF' sends modifications
to isomorphisms, so it has descent for those coverings. It remains to prove that af' has
descent for every strict étale covering {U; — U}icr. By a standard reduction, we may
assume I = {1,2}. Using F € Shv((X, X)), for any modification V — U, we have

F(V) = F(V xyU) X pvxgun) 'V xuls),
where U2 = Uy Xy Us. Taking the colimit over V and using Lemma 6.13 and the fact that
filtered colimits commute with fiber products, we get
OZF(Z/[) = OéF(Z/ll) X aF(Ui2) aF(Z’l?)a
which proves the claim.
Thus, we get a functor o : Shv((X, X)) = Shv((X, X)yet). It suffices to show that
it is a left adjoint of the inclusion i : Shv((X, X)yet) — Shv((X, X)ss). By construction

we have a natural transformation id — ¢« and by Lemma 6.5 also a natural isomorphism
i = id. The statement thus follows from [28, IV, §1, Theorem 2(v)]. O

Lemma 6.15. Let F' be a sheaf of abelian groups on (X, X)set If T is flabby, i.e.
H! (V,F)=0 for anyi >0 and V € (X, X)., then aye I is flabby as a vét sheaf.

Proof. By Lemma 1.22, for any U € (X, X), and a strict étale covering U’ — U, the Cech
complex
0— IU) = IU) — IU <y U") —

is exact. This implies that for any modification V — U, the Cech complex

0—=1V) = IV xyU') = IV xyU xyU') —
is also exact. Noting that filtered colimits are exact, Lemmas 6.13 and 6.14 implies

0— avétI(U) — avétI(Z/l/) — avétI(Z/{’ Xy L{/) —
is exact. Noting ayet! (U) ~ ayetI(V) for any modification V — U, this implies that aye!
is flabby on (X, X )¢ again by Lemma 1.22. O
Definition 6.16. For U = (U,U) € (X, X)yet, let X : (U,U)yes — Ugt be the morphism
of sites defined by the functor

Ut = (U, U)yer = V= (V x5 U V).
It is clear by construction that
(6.16.1) HZ (U, U), F) = HE (U, XYF).
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Lemma 6.17. For F € Shv((X, X)ye, Ab) andU = (U,U) € (X, X),, there is a natural
isomorphism
H\i/ét(qu) = hﬂ Hgt(va)‘l}F)a
V—Uu
where the colimit is over the cofiltered category of modifications V — U.

Proof. This is very similar to [6, Th. 1.2.2]. Take a flabby resolution F| y ¢ ~— I* of the

restrictign of F on (X, X )sét- By Lemma 6.15, this gives a flabby resolution F' — aygt/*®
on (X, X)ye. Therefore,

] ] . *1 i1 .
Hig (U, F) = H(awaI* W) "2 H(1ig 1°(V))
V—U
=l H/(I"(V)) = lim Hig (V. F) = lim H,(V,\F),
V—Uu V—U V—-u
where (x1) follows from Lemma 6.14 and (*2) from (6.16.1). O
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7. CONSTRUCTION OF TAME SHEAVES

Let X < X be an open immersion of noetherian schemes. We give a method to extend
étale sheaves defined over X to sheaves on (X, X);.

7.1. For X = (X, X), we let Val% be the category whose objects are triples (L,w,¢),
where L is a finite separable field extension of a residue field k(x) of a point z € X, w is a
valuation on L, and e: Spec(O,,) — X is a morphism, which restricts to the map Spec L —
Spec k(z) — X, and morphisms (L, w,e) — (L', w’,&’) are given by valued extensions (the
compatibility with ¢ is automatic). Note that for any (z,v,¢) € Spa(X, X) and any finite
separable extension of valuation fields (L,w)/(k(x),v) uniquely determines an element
(L,w,e') € Val% with ¢ equal to the composition &’ : Spec O,, — Spec O, = X.
For (L,w,e) € Val we set
(7.1.1) Ok,= lim  OU) and O?(,L,w = 0% 1 x1 O,
Spec L-U—X

where the direct limit is over all étale maps U — X which factor Spec L — X. Note
that (’);‘(7 ; is the unique henselian local ring with residue field L which is finite étale
over (9?(@,, corresponding to the field extension L/k(x). In particular, the association
(L,w,e) — (’)?(7 ;, defines a functor from Val% to the category of henselian local rings

which are ind-étale over X.

Let F be a sheaf on Xg. We write F’ F(U). Let

h U
(OX7L) T hﬂSpecL%Uét—alin

B={F,C F(O?(,L)}(L,w,e)eVal}a
be a collection of subsets such that
(1) for any (L,w,e) — (L1,w;,e1) in Val%, the pullback map F(OE}’L) — F(O;‘(’Ll)
restricts to Fy, — F,.
For (U,U) € (X, X); we define

~ for all (z,v,e) € Spa(U,U) there exists
Fg(U,U) == qa€ F(U)|a finite tame extension (L,w)/(k(z),v), ¢
such that ay, € F,
where ay, denotes the pullback of a € F(U) along Spec (’)?(’L —U.

Note that by Lemma 3.5 and (31) it suffices to consider in the definition of Fz(U,U)
only the finite tame Galois extensions (L, w)/(k(z),v).

Proposition 7.2. The assignment (U,U) Fs(U, U) defines a sheaf on (X, X);.

Proof. We start by showing that Fj is a presheaf. Let (u,) : (U',U’) — (U,U) be a
morphism in (X, X); and take a € F5(U,U). Let (y,v,¢) € Spa(U’,U’). Set = := u(y) € U
and denote by v, = v|(,) the restriction of v to k(). Note Oy, = OpNk(x) = Op Xy k().
Hence ¢ : Spec O, — U’ — U factors uniquely via a map e, : Spec O,, — U so that we
obtain a point (x,v,,e,) € Spa(U,U). By definition there exists a finite tame extension
(L,w)/(k(x),vs) such that ar, € F,,. Denote by L; the composition field of L and k(y) in a
separable closure of k(x) and choose a valuation v; on L; extending v. Then the extension
(Li,v1)/(k(y),v) is tame, by Lemma 3.5(2). Now u*(a)r,, the pullback of u*(a) € F(U’)
along F(U') — F(O%Ll), is equal to the image of the pullback of aj, € F(O%L) under
F(OEL(’L) — F(Oéb(,Ll)' As a;, € F,, we find u*(a)r, € Fy, by (1) in 7.1. This shows
u*(a) € Fg(U',U’). Hence Fj is a presheaf.

