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1 Introduction

A quest for theory of motivic cohomology dates back to work of Grothendieck and
early days of algebraic geometry. As a motivation, we recall Riemann-Roch theorem
of Baum-Fulton-McPherson. Let X be a smooth scheme over a field k. The relation
between the category of vector bundles and the group of algebraic cycles on X is
expressed by natural isomorphisms⊕

n

grnγK0(X)Q ' K0(X)Q
τ−→
'

⊕
n

CHn(X)Q, (1)
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where grnγ is the n-th graded quotient of the γ-filtration on K0(X). The composite
of the isomorphisms is compatible with the grading so that it induces

grnγK0(X)Q
'−→ CHn(X)Q

and it is known that the inverse is given by a cycle class map. The isomorphism on
LHS is a formal consequence of the existence of a λ-structure on K0(X) while the
existence of τ is a part of BFM’s RR theorem.

Remark 1.1. Even for every X of finite type over k, we have isomorphisms⊕
n

grnγG0(X)Q ' G0(X)Q
τ−→
'

⊕
n

CHn(X)Q, (2)

where CHn(X) is Fulton’s Chow group. (1) follows from (2) and the fact G0(X) =
K0(X) in case X is smooth.

S. Bloch upgraded (2) to⊕
n

grnγGq(X)Q ' Gq(X)Q
τ−→
'

⊕
n

CHn(X, q)Q, (3)

where CHn(X, q) is the higher Chow group defined by himself. In particular, for X
smooth over k, we get an isomorphism

grnγKq(X)Q ' CHn(X, q)Q. (4)

Question 1.2. (1) Is there a similar filtration on Kq(X) for X singular?
(2) Is there a filtration with integral coefficient?

1.1 Motivic complexes

In 1980’s, Beilinson and Lichtenbaum predicted there exists

Z(n)mot ∈ ShvZar(Sch,D(Z)) for every n ≥ 0,

a complex of Zariski sheaves on a category Sch of reasonable schemes called motivic
complex of weight n. The motivic cohomology of X ∈ Sch defined as

H i
M(X,Z(n)) = H i(Z(n)mot(X))

is expected to play a role of the universal cohomology theory for schemes and to play
some important roles in algebraic and arithmetic geometry. For example, there are
several conjectures expressing special values of L-functions of arithmetic schemes in
terms of motivic cohomology or its related invariants. Here is an example.
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Theorem 1.3. (Kerz-Saito [KeS12]) Let X be a smooth projective variety over a
finite filed Fq with d = dim(X). We have the equality up to a power of p = ch(Fq):

ζ(X, 0)∗ =
∏

15 i5 2d

∣∣∣H i
M(X,Z(d))tor

∣∣∣(−1)i

.

The equality holds also for the p-part if d ≤ 4. Here

ζ(X, s) = Z(X, q−s), Z(X, t) = exp
( ∞∑
m=1

|X(Fqm)| t
m

m

)
ζ(X, r)∗ := lim

s→r
ζ(X, s) · (1− qr−s)ρr (ρr := −ords=rζ(X, s))

Here, we define the motivic cohomology of X as

H i
M(X,Z(d)) = H2d−i(zd(X, •)),

where zd(X, •) is Bloch’s cycle complex (see §6.1).

There is a list of properties expected for Z(n)mot:

1. Projective bundle formula, Blowup formula,
2. Relation of Z(n)mot ⊗L Z/` to étale/syntomic cohomology, etc.

Beside these, the most important is the following relation to algebraic K-theory.

Conjecture 1.4 (Beilinson (1985)). For X ∈ Sch, there is a functorial spectral
sequence:

Ep,q2 = Hp−q
M (X,Z(−q))⇒ K−p−q(X) = π−p−q(K(X)), (5)

where K(X) is the non-connective algebraic K-theory spectrum of X.

Remark 1.5. (1) The conjectural motivic spectral sequence

Ep,q2 = Hp−q
M (X,Z(−q))⇒ K−p−q(X) = π−p−q(K(X))

is viewed as an algebraic analogue of the Atiyah-Hirzebruch spectral sequence
for a CW complex X

Ep,q2 = Hp−q
sing(X,Z)⇒ Ktop

−p−q(X),

where Ktop
∗ (X) is the topological K-theory and H∗sing(X,Z) is the singular

cohomology.
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(2) The motivic spectral sequence is expected to degenerate rationally inducing
natural isomorphisms

H i
M(X,Z(n))⊗Z Q ' K2n−i(X)

(n)
Q ,

where the RHS are Adams eigenspaces of rationalized K-theory.

Conjecture 1.4 is a consequence of the following.

Conjecture 1.6. Let PSh(Sch, Sp) be the category of presheaves of spectra on Sch.
There exists a tower in PSh(Sch,Sp)

· · · → Fn+1
mot K → FnmotK → · · · → F 0

motK = K,

with identifications (via Eilenberg-Maclane functor D(Z)→ Sp)

grnFmot
K := cofib(Fn+1

mot K → FnmotK) ' Z(n)mot[2n] (6)

In case X is smooth over a field k, it has been known (Friedlander-Suslin, Levine,
Voevodsky) that FnmotK(X) exists and agrees with the γ-filtration after ⊗Q and
moreover that grnFmot

K(X) is equivalent to zn(X,−•). Thus it gives an integral
refinement of (4).
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2 Motivic complexes for smooth schemes

The first major progress toward Conjecture 1.4 took place around twenty year after
the formulation of the conjecture. It gave a satisfactory answer for smooth schemes
over a field.

Let Smk be the category of smooth schemes over a field k.

Theorem 2.1 (Friedlander-Suslin [FS02], Levine [Le08], Voevodsky [V-CMAMS]).
There exists a tower in PSh(Smk,Sp)

· · · → Fn+1
mot K → FnmotK → · · · → F 0

motK = K,

and equivalences
grnFmot

K ' zn(−, •),
where zn(X, •) for X ∈ Smk is Bloch’s cycle complex.

We define the motivic complex Z(n)sm ∈ PSh(Smk,D(Z)) as

Z(n)sm := grnFmot
K[2n] ' zn(−, 2n− •).

Remark 2.2. Bloch’s cycle complex is a priori only functorial for flat morphisms
in Smk, which is not sufficient for later purposes (e,g. for left Kan extending along
Smk → Schk), and its multiplicative properties are unclear. The problems are re-
solved via using

Z(n)sm(X) = C∗(Ztr(G∧nm ))(X)[−n] for X ∈ Smk, (7)

where C∗(Ztr(G
∧q
m ))[−q] is Voevodsky’s A1-invariant motivic complex defined in

[SV00]. This is strictly functorial in Smk in the sense that it defines a func-
tor between the 1-category Smk and the 1-category of chain complexes of abelian
groups. Scheme-wise this is shown to be quasi-isomorphic to Bloch’s cycle complex
zn(X, 2n− •) as shown in [V02, Cor.2].

In §2.1 below, we recall a definition of Fnmot using the homotopy coniveau tower
due to Levine [Le08] but there seem to be a similar technical issue on functoriality
and multiplicativity. This is solved by using Voevodsky’s slice filtration [V-CMAMS].
There is also a related work [DFJ23].

Remark 2.3. It is known that Z(n)sm ∈ ShvZar(Smk,D(Z)) (see [Bl86, Th.3.1] and
Remark 2.2). We let HiZar(Z(n)sm) be the Zariski cohomology sheaf of Z(n)sm.

Remark 2.4. By [Bl86, Th.6.1], we have H1
Zar(Z(n)sm) ' O× and HiZar(Z(n)sm) =

0 for i 6= 1. In view of Remark 2.3, this implies an equivalence in ShvZar(Smk,D(Z):

Z(1)sm ' RΓZar(−,O×)[−1]. (8)
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Remark 2.5. By [Bl86, Th.10.1], HiZar(Z(n)sm)(X) → HiZar(Z(n)sm)(k(X)) is in-
jective for an integral X ∈ Smk. This implies

HiZar(Z(n)sm) = 0 for i > n, (9)

which implies that for X ∈ Smk,

H i(Z(n)sm(X)) = 0 for i > dim(X) + n, (10)

In particular, FnmotK(X) is supported in cohomological degrees ≤ dim(X) − n for
each n ∈ N, so the induced spectral sequence (5) is bounded.

Remark 2.6. By [NS89], [To92] and [K09, Th. 7.6], there exists a natural isomor-
phism if k is infinite:

HnZar(Z(n)sm) ' KMn , (11)

where the right hand side is the Zariski sheaf of Milnor K-theory1. This gives rise
to a natural map in ShvZar(Smk,D(Z)):

Z(n)sm → Hn(Z(n)sm)[−n] ' KMn [−n], (12)

where the second map comes from (9).

Remark 2.7. Combined with some deep results on Z(n)sm ⊗L Z/`r for a prime `
and an integer r > 0, Theorem 2.1 provides substantial information on K-theory
K(X,Z/`r) of finite coefficient: If ` 6= ch(k), the Beilinson-Lichtenbaum conjecture
proved by Voevodsky-Rost [V11] implies an equivalence:

Z(n)sm ⊗L Z/`r ' τ≤nRε∗µ⊗n`r in ShvZar(Smk,D(Z/`r)), (13)

where ε : (Smk)ét → (Smk)Zar is the natural map of sites. If p = ch(k) > 0, a theo-
rem of Geisser-Levine [GL00] and Bloch-Gabber-Kato [BK86] gives an equivalence:

Z(n)sm ⊗L Z/pr 'WrΩ
n
log[−n] in ShvZar(Smk,D(Z/pr)), (14)

where WrΩ
n
log is the logarithmic part of de Rham-Witt sheaf WrΩ

n
−/k [Il79]2. Thanks

to Theorem 2.1, this implies for X ∈ Smk that Ki(X,Z/pr) = 0 for i > dim(X).

Remark 2.8. The proof of Theorem 1.1 uses the A1-invariance of K-theory, which
is valid only for regular schemes. The higher Chow groups of a singular variety over
a field are A1-invariant and nilinvariant, while algebraic K-theory does not satisfy
the properties. It has been an open problem to give a motivic filtration on K-theory
(and a motivic cohomology) for singular schemes.

1The hypothesis on the infiniteness of k can be removed if the Milnor K-theory is replaced by
the improved Milnor K-theory of Gabber and Kerz [K10].

2It is the subsheaf of the de Rham-Witt sheaf WrΩ
n generated étale locally by d log[x1] ∧ · · · ∧

d log[xn] for local units xi with its Teichmüller lifts [xi] in the Witt vectors.
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2.1 Motivic filtrations via the homotopy coniveau tower

In this subsection, we explain a construction of the motivic filtration FnmotK in
Theorem 2.1 following [Le08]. It is given as FnmotK = FnconK, where {FnconK}n∈N is
the homotopy coniveau tower defined below.

Recall the algebraic q-simplex

∆q = Spec
(
Z[t0, · · · , tq]/(

q∑
i=0

ti − 1)
)

with faces ∆s = {ti1 = · · · = tiq−s = 0} ⊂ ∆q. The association

∆op → Sch ; [q]→ ∆q

gives a cosimplicial scheme ∆•.

For X ∈ Smk, let SnX(q) be the set of closed subsets W ⊂ X ×∆q such that

codimX×F (W ∩ (X × F )) ≥ n

for all faces T ⊂ ∆q. Let Xn(q) is the set of codimension n points x ∈ X × ∆q

whose closures {x} lie in SnX(q).

For E ∈ PSh(Smk,Sp) and q ≥ 0, put

FnconE(X, q) := colim
W∈SnX(q)

EW (X ×∆q),

EW (X ×∆q) = fib
(
E(X ×∆q)→ E((X ×∆q) \W )

)
.

It gives a simplicial spectrum FnconE(X,−) and a tower

· · · → Fn+1
con E(X,−)→ FnconE(X,−)→ · · · → F 0

conE(X,−) = E(X,−). (15)

Put
grnFcon

E(X,−) = cofib
(
Fn+1

con E(X,−)→ Fn+1
con E(X,−)

)
.

Write
FnconE(X) = |FnconE(X,−)| = colim[q]∈∆op FnconE(X, q).

grnFcon
E(X) = cofib

(
Fn+1

con E(X)→ Fn+1
con E(X)

)
' |grnFcon

E(X,−)|.

Lemma 2.9. F 0
conE(X)→ E(X) is an equivalence if E is A1-invariant.

Proof. A1-invariance implies E(X) ' E(X ×∆q).
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The equivalence grnFcon
K(X) ' zn(X, •) in Theorem 2.1 follows from the follow-

ing:

Theorem 2.10. (1) grnFcon
E(X,−) is equivalent to another simplicial spectrum

whose q-simplices is ⊕
x∈Xn(q)

gr0
Fcon

(Ωn
P1E)(x),

where ΩP1E ∈ PSh(Smk, Sp) is the P1-loop spectrum of E defined as

ΩP1E(X) = fib(E(X × P1)→ E(X ×∞)),

and Ωn
P1E is defined inductively as Ωn

P1E = ΩP1(Ωn−1
P1 E).

(2) If E = K, we have for a field F

gr0
Fcon

(Ωn
P1K)(F )

(∗1)
' gr0

Fcon
K(F )

(∗2)
' K(Z, 0),

where K(Z, 0) is Eilenberg-Maclane spectrum and (∗1) follows from Ωn
P1K = K

by the P1-bundle formula (see Theorem 6.8).

We recall some ingredients of the proof of Theorem 2.10. The basic inputs are
Localization Theorem 2.13 and Purity Theorem 2.14. In what follows, we assume
that k is infinite while the assumption can be removed under an additional assump-
tion on E ∈ PSh(Smk, Sp) which is satisfied by E = K.

We let ShvA1

Nis(Smk, Sp) ⊂ PSh(Smk,Sp) denote the full subcategory of those
Nisnevich sheaves F of spectra on Smk that F (X) ' F (X ×k A1

k). Note that K

belongs to ShvA1

Nis(Smk,Sp).

Remark 2.11. For E ∈ PSh(Smk,Sp), the association X → FnconE(X) is functorial
only for a flat morphism Y → X in Smk. In particular, it gives an object of
PSh(Sm//k, Sp), where Sm//k is the category of the same objects as Smk with
smooth morphisms Y → X. Thus, (15) gives a tower in PSh(Sm//k,Sp):

· · · → Fn+1
con E//k → FnconE//k → · · · → F 0

conE//k → E (16)

such that FnconE//k(X) = FnconE(X). The following theorem refines this.

For a category C, we write H Sp(C) = PSh(C, Sp)[W−1], where W is the class of
morphisms which are point-wise equivalences3.

3To be more precise, we equip PSh(C,Sp) with the model structure whose cofibrations and weak
equivalences are point-wise and fibrations are characterized by the RLP with respect to the trivial
cofibrations.
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Theorem 2.12. (Functoriality For E ∈ ShvA1

Nis(Smk, Sp), there exists a tower in
PSh(Smk, Sp)

· · · → Fn+1
con E → FnconE → · · · → F 0

conE → E (17)

whose restriction to Sm//k is isomorphic to (16) in H Sp(Sm//k).

