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A quest for theory of motivic cohomology dates back to work of Grothendieck and
early days of algebraic geometry. As a motivation, we recall Riemann-Roch theorem
of Baum-Fulton-McPherson. Let X be a smooth scheme over a field k. The relation
between the category of vector bundles and the group of algebraic cycles on X is
expressed by natural isomorphisms

P e Ko(X)g ~ Ko(X)g — b cH"(X)q,

(1)



where gr’) is the n-th graded quotient of the y-filtration on Ko(X). The composite
of the isomorphisms is compatible with the grading so that it induces

gty Ko(X)g — CH"(X)g

and it is known that the inverse is given by a cycle class map. The isomorphism on
LHS is a formal consequence of the existence of a A-structure on Ky(X) while the
existence of 7 is a part of BFM’s RR theorem.

Remark 1.1. Even for every X of finite type over k, we have isomorphisms
P ertGo(X)g ~ Go(X)g — €D CH"(X)q, 2)
n n

where CH™(X) is Fulton’s Chow group. follows from and the fact Go(X) =
Ko(X) in case X is smooth.

S. Bloch upgraded to

D e Go(X)o = Gy(X)g —» €D CH (X, q)q, (3)

where CH" (X, ¢) is the higher Chow group defined by himself. In particular, for X
smooth over k, we get an isomorphism

gryKy(X)g ~ CH"(X, ¢)o- (4)

Question 1.2. (1) Is there a similar filtration on K4(X) for X singular?
(2) Is there a filtration with integral coefficient?

1.1 Motivic complexes

In 1980’s, Beilinson and Lichtenbaum predicted there exists
Z(n)™" € Shvy,,(Sch, D(Z)) for every n > 0,

a complex of Zariski sheaves on a category Sch of reasonable schemes called motivic
complex of weight n. The motivic cohomology of X € Sch defined as

Hj(X,Z(n)) = H'(Z(n)™*" (X))

is expected to play a role of the universal cohomology theory for schemes and to play
some important roles in algebraic and arithmetic geometry. For example, there are
several conjectures expressing special values of L-functions of arithmetic schemes in
terms of motivic cohomology or its related invariants. Here is an example.



Theorem 1.3. (Kerz-Saito [KeS12]) Let X be a smooth projective variety over a
finite filed Fy with d = dim(X). We have the equality up to a power of p = ch(F):
* 1 (_1)i

«x,00= ] \HM(X,Z(d))tor .

1<i<2d

The equality holds also for the p-part if d < 4. Here

((X,5) = Z(X,07), 2(X,0) =exp (3 IX(Fp)| 2)

m=1
(X, ) = lim (X, 8) - (L= ) (py = —ord (X, 5))
Here, we define the motivic cohomology of X as
Hiy(X, Z(d)) = H¥(-1(X, o)),

where z%(X, o) is Bloch’s cycle complex (see .

There is a list of properties expected for Z(n)™°t:

1. Projective bundle formula, Blowup formula,
2. Relation of Z(n)™' @ Z/¢ to étale/syntomic cohomology, etc.

Beside these, the most important is the following relation to algebraic K-theory.

Conjecture 1.4 (Beilinson (1985)). For X € Sch, there is a functorial spectral
sequence:

EYT = Hj (X, Z(—q)) = K_p—q(X) = mp—(K(X)), (5)
where K (X) is the non-connective algebraic K-theory spectrum of X.
Remark 1.5. (1) The conjectural motivic spectral sequence
EY? = HY UX,Z(—q)) = K_p—q(X) = 1_p_q(K(X))

is viewed as an algebraic analogue of the Atiyah-Hirzebruch spectral sequence
for a CW compler X

EYY = HY 1(X,Z) = K7 (X),

sing —p—q

where KioP(X) is the topological K-theory and Hg, (X,Z) is the singular
cohomology.



(2) The motivic spectral sequence is expected to degenerate rationally inducing
natural isomorphisms

Hiy(X,Z(n)) ©2 Q = Kaui(X),

where the RHS are Adams eigenspaces of rationalized K -theory.

Conjecture [1.4] is a consequence of the following.

Conjecture 1.6. Let PSh(Sch, Sp) be the category of presheaves of spectra on Sch.
There exists a tower in PSh(Sch, Sp)

oo PR S PR K — o — FO

mot mot mot

K=K,
with identifications (via Eilenberg-Maclane functor D(Z) — Sp)

g K = cofib(FIH K — Fll o K) ~ Z(n)™" [2n] (6)

mot mot

In case X is smooth over a field &, it has been known (Friedlander-Suslin, Levine,
Voevodsky) that F ,K(X) exists and agrees with the ~-filtration after ®Q and

mot
moreover that gr K(X) is equivalent to 2"(X, —e). Thus it gives an integral

refinement of .



2 DMotivic complexes for smooth schemes

The first major progress toward Conjecture took place around twenty year after
the formulation of the conjecture. It gave a satisfactory answer for smooth schemes
over a field.

Let Smy be the category of smooth schemes over a field k.

Theorem 2.1 (Friedlander-Suslin [FS02], Levine [Le08], Voevodsky [V-CMAMS]).
There exists a tower in PSh(Smy, Sp)

e PRI S P K — o — FD

mot mot mot

K =K,

and equivalences
n ~Y n —_—
Bl o K 2 2" (—, @),

where z"(X,®) for X € Smy, is Bloch’s cycle complex.