As F is an étale sheaf on X, F will be a sheaf on (X, X); if we show the following: Let
{(Us,U;) — (U,U)}icr be a tame covering in (X, X); and let a € F(U), then

(7.2.1) ay, € F(U;,U;), foralli = a € F3(U,U).
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Let (z,v,e) € Spa(U, U) By definition of tame coverings, we find ¢ € I and a point
(y,w,e') € Spa(U;, U;) over (z,v, ) such that (k(y), w)/(k(z),v) is a finite tame extension.
As ayy, € Fp(Us, U;), we find a finite tame extension (L,w;)/(k(y), w) such that (aw,)r =
ar, € Fy,. Hence, we get (7.2.1). O

Remark 7.3. By definition, for all F', 5 as in 7.1 above, we have a pullback diagram

Fﬁ(U70> - thFw

| |

F(U) — [Tlig F(O}; )

where:

e the product ranges over all elements (x,v, ) of Spa(U, U)
e the colimit ranges over all (k(x),v) C (L,w) finite tame.

This implies that if ¢ : F' — G is a map of sheaves on X¢; and F' and G are equipped with
p-families fr = {F} and Bg := {Gyw} such that for every (U,U) € (X, X); and every
(z,v,€) € Spa(U,U) there is a cofinal system of tame extensions Sawe) = {(k(z),v) C
(L, w)} such that the map ¢ : F(OEI(,L) — G((’)?QL) restricts to a map ¢y, Fyy = Gy for
all (L,w) € Sy.e, then ¢ induces a map Fj, — G, of sheaves on (X, X);, denoted by ¢
as well.

Remark 7.4. Given a collection (5 as in (7.1) on a sheaf F', we can define a new family

B = {F3" C F(AL)}(Lwe)evals,

by setting
‘ Fy if Spec L maps to a generic point of X
Fdiv .— and w is a discrete valuation,
F(Ayr) else.

If 3 satisfies (1), then so does . Here note that if (L, w, ) — (L', w’, ') is a morphism
in Val%} and w is discrete, then w’ is discrete as well. We denote by F gw := Fgaiv the

corresponding tame sheaf. For sections in F’ gi”(U, U), we only put conditions induced by
B along tame extensions of discrete valuations on the generic points of U with center in
U, hence Fjg C Fg“’.

Ezample 7.5. In the following (L,w,e) is always in Val%,. We set A, = O% , and Ay, =
h .
OX,L,w’ see (7.1.1) for notation
(1) Let F be a sheaf on Xg. Set Fy,0 = F(ArL), if (L,w,¢) € Val?XJ(), and F,0 =0,
else. Set Iy triv = F(AL), for all (L,w,e). Then By = {Fuwo}(r,we) and Buiv =
{Fuwriv} are families as in 7.1 and we have
Z*Fgo = j!F and Z*Fﬂmv = j*F,

where j : X — X is the open immersion and 2 : (X, X); — X is the morphism of
sites induced by the functor U — (U/X x ¢ X, U).
(2) Given a collection 8 as in (7.1) on a sheaf F', we can define a new family
/Bdw = {qulzw C F(AL)}(L,w,e)GVaISX
by setting
Fy if Spec L maps to a generic point of X

Fdiv.— and w is a discrete valuation,
F(Ar) else.
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If 3 satisfies (81), then so does %", Here note that if (L,w,e) — (L', w', ') is
a morphism in Val% and w is discrete, then w’ is discrete as well. We denote by
ng” := Fgaiv the corresponding tame sheaf. For sections in F, gw(U, U) we only
put conditions induced by £ along tame extensions of discrete valuations on the
generic points of U with center in U, hence F 3 CF giv.

(3) Let F be as above and assume there is a presheaf F on Sch ¢ extending F'. Then
we can define Sz = {ﬁ(AL,w) C F(AL)}(Lwe)- We get a sheaf Fj_ on (X, X);.
Notice that the resulting sheaf ¢, F; 3 may be different from 15‘ R, €80 for F = o,
the structure sheaf on Sch ¢, the sheaf Ol X, 18 different from L*Oﬁﬁ = 1,0', where
O! is defined in (4) (see Lemma 7.6).

(4) Let F' = Q9 be the étale sheaf of gth absolute differential forms on X¢;. Denote
by QZLM (log) the graded Q’;‘L,w-subalgebra of €% generated by dlog(A7). Note

Q?h’w C Q%L,w (log). Set

/Blog = {Q%L,w (log) C Q?qL}(L,w,s)'
Then f,g satisfies (1) in 7.1 and we get a sheaf
(7.5.1) Qet .= Qqﬁlog on (X, X);.

Note for ¢ = 0, we write O = Q¥!. This is a special case of (3), where we take
F to be the structure sheaf © on Sch - Note also that the differential of the de
Rham complex induces a well-defined differential d : Q%' — Q4T1¢ giving rise to
a complex of sheaves Q% on (X, X);. Using Remark (2), we get an inlcusion of
sheaves on (X, X),

Ot - Qadv . (Qq )div
: Blog :
.7t R

Furthermore, given a morphism X — S we can similarly define the complex /5=
Q;&ﬂlog/s’ where ﬂlog/S = {QqAL,w/S(IOg) C Q?‘XL/S}(L#%E)'

(5) Let W, Q°* denote the p-typical de Rham-Witt complex, it is defined as an étale
sheaf on all schemes by [13]. Denote by W} (log) the graded W,Q} -
subalgebra of W, ~generated by dlogla], a € AL, where [-] : A, — W;,(AL)
denotes the multiplicative lift. Note WnQZ‘L’w C WanLﬂw(log). Then Biogn =
{(W,Qf, (log) C WnQY }(rwe) satisfies the assumption from 7.1 and we get a
sheaves

W, Q00 = W,Q% ¢ W,Q0% .= (W, ) on (X,X),.
/Blog,n

" Blog,n
Note that the differential, the restriction map, as well as Frobenius and Ver-
schiebung on the de Rham-Witt complex induce well-defined maps on W, Q%!
and W, Q%% In particular W,Q** and W,,Q*%" are Witt complexes in the sense
of [13, Definition 4].

Lemma 7.6. Let Ot .= Q% and 0% = QVUV jn the notation from 7.5(4). For all
(U,U) € (X, X); we have

OLU,U) = O(U™),
where U™ denotes the integral closure of U in U. Moreover, if U is a Nagata scheme and
U is normal, then we have

olU,U) = 0% (U, U).

