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1. Review on topos theory

1.1. Functoriality of presheaves. A functor u : C → D induces

up : PSh(D)→ PSh(C)

given by upF = F ◦ u, in other words upF (V ) = F (u(V )) for V ∈ C.

Proposition 1.1. There exists a functor called the left Kan extension of F along u

up : PSh(C)→ PSh(D)

which is a left adjoint to the functor up. In other words

HomPSh(C)(F, u
pG) = HomPSh(D)(upF,G)

holds bifunctorially in F ∈ PSh(C) and G ∈ PSh(D).

For V ∈ D, let Iu(V ) denote the category whose objects are pairs (U,φ) with U ∈ C
and φ : V → u(U) and

HomIu(V )((U,φ), (U
′, φ′)) = {f : U → U ′ in C| u(f) ◦ φ = φ′}.

We sometimes drop the superscript u from the notation and we simply write I(V ). For
F ∈ PSh(C), we define

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U) = lim−→
I(V )op

FV ,

where FV ∈ PSh(I(V ),Sets) given by

FV : I(V )op → Sets : (U,φ)→ F (U).

To show that upF ∈ PSh(D), note that for g : V ′ → V in D, we get a functor g : I(V )→
I(V ′) by setting g(U,φ) = (U,φ ◦ g). It induces a map

upF (V ) = lim−→
(U,φ)∈I(V )op

F (U)→ lim−→
(W,ψ)∈I(V ′)op

F (W ) = upF (V ′).
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A map of F → F ′ in PSh(C) induces for V ∈ D
upF (V ) = lim−→

(U,φ)∈I(V )op

F (U)→ lim−→
(U,φ)∈I(V )op

F ′(U) = upF (V ).

Thus, we have defined a functor

up : PSh(C)→ PSh(D).
To show that

HomPSh(C)(F, u
pG) = HomPSh(D)(upF,G)

holds bifunctorially in F and G.

Lemma 1.2. Let u : C → D be a functor. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and u commutes with them.

Then, up commutes with fintie limits.

Proof. This follows from the fact that the categories Iu(V )op are filtered by [28, 00X3]. □

1.2. Sites and sheaves. .

Definition 1.3. A site is given by a pair (C, τ) of a category C and a Grothendieck
pretopology τ which is a function assigning to each object U ∈ C a collection Cov(U) of
families of morphisms {Ui → U}i∈I , called coverings family of U , satisfying the following
axioms:

(i) If V → U is an isomorphism, we have {V → U} ∈ Cov(U).
(ii) If {Ui → U}i∈I ∈ Cov(U) and {Vij → Ui}jinJi ∈ Cov(Ui) for each i ∈ I, we have

then {Vij → U}i∈I,j∈Ji ∈ Cov(U).
(iii) If {Ui → U}i∈I ∈ Cov(U) and V → U is a morphism of C, then Ui×U V exists for

all i ∈ I and we have {Ui ×U V → V }i∈I ∈ Cov(V ).

Example 1.4. For a scheme S, let SchS be the category of schemes of finite presentation
over S.

(i) Let ÉtS be the full subcategory of SchS of étale schemes over S. The big étale site
(SchS)ét is the site whose underlying category is SchS and whose coverings are
étale covering1. The small étale site (SchX)ét is the full subcategory of (SchS)ét
whose objects are those U/S such that U → S is étale. A covering of Sét is any
étale covering {Ui → U} with U ∈ Sét.

Definition 1.5. Let C be a site, and let F be a presheaf of sets on C. We say F is a sheaf
if for every U ∈ C and every covering {Ui → U}i∈I ∈ Cov(U) the diagram

F (U)→
∏
i∈I

F (Ui)
pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗0 and pr∗1. We let Shv(C) ⊂ PSh(C) denote
the full subcategory of sheaves (of sets).

Lemma 1.6. Let F : I → Shv(C) be a diagram. Then lim←−I F exists and is equal to the

limit in PSh(C).

Proposition 1.7. There exists a functor called the sheafification

a : PSh(C)→ Shv(C)
which is a left adjoint to the inclusion functor PSh(C)→ Shv(C). In other words

HomPSh(C)(F,G) = HomShv(C)(aF,G)

1For T ∈ SchS , an étale covering of T is a family of morphisms {fi : Ti → T}i∈I in SchS such that
each fi is étale and T = ∪fi(Ti).
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holds bifunctorially in F ∈ PSh(C) and G ∈ Shv(C). Moreover, a is exact.