We define the motivic complex Z(n)*™ € PSh(Smy, D(Z)) as
Z(n)*™ = grp  K[2n] ~ 2"(—,2n — e).

Remark 2.2. Bloch’s cycle complex is a priori only functorial for flat morphisms
in Smy, which is not sufficient for later purposes (e,q. for left Kan extending along
Smy — Schy ), and its multiplicative properties are unclear. The problems are re-
solved via using

Z(n)™(X) = C\(Zer(Gp"))(X)[-n]  for X € Smy, (7)

where C,(Zy (Gpd))[—q] is Voevodsky’s A'-invariant motivic complex defined in
ISVO0Q]. This is strictly functorial in Smy in the sense that it defines a func-
tor between the I-category Smy and the 1-category of chain complexes of abelian
groups. Scheme-wise this is shown to be quasi-isomorphic to Bloch’s cycle complex

2"(X,2n — o) as shown in [V02, Cor.2].

In below, we recall a definition of F[ . using the homotopy coniveau tower
due to Levine [Le(8] but there seem to be a similar technical issue on functoriality
and multiplicativity. This is solved by using Voevodsky’s slice filtration [V-CMAMS.
There is also a related work [DF.J25)].

Remark 2.3. It is known that Z(n)s™ € Shvza, (Smy, D(Z)) (see [BI86, Th.3.1] and
Remark . We let Hi, (Z(n)s™) be the Zariski cohomology sheaf of Z(n)™™.

Remark 2.4. By [BIS6, Th.6.1], we have Hy, (Z(n)™) ~ O* and Hy, (Z(n)™) =
0 fori # 1. In view of Remark[2.3, this implies an equivalence in Shvza,(Smy, D(Z):

Z(1)*™ =~ RUza(—, O*)[—1]. (8)



Remark 2.5. By [BI86, Th.10.1], Hy, (Z(n)*™)(X) — H, (Z(n)*™)(k(X)) is in-
jective for an integral X € Smy. This implies

Zar(Z(n)™) =0 fori>n, (9)
which implies that for X € Smy,
HY(Z(n)™ (X)) =0 fori> dim(X) +n, (10)

In particular, FK(X) is supported in cohomological degrees < dim(X) — n for

mot

each n € N, so the induced spectral sequence s bounded.

Remark 2.6. By [NS89], [To92] and [K0Y, Th. 7.6], there exists a natural isomor-
phism if k is infinite:
Gar(Z(n)™) = KN (11)

Zar

where the right hand side is the Zariski sheaf of Milnor K—theorgﬂ. This gives rise
to a natural map in Shv z4,(Smg, D(Z)):

Z(n)™ — H™M(Z(n)™)[—n] = K [-n], (12)
where the second map comes from @D

Remark 2.7. Combined with some deep results on Z(n)*™ @ Z/¢" for a prime £
and an integer r > 0, Theorem provides substantial information on K-theory
K(X,Z/l") of finite coefficient: If ¢ # ch(k), the Beilinson-Lichtenbaum conjecture
proved by Voevodsky-Rost [V11] implies an equivalence:

Z(n)™ @ Z/0" ~ 75" Re, u&™ in, Shv 70, (Smy, D(Z/L7)), (13)

where € : (Smy) g — (Smy)zqr s the natural map of sites. If p = ch(k) > 0, a theo-
rem of Geisser-Levine [GLOO] and Bloch-Gabber-Kato [BK86] gives an equivalence:

Z(n)™™ @ Z/p" ~ W, QL [—n] in Shvzq, (Smy, D(Z/p")), (14)

where WrQﬁ)g 1s the logarithmic part of de Rham-Witt sheaf WrQﬁ/k 1’]179,E|. Thanks
to Theorem[2.1] this implies for X € Smy, that K;(X,Z/p") =0 for i > dim(X).

Remark 2.8. The proof of Theorem 1.1 uses the A'-invariance of K -theory, which
1s valid only for reqular schemes. The higher Chow groups of a singular variety over
a field are A'-invariant and nilinvariant, while algebraic K-theory does not satisfy
the properties. It has been an open problem to give a motivic filtration on K-theory
(and a motivic cohomology) for singular schemes.

!The hypothesis on the infiniteness of k can be removed if the Milnor K-theory is replaced by
the improved Milnor K-theory of Gabber and Kerz [K10].

2Tt is the subsheaf of the de Rham-Witt sheaf W,.Q" generated étale locally by dlogzi] A--- A
dlog[zy] for local units x; with its Teichmiiller lifts [z;] in the Witt vectors.



2.1 Motivic filtrations via the homotopy coniveau tower

In this subsection, we explain a construction of the motivic filtration F7} (K in
Theorem [2.1] following [Le08]. It is given as F K = F2% K, where {F} K}pen is

the homotopy coniveau tower defined below.

Recall the algebraic g-simplex

q

A9 = Spec (Z[to, -+ , ) /(O _ti — 1))

i=0
with faces A® = {t;; = --- =1t;,_, = 0} C A% The association
AP — Sch ; [¢] — A1
gives a cosimplicial scheme A®.
For X € Smy, let S%(q) be the set of closed subsets W C X x A? such that
codimxxpr(WN(X x F))>n

for all faces T' C AY. Let X"(q) is the set of codimension n points x € X x A4
whose closures {z} lie in S%(q).