Proof. By Lemma 6.5 we can assume U = U™, We notice that both sides are contained
in O(U) and that this ”D” inclusion holds by definition of the left hand side. As both
sides are sheaves on U, it suffices to check the other inclusion for U affine. As an affine
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open cover U = U;U; induces an affine open cover U =0t = Uiﬁiint we can assume
(U,U) = (Spec A, Spec A) with A integrally closed in A. Let z € A\ A.

Claim 7.7. There ezist a prime ideal p in A and a valuation v on K = Frac(A/p) such
that A - A — K factors through O, and v(x) < 0.

Admitting the claim, we also have w(x) < 0 for all (tame) extensions (L,w)/(K,v) of
valuation fields and x cannot lie in O'(U, U), which completes the proof of the lemma.

We prove the claim. Denote by C' = A[1/z] the subring of A, generated by the image
of A and 1/z. As z is not integral over A it follows from [30, VI, §1, no. 2, Lemma 1], that
A, is not the zero-ring and that there exists a maximal ideal m C C such that 1/x € m and
mN A is a maximal ideal of A. Consider the localization Cy, of C. By the flatness of Ciy,
over C, the inclusion C' < A, induces an injection of rings C = C ®¢ C — Az Q¢ Chr.
As Cy, is not the zero ring, the ring A, ®c Cy, is not zero and hence has a prime ideal; it
corresponds to a prime ideal p of A, which does not contain x and has empty intersection
with C'\ m. Set pg := CNpA,. By construction we have pg C m, and in fact this inclusion
is strict as else we would have 1/z € pA, since 1/ € m. Thus, C/pg is not a field. Set
Ko = Frac(C/po) C K := Frac(A;/pAz) = Frac(A/p). Let vy be a valuation on Ky such
that C/po C O,, C Ky and that m,,NC/pg is the image of m in C'/pg. Let v be a valuation
on K extending vg. Thus we obtain a commutative diagram

A C/ Po OUO Oy
A —— A, /pA, K.

Note v(z) = vg(x) < 0 since 1/x € m so that its image in C'/pg is in m,,. This completes
the proof of the claim.

For the last statement, we observe that as U is Nagata the integral closure U™ is finite
over U and hence is locally noetherian again. As U is normal so is Ut We may therefore
assume that U™ is noetherian, integral and normal. Hence

O, T)=0(0"™) = [\ Opine, = 0" (U, 1),
relint.(1)
where U™-() is the set of 1-codimensional points in U int and where the last equality
follows from Q% (U,U) = 0% (U, U™) and the definition of O%"  see Remark (2). O

We give some results on Q%! from Example 7.5 without proofs.

Lemma 7.8. Let T' be a normal noetherian scheme, X — T a smooth morphism, and
X C X a dense open, such that X \ X is the support of a simple normal crossing divisor
D over T (i.e., all intersections D;, N ... N D, of the irreducible components of D are
smooth over T) Let j : (X, X)t = Xzar be the natural morphism of sites induced by the
functor Xyor — (X, X) given by U/X — (U x5 X, U) Then
b J— 7d
Q‘;T Q‘;Tw Qi(/T(log D).

Lemma 7.9. Let k be a perfect field of positive characteristic p. Let X be a smooth k-
scheme and X C X an open subscheme such that the complement X\X is the support of
a stmple normal crossing divisor D. Let j : (X,X)t — Xzar be as above. Then

G0 = LW, Q0 = W04 (log D),

where the right hand side denotes g-forms of the logarithmic de Rahm-Witt complex, as-
sociated to the smooth log scheme (X, j.Ox NOx), see [18].
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8. FIBER FUNCTORS

In this section, we characterise fibre functors of the topoi of the sheaves of sets on
(X, X)yet and (X, X);. First, we recall the following.

Definition 8.1. Let (C,~) be a site admitting finite limits. Recall that a fibre functor of
a topos Shv(C, ) of sheaves of sets, is a functor ¢ : Shv(C,~v) — Sets which preserves
colimits and finite limits. Let Fib(Shv(C,~)) denote the category of fiber functors of
Shv(C,~).

In what follows, let v denote either the v-étale topology or the tame topology on (X, X),.
The main result of this section gives a description of Fib(Shv((X, X),)). We first introduce
some notations (see Proposition 8.5).

—_—

Definition 8.2. We let (X, X), be the category of pairs 7 = (T,T) of affine schemes
such that that there exists a cofiltered projective system {7; = (13, T;) bier in (X, X)affine,r
such that T' = @ieITi and T = @ielTi‘ Notice that in this (iase the map T' — X is
no longer in general étale (but rather, pro-étale), the map 7" — T is no longer in general
a quasi-compact open immersion and the map T — X is no longer locally of finite type.

We also consider the full subcategory (X X )int,7 of (X X )r whose objects are cofiltered
limits of objects in (X, X)int,r-

—_—~—

Remark 8.3. For Y = (Spec(A), Spec(A)) € (X, X)ints, we observe that:
(1) A — A is injective and integrally closed, as filtered colimits are exact and the
integral closure commutes with filtered colimits. ~
(2) If A= Ay x Ay is a product of rings and A; are the integral closures of A in A; for
i=1,2, we have ) = V) U Vs with }; = (Spec(4;), Spec(4;)).

Definition 8.4. We say that 7 = (T, T) € (XLX)T is vét (resp. tamely) local if every
vét (resp. tame) covering V = (V,V) - U = (U,U) in (X, X),, the morphism of sets

Hom —— (7,V) — Hom —— (T,U)
(X, X)r (X,X)+

is surjective.

By Lemma 6.12, there is an equivalence of categories of fiber functors
Fib(Shv ((X, X)affine.»)) =~ Fib(Shv((X, X),)).

Hence, by [27, Pro.7.13], there is a bijection between fibre functors of Shv((X, X),) and
pro-objects
(8.4.1) Pe = “@’VP,\ with Py = (P7 p) € (X; X)afﬁne,'y
A€A

indexed by a cofiltered category A, which satisfies the ~-locality condition: For every
~y-covering V — U, the morphism of sets

lim Hom y ¢y (Pa,V) = lim Hom y ¢ (P, U)

AEA AEA
is surjective. By Lemma 6.3, the latter condition is equivalent to that T = %iin/\e NG

(X X )r is 7-local in the sense of Definition 8.4 and the corresponding fiber functor is
given by