Let F ∈ PSh(C). For U = {Ui → U}i∈I ∈ Cov(U), put

H0(U, F ) = equalizer
(∏
i∈I

F (Ui)
pr∗0−→
−→
pr∗1

∏
(i0,i1)∈I×I

F (Ui0 ×U Ui1)
)

There is a canonical map F (U)→ H0(U, F )2.
For U ∈ C, let Cov(U) be the category of all coverings of U in C whose morphisms are

the refinements (see §1.5). Note that Cov(U) is not empty since {id : U → U} is an object
of it. By definition the construction U 7→ H0(U, F ) is an object of PSh(Cov(U)). For
F ∈ PSh(C), we define

F+(U) = lim−→
U∈Cov(U)op

H0(U, F ).

Note that F+(U) is the zeroth Čech cohomology of F over U (see §1.5).

Lemma 1.8. (1) For F ∈ PSh(C), F+ is an object of PSh(C) equipped with a canon-
ical map F → F+ in PSh(C). Moreover, the construction is functorial, i.e. a map
f : F → G in PSh(C) induces a map f+ : F+ → G+ such that the following
diagram commutes in PSh(C):

F //

f
��

F+

f+

��
G // G+

(2) The presheaf F+ is separated.

Proof. [28, 00WB]. □

Proposition 1.9. For F ∈ PSh(C), (F+)+ ∈ Shv(C) and the induced functor

a = ((−)+)+ : PSh(C)→ Shv(C)

is a left adjoint to the inclusion functor PSh(C)→ Shv(C). Moreover, a is exact.

Proof. [28, 00WB]. The exactness of a follows from the fact that Cov(U) is filtered (the
point is to show a commutes with finite limits).

□

1.3. Functoriality of sheaves.

Definition 1.10. Let C and D be sites. A functor u : C → D is called continuous if for
every V ∈ C and every {Vi → V }i∈I ∈ Cov(V ), we have the following

(i) {u(Vi)→ u(V )}i∈I ∈ Cov(u(V )),
(ii) for any morphism T → V in C, the morphism u(T ×V Vi) → u(T ) ×u(V ) u(Vi) is

an isomorphism.

Example 1.11. For a map f : T → S of schemes, consider

u : ÉtS → ÉtT : X → X ×S T.

Then, u is continuous for the étale topology.

Lemma 1.12. If u : C → D is continuous, up induces

us : Shv(D)→ Shv(C).

Proof. Exercise. □

2This is the zeroth Čech cohomology of F over U with respect to the covering U.
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Lemma 1.13. If u : C → D is continuous, the functor

us : Shv(D)→ Shv(C) : G→ a(up(G))

is a left adjoint to us.

Proof. Follows directly from Propositions 1.9 and 1.1. □

Definition 1.14. Let C and Dbe sites. A morphism of sites f : D → C is given by a
continuous functor u : C → D such that the functor us is exact.

.

Proposition 1.15. Let u : C → D be a continuous morphism of sites. Assume

(i) C has a final object e and u(e) is a final object of D,
(ii) C admits fiber products and u commutes with them.

Then, u defines a morphism of sites, i.e. us is exact.

Proof. This follows from Lemma 1.2 and the exactness of a from Proposition 1.9 (see [28,
00X6]). □

Definition 1.16. A topos is the category Shv(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f : Shv(D)→ Shv(C) is given by a adjoint

pair of functors

f∗ : Shv(C)←−−→ Shv(D) : f∗,

namely we have for G ∈ Shv(C) and F ∈ Shv(D)

HomShv(D)(f
∗G,F ) = HomShv(C)(G, f∗F )

bifunctorially, and the functor f∗ commutes with finite limits, i.e., is left exact.
(2) Let C, D, E be sites. Given morphisms of topoi f : Shv(D) → Shv(C) and

g : Shv(E)→ Shv(D), the composition f ◦ g is the morphism of topoi defined by
the functors (f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)∗ = g∗ ◦ f∗.

Lemma 1.17. Given a morphism of sites f : D → C corresponding to the functor u :
C → D, the pair of functors (f∗ = us, f∗ = us) is a morphism of topoi.

Proof. This is obvious from Definition 1.14. □

1.4. Cohomology.

Theorem 1. Let C be a site. Then, the category Shv(C,Ab) of abelian sheaves on a site
is an abelian category which has enough injectives.