For E € PSh(Smy, Sp) and ¢ > 0, put

FenB(X,q) = colim EV(X x A7),
X

EW(X x A%) =fib(E(X x A7) — E((X x A9)\ W)).

It gives a simplicial spectrum F E(X,—) and a tower

%Fgé)ﬂrzlE(Xa _) %Fg)nE(Xa_) — _>F(90nE(X7_) :E(X7_) (15)

Put
810 B(X, =) = cofib(FH E(X, —) — FULE(X, -)).

con con

Write
E! E(X)=|F} E(X,—)| = colimg e por E} E(X,q).

con

g B(X) = cofib(FLIE(X) — FIIE(X)) ~ |ev,, E(X, )]

con con

Lemma 2.9. F) E(X) — E(X) is an equivalence if E is A'-invariant.

con

Proof. Al-invariance implies E(X) ~ E(X x AY). O



The equivalence grf, K (X) =~ 2"(X, o) in Theorem [2.1| follows from the follow-
ing:

Theorem 2.10. (1) gy, FE(X,—) is equivalent to another simplicial spectrum
whose g-simplices is

D et QE) (),

TEX™(q)

where Qp E € PSh(Smy, Sp) is the P*-loop spectrum of E defined as
Qp1 E(X) = fib(E(X x P') = E(X x 0)),

and Qp, E is defined inductively as Qp E = Qp (nglE).
(2) If E = K, we have for a field F

(x1)

n (%2)
8, (W K)(F) = gy, K(F)

~ K(Z,0),

where K (Z,0) is Eilenberg-Maclane spectrum and (x1) follows from Qf K = K
by the P'-bundle formula (see Theorem .

We recall some ingredients of the proof of Theorem [2.10, The basic inputs are
Localization Theorem and Purity Theorem In what follows, we assume
that k is infinite while the assumption can be removed under an additional assump-
tion on E € PSh(Smyg, Sp) which is satisfied by F = K.

We let Shvﬁ;(Smk, Sp) C PSh(Smyg, Sp) denote the full subcategory of those
Nisnevich sheaves F' of spectra on Smy that F(X) ~ F(X xj Ai). Note that K

belongs to Shvi,(Smy, Sp).

Remark 2.11. For E € PSh(Smy, Sp), the association X — F2 FE(X) is functorial

con
only for a flat morphism Y — X in Smy. In particular, it gives an object of
PSh(Sm//k,Sp), where Sm//k is the category of the same objects as Smy with
smooth morphisms ' Y — X. Thus, gives a tower in PSh(Sm//k,Sp):

o 5 FMB/ [k - F E//k— - — F°

con con

E//k — E (16)

such that F

con

E/Jk(X)=FI E(X). The following theorem refines this.

con

For a category C, we write 7 Sp(C) = PSh(C, Sp)[W ~!], where W is the class of
morphisms which are point-wise equivalence

3To be more precise, we equip PSh(C, Sp) with the model structure whose cofibrations and weak
equivalences are point-wise and fibrations are characterized by the RLP with respect to the trivial
cofibrations.



Theorem 2.12. (Functoriality For E € Shvﬁs(Smk,Sp), there exists a tower in
PSh(Smy, Sp)
o PR P B . 5 FO B E (17)

con con con

whose restriction to Sm//k is isomorphic to in H Sp(Sm//k).

Let X € Smy and Z C X be a closed subset and U = X\ Z. Let S% ,(q) C S%(q)
be the subset consisting of those W such that W C Z x A? and put

Ez(X,q) = nggm( : EV(X x A9),

x,z\4
which gives a simplicial spectrum F Ez (X, —). Write

E} Ez(X)=|Fi.Ez(X,—)|

con con

F’n

con

Theorem 2.13. (Localization, [Le0S, Cor.3.2.2]) For E € Shvﬁs(Smk,Sp), the
sequences in Sp

FCszEZ<X7Q) — P E(qu) — Fe E(U7Q)7

con con
i Bz(X, @) — et E(X, @) — grf, E(U, q),
extends canonically to distinguished triangles in SH, the homotopy category of Sp.

Hence, we have equivalences in Sp:

Fl L Ez(X,q) ~ fib(FL,E(X,q) — FL,E(U,q)),

con con con

gr%‘con EZ (X7 q) = ﬁb (gr’%‘conE(X7 q) - gI.T}L?‘comEj([]’ q)) :
Theorem 2.14. (Purity, [Le08, Pr.4.2.2]) Let i : Z — X be a closed immersion of
codimension d in Smy. Assume there exists a trivialization ¢ : Nz x ~ Z X A?. For
E e Shvﬁs(Smk, Sp) and n > 0, there are equivalences in Sp

F' . Ez(X.q) ~ FiY(Q4 E)(Z, q),

con con
grt Ez(X,q) ~ grf (UL E)(Z, q).
Here, for m <0, we set Fipt (O3, E) = FQ, (Q4L E) and gr'p (U, E) = .

con

Corollary 2.15. Let the assumption be as in Theorem and put U = X —\Z.

Then, there exists a distinguished triangles in SH

Frod(Qd E)(Z,q) — FN L E(X,q) — F2.E(U,q).

con con con

Thus, there exists a long exact sequence

2 i1 (Fen B(U, q)) = mi(Fan (51 E)(Z,0)) = mi(Fion E(X,q)) = mi(Fagn E(U, @) = - .

con con con

The same results hold by replacing FZ, by gri. .