(8.4.2) o7 : Shv((X, X),) = Sets ; F — F(T) :=lig F(Py).
A

The proof of the following proposition is analogous to [19, Corollary 3.5] and [17, Lemma
10.7]:
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Proposition 8.5. A pair T = I‘Lniel T € (X, )E')T is v-étale local (resp. tame local) if and
only if T is a coproduct of objects of the form (Spec(S),Spec(g)) such that S is strictly
henselian local and S is henselian local with S = S[1/ f] for a non-zero divisor f € S, and

that S = S X Oy, where k is the residue field of S and O, is its valuation ring of k such
that (k,v) is strictly henselian (resp. (k,v) is tamely closed). Moreover, in both cases we

have (T, T) € (X, X)int.r-

Remark 8.6. By Remark 6.4(1) and Deligne’s completeness theorem, [33, Prop.VI.9.0]
or [27, Thm.7.44, 7.17], the fibre functor ¢7 from (8.4.2) for T satisfying the condition
of Proposition 8.5 form a conservative family, i.e. a morphism f in Shv((X, Xv) is an
isomorphism if and only if ¢7(f) is an isomorphism of sets for all y-local 7. Equivalently,
a morphism V — U in (X, X), is a y-covering if and only if

Hom —— (7,V) — Hom —— (T,U)
(X,X)r (X,X)r

is surjective for all such T, [32, Expo’e IV, Prop.6.5(a)],

Remark 8.7. Let (Spec(A),Spec(A x; O,)) be vét local. Let (Spec(B),Spec(B)) —
(Spec(A), Spec(A x O,)) be a tame covering in the sense of Definition 0.3(4). Since
A is henselian local, we can refine it so that B — A is finite étale asssociated to a finite
separable extension of k — k’. By tameness, there exists a valuation w on k' extending v
such that (k',w)/(k,v) is tame and B — B — K’ factors through @,,. This implies that
the map B — B factors through B xj O, therefore the covering (Spec(B),Spec(B)) is
refined by (Spec(B), Spec(B xj Oy)). Moreover, by Lemma 3.5(1) we can further refine

it so that we have that £’'/k is Galois.

8.8. Proof of Proposition 8.5. We need the following technical result.

—_—

Lemma 8.9. Let (Y,Y) = lim_ (Y;,Yi) in (X, X),. Let (f,f): (U,U) = (Y,Y) in

(X,X)T with ~f an émle~ covering. ~Then there exists a cofiltered category J and a system
of maps (fij, fij): (Uij, Uij) = (Y3, Ys) indexed over I x J such that for all (i, j), (Usj, Uij) €
(X, X)int,r and fi; is an étale covering, and @(ij)e[xJ(Uij’Uij) — (Y,Y) refines (f, f).

Moreover, if (f, f) is is a tame covering in the sense of Definition 0.3, then we find such

system that (fij, fij) are tame coverings for all i,j.

Proof. The first assertion follows from Lemma 6.3 by a standard argument and we omit
its proof. We prove the second assertion. Assume that (f, f) is a tame covering and
prove that (fij, fw) is a tame covering for a sufficiently large 7, j assuming its existence.
We proceed as the proof of [17, Theorem 4.6]. Let Z; € Spa(Y;,Y;) be the set of triples
(Yi, ws, €w,; ) such that there is no (x;,v;, €y,) in Spa(Usj, [7”) tame over (y;, w;, €y, ). Since
(f, f) is tame, we have l'&na Zo = . By Lemma 5.2, Z; is closed, which implies that it is

compact in the constructible topology by Lemma 4.4 since Spa(Y;,Y;) is spectral. Since
the inverse limit of nonempty compact spaces is nonempty, we must have Z; = () for a

sufficiently large 7, which completes the proof.
O

Proof of Proposition 8.5: First of all, we observe that T — T is dense by Remark 6.4,
hence T and T have the same number of connected components. We check that 7 is local
if and only if every connected component is local. Let T' = [ic Iﬂ' and T' = [[;c; T; be
the decomposition into the connected components. We claim that 7 = (7, T) is local if
and only 7; = (T, Tl) are local for all i. Indeed, assume that 7T is local and take coverings

—_—~—

V; — U; in (X,X)T and maps @; : T, — U; in (X,X)T for i € I. Fixing ¢ € I, it gives rise
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to a covering V := U;xU; UV; — U = Uijefd; and a map ¢ : 7 — U in an obvious way.
By the assumption, ¢ factors through V and the image of the map 7; =+ 7 — V lands in
V; since T; and T; are connected. Thus, ; factors through V; showing that 7; is local. On
the other hand, assume that 7; are local for all i € I. Let V — U be a covering in (X, X),

and ¢ : T — U be a map in (X, X),. For each i € I, the map 7; — T — U factors
through a map 1; : 7; = V since 7; are local. Then, ¢ = Uerthi = T — V gives a lift of ¢
showing that T is local. For the rest of the proof, we assume that (7', 7T) is connected.

= Recall that every v-étale covering is also a tame covering. Let 7 = (T,7T) =
(Spec(S), Spec(S)) and write

T = @1 To with T, = (Spec(Sa), Spec(ga)) € (X, X)affine,t
a€cA
so S =lim Sq and S = lim Sa. Let ()it (resp. (Sa)™) be the integral closure of S in
S (resp. Sy in Sa). We have (S)nt = lim (Sa)™" s0 we have
(Spec(S), Spec((8)™)) = lim (Ta)™
acA

with 710 = (Spec(Sa), Spec((Sa)™)) € (X, X)ints. Since (Ta)™ — T, is a modification
and T is v-étale local, the projection T — T, factors through (7)™, which implies that
S, — S factors through (S,)™. This implies S = (S)™ and T = Li&laeA(ﬁ)int SO we
may assume S, = (Sq)™ for all a € A.

__ Noting that the restriction of the v-étale topology on X is finer than the étale topology,
S must be strictly heselian.

We show that S = S[1/f] for a non-zero divisor f € S. Fix ap € A and consider a finite
collection fug.1 ... fag,r € Say such that S[1/fa,,;] = S[1/ fae,;] for all 1 < j <r, giving a
standard open covering

Uj=1..r Spec(gao[l/foéo,j]) — Spec(sao)'

For v € A, ), let foj (resp. f;) be the image of fy, ; in S, (resp. in §) Since the ideal
(fao,1s - -+ fagr) Of Saq is the unit ideal, a fortiori the ideal J, = (fa,1, .-, fa,r) is the unit
ideal in S,, so we have the v-étale covering:

,g%ﬁummm—ﬁwumAmdqu
J=L..T a,]
Since T is local and connected, the projection 7 — 7, factors through U, ; for some j,
which implies S = S [1/f;], where f; is the image of fu, ; in S. We notice that f is not a
zero-divisor since the map S — S[1/f] = § is injective by Remark 8.3,(1).

