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Part 1. Reviews on basic theories

1. Topos theory

1.1. Functoriality of presheaves. A functor u : C → D induces

up : PSh(D)→ PSh(C)

given by upF = F ◦ u, in other words upF (V ) = F (u(V )) for V ∈ C.

Proposition 1.1. There exists a functor called the left Kan extension of F along u

up : PSh(C)→ PSh(D)

which is a left adjoint to the functor up. In other words

HomPSh(C)(F, u
pG) = HomPSh(D)(upF,G)

holds bifunctorially in F ∈ PSh(C) and G ∈ PSh(D).

For V ∈ D, let Iu(V ) denote the category whose objects are pairs (U,φ) with U ∈ C
and φ : V → u(U) and

HomIu(V )((U,φ), (U
′, φ′)) = {f : U → U ′ in C| u(f) ◦ φ = φ′}.
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We sometimes drop the superscript u from the notation and we simply write I(V ). For
F ∈ PSh(C), we define

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U) = lim−→
I(V )op

FV ,

where FV ∈ PSh(I(V ),Sets) given by

FV : I(V )op → Sets : (U,φ)→ F (U).

To show that upF ∈ PSh(D), note that for g : V ′ → V in D, we get a functor g : I(V )→
I(V ′) by setting g(U,φ) = (U,φ ◦ g). It induces a map

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U)→ lim−→
(W,ψ)∈I(V ′)op

F (W ) = upF (V
′).

A map of F → F ′ in PSh(C) induces for V ∈ D

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U)→ lim−→
(U,φ)∈I(V )op

F ′(U) = upF (V ).

Thus, we have defined a functor

up : PSh(C)→ PSh(D).

To show that

HomPSh(C)(F, u
pG) = HomPSh(D)(upF,G)

holds bifunctorially in F and G.

Lemma 1.2. Let u : C → D be a functor. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and u commutes with them.

Then, up commutes with fintie limits.

Proof. This follows from the fact that the categories Iu(V )op are filtered by [35, 00X3]. □

1.2. Sites and sheaves. .

Definition 1.3. A site is given by a pair (C, τ) of a category C and a Grothendieck
pretopology τ which is a function assigning to each object U ∈ C a collection Cov(U) of
families of morphisms {Ui → U}i∈I , called coverings family of U , satisfying the following
axioms:

(i) If V → U is an isomorphism, we have {V → U} ∈ Cov(U).
(ii) If {Ui → U}i∈I ∈ Cov(U) and {Vij → Ui}jinJi ∈ Cov(Ui) for each i ∈ I, we have

then {Vij → U}i∈I,j∈Ji ∈ Cov(U).
(iii) If {Ui → U}i∈I ∈ Cov(U) and V → U is a morphism of C, then Ui×U V exists for

all i ∈ I and we have {Ui ×U V → V }i∈I ∈ Cov(V ).

Example 1.4. For a scheme S, let SchS be the category of schemes of finite presentation
over S.

(i) Let ÉtS be the full subcategory of SchS of étale schemes over S. The big étale site
(SchS)ét is the site whose underlying category is SchS and whose coverings are
étale covering1. The small étale site (SchX)ét is the full subcategory of (SchS)ét
whose objects are those U/S such that U → S is étale. A covering of Sét is any
étale covering {Ui → U} with U ∈ Sét.

1For T ∈ SchS , an étale covering of T is a family of morphisms {fi : Ti → T}i∈I in SchS such that
each fi is étale and T = ∪fi(Ti).
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Definition 1.5. Let C be a site, and let F be a presheaf of sets on C. We say F is a sheaf
if for every U ∈ C and every covering {Ui → U}i∈I ∈ Cov(U) the diagram

F (U)→
∏
i∈I
F (Ui)

pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗0 and pr∗1. We let Shv(C) ⊂ PSh(C) denote
the full subcategory of sheaves (of sets).

Lemma 1.6. Let F : I → Shv(C) be a diagram. Then lim←−I F exists and is equal to the

limit in PSh(C).

Proposition 1.7. There exists a functor called the sheafification

a : PSh(C)→ Shv(C)

which is a left adjoint to the inclusion functor i : PSh(C)→ Shv(C). In other words

HomPSh(C)(F,G) = HomShv(C)(aF,G)

holds bifunctorially in F ∈ PSh(C) and G ∈ Shv(C). Moreover, a is exact.

Let F ∈ PSh(C). For U = {Ui → U}i∈I ∈ Cov(U), put

H0(U, F ) = equalizer
(∏
i∈I
F (Ui)

pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)
)

There is a canonical map F (U)→ H0(U, F )2.
For U ∈ C, let Cov(U) be the category of all coverings of U in C whose morphisms are

the refinements (see §1.5). Note that Cov(U) is not empty since {id : U → U} is an object
of it. By definition the construction U 7→ H0(U, F ) is an object of PSh(Cov(U)). For
F ∈ PSh(C), we define

F+(U) = lim−→
U∈Cov(U)op

H0(U, F ).

Note that F+(U) = Ȟ0(U,F ) is the zeroth Čech cohomology of F over U (see (1.19.2)).

Lemma 1.8. (1) For F ∈ PSh(C), F+ is an object of PSh(C) equipped with a canon-
ical map F → F+ in PSh(C). Moreover, the construction is functorial, i.e. a map
f : F → G in PSh(C) induces a map f+ : F+ → G+ such that the following
diagram commutes in PSh(C):

F //

f
��

F+

f+

��
G // G+

(2) The presheaf F+ is separated.

Proof. [35, 00WB]. □

Proposition 1.9. For F ∈ PSh(C), (F+)+ ∈ Shv(C) and the induced functor

a = ((−)+)+ : PSh(C)→ Shv(C)

is a left adjoint to the inclusion functor PSh(C)→ Shv(C). Moreover, a is exact.

Proof. [35, 00WB]. The exactness of a follows from the fact that Cov(U) is filtered (the
point is to show a commutes with finite limits).

□

2This is the zeroth Čech cohomology of F over U with respect to the covering U.
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1.3. Functoriality of sheaves.