4These may depend on the choice of trivialization of Nz,x. but are natural in the category of
closed embeddings i with trivialization of NN;.



Corollary 2.16. Suppose k is perfect. Let the assumption be as in Theorem [2.17)
Let W C X be a closed subset with codimx (W) > d and V. C W be a regular open
subset containing W N X Then, for n >0, there is an equivalence in Sp

(815, B)" (X, q) = gr,, (U B)(V, 0),
where (grf, E)W(X,q) = fib(gr},  E(X,q) — gr%, E(X —W,q)).

Proof. We prove the corollary assuming that Ny, x is trivial and omit a reduction
to this case. By Theorem [2.13] we have an equivalence

(8% B)Y (X, 0) = (g1, Bw) (X, q).

So, if W € Smyg, the corollary follows from Theorem To show the general case,
let T=W\V and X° = X \ T. Note codimx(7) > d + 1 and also that V' € Smy,
thanks to the assumption that k is perfect. Thus, it suffices to show the equivalence

(8%, ) (X, 0) = (g1, B)V (X°, ). (18)
By the fiber sequence
(@rF, B) (X, 0) = (1%, B)" (X, q) = (e1F,,,B)" (X°, q),
it suffices to show (grchonE)T(X, q) ~ 0. By Theorem it suffices to show
gr%conET(X, q) ~ 0. By definition,

g%, Er(X,q) = cofib(FI Er(X,q) = FL BEr(X,q)).

con

So, we are reduced to showing ¢ is an equivalence. For this, it suffices to show
S‘}(’T(q) = 5% 1(q). Recall S% 7(q) is the set of closed subsets W C T'x A? satisfying
the condition

codimxxp(W N (X x F)) >n for all faces F' C A% (19)
IWCTxAL,WN(X xF)CTxF so
codimy x (W N (X x F)) > codimxxp(T x F) = codimx (T) > d + 1.
Hence, is automatic if n < d + 1. This completes the proof of .

O]

Corollary 2.17. Suppose k is perfect. Let the assumption be as in Theorem [2.14]
For an integer d > 0, there is a natural equivalence
Fo (ot E)X @) ~ ok (erh E)X. )~ @ e, (QhLE) ().
z€X4(q)
We also have
FTL

con

(gr‘f?mE)(X, q) ~0 forn >d. (20)

10



Proof. By Corollary 2.16] for X € Smy, and a closed subset W C X of codimension>
d, we have

(eh, B (X)~ @ ek, (QhE)().
xeWNX ()

Applying this to a closed subset W C X x A? with codimyxxa (W) > d, we get an
equivalence in Sp

(1%, B)'Y (X x A7) P oh. (B ().
zEWN(X xA4)(d)

This implies an equivalence

Fo(et E)YX. 9~ @B b, (QhLE) ().
z€X4(q)

and F7

con

(gr%conE) (X’ q) =~ O fOl" n Z d + 1. D

Thanks to Corollary Theorem [2.10(1) follows from the following.

Theorem 2.18. For E € Shvﬁs(Smk, Sp) and d > 0, there is a natural equivalence

gr%‘con (grdF‘con E) = gr%con E.

Proof. In view of a fiber sequence

grf, (FEE) — grf, (FL.E) — erh (v}, E),

con

Proposition below implies grj@con(FéimE) o~ gr%con (grchon E). On the other hand,
(20) implies grden (grf. E) >0 for n < d and it implies gr%con (Fe . E) ~ gr%con (E).
O

con

The following vanishing is compared with the vanishing in Corollary

Proposition 2.19. For E € Shvﬁs(Smk, Sp) and integers 0 < q < p, we have

con

gr%con (FP E) ~ gr%mn (gr%conE) ~ (.
Proof. Omitted. O

To prove Theorem 2), we need to show

Proposition 2.20. We have an equivalence gr%conK(F) ~ K(Z,0).

11



Lemma 2.21. For E € PSh(Smy, Sp) and a field F' and g > 0, we have
815, B(F,q) = E(Af p),

where A§  is the semi-localization of A%, at the 0-dimensional vertices. Hence, we
have an equivalence gr%conE(F) ~ |E(A§ )| = colimpgeper E(A] 1).

Proof. Exercise. O

Recall the category A whose objects are the finite ordered sets [n] := {0 <1 <
.-+ < n} and whose morphisms are the order-preserving maps of sets. For n > 0,
let ([n],d) be the category whose objects are the injective map ¢ : [m] — [n] in A
with m < n (plus ) — [n]) and whose morphisms are the commutative triangles of
injective maps. We have a functor 7, : ([n],0) — A sending [m] — [n] to [m].