Next, we show that S is a local ring (see [19, Proposition 3.3, “= 2”]) Let z; and x5
closed points in T'. Take finite set J; and Jy and {gj, }j,es, and {gj,}j.es, in S such that
{Spec(S[1/g;,])}jies is an open cover of T'— {z1} and {Spec(S[1/gj,])}j,c, is an open
cover of T'— {z2}. Up to refining the cover, we can assume that g;, and g;, are not units
in S for all ji, jo. If 21 # @2, then the finitely generated ideal J = (gj,, 9j,)jic1,joco Of S
maps to the unit ideal in S. Since J is finitely generated, there exists a such that g;,, g;,
comes from ga j; ; ga,jo € S,, and that the ideal J, = (Gajr»> Ga,jo) jrer joc s OF S, maps to
the unit ideal in S,. Hence, we get the v-étale covering:

|_| Un,j, U |_| Un,j, — To, where

J1€41 Jj2€J2

Unj, = (Spec(Sall/gacis]), S0c(Bal 1)), Unnjs = (SDec(Sall/gass]). Spec(Bal—2])).

ga?jl g()[,jg
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Since T is local, the projection 7" — 7T, factors through U, ;, for some j; or U, ;, for some
J2, which implies that there is a splitting S — S[1/g;,] — S for some j; or S — S[1/g;,] —
S for some jp. This implies that g;, or g, is a unit in .S, which is a contradiction, therefore
r1 = T2, hence S is local.

Let p C S be the prime ideal such that pS is the maximal ideal of S. We show that S /p
is a valuation ring (see [19, Proposition 3.3, “= 37]). Let a,b € S\ p. Since pS is maximal,
a and b are invertible in S. There exists o € A such that a,b come from ag,b, € §a.
Then, we have the v-étale covering Uy o UUnp — To With

Un,a = (Spec(Sa), Spec(ga [2—&} )y Uap = (Spec(Sa), Spec(ga [Z—a} ).

(0] «

Since 7T is local and connected, the projection 7 — 7, factors through U, , or Uy, so
§a — S factors through either §a [ba/aa} or §a {aa/ba] Hence, either b = ha or a = hb
for the image h € S of bo /o O G /by, which implies that S /p is a valuation ring.

Next, we show S ~ S X e(p) S/p, where k(p) = S/p is the fraction field of S/p (see [19,
Proposition 3.3, “= 4”]). Since S is local and pS is its maximal ideal, we have S = §p.
Then, it is enough to check that the map p — pS is an isomorphism. The map S8
is injective by Remark 8.3,(1), therefore p — pS is injective. Recall that S = 5[1/f} for
a non-zero divisor f € S. Let x/f™ in pS, with z € p. There exists a € A such that
x, f come from z,, fo € ga such that f, € §a is a unit in S,. Then, we have the v-étale
covering U, f UUq e — T with

o,y = (Spec(Sa):Spec(Sa[ 72 ])), Una = (Spec(Sall zal), Spec(Ba[£2]))

fa
As before, this implies that S, — S factors through either S[zo/f?] or S[f"/x4]. In the
former case, there is y € S such that yxr = f", but this is impossible since f & p. In the
latter case, there is y € S such that yff=x,s0zx/f"=y¢€ S which implies that p — p.S
is surjective.

Next, we show that S is henselian (see [19, Proposition 3.4]). We include the argument
of [17, Lemma 10.7] (which is more straightforward). Let S — B be finite with Spec(B)
connected. Then, B is semilocal, and to show that S is henselian, it is enough to show
that B/pB is local. Since it is a finite algebra over the field S /pS it is enough to check
that Spec(B/pB) is connected. Let B be the integral closure of S in B. Since S — B
is integral, B is a filtered union of its subrings B finite over S. Since B; — B — B are
injective, the maps Spec(B) — Spec(B 3) — Spec(B;) have dense images by [35, Tag 00FL].
Therefore, Spec(B) and Spec(B;) are connected since so is Spec(B). Since S is henselian,
B; is local henselian for all i. Since the maps B; — B’j are finite, they are local maps of
henselian local rings. Hence, B is henselian by [35, Tag 04GI], so B / pB is henselian.

Claim 8.10. FEvery element of pB is integral over S,

Admitting the claim, we have pB C B, so pB; = pB. Hence, B/pB — B/pB is injective,
so Spec(B/pB) is connected since so is Spec(B/pB) as proved above.

To show the claim, take y € B and m € p. Since B is integral over S, we can write
Yyt = Z?:_ol a;y™ for a; € S so that

n—1
"= Zaim”_’(my)l.
i=0

Since n —i > 1 for i € [0,n — 1], we have a;m™ " € pS =p C S which proves the claim.


https://stacks.math.columbia.edu/tag/00FL
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To conclude the proof of the implication =, it is enough to further check that (k,v) is
strictly henselian in case the v-étale-topology and tamely closed in case the tame topology,
where k = S/pS and v is the valuation associated to S /p. The former case holds since S is
strictly henselian. To show the latter case, take a finite extension k’'/k and a valuation v’
on k' over v such that v'/v is tame. We want to prove k = k’. Since it is separable, there
exists W € O, such that ¥’ = k[w] and O, is the integral closure of O,[w]. Let p € O,[T]
be the monic minimal polynomial of @ over k. Since S is henselian and S=25 X Oy,
there is p € S[T] that maps to P in k[T giving a finite étale extension S — S" = S[T]/(p),
with S” henselian local with residue field &' = S"/pS’. Let S =" X Oy

Claim 8.11. S’ is the integral closure of S[T]/(p) in S

Indeed, let R be the integral closure of S[T]/(p) in S’. Note that the image of T in S’
lies in S since its image w in k' = §'/pS’ lies in O,s. Hence, we have that the image of
S[T]/(p) in S lies in ', so since S is integrally closed in S’ we have that R C 5. It now
suffices to show that S’ is integral over R. By Claim 8.10, we have pS’ C R. We have
S'/pS' = Oy and O, is mtegral over O,[w]. This concludes the proof of the claim.

Recall T = (Spec(S), Spec(S L 7o with To = (Spec(Sa), Spec(Sy)). We show

T := (Spec(S’), Spec(S)) € (X, X)T. Since S = lgSa, there exists ag € A and pq, €

Sao|T) mapping to p. Letting p, be the image of p,, in S,[T], we have S = lim | o S’
with S;, = Sa[T]/(pa). By construction, S, = Sj,) ®s,, Sa- By [35, Tag 01SR], S, i S,
is étale for a > g, so Spec(S',) is étale over X since Spec(S ) is étale over X. Let S/, be
the integral closure of S, [T]/(pa) in S',. Since Spec(Sy) is ift over X, Spec(SY,) is ift over
X. By Claim 8.11, we have li lg §’ =9 noting that taking integral closures commutes
with filtered colimits. By construction, 7 := (Spec(S.,),Spec(S,)) € (X, X), and we
have T’ = lglaﬂ By Lemma 8.9, 7] — 7, is a tame covering for o > «ag. Since T

is tame local, this implies that for « > ag, the map S, — S factors through S/, which
implies k = k" as desired.