Let X ∈ Smk and Z ⊂ X be a closed subset and U = X\Z. Let SnX,Z(q) ⊂ SnX(q)
be the subset consisting of those W such that W ⊂ Z ×∆q and put

FnconEZ(X, q) := colim
W∈SnX,Z(q)

EW (X ×∆q),

which gives a simplicial spectrum FnconEZ(X,−). Write

FnconEZ(X) = |FnconEZ(X,−)|.

Theorem 2.13. (Localization, [Le08, Cor.3.2.2]) For E ∈ ShvA1

Nis(Smk, Sp), the
sequences in Sp

FnconEZ(X, q)→ FnconE(X, q)→ FnconE(U, q),

grnFcon
EZ(X, q)→ grnFcon

E(X, q)→ grnFcon
E(U, q),

extends canonically to distinguished triangles in SH, the homotopy category of Sp.
Hence, we have equivalences in Sp:

FnconEZ(X, q) ' fib
(
FnconE(X, q)→ FnconE(U, q)

)
,

grnFcon
EZ(X, q) ' fib

(
grnFcon

E(X, q)→ grnFcon
E(U, q)

)
.

Theorem 2.14. (Purity, [Le08, Pr.4.2.2]) Let i : Z → X be a closed immersion of
codimension d in Smk. Assume there exists a trivialization φ : NZ/X ' Z×Ad. For

E ∈ ShvA1

Nis(Smk,Sp) and n ≥ 0, there are equivalences 4 in Sp

FnconEZ(X, q) ' Fn−dcon (Ωd
P1E)(Z, q),

grnFcon
EZ(X, q) ' grn−dFcon

(Ωd
P1E)(Z, q).

Here, for m < 0, we set Fmcon(Ωd
P1E) = F 0

con(Ωd
P1E) and grmFcon

(Ωd
P1E) = ∗.

Corollary 2.15. Let the assumption be as in Theorem 2.14 and put U = X − \Z.
Then, there exists a distinguished triangles in SH

Fn−dcon (Ωd
P1E)(Z, q)→ FnconE(X, q)→ FnconE(U, q).

Thus, there exists a long exact sequence

· · · → πi+1(FnconE(U, q))→ πi(F
n−d
con (Ωd

P1E)(Z, q))→ πi(F
n
conE(X, q))→ πi(F

n
conE(U, q))→ · · · .

The same results hold by replacing Fncon by grnFcon
.

4These may depend on the choice of trivialization of NZ/X . but are natural in the category of
closed embeddings i with trivialization of Ni.
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Corollary 2.16. Suppose k is perfect. Let the assumption be as in Theorem 2.14.
Let W ⊂ X be a closed subset with codimX(W ) ≥ d and V ⊂ W be a regular open
subset containing W ∩X(d). Then, for n ≥ 0, there is an equivalence in Sp

(grdFcon
E)W (X, q) ' gr0

Fcon
(Ωd

P1E)(V, q),

where (grdFcon
E)W (X, q) = fib

(
grdFcon

E(X, q)→ grdFcon
E(X −W, q)

)
.

Proof. We prove the corollary assuming that NW/X is trivial and omit a reduction
to this case. By Theorem 2.13, we have an equivalence

(grdFcon
E)W (X, q) ' (grdFcon

EW )(X, q).

So, if W ∈ Smk, the corollary follows from Theorem 2.14. To show the general case,
let T = W \ V and Xo = X \ T . Note codimX(T ) ≥ d + 1 and also that V ∈ Smk

thanks to the assumption that k is perfect. Thus, it suffices to show the equivalence

(grdFcon
E)W (X, q) ' (grdFcon

E)V (Xo, q). (18)

By the fiber sequence

(grdFcon
E)T (X, q)→ (grdFcon

E)W (X, q)→ (grdFcon
E)V (Xo, q),

it suffices to show (grdFcon
E)T (X, q) ' 0. By Theorem 2.13, it suffices to show

grdFcon
ET (X, q) ' 0. By definition,

grdFcon
ET (X, q) = cofib

(
F d+1

con ET (X, q)
ι−→ F dconET (X, q)

)
.

So, we are reduced to showing ι is an equivalence. For this, it suffices to show
SdX,T (q) = Sd+1

X,T (q). Recall SnX,T (q) is the set of closed subsets W ⊂ T×∆q satisfying
the condition

codimX×F (W ∩ (X × F )) ≥ n for all faces F ⊂ ∆q. (19)

If W ⊂ T ×∆q, W ∩ (X × F ) ⊂ T × F so

codimX×F (W ∩ (X × F )) ≥ codimX×F (T × F ) = codimX(T ) ≥ d+ 1.

Hence, (19) is automatic if n ≤ d+ 1. This completes the proof of (18).

Corollary 2.17. Suppose k is perfect. Let the assumption be as in Theorem 2.14.
For an integer d ≥ 0, there is a natural equivalence

F dcon(grdFcon
E)(X, q) ' grdFcon

(grdFcon
E)(X, q) '

⊕
x∈Xd(q)

gr0
Fcon

(Ωd
P1E)(x).

We also have
Fncon(grdFcon

E)(X, q) ' 0 for n > d. (20)
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Proof. By Corollary 2.16, for X ∈ Smk and a closed subset W ⊂ X of codimension≥
d, we have

(grdFcon
E)W (X) '

⊕
x∈W∩X(d)

gr0
Fcon

(Ωd
P1E)(x).

Applying this to a closed subset W ⊂ X ×∆q with codimX×∆(W ) ≥ d, we get an
equivalence in Sp

(grdFcon
E)W (X ×∆q) '

⊕
x∈W∩(X×∆q)(d)

gr0
Fcon

(Ωd
P1E)(x).

This implies an equivalence

F dcon(grdFcon
E)(X, q) '

⊕
x∈Xd(q)

gr0
Fcon

(Ωd
P1E)(x).

and Fncon(grdFcon
E)(X, q) ' 0 for n ≥ d+ 1.

Thanks to Corollary 2.17, Theorem 2.10(1) follows from the following.

Theorem 2.18. For E ∈ ShvA1

Nis(Smk,Sp) and d ≥ 0, there is a natural equivalence

grdFcon
(grdFcon

E) ' grdFcon
E.

Proof. In view of a fiber sequence

grdFcon
(F d+1

con E)→ grdFcon
(F dconE)→ grdFcon

(grdFcon
E),

Proposition 2.19 below implies grdFcon
(F dconE) ' grdFcon

(grdFcon
E). On the other hand,

(20) implies grdFcon
(grnFcon

E) ' 0 for n < d and it implies grdFcon
(F dconE) ' grdFcon

(E).

The following vanishing is compared with the vanishing in Corollary 2.17.

Proposition 2.19. For E ∈ ShvA1

Nis(Smk, Sp) and integers 0 ≤ q < p, we have

grqFcon
(F pconE) ' grqFcon

(grpFcon
E) ' 0.

Proof. Omitted.

To prove Theorem 2.10(2), we need to show

Proposition 2.20. We have an equivalence gr0
Fcon

K(F ) ' K(Z, 0).

11



Lemma 2.21. For E ∈ PSh(Smk, Sp) and a field F and q ≥ 0, we have

gr0
Fcon

E(F, q) ' E(∆q
0,F ),

where ∆•0,F is the semi-localization of ∆•F at the 0-dimensional vertices. Hence, we

have an equivalence gr0
Fcon

E(F ) ' |E(∆•0,F )| = colim[q]∈∆op E(∆q
0,F ).

Proof. Exercise.

Recall the category ∆ whose objects are the finite ordered sets [n] := {0 < 1 <
· · · < n} and whose morphisms are the order-preserving maps of sets. For n ≥ 0,
let ([n], ∂) be the category whose objects are the injective map g : [m] → [n] in ∆
with m < n (plus ∅ → [n]) and whose morphisms are the commutative triangles of
injective maps. We have a functor πn : ([n], ∂)→ ∆ sending [m]→ [n] to [m].

For a simplicial spectrum E : ∆op → Sp, let E([n], ∂) denote the iterated homo-
topy fiber of E ◦ πn over ([n], ∂) defined as

E([n], ∂) = lim
g:[m]→[n]∈([n],∂)

fib
(
E(g) : E([n])→ E([m])

)
.

If E : ∆op → D(Z) is a simplicial object in D(Z), E([n], ∂) is the total complex
of the double complex:

E([n])→
⊕

g:[n−1]→[n]

E([n− 1])→
⊕

g:[n−2]→[n]

E([n− 2])→ · · · ,

where E([n −m]) is in homological degree −m and g in degree −m range over all
injective maps [n−m]→ [n] in ∆ and the differential d−m is the signed sum of the
maps

E(f) : (E([n−m+ 1]), g)→ (E([n−m], g ◦ f) for f : [n−m]→ [n−m+ 1] ∈ ∆inj .

Applying the above construction to the simplicial spepctrum [n]→ E(∆n
0,F ), we get

E(∆n
0,F , ∂) = lim

g:[m]→[n]∈([n],∂)
fib
(
E(g) : E(∆n

0,F )→ E(∆m
0,F )

)
.

Proposition 2.22. ([Le08, Pr.6.3.4]) Take E ∈ ShvA1

Nis(Smk,Sp) and assume

(i) For any X ∈ Smk and open U ⊂ X, we have πi(E(X)) = 0 for i < 0 and
π0(E(X))→ π0(E(U)) is surjective.

(ii) π0(E(∆n
0,F , ∂)) = 0 for all n ≥ 0.

Then, we have π0(|E(∆•0,F )|) ' π0(E(F )) and πi(|E(∆•0,F )|) = 0 for all i > 0.
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Proof. A formal argument in homotopical algebra using the spectral sequence

E1
p,q = πp+q(E(∆p

0,F ))⇒ πp+q(|E(∆•0,F )|).

Proof of Proposition 2.20: We check the conditions of Proposition 2.22. (i) follows
from the fact that Ki(X) = 0 for i < 0 and K0(X)→ K0(U) is surjective if X ∈ Smk

and U ⊂ X is open. We now show (ii).

Claim 2.23. There is an exact sequence

K1(∆n
0,F )

f−→ K1(∂∆n
0,F )→ π0(K(∆n

0,F , ∂))→ K0(∆n
0,F )

g−→ K0(∂∆n
0,F )

where ∂∆n
0,F is the union of the faces of codimension one in ∆n

0,F .

Proof. This follows from the fact that ∂∆n
0,F is K1-regular so that Ki(∂∆n

0,F ) '
KHi(∂∆n

0,F ) for i ≤ 1 (see Definition 3.9 for KH), and the fact that KH satisfies
Mayer-Vietoris property for unions of closed subschemes (see [W13, IV Cor.12.6]).
The detail is left as an exercise.

Remark 2.24. A ring A is called Ki-regular if Ki(A) ' Ki(A[T1, . . . , Tr]) for all r.
It is known that a regular noetherian ring is Kn-regular for all n. Vorst conjectured
that for an algebra A of essentially finite type over a field k with dim(A) ≤ n, A is
Kn+1-regular implies A is regular. For example,

(i) A is K0-regular if and only if A is seminormal 5.
(ii) A is K1-regular if and only if A is seminormal and for every x ∈ Spec(A) and

every point y of the normalization lying above x, k(y)/k(x) is separable.

If ch(k) = 0, the conjecture was proved by Cortiñas, Haesemeyer, and Weibel
[CHW08]. In case ch(k) = p > 0, Geisser and Hesselholt [GH12] proved the con-
jecture assuming resolution of singularities. Kerz-Strunk-Tamme [KST21] proved it
by replacing dim(A) by its variant called the p-dimension.

We are now reduced to showing the surjectivity of f and the injectivity of g in
Claim 2.23. Let R be the affine ring of the semi-local scheme ∆n

0,F and I ⊂ R be
the ideal defining ∂∆n

0,F . The injectivity of g follows from K0(R) = K0(R/I) = Z
since R is semi-local (see math.stackexchange.com/questions/150944/). To show

5i.e. for all x, y ∈ A with x3 = y2, there is a unique a ∈ A with x = a2 and y = a3.
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the surjectivity of f , consider a commutative diagram

GL(R) //

π

��

K1(R)

��
GL(R/I) // K1(R/I)

The horizontal maps are surjective since K1(S) = GL(S)/[GL(S),GL(S)] for any
associative ring S with unit. The map π is surjective since I ⊂ R is a radical ideal
(see [W13, I, Exc.1.1.12]). This proves the desired surjectivity.
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3 Cdh-local motivic complex Z(n)cdh

This is an extension of Z(n)sm ' zn(−, 2n−•) on Smk to a motivic complex on the
category Schk of schemes of finite type over k, first considered by Voevodsky and
studied by Cisinski-Déglise and more recently by Bachmann-Elmanto-Morrow.

3.1 Left Kan extension

We use the left Kan extension along Smk → Schk:

Lsm : PSh(Smk, C)→ PSh(Schk, C) (C = Set, Sp,D(Z), etc),

which is a left adjoint to the restriction PSh(Schk, C) → PSh(Smk, C). For F ∈
PSh(Smk, C) and X ∈ Schk, L

smF (X) is calculated as the colimit in C of the diagram

(SmX/)
op → C; (Y, φ)→ F (Y ),

where SmX/ is the category of pairs (Y, φ) with Y ∈ Smk and a map φ : X → Y
and a morphism (Y, φ)→ (Y ′, φ′) is given by a map f : Y → Y ′ such that φ′ = fφ.

To compute LsmF (X) more explicitly for X = Spec(A) ∈ Schk, pick a simplicial
resolution P• → A such that Pn ind-smooth over k and Ker(Pn → A) henselian
ideal. Then,

(LsmF )(Spec(A)) = colim[n]∈∆op F (Pn),

where the colimit is taken in D(Z). If F = Z(n)sm, this is computed more explicitly
as [−2n]-shift of totalisation of bicomplex

�� �� ��
· · · // zn(P2, 2) //

��

zn(P2, 1) //

��

zn(P2, 0)

��
· · · // zn(P1, 2) //

��

zn(P1, 1) //

��

zn(P1, 0)

��
· · · // zn(P0, 2) // zn(P0, 1) // zn(P0, 0)

Remark 3.1. It should be warned that basic properties of Z(n)sm (projective bun-
dle formula, Zariski descent, etc) are not genetic to LsmZ(n)sm. For example,
LsmZ(1)sm is not in ShvZar(Schk,D(Z)): Recall an equivalence in ShvZar(Smk,D(Z)
(cf. (8))

Z(1)sm ' RΓZar(−,O×)[−1].

15



Using the Gersten resolution of O×, we see

RΓZar(−,O×)[−1] ' (τ≤1RΓZar(−,O×))[−1] on Smk.

It is known that O× and Pic = H1
Zar(−,O×) as functors on the category CAlgk

of k-algebras are left Kan extended from the full subcategory CAlgsmk of smooth k-
algebras6. This implies that for a k-algebras A, there is a natural equivalence

LsmZ(1)sm(A) ' (τ≤1RΓZar(Spec(A),O×))[−1].

On the other hand, τ≤1RΓZar(−,O×) is not in ShvZar(Schk,D(Z)) with its sheafiifi-
cation given by RΓZar(−,O×).

Exercise 3.2. Give a k-algebra A such that H2
Zar(Spec(A),O×) 6= 0.