Definition 1.10. Let C and D be sites. A functor u : C → D is called continuous if for
every V ∈ C and every {Vi → V }i∈I ∈ Cov(V ), we have the following

(i) {u(Vi)→ u(V )}i∈I ∈ Cov(u(V )),
(ii) for any morphism T → V in C, the morphism u(T ×V Vi) → u(T ) ×u(V ) u(Vi) is

an isomorphism.

Example 1.11. For a map f : T → S of schemes, consider

u : ÉtS → ÉtT : X → X ×S T.

Then, u is continuous for the étale topology.

Lemma 1.12. If u : C → D is continuous, up induces

us : Shv(D)→ Shv(C).

Proof. Exercise. □

Lemma 1.13. If u : C → D is continuous, the functor

us : Shv(D)→ Shv(C) : G→ a(up(G))

is a left adjoint to us.

Proof. Follows directly from Propositions 1.9 and 1.1. □

Definition 1.14. Let C and D be sites. A morphism of sites f : D → C is given by a
continuous functor u : C → D such that the functor us is exact.

.

Proposition 1.15. Let u : C → D be a continuous morphism of sites. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and u commutes with them.

Then, u defines a morphism of sites, i.e. us is exact.

Proof. This follows from Lemma 1.2 and the exactness of a from Proposition 1.9 (see [35,
00X6]). □

Definition 1.16. A topos is the category Shv(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f : Shv(D)→ Shv(C) is given by a adjoint

pair of functors

f∗ : Shv(C)←−−→ Shv(D) : f∗,

namely we have for G ∈ Shv(C) and F ∈ Shv(D)

HomShv(D)(f
∗G,F ) = HomShv(C)(G, f∗F )

bifunctorially, and the functor f∗ commutes with finite limits, i.e., is left exact.
(2) Let C, D, E be sites. Given morphisms of topoi f : Shv(D) → Shv(C) and

g : Shv(E)→ Shv(D), the composition f ◦ g is the morphism of topoi defined by
the functors (f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)∗ = g∗ ◦ f∗.

Lemma 1.17. Given a morphism of sites f : D → C corresponding to the functor u :
C → D, the pair of functors (f∗ = us, f∗ = us) is a morphism of topoi.

Proof. This is obvious from Definition 1.14. □
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1.4. Cohomology.

Theorem 1.18. Let C be a site. Then, the category Shv(C,Ab) of abelian sheaves on a
site is an abelian category which has enough injectives.

Proof. [35, 03NU]. □

By the theorem, we can define cohomology as the right-derived functors of the sections
functor F → F (U) for U ∈ C and F ∈ Shv(C,Ab) defined as

H i(U,F ) := RiΓ(U,F ) = H i(Γ(U, I•)),

where F → I• is an injective resolution. To do this, we should check that the functor
Γ(U,−) is left exact. This is true and is part of why the category Shv(CAb) is abelian, see
Modules on Sites, Lemma 3.1. For more general discussion of cohomology on sites (includ-
ing the global sections functor and its right derived functors), see Cohomology on Sites,
Section 2. The family of functors H i(U,−) forms a universal δ-functor Shv(C,Ab)→ Ab.

It sometimes happens that the site C does not have a final object. In this case, we
define the global sections of F ∈ PSh(C, Sét) over C to be the set

Γ(C, F ) = HomPSh(C)(e, F ),

where e is a final object in PSh(C,Sets). In this case, given F ∈ Shv(C,Ab), we define
the i-th cohomology group of Fon C as follows

H i(C, F ) = H i(Γ(C, I•))).
In other words, it is the i-th right derived functor of the global sections functor. The
family of functors H i(C,−) forms a universal δ-functor Shv(C,Ab)→ Ab.

1.5. Čech cohomology. For U ∈ C and U = {Ui → U}i∈I ∈ Cov(U), write Ui0...ip =
Ui0 ×U · · · ×U Uip for the (p + 1)-fold fiber product over U of members of U. Let F ∈
PSh(C,Ab), set

Čp(U, F ) =
∏

(i0...ip)∈Ip+1

F (Ui0...ip).

For s ∈ Čp(U, F ), we denote si0...ip its value in F (Ui0...ip). We define

d : Čp(U, F )→ Čp+1(U, F )

by the formula

d(s)i0...ip+1 =

p+1∑
j=0

(−1)j(si0...îj ...ip+1
)|Ui0...ip+1

.

It is straightforward to see that d ◦ d = 0, i.e. Č(U, F ) is a complex, which we call Čech
complex associated to F and U. Its cohomology groups

Ȟ i(U, F ) = H i(Č(U, F ))

are called the Čech cohomology groups associated to F and U.

Lemma 1.19. For U ∈ C and U = {Ui → U}i∈I ∈ Cov(U), there is a transformation of
functors:

Shv(C,Ab)→ D(Z) : Č(U,−)→ RΓ(U,−).
Moreover, there is a spectral sequence for F ∈ Shv(C,Ab):

(1.19.1) Ep,q2 = Ȟp(U,Hq(F ))⇒ Hp+q(U,F ),

which is functorial in F , where Hq(F ) ∈ PSh((X, X̃)t,Ab) is given by U → Hq
t (U , F ).

In particular, if H i(Ui0 ×U · · · ×U Uip , F ) = 0 for all i > 0, p ≥ 0 and i0, . . . , ip ∈ I, then
we have Ȟp(U, F ) = Hp(U,F ).

Proof. [35, 03AX, 03AZ, 03F7]. □
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For coverings U = {Ui → U}i∈I and V = {Vj → V }j∈J in C, a morphism U → V is
given by a morphism U → V in C, a map of sets α : I → J and for each i ∈ I a morphism
Ui → Vα(i) such that the diagram

Ui //

��

Vα(i)

��
U // V

is commutative. In the special case U = V and U → V is the identity, we call U a
refinement of V. A remark is that if the above V is the empty family, i.e., if J = ∅, then
no family U = {Ui → V }i∈I with I ̸= ∅ can refine V.

