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Part 1. Reviews on basic theories
1. TOPOS THEORY

1.1. Functoriality of presheaves. A functor u : C — D induces
uP : PSh(D) — PSh(C)
given by uPF = F o u, in other words uPF(V') = F(u(V)) for V € C.
Proposition 1.1. There exists a functor called the left Kan extension of F' along u
up : PSh(C) — PSh(D)
which is a left adjoint to the functor uP. In other words
Hompgpc) (F, u’G) = Hompgyp) (upF, G)
holds bifunctorially in F € PSh(C) and G € PSh(D).

For V € D, let I*(V) denote the category whose objects are pairs (U, ¢) with U € C
and ¢ : V — u(U) and

Hompu(v) (U, ), (U, ¢")) = {f : U = U in Clu(f) o p = ¢}.
1
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We sometimes drop the superscript u from the notation and we simply write I(V'). For
F € PSh(C), we define

wFV)= 1 FU) = lim Fy,
= (T

where Fyy € PSh(I(V), Sets) given by
Fy : I(V)?® — Sets : (U,p) — F(U).

To show that u,F € PSh(D), note that for g : V! — V in D, we get a functor g : I(V) —
I(V') by setting g(U, ) = (U, p o g). It induces a map

wF(V)=lm  FU)— lim FW) =u,F(V').
(Up)el(V)er (Wap)eI(V7)or
A map of ' — F’ in PSh(C) induces for V € D
wF(V)= lm  FU)— lm  FU)=uFV)
(Ugp)el(V)er (Up)el(V)er

Thus, we have defined a functor
up : PSh(C) — PSh(D).
To show that
Hompgy(e) (F, u’G) = Hompgyp) (upF, G)
holds bifunctorially in F' and G.

Lemma 1.2. Let u: C — D be a functor. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and uw commutes with them.

Then, u, commutes with fintie limits.

Proof. This follows from the fact that the categories (V)P are filtered by [35, 00X3]. [

1.2. Sites and sheaves. .

Definition 1.3. A site is given by a pair (C,7) of a category C and a Grothendieck
pretopology 7 which is a function assigning to each object U € C a collection Cov(U) of
families of morphisms {U; — U };¢y, called coverings family of U, satisfying the following
axioms:

(i) If V — U is an isomorphism, we have {V — U} € Cov(U).
(ii) If {U; = Utier € Cov(U) and {Vij — U;}jing, € Cov(U;) for each i € I, we have
then {Vz] — U}ie[,jeji € COV(U).
(iii) If {U; = U}ier € Cov(U) and V — U is a morphism of C, then U; xy V' exists for
all i € I and we have {U; xg V — V}ier € Cov(V).

Ezample 1.4. For a scheme S, let Schg be the category of schemes of finite presentation
over S.

(i) Let Etg be the full subcategory of Schg of étale schemes over S. The big étale site
(Schg)¢t is the site whose underlying category is Schg and whose coverings are
étale covering!'. The small étale site (Schy)e is the full subcategory of (Schg)e
whose objects are those U/S such that U — S is étale. A covering of Sg is any
étale covering {U; — U} with U € Sg.

IFor T ¢ Schs, an étale covering of T' is a family of morphisms {f; : T; — T}icr in Schg such that
each f; is étale and T = Uf;(T;).
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Definition 1.5. Let C be a site, and let F' be a presheaf of sets on C. We say F is a sheaf
if for every U € C and every covering {U; — U }ier € Cov(U) the diagram

F(U) — 1'[1?(Ui)z£6>> I[I Fw,xvUy)

:
icl Py (igir)EIxI

represents the first arrow as the equalizer of pr§ and pri. We let Shv(C) C PSh(C) denote
the full subcategory of sheaves (of sets).

Lemma 1.6. Let F : I — Shv(C) be a diagram. Then Wm F exists and is equal to the
limit in PSh(C).

Proposition 1.7. There exists a functor called the sheafification
a: PSh(C) — Shv(C)
which is a left adjoint to the inclusion functor i : PSh(C) — Shv(C). In other words
Hompgy(c) (£, G) = Homgpy c) (aF, G)
holds bifunctorially in F' € PSh(C) and G € Shv(C). Moreover, a is ezact.
Let F' € PSh(C). For U = {U; — U};cr € Cov(U), put

proy
HY(U, F) = equalizer(HF(Ui) :’O H F(Us, xu Uyy))
icl PTT (igyiy) €I XT

There is a canonical map F(U) — H°(4, F)2.

For U € C, let Cov(U) be the category of all coverings of U in C whose morphisms are
the refinements (see §1.5). Note that Cov(U) is not empty since {id : U — U} is an object
of it. By definition the construction i — HO(U, F) is an object of PSh(Cov(U)). For
F € PSh(C), we define

FrU)= lim HO(LF).
leCov(U)op
Note that F+(U) = H(U, F) is the zeroth Cech cohomology of F over U (see (1.19.2)).

Lemma 1.8. (1) For F € PSh(C), F* is an object of PSh(C) equipped with a canon-
ical map F — F* in PSh(C). Moreover, the construction is functorial, i.e. a map
f:+ F — G in PSh(C) induces a map f+ : Ft — G such that the following
diagram commutes in PSh(C):

F—-F~"
lf l)”
G——G™*
(2) The presheaf F is separated.
Proof. [35, 00WB|. O

Proposition 1.9. For F € PSh(C), (F")" € Shv(C) and the induced functor
a=((—)")*:PSh(C) — Shv(C)
is a left adjoint to the inclusion functor PSh(C) — Shv(C). Moreover, a is exact.

Proof. [35, 00WB]. The exactness of a follows from the fact that Cov(U) is filtered (the
point is to show a commutes with finite limits).
g

2This is the zeroth Cech cohomology of F' over U with respect to the covering i1.
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1.3. Functoriality of sheaves.