Lemma 3.3. Let CAlgsmk ⊂ CAlgsmk be as in Remark 3.1. Let F : CAlgk → S be a
functor satisfying the conditions:

(1) F preserves filtered colimits.
(2) For every henselian surjection A → B, the map π0(F (A)) → π0(F (B)) is

surjective.
(3) For every henselian surjections A→ C ← B, the diagram

F (A×C B) //

��

F (B)

��
F (A) // F (C)

is a pullback square in S.

Then, F is left Kan extended from CAlgsmk .

Despite of Remark 3.1, we have the following.

Theorem 3.4. There exists a tower in PSh(Schk,Sp)

· · · → Fn+1
lke K≥0 → FnlkeK≥0 → · · · → F 0

lkeK≥0 = K≥0,

and equivalences
grnFlke

K≥0 ' LsmZ(n)sm[2n].

Proof. By Bhatt-Lurier (see [EHKSY22, Ex. A.0.6]), there is a natural equivalence

K≥0 ' LsmK|Smk
in PSh(Schk, Sp),

where the right hand side is the left Kan extension of K|Smk
along Smk → Schk.

Using Theorem 2.1, the desired filtration on K is obtained by left-Kan extending
F •motK|Smk

along Smk → Schk.
6This follows from Lemma 3.3 below.
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3.2 Cdh topology

As is remarked in Remark 3.1, LsmZ(n)sm does not carry over basic properties of
Z(n)sm. Voevodsky’s idea is to cdh-sheafified LsmZ(n)sm with respect to the cdh
topology to retrieve those properties.

A distinguished Nisnevich square is a cartesian square of schemes:

W
j //

g

��

V

f
��

U
i // X

(21)

where i is a quasi-compact open immersion and f is étale inducing an isomorphism
over X \ U . An abstract blowup square is a cartesian square of schemes:

E
j //

g

��

Y

f
��

Z
i // X

(22)

where i is a closed immersion locally of finite presentation and f is proper inducing
an isomorphism over X \ Z.

Definition 3.5. Let S be a qcqs scheme and SchS be the category of schemes of finite
presentation over S. The Nisnevich topology on SchS is the Grothendieck topology
generated by coverings families of the form

{U → X} t {V → X},

where X,U, V are from (21). The cdh topology on SchS is the Grothendieck topology
generated by Nisnevich topology and coverings families of the form

{Z → X} t {Y → X},

where X,Z, Y are from (22).

For C = Set,S,Sp,D(Z), , let Shvcdh(SchS , C) ⊂ PSh(SchS , C) denote the full
subcategory of sheaves for the cdh topology with the sheafication functor

acdh : PSh(SchS , C)→ Shvcdh(SchS , C).

Exercise 3.6. Using Proposition 3.14 below, showRΓét(−,Z/n) ∈ Shvcdh(SchS ,D(Z))
for any integer n > 0.
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Remark 3.7. If one replaces SchS with the category Schqcqs of qcqs schemes, then
one gets the coarsest topology such that for all X ∈ Schqcqs the functor SchX →
Schqcqs is a continuous morphism of sites, [Sta18, 00WV], [SGA41, Def.III.1.1]. We
also have the sheafification functor (see [KS23, Rem.8.1])

acdh : PSh(Schqcqs, C)→ Shvcdh(Schqcqs, C).

Remark 3.8. (1) In (22), we are allowed to take Z = Xred the reduced part of
X and Y,E = ∅. Hence, we have an equivalence F (X) ' F (Xred) for any
F ∈ Shvcdh(Sch, C).

(2) If one works with the cdh topology on the category Schk of schemes of finite
type over a field of characteristic zero7, one can show that any X ∈ Schk is
cdh-locally smooth, i.e. there exist a cdh-covering Y → X with Y ∈ Smk.
Thus, some property on the cdh cohomology of X may be deduced from the
smooth case.

An important result on the cdh tooplogy is the following theorem [KST18,
Th.6.3], which characterizes Weibel’s homotopy invariant K-theory KH as the cdh
sheafiation of K. Recall that KH ∈ PSh(Sch,Sp) is obtained by “forcing the A1-
invariance to the algebraic K-theory”. More precisely, we have the following.

Definition 3.9. For a scheme X ∈ Sch, we define KH(X) ∈ Sp as the geomet-
ric realization of the simplicial spectrum K(X ×∆•), where ∆• is the cosimplicial
scheme from (53). By the definition,

KH(X) = colim[q]∈∆op K(X ×∆q).

Theorem 3.10. ([KST18, Th.6.3] and [KM21]) There exists an equivalence

acdhK ' KH

in PSh(Schqcqs, Sp) (see Remark 3.7 for acdh).

3.3 Cdh-local motivic complex

Now we fix a field k and let Schqcqs
k denote the category of qcqs schemes over k.

Definition 3.11. For integers n ≥ 0, we define

Z(n)cdh = acdhL
smZ(n)sm ∈ Shvcdh(Schqcqs

k ,D(Z)).

7or assuming resolution of singularities over the field k
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Remark 3.12. By [FV00, Pr.5.9], [K17, Pr.5.2.5] and [BEM23], Z(n)cdh is A1-
invariant, i.e.

Γ(X,Z(n)cdh) ' Γ(X ×k A1
k,Z(n)cdh) for X ∈ Schk.

In view of Remark 3.8, it is also nilinvariant, i.e. Z(n)cdh(X) ' Z(n)cdh(Xred). On
the other hand, K-theory does not satisfy these properties. Hence, Z(n)cdh cannot
be a hoped-for motivic complex for X ∈ Schk providing the spectral sequence (5).
Instead, it gives such a spectral sequence after replacing K by KH.

Theorem 3.13. There exists a tower in PSh(Schqcqs
k ,Sp)

· · · → Fn+1
mot KH→ FnmotKH→ · · · → F 0

motKH = KH,

and equivalences
grnFmot

KH ' Z(n)cdh[2n].

Proof. Using Theorem 3.10, the filtration F •cdhKH is obtained by the cdh-sheafifying
the left Kan extension along Smk → Schqcqs

k of F •motK|Smk
from Theorem 2.1.

3.4 Recollection of basic facts on the cdh topology

In what follows, we list some basic facts on Shvcdh(SchS , C).

Proposition 3.14. F ∈ PSh(SchS ,D(Z)) is a cdh sheaf if and only if F (∅) = 0
and for any distinguished Nisnevich square (21) and abstract blowup square (22),
the squares

F (X)
i∗ //

f∗

��

F (U)

g∗

��
F (V )

j∗ // F (W )

F (X)
i∗ //

f∗

��

F (Z)

g∗

��
F (Y )

j∗ // F (E)

are cartesian in D(Z), or equivalently that the following sequences are exact:

· · · → H i(F (X))→ H i(F (U))⊕H i(F (V ))→ H i(F (W ))→ H i+1(F (X))→ · · ·

· · · → H i(F (X))→ H i(F (Y ))⊕H i(F (Z))→ H i(F (E))→ H i+1(F (X))→ · · ·

The same statement holds replacing D(Z) by Sp and cohomology H i by homotopy
πi respectively

Proof. This follows from Corollary 6.11.
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Theorem 3.15 ([GK15],[GL01]). (1) A map φ : F → G in Shvcdh(SchS ,Set)
is an isomorphism if and only if so is F (R) → G(R) for every henselian
valuation ring R over S, where by definition, F (R) = lim−→λ

F (Rλ) where the
colimit is over factorizations Spec(R)→ Spec(Rλ)→ S of Spec(R)→ S with
Spec(Rλ) ∈ SchS.

(2) A collection of maps {Yi → X}i∈I in SchS is a covering for the cdh topology
if and only if∐

i∈I
HomSchqcqs

S
(Spec(R), Yi)→ HomSchqcqs

S
(Spec(R), X)

is surjective for every henselian valuation ring R over S, where Schqcqs
S is the

category of qcqs schemes over S.

Theorem 3.16. [[EHIK21]] Let S be a qcqs scheme of finite valuative dimension
dimv(X)8. Then, Shvcdh(SchS ,S) has homotopy dimension ≤ d.

Definition 3.17. The valuative dimension of a scheme X is the supremum of the
ranks of all valuation rings of residue fields of X centred on X:

dimv(X) = sup

{
dimR

∣∣∣∣ ∃ x ∈ X;R is a valuation ring of k(x) such that
Spec(k(x))→ X factors through Spec(R)

}
.

Corollary 3.18. [CM21, Cor.3.11, Thm.3.18] Let X be a qcqs scheme of finite
valuative dimension dimv(X) and F be a cdh sheaf of abelian groups on SchX .
Then, we have

H i
cdh(X,F ) = 0 for i > dimv(X). (23)

Proof. This follows from Theorem 3.16 and Lemma 6.22.

Remark 3.19. (9) implies that for any local k-algebra A, we have

H i((LsmZ(n)sm)(A)) = 0 for i > n. (24)

In view of Corollary 3.18, this implies that for X ∈ Schk

H i(Z(n)cdh(X)) = 0 for i > dim(X) + n. (25)

In particular, FncdhKH(X) from Theorem 3.13 is supported in cohomological degrees
≤ dim(X)− n for each n ∈ N, so the induced spectral sequence (5) is bounded.

8We have dim(X) ≤ dimv(X).
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4 Pro-cdh-local motivic complex

The content of this section is a joint work [KS23] of Shane Kelly and the author. A
main aim is to introduce a new Grothendieck topology on schemes called the pro-cdh
topology and to define the pro-cdh-local motivic complex Z(n)procdh as the pro-cdh
sheafication of the left Kan extension of Z(n)sm (see Definition 4.7 and Theorem
4.8). It is motivated by the following facts: Let

E //

��

Y

��
Z // X

(26)

be an abstract blowup square in Sch from (22) and let Zr ↪→ X (resp. Er ↪→ Y ) be
the r-the infinitesimal thickening of Z ↪→ X (resp. E ↪→ Y ) for integers r > 0. If X
is noetherian, the square

K(X) //

��

lim←−rK(Zr)

��
K(Y ) // lim←−rK(Er)

(27)

is cartesian in Sp. This is proved in [KST18]. If X is a notherian scheme over a
noetherian ring k, for every integer i ≥ 0, the square

LΩi
X/k

//

��

lim←−r LΩi
Zr/k

��
LΩi

Y/k
// lim←−r LΩi

Er/k

(28)

is cartesian in D(k), where LΩi
−/k = ∧iL−/k for the cotangent complex L−/k [Il71].

This is proved in [Mor16, Th. 2.10] and deduced from Grothendieck’s formal func-
tions theorem on cohomology of coherent sheaves 9.

An idea to define the pro-cdh topology is to modify the cdh topology to make
it sensitive to nil-immersions.

Definition 4.1. Let S be a qcqs scheme and SchS be the category of schemes of finite
presentation over S. The pro-cdh topology on SchS is the Grothendieck topology
generated by Nisnevich topology and coverings families of the form

{Zr → X}r∈N t {Y → X},
9[Mor16, Th. 2.10] requires the assumption of finite Krull dimension but it is noted in [EM23]

that it can be removed by using the general formal function theorem of [Lur17b, Lem. 8.5.1.1].
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for all squares (26), where Zr = Spec(OX/IrZ) is the r-th thickening of Z0 ↪→ X.

For C = Set,S,Sp,D(Z), let Shvprocdh(SchS , C) denote the full subcategory of
PSh(Sch, C) consisting of sheaves for the pro-cdh topology. Let

aprocdh : PSh(SchS , C)→ Shvprocdh(SchS , C)

be the sheafication functor (cf. Notations and Conventions). We also have the
sheafification functor (see Remark 3.7)

aprocdh : PSh(Schqcqs, C)→ Shvprocdh(Schqcqs, C).

Example 4.2. Thanks to (27) and (28) and Proposition 4.3 below, we have the
following facts.

(1) Algebraic K-theory belongs to Shvprocdh(SchS ,Sp) if S is noetherian.
(2) LΩi

−/k belongs to Shvprocdh(SchS ,D(k)) for S = Spec(k) with a noetherian
ring k.

We give a list of basic properties of the procdh topology.

Proposition 4.3 ([KS23]). F ∈ PSh(Sch, C) is a pro-cdh sheaf if and only if it is
a Nisnevich sheaf and for any abstract blowup square (26), the following squares is
cartesian in C:

F (X) //

��

lim←−r F (Zr)

��
F (Y ) // lim←−r F (Er).

Proof. This follows from Corollary 6.11.

Theorem 4.4.

(1) A map φ : F → G in Shvprocdh(SchS) is an isomorphism if and only if so is
F (R)→ G(R) for every pro-cdh local ring R over S (cf. (32)).

(2) A collection of maps {Yi → X}i∈I in SchS is a covering for the pro-cdh topology
if and only if ∐

i∈I
Hom(Spec(R), Yi)→ Hom(Spec(R), X)

is surjective for every pro-cdh local ring R over S.

Theorem 4.5 ([KS23]). Let X be a noetherian scheme and F be a pro-cdh sheaf of
abelian groups on SchX . Then, we have a vanishing of the pro-cdh cohomology:

H i
procdh(X,F ) = 0 for i > 2 dim(X). (29)
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4.1 Applications to K-theory and motivic cohomology

In what follows, we give an application of the pro-cdh topology to the algebraic
K-theory, which can be viewed as an analog of Theorem 3.10. Recall that the
algebraic K-theory gives an object K ∈ Shvprocdh(Schnoe, Sp) (cf. Example 4.2).
Let K≥0 ∈ PSh(Sch, Sp) be the connective cover of K (cf. §6.3).

Theorem 4.6 ([KS23]). For X ∈ Schnoe with dim(X) < ∞, there exists a natural
equivalence

(aprocdhK≥0)(X) ' K(X).

Proof. For X as above, we have the descent spectral sequences

Ep,q2 = Hp
pcdh(X, K̃−q)⇒ K−p−q(X),

Ep,q2 = Hp
pcdh(X, τ≥0K̃−q)⇒ π−p−q(aprocdhK≥0(X)),

where K̃i = aprocdhKi is the pro-cdh sheafication of the presheaf Ki = πiK of abelian

groups, and τ≥0K̃i = K̃i for i ≥ 0 and τ≥0K̃i = 0 for i < 0. By Theorem 4.5, the
spectral sequences are bounded so strongly convergent. So, it suffices to show that
K̃i = 0 for i < 0. By Theorem 4.4(1), this is reduced to showing Ki(R) = 0 for i < 0
and for a pro-cdh local ring R 10. Then, for i < 0, we get Ki(R) = Ki(R/N) = 0,
where the first equality follow from the nil-invariance of the negative K-theory and
the last equality follows from [KM21, Th.1.3] since R/N is a valuation ring for
R = V ×K Q as in Theorem 4.14. This completes the proof.

In the rest of this section, we let F = Q or Fp and let SchnoeF be the category of
noetherian schemes over F.

Definition 4.7. For integers n ≥ 0, we define the pro-cdh-local motivic complex

Z(n)procdh := aprocdhL
smZ(n)sm ∈ Shvprocdh(SchnoeF ,D(Z)),

as the pro-cdh-sheafication of the left Kan extension of Z(n)sm along SmF → SchnoeF .

Theorem 4.8 ([KS23]). There exists a tower in PSh(SchnoeF ,Sp)

· · · → Fn+1
procdhK → FnprocdhK → · · · → F 0

procdhK = K,

called the procdh-local motivic filtration on K and equivalences

grnFprocdh
K ' Z(n)procdh[2n].