For U ∈ C, let Cov(U) be the category of all coverings of U in C whose morphisms
are the refinements3. Note that Cov(U) is not empty since {id : U → U} is an object of
it. Take F ∈ PSh(C,Ab). By definition the construction U 7→ Č(U, F ) is a preshesaf on
Cov(U) with values in the category of complexes of abelian groups. We define

Č(U,F ) := lim−→
U∈Cov(U)op

Č(U, F ),

(1.19.2) Ȟ i(U,F ) := H i(Č(U, F )) = lim−→
U∈Cov(U)op

Ȟ(U, F ),

where the last equality holds since Cov(U) if cofiltered. By Lemma 1.19, we have a
transformation of functors:

Shv(C,Ab)→ D(Z) : Č(U,−)→ RΓ(U,−).
(1.19.1) induces a spectral sequence

(1.19.3) Ep,q2 = Ȟp(U,Hq(F ))⇒ Hp+q(U,F ).

Lemma 1.20. Let U ∈ C and F ∈ PSh(C,Ab).

(1) Ȟ0(U,Hq(F )) = 0 for q > 0. In particular, for every α ∈ Hq(U,F ), there is
U = {Ui → U}i∈I ∈ Cov(U) such that α 7→ 0 in Hq(Ui, F ) for all i ∈ I.

(2) Ȟ i(U,Hq(F )) = H i(U,F ) for i = 0, 1 and there is an exact sequence

0→ Ȟ2(U,F )→ H2(U,F )→ Ȟ1(U,H1(F ))→ Ȟ3(U,F )→ H3(U,F ).

Proof. ([29, Ch.III 2.9 and 2.10]) (2) follow formally from (1) using (1.19.3). To prove (1),
we show the following claim. Recall the pair of adjoint functors from Proposition 1.7:

a : PSh(C)→←Shv(C) : i.

Claim 1.21. For q > 0, we have aHq(F ) = 0.

Indeed, take an injective resolution F → I• in Shv(C,Ab). Then, Hq(F ) is the q-th
cohomology presheaf of the complex i(I•) in PSh(C,Ab). Since a is exact and commutes
with taking cohomology, aHq(F ) is the q-th cohomology sheaf of the complex ai(I•) = I•

in Shv(C,Ab) so that it must vanishes.

By Proposition 1.9, we have aHq(F ) = (Hq(F )+)+ = 0. Since Hq(F )+ is separated by
Lemma 1.8, the natural map Hq(F )+ → (Hq(F )+)+ is injective. Thus, we get Hq(F )+ =
0, which implies (1). □

Lemma 1.22. For F ∈ PSh(C,Ab), the following are equivalent.

(1) F is flabby, i.e. H i(U,F ) = 0 for any i > 0 and U ∈ C.
(2) Ȟ i(U, F ) = 0 for any i > 0, U ∈ C and U ∈ Cov(U).

3By our conventions on sites this is indeed a category, i.e., the collection of objects and morphisms
forms a set.
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(3) Ȟ i(U,F ) = 0 for any i > 0 and U ∈ C.

Proof. ([29, Ch.III 2.12]) (1)⇒(2). By the assumption, Hq(F ) = 0 for q > 0 so (1.19.1)
implies Ȟ i(U, F ) = H i(U,F ) = 0.

(2)⇒(3). Pass to the colimit over U ∈ Cov(U).
(3)⇒(1). Take any U ∈ C. By the assumption, Ȟq(U,F ) = 0 for any q > 0. By Lemma

1.20(2), we get H1(U,F ) = 0 which implies H1(F ) = 0. By the long exact sequence in
Lemma 1.20(2), we get H2(U,F ) = 0 which implies H2(F ) = 0. Assume now Hi(F ) = 0
for i < q. Since Ȟ0(U,Hq(F )) = 0 by Lemma 1.20, we get Ȟ i(U,Hj(F )) = 0 for all
i, j ≥ 0 with i + j ≤ q. By (1.19.3), it implies Hq(U,F ) = 0 so that Hq(F ) = 0. This
complete the proof by induction.

□

2. Classical rigid analytic spaces

Good references for this section are [2] and [3].

2.1. Affinoid K-algebras. Let K be a non-archimedean field, i.e. a field which is com-
plete with respect to a nontrivial non-archimedean absolute value, i.e. a map | − | : K →
R≥0 satisfying

(i) |a| = 0⇔ a = 0.
(ii) |ab| = |a||b|.
(iii) |a+ b| ≤ max{|a|, |b|}.

Note that the map v : K → R ∪ {∞} given by v(a) = − log |a| is a valution and there is
one-to- one correspondence between non-archimedean absolute values and valuations with
value group R on K, where the inverse is given by |a| = e−v(a). We put

OK = {x ∈ K| |x| ≤ 1}

and fix π ∈ K with |π| < 1.

For each n > 0, the Tate K-algebra is

Tn := K⟨T1, . . . , Tn⟩ = {f =
∑
ν∈Nn

aνT
ν1
1 · · ·T

νn
n | aν ∈ K, lim|ν|→∞|aν | = 0}

= OK{T1, . . . , Tn} ⊗OK
K,

where OK{T1, . . . , Tn} is the π-adic completion of OK [T1, . . . , Tn]. The Gauss norm4

|| − || : Tn → R≥0 is given by

||f || = sup
ν∈Nn

|aν |.

Definition 2.1. An affinoid K-algebra is a K-algebra A such that there is a surjective
K-algebra homomorphism α : Tn → A. for some n > 0. Such a K-affinoid algebra A
admits a norm || − ||α given by

||α(f)||α = inf
a∈Ker(α)

||f − a|| for f ∈ Tn.

For another surjectiveK=algebra homomorphism β : Tm → A, there are constants c, c′ > 0
such that || − ||α ≤ c|| − ||β ≤ c′|| − ||α.

Definition 2.2. For an affinoid K-algebra A, let Sp(A) be the set of the maximal ideal of
A. For x ∈ Sp(A), the residue field K(x) of x is a finite extension of K so that it carries a
unique extension of | − | on K. For f ∈ A, let f(x) be the image of f in K(x) and |f(x)|

4A map ||−|| : A → R≥0 is called a semi-norm if ||0|| = 0, ||1|| = 1, ||fg|| ≤ ||f ||||g|| and ||f−g|| ≤ ||f ||+
||g|| for f, g ∈ A. It is a norm if ||f || = 0 implies f = 0. It is non-archimedian if ||f − g|| ≤ max{||f ||, ||g||}.
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be its absolute value under this extension. There is a semi-norm |−|sup on A on called the
supremum norm given by

|f |sup = sup
x∈Sp(A)

|f(x)|.