< Take T = (Spec(S), Spec(S)) with S = S x; O, as in Proposition 8.5. We want to
show that for any covering h: V = (V,V) — U = (U,U) in (X, X), with v = vét or y = t,
(8.11.1) Hom —— (7,V) — Hom —— (T,U)

(X, X)+ (X,X),

is surjective. Clearly, it suffices to consider the generator coverings so we may assume that
h is either a modification or strict étale covering in case v = vét and a tame covering in
case y = t. Write T = Spec(S), T = Spec(S) and take (f, f) : (T, T) — (U,U).

If h is a strict étale covering so that V — U is an étale covering and V =V X U f

admits a lift § : T — V since Sis strictly henselian. Moreover, the composite 7" — RN 1%
and f: T > Uinduce g: T >V =V x U so that (g, g) gives a lift of (f, ).

Assume that h is a modification. Then f:T — U lifts to g : T — V because
V' — U is an isomorphism. By the valuative criterion for properness, the composite
Spec(k) = T — Y5 V — V extends to a morphism ¢ : Spec(©,) — V. These morphisms
factor through some open affine of V, so ¢ and T LV sV glue to give a morphism
G : T = Spec(S) — V since T = Spec(O, x; S) = Spec(O,) Uspec(k) Spec(S) is the
categorical pushout in the category of affine schemes. Thus, we get a lifting (g, §) of (f.f).

Finally, assume that h is a tame covering and (k,v) is tamely closed. Let x € U

be the image of Spec(k) — T LU and vz be the restriction of v to its residue field
k(x). By the assumption, there is y € V and a valuation v, on k(y) extending v, such
that (k(y),vy)/(k(x).vy) is tame. Since (k,v) is tamely closed, there exists a map of


https://stacks.math.columbia.edu/tag/07RP
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valued fields (k(y),vy) — (k,v) which factors (k(z),v,) — (k,v). Since V. — U is an
étale covering and S is henselian, this implies that f : T = Spec(S) — U admits a lift
g: T — V. By the same argument as in the case of modifications, g extends to §: T — V
so that we get a lifting (g, §) of (f.f). This completes the proof.
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9. CECH COMPARISON

We fix again an open immersion X — X of noetherian schemes. The main theorem of
this section is the following.

Theorem 9.1. Let F € Shv((X,X);, Ab) and let Y = (Y,Y) € (X,X); such that Y
satisfies the property that every finite set of points is contained in an affine open. Then
the natural map 5

H{(Y,F) — H{(Y,F)
is an isomorphism.

For the proof of the theorem, we need the following result, which is analogous to [1,
Theorem 4.1] while its proof is closer to the arguments given in the proof of [17, Proposition
7.14 and Theorem 7.16].

Lemma 9.2. Let Y = (Y,Y) € (X, X); such that Y satisfies the property that every finite

set of points is contained in an affine open. Let U = (U, [7) M Y be a tame covering.

Then, for a tame covering V — U>¥™, there is a tame covering U' — U such that the
composition U'*¥" — U*Y™ factors through V.

The proof will be given later in §9.3.
We are now ready to prove Theorem 9.1. There is a spectral sequence

EYY = 0P (Y, HYU(F)) = HY(V, F),

where H9(F) is the presheaf U — H(U, F) on (X, X);. It suffices to show E5? = 0 for
q > 0. Every element of E¥? is represented by

o € CPU, HI(F)) = HI(F) U WH0) = HIQ> 0D, )
for a tame covering & — Y. By Lemma 1.20, we have HO(W,HI(F)) = 0 for every W €
(X, X); so that there is a tame covering V — U*¥®*1) such that a — 0 in HI(F)(V) =
H{(V,F). By Lemma 9.2, there is a tame covering U’ — U such that y v

U*»@+D) factors through V. Hence, o > 0 in HIU PV F)y = CP(', H4(F)). This
yields the desired vanishing of E?.

9.3. Local objects: We show the existence of local pro-covers, which will be used in the
comparison of the tame cohomology with Cech cohomology (see Lemma 9.2).

—~—

Lemma 9.4. For every Y € (X, X),, there is W € (X, X), v-étale (resp. tamely) local
suchjhat W — YV isa coﬁthered limit of v-étale (resp. tame) coverings Wy — Y in
(XaX)afﬁne,T with W)\ S (X7 X)int,’r-

Proof. We prove the lemma only for the tame topology. The proof for the v-étale topol-
ogy is the same. We can suppose ) := (Spec(A), Spec(A)) € (X, X)affincc. We use the
same strategy of [7, Lemma 2.2.7] (see [17, Proposition 7.12]). Let I be the set of isomor-
phism classes of coverings U — Y in (X, X )afine,t- For each i € I, pick a representative

(Spec(B;), Spec(B;)) — ) and set
(941) A1 = hgl ®B] Al = hgl ®BJ‘,

JCI finite jeJ JCI finite jeJ

where the tensor products are over A and A respectively. By construction, we can write
V= (Spec(Al),Spec(fll)) = m Yy, with Yy, = (Spec(A,\l),Spec(fhl))
A €A

as a cofiltered limit of coverings Y\, — Y in (X X )affine,t such that for every covering
U — Y in (X, X);, the map )1 — Y factors through U. For each \; € Ay, let Iy,
be the set of isomorphism classes of coverings U — Yy, in (X, X)affinet and apply the
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same construction as (9.4.1) to (Vy,, I, ) instead of (¥, ) to get (Ag,, Az, ) instead of
(A1, A1) and put Vo, = (Spec(Aa )y, ), Spec(Asz,y,)). Then, for every covering U — Yy,
the map Vs n, — V), factors through /. Put