10Here, we used the fact that K is finitary.
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So, we get an Atiyah-Hirzebruch spectral sequence:

Ep,q2 = Hp−q
M (X,Z(−q))⇒ K−p−q(X) for X ∈ SchnoeF

defining H i
M(X,Z(n)) := H i(Z(n)procdh(X)).

Proof. By Bhatt-Lurier (see [EHKSY22, Ex. A.0.6]), there is a natural equivalence

K≥0 ' LsmK|SmF ,

where the right hand side is the left Kan extension of K|SmF along SmF → SchnoeF .
Using Theorem 4.6, the desired filtration on K is obtained by the pro-cdh-sheafifying
the left Kan extension along SmF → SchF of F •motK|SmF from Theorem 2.1.

Remark 4.9. In view of (24), Theorem 4.5 implies that for X ∈ SchnoeF with
dim(X) <∞, we have

H i(Z(n)procdh(X)) = 0 for i > 2 dim(X) + n. (30)

In particular, FnprocdhK(X) is supported in cohomological degrees ≤ 2 dim(X) − n
for each n ∈ N, so the induced spectral sequence (5) is bounded.

4.2 Fiber functors of the pro-cdh topos

In this subsection, we prove Theorem 4.4 except the part of enough points. Let
Shvτ (C) be the category of τ -sheaves of sets on a site (C, τ).

Definition 4.10. A fibre functor of Shvτ (C) is a continuous morphism of topoi
φ∗ : Shvτ (C) � Set : φ∗, or equivalently, a functor φ∗ : Shvτ (C) → Set which
preserves colimits and finite limits.

Definition 4.11. ([SGA41, Thm.III.4.1], [SGA41, I.8.10.14]) Let τ be a topology
on SchS such that every scheme is covered by affine ones. An affine S-scheme
Spec(R)→ S is said to be τ -local if for every τ -covering {Yi → X}i∈I , the map∐

i∈I
Hom(Spec(R), Yi)→ Hom(Spec(R), X) (31)

is surjective.

For a topology τ on SchS as in Definition 4.11, there is a bijection between fibre
functors of Shvτ (SchS) and affine S-schemes Spec(R)→ S which are τ -local. To get
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the fibre functor associated to a τ -local ring R, one first replaces R with the pro-
object “ lim ”

Spec(R)→Spec(Rλ)→S
Spec(Rλ) in SchS , where the limit is over factorisations

with Spec(Rλ) ∈ SchS . Then the fibre functor is given by

Shvprocdh(SchS)→ Set ; F 7→ F (R) := colim
Spec(R)→Spec(Rλ)→S

F (Rλ). (32)

Example 4.12. (1) The Nisnevich local S-schemes are those Spec(R)→ S such
that R is a henselian local ring.

(2) The cdh local S-schemes are those Spec(R) → S such that R is a henselian
valuation ring, [GK15], [GL01].

Definition 4.13. ([SGA41, Exposé IV, Déf.6.4.1], [SGA41, Exposé IV, Prop.6.5(a)])
A topos Shvτ (C) has enough points when a morphism f in Shvτ (C) is an isomor-
phism if and only if φ(f) is an isomorphism for all fibre functors φ, Def.4.10. This
is equivalent to that a family {Yi → X}i∈I in C is a covering family if and only if
ti∈Iφ(Yi)→ φ(X) is surjective for all fibre functors φ.11

By Deligne’s completeness theorem, if C is an essentially small category with
fibre products, and every τ -covering is refinable by a finite one, then Shvτ (C) has
enough points, [SGA42, Prop.VI.9.0] or [Joh77, Thm.7.44, 7.17]. Since the pro-cdh
toplogy is not finitary, the last statement of Theorem 4.14 does not follows from the
Deligne theorem.

Now, Theorem 4.4 is a consequence of the following.

Theorem 4.14 ([KS23]). The pro-cdh local S-rings R are those Spec(R) → S
such that R is a henselian local ring and R = O ×K A, where A is a local ring of
Krull dimension 0, K is the residue field of A and O is a henselian valuation ring of
K12. If the underlying topological space of S is noetherian of finite Krull dimension,
Shvprocdh(SchS) has enough points.

In what follows, we prove the first statement of Theorem 4.14. The second
statement will be proved in §4.4.

First, we show that procdh local rings R are of the form described in Theorem
4.14. The following composition of a Zariski covering and the procdh covering{

Spec
OS [x, y]

〈xn, yn〉
→ A2

S

}
n∈N
t
{

SpecOS [x, yx ] t SpecOS [xy , y]→ A2
S

}
(33)

shows that procdh local rings satisfy:

11Here, we have used the same symbol for an object X of C and the sheafification of the presheaf
hom(−, X) it represents.

12For example, R = O and R = A are both pro-cdh local rings.
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(∗) ∀a, b ∈ R; we have a|b or b|a or a and b are both nilpotent.

This implies that Rred is a valuation ring, and in particular, R has a unique minimal
prime ideal n, which equals the set of nilpotents. Moreover, all zero divisors of R
are nilpotent by virtue of the procdh covering{

Spec
OS [x, y]

〈xn, xy〉
→ Spec

OS [x, y]

〈xy〉

}
n∈N
t
{

Spec
OS [x, y]

〈y〉
→ Spec

OS [x, y]

〈xy〉

}
(34)

Hence, the map R → Rn, and therefore R → (R/n)×k(n) Rn is injective. We claim
that the latter is also surjective. Consider a commutative diagram

0 // n //

��

R //

��

R/n //

��

0

0 // nRn
// Rn

// Rn/nRn
// 0

(35)

By a diagram chase, n → nRn being surjective implies R → (R/n) ×k(n) Rn being
surjective. For a ∈ n and s ∈ R \ n, (∗) implies that there is b ∈ n such that
b/1 = a/s, which proves the desired surjectivity.

So we have shown R → (R/n) ×k(n) Rn is both injective and surjective. The
Krull dimension of Rn is zero because n is a minimal prime, and we have already
observed that R/n = Rred is a valuation ring, so it suffices to show that R/n is
henselian. But procdh local rings are Nisnevich local rings, also known as henselian
local rings, and quotients of henselian local rings are henselian local rings.

Next, we show that for R = O ×K A as in Theorem 4.14, R is a pro-cdh local.
We want to show that (31) is an epimorphism for all procdh coverings. It suffices
to consider the generator coverings described in the definition. Noting that R is
henselian local, the desired lifting condition with respect to Nisnevich coverings
follows from [Sta18, 04GG, Item(7)].

Suppose we have a proabstract blowup square {Zn → X}n∈N t {Y → X} and
a morphism f : Spec(R) → X. If the image of the induced map Spec(K) →
Spec(O) → X does not lie in Z0, then it lifts through Y because Y → X is an
isomorphism over X \ Z0. By the valuative criterion for properness, the lifting
extends to g : Spec(O) → Y . On the other hand, the morphism Spec(A) → X
induced by f factors through the open X\Z0 ⊂ X since A is local and the composite
Spec(K)→ Spec(A)→ X factors through X \ Z0 by the assumption. So, it lifts to
a morphism h : Spec(A)→ Y . These morphisms g and h factor through some open
affine of Y , so they glue to give a lifting Spec(R)→ Y → X since Spec(O×K A) =
Spec(O)tSpec(K)Spec(A) is the categorical pushout in the category of affine schemes.

On the other hand, if Spec(K)→ X factors through Z0, then Spec(O)→ X also
factors through Z0. The morphism Spec(A)→ X doesn’t necessarily factor through
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Z0 but IZ0 is sent into the maximal ideal of A, which consists of nilpotent elements
of A. Since IZ0 is finitely generated, this implies that Spec(A)→ X factors through
Zn for some n > 0. Then, we glue these morphisms as in the previous case to get a
morphism Spec(R)→ Zn, which factors f .

4.3 Homotopy dimension of the pro-cdh topos

Theorem 4.15 ([KS23]). Let S be a qcqs scheme of finite valuative dimension
d ≥ 0 with Noetherian underlying topological space. Then, Shvprocdh(SchS ,S) has
homotopy dimension ≤ 2d (see Definition 3.17 for valuative dimension).

Remark 4.16. There exists a Noetherian scheme of dimension one with procdh
homotopy dimension two.

Corollary 4.17 ([KS23]). Let X be a noetherian scheme and F be a pro-cdh sheaf
of abelian groups on SchX . Then, we have a vanishing of the pro-cdh cohomology:

H i
procdh(X,F ) = 0 for i > 2 dim(X). (36)

Proof. This follows from Theorem 4.15 and Lemma 6.22.

In what follows, we give a proof of Theorem 4.15 in case S is noetherian.

Definition 4.18. Let X be a qcqs scheme. By a modification of X, we mean
a morphism of schemes Y → X which is proper, of finite presentation, and an
isomorphism over a dense qc open D ⊂ X. We let ModX ⊂ SchX denote the full
subcategory of modifications of X. We call a morphism in ModX a modification.

Remark 4.19. (1) If Y ′ → Y , Y ′′ → Y are morphisms in ModX then Y ′×Y Y ′′ is
again in ModX . In particular, ModX admits finite limits, calculated in SchX ,
and is therefore is filtered.

(2) We do not ask modifications to be birational, i.e. Y gen = Xgen so that finite
limits in ModX are more nicely behaved. But, we can refine any object in
Y ∈ ModX by Y ′ which is birational to X. To see this in case X is noetherian,
let Y → X be a modification which is an isomorphism over a dense open
D ⊆ X. Then, letting Y ′ be the closure of the image of D → Y , Y ′ → X is
as is wanted.

Definition 4.20. Let S be a qcqs scheme. For X ∈ SchS we define

RZ(XNis) =

∫
Y ∈ModX

YNis.
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Explicitly, RZ(XNis) ⊆ Arr(SchX) is the category whose objects are morphisms U →
Y such that U ∈ YNis and Y ∈ ModX , and morphisms are commutative squares

U ′

��

// U

��
Y ′ // Y

We abbreviate U → Y to (U/Y ).

Remark 4.21. As it is a category of arrows in a category admitting finite limits,
Arr(SchX) admits finite limits and they are calculated component wise: lim(Ai/Bi) =
(limAi/ limBi). If each (Ai/Bi) is in RZ(XNis), then one checks that lim(Ai/Bi)
is again in RZ(XNis). Thus, RZ(XNis) admits finite limits, and they are calculated
termwise.

Definition 4.22. We equip RZ(XNis) with a Grothendieck topology generated by:

1. families of the form
{(Ui/Y )→ (U/Y )}i∈I (Nis)

such that {Ui → U} is a Nisnevich covering, and
2. families of the form

{(Y ′ ×Y U/Y ′)→ (U/Y )} (Car)

for morphisms Y ′ → Y in ModX .

We will write Shv(RZ(XNis)) for the topos associated to the topology generated by
coverings of the form (Nis) and (Car).

Remark 4.23. F ∈ PSh(RZ(XNis),S) satisfies descent for families of the form
(Car) if and only if it sends each (Y ′ ×Y U/Y ′)→ (U/Y ) to an equivalence Indeed,
assume F satisfies descent for (Car). If Y ′ → Y in ModX is a closed immersion,
then (Y ′)×Y n = Y ′ so we have for U ′ = Y ′ ×Y U

F (U/Y ) ' lim
n
F ((U ′/Y ′)×(U/Y )(n+1)) ' lim

n
F (U ′/Y ′) = F (U ′/Y ′) (37)

where the first equivalence holds by the assumption. For a general Y ′ → Y in ModX ,
(37) also holds since each diagonal Y ′ → (Y ′)×Y n is a closed immersion in ModX
so F ((U ′/Y ′)×(U/Y )n) ' F (U ′/Y ′) by what we have seen. Conversely, if F sends
families of the form (Car) to equivalences, then it clearly satisfies Čech descent for
such families. Consequently, we have

Shv(RZ(XNis),S) = lim
Y ∈ModX

ShvNis(YNis,S), (38)

where the limit is along pushforwards f∗ : ShvNis(Y
′

Nis,S) → ShvNis(YNis,S) for
morphisms f : Y ′ → Y in ModX .
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Proposition 4.24. Let X be a qcqs scheme and suppose F ∈ PSh(RZ(XNis),S)
has descent for the coverings (Nis). Then the sheafification aF ∈ Shv(RZ(XNis),S)
satisfies

aF (U/Y ) = colimY ′∈(ModX)/Y F (Y ′ ×Y U/Y ′). (39)

Proof. First we show that the presheaf aF defined via (39) is a sheaf. By definition,
a presheaf on RZ(XNis) is a sheaf if and only if it has descent for coverings of the
form (Nis) and (Car) in Definition 4.22. The presheaf aF in the statement certainly
sends modifications to equivalences, so it has descent for coverings of the form (Car)
by remarks 4.23.

For Nisnevich coverings, we notice that a presheaf F has descent for coverings
of the form (Nis) if and only if the restriction to the small Nisnevich site YNis for
each Y ∈ ModX has Nisnevich descent if and only if it sends distinguished Nisnevich
squares to cartesian squares. Take (U/Y ) ∈ RZ(XNis) and a distinguished Nisnevich
square {U0 → U,U1 → U} with U01 = U0 ×U U1. Then, for any Y ′ → Y in ModX ,
we have

F (Y ′ ×Y U/Y ′) = F (Y ′ ×Y U0/Y
′)×F (Y ′×Y U01/Y ′) F (Y ′ ×Y U1/Y

′)

by the assumption that F has descent for (Nis). Taking the colimit over Y ′ and
using the fact that filtered colimits commute with fibre products we find

aF (U/Y ) = aF (U0/Y )×aF (U01/Y ) aF (U1/Y ),

which proves that aF is a sheaf.

To conclude that a is the sheafification functor, it suffices to show that if F is
already a sheaf, then F → aF is an equivalence. But this is clear, since sheaves
send modifications to isomorphisms, resp. equivalences, by Rem.4.23.

Proposition 4.25. If X is a qcqs scheme of finite valuative dimension d ≥ 0 with
Noetherian underlying topological space, RZ(XNis,S) has homotopy dimension ≤ d.

Proof. This follows from [CM21, Cor.3.11, Thm.3.18] (see also Example 6.21) and
Remark 4.19(2).

Definition 4.26. Let S be a qcqs scheme. For X ∈ SchS, we consider the canonical
projection functor

ρX : RZ(XNis,S)→ SchS ; (U/Y ) 7→ U

and the functor induced by restriction

PSh(SchS ,S)→ PSh(RZ(XNis),S); F 7→ F ◦ ρX .
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By composing this with the sheafification functor PSh(RZ(XNis),S)→ Shv(RZ(XNis),S),
we get

ρ∗X : Shvprocdh(SchS ,S)→ Shv(RZ(XNis),S). (40)

Remark 4.27. Using Proposition 4.24 we have the following concrete description.

(ρ∗XF )(U/Y ) = colimY ′∈ModX F (Y ′×XU).

Recall that a morphism of sites φ : C → D is cocontinuous if for every U ∈ C
and covering family U = {Ui → φU}i∈I there is a covering family {Vi → Ui} such
that {φVi → φU}i∈I refines U , [SGA41, Def.III.2.1], [Sta18, 00XJ].