We have the following facts:

(1) |−|sup is power-multiplicative, i.e. |fn|sup = (|f |sup)n for f ∈ A and n > 0.
(2) For a K-homomorphism φ : A→ B of K-affinoid algebras and for f ∈ A, we have
|φ(f)|sup ≤ |f |sup.

(3) On Tn, the supremum norm coincides with the Gauss norm.
(4) For a surjective K-algebra homomorphism α : Tn → A, we have |f |sup ≤ ||f ||α for

all f ∈ A. In particular, |f |sup <∞.

Theorem 2.3. (Maximal Principle) For a K-affinoid algebra A and f ∈ A, there exists
x ∈ Sp(A) such that |f |sup = |f(x)|.

We put

A◦ = {f ∈ A| |f |sup ≤ 1} and A◦◦ = {f ∈ A| |f |sup < 1}.
It is easy to see that A◦ is a subring of A, which is OK-algebra and A◦◦ is its ideal. We
have the following facts:

(1) A◦ is π-adically complete and A = A◦ ⊗OK
K.

(2) A◦ is the set of power-bounded elements, i.e. those f that {||fn||α (n ∈ N)} ⊂ R
is bounded.

(3) A◦◦ is the set of topologically nilpotent elements, i.e. those f that lim
n→∞

||fn||α = 0.

2.2. Affinoid K-spaces. We let AffAlgK denote the category of affinoid K-algebras and
K-algebra homomorphisms. For a morphism φ : A→ B in AffAlgK , we have the induced
map φ∗ : Sp(B) → Sp(A) sending a maximal ideal m ⊂ B to φ−1(m). Thus, we get a
functor

Sp : AffAlgK → Sets .

In this subsection, we introduce a G-topology in the sense of Definition 2.8 to make Sp(A)
for A ∈ AffAlgK a G-topological space.

Definition 2.4. For f1, · · · , fr, g ∈ A which generate the unit ideal, let

U
(f1, . . . , fn

g

)
= {x ∈ Sp(A)| |fi(x)| ≤ |g(x)| (i = 1, . . . , r)}

This is called a rational subdomain of X = Sp(A).

We have the following facts:

Lemma 2.5. (1) For a rational subdomain U ⊂ Sp(A) and a morhpism φ : A → B
in AffAlgK inducing φ∗ : Sp(B) → Sp(A), (φ∗)−1(U) is a rational subdomain of
Sp(B).

(2) For rational subdomain domains U, V ⊂ Sp(A), U ∩ V is a rational subdomain.

(3) As a set, U
(f1,...,fn

g

)
is identified with Sp(AU ) with

AU = A⟨f1
g
, . . . ,

fr
g
⟩ := A⟨w1, . . . , wr⟩/

(
gw1 − f1, . . . , gwr − fr

)
,

where A⟨w1, . . . , wr⟩ = A◦{w1, . . . , wr}⊗A◦A with A◦{w1, . . . , wr} the π-adic com-
pletion of A◦[w1, . . . , wr].

(4) For rational subdomain domains U ⊂ Sp(A) and V ⊂ Sp(AU ), V is a rational
subdomain of Sp(A).
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Definition 2.6. A subset U ⊂ Sp(A) is called an affinoid subdomain if the functor
FU : AffAlgK → Sets defined by

FU (B) = {φ ∈ HomAffAlgK (A,B)| φ∗(Sp(B)) ⊂ U} for B ∈ AffAlgK

is representable by AU ∈ AffAlgK : In other words, there is a map ψ : A→ AU in AffAlgK
such that the image of ψ∗ : Sp(AU )→ Sp(A) is contained in U and the following universal
property holds: Any morphisms φ : A→ B such that the image of φ∗ : Sp(B)→ Sp(A) is
contained in U , there is a unique morphism AU → B in AffAlgK which factors A→ B.

We have the following facts:

Lemma 2.7. (1) Under the above notation, ψ∗ is injective and Image(ψ∗) = U .
(2) A rational subdomain is an affinoid subdomain.
(3) For an affinoid subdomain U ⊂ Sp(A) and a morhpism φ : A → B in AffAlgK

inducing φ∗ : Sp(B)→ Sp(A), (φ∗)−1(U) is an affinoid subdomain of Sp(B).
(4) If U is an affinoid subdomain of Sp(A) and V is an affinoid subdomain of U , then

V is an affinoid subdomain of Sp(A).
(5) (Gerritzen-Grauert) Any affinoid subdomain of Sp(A) is a finite union of rational

subdomains.
(6) See Theorem 2.27 for a characterization of affinoid subdomains in terms of formal

models.

Definition 2.8. A G-topology τ on a topological space X consists of the following datum:

(i) A category Catτ whose objects are open subsets of X and whose morphisms are
open immersions. An object of Catτ is called an admissible open subset.

(ii) For every U ∈ Catτ , a family Covτ (U) of open coverings {Ui → U}i∈I . A member
of Covτ (U) is called an admissible covering of U .

It is required to satisfy the following conditions:

(1) If V → U is an isomorphism in Catτ , then {V → U} ∈ Covτ (U).
(2) If {Ui → U}i∈I ∈ Covτ (U) and {Vij → Ui}j∈Ji ∈ Covτ (Ui), then {Vij →

U}i∈I.j∈Ji ∈ Covτ (U).
(3) {Ui → U}i∈I ∈ Covτ (U) and V → U is a morphism in Catτ , then {Ui ∩ V →

V }i∈I ∈ Covτ (V ).

A G-topological space is a topological space X with a Grothendieck topology τ . A mor-
phism (X, τ) → (Y, λ) of G-topological spaces is a continuous morphism φ : X → Y of
topological spaces such that for any U ∈ Catλ and {Ui → U}i∈I ∈ Covλ(U), we have
φ−1(U) ∈ Catτ and {φ−1(Ui)→ φ−1(U)}i∈I ∈ Covτ (φ

−1(U)).

We let TopG denote the category of G-topological spaces.