Definition 1.10. Let C and D be sites. A functor v : C — D is called continuous if for
every V € C and every {V; = V}ier € Cov(V), we have the following

(i) {u(Vi) = u(V)}ier € Cov(u(V)),
(ii) for any morphism 7' — V' in C, the morphism w(T" Xy V;) — u(T) Xy u(V;) is
an isomorphism.

Ezample 1.11. For amap f: T — S of schemes, consider
u:EtS%EtT X > X xgT.

Then, u is continuous for the étale topology.
Lemma 1.12. Ifu:C — D is continuous, uP induces

u® : Shv(D) — Shv(C).
Proof. Exercise. O
Lemma 1.13. If u: C — D is continuous, the functor

us : Shv(D) — Shv(C) : G — a(up(G))

s a left adjoint to u®.
Proof. Follows directly from Propositions 1.9 and 1.1. O

Definition 1.14. Let C and D be sites. A morphism of sites f : D — C is given by a
continuous functor u : C — D such that the functor u, is exact.

Proposition 1.15. Let u : C — D be a continuous morphism of sites. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and uw commutes with them.

Then, u defines a morphism of sites, i.e. us is exact.

Proof. This follows from Lemma 1.2 and the exactness of a from Proposition 1.9 (see [35,
00X6]). O
Definition 1.16. A topos is the category Shv(C) of sheaves on a site C.

(1) Let C, D be sites. A morphism of topoi f : Shv(D) — Shv(C) is given by a adjoint
pair of functors

f*:Shv(C) = Shv(D) : f.,
namely we have for G € Shv(C) and F' € Shv(D)
Homgpy (p) (f*G, F) = Homgpy(c) (G, foF)

bifunctorially, and the functor f* commutes with finite limits, i.e., is left exact.

(2) Let C, D, &€ be sites. Given morphisms of topoi f : Shv(D) — Shv(C) and
g : Shv(€) — Shv(D), the composition f o g is the morphism of topoi defined by
the functors (f o g)s = fxo g« and (f o g)* = g* o f*.

Lemma 1.17. Given a morphism of sites f : D — C' corresponding to the functor u :
C — D, the pair of functors (f* = us, f« = u®) is a morphism of topoi.

Proof. This is obvious from Definition 1.14. O
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1.4. Cohomology.

Theorem 1.18. Let C be a site. Then, the category Shv(C, Ab) of abelian sheaves on a
site 1s an abelian category which has enough injectives.

Proof. [35, 03NUJ. O

By the theorem, we can define cohomology as the right-derived functors of the sections
functor F' — F(U) for U € C and F € Shv(C, Ab) defined as
H'(U,F) := RT(U,F) = H(L(U,I*)),

where F© — I® is an injective resolution. To do this, we should check that the functor
I'(U, —) is left exact. This is true and is part of why the category Shv(CAb) is abelian, see
Modules on Sites, Lemma 3.1. For more general discussion of cohomology on sites (includ-
ing the global sections functor and its right derived functors), see Cohomology on Sites,
Section 2. The family of functors H*(U, —) forms a universal J-functor Shv(C, Ab) — Ab.

It sometimes happens that the site C does not have a final object. In this case, we
define the global sections of F' € PSh(C, S¢) over C to be the set
F(Ca F) - HomPSh(C) (67 F)a
where e is a final object in PSh(C, Sets). In this case, given F' € Shv(C, Ab), we define
the i-th cohomology group of Fon C as follows
H'(C,F) = H'(L(C,I%))).

In other words, it is the i-th right derived functor of the global sections functor. The
family of functors H*(C,—) forms a universal d-functor Shv(C, Ab) — Ab.

1.5. Cech cohomology. For U € C and Y = {Ui — Utier € Cov(U), write Uy, i, =
Ui, xu -++ xyu Uy, for the (p + 1)-fold fiber product over U of members of . Let F' €
PSh(C, Ab), set
CPF)= ] FUi.a)
(io...ip)elp+l

For s € C’p(il, F), we denote s;,.. 4, its value in F'(Uj,..;,). We define
d:CP(U, F) = CPHL (U, F)

by the formula
p+1

d(s)io---ip+1 = Z(_l)j(Sio_,,i},,.ip_;'_l)|Ui0...ip+1 :

§=0
It is straightforward to see that dod = 0, i.e. C (U, F) is a complex, which we call Cech
complex associated to F' and 4. Its cohomology groups
H'(Y4,F) = H'(C(Y4,F))
are called the Cech cohomology groups associated to F and 4.

Lemma 1.19. For U € C and 4 = {U; — U}ies € Cov(U), there is a transformation of
functors: )

Shv(C,Ab) - D(Z) : C(U,—) — RI'(U,—).
Moreover, there is a spectral sequence for F' € Shv(C, Ab):
(1.19.1) EY? = AP (U, HY(F)) = HPTY(U, F),
which is functorial in F', where HI(F) € PSh((X, X)t, Ab) is given by U — HI (U, F).
In particular, if H'(U;y, Xy --- Xy Uy,, F) = 0 for all i >0, p > 0 and i, ...,ip, € I, then
we have HP(U, F) = HP(U, F).

Proof. [35, 03AX, 03AZ, 03F7]. O
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For coverings { = {U; = U}icr and U = {V; — V}jes in C, a morphism Y — U is
given by a morphism U — V in C, a map of sets « : I — J and for each ¢ € I a morphism
Ui = V() such that the diagram

Ui —Vag)
U 1%

is commutative. In the special case U = V and U — V is the identity, we call i a
refinement of Y. A remark is that if the above U is the empty family, i.e., if J = &, then
no family 3 = {U; — V' }ier with I # @ can refine 0.