Proposition 4.28. Let X be a qcqs scheme of finite valuative dimension with
Noetherian underlying topological space. Then, ρX is cocontinuous.

Proof of Theorem 4.15 in case S is noetherian: The proof is by induction on the
Krull dimension d of S. Suppose F ∈ Shvprocdh(SchS ,S) has F≤2d−1 = ∗. We want
to show that F (S) is non-empty. By Proposition 4.28 and Example 6.17,

ρ∗ = ρ∗S : Shvprocdh(SchS ,S)→ Shv(RZ(SNis),S)

is a left adjoint of a morphism of ∞-topoi and preserves n-connective objects so
that (ρ∗F )≤2d−1

∼= ∗. Since the homotopy dimension of Shv(RZ(SNis),S) is ≤ d by
Proposition 4.25, the space (ρ∗F )(S) is non-empty. Since

(ρ∗F )(S) = colimY ∈ModS F (Y )

by Remark 4.27, we can find a modification Y → S such that F (Y ) is non-empty.
Up to refining Y , we can assume that Y gen = Sgen by Remark 4.19(2).

If d = 0, we have Y = S and we are done with this step. If d > 0, there
exists a nowhere dense non-empty closed subscheme of finite presentation Z0 ⊆ S
such that Y → S is an isomorphism over S\Z0 and E0 := Z0 ×S Y is also a
nowhere dense closed subscheme of finite presentation in Y . Note we now have
0 ≤ dimZ0 ≤ d−1 and similar for E0. We continue to have (F |SchZn

)≤2d−1
∼= ∗ and

(F |SchEn
)≤2d−1

∼= ∗ by Exam.6.17. By the induction hypothesis, Shvprocdh(SchZn ,S)
and Shvprocdh(SchEn ,S) have homotopy dimension ≤ 2d− 2, so by Rem.6.19,

F (Zn)≤1 ' F (En)≤1
∼= ∗ for all n.

Since PSh(N,S) has homotopy dimension ≤ 1 by Exam.6.20, we get

(lim
n∈N

F (Zn))≤0
∼= (lim

n∈N
F (En))≤0

∼= ∗,
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which means that these spaces are non-empty and connected. By Prop.4.3, we have
a cartesian square

F (S) //

��

F (Y )

��
limn∈N F (Zn) // limn∈N F (En)

where F (Y ) is non-empty and both limn∈N F (Zn) and limn∈N F (En) are non-empty
connected. This implies that F (S) is non-empty as desired. This completes the
proof of Theorem4.15.

Proof of Proposition 4.28 in case S is noetherian: For (U/Y ) ∈ RZ(XNis) and a
procdh covering {Vi → U}i∈I in SchS , we want to find a morphism Y ′ → Y in
ModX and a Nisnevich covering {Wj → U ×X Y ′}j∈J , a function J → I; j 7→ ij ,
and commutative triangles

Wj
//

!!

Vij

��
U.

Since procdh coverings are refined by finite length compositions of generator procdh
coverings, it suffices to prove the claim for distinguished Nisnevich coverings and
pro-abstract blowup coverings.

For Nisnevich coverings the statement is obvious since for any (U/Y ) ∈ RZ(XNis),
a Nisnevich covering {Ui → U}i∈I gives rise to a Nisnevich covering {(Ui/Y ) →
(U/Y )}i∈I of (U/Y ).

Consider (U/Y ) ∈ RZ(XNis) and a pro-abstract blowup covering

U = {Zn → U}n∈N t {W → U}.

We will find a morphism Y ′ → Y in ModX such that letting U ′ = U ×Y Y ′, the
morphism U ′ → U factors through either W or Zn for some n. By the noetherian
assumption, U has finitely many generic points so by Lemma 4.31, we can assume
that U is irreducible with the generic point η. As such it suffices to treat the
following two cases.

Case 1: η ∈ Z0. In this case, (Z0)red = Ured. This means the (finitely many)
generators of IZ0 are nilpotent, so Zn = U for some n. Hence, Y ′ = Y and the
trivial covering {U → U} give a square on the left of (??).

Case 2: η 6∈ Z0. We will build a square as on the right of (??) with Vj = U ′. By
the assumption η 6∈ Z0, the morphism W → U is an isomorphism over a dense open
subset of U . Since U → Y is étale, W → U → Y is generically flat. More precisely,
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letting T ⊂ Y be the closure of the image of Z0 in Y , the morphism W → Y is flat
over Y \T and T is nowhere dense in Y by the assumption η 6∈ Z0.

By Raynaud-Gruson [RG71, Th.5.2.2], [Sta18, 081R], there is a blowup Y ′ → Y
with a center contained in T such that the strict transform W ′ → Y ′ of W → Y
is flat. Since U ′ := Y ′ ×Y U → Y ′ is étale, this implies that W ′ → U ′ is flat
by Lemma 4.29. So now we have a flat proper morphism which is generically an
isomorphism. This implies it is globally an isomorphism by Lemma 4.30. So we
obtain a factorisation U ′ ∼= W ′ →W → U , which completes the proof of Proposition
4.28.

Here are some lemmas that were used above.

Lemma 4.29. Suppose that W → U is any morphism of schemes, U → Y is étale
and W → Y is flat. Then W → U is also flat.

Proof. Exercise.

Lemma 4.30. Suppose that f : W → U is a flat, proper morphism of schemes, and
D ⊆ U is a schematically dense open such that D ×U W → D is an isomorphism.
Then W → U is an isomorphism.

Proof. Exercise.

Lemma 4.31. Let Y be a noetherian scheme and U → Y be an étale morphism,
and suppose Ugen = η0 t η1 is a decomposition of the space of generic points of U
into clopens. Then there exists a cartesian square

U ′0 t U ′1

��

// U

��
Y ′ // Y

such that

1. Y ′ → Y is a proper morphism which is an isomorphism over a dense qc open
of Y , and

2. there are identifications η0 = (U ′0)gen and η1 = (U ′1)gen.

Proof. Let U0 ⊆ U and U1 ⊆ U be the closures of η0 and η1 respectively. Since
U0 t U1 → U → Y is generically étale, there is some dense open D ⊆ Y over which
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it is étale, [Sta18, 07RP], and in particular, flat and of finite presentation. So we can
apply Raynaud-Gruson platification, [Sta18, 081R], to find a blowup Y ′ → Y which
is an isomorphism over D ⊆ Y , and for which the strict transform U ′0 t U ′1 → Y ′ of
U0 tU1 → Y is flat. By Lemma 4.29 this implies U ′0 tU ′1 → Y ′×Y U is also flat. It
is proper and an isomorphism over a dense open by construction, so it is in fact an
isomorphism, Lem.4.30. Now the second condition is satisfied, since U ′0 → U factors
through U ′0 → U0 and this latter is an isomorphism generically by construction.

4.4 Conservativity of the fiber functors

Theorem 4.32. Suppose S is a qcqs scheme with Noetherian topological space of
finite Krull dimension. Then, Shvprocdh(SchS) has enough points.

Proof. Suppose that Y = {Yi → Y }i∈I is a family of morphisms in SchS such that
the morphism of sets tiφ(Yi) → φ(Y ) is surjective for every fibre functor φ. We
want to show that Y is refinable by a procdh-covering. We work by induction on
the Krull dimension of Y , the base case being Y = ∅ with dimY = −1. In this
base case, either I is empty, or I is nonempty and each Yi → Y is an isomorphism.
Both of these are already covering families, so no refinement is necessary.

Now we do the induction step. The functor ρ∗Y : Shvprocdh(SchS)→ Shv RZ(YNis)
from (40) preserves colimits and finite limits by Proposition 4.28. So by composition,
every fibre functor φ of Shv RZ(YNis) induces a fibre functor

Shvprocdh(SchS)
ρ∗Y→RZ(YNis)

φ→ Set.

By assumption, our family Y is sent to a surjection of sets under each such fi-
bre functor φ ◦ ρ∗Y . Since the site RZ(YNis) is finitary so it has enough points
by Deligne’s completeness theorem, it follows that ρ∗Y Y is a surjective family of
sheaves in Shv(RZ(YNis)). This means that, locally, we can lift the section idY of
(ρ∗Y Y )((Y/Y )) = homSchS (ρ((Y/Y )), Y ) = homSchS (Y, Y ). Explicitly, this means
that there exists a covering {(Uj/Y ′) → (Y/Y )}j∈J such that the family {Uj →
Y ′ → Y }j∈J refines Y. Since Y ′ → Y is a modification, there is a nowhere dense
closed subscheme of finite presentation Z0 → Y outside of which Y ′ → Y is an
isomorphism. Since Y has finite Krull dimension and Z0 → Y is nowhere dense,
dimZ0 < dimY . So by the induction hypothesis, the pullbacks Zn ×Y Y of Y to
each Zn also admit refinements by procdh-coverings (here we are using that fibre
functors preserve finite limits to know that each φ(Zn ×Y Y) is a surjective mor-
phism of sets). Composing all these procdh coverings produces a procdh-covering
of Y which refines the original Y.
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5 Elmanto-Morrow’s motivic complex

In this section, we let F = Q or Fp and Schqcqs
F be the category of qcqs schemes

over F and review the construction of Elmanto-Morrow’s motivic complex Z(n)EM

as an object of PSh(Schqcqs
F ,D(Z)). It is constructed by modifying the cdh-local

motivic complex Z(n)cdh using other cohomology theories: Hodge-completed derived
de Rham complexes in case F = Q and syntomic complexes in case F = Fp. The
construction is motivated by a pullback square in PSh(Schqcqs,Sp):

K

��

tr // TC

��
KH

trcdh // acdh TC

, (41)

where KH is the homotopy K-theory, Definition 3.9, and

tr : K → TC, (42)

is the cyclotomic trace ([BHM93], [DGM13]) and TC is the integral topological cyclic
homology, which is a sort of a ‘linearlisation’ of K and provides a more computable
invariant built from Hochschild homology (see [HN19] for a survey). The map trcdh

is induced by tr via the equivalence KH ' acdhK, Theorem 3.10. The pullback
square follows from the latter equivalence and the fact that the fiber of tr is a cdh
sheaf by [LT19, Th. A.3].

For X/Q, TC(X) agrees with HC−(X/Q) = H(X/Q)hS
1
, the negative cyclic

homology. Antieau [An19] defined a complete filtration,{
FnHKR HC−(X/Q)

}
n∈Z

on HC−(X/Q)

and natural equivalences

grnFHKR
HC−(X/Q) ' L̂Ω

≥n
X/Q[2n] := lim←−

m≥n
LΩ≥nX/Q/LΩ≥mX/Q [2n].

Here, LΩ•X/Q is the derived de Rham complex equipped with the Hodge-filtration{
LΩ≥nX/Q

}
n∈N

. If X = Spec(A), picking a simplicial polynomial resolution P• → A,

LΩ≥nX/Q = colim[q]∈∆op Ω≥nPq/Q,

computed as the total complex of an associated bicomplex. In general LΩ≥n−/Q is the

Zariski sheafification of the presheaf Sch→ D(Q);X → LΩ≥nΓ(X,O)/Q (see §5.1).
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For X/Fp, BMS defined a complete filtration{
FnBMS TC(X)

}
n∈N

on TC(X)

with associated graded quotients

grnFBMS
TC(X) ' Z(n)syn(X)[2n]

for a natural object Z(n)syn ∈ PSh(Schqcqs
Fp ,D(Zp)) called the syntomic complex.

There exists another definition of Z(n)syn using the prismatic cohomology theory of
Bhatt-Scholze (see §5.2).

Elmanto-Morrow defined Z(n)EM so to fit into a pullback square in PSh(Schqcqs
Q ,D(Z))

Z(n)EM //

��

L̂Ω
≥n
−/Q

��

Z(n)cdh // acdhL̂Ω
≥n
−/Q

if F = Q, and a pullback square

Z(n)EM //

��

Z(n)syn

��
Z(n)cdh // acdhZ(n)syn

if F = Fp, and proved the following..

Theorem 5.1 ([EM23]). There exists a tower in PSh(Schqcqs
F ,Sp)

· · · → Fn+1
EM K → FnEMK → · · · → F 0

EMK = K,

and equivalences
grnFEM

K ' Z(n)EM[2n].

So, we get an Atiyah-Hirzebruch spectral sequence:

Ep,q2 = Hp−q
M (X,Z(−q))⇒ K−p−q(X) for X ∈ SchnoeF

defining H i
M(X,Z(n)) := H i(Z(n)EM(X)).

In view of Theorems 5.1 and 4.8, it is a natural question if two constructions
Z(n)EM and Z(n)procdh coincide.
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Theorem 5.2 (Kelly-S). For X ∈ SchnoeF of finite dimension, there is a natural
equivalence

Z(n)procdh(X) ' Z(n)EM(X)

functorial in X.

Strategy of the proof: Using Theorem 4.4 (a description of fiber functors of
Shvprocdh(SchS , Set)) and Theorem 4.5 (the finiteness of its cohomological dimen-
sion), we give a characterization of Z(n)procdh by a list of properties (see Theorem
5.3 below). Elmanto-Morrow showed that Z(n)EM satisfies those properties.

Theorem 5.3. Assume given Z(n) ∈ PSh(Schqcqs
F ,D(Z)) satisfying the following

conditions.

(a) There is an equivalence ψ : Z(n)sm ' Z(n)|SmF in PSh(SmF,D(Z)).
(b) Z(n) is finitary, i.e. commutes with filtered colimits of rings.
(c) Z(n) ∈ Shvprocdh(SchnoeF ,D(Z)).
(d) Let φ : LsmZ(n)sm → Z(n) be the map in PSh(Schqcqs

F ,D(Z)) induced from ψ
by adjunction. Then, φ(R) is an equivalence for all pro-cdh local rings R.

Then, φ induces an equivalence Z(n)procdh(X) ' Z(n)(X) for any X ∈ SchnoeF .

Proof. We apply Theorem 4.4(1) to F = LsmZ(n)sm and G = Z(n). Note that
LsmZ(n)sm is finitary by a formal reason and so is Z(n) by (b). Moreover, (c)
implies aprocdhZ(n)(X) = Z(n)(X) for X ∈ SchnoeF . Hence, the theorem follows
from (d) and Corollary 4.4(1).

Now, Theorem 5.2 is a consequence of the following.

Theorem 5.4 (Elmanto-Morrow [EM23]). Z(n)EM satisfies the conditions (a), (b),
(c), (d) of Theorem 5.3.

We will give a proof of Theorem 5.4 in what follows. We start with a brief review
on some basic definitions and facts.

5.1 Hodge-completed derived de Rham complexes

Let CAlgk be the category of k-algebras and CAlgpolyk ⊂ CAlgk be the full subcategory
of polynomial k-algebras .
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Definition 5.5. We define a functor LΩ−/k : CAlgk → D(k) as the left Kan exten-

sion along CAlgpolyk → CAlgk of the functor

CAlgpolyk → D(k) ; R→ Ω•R/k,

where Ω•R/k is the de Rham complex. It is equipped with a decreasing filtration called

the derived Hodge filtration
{
LΩ≥n−/k

}
n∈N

by left-Kan extending the Hodge filtration

on Ω•R/k for R ∈ CAlgpolyk . The graded pieces are computed as13

LΩ≥nR/k/LΩ≥n+1
R/k ' ∧nLR/k[−n] for R ∈ CAlgk,

where LR/k is the cotangent complex of R/k14 [Il71]. The Hodge-completed derived

de Rham complex L̂ΩR/k for R ∈ CAlgk is defined as the limit of the diagram:

N→ D(k) ; n→ LΩR/k/LΩ≥nR/k.