Definition 2.9. A sheaf F on a G-topological space (X, τ) is a presheaf (of sets) on Catτ
such that for every U ∈ Catτ and every {Ui → U}i∈I ∈ Covτ (U) the diagram

F (U)→
∏
i∈I
F (Ui)

pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗0 and pr∗1. We let Shv((X, τ)) denote the
category of sheaves (of sets) on (X, τ).

Definition 2.10. For a K-affinoid algebra A, we equip X = Sp(A) with a G-topology τ
for which the objects of Catτ are affinoid subdomains and Covτ (U) for U ∈ Catτ is the
family of finite coverings of U by affinoid subdomains. We call the G-topological space
(X, τ) an affinoid K-space associated to A and denote it simply by Sp(A).

Let AffSpK ⊂ TopG denote the full subcategory of affinoid K-spaces and morphismsm
of G-topological spaces.
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By Lemma 2.5(3), any morphism φ : A → B in AffAlgK induces a morphism φ∗ :
Sp(B)→ Sp(A) in AffAlgK . Thus, we get a functor

(AffAlgK)op → AffSpK : A→ Sp(A).

Theorem 2.11. (Tate) Let OX be the presheaf on (X, τ) given by OX(U) = B for an
affinoid subdomain U = Sp(B) ⊂ X. Then, OX is a sheaf on (X, τ).

Example 2.12. Let X = Sp(A) be an affinoid K-space. Using Theorem 2.11, one can show
that the following presheaves on X is a sheaves.

(1) The presheaf O◦ ⊂ OX given by

O◦(B) = {f ∈ B| |f |sup,B ≤ 0} for an affinoid subdomain Sp(B) ⊂ Sp(A),

(2) For r ∈ R>0, the presheaf O(r) ⊂ OX given by

O(r)(B) = {f ∈ B| |f |sup,B < r} for an affinoid subdomain Sp(B) ⊂ Sp(A).

where | − |sup,B is the supremum norm on B.

2.3. Rigid analytic K-spaces.

Definition 2.13. A G-ringed K-space is a pair (X,OX), where X is a G-topological space
and OX is a sheaf of K-algebras on it. (X,OX) is called a locally G-ringed K-space if,
in addition, all stalks OX,x for x ∈ X are local rings. A morphism of G-ringed K-spaces
(X,OX) → (Y,OY ) is a pair (φ,φ∗), where φ : X → Y is a morphism of G-topological
spaces, and φ∗ is a system of K-homomorphisms φ∗V : OY (V ) → OX(φ−1(V )) with V
varying over the admissible open subsets of Y . It is required that the φ∗V are compatible
with restriction map, i.e. for W ⊂ V , the following diagram commutes:

OY (V )
φ∗
V //

��

OX(φ−1(V ))

��
OY (W )

φ∗
W // OX(φ−1(W ))

If (X,OX) and (Y,OY ) are locally G-ringed K-spaces, a morphism(φ,φ∗) is called a
morphism of locally G-ringed K-spaces if the ring homomorphisms

φ∗x : OY,φ(x) → OX,x for x ∈ X
induced from the φ∗V are local.

If X = Sp(A) is an affinoid K-space, we can consider the associated locally G-ringed
K-space (X,OX), where X is the affinoid K-space associated to A from Definition 2.10
and OX is the structure sheaf from Theorem 2.11.

Definition 2.14. A rigid (analytic) K-space is a locally G-ringed K-space (X,OX) such
that X admits an admissible covering X = ∪i∈IXi such that (Xi,OX |Xi

) is an affinoid
K-space for all i ∈ I. A morphism of rigid K-spaces (X,OX)→ (Y,OY ) is a morphism of
locally G-ringed K-spaces. Let RigK be the category of rigid K-spaces and morphismsm
of locally G-ringed K-spaces. The G-topology on a rigid (analytic) K-space (X,OX) is
called the admissible topology. For an admissible open subset U ⊂ X, the induced locally
G-ringed K-space (U,OX |U ) is a rigid K-space again, which is called an open subspace of
(X,OX).

Remark 2.15. It is clear that every morphism of affinoid K-spaces φ : X → Y induces a
morphism (X,OX) → (Y,OY ) between associated locally G-ringed K-spaces. Thus, we
get a functor

(AffAlgK)op → RigK : A→ (X = Sp(A),OX),

Remark 2.16. By a formal reason, the sheaves O◦ and O(r) defined on affinoid spaces
from Example 2.12 extends to sheaves O◦ and O(r) on rigid K-spaces.
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2.4. Formal schemes and Raynaud’s theorem.

Definition 2.17. An OK-algebra A is called of topologically finite type if there is a surjec-
tive homomorphism φ : OK{T1, . . . , Tn} → A of OK-algebras. It is of topologically finite
presentation if, furthermore Ker(φ) is finitely generated. It is admissible if furthermore,
A does not have π-torsion .

Lemma 2.18. (1) An OK-algebra A of topologically finite type is π-adically comoplete
and separated.

(2) An OK-algebra A of topologically finite type with no π-torsion is of topologically
finite presentation.

Proof. [3, §.3 Cor.5 and Cor. 7]. □

Definition 2.19. A formal OK-scheme X is called locally of topologically finite type
(resp. locally of topologically finite presentation, resp. admissible) if there is an open
affine covering X = ∪ı∈IUi with Ui = Spf(Ai), where Ai is an OK-algebra of topologically
finite type (resp. of topologically finite presentation, resp. an admissible OK-algebra).

Let fSchtftOK
be the category of formal OK-schemes locally of topologically finite type

and fSchaff,tftOK
be its full subcategory of affine formal OK-schemes . We have an association

(2.19.1) rig : fSchaff,tftOK
→ AffSpK : X = Spf(A)→ Xrig = Sp(A⊗OK

K).

Note that A⊗OK
K is an affinoidK-algebra since OK{T1, . . . , Tn}⊗OK

K = K⟨T1, . . . , Tn⟩.
Since any morphism Spf(A)→ Spf(B) in fSchaff,tftOK

is induced by a uniqueOK-homomorphism
B → A of OK-algebras, this is a functor. Moreover, this functor commutes with localiza-
tions: For f ∈ A, we have

(2.19.2) A{f−1} ⊗OK
K =

(
A{T}/(1− fT )

)
⊗OK

K

= (A⊗OK
K)⟨T ⟩/(1− fT ) = (A⊗OK

K)⟨f−1⟩.
From these, we can deduce the following (see [3, §7.3]).