(94.2) Ap:= lim R (Ao, ®a,, A1),  Ayi= ling ®(A2,A1®AM Ay,
JCA; finite Ny e JCA; finite \; e

where the tensor products are over A; and A; respectively. Noting Vo, — Y and
Y1 — Y are cofiltered limits of coverings, we can write
Yo := (Spec(Az), Spec(Az)) = lim Vs,
A2€A2
as a cofiltered limit of coverings V), — Y in (X, X )affine,t such that for every Ay € A and
covering U — Yy, in (X, X)¢, the map Vo — V1 — V), factors through Y. Iterating the

construction, we get a sequence in (X, X),

= V3= Vo= V1 = Y with Y, = lim ),
such that for every A\, € A,, V), — ) is a covering in (X, X )affine,t and for every covering
U — Yy, in (X, X)s, the map Vpi1 — Vi — V), factors through U. Set W = lgln Y, €

e~

(X, X),. By the construction, W is a cofiltered limit of coverings of V. It suffices to show
that W is tame local. Let V — U be a covering in (X, X )afinet and ¢ : W — U be a map

~——

in (X,X)T. By Lemma 6.3, ¢ factors through Y, for some A,. Since V), Xy V — Vi,
is a covering in (X, X);, the map Vp41 — Vn — Y, factors through Yy, Xy V so that ¢
lifts to a map W — V. This completes the proof. O
Definition 9.5. Let U = (U,U) € (X, X)s, let € U and let U = Spec(O{}’w) be the

henselization at z. An z-local object over U is T := (Spec(B), Spec(B)) € (X, X); with a
map 7 — U such that
(1) B is henselian local with residue field k, Spec(B) — U factors through U” and the
map O[}}’x — B is local and ind-étale;
(2) There is a U-admissible valuation v on k such that (k,v) is tamely closed;
(3) B = B x;, O,, where O, is the valuation ring of (k,v).

Example 9.6. Let U = (U,U) € (X,X), let z € U and k(z) be its residue field. Let

(z,v,6,) € Spa(U,U) and choose an extension T to a separable closure k(z) of k(z)
and k(z) — k(z)! be the tame closure of k(x) with respect to the valuation v. Let
O(’}@ — ij’r be the ind-étale map corresponding to the field extension k(z) < k(z)},
and let O} C k(x)!, be the valuation ring of the restriction of o to k(x);. Then, U, . =
(Spec(Of;,.), Spec(Op . Xp(wy, Or)) is an z-local object over U. Moreover, Uy ,) — U is a

cofiltered limit of maps U; — U in (X, X); which is tame over (z,v, &,).

The following Lemma and its proof is very close to [17, Theorem 11.1 and Corollary
11.7].

Lemma 9.7. Let Y = (Y,Y) € (X, X); such that Y satisfies the property that every finite
set of points is contained in an affine open. For1 <i <mn, letx; €Y and let P; be x;-local
objects over Y. Then T =Py Xy ... Xy Py € (X, X); is affine and is a disjoint union of
x-local objects, where either x = x; for some t or x is a generization of all x;, i.e., x; lie
i the closure of x.

Proof. Let P; = (Spec(Ai),Spec(fli)) with A; = A; Xp(a;,) Vi and let Spec(V;) — Y be
the induced map on the valuation rings, and let ¢; be the respective images of the closed
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points. Let Spec(/i) C Y be an affine open containing z; and §; for all i. As §; is a
specialization of x;, we have natural maps

A Op 5, = Oy 4, = k(i) = k(A),

and by the definition of g; its composition factors via V; < k(A;). Therefore all the
maps Spec(V;) — Y above factor through Spec(A), therefore Spec(A;) x¢ ... Spec(4,) =
Spec(A; ®Z--- Ay). As Spec(A)NY is quasi-affine we find an open Spec(A) C Spec(A)NY
which contains all the x;. Then all maps Spec(4;) — Y factor through Spec(A) hence

Prxy .o Xy Pr=P1 X(sp0c(A) Spec(A)) ** ¥ (Spec(A),Spec(A)) Fn-

Therefore we are reduced to the case ) = (Spec(A), Spec(A)), and now the general case
follows from the case where n = 2.

Thus it suffices to consider the following situation. Let p and q be prime ideals of A.
Let P = (Spec(B), Spec(B)) and Q = (Spec(C), Spec(C)) be p-local and g-local objects,
respectively, with B = B Xk VB and C=cC Xo Vo as in Definition 9.5. Denote by
mp C B and m¢ C C the maximal ideals. By [17, Theorem 6.3 and Theorem 6.4], B4 C
is a product of henselian local A-algebras and the following holds: let D be a factor of
B ®4 C and denote by m its maximal ideal and L = D/m its residue field.

(1) If the maps B — D and C' — D are not local, then L is separably closed;
(2) if ¢ : B — D is local, then the residue field extension kg — L is a separable
algebraic extension.

In case (1) the natural map B ® i C = D is surjective. Indeed, we have mp C B and
mg C C and as B — D and C' — D are not local we have mp - m¢g - D = D. Thus D
is integral over B ® ; C and is strictly henselian by [1, Th.3.4(ii)]. Hence (D, D) is an
t-local object, for t = mp N A C p, q, where we consider the trivial valuation on kp, and
(Spec(D), Spec(D)) is a component of P xy Q.

We consider case (2). Denote by m its maximal ideal of D and by L = D/m its residue
field. Let w be the unique valuation on L that extends the valuation v on kp. Thus (L, w)
is a henselian valuation field and its valuation ring O,, is equal to the integral closure of
Vg in L, see, e.g., [30, VI, §8, Proposition 6]. As (kp,v) is tamely closed so is (L, w). Let
D be the integral closure of B®AC’ in D, and let W be the image of the map DD L,
so that we have the following commutative diagram

B D « > D
(9.7.1) l l l
Vi y W« L.
We claim
(9.7.2) mcC D.

Assuming (9.7.2) we directly get D = D x , W. Moreover W contains O,,. Indeed, if a € L
is integral over Vg and @ € D is a lift of a, then we find a monic polynomial f € B[X] with
f(a) € m which by the claim is integral over B® i C, hence so is @, hence a € W. Thus
W is a henselian valuation ring by [17, Lemma 11.4] and its valuation w’ is a generization
of w, therefore (L,w') is tamely closed. Hence (Spec D, Spec D) is a x1-local object over
Y. It remains to prove the claim (9.7.2).

Let m € m. As ¢ : B — D is integral, we find a monic polynomial f(X) = X" +
a1 X" 1+ ... a, in B[X] such that f#(m) = 0, where f¥ = X"+ @(a1) X" ' +...p(a,) €
D[X]. Denote by f € kp[X] the reduction of f modulo the maximal ideal mp. As
0 = f?(m) = ¢(a,) mod m, we have a,, € ¢~ *(m) = mp. Thus

f_:Xe'§>
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for some e > 1 and g € kp[X] monic with ¢g(0) # 0. As B is henselian, there exist monic
polynomials h, g € B[X] with

f=hg, h=X°modmpg, ¢g=gmodmpg.