For U € C, let Cov(U) be the category of all coverings of U in C whose morphisms
are the refinements®. Note that Cov(U) is not empty since {id : U — U} is an object of
it. Take F' € PSh(C, Ab). By definition the construction 4 — C(4, F) is a preshesaf on
Cov(U) with values in the category of complexes of abelian groups. We define

C(UF):= lim C(LF),
eCov(U)°P
(1.19.2) H'(UF):=H(CWF)= lm HELF),
eCov(U)°P

where the last equality holds since Cov(U) if cofiltered. By Lemma 1.19, we have a
transformation of functors:

Shv(C,Ab) — D(Z) : C(U,—) — RT(U, -).
(1.19.1) induces a spectral sequence
(1.19.3) EY? = AP(U,HY(F)) = HPT(U, F).
Lemma 1.20. Let U € C and F' € PSh(C, Ab).
(1) HYU,H4(F)) = 0 for ¢ > 0. In particular, for every o € HY(U,F), there is
U={U; = Utier € Cov(U) such that o= 0 in H1(U;, F) for all i € I.
(2) H{(U,HI(F)) = HY(U,F) fori=0,1 and there is an ezact sequence
0— H*(U,F) - H*(U,F) - H (U HY(F)) - H3(U,F) - H*(U, F).

Proof. ([29, Ch.III 2.9 and 2.10]) (2) follow formally from (1) using (1.19.3). To prove (1),
we show the following claim. Recall the pair of adjoint functors from Proposition 1.7:

a: PSh(C): Shv(C) : i.

Claim 1.21. For g > 0, we have aH4(F') = 0.

Indeed, take an injective resolution F' — I°® in Shv(C, Ab). Then, HI(F') is the ¢-th
cohomology presheaf of the complex i(/®) in PSh(C, Ab). Since a is exact and commutes
with taking cohomology, aH?(F’) is the ¢g-th cohomology sheaf of the complex ai(I®) = I*
in Shv(C, Ab) so that it must vanishes.

By Proposition 1.9, we have aH4(F) = (H4(F)*)* = 0. Since HI(F)™ is separated by
Lemma 1.8, the natural map HY(F)T — (H9(F)T)™ is injective. Thus, we get HI(F)* =
0, which implies (1). O
Lemma 1.22. For F' € PSh(C, Ab), the following are equivalent.

(1) F is flabby, i.e. H(U,F) =0 for anyi >0 and U € C.
(2) H(U,F) =0 for any i >0, U € C and 4 € Cov(U).

3By our conventions on sites this is indeed a category, i.e., the collection of objects and morphisms
forms a set.
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(3) H(U,F) =0 for anyi >0 and U € C.

Proof. ([29, Ch.IIT 2.12]) (1)=(2). By the assumption, H%(F) = 0 for ¢ > 0 so (1.19.1)
implies H (4, F) = H (U, F) = 0.

(2)=(3). Pass to the colimit over i € Cov(U).

(3)=(1). Take any U € C. By the assumption, H9(U, F) = 0 for any ¢ > 0. By Lemma
1.20(2), we get HY(U, F) = 0 which implies #!(F) = 0. By the long exact sequence in
Lemma 1.20(2), we get H?(U, F) = 0 which implies H?(F) = 0. Assume now H!(F) =0
for i < q. Since HO(U,H9(F)) = 0 by Lemma 1.20, we get H' (U, H’(F)) = 0 for all
i,7 > 0 with i + 7 < ¢. By (1.19.3), it implies H1(U, F') = 0 so that H?(F) = 0. This
complete the proof by induction.

U

2. CLASSICAL RIGID ANALYTIC SPACES

Good references for this section are [2] and [3].

2.1. Affinoid K-algebras. Let K be a non-archimedean field, i.e. a field which is com-
plete with respect to a nontrivial non-archimedean absolute value, i.e. amap | — | : K —
R>¢ satisfying

(i) la]=0<a=0.

(ii) |ab| = |al[b].
(iii) |a + b| < max{|al, |b|}.
Note that the map v : K — RU {oo} given by v(a) = —log|a| is a valution and there is

one-to- one correspondence between non-archimedean absolute values and valuations with
value group R on K, where the inverse is given by |a| = e~ v(@) We put

Og ={ze K||z| <1}
and fix 7 € K with || < 1.
For each n > 0, the Tate K-algebra is

T, :=K(T,....T,) ={f= > aT{" - T" | ay € K, lim}_,0]ay| = 0}
veNn
= OK{Tl, ... ,Tn} ®OK K,

where O {Ty,...,T,} is the 7m-adic completion of O[Ty,...,T,]. The Gauss norm®

|| — || : 7o, = R>p is given by

IfIl = sup |ay|.
veN”

Definition 2.1. An affinoid K-algebra is a K-algebra A such that there is a surjective
K-algebra homomorphism « : T, — A. for some n > 0. Such a K-affinoid algebra A
admits a norm || — ||, given by
la(f)lla = inf |[|f —al for f € T,.
acKer(a)
For another surjective K=algebra homomorphism (3 : T,, — A, there are constants ¢, ¢’ > 0
such that || — [|o < c|[ = [lg < || = []a-

Definition 2.2. For an affinoid K-algebra A, let Sp(A) be the set of the maximal ideal of
A. For z € Sp(A), the residue field K (x) of x is a finite extension of K so that it carries a
unique extension of | — | on K. For f € A, let f(x) be the image of f in K(z) and |f(x)|

A map || -|| : A = R is called a semi-norm if ||0] = 0, [|1]| = 1, [|fg| < | /]ll|l| and || —gl| < || /]| +
llg]| for f,g € A. It is a norm if || f|| = 0 implies f = 0. It is non-archimedian if || f — g|| < max{||f]|, ||gl|}-
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be its absolute value under this extension. There is a semi-norm |—|s,p on A on called the
supremum norm given by

|f|sup: sup |f($)‘

z€Sp(A)

We have the following facts:
(1) |—l|sup is power-multiplicative, i.e. |f"|sup = (|f|sup)” for f € A and n > 0.
(2) For a K-homomorphism ¢ : A — B of K-affinoid algebras and for f € A, we have

[ (f)lsup < [flsup-
(3) On T, the supremum norm coincides with the Gauss norm.