We define L̂Ω−/k ∈ PSh(Schk,D(k)) as the Zariski sheafication of the presheaf

Schopk → D(k) ; X → L̂ΩΓ(X,O)/k.

The derived Hodge filtration induces a complete decreasing N-indexed filtration
{
L̂Ω
≥n
−/k

}
n∈N

on L̂Ω−/k.

Example 5.6. (i) ([Il71]) For X ∈ Smk, L̂ΩX/k = Ω•X/k.

(ii) ([Bha12]) If k = C and X is a scheme of finite type over C, H∗(L̂ΩX/C) is
canonically isomorphic to the singular cohomology with C-coefficients of the
associated C-points of X.

(iii) ([Bha12]) Assume ch(k) = 0. If X is of finite type over k, then H∗(L̂ΩX/k) is
canonically isomorphic to Hartshorne’s algebraic de Rham cohomology [Har75]15.

An important result relevant to the construction of Z(n)EM is the following result
due to Antieau [An19].

Theorem 5.7. There exists a functorial complete decreasing Z-indexed filtration{
FnHKR HC−(X/k)

}
n∈Z

on negative cyclic homology HC−(X/k) for X ∈ Schk with

grnFHKR
HC−(X/k) ' L̂Ω

≥n
X/k[2n].

Remark 5.8. If ch(k) = 0, L̂Ω−/k and HC−(−/k)/F 0
HKR belong to Shvcdh(Schk,D(k)).

13The left hand side is the cofiber in D(k) of LΩ≥n+1
R/k → LΩ≥nR/k.

14 It is the left Kan extension along CAlgpolyk → CAlgk of CAlgpolyk → D(k) ; R→ Ω1
R/k.

15Choosing a closed immersion i : X ↪→ Y with Y ∈ Smk, it is defined as the cohomology of the
formal completion along X of Ω•Y/k, which is shown to be independent of i.
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5.2 Syntomic complexes Z(n)syn

By [BMS19], for any qcqs Fp-scheme X, there exists a functorial complete decreasing
N-indexed filtration16 {

FnBMS TC(X)
}
n∈N

on TC(X) (43)

with associated graded quotients

grnFBMS
TC(X) ' Z(n)syn(X)[2n]

for a natural object Z(n)syn ∈ PSh(SchFp ,D(Zp)) called the syntomic complex. It
is an analog of the motivic filtration on algebraic K-theory and of deep interest in
arithmetic geometry. For a regular Fp-algebra R, we have

Z(n)syn(R) = RΓproét(R,WΩn
log)[−n] ∈ D(Zp), (44)

where RΓproét(R,WΩn
log) is a complex which computes the pro-étale cohomology of

Spec(R) with coefficient WΩn
log = lim←−rWrΩ

n
log, where WrΩ

n
log are from (14). The

syntomic complex Z(n)syn ∈ PSh(SchFp ,D(Zp)) is recovered from (44) as follows.
For each integer r > 0, we define a functor

Z(n)syn(−)/pr : CAlgFp → D(Z/prZ)

as the left Kan extension along CAlgpolyFp → CAlgFp of the functor

CAlgpolyFp → D(Z/prZ) ; R→ RΓét(R,WrΩ
n
log)[−n],

and define for A ∈ CAlgFp

Z(n)syn(A) := lim←−
r

Z(n)syn(A)/pr ∈ D(Zp).

Then, Z(n)syn is the Zariski sheafication of the presheaf

SchopFp → D(Zp) ; X → Z(n)syn(Γ(X,O)).

5.3 Motivic complexes Z(n)EM

A key ingredient is the following pullback square in PSh(Sch,Sp)

K

��

tr // TC

��
KH

trcdh // acdh TC

, (45)

16[BMS19] treats quasi-syntomic rings and it is extended to all p-complete rings in [AMMN20].

38



where trcdh is induced by tr (42) via the equivalence KH ' acdhK (Theorem 3.10).
The pullback square follows from the latter equivalence and the fact that the fiber
of tr is a cdh sheaf by [LT19, Th. A.3]. A key result in [EM23] is the following.

Theorem 5.9 ([EM23]). (1) Recall TC(X) = HC−(X/Q) for X ∈ SchQ. The
cdh-local trace map trcdh : KH→ acdh HC−(−/Q) as a map in PSh(SchQ,Sp)
admits a unique extension to a map of filtered presheaves

F •cdhKH→ F •HKRacdh HC−(−/Q),

where the filtration on the left is from Theorem 3.13 and that on the right is
induced from F •HKR HC−(−/Q) in Theorem 5.7 by the cdh sheafication.

(2) The cdh-local trace map trcdh : KH → acdh TC as a map in PSh(SchFp ,Sp)
admits a unique extension to a map of filtered presheaves

F •cdhKH→ F •BMSacdh TC,

where the filtration on the right is induced from (43) by the cdh sheafication.

Definition 5.10 ([EM23]). (1) For a qcqs Q-scheme X, define a decreasing Z-
indexed filtered spectrum F •EMK(X) as the pullback in the category of filtered
spectra of the diagram

F •EMK(X) //

��

F •HKR HC−(X/Q)

��
F •cdhKH

trcdh // F •HKRacdh HC−(X/Q)

(2) For a qcqs Fp-scheme X, define a decreasing Z-indexed filtered spectrum F •EMK(X)
as the pullback in the category of filtered spectra of the diagram

F •EMK(X) //

��

F •BMS TC(X)

��
F •cdhKH

trcdh // F •BMSacdh TC(X)

Let F denote Q or Fp. For n ∈ Z, Elmanto-Morrow’s weight-n motivic complex
of a qcqs F-scheme X is defined as

Z(n)EM(X) = (grnFEM
K(X))[−2n]. (46)

Theorem 5.11 ([EM23]). For any qcqs F-scheme X, the following hold.

(1) Z(n)EM(X) = 0 for n < 0 and F 0
EMK(X) = K(X), so F •EMK(X) is N-indexed.

If dimv(X) < ∞, there exists an integer N such that FnEMK(X) is supported
in cohomological degrees ≤ N − n for each n ∈ N, so it induces a bounded
Atiyah-Hirzebruch spectral sequence (5).
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(2) If F = Q, there exists a pullback square

Z(n)EM(X) //

��

L̂Ω
≥n
X/Q

��

Z(n)cdh(X)
cH // (acdhL̂Ω

≥n
−/Q)(X)

(47)

In particular, Z(n)EM(X) ∈ D(Z).
(2) If F = Fp, there exists a pullback square

Z(n)EM(X) //

��

Z(n)syn(X)

��
Z(n)cdh(X)

csyn // (acdhZ(n)syn)(X)

(48)

In particular, Z(n)EM(X) ∈ D(Z).
(3) Z(n)EM is finitary17

(4) There is an equivalence Z(n)sm ' Z(n)EM
|SmF

in PSh(SmF,D(Z)).
(5) For any local F-algebra A, we have an equivalence

LsmZ(n)sm(A) ' τ≤nZ(n)EM(A),

where τ≤n is the truncation in cohomological degrees ≤ n.
(6) Z(n)EM restricted to the category SchnoeF of noetherian F-schemes is a pro-cdh

sheaf (see Definition 4.1 below).

Remark 5.12. (1) There is a map in ShvZar(SmQ,D(Z)):

Z(n)sm → KMn [−n]
d log−→ Ωn

−/Q[−n]→ Ω≥n−/Q, (49)

where the first map is from (12) and the second map sends a local section
{x1 · · · , xn} of KM

n to d log x1∧· · ·∧d log xn. The map cH in (47) is identified
with the cdh-sheafication of the left Kan extension of (49) along SmQ → SchQ.

(2) For a smooth Fp-algebra R and an integer r > 0, we have a map

φr : Z(n)sm(R)→ RΓZar(R,WrΩ
n
log)[−n]→ RΓét(R,WrΩ

n
log)[−n] = Z(n)syn(R)/pr,

where the first map comes from (14). The map csyn in (48) is identified with
the cdh-sheafication of lim←−r L

smφr, where Lsmφr is the left Kan extension of φr
along CAlgsmFp → CAlgFp, where CAlgsmFp is the category of smooth Fp-algebras.

17F ∈ PSh(Schqcqs, C) is finitary if for any cofiltered diagram λ → Xλ in Schqcqs with affine
transition maps, we have an equivalence F (lim←−λXλ) ' lim−→λ

F (Xλ).
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Remark 5.13. Assume F = Fp. From (14), we obtain an equivalence

Z(n)procdh/pr ' aprocdhLsmWrΩ
n
log.

By [EM23, Cor. 4.31] and Corollary 5.2, this implies a fiber sequence

(aprocdhL
smWrΩ

n
log)(X)→ Z(n)syn(X)/pr → (acdhν̃r(n))(X)[−n− 1],

for X ∈ SchnoeFp , where ν̃r(n) is a presheaf of abelina groups given by

ν̃r(n)(A) := Coker
(
C−1 − 1 : WrΩ

n
A →WrΩ

n
A/dV

r−1Ωn−1
A

)
for Fp-algebras A.

Remark 5.14. The same argument as the proof of Theorem 4.6 proves the following:
Take F ∈ PSh(Sch, C) for C = Sp or D(Z) satisfying the conditions:

(i) F ∈ Shvprocdh(Schnoe, C).
(ii) F is finitary.

(iii) There is N ∈ Z such that F (R) ∈ C≥−N 18 for any pro-cdh local ring R.

Then, there exists a natural equivalence

aprocdh(F≥−N )(X) ' F (X) for X ∈ Schnoe with dim(X) <∞. (50)

We give some examples of F as in Remark 5.14. For F ∈ PSh(Sch, C), put

NilF := fib(F → acdhF ) ∈ PSh(Sch, C), (51)

and consider

NilL̂Ω
≥n
−/Q ∈ PSh(SchQ,D(Q)) and Nil HC−(−/Q) ∈ PSh(SchQ,Sp),

NilZ(n)syn ∈ PSh(SchFp ,D(Zp)) and Nil TC ∈ PSh(SchFp ,Sp).

Theorem 5.15. (1) NilL̂Ω
≥n
−/Q and Nil HC−(−/Q) satisfy (i), (ii), and (iii) with

N = n and N = 0 respectively. So, we have for X ∈ SchnoeQ with dim(X) <∞,

aprocdh(NilL̂Ω
≥n
−/Q)≥−n(X) ' NilL̂Ω

≥n
X/Q,

aprocdh(Nil HC−(−/Q))≥0(X) ' Nil HC−(X/Q).

(2) NilZ(n)syn and Nil TC satisfy (i), (ii), and (iii) with N = n and N = 0
respectively. So, we have for X ∈ SchnoeFp with dim(X) <∞

aprocdh(NilZ(n)syn)≥−n(X) ' NilZ(n)syn(X),

aprocdh(Nil TC)≥0(X) ' Nil TC(X).
18i.e. πiF (R) = 0 for any i < −N in case C = Sp and Hi(F (R)) = 0 for i > N in case C = D(Z).
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Proof. The idea of the proof is borrowed from [EM23]. First we prove (1) for

NilL̂Ω
≥n
−/Q. (i) follows from Example 4.2(2). To show (ii) and (iii) with N = n, we

use a fiber sequence in PSh(SchQ,D(Q))

L̂Ω
≥n
−/Q → L̂Ω−/Q → LΩ<n

−/Q,

where the middle term is a cdh sheaf by Remark 5.8. It implies an equivalence

NilL̂Ω
≥n
−/Q ' NilLΩ<n

−/Q[−1].

So, it suffices to show that NilLΩ<n
−/Q is finitary and that NilLΩ<n

R/Q ∈ D(Q)≤n−1 for

any pro-cdh-local ring R. The first assertion follows from the fact that LΩi
−/Q =

∧iL−/Q is finitary and that the cdh sheafication of a finitary presheaf is finitary.
As for the second assertion, by the finitarity and Lemma 5.16 below, it suffices to
show that NilLΩ<n

R/Q ∈ D(Q)≤n−1 for any local rings R such that the ideal N ⊂ R

of nilpotent elements is finitely generated and R/N is a valuation ring. Then, we
have

(acdhLΩ<n
−/Q)(R) = (acdhLΩ<n

−/Q)(R/N) = LΩ<n
(R/N)/Q, (52)

where the first equality follows from Remark 3.8(1) and the second from Theorem
3.15. Since LΩ<n

A/Q for a local Q-algebra A is supported in degrees ≤ n− 1, we are
reduced to showing the surjectivity of the map

Hn−1(LΩ<n
R/Q)→ Hn−1(LΩ<n

(R/N)/Q).

This holds since the map is identified with Ωn−1
R/Q → Ωn−1

(R/N)/Q.

We deduce (1) for Nil HC−(−/Q) from (1) for NilL̂Ω
≥n
−/Q. By Remark 5.8, we

have NilF 0
HKR HC−(−/Q) ' Nil HC−(−/Q), so F •HKR HC−(−/Q) from Theorem 5.7

induces a complete and exhaustive N-indexed filtration
{
FnHKRNil HC−(−/Q)

}
n∈N

on Nil HC−(−/Q) with identifications

grnFHKR
Nil HC−(−/Q) ' NilL̂Ω

≥n
−/Q[2n].

Moreover, for X ∈ SchQ with dimv(X) <∞, (iii) for NilL̂Ω
≥n
−/Q and Theorem 4.5 im-

ply that FnHKRNil HC−(X/Q) is supported in cohomological degrees≤ 2 dimv(X)−n,
so the induced spectral sequence

Ei,j2 = H i−j(NilL̂Ω
≥−j
X/Q)⇒ H i+jNil HC−(X/Q),

is bounded. Hence, (1) for Nil HC−(−/Q) follows from (1) for NilL̂Ω
≥n
−/Q.
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Next, we prove (2) for NilZ(n)syn. The conditions (i) and (ii) are shown in
[EM23] and we recall some arguments here. First, we claim NilZ(n)syn[1

p ] = 0.
Using the fact that F •BMS TC from (43) naturally splits after inverting p, the claim
is reduced to Nil TC[1

p ] = 0. By (45), the latter follows from fib(K → KH)[1
p ] = 0

(see [TT07, Th. 9.6]). Thus, it suffices to show (i) and (ii) for Z(n)syn(−)/p noting
that the cdh sheafication of a finitary presheaf is finitary. It is shown in [EM23]
that Z(n)syn(−)/p admits a finite increasing filtration whose graded pieces are some
shifts of LΩi

−/Fp with i ≤ n, so the desired assertion follows from the finitarity of

LΩi
−/Fp and (28). To show (iii), by the finitarity and Lemma 5.16 below, it suffices

to show that NilZ(n)syn(R) ∈ D(Q)≤n for any local rings R such that the ideal
N ⊂ R of nilpotent elements is finitely generated and R/N is a valuation ring. As
(52), we have

acdhZ(n)syn(R) = acdhZ(n)syn(R/N) = Z(n)syn(R/N).