It follows that the constant term of ¢g¥ is a unit in D and hence so is g¥(m). Thus
h#(m) = 0in D. As h € X°+ mp[X] C B[X] we find that m is integral over B, hence
m € D. This yields claim (9.7.2) and completes the proof of the lemma. O

—_——

Prooof Lemma 9.2: By Lemma 9.4, we find a morphism W = (W, W) — U in (X, X);,
which is a limit of tame coverings W, = (W,\,W) - U = (U, U) in (X,X)afﬁneﬂj with
Wy € (X X )int,¢, such that W is tame local. Note that every connected component
P = (P, P) of W is a x-local object over ), for some points x € Y. Indeed, by Proposition
8.5, P satisfies the conditions (2) and (3) of Definition 9.5, so it suffices to check that
P satisfies (1). Denote by = the image in Y of the closed point of P. Then we get a
natural local morphism P — Spec(O{‘/ ) since P is henselian local. It is ind-étale as P is
a component of @A Wy and Wy — Uand U — Y are étale.

Thus, W" (product over ))) is a disjoint union of P; xy ... Xy Py, where P; are x;-local
objects for some z; € Y. Hence, by Lemma 9.7 and Proposition 8.5, W" is tame local.
Thus, for any tame covering V — U", the map W" — U™ factors via V. Lemma 6.3
implies that there is Ao and a map Wfo — Vin (X, X )affine,t that factors W™ — V), hence
by choosing U’ = W), we conclude the proof.
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10. COMPUTATION OF TAME COHOMOLOGY
The main result of this section is the following.

Theorem 10.1. Let X < X be an open immersion of noetherian schemes. For V =
(V,V) e (X,X)y, let j¥ : (V,V); — Vi be the morphisms of sites induced by the functor
Vee = (V, V)¢ given by W)V — (V X7 W,W). Let F € Shv((X,X);, Ab) be such that
the following condition is satisfied:

(p) for every (U,U) € (X,X); and xz € U, F(Spec(Op ) x5 U, Spec(Op ) is a Zyp,)-

module, where p, is the exponential characteristic of k(x).
Then, for U = (U,U) in (X, X);, we have canonical isomorphisms
Hi(U F) = Hiy (U, v, F) = Yy B (V,5YF), i >0
V—Uu
where the colimit is over the filtered category of modifications ¥V = (V, V) —U.

Remark 10.2. Note that the condition (p) of Theorem 10.1 is satisfied if F' = Q9 see
7.5(4), or F' = W,Q9" (see Example 7.5). Also it holds if X is a Z,)-scheme and F' is any
tame sheaf of Z,)-modules.

For the proof, we need the following.

Proposition 10.3. Let p be a prime and let F' be a sheaf of Z,)-modules on (X, X)t.

Let (U,U) € (X,X)_ connected and v-étale local. By Proposition 8.5, U = (U,U) =
(Spec A, Spec fl) where A is a henselian local ring with residue field K and A = A x i O,
for a strictly henselian valuation v . Write U as the limit of a cofiltered system {Ux}rea
m (X,X)T with Uy = (Spec Ay, Spec fb\). If the residue characteristic of O, is p, then
lig H{ Uy, F) =0, fori>1.
AEA

Proof. By Theorem 9.1, we have that
lim Hj Uy, F) = lim lim HF(V,*"),
AEA Va—Ux AEA
where the colimit is indexed over tame covers of U). By Lemma 8.9, this is equal to
(10.3.1) limg H™'F(V7U®),
V—u

P

where the colimit is indexed over tame covers of U and F is left Kan extended to (X, X) -
By Remark 8.7, we can further suppose that V are of the form (V, V') = (Spec(B), Spec(B))
with A — B is a finite étale map of henselian local rings associated to the residue field
extension L/K which is Galois and tame with respect to v and B=Bx 1 Oy with w the
valuation on L extending v. Set

B, := B®A"  V, :=SpecB, and B,:= B%i" V, := Spec B,.
Let Bi;l”t be the integral closure of Bn in B, and set f/nmt = Spec B;nt_ As (Vy, V;nt) _
(Vyr, Vi) is a modification, see Remark 8.317
of the complex
(10.3.2) 0— F(U,U) = F(V, V™) — F(Va, V3™) — F(V3, Vg™) — -+ .

By [30, VI, §8, No. 6, Proposition 6] ,the ring O,, is also the integral closure of O, in
L. Hence the Galois group Gal(L/K) is equal to the decomposition group Aut(Q,,/O,).
Moreover, as the category of finite separable field extensions of K is equivalent to the

the desired vanishing follows from the exactness

17Precisely speaking, this is not correct since V, is not noetherian, Indeed, it is a coflitered limit of
modifications.
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category of finite local étale A-algebras, we can identify the A-algebra automorphisms of
B with Gal(L/K). Hence G := Gal(L/K) = Aut(B/A). As in [29, Example 2.6] the
isomorphism By — [[,cq B, bo ® b1 — (o(bo)b1), and induction give the isomorphism for
n > 2

(Uo,...,on_Q)eGn—l
with
(Do @ ... @ bn-1)(o,...00n-2) = (On—2"-00)(bo) - (Fn—2-+-01)(b1) - On—2(bn-2) - b—1.

As B is integral over A, so is By, hence Bi{‘t is the integral closure of A in B, and thus
©n, restricts to an isomorphism

Br— J[ B
(00yeey0n—2)
We thus find isomorphisms
(Vo, Va™) 2 (V, V) x G

as in [29, III, Example 2.6] and can therefore identify the cohomology of (10.3.2) with
Galois cohomology

HT PV = H(G, F(V, V).

This vanishes as F(V,V) is a Zpy-module and the order of G is invertible in Z,) by
tameness. This completes the proof. 0

Proof of Theorem 10.1: Note that 7V is the composition of the morphism of sites
v:(V,V)i = (V,V)yet
corresponding to the inclusion functor and the morphism of sites
AV (v f/)vét — Vit
defined by the functor Vi, — (V, V)Vét : W/f/ — (W Xy V, W) By Lemma 6.17, we have
HAU, ) = Hia (U, Rv.F) = lig (7,3 R, F),
V—Uu

where the limit is indexed over modifications V = (V, V) — U. Hence, it suffices to show
R'v, I’ =0 for i > 1. By Remark 8.6, this follows from Proposition 10.3 and the fact that
the assumptions of loc.cite. are satisfied by condition (p). This completes the proof.
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