(4) For a surjective K-algebra homomorphism « : T,, = A, we have | f|sup < || f||o for
all f € A. In particular, |f|sup < 00.

Theorem 2.3. (Mazimal Principle) For a K-affinoid algebra A and f € A, there exists
x € Sp(A) such that |flsup = | f(2)].

We put
A®={f € Al [flsup <1} and A ={f € Al |flsup < 1}.
It is easy to see that A° is a subring of A, which is Og-algebra and A°° is its ideal. We
have the following facts:
(1) A° is m-adically complete and A = A° ®p, K.
(2) A° is the set of power-bounded elements, i.e. those f that {||f"||lo (n € N)} C R

is bounded.
(3) A°° is the set of topologically nilpotent elements, i.e. those f that li_>m [1f™|la = 0.
n—oo

2.2. Affinoid K-spaces. We let AffAlg;- denote the category of affinoid K-algebras and
K-algebra homomorphisms. For a morphism ¢ : A — B in AffAlg;-, we have the induced
map ¢* : Sp(B) — Sp(A) sending a maximal ideal m C B to ¢~ !(m). Thus, we get a
functor

Sp : AffAlgz; — Sets.

In this subsection, we introduce a G-topology in the sense of Definition 2.8 to make Sp(A)
for A € AffAlgy a G-topological space.

Definition 2.4. For fi,---, fr,g € A which generate the unit ideal, let

Ut o e sp)] 1@ < lg@) (=107}

This is called a rational subdomain of X = Sp(A).
We have the following facts:

Lemma 2.5. (1) For a rational subdomain U C Sp(A) and a morhpism ¢ : A — B
in AffAlgy inducing ¢* : Sp(B) — Sp(4), (¢*)~Y(U) is a rational subdomain of
Sp(B).
(2) For rational subdomain domains U,V C Sp(A), UNV is a rational subdomain.
(3) As a set, U(%) is identified with Sp(Ay) with

AU = A<.];77§> = A<wla"'7w7’>/(gw1 _flv"'vng - fT)a
where A{wy, ..., wy) = A°{wi, ..., w} @40 A with A°{w1,...,w,} the m-adic com-
pletion of A°wy,...,w,].

(4) For rational subdomain domains U C Sp(A) and V C Sp(Ay), V is a rational
subdomain of Sp(A).
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Definition 2.6. A subset U C Sp(A) is called an affinoid subdomain if the functor
Fy @ AffAlgy — Sets defined by

Fy(B) = {y € Homagalg, (4, B)| ¢"(Sp(B)) C U} for B € AffAlgy

is representable by Ay € AffAlgy: In other words, there is a map ¥ : A — Ay in AffAlg,
such that the image of {* : Sp(Ay) — Sp(A) is contained in U and the following universal
property holds: Any morphisms ¢ : A — B such that the image of ¢* : Sp(B) — Sp(A) is
contained in U, there is a unique morphism Ay — B in AffAlg, which factors A — B.

We have the following facts:

Lemma 2.7. (1) Under the above notation, 1* is injective and Image(y*) = U.

(2) A rational subdomain is an affinoid subdomain.

(3) For an affinoid subdomain U C Sp(A) and a morhpism ¢ : A — B in AffAlgy
inducing ¢* : Sp(B) — Sp(4), (¢*)71(U) is an affinoid subdomain of Sp(B).

(4) If U is an affinoid subdomain of Sp(A) and V is an affinoid subdomain of U, then
V is an affinoid subdomain of Sp(A).

(5) (Gerritzen-Grauert) Any affinoid subdomain of Sp(A) is a finite union of rational
subdomains.

(6) See Theorem 2.27 for a characterization of affinoid subdomains in terms of formal
models.

Definition 2.8. A G-topology 7 on a topological space X consists of the following datum:

(i) A category Cat, whose objects are open subsets of X and whose morphisms are
open immersions. An object of Cat; is called an admissible open subset.

(ii) For every U € Cat,, a family Cov,(U) of open coverings {U; — U };c;. A member
of Cov,(U) is called an admissible covering of U.

It is required to satisfy the following conditions:

(1) If V — U is an isomorphism in Cat,, then {V — U} € Cov.(U).
(2) If {Uz — U}ie[ S COV7—<U) and {V;] — Ui}jeji S COV7—<UZ‘), then {VIJ —
U}ief.jEJi S COVT(U).
(3) {U; — Utier € Cov,(U) and V — U is a morphism in Cat,, then {U;NV —
V}ie[ S COVT(V).
A G-topological space is a topological space X with a Grothendieck topology 7. A mor-
phism (X,7) — (Y, \) of G-topological spaces is a continuous morphism ¢ : X — Y of
topological spaces such that for any U € Caty and {U; — U}ic;r € Covy(U), we have
¢ Y U) € Cat, and {1 (U;) = ¢ Y (U)}ier € Cov- (¢~ 1(U)).
We let Top® denote the category of G-topological spaces.