For a simplicial spectrum E : A°? — Sp, let E([n],d) denote the iterated homo-
topy fiber of E o m, over ([n],d) defined as

E([n],0) = li fib(E(g) : E([n]) — E([m])).

m
g:[ml=[n]e([n],0)

If E: A? — D(Z) is a simplicial object in D(Z), E([n], ) is the total complex
of the double complex:

E)— @ EM@-1)- @ EBn-20)---,

g:[n—1]=[n] g:[n—2]=[n]

where E([n — m]) is in homological degree —m and ¢ in degree —m range over all
injective maps [n —m] — [n] in A and the differential d_,, is the signed sum of the
maps

E(f): (E(ln—m+1]),9) = (E([ln—m],gof) for f:[n—m] = [n—m+1] € A™
Applying the above construction to the simplicial spepctrum [n] — E(AG p), we get

E(AS g, 0) = lim fib(E(g) : E(ALp) = E(AGR))-
( 0,F ) o ml= e ([.0) ( (9) ( F) ( o,F))

Proposition 2.22. ([Le0S, Pr.6.3.4]) Take E € ShvﬁS(Smk,Sp) and assume
(i) For any X € Smy and open U C X, we have m;(E(X)) = 0 for i < 0 and
mo(E(X)) = mo(E(U)) is surjective.
(i1) To(E(AG f,0)) =0 for all n > 0.

Then, we have mo(|E(AR p)I) = wo(E(F)) and w(| E(A} p)]) = 0 for alli > 0.

12



Proof. A formal argument in homotopical algebra using the spectral sequence

B}y = Tprg(BE(A] 1) = mpag [E(AS p))).

O

Proof of Proposition [2.20; We check the conditions of Proposition 2.22 (i) follows
from the fact that K;(X) = 0fori < 0 and Ko(X) — Ko(U) is surjective if X € Smy,
and U C X is open. We now show (ii).

Claim 2.23. There is an exact sequence

Ki(A% p) -5 K1(0A] 1) = mo(K(AD 5, 0)) = Ko(AL p) —% Ko(9A] 1)

where A  is the union of the faces of codimension one in Af .

Proof. This follows from the fact that 0Af  is Kj-regular so that K;(0Af p) ~
KH;(0Af ) for i <1 (see Definition for KH), and the fact that KH satisfies
Mayer-Vietoris property for unions of closed subschemes (see [W13, IV Cor.12.6]).
The detail is left as an exercise. O

Remark 2.24. A ring A is called K;-reqular if K;(A) ~ K;(A[T1,...,T;]) for allr.
It is known that a regular noetherian ring is K,-reqular for all n. Vorst conjectured
that for an algebra A of essentially finite type over a field k with dim(A) < n, A is
K y1-regular implies A is reqular. For example,

(i) A is Ko-regular if and only if A is seminormal E|
(ii) A is Ki-reqular if and only if A is seminormal and for every x € Spec(A) and
every point y of the normalization lying above x, k(y)/k(x) is separable.

If ch(k) = 0, the conjecture was proved by Cortinas, Haesemeyer, and Weibel
[CHWO0S]. In case ch(k) = p > 0, Geisser and Hesselholt [GHI2] proved the con-
jecture assuming resolution of singularities. Kerz-Strunk-Tamme [KST21] proved it
by replacing dim(A) by its variant called the p-dimension.

We are now reduced to showing the surjectivity of f and the injectivity of g in
Claim Let R be the affine ring of the semi-local scheme A& pand I C R be
the ideal defining OAf . The injectivity of g follows from Ko(R) = Ko(R/I) = Z
since R is semi-local (see math.stackexchange.com/questions/150944/). To show

Si.e. for all z,y € A with 2® = y?, there is a unique a € A with z = a? and y = a>.

13



the surjectivity of f, consider a commutative diagram

GL(R) K1(R)

P

GL(R/I) — Ki(R/I)

The horizontal maps are surjective since K1(S) = GL(S)/[GL(S), GL(S)] for any
associative ring S with unit. The map 7 is surjective since I C R is a radical ideal
(see [W13, I, Exc.1.1.12]). This proves the desired surjectivity.

14



3 Cdh-local motivic complex Z(n )"

This is an extension of Z(n)™ ~ z"(—,2n —e) on Smy, to a motivic complex on the
category Schy of schemes of finite type over k, first considered by Voevodsky and
studied by Cisinski-Déglise and more recently by Bachmann-Elmanto-Morrow.

3.1 Left Kan extension

We use the left Kan extension along Smy — Schy:
L*™ : PSh(Smyg,C) — PSh(Schg, C) (C = Set, Sp, D(Z), etc),

which is a left adjoint to the restriction PSh(Schy,C) — PSh(Smy,C). For F €
PSh(Smy,C) and X € Schy, L*™F(X) is calculated as the colimit in C of the diagram

(SmX/)Op —C; (Y7 Qb) — F(Y)7

where Smy, is the category of pairs (Y, ¢) with Y € Sm; and a map ¢ : X — YV
and a morphism (Y, ¢) — (Y’,¢’) is given by a map f : Y — Y’ such that ¢' = f¢.