Proposition 2.20. The functor (2.19.1) extends to a functor

(2.20.1) rig : fSchtftOK
→ RigK : X→ Xrig.

Remark 2.21. If X = Spf(A), Xrig coincides pointwise with the set of all closed points of
Spec(A⊗OK

K), which is the generic fiber of the ordinary scheme Spec(A) although it is
not visible in Spf(A) on the level of points. By this, Xrig is called the generic fiber of X.

In view of Proposition 2.20, one would like to describe all formal OK-schemes X whose
generic fiber Xrig coincides with a given rigid K-space X. Such a formal OK-scheme is
called a formal model of X. To answer this question, we introduce the following.

Definition 2.22. Let X = lim−→n∈N Spec(OX/(π
n)) ∈ fSchtftOK

and let A ⊂ OX be a coherent

open5 ideal. Then the formal OK-scheme

XA = lim−→
n∈N

Proj
( ∞⊕
d=0

Ad ⊗OX
OX/(π

n))
)

together with the canonical projection XA → X is called the formal blowup of X in A.
Any such blowup is referred to as an admissible formal blowup of X. Note XA ∈ fSchtftOK

by the construction.

Definition 2.23. Let C be a category and S be a class of morphisms in C. A localization
of C by S is a category CS together with a functor LS : C → CS such that:

5namely, πn ∈ A for some n > 0.
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(i) LS(s) is an isomorphism in CS for every s ∈ S.
(ii) If F : C → D is a functor such that F (s) is an isomorphism for every s ∈ S, then

F admits a unique factorization as follows:

C LS //

F
��

CS

G~~
D

where the commutativity of the diagram, as well as the uniqueness of G are meant
up to natural equivalence of functors.

It is known that localizations of categories do always exist.

Proposition 2.24. For X ∈ fSchtftOK
and an admissible blowup Y → X, the induced map

Yrig → Xrig is an isomorphism in RigK . In particular, the functor (2.20.1) factors through

the localization fSchtftOK
→ (fSchtftOK

)Σ by the class Σ of admissible blowups.

Proof. See [3, §8.4, Pr. 2]. □

Theorem 2.25. (Raynaud) Let RigqcqsK ⊂ RigK be the full subcategory of quasi-compact

quasi separate rigid K-spaces. Let fSchadOK
⊂ fSchtftOK

be the full subcategory of quasi-

compact quasi-separate admissible OK-formal schemes and (fSchadOK
)Σ be its localization by

the class of admissible blowups. Then, the functor rig from (2.20.1) induces an equivalence
of categories

(2.25.1) rig : (fSchadOK
)Σ ≃ RigqcqsK .

Proof. See [3, §8.4, Th.3]. □

Remark 2.26. For X ∈ fSchadOK
, the category ΣX of admissible blowups X′ → X admits

finite limits so that is cofiltered. This implies that for Y ∈ fSchadOK
, there is a natural

isomorphism

(2.26.1) HomRigK (X
rig,Yrig) = lim−→

X′→X∈ΣX

HomfSchtftOK

(X′,Y).

Theorem 2.27. (Geritzen and Grauert) Let X = Spf(A) ∈ fSchaff,tftOK
and X = Xrig =

Sp(A⊗OK
K). A subset U ⊂ X is an affinoid subdomain in the sense of Definition 2.6 if

and only if there is Y ∈ ΣX and an affine open U ↪→ Y such that U = Urig.

2.5. Riemann-Zariski spaces.

Definition 2.28. Let X ∈ fSchtftOK
and ΣX be the category of admissible blowups Y→ X.

Let RZ(X) ⊆ Arr(fSchtftOK
) be the category whose objects are morphisms U → Y where

Y → X ∈ ΣX and U → Y is a Zariski open immersion. We abbreviate U → Y to (U/Y).

The morphism (U′/Y′)→ (U/Y) in RZ(X) are commutative squares in fSchtftOK
:

U′

��

// U

��
Y′ // Y

Remark 2.29. RZ(X) admits finite limits, and they are calculated termwise. Indeed, the

category Arr(fSchtftOK
) of arrows admits finite limits and they are calculated component

wise: lim←−(Ai/Bi) = (lim←−Ai/ lim←−Bi). If each (Ai/Bi) is in RZ(X), then one checks that

lim←−(Ai/Bi) is again in RZ(X).

Definition 2.30. We equip RZ(X) with the Grothendieck topology τ generated by:

(1) families of {(Ui/Y)→ (U/Y)}i∈I such that {Ui → U}i∈I is a Zariski covering,
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(2) families of {(Y′ ×Y U/Y′)→ (U/Y)} for morphisms Y′ → Y in ΣX.

The site (RZ(X), τ) is called the Riemann-Zariski space of X. We will write Shv(RZ(X))
for the topos associated to the topology generated by coverings of the form (1) and (2).

Remark 2.31. Using that for Y′ → Y in ΣX, the diagonal Y′ → Y′ ×Y Y′ is a morphism
in ΣX, one can show that a presheaf on RZ(X) satisfies descent for all families of the form
(2) if and only if it sends each (Y′ ×Y U/Y′)→ (U/Y) to an isomorphism. This implies

(2.31.1) Shv(RZ(X)) ≃ lim←−
Y∈ΣX

Shv(Yzar)

where the limit is along pushforwards f∗ : Shv(Y′zar) → Shv(Yzar) for morphisms f :
Y′ → Y in ΣX, namely an object of the RHS of (2.31.1) is given by a system

(2.31.2) F = {FY ∈ Shv(Yzar)}Y→X∈ΣX

such that

(♠) FY′(U×Y Y′) = FY(U) for every (U/Y) ∈ RZ(X) and Y′ → Y in ΣX.

If FY are all sheaves of abelian groups, this implies that we have a natural isomorphism

(2.31.3) lim−→
Y→X∈ΣX

H i(Y, FY) ≃ H i(RZ(X),FRZ(X)),

where FRZ(X) = lim←−Y∈ΣX
FY ∈ Shv(RZ(X)) (see [10, Ch.0, 4.4.1]).