Definition 2.9. A sheaf F' on a G-topological space (X, 7) is a presheaf (of sets) on Cat,
such that for every U € Cat, and every {U; — U }ier € Cov,(U) the diagram

Ty
FO) = [[Fon = [[ F@,xvUi)
icl P (igir)eIxI

represents the first arrow as the equalizer of pr{§ and pri. We let Shv((X, 7)) denote the
category of sheaves (of sets) on (X, 7).

Definition 2.10. For a K-affinoid algebra A, we equip X = Sp(A) with a G-topology 7
for which the objects of Cat, are affinoid subdomains and Cov.(U) for U € Cat, is the
family of finite coverings of U by affinoid subdomains. We call the G-topological space
(X, 7) an affinoid K-space associated to A and denote it simply by Sp(A).

Let AffSpy C Top® denote the full subcategory of affinoid K-spaces and morphismsm
of G-topological spaces.
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By Lemma 2.5(3), any morphism ¢ : A — B in AffAlg; induces a morphism ¢* :
Sp(B) — Sp(A) in AffAlgy. Thus, we get a functor

(AffAlg ;)P — AffSpy : A — Sp(A).

Theorem 2.11. (Tate) Let Ox be the presheaf on (X, 7) given by Ox(U) = B for an
affinoid subdomain U = Sp(B) C X. Then, Ox is a sheaf on (X, 7).

Ezample 2.12. Let X = Sp(A) be an affinoid K-space. Using Theorem 2.11, one can show
that the following presheaves on X is a sheaves.

(1) The presheaf O° C Ox given by
O°(B) ={f € B| |f|sup,B < 0} for an affinoid subdomain Sp(B) C Sp(A),
(2) For r € Ry, the presheaf O(r) C Ox given by
O(r)(B) = {f € B| |f|sup,p < r} for an affinoid subdomain Sp(B) C Sp(A).
where | — |gup, B is the supremum norm on B.
2.3. Rigid analytic K-spaces.

Definition 2.13. A G-ringed K-space is a pair (X, Ox), where X is a G-topological space
and Ox is a sheaf of K-algebras on it. (X, Ox) is called a locally G-ringed K-space if,
in addition, all stalks Ox , for € X are local rings. A morphism of G-ringed K-spaces
(X,0x) — (Y,0Oy) is a pair (¢, *), where ¢ : X — Y is a morphism of G-topological
spaces, and ¢* is a system of K-homomorphisms ¢} : Oy (V) — Ox(p~1(V)) with V
varying over the admissible open subsets of Y. It is required that the ¢j, are compatible
with restriction map, i.e. for W C V, the following diagram commutes:

Py

Oy (V) —— Ox(¢~ (V)

Lo

Oy (W) X Ox (71 (W)

If (X,0x) and (Y,Oy) are locally G-ringed K-spaces, a morphism(p,¢*) is called a
morphism of locally G-ringed K-spaces if the ring homomorphisms

¢zt Oyp(z) = Oxz for z € X
induced from the ¢, are local.

If X = Sp(A) is an affinoid K-space, we can consider the associated locally G-ringed
K-space (X, Ox), where X is the affinoid K-space associated to A from Definition 2.10
and Ox is the structure sheaf from Theorem 2.11.

Definition 2.14. A rigid (analytic) K-space is a locally G-ringed K-space (X, Ox) such
that X admits an admissible covering X = U;e;X; such that (X;, Ox|x,) is an affinoid
K-space for all i € I. A morphism of rigid K-spaces (X,Ox) — (Y, Oy) is a morphism of
locally G-ringed K-spaces. Let Rigy be the category of rigid K-spaces and morphismsm
of locally G-ringed K-spaces. The G-topology on a rigid (analytic) K-space (X,Ox) is
called the admissible topology. For an admissible open subset U C X, the induced locally
G-ringed K-space (U, O X|U) is a rigid K-space again, which is called an open subspace of

Remark 2.15. It is clear that every morphism of affinoid K-spaces ¢ : X — Y induces a
morphism (X,0x) — (Y, Oy) between associated locally G-ringed K-spaces. Thus, we
get a functor

(AffAlg; )P — Rigy : A — (X = Sp(A), Ox),

Remark 2.16. By a formal reason, the sheaves O° and O(r) defined on affinoid spaces
from Example 2.12 extends to sheaves O° and O(r) on rigid K-spaces.
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2.4. Formal schemes and Raynaud’s theorem.

Definition 2.17. An Og-algebra A is called of topologically finite type if there is a surjec-
tive homomorphism ¢ : Og{T1,...,T,} — A of Ok-algebras. It is of topologically finite
presentation if, furthermore Ker(y) is finitely generated. It is admissible if furthermore,
A does not have m-torsion .

Lemma 2.18. (1) An Ok-algebra A of topologically finite type is w-adically comoplete
and separated.
(2) An Og-algebra A of topologically finite type with no mw-torsion is of topologically
finite presentation.

Proof. [3, §.3 Cor.5 and Cor. 7]. O

Definition 2.19. A formal Og-scheme X is called locally of topologically finite type
(resp. locally of topologically finite presentation, resp. admissible) if there is an open
affine covering X = U,¢l; with 4l; = Spf(A;), where A; is an Og-algebra of topologically
finite type (resp. of topologically finite presentation, resp. an admissible Ox-algebra).
Let fSchgtK be the category of formal Og-schemes locally of topologically finite type

and fSch?fo};tft be its full subcategory of affine formal Og-schemes . We have an association
(2.19.1) rig : fSchiy " — AffSpy : X = Spf(A) — X" = Sp(A ®o, K).