Proof. [28, 03NU]. □

By the theorem, we can define cohomology as the right-derived functors of the sections
functor F → F (U) for U ∈ C and F ∈ Shv(C,Ab) defined as

H i(U,F ) := RiΓ(U,F ) = H i(Γ(U, I•)),

where F → I• is an injective resolution. To do this, we should check that the functor
Γ(U,−) is left exact. This is true and is part of why the category Shv(CAb) is abelian, see
Modules on Sites, Lemma 3.1. For more general discussion of cohomology on sites (includ-
ing the global sections functor and its right derived functors), see Cohomology on Sites,
Section 2. The family of functors H i(U,−) forms a universal δ-functor Shv(C,Ab)→ Ab.
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It sometimes happens that the site C does not have a final object. In this case, we
define the global sections of F ∈ PSh(C, Sét) over C to be the set

Γ(C, F ) = HomPSh(C)(e, F ),

where e is a final object in PSh(C,Sets). In this case, given F ∈ Shv(C,Ab), we define
the i-th cohomology group of Fon C as follows

H i(C, F ) = H i(Γ(C, I•))).

In other words, it is the i-th right derived functor of the global sections functor. The
family of functors H i(C,−) forms a universal δ-functor Shv(C,Ab)→ Ab.

1.5. Čech cohomology. For U ∈ C and U = {Ui → U}i∈I ∈ Cov(U), write Ui0...ip =
Ui0 ×U · · · ×U Uip for the (p + 1)-fold fiber product over U of members of U. Let F ∈
PSh(C,Ab), set

Čp(U, F ) =
∏

(i0...ip)∈Ip+1

F (Ui0...ip).

For s ∈ Čp(U, F ), we denote si0...ip its value in F (Ui0...ip). We define

d : Čp(U, F )→ Čp+1(U, F )

by the formula

d(s)i0...ip+1 =

p+1∑
j=0

(−1)j(si0...îj ...ip+1
)|Ui0...ip+1

.

It is straightforward to see that d ◦ d = 0, i.e. Č(U, F ) is a complex, which we call Čech
complex associated to F and U. Its cohomology groups

Ȟ i(U, F ) = H i(Č(U, F ))

are called the Čech cohomology groups associated to F and U.

Lemma 1.18. For U ∈ C and U = {Ui → U}i∈I ∈ Cov(U), there is a transformation of
functors:

Shv(C,Ab)→ D(Z) : Č(U,−)→ RΓ(U,−).
Moreover, there is a spectral sequence for F ∈ Shv(C,Ab):

Ep,q
2 = Ȟp(U,Hq(F ))⇒ Hp+q(U,F ),

which is functorial in F , where Hq(F ) ∈ PSh((X, X̃)t,Ab) is given by U → Hq
t (U , F ).

In particular, if H i(Ui0 ×U · · · ×U Uip , F ) = 0 for all i > 0, p ≥ 0 and i0, . . . , ip ∈ I, then

we have Ȟp(U, F ) = Hp(U,F ).

Proof. [28, 03AX, 03AZ, 03F7]. □

For coverings U = {Ui → U}i∈I and V = {Vj → V }j∈J in C, a morphism U → V is
given by a morphism U → V in C, a map of sets α : I → J and for each i ∈ I a morphism
Ui → Vα(i) such that the diagram

Ui //

��

Vα(i)

��
U // V

is commutative. In the special case U = V and U → V is the identity, we call U a
refinement of V. A remark is that if the above V is the empty family, i.e., if J = ∅, then
no family U = {Ui → V }i∈I with I ̸= ∅ can refine V.
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For U ∈ C, let Cov(U) be the category of all coverings of U in C whose morphisms
are the refinements3. Note that Cov(U) is not empty since {id : U → U} is an object of
it. Take F ∈ PSh(C,Ab). By definition the construction U 7→ Č(U, F ) is a preshesaf on
Cov(U) with values in the category of complexes of abelian groups. We define

Č(U,F ) := lim−→
U∈Cov(U)op

Č(U, F ),

Ȟ i(U,F ) := H i(Č(U, F )) = lim−→
U∈Cov(U)op

Ȟ
i
(U, F ),

where the last equality holds since Cov(U) if cofiltered. By Lemma 1.18, we have a
transformation of functors:

Shv(C,Ab)→ D(Z) : Č(U,−)→ RΓ(U,−).
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Springer, Cham.

3By our conventions on sites this is indeed a category, i.e., the collection of objects and morphisms
forms a set.



TAME COHOMOLOGY AND ITS APPLICATIONS(LECTURES AT INSTITUTE OF SCIENCE TOKYO IN NOVEMBER, 2025)7

[26] M. Artin and A. Grothendieck and J. L. Verdier, Séminaire de géométrie algébrique du Bois-Marie
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