Now, we look at a relation of Shv(RZ(X)) and Shv(Xrig) for X ∈ fSchtftOK
. Using

Proposition 2.24, the functor (2.20.1) gives a functor on the categories of open subsets:

RZ(X)→ Xrig : (U/Y)→ Urig ⊂ Yrig = Xrig.

By the construction, this is continuous, i.e. maps coverings to coverings so that it defines
a morphism of sites

γ : Xrig → RZ(X)

which induces a pair of adjoint functors

(2.31.4) γ∗ : Shv(RZ(X))
−→
←−Shv(Xrig) : γ∗,

where γ∗F (U/Y) = F (Urig) for F ∈ Shv(Xrig) and (U/Y) ∈ RZ(X).

Theorem 2.32. (2.31.4) induces a natural equivalence of topoi

Shv(Xrig) ≃ Shv(RZ(X)).

In particular, for FRZ(X) = lim←−Y∈ΣX
FY ∈ Shv(RZ(X)) from (2.31.3), we have

(2.32.1) lim−→
Y→X∈ΣX

H i(Y, FY) ≃ H i(Xrig, γ∗FRZ(X)).

Proof. [10, Th.B.2.5]. □

Remark 2.33. By definition, we have

γ∗FRZ(X)(U
rig) = FY(U) for (U/Y) ∈ RZ(X).

Since such Urig form a basis of the admissible topology of Xrig, this determines γ∗FRZ(X).

Example 2.34. For Y ∈ ΣX and affine open U ⊂ Y, define Oint
Y (U) to be the integral closure

of OY(U) in OY(U)⊗OK
K. Then, one can check that this assignment extends to a sheaf

Oint
Y on Yzar and satisfies f∗Oint

Y′ = Oint
Y for f : Y′ → Y ∈ ΣX. By Remark 2.31, it gives

rise to a sheaf Oint
RZ(X) on RZ(X). Moreover, we can show γ∗Oint

RZ(X) = O◦
Xrig , where the

latter is a sheaf on Xrig from Example 2.12 (see also Remark 2.16).
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3. Valuation theory

3.1. Valuations. We fix some notations and recall definitions from, e.g., [11, 6.2], [17, 2].

Definition 3.1. A valuation field (K, v) consists of a field K endowed with a surjective
group homomorphism v : K× → Γv onto a totally ordered abelian group Γv

6, such that

(3.1.1) v(x+ y) ≤ max{v(x), v(y)}

whenever x+y ̸= 0. We denote by 1 the unit of Γ and the composition law of Γ is denoted
by (x, y)→ xy. It is easy to check that Ov = {x ∈ K| v(x) ≤ 1} is a subring of K and we
called it the valuation ring of (K, v).

It is customary to extend v to K, by adding a new element 0 to Γv setting v(0) := 0.
One can then extend the ordering of Γv to Γv := Γv∪{0} by declaring that 0 is the smallest
element of Γv. By the convention, (3.1.1) holds for every x ∈ K.

We have the following facts (see [11, 6.1,12])

Lemma 3.2. Let (K, v) be a valuation field with the valuation ring Ov.
(1) Every finitely generated ideal of Ov is principal.
(2) Let L be a field extension of K. Then the integral closure W of Ov in L is the

intersection of all the valuation rings of L containing Ov. In particular, Ov is
integrally closed.

(3) If L is an algebraic extension of K and W be the integral closure of Ov in L. Then,
for every prime ideal p ⊂ W , the localization Wp is a valuation ring. Moreover,
the assignment m→ Wm gives a bijection between the set of maximal ideals of W
and the set of valuation rings Ow of L whose associated valuation w extends v.

(4) Let Ohv be the henselization of Ov with the maximal ideal mh
v and Kh = Frac(Ohv ).

Then, Ohv contains the integral closure W of Ov in Kh and we have Ohv = Wq,
where q := mh

v ∩W . By (3), this implies that Ohv is again a valuation ring. The
same argument works also for strict henselizations.

(5) Any finitely generated torsion-free Ov-module is free and any torsion-free Ov-
module is flat. Hence every Ov-module is of Tor-dimension≤ 1.

(6) A local subring of a field L is a valuation ring of L if and only if it is maximal for
the dominance relation on the set of local subrings of L7.

Definition 3.3. Let (K, v : K → Γv) be a valuation field. An extension of valued fields
(E,w : E → Γw) consists of a field extension E/K and a valuation w : E → Γw together
with an embedding j : Γv ↪→ Γw such that w|K = j ◦ v.

Example 3.4. Let (K, v : K× → Γv) be a valuation field and E/K be a field extension.

(1) There always exist valuations on E which extends v ([30, Ch.VI, §1, n.3, Cor.3]).
(2) If E/K is algebraic and purely inseparable, then the extension of v to E is unique.

([30, Ch.VI, §8, n.7, Cor.2]).
(3) If E is the polynomial ring K[X], we can construct extensions of v on E as follows:

Let Γv ↪→ Γ′ be an embedding of ordered groups. For every x0inK and ρ ∈ Γ, we
define the Gauss valuation centered at x0 and with radius ρ:

v(x0,ρ) : K[X]→ Γ ∪ {0},

sending a0+a1(X−x0)+ · · ·+an(X−x0)n to max{v(ai) ·ρi| i = 0, 1, . . . , n} ([30,
16, Ch.VI, §10, n.1, Lemma 1]).

6written multiplicatively
7For local subrings R and S of L, one says that R dominates S if S ⊂ R and mS = mR ∩ S, where mR

and mS are the maximal ideals of R and S respectively. The relation of dominance defines a partial order
structure on the set of local subrings of L.
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3.2. Tame extensions of valuation fields. Let (K, v) be a valuation field with the
valuation ring Ov. Fix an embedding of (K, v) into (K̄, v̄), where K̄ is a separable closure
of K and v̄ is an extension of v to K̄. We denote by (Ksh

v , v
sh) the strict henselization

of (K, v) (inside (K̄, v̄)). A finite separable extension (L,w)/(K, v) of valuation fields is
called unramified (resp. tame), if Ksh

v = Lshw (resp. ([Lshw : Ksh
v ], p) = 1, where p is the

exponential characteristic of the residue field of Ov). The tame closure (Kt, vt) of (K, v)
is the union of all finite tame Galois extensions of (Ksh, vsh). The field Kt is also the fixed
field of K̄ under the tame ramification group

Rv̄/v := {σ ∈ Gal(K̄/K) | σ(Ov̄) ⊂ Ov̄ and
σ(x)

x
− 1 ∈ mv̄ for all x ∈ K̄×}.