To compute L¥™F(X) more explicitly for X = Spec(A) € Schy, pick a simplicial
resolution P, — A such that P, ind-smooth over k and Ker(P, — A) henselian
ideal. Then,

(L*™F)(Spec(A)) = colimpepor F'(Pp),

where the colimit is taken in D(Z). If F = Z(n)*™, this is computed more explicitly
as [—2n]-shift of totalisation of bicomplex

o> 2"(Py,2) —— 2" (P, 1) —— 2" (P>, 0)

o 2"(P,2) —— 2" (P, 1) — 2" (P1,0)

o 2"(Py,2) ——=2"(Py,1) —= 2" (Fo,0)

Remark 3.1. It should be warned that basic properties of Z(n)*™ (projective bun-
dle formula, Zariski descent, etc) are not genetic to L*™Z(n)*™. For example,
L¥™Z(1)"™ is not in Shvy,, (Schy, D(Z)): Recall an equivalence in Shvy,, (Smy, D(Z)

(cf- )
Z(l)sm = RFZar(_7 OX)[_l]
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Using the Gersten resolution of O, we see

RTza:(—, 0™)[—1] = (7<1 RTza:(—, 0*))[-1] on Smy.
It is known that O* and Pic = Hj (—,0%) as functors on the category CAlg,
of k-algebras are left Kan extended from the full subcategory CAIgi™ of smooth k-
algebm:ﬂ This implies that for a k-algebras A, there is a natural equivalence

L°"Z(1)5™(A) ~ (t<1RT'zar(Spec(A), 0O))[—1].

On the other hand, T<1RT'za(—, O™) is not in Shvza,(Schy, D(Z)) with its sheafiifi-
cation given by Rz, (—, O0%).
Exercise 3.2. Give a k-algebra A such that HZ, (Spec(4),0*) # 0.

Lemma 3.3. Let CAlg;™ C CAlgi™ be as in Remark[3.1, Let F : CAlg, — S be a
functor satisfying the conditions:

(1) F preserves filtered colimits.
(2) For every henselian surjection A — B, the map mo(F(A)) — mo(F(B)) is

surjective.
(3) For every henselian surjections A — C' < B, the diagram

F(A x¢ B) — F(B)

|

F(4)

F(C)
s a pullback square in S.

Then, F' is left Kan extended from CAlg;™.

Despite of Remark we have the following.
Theorem 3.4. There exists a tower in PSh(Schy, Sp)
= B Ko = FiKso — -+ = Fip K0 = Ko,

and equivalences
g, K>0 =~ L™ 7Z(n)™[2n].

Proof. By Bhatt-Lurier (see [EHKSY22, Ex. A.0.6]), there is a natural equivalence
KZO ~ LsmK|Smk in PSh(SChk, Sp),

where the right hand side is the left Kan extension of Kjg,,, along Smy — Schg.

Using Theorem the desired filtration on K is obtained by left-Kan extending

F3 ot Ksm, along Smy — Schy. O
5This follows from Lemma below.
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3.2 Cdh topology

As is remarked in Remark L*™Z(n)*™ does not carry over basic properties of
Z(n)*™. Voevodsky’s idea is to cdh-sheafified L°*™7Z(n)*™ with respect to the cdh
topology to retrieve those properties.

A distinguished Nisnevich square is a cartesian square of schemes:

Wy (21)
vl
U X

where 7 is a quasi-compact open immersion and f is étale inducing an isomorphism
over X \ U. An abstract blowup square is a cartesian square of schemes:

E—.y (22)

9 f

71> X

where 7 is a closed immersion locally of finite presentation and f is proper inducing
an isomorphism over X \ Z.

Definition 3.5. Let S be a qcqs scheme and Schg be the category of schemes of finite
presentation over S. The Nisnevich topology on Schg is the Grothendieck topology
generated by coverings families of the form

{U—= X}u{V - X},

where X, U,V are from . The cdh topology on Schg is the Grothendieck topology
generated by Nisnevich topology and coverings families of the form

{Z - X} u{Yy - X},

where X, Z.Y are from .

For C = Set,S,Sp,D(Z), , let Shvgn(Schg,C) C PSh(Schg,C) denote the full
subcategory of sheaves for the cdh topology with the sheafication functor

Aedh - PSh(SChs,C) — Shvcdh(SchS,C).
Exercise 3.6. Using Proposition|3.14|below, show RT'¢;(—,Z/n) € Shveqn(Schg, D(Z))

for any integer n > 0.
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Remark 3.7. If one replaces Schg with the category Sch9°® of qcgs schemes, then
one gets the coarsest topology such that for all X € Sch%°® the functor Schy —
Sch?® is a continuous morphism of sites, [Stal8, 00WV], [SGA41l Def.III.1.1]. We
also have the sheafification functor (see [KS23| Rem.8.1])

acan : PSh(Sch®® C) — Shvean(Sch?, C).

Remark 3.8. (1) In , we are allowed to take Z = X,eq the reduced part of
X and Y,E = (. Hence, we have an equivalence F(X) ~ F(Xyeq) for any
F e Shvcdh(SCh,C).

(2) If one works with the cdh topology on the category Schy of schemes of finite
type over a field of characteristic zerﬂ one can show that any X € Schy is
cdh-locally smooth, i.e. there exist a cdh-covering Y — X with Y € Smy.
Thus, some property on the cdh cohomology of X may be deduced from the
smooth case.

An important result on the cdh tooplogy is the following theorem [KSTIS§|
Th.6.3], which characterizes Weibel’s homotopy invariant K-theory KH as the cdh
sheafiation of K. Recall that KH € PSh(Sch,Sp) is obtained by “forcing the Al-
invariance to the algebraic K-theory”. More precisely, we have the following.