Note that A®o, K is an affinoid K-algebra since Og{Th,...,T,}®o, K = K(T1,...,T,).
Since any morphism Spf(A) — Spf(B) in fSch?fo};tft is induced by a unique O g-homomorphism

B — A of Og-algebras, this is a functor. Moreover, this functor commutes with localiza-
tions: For f € A, we have

(219.2) A{f '} @0, K = (A{T}/(1 - 7)) ®o, K
= (A®o, KNT)/(1 = [T) = (A®o, K){f7).
From these, we can deduce the following (see [3, §7.3]).
Proposition 2.20. The functor (2.19.1) extends to a functor
(2.20.1) rig : fSchil! — Rigy : X — XUe.

K

Remark 2.21. If X = Spf(A), X' coincides pointwise with the set of all closed points of
Spec(A ®o, K), which is the generic fiber of the ordinary scheme Spec(A) although it is
not visible in Spf(A) on the level of points. By this, X" is called the generic fiber of X.

In view of Proposition 2.20, one would like to describe all formal Of-schemes X whose
generic fiber X" coincides with a given rigid K-space X. Such a formal Og-scheme is
called a formal model of X. To answer this question, we introduce the following.

Definition 2.22. Let X = lim _ Spec(Ox/(")) € fSchgtK and let A C Ox be a coherent
open® ideal. Then the formal O-scheme

o0
X4 = lig Proj ((PA? ®o, Ox/(7")))
neN d=0
together with the canonical projection X4 — X is called the formal blowup of X in A.
Any such blowup is referred to as an admissible formal blowup of X. Note X 4 € fSchgtK
by the construction.

Definition 2.23. Let C be a category and S be a class of morphisms in C. A localization
of C by S is a category Cg together with a functor Lg : C — Cg such that:

Snamely, 7" € A for some n > 0.
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(i) Ls(s) is an isomorphism in Cg for every s € S.
(ii) If F: C — D is a functor such that F(s) is an isomorphism for every s € S, then
F admits a unique factorization as follows:

CiCS

F
s
D
where the commutativity of the diagram, as well as the uniqueness of G are meant

up to natural equivalence of functors.

It is known that localizations of categories do always exist.

Proposition 2.24. For X € fSchgtK and an admissible blowup ) — X, the induced map
N'ie — XN8 js an isomorphism in Rigy . In particular, the functor (2.20.1) factors through
the localization fSchgtK — (fSchgtK)g by the class ¥ of admissible blowups.

Proof. See [3, §8.4, Pr. 2]. O

Theorem 2.25. (Raynaud) Let Righ?® C Rigy be the full subcategory of quasi-compact
quasi separate rigid K-spaces. Let fSCh?QdK C fSChgtK be the full subcategory of quasi-

compact quasi-separate admissible O -formal schemes and (fSch%iK)g be its localization by
the class of admissible blowups. Then, the functor rig from (2.20.1) induces an equivalence
of categories

(2.25.1) rig : (fSchl )x ~ Righ®.
Proof. See [3, §8.4, Th.3]. O

Remark 2.26. For X € fSch?gdK, the category Xy of admissible blowups X’ — X admits
finite limits so that is cofiltered. This implies that for ) € fSchadK, there is a natural
isomorphism
(2.26.1) Hompig, (X¢,9"%) = lim Homyggge (x',9).

X'—>XeXx
Theorem 2.27. (Geritzen and Grauert) Let X = Spf(A) € fSch?Lofi;tft and X = X"8 =

Sp(A®o, K). A subset U C X is an affinoid subdomain in the sense of Definition 2.6 if
and only if there is Q) € Xx and an affine open < Q) such that U = {18,

2.5. Riemann-Zariski spaces.

Definition 2.28. Let X € fSchgtK and Xy be the category of admissible blowups ) — X.

Let RZ(%X) C Arr(fSchgtK) be the category whose objects are morphisms ${{ — ) where
2 — X € ¥x and Y — 2 is a Zariski open immersion. We abbreviate 4 — 9) to (U/2).
The morphism (/) — (U/2) in RZ(X) are commutative squares in fSchgtK:

W—-s9y

|

Y —9
Remark 2.29. RZ(X) admits finite limits, and they are calculated termwise. Indeed, the
category Arr(fSchgtK) of arrows admits finite limits and they are calculated component
wise: lim(A;/B;) = (lim A;/ lim B;). If each (A;/B;) is in RZ(X), then one checks that
l&n(A,/BZ) is again in RZ(X).
Definition 2.30. We equip RZ(X) with the Grothendieck topology 7 generated by:
(1) families of {(L;/9) — (4/9) }ier such that {4l; — U},cr is a Zariski covering,
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(2) families of {(2)’ xg9 4/Y") — (44/2)} for morphisms )’ — ) in Xx.
The site (RZ(X), 7) is called the Riemann-Zariski space of X. We will write Shv(RZ(X))
for the topos associated to the topology generated by coverings of the form (1) and (2).

Remark 2.31. Using that for 9’ — 9) in Xy, the diagonal 9’ — 2’ x9 2’ is a morphism
in Yy, one can show that a presheaf on RZ(X) satisfies descent for all families of the form
(2) if and only if it sends each ()’ xg 4/9') — (£4/9) to an isomorphism. This implies
(2.31.1) Shv(RZ(X)) ~ Jim Shv(),ar)
PeTx
!/

where the limit is along pushforwards f, : Shv(2),.,) — Shv()a:) for morphisms f :
2’ — 9 in Xx, namely an object of the RHS of (2.31.1) is given by a system

(2.31.2) F = {Fy € Shv(Y,ar) by sxess
such that
(W) Fy (U x9 ") = Fy(Y) for every (4/9) € RZ(X) and Q" — ) in Ex.
If Fy are all sheaves of abelian groups, this implies that we have a natural isomorphism

(2.31.3) lim H'Y(), Fy) ~ H'(RZ(X), Frzx)):
P-XETy

where Fryx) = @@ezx Fy € Shv(RZ(X)) (see [10, Ch.0, 4.4.1]).