We record the following well-known lemma for later reference.

Lemma 3.5. (1) Let (L,w)/(K, v) be a finite separable extension of valuation fields.
Let N/K be a Galois hull of L/K and let w̃ be an extension of w to N . Then
(L,w)/(K, v) is tame if and only if (N, w̃)/(K, v) is tame.

In particular (L,w)/(K, v) is tame if and only if (L,w) is a subextension of
(Kt, vt)/(K, v).

(2) Let (L,w)/(K, v) be a tame extension and let (K ′, v′)/(K, v) be any algebraic ex-
tension of valuation fields. Let L·K ′ be the composition field in an algebraic closure
of K and let w′ be a valuation extending v′. Then (L ·K ′, w′)/(K ′, v′) is tame.

Proof. (1). Note that N sh
w̃ is a Galois hull of Lshw /K

sh
v . Therefore we may assume K,L,N

are strictly henselian valuation fields of characteristic p > 0. Thus if (N, w̃)/(K, v) is tame
then [N : K] = [N : L] · [L : K] is prime to p and hence (L,w)/(K, v) is tame as well. Now
assume (L,w)/(K, v) is tame. Denote by GK ⊃ GL ⊃ GN the absolute Galois groups with
respect to a fixed separable closure K̄ of K, and by P the pro-p-Sylow subgroup of GK ,
which is a normal subgroup. The indices satisfy the following equality (of supernatural
numbers)

[GK : GL] · [GL : P ∩GL] = [GK : P ] · [P : P ∩GL].
As P is a normal subgroup of GK , the intersection P ∩ GL is a normal subgroup of GL
and we have an inclusion of profinite groups GL/GL ∩ P ↪→ G/P . Hence [G : P ] and
[GL : P ∩ GL] are prime to p. By assumption [GK : GL] = [L : K] is prime to p as well.
Thus [P : P ∩GL] = 1, i.e., P = P ∩GL. The Galois hull of L/K is the composition field
(inside K̄) of all the σ(L), where σ runs through all the embeddings L ↪→ K̄. Extending
these σ’s to K-automorphisms of K̄, we find Gσ(L) = σGLσ

−1. Hence GN = ∩σσGLσ−1.
As P is a normal subgroup of GK it follows that P is contained in GN as well. Thus
[GK : P ] = [GK : GN ] · [GN : P ] is prime to p and hence so is [N : K] = [GK : GN ].

(2) follows from (1) and the fact that K ′t = K ′ ·Kt, see [11, 6.2.18]. □

4. Spectral spaces

Definition 4.1. A topological space is called spectral if it is sober8, quasi-compact, the
intersection of two quasi-compact opens is quasi-compact, and the collection of quasi-
compact opens forms a basis for the topology.

Lemma 4.2. For a topological space X, the following conditions are equivalent.

(1) X is spectral.
(2) X is a directed inverse limit of finite sober topological spaces.
(3) X is homeomrophic to Spec(R) for some commutative ring R.

Definition 4.3. Let X be a spectral space. The constructible topology on X is the
topology which has as a base of opens, the sets U and U c for a quasi-compact open U ⊂ X.

8i.e. every nonempty irreducible closed subset has a unique generic point.
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Note that an open U in a spectral space X is retrocompact9 Hence, the constructible
topology can also be characterized as the coarsest topology such that every constructible
subset10 of X is both open and closed. It follows that a subset of X is open (resp. closed)
in the constructible topology if and only if it is a union (resp. intersection) of constructible
subsets. Since the collection of quasi-compact opens is a basis for the topology on X, we
see that the constructible topology is stronger than the given topology on X.

Lemma 4.4. The constructible topology on a sepctral sapce is Hausdorff, totally discon-
nected, and quasi-compact.

Proof. [35, Tag 0901] □

5. Adic spaces

Definition 5.1. For a morphism of schemes X → X̃, let Spa(X, X̃) be the set of triples

(x, v, ε) such that x ∈ X, v is a valuation on k(x) and ε : Spec(Ov) → X̃ is a map

compatible with Spec(k(x)) → X. Let Y → Ỹ be a morphism of schemes and (φ, φ̃) :

(Y, Ỹ )→ (X, X̃) be morphisms such that the following diagram commutative:

(5.1.1) Y
φ //

��

X

��
Ỹ

φ̃ // X̃

Then, we have an induced map Spa(Y, Ỹ ) → Spa(X, X̃)11. We equip Spa(X, X̃) with a

topology as follows: If X = Spec(A) and X̃ = Spec(Ã) are affine, the topology is generated
by the subset of the form12

{(x, v, ε)| v(fi) ≤ v(g) ̸= 0 ∀i = 1, . . . ,m} for f1, . . . , fm, g ∈ A.
In general, we declare that a subset V ⊂ Spa(X, X̃) is open if for any commutative diagram

(5.1.1) where Y and Ỹ are affine, φ is an open immersion and φ̃ is locally of finite type,

the inverse image of V in Spa(Y.Ỹ ) is open.

Lemma 5.2. (1) If X and X̃ are quasi-compact and quasi-separated, then Spa(X, X̃)
is a spectral space, i.e. homeomorphic to Spec(R) for some commutative ring R.

In particular, Spa(X, X̃) is a quasi-compact and quasi-separated topological space.
(2) Let (φ, φ̃) be as (5.1.1) and assume that φ is étale and φ̃ is locally of finite

type. Then, the set of points (y, w, εw) ∈ Spa(Y, Ỹ ) such that the extension
(k(y), w)/(k(φ(y)), w|k(φ(y))) is tame is open as well as the set of points (x, v, εv) ∈
Spa(X, X̃) such that there exists (y, w, εw) ∈ Spa(Y, Ỹ ) mapping to (x, v, εv) such
that the extension (k(y), w)/(k(x), v) is tame.

Proof. (1) follows from [17, Lem.4.3] and (2) from [15, Cor.4.4] and [14, Pr.1.7.8]. □
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