Hence, (iii) with N = n follows from [AMMN20, Th.5.2] noting (R,N) is a henselian
pair. By the same argument as the proof of (1) for HC−(−/Q), (2) for Nil TC follows
from (2) for NilZ(n)syn using a bounded spectral sequence

Ei,j2 = H i−j(NilZp(−j)syn(R))⇒ π−i−jNil TC(R),

arising from the filtration (43). Here, the boundedness follows from the following
fact proved in [EM23]: For X ∈ SchFp , there exists an integer d > 0 such that
FnBMS TC(X) is supported in homological degrees ≥ n− d.

Lemma 5.16 ([KS23]). (i) Any pro-cdh local ring is a filtered colimit of pro-cdh
local rings of V ×K Q as in Theorem 4.14 where Q is an Artinian local ring.

(ii) Any pro-cdh local ring V ×K Q as in (i) is a filtered colimit of henselian local
rings Rλ such that the ideal Nλ ⊂ Rλ of nilpotent elements is finitely generated
and Rλ/Nλ is a valuation ring.

We now give a proof of Theorem 5.4. The conditions (a), (b), (c) follow from
Theorem 5.11(3), (4), (6). We prove (d). By Theorem 5.11(5), it suffices to prove
Z(n)EM(R) is supported in cohomological degrees ≤ n for any pro-cdh local ring R.
By (47) and (48), there are fiber sequences (cf. (51))

NilL̂Ω
≥n
R/Q → Z(n)EM(R)→ Z(n)cdh(R) if F = Q,

NilZ(n)syn(R)→ Z(n)EM(R)→ Z(n)cdh(R) if F = Fp.

By the same argument as the proof of Theorem 5.15, we have

Z(n)cdh(R) = Z(n)cdh(R/N) = (LsmZ(n)sm)(R/N).

So, Z(n)cdh(R) is supported in degrees≤ n by (24) while NilL̂Ω
≥n
R/Q and NilZ(n)syn(R)

are supported in degrees ≤ n by Theorem 5.15. This proves the desired assertion.
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6 Appendix: Short reviews on basic notions

6.1 Bloch’s higher cycle complexes

Recall the singular homology Hq(X,Z) of a topological space X is the q-th homology
of the chain complex

· · · → s(X, q)
∂−→ s(X, q − 1)

∂−→ · · · ∂−→ s(X, 0),

s(X, q) =
⊕

Γ

Z[Γ] (Γ : ∆q
top → X continuous),

∆q
top =

{
(x0, x1, · · · , xq) ∈ Rq+1

∣∣∣ ∑
05i5q

xi = 1, xi = 0
}
,

∂ is the alternating sum of the restriction maps to faces of ∆q
top.

For integers r, q ≥ 0, Bloch’s higher Chow groups CHr(X, q) of a scheme X of
finite type over k is defined as an algebraic analog of the singular homology. The
algebraic analog of ∆q

top is

∆q = Spec
(
Z[t0, · · · , tq]/(

q∑
i=0

ti − 1)
)

(53)

with faces ∆s = {ti1 = · · · = tiq−s = 0} ⊂ ∆q19, and that of the complex s(X, •) is

· · · → zn(X, q)
∂−→ zn(X, q − 1)

∂−→ · · · ∂−→ zn(X, 0),

zn(X, q) =
⊕

x∈Xn(q)

Z[x],

where Xn(q) is the set of codimension n points x ∈ X × ∆q whose closures {x}
intersect properly with X × T in X ×∆q for all faces T ⊂ ∆q, i.e.

codimX×F ({x} ∩ (X × F )) ≥ n,

and ∂ is alternating sum of restriction maps to faces of codimension one.

Example: CHn(X, 0) = CHn(X), CH1(X, 1) = O(X)×.

19q → ∆q gives a cosimplicial scheme ∆•.
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6.2 The ∞-category of spaces

Recall the category ∆ whose objects are the finite ordered sets [n] := {0 < 1 < · · · <
n} and whose morphisms are the order-preserving maps of sets. For a category C,
the category of simplicial objects is the functor category

C∆ = Fun(∆op, C).

and the category sSet of simplicial sets is defined to be Set∆ = Fun(∆op,Set). For
K ∈ sSet and n ≥ 0, we write Kn = K([n]) called the set of n-simplices. By Yoneda,
we have Kn = HomsSet(∆

n,K), where ∆n = Hom∆(−, [n]) ∈ sSet.

For 0 ≤ j ≤ n, we have the i-th face map δj : [n− 1]→ [n] defined as the unique
injective map in ∆ which does not have j in its image. For K ∈ sSet, we have the
corresponding map (also called a face map)

dj : Kn → Kn−1.

The geometric realization is a functor | − | : sSet → Top that builds from a
simplicial set X a topological space |X| obtained by interpreting each element in
Xn, i.e. each abstract n-simplex in X, as one copy of the standard topological
n-simplex ∆n

top and then gluing together all these along their boundaries to a big
topological space, using the information encoded in the face maps of X on how these
simplices are supposed to be stuck together.

For 0 ≤ j ≤ n, the j-th horn is the union Λnj =
⋃

0≤i 6=j≤n
δi(∆

n−1). By definition,

(Λnj )q ⊂ (∆n)q = Hom∆([q], [n]) is the set of those morphisms [q] → [n] whose
images do not contain {0, 1, . . . , q− 1, q+ 1, . . . , n}. We also define the union of the
faces

∂∆n =
⋃

0≤i≤n
δi(∆

n−1).

By definition, (∂∆n)q ⊂ (∆n)q = Hom∆([q], [n]) is the set of those morphisms
[q]→ [n] which are not surjective.

A simplicial set X is a Kan complex if for any 0 ≤ j ≤ n and any diagram

Λnj
//

��

K

∆n

>> (54)

there exists a dotted arrow making a commutative triangle. An example is the
singular simplicial complex of a topological space20.

20This follows from the existence of retractions of any geometric simplex to any of its horns.
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For a small category C, the nerve N(C) of C is a simplicial set given by

∆op → Set ; [n]→ Fun([n], C),

where [n] = {0 < 1 < · · · < n} is viewed as a category by declaring that for i, j ∈ [n],
there exists a unique morphism i → j if i ≤ j and no morphism otherwise. By
[Lur09, 1.1.2.2], K ∈ sSet is the nerve of a category if and only if for any 0 < j < n
and any diagram (54), there exists a unique dotted arrow making a commutative
triangle.

Definition 6.1. An ∞-category is a simplicial set C such that for any 0 < j < n
and any diagram (54), there exists a (not necessarily unique) dotted arrow making
a commutative triangle. An element of C0 is called an object of C and that of C1

called a morphism. Given two morphism f, g ∈ K1 such that d1f = d0g giving a
diagram Λ2

1 → C, there exists σ : ∆2 → C making a commutative triangle as (54).
Then, d1σ ∈ C1 is called a composition of g and f .

For a ∞-category C and x, y ∈ C0, one can define (not easy!) a mapping space
MapC(x, y) which is a Kan complex such that for x, y, z ∈ C0, there is a morphism
of simplicial sets (cf. [DS11])

MapC(x, y)×MapC(x, y)→ MapC(x, y)

satisfying the identity and associativity properties. A different model of MapC(x, y)
is given by relating ∞-categories to simplicial categories (see (55)). The homotopy
category hC of C is the 1-category whose objects are the same as those of C and
HomhC(x, y) = π0(MapC(x, y)). Note that a morphism x → y in C as defined in
Definition 6.1 is viewed as a point of MapC(x, y). A morphism in C is called an
equivalence if it becomes an isomorphism in hC.

Let Cat∆ be the category of simplicial categories21. Recall sSet ∈ Cat∆: For
K,L ∈ sSet, the mapping simplicial set MapsSet(K,L) is defined by

∆op → Set ; [n]→ HomsSet(K ×∆n, L),

where for X,Y ∈ sSet, X × Y is a simplicial set given by (X × Y )n = Xn × Yn. For
C ∈ Cat∆, its simplicial nerve NC is the simplicial set

[n] 7→ HomCat∆
(C[∆n], C),

where C[∆n] is the simplicial category whose objects are elements of [n] = {0 <
· · · < n}. For 0 ≤ i, j ≤ n, the mapping space is defined as

MapC[∆n](i, j) = N
(
{i, j} ⊂ J ⊂ {i, i+ 1, . . . , j}

)
,

21i.e. categories enriched over sSet.
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the nerve of the partially ordered set consisting of subsets J ⊂ [0, n] containing {i, j}
and contained in {i, i+ 1, . . . , j}. Composition

MapC[∆n](i, j)×MapC[∆n](j, k)→ MapC[∆n](i, k)

is induced by unions. By [Lur09, 1.1.5.5], it gives a functor

C[∆•] : ∆→ Cat∆ ; [n]→ C[∆n],

which extends to a functor C : sSet→ Cat∆ via the Yoneda functor ∆→ sSet.

Theorem 6.2. ([Lur09, §2.2, 1.1.5.10, 2.2.5.1]) We have a pair of adjoint funtors

C : sSet←−−→Cat∆ : N.

The functor N sends fibrant simplicial categories22 to ∞-categories. For an ∞-
category C and x, y ∈ C0, there are equivalence in sSet

MapC[C](x, y) ' MapC(x, y). (55)

Definition 6.3. The ∞-category S of spaces is defined as N(Gpd∞), where Gpd∞
is the simplicial category of Kan complexes. Note that the objects of S is the Kan
complexes.

6.3 Algebraic K-theory

Fix a (commutative) ring R and let ProjR be the groupoid of finitely generated
projective R-modules with isomorphisms. We have an equivalence

ProjR ' t
P∈ProjR/∼

BAut(P ),

where BAut(P ) is the groupoid with one object ∗ and Hom(∗, ∗) = Aut(P ). The
direst sum ⊕ turns ProjR into a symmetric monodial category 23 and the set
ProjR/ ∼ of isomorphism classes is an abelian monoid with product ⊕ and the
identity 0.

22i.e. those C ∈ Cat∆ such that MapC(x, y) are a Kan complex for all x, y ∈ C.
23i.e. a category S equipped with a functor � : S × S → S and a distinguished object e ∈ S and

four basic natural isomorphisms

e�s ' s, s�e ' s, s�(t�u) ' (s�t)�u), s�t ' t�s,

which are coherent in the sense that two natural isomorphisms of products of s1, . . . , sn built up
from the four basic ones are the same whenever they have the same source and target. Assume
that the isomorphism classes of objects of S form a set denoted by S/ ∼. Then, S/ ∼ is an abelian
monoid with product � and the identity e. The group completion of S/ ∼ is called the Grothendieck
group of S and denoted by K0(S). In case S = ProjR. this is K0(R).
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Recall the inclusion of the categories{
commutative groups

}
↪→
{

commutative monoids
}

admits a left adjoint M →Mgr called the group completion.

Definition 6.4. K0(R) =
(
ProjR/ ∼

)gr
.

Taking its nerve, every groupoid X is viewed as an object of the∞-category S of
spaces, which is 1-truncated, i.e. πi(X,x) = 0 for i > 1 and x ∈ X. The symmetric
monoidal structure on ProjR turns it into a commutative monoid in S, commutative
up to higher homotopies.

Let MonE∞(S) be the ∞-category of commutative monoids in S and GrpE∞(S)
be its full subcategory of group-like objects, i.e. those M ∈ MonE∞(S) such that
π0(M) are groups. Similarly as above, the inclusion

GrpE∞(S) ↪→ MonE∞(S)

admits a left adjoint M →Mgr.

Definition 6.5. K(R) =
(
ProjR)gr ∈ GrpE∞(S). For n ≥ 0, Kn(R) = πn(K(R)).

Connective K-theory spectrum: K(R) (in fact any object of GrpE∞(S)) is an
infinite loop space, i.e. there exists a sequence T0 = K(R), T1, T2, . . . in S∗24 such
that for n ≥ 1, Tn are n-connective25 and Tn−1 = ΩTn, so it gives an object K(R) of
the ∞-category Sp of spectra26. Moreover, it belongs to the full subcategory Sp≥0

of connective spectra T = (T0, T1, . . . ), i.e. its stable homotopy group

πi(T) = lim−→
n

πi+n(Tn)

vanishes for i < 0, where the transition maps in the colimit are

πi+n(Tn)→ πi+n(ΩTn+1) = πi+n+1(Tn+1).

By the construction, Kn(R) = πn(K(R)) for n ≥ 0.

Non-connective K-theory spectrum: The map

K0(R[t])⊕K0(R[t−1])
φ−→ K0(R[t, t−1])

24The category of pointed spaces and pointed maps.
25i.e. πi(Tn, ∗) = ∗ for i < n.
26A spectra is a sequence T = (T0, T1, . . . ) in S∗ with structure maps Tn−1 → ΩTn for n ≥ 1.
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is not surjective in general unless R is regular. H. Bass used this to define the
negative K-groups K−1(R) = Coker(φ) and K−n(R) for all n > 0 inductively as the
cokernel of

K−n+1(R[t])⊕K−n+1(R[t−1])
φ−→ K−n+1(R[t, t−1]).

The definition can be upgraded to a spectrum-level version, a non-connective K-
theory spectrum KB(R) with a natural map K(R) → KB(R) inducing an equiv-
alence K(R) ' τ≥0K

B(R), i.e. πi(K(R)) ' πi(K
B(R)) for i ≥ 0, and for n > 0,

π−n(KB(R)) = K−n(R) defined above.

Exercise 6.6. Let R = k[x, y]/(y2 − x3 + x2). Using the Mayer-Vietoris property
below, prove K−1(R) ' Z. Construct a projective R[x−1] module M which does
not come from a projective R-module via ⊗RR[x−1].

Theorem 6.7. ([W13, Ch.III, Th.4.3]) Let f : R → S be a ring map and I be an
ideal of R mapped isomorphically into an ideal of S. Then, there exist a long exact
sequence

K0(S)⊕K0(R/I)→ K0(S/I)→ K−1(R)→ K−1(S)⊕K−1(R/I)→ K−1(S/I)

→ K−2(R)→ K−2(S)⊕K−2(R/I)→ K−2(S/I)→ · · ·

Globalisation: Let Schqcqs be the category of qcqs schemes and AffSch be the full
subcategory of affine schemes. Thomason proved the presheaf of spectra

AffSchop → Sp ;X = Spec(R)→ KB(R)

is a Zariski sheaf, i.e. for any Zariski covering Y → X in AffSch,

KB(X) ' lim←−
∆

(
KB(Y )

−→
−→
←−KB(Y ×X Y )

−→
−→
−→
←−
←−

KB(Y ×X Y ×X Y ) · · ·
)

We have the sheafification aZar : PSh(Schqcqs,Sp)→ ShvZar(Schqcqs, Sp). We extend
KB to ShvZar(Schqcqs, Sp) by applying aZar to the presheaf

Schqcqs → Sp;X → KB(Γ(X,O)).

Notation: In this note, we write K for KB and K≥0 for K.

Projective bundle formula: Let X be a qcqs-scheme and E be a vector bundle
of tank r + 1 over X. Consider the projective bundle P = P(E)→ X.