Definition 3.9. For a scheme X € Sch, we define KH(X) € Sp as the geomet-
ric realization of the simplicial spectrum K (X x A®), where A® is the cosimplicial
scheme from . By the definition,

KH(X) = colimpgepor K (X x A7).
Theorem 3.10. ([KST18, Th.6.3] and [KM21]) There exists an equivalence
aegn K ~ KH

in PSh(Sch9°% Sp) (see Remarkfor Aedh,)-

3.3 Cdh-local motivic complex

Now we fix a field k& and let Sch'*® denote the category of qcgs schemes over k.

Definition 3.11. For integers n > 0, we define

Z(n)°™ = augn L Z(n)*™ € Shvegn(Schi®® D(Z)).

"or assuming resolution of singularities over the field &
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Remark 3.12. By [FV00, Pr.5.9], [K17, Pr.5.2.5] and [BEM23], Z(n)°® is Al-
mvariant, i.e.

(X, Z(n)*") ~ T'(X xi AL, Z(n)*M)  for X € Schy.

In view of Remark it is also nilinvariant, i.e. Z(n)*M(X) ~ Z(n)*M(X,eq). On
the other hand, K -theory does not satisfy these properties. Hence, Z(n)*" cannot
be a hoped-for motivic complex for X € Schy providing the spectral sequence ([5)).
Instead, it gives such a spectral sequence after replacing K by KH.

Theorem 3.13. There exists a tower in PSh(Schi*®, Sp)

oo > FUHIKH —» F* KH — -« — F°

mot mot mot

KH = KH,
and equivalences

gry KH~ Z(n)°2n).

Proof. Using Theorem the filtration F%;, KH is obtained by the cdh-sheafifying
the left Kan extension along Smy, — Schi)*® of F3, . K|gy, from Theorem O

3.4 Recollection of basic facts on the cdh topology

In what follows, we list some basic facts on Shv,.4,(Schg,C).

Proposition 3.14. F' € PSh(Schg,D(Z)) is a cdh sheaf if and only if F(0) =0
and for any distinguished Nisnevich square and abstract blowup square ,
the squares

F(X)-"=FU)  F(X)-">F(Z)

P L

F(V)——F(W) F(Y)—— F(E)
are cartesian in D(Z), or equivalently that the following sequences are exact:

= HY(F(X)) » H(F(Y))® H(F(Z)) - H(F(E)) - HT(F(X)) — - --
The same statement holds replacing D(Z) by Sp and cohomology H* by homotopy

m; respectively

Proof. This follows from Corollary O
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Theorem 3.15 (|GK15],[GL01]). (1) A map ¢ : F — G in Shv.gy(Schg, Set)
is an isomorphism if and only if so is F(R) — G(R) for every henselian
valuation ring R over S, where by definition, F(R) = lim | F(R)) where the
colimit is over factorizations Spec(R) — Spec(Ry) — S of Spec(R) — S with
Spec(R)y) € Schg.

(2) A collection of maps {Y; — X }ier in Schg is a covering for the cdh topology
if and only if

] I Homgpacas (Spec(R), ¥;) — Homgyasas (Spec(R), X)
el

is surjective for every henselian valuation ring R over S, where SchgCqs is the
category of qcqs schemes over S.

Theorem 3.16. [[EHIK21]] Let S be a qcgs scheme of finite valuative dimension
dimv(X)lﬂ. Then, Shvqn(Schg,S) has homotopy dimension < d.

Definition 3.17. The valuative dimension of a scheme X is the supremum of the
ranks of all valuation rings of residue fields of X centred on X :

dimy (X) = sup {dimR ‘ 3 x € X; R is a valuation ring of k(z) such that }

Spec(k(z)) = X factors through Spec(R)

Corollary 3.18. [CM21, Cor.3.11, Thm.3.18] Let X be a qcqs scheme of finite
valuative dimension dim,(X) and F be a cdh sheaf of abelian groups on Schx.
Then, we have

th(X,F) =0 fori> dim,(X). (23)
Proof. This follows from Theorem and Lemma [6.22 ]

Remark 3.19. @D implies that for any local k-algebra A, we have
HY((L*™Z(n)™)(A) =0 fori > n. (24)
In view of Corollary[3.18, this implies that for X € Schy
HYZ(n)*“™(X)) =0 fori>dim(X)+n. (25)

In particular, F2 KH(X) from Theorem 1s supported in cohomological degrees
< dim(X) —n for each n € N, so the induced spectral sequence 1s bounded.

8We have dim(X) < dim, (X).
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4 Pro-cdh-local motivic complex

The content of this section is a joint work [KS23] of Shane Kelly and the author. A
main aim is to introduce a new Grothendieck topology on schemes called the pro-cdh
topology and to define the pro-cdh-local motivic complex Z(n)prOth as the pro-cdh
sheafication of the left Kan extension of Z(n) (see Definition and Theorem
. It is motivated by the following facts: Let

E——>Y (26)
|
Z—=X

be an abstract blowup square in Sch from and let Z, < X (resp. E, — Y) be
the r-the infinitesimal thickening of Z < X (resp. E < Y') for integers r > 0. If X
is noetherian, the square

K(X) —lim _K(Z,) (27)

L

K(Y) —lim_K(E,)

is cartesian in Sp. This is proved in [KST18|]. If X is a notherian scheme over a
noetherian ring k, for every integer ¢ > 0, the square

LQY ), —=lim LQY (28)

| |

LOY, —lim LO%

is cartesian in D(k), where LQi_/k = A'L_y, for the cotangent complex L_  [II71].
This is proved in [Morl6, Th. 2.10] and deduced from Grothendieck’s formal func-
tions theorem on cohomology of coherent sheaves [}

An idea to define the pro-cdh topology is to modify the cdh topology to make
it sensitive to nil-immersions.