Now, we look at a relation of Shv(RZ(X)) and Shv(X'8) for X € fSchgtK. Using
Proposition 2.24, the functor (2.20.1) gives a functor on the categories of open subsets:

RZ(%X) — X8 . (4/9) — e ¢ Prie = xis,

By the construction, this is continuous, i.e. maps coverings to coverings so that it defines
a morphism of sites

v XM — RZ(X)

which induces a pair of adjoint functors
(2.31.4) v Shv(RZ(ae)): Shv(X"8) : 7,

where v, F(U/2) = F(U"8) for F € Shv(X"8) and (4/2)) € RZ(X).
Theorem 2.32. (2.31.4) induces a natural equivalence of topoi
Shv(X"8) ~ Shv(RZ(X)).
In particular, for Fryx) = yanJeEx Fy € Shv(RZ(X)) from (2.31.3), we have
(2.32.1) lim  H'(9), Fy) =~ H' (X", 5" Fra))-
PD—XeTy

Proof. [10, Th.B.2.5]. O
Remark 2.33. By definition, we have

7 Fryx) (U78) = Fy(4) for (/) € RZ(X).
Since such '8 form a basis of the admissible topology of X', this determines Y Frz(x)-

Example 2.34. For ) € ¥x and affine open {4 C ), define (’)i@nt (L) to be the integral closure
of Oy (U) in Oy(U) ®o, K. Then, one can check that this assignment extends to a sheaf
(9};51t on ,ar and satisfies f*O%I,t = O%“ for f:9) — 9 € Yx. By Remark 2.31, it gives

rise to a sheaf (’)g‘%(x) on RZ(X). Moreover, we can show Py*(’)g‘%(x) = 02

g where the

latter is a sheaf on X™& from Example 2.12 (see also Remark 2.16).
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3. VALUATION THEORY
3.1. Valuations. We fix some notations and recall definitions from, e.g., [11, 6.2], [17, 2].

Definition 3.1. A valuation field (K, v) consists of a field K endowed with a surjective
group homomorphism v : K* — T, onto a totally ordered abelian group I',%, such that

(3.1.1) v(z +y) < max{v(x),v(y)}

whenever x +y # 0. We denote by 1 the unit of I" and the composition law of I" is denoted
by (z,y) — xy. It is easy to check that O, = {x € K| v(z) < 1} is a subring of K and we
called it the valuation ring of (K,v).

It is customary to extend v to K, by adding a new element 0 to ', setting v(0) := 0.
One can then extend the ordering of T, to T', := I',U{0} by declaring that 0 is the smallest
element of T',. By the convention, (3.1.1) holds for every = € K.

We have the following facts (see [11, 6.1,12])

Lemma 3.2. Let (K,v) be a valuation field with the valuation ring O,.

(1) Every finitely generated ideal of O, is principal.

(2) Let L be a field extension of K. Then the integral closure W of O, in L is the
intersection of all the valuation rings of L containing O,. In particular, O, is
integrally closed.

(3) If L is an algebraic extension of K and W be the integral closure of O, in L. Then,
for every prime ideal p C W, the localization Wy is a valuation ring. Moreover,
the assignment m — Wy, gives a bijection between the set of maximal ideals of W
and the set of valuation rings Oy of L whose associated valuation w extends v.

(4) Let OF be the henselization of O, with the maximal ideal mP and K" = Frac(O").
Then, Of} contains the integral closure W of O, in K" and we have Of} = Wy,
where q ;= m! N W. By (8), this implies that OF is again a valuation ring. The
same argument works also for strict henselizations.

(5) Any finitely generated torsion-free O,-module is free and any torsion-free O,-
module is flat. Hence every O,-module is of Tor-dimension< 1.

(6) A local subring of a field L is a valuation ring of L if and only if it is mazximal for
the dominance relation on the set of local subrings of L7.

Definition 3.3. Let (K,v: K — T',) be a valuation field. An extension of valued fields
(E,w: E — I'y) consists of a field extension E/K and a valuation w : E — Iy, together
with an embedding j : Iy, < I'y, such that w = jow.

Ezample 3.4. Let (K,v: K* —I',) be a valuation field and E/K be a field extension.

(1) There always exist valuations on E which extends v ([30, Ch.VI, §1, n.3, Cor.3]).

(2) If E/K is algebraic and purely inseparable, then the extension of v to E is unique.
([30, Ch.VI, §8, n.7, Cor.2]).

(3) If E is the polynomial ring K[X], we can construct extensions of v on E as follows:
Let T'y, < I be an embedding of ordered groups. For every zginK and p € T, we
define the Gauss valuation centered at zy and with radius p:

U(zg,p) * K[X] —Tu {O},

sending ag + a1 (X —x) + - -+ an(X — 20)" to max{v(a;) - p*| i = 0,1,...,n} ([30,
16, Ch.VI, §10, n.1, Lemma 1]).

Owritten multiplicatively

TFor local subrings R and S of L, one says that R dominates S if S C R and mg = mg NS, where mp
and mg are the maximal ideals of R and S respectively. The relation of dominance defines a partial order
structure on the set of local subrings of L.
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3.2. Tame extensions of valuation fields. Let (K,v) be a valuation field with the
valuation ring O0,,. Fix an embedding of (K, v) into (K,v), where K is a separable closure
of K and ¥ is an extension of v to K. We denote by (K" v*") the strict henselization
of (K,v) (inside (K, )). A finite separable extension (L,w)/(K,v) of valuation fields is
called unramified (resp. tame), if K" = L3P (resp. ([L:" : K3"],p) = 1, where p is the
exponential characteristic of the residue field of O,). The tame closure (K v') of (K,v)
is the union of all finite tame Galois extensions of (K", v*"). The field K is also the fixed
field of K under the tame ramification group
o(x)

Ry, :={0 € Gal(K/K) | 0(O3) C Oy and ——= — 1 € m; for all z € K*}.
T
We record the following well-known lemma for later reference.