Theorem 6.8. K0(P) is a free K0(X)-module with basis {|OP(−i)]| i = 0, . . . , r}.
The map

Kn(X)⊗K0(X) K0(P)→ Kn(P)

is a ring isomorphism.
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6.4 Sheaves with values in ∞-categories

We will use the ∞-category S of spaces and Sp of spectra. We will use also the
∞-categorie D(A) of unbounded complexes of A-modules for a commutative ring
A. Note that the homotopy category of D(A) is the derived category D(A) of
unbounded complexes of A-modules.

Let T be a small category with fiber products and τ be a Grothendieck topology
on T . For an ∞-category C, let PSh(T, C) = Fun(T op, C) denote the ∞-category
of presheaves on T with values in C and Shvτ (T, C) denote the full subcategory of
PSh(T, C) consisting of τ -sheaves. By definition, F ∈ PSh(T, C) is a τ -sheaf if for
every X ∈ T and every τ -sieve R ⊂ X, the restriction map Map(X,F )→ Map(R,F )
is an equivalence. By [AHW17, Lem.3.1.3], F ∈ PSh(T, C) is a τ -sheaf if and only
if for any τ -covering family {φi : Yi → X}i∈I in T , we have an equivalence

F (X) ' lim←−
[n]∈∆

∏
(i0,...,in)∈In+1

F (Yi0 ×X · · · ×X Yin),

where
[n] ∈ ∆op → t

(i0,...,in)∈In+1
Yi0 ×X · · · ×X Yin

is the Čech nerve of the covering family. If Y = ti∈IYi exists in T , the condition
can be written as

F (X) ' lim←−
∆

(
F (Y )

−→
−→
←−F (Y ×X Y )

−→
−→
−→
←−
←−

F (Y ×X Y ×X Y ) · · ·
)

By [Lur09, 6.2.2.7] the inclusion Shvτ (T, C) → PSh(T, C) admits a left-exact left
adjoint called the τ -sheafication

aτ : PSh(T, C)→ Shvτ (T, C).

In what follows, we recall an alternative definition Shvτ (T,S) using a model
category. Let PSh∆(T ) be the category of simplicial presheaves on T equipped with
the injective model structure: the weak equivalences are the objectwise weak equiv-
alences, the cofibrations are the monomorphisms, and the fibrations are determined
by the RLP. For F,G ∈ PSh∆(T ), the mapping space Map(F,G) is defined as

Map(F,G)n = HomPSh∆(T )(F ×∆n, G),

where ∆n is considered as an object of PSh(T ) as a constant presheaf. The model
category PSh∆(T ) is simplicial, proper, and combinatorial [Lur09, A.2.8.2] so that
we can use the machinery of left Bousfield localizations [Lur09, A.3.7]: For a set Σ
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of morphisms in PSh∆(T ), we say F ∈ PSh∆(T ) is Σ-local if for every f : G → H
in Σ, the induced map

f : Map(H,F )→ Map(G,F ) (56)

is a weak equivalence. A morphism f : G → H is an Σ-equivalence if, for ev-
ery Σ-local F , (56) is a weak equivalence. We define the Σ-local model structure
Σ−1PSh∆(T ) on PSh∆(T ), whose weak equivalences are Σ-equivalences and whose
cofibrations are still the monomorphisms, and whose fibrant objects are the fibrant
objects in PSh∆(T ) that are Σ-local. The identity functors give a Quillen adjunction
PSh∆(T )←−−→Σ−1PSh∆(T ). Moreover, the right derived functor

Ho(Σ−1PSh∆(T ))→ Ho(PSh∆(T ))

is fully faithful and its essential image is the subcategory of Σ-local objects.

Now let τ be a Grothendieck topology on T and Στ be the set of τ -covering
sieves viewed as monomorpshims R→ X in PSh∆(T ) with X representable. Then,
Shvτ (T,S) is identified with the ∞-category N

(
(Σ−1

τ PSh∆(T ))cf
)

associated to the

full simplicial sub-category of the fibrant-cofibrant objects of Σ−1
τ PSh∆(T ).

6.5 cd-structure

Definition 6.9. ([V10, Def.2.1], [AHW17, Def.2.1.1]) Let T be a category with an
initial object ∅.

(1) A cd-structure on T is a collection P of commutative squares:

V //

��

Y

��
U // X

(57)

such that if Q ∈ P and Q′ ' Q in C, then Q′ ∈ P .
(2) The Grothendieck topology τP on T generated by a cd-structure P is the coars-

est topology such that the empty sieve covers ∅ and that for every square (57)
in P , the sieve on X generated by U → X and V → X is a τP -covering.

Theorem 6.10. ([V10], [AHW17, Th.3.2.5]) Let T be a small category with a strict
initial object ∅27 and P be a cd-structure on C. Assume

1. Every square in P is cartesian.

27i.e. any morphism X → ∅ is an isomorphism.
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2. The pullback of every square (57) in P via every morphism X ′ → X in T
exists and belongs to P .

3. For every square (57) in P , U → X is a monomorphism.
4. For every square (57) in P , the following square belongs to P :

V //

��

Y

��
V ×U V // Y ×X Y

Then, F ∈ PSh(T,S) is a τP -sheaf if and only if F (∅) ' ∗ and F send every square
in P to a cartesian square in S.

An easy argument upgrades the above theorem to coeffcients in any ∞-category
C admitting all small limits.

Corollary 6.11. Suppose that C be an ∞-category admitting small limits, Then,
F ∈ PSh(T, C) is a τP -sheaf if and only if F (∅) ' ∗ and F sends every square in P
to a cartesian square in C.

6.6 Homotopy dimension

Truncated spaces. Recall that for n ≥ −2 one says that a space K ∈ S is n-
truncated if Map(Dn+2,K)

∼→ Map(Sn+1,K), where Dn+2 is the (n+ 2)-disc, Sn+1

is its boundary, the (n+1)-sphere, so S0 = ∗t∗ and S−1 := ∅, [Lur09, Lem.5.5.6.17].
For n ≥ −1, this is equivalent to asking that πi(K, k) ∼= ∗ for all k ∈ π0(K) and all
i > n, [Lur09, p.xiv]. This leads to a decreasing sequence of full subcategories

S ←↩ · · · ←↩ S≤1 ←↩ S≤0 ←↩ S≤−1 ←↩ S≤−2 = {∗}

which in low degrees is

S≤1 = 1-groupoids, S≤0 = discrete spaces, S≤−1 = {∅→ ∗}, S≤−2 = {∗}.

By definition S≤n ⊂ S is the subcategory of {Sn+1→Dn+2}-local objects, [Lur09,
Def.5.5.4.1], so localisation 28 at {Sn+1 → Dn+2} is a left adjoint

(−)≤n : S → S≤n

to inclusion.29

28 We mean localisation in the sense of [Lur09, Def.5.2.7.2]. So S → S≤n is the universal functor
sending every morphism in the strong saturation, [Lur09, Def.5.5.4.5], of {Sn+1 → Dn+2} to an
equivalence, [Lur09, Prop.5.2.7.12], [Lur09, Prop.5.5.4.15].

29 Existence of the left adjoint can be deduced from the adjoint functor theorem, [Lur09,
Cor.5.5.2.9] or constructed directly using the small object argument applied to the set
{Si→Di+1}i>n. See Hatcher’s textbook [Hat, Exam.4.17] for an extremely concrete construction.
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The notion of n-truncatedness is extended to a general ∞-category T , such as
T = PSh(C,S) or Shvτ (C,S) for a small category C with a Grothendieck topology
τ , by declaring an object F ∈ T to be n-truncated if the mapping space MapT (G,F )
is n-truncated for all objects G of T . If T is presentable30 then the inclusion admits
a left adjoint, [Lur09, Prop.5.5.6.18],

(−)≤n : T → T≤n.

Definition 6.12. For n ≥ 0, we say F ∈ T is n-connective if F≤n−1 ' ∗.

Remark 6.13. ([Lur09, Pr. 6.5.1.12]]) F ∈ T is n-connective if and only if τ≤0F 6=
∅ and πi(F ) = ∗ for all i < n, where πi(F ) is the categorical homotopy group:

πi(F ) := τF≤0(FS
n i∗n−→ F ) ∈ T/F ,

where i∗n is induced by the canonical morphism ∗ → Sn and τF≤0 is the 0-th truncation
on the slice category T/F .

Remark 6.14. If T = Shvτ (C,Set) has enough points, then F ∈ Shvτ (C,S) is n-
connective if and only if aτπi(F ) = ∗ for all i < n, where πi(F ) is the homotopy
presheaf of F and aτ is the τ -sheafification. This follows from Lemma 6.15 below.

Lemma 6.15. ([Lur09, 5.5.6.28 and 6.5.1.4]) If φ : T → T ′ is a geometric mor-
phism of ∞-topoi31, then for any F ∈ T ′, there is a canonical equivalence

φ∗(F≤i) ' (φ∗F )≤i,

and a canonical isomorphism

φ∗(πi(F )) ' πi(φ∗(F )).

The following lemma plays a key role in the proof of Theorem 4.15.

Lemma 6.16. Let T, T ′ be ∞-topoi and λ : T → T ′ be a functor. If λ admits a
right adjoint and preserves the final object, then λ preserves n-connective objects for
all n ≥ 0.

Proof. See [Lur09, 5.5.6.28] and also [KS23, §7.2].

Example 6.17. (1) If Φ : Shvτ (C,S)→ S is any fibre functor32 and F ∈ Shvτ (C,S),
we have F≤n ∼= ∗ ⇒ Φ(F )≤n ∼= ∗.

30i.e. T admits all small colimits and is of the form T = Ind(T ′) for some small category T ′.
31i.e. there is a pair of adjoint functors φ∗ : T ′ ←−−→T : φ∗ such that φ∗ preserves finite limits.
32As in the case of sets, Φ is a fibre functor if it preserves all colimits and finite limits, cf.[Lur09,

Rem.6.3.1.2, Cor.5.5.2.9, Thm.6.1.0.6].

53



(2) If X ∈ C is any object and F ∈ Shv(C,S), we have F≤n ∼= ∗ ⇒ (F |X)≤n ∼= ∗,
where (−)|X : Shv(C,S) → Shv(C/X ,S) is the restriction functor with C/X
equipped with the induced topology: coverings in C/X are precisely those fam-
ilies which are sent to coverings in C; the projection C/X → C is a continuous
and cocontinuous morphism of sites.

(3) Recall that a morphism of sites φ : (C, τ)→ (D,σ) is cocontinuous if for every
U ∈ C and σ-covering family U = {Ui → φU}i∈I there is a τ -covering family
{Vi → Ui} such that {φVi → φU}i∈I refines U , [Sta18, 00XJ]. By [Sta18,
00XL], we have a pair of adjoint functors φ∗ : Shvσ(D)←−−→ : Shvτ (C) : φ∗.
Here, φ∗ = aτφ

p where φp : PSh(D) → PSh(C) is the restriction along φ and
aτ : PSh(C) → Shvτ (C) is the τ -sheafification and φ∗ = φp is the right Kan
extension along φ which preserves sheaves by [Sta18, 00XK].

As a right adjoint, global sections Map(∗,−) does not preserve n-connectivity in
general. Homotopy dimension describes how badly this fails.

Definition 6.18 ([Lur09, Prop.6.5.1.12, Def.7.2.1.1]). One says the ∞-topos T has
homotopy dimension ≤ d if the global section functor Map(∗,−) : T → S sends
d-connective objects to 0-connective objects, i.e. for every F ∈ T , we have

F≤d−1
∼= ∗ ⇒ MapT (∗, F )≤−1

∼= ∗.

Note that the latter condition is equivalent to MapT (∗, F ) is non-empty.

Remark 6.19. If Shvτ (C,S) has homotopy dimension ≤ d, then we have

F≤d+n
∼= ∗ ⇒ Map(∗, F )≤n ∼= ∗

for all n ≥ −1, [Lur09, Def.7.2.1.6, Lem.7.2.1.7].

Exercise 6.20. Consider the category N = {0 → 1 → 2 → . . . }. An object of
PSh(N,S) is a diagram · · · → K(2)→ K(1)→ K(0) and the global sections functor
is given by {K(n)}n∈N 7→ limn∈NK(n). Show that the homotopy dimension of
PSh(N,S) is ≤ 1 but not ≤ 0

Example 6.21 ([CM21, Cor.3.11, Thm.3.18]). If Cλ is a filtered system of finitary33

excisive34 sites with colimit C, then Clausen and Mathew show that Shv(C,S) has
homotopy dimension ≤ d if all Shv(Cλ,S) do. Using this they show that for any
qcqs algebraic space whose underlying topological space has Krull dimension ≤ d,
the ∞-topos Shv(XNis,S) has homotopy dimension ≤ d. It also follows from this
that if X is a qcqs scheme of valuative dimension d then RZ(XNis) has homotopy
dimension ≤ d.

33A site is finitary if it has finite limits and every covering family is refineable by a finite one.
34A site is excisive if for all U ∈ C, the functor F 7→ Map(U,F ) commutes with filtered colimits.
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Lemma 6.22. If T has homotopy dimension≤ d, then it also has cohomological
dimension≤ d.

Proof. See [Lur09, Cro.7.2.2.30]. We give a proof in case T = Shvτ (C,S). For a
τ -sheaf of abelian groups A on C and an integer n ≥ 0, there exists an Eilenberg-
MacLane object K(A, n) ∈ T such that (cf. [Lur09, 7.2.2.17])

1. K(A, n) is n-connective and n-truncated.
2. There exists an isomorphism Hn(C,A) ' π0 Map(∗,K(A, n)).

Assume n > d. For a ∈ Hn(C,A), a nullhomotopy of a is equivalent to a global
section of the pullback X of

∗ 0 // K(A, n)

∗
a

OO

The lemma follows from the fact that X is (n − 1)-connective, which follows from
the long exact sequence of categorical homotopy groups (see [Lur09, 6.5.1.5]).
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[DFJ23] F. Déglise, N. Feld and F. Jin, Moving lemmas and the homotopy coniveau
tower, https://arxiv.org/abs/2303.15906.

[DGM13] B. I. Dundas, T. G. Goodwillie, and R. McCarthy, The local structure of
algebraic K-theory, Algebra and Applications, 18, Springer-Verlag London,
Ltd., London, 2013.

56

https://arxiv.org/abs/2303.15906


[DS11] D. Dugger and D. I. Spivak, Mapping spaces in Quasi-categories, Algebr.
Geom. Topol. 11 (2011) 263-325.

[EHIK21] E. Elmanto, M. Hoyois, R. Iwasa, and S .Kelly, Cdh descent, cdarc de-
scent, and Milnor excision, Math. Ann. 379, no. 3 (2021), 1011–1045.

[EHKSY22] E. Elmanto, M. Hoyois, A. Khan,V. Sosnilo and M .Yakerson, Modules
over algebraic cobordism, Forum Math. Π 8 (2020) .

[EM23] E. Elmanto and M. Morrow, Motivic cohomology of equicharacteristic
schemes. To appear.

[FS02] E. Friedlander and A. Suslin, The spectral sequence relating algebraic K-
theory to motivic cohomology ’, Ann. Sci. École Norm. Sup. (4) 35 no. 6
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283, Springer-Verlag, Berlin-New York, 1972.

[Il79] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci.
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Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des
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