Lemma 3.5. (1) Let (L,w)/(K,v) be a finite separable extension of valuation fields.
Let N/K be a Galois hull of L/K and let w be an extension of w to N. Then
(L,w)/(K,v) is tame if and only if (N,w)/(K,v) is tame.

In particular (L,w)/(K,v) is tame if and only if (L,w) is a subextension of
(K, 0)/(K, v).
(2) Let (L,w)/(K,v) be a tame extension and let (K',v")/(K,v) be any algebraic ex-
tension of valuation fields. Let L-K' be the composition field in an algebraic closure
of K and let w' be a valuation extending v'. Then (L - K',w")/(K',v") is tame.

Proof. (1). Note that N2" is a Galois hull of Ls"/K3". Therefore we may assume K, L, N
are strictly henselian valuation fields of characteristic p > 0. Thus if (N, w)/(K,v) is tame
then [N : K] =[N : L]-[L : K] is prime to p and hence (L, w)/(K,v) is tame as well. Now
assume (L, w)/(K,v) is tame. Denote by Gx D G, D G the absolute Galois groups with
respect to a fixed separable closure K of K, and by P the pro-p-Sylow subgroup of G,
which is a normal subgroup. The indices satisfy the following equality (of supernatural
numbers)
[GKIGL]~[GLZPQGL] = [GK:P]-[P:PQGL].

As P is a normal subgroup of G, the intersection P N G, is a normal subgroup of G,
and we have an inclusion of profinite groups Gr/Gr N P — G/P. Hence [G : P] and
[Gr : PN Gy are prime to p. By assumption [Gg : G| = [L : K] is prime to p as well.
Thus [P: PNGL) =1, ie., P=PNGL. The Galois hull of L/K is the composition field
(inside K) of all the o(L), where ¢ runs through all the embeddings L — K. Extending
these ¢’s to K-automorphisms of K, we find GG(L) = o0Gro~!. Hence Gy = N,oGro 1.
As P is a normal subgroup of Gk it follows that P is contained in G as well. Thus
[Gk : P] =[Gk : GN] - [Gn : P] is prime to p and hence so is [V : K| = [Gk : GN].

(2) follows from (1) and the fact that K'* = K’ - K*, see [11, 6.2.18]. O

4. SPECTRAL SPACES

Definition 4.1. A topological space is called spectral if it is sober®, quasi-compact, the
intersection of two quasi-compact opens is quasi-compact, and the collection of quasi-
compact opens forms a basis for the topology.

Lemma 4.2. For a topological space X, the following conditions are equivalent.

(1) X is spectral.
(2) X is a directed inverse limit of finite sober topological spaces.
(8) X is homeomrophic to Spec(R) for some commutative ring R.

Definition 4.3. Let X be a spectral space. The constructible topology on X is the
topology which has as a base of opens, the sets U and U* for a quasi-compact open U C X.

8i.e. every nonempty irreducible closed subset has a unique generic point.
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Note that an open U in a spectral space X is retrocompact’ Hence, the constructible
topology can also be characterized as the coarsest topology such that every constructible
subset'® of X is both open and closed. It follows that a subset of X is open (resp. closed)
in the constructible topology if and only if it is a union (resp. intersection) of constructible
subsets. Since the collection of quasi-compact opens is a basis for the topology on X, we
see that the constructible topology is stronger than the given topology on X.

Lemma 4.4. The constructible topology on a sepctral sapce is Hausdorff, totally discon-
nected, and quasi-compact.

Proof. [35, Tag 0901] O
5. ADIC SPACES

Definition 5.1. For a morphism of schemes X — X, let Spa(X, X) be the set of triples
(xz,v,e) such that x € X, v is a valuation on k(z) and e: Spec(Q,) — X is a map
compatible with Spec(k(z)) — X. Let Y — Y be a morphism of schemes and (¢, @) :
(Y,Y) — (X, X) be morphisms such that the following diagram commutative:

(5.1.1) Yy 2 X

e
Then, we have an induced map Spa(Y, fi) — Spa({(,j()n. We equip Spa(X, X) with a

topology as follows: If X = Spec(A) and X = Spec(A) are affine, the topology is generated
by the subset of the form'?

{(z,v,e)| v(fi) <v(g) #0Vi=1,...,m} for f1,..., fm,g € A.
In general, we declare that a subset V' C Spa(X, X ) is open if for any commutative diagram
(5.1.1) where Y and Y are affine, ¢ is an open immersion and ¢ is locally of finite type,
the inverse image of V' in Spa(Y.Y’) is open.

Lemma 5.2. (1) If X and X are quasi-compact and quasi-separated, then Spa(X, X)
is a spectral space, i.e. homeomorphic to Spec(R) for some commutative ring R.
In particular, Spa(X, X) s a quasi-compact and quasi-separated topological space.
(2) Let (p,p) be as (5.1.1) and assume that ¢ is étale and ¢ is locally of finite
type. Then, the set of points (y,w,e,) € Spa(Y, 57) such that the extension
(k(y), w)/(k((¥)), Wik(p(y))) 5 tame is open as well as the set of points (z,v,&,) €
Spa(X, X) such that there exists (y,w,e,) € Spa(Y,Y) mapping to (z,v,&,) such

that the extension (k(y),w)/(k(x),v) is tame.

Proof. (1) follows from [17, Lem.4.3] and (2) from [15, Cor.4.4] and [14, Pr.1.7.8]. O
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