Definition 4.1. Let S be a gcqs scheme and Schg be the category of schemes of finite
presentation over S. The pro-cdh topology on Schg is the Grothendieck topology
generated by Nisnevich topology and coverings families of the form

{ZT %X}TENH{Y%X}v

9[Morl6, Th. 2.10] requires the assumption of finite Krull dimension but it is noted in [EM23)
that it can be removed by using the general formal function theorem of [Lurl7b, Lem. 8.5.1.1].
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for all squares , where Z, = Spec(Ox /17,) is the r-th thickening of Zy — X.

For C = Set,S,Sp,D(Z), let Shvp,ocan(Schs,C) denote the full subcategory of
PSh(Sch, C) consisting of sheaves for the pro-cdh topology. Let

QAprocdh - PSh(SChs,C) — Shvpmcdh(SChS,C)

be the sheafication functor (cf. Notations and Conventions). We also have the
sheafification functor (see Remar’k

aprocdh : PSh(Sch®®, C) — Shvprgean(Sch1®,C).
Example 4.2. Thanks to and and Proposition below, we have the

following facts.

(1) Algebraic K-theory belongs to Shvp,rocqn(Schg, Sp) if S is noetherian.
(2) LQi,/k belongs to Shvp,ocan(Schs, D(k)) for S = Spec(k) with a noetherian
ring k.

We give a list of basic properties of the procdh topology.

Proposition 4.3 ([KS23|). F' € PSh(Sch,C) is a pro-cdh sheaf if and only if it is
a Nisnevich sheaf and for any abstract blowup square , the following squares is
cartesian in C:

F(X)H@TF(ZT)

]

F(Y)—lm F(E,).

Proof. This follows from Corollary O

Theorem 4.4.

(1) A map ¢ : F — G in Shvprocqn(Schg) is an isomorphism if and only if so is
F(R) = G(R) for every pro-cdh local ring R over S (cf. (32))).

(2) A collection of maps {Y; — X }icr in Schg is a covering for the pro-cdh topology
if and only if

HHom(Spec(R), Y;) — Hom(Spec(R), X)
el
is surjective for every pro-cdh local ring R over S.

Theorem 4.5 ([KS23]). Let X be a noetherian scheme and F be a pro-cdh sheaf of
abelian groups on Schy. Then, we have a vanishing of the pro-cdh cohomology:

;rocdh(Xa F)=0 fori>2dim(X). (29)
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4.1 Applications to K-theory and motivic cohomology

In what follows, we give an application of the pro-cdh topology to the algebraic
K-theory, which can be viewed as an analog of Theorem [3.10[ Recall that the
algebraic K-theory gives an object K € Shvproeqn(Sch™,Sp) (cf. Example .
Let K>o € PSh(Sch, Sp) be the connective cover of K (cf. §6.3).

Theorem 4.6 ([KS23]). For X € Sch"’¢ with dim(X) < oo, there exists a natural
equivalence
(aprocdtho)(X) >~ K(X)

Proof. For X as above, we have the descent spectral sequences
EY® = Hp (X, K_g) = K_p_q(X),

Ep’q = Hpcdh(X’ TZQIN{_q) = F—p—q(aprocdhKZO(X))’

where K = apmcdhK is the pro-cdh sheafication of the presheaf K; = m; K of abehan

groups, and T>[)K K for ¢ > 0 and T>0K = 0 for 7 < 0. By Theorem |4.5 the
spectral sequences are bounded so strongly convergent. So, it suffices to show that
K; =0fori < 0. By Theorem . , this is reduced to showing K;(R) = 0 for i < 0
and for a pro-cdh local ring R |} Then, for i < 0, we get K;(R) = K;(R/M) =0,
where the first equality follow from the nil-invariance of the negative K-theory and
the last equality follows from [KM21 Th.1.3] since R/M is a valuation ring for
R =V xk Q as in Theorem [4 This completes the proof. O

In the rest of this section, we let F = Q or F,, and let Schi’® be the category of
noetherian schemes over F.

Definition 4.7. For integers n > 0, we define the pro-cdh-local motivic complex
Z( )procdh — aprocdthmZ( )sm c Sthrocdh(SChﬁi‘we,D(Z)),

as the pro-cdh-sheafication of the left Kan extension of Z(n)*™ along Smy — Schp®®.

Theorem 4.8 ([KS23]). There ezists a tower in PSh(Schz®, Sp)

RN Sy (g )

procdh rOthK = F

hK:K’

procd

called the procdh-local motivic filtration on K and equivalences

8T oean & = Z(n)Procdh[2n).

10Here, we used the fact that K is finitary.
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So, we get an Atiyah-Hirzebruch spectral sequence:
EY? = HY Y(X,Z(—q)) = K_p—q(X) for X € Schg*

defining Hi,(X,Z(n)) := HY(Z(n)P°d®(X)).

Proof. By Bhatt-Lurier (see [EHKSY22, Ex. A.0.6]), there is a natural equivalence

KZO >~ LsmK|SmF,

noe

where the right hand side is the left Kan extension of K|gy,, along Smp — Schy
Using Theorem [£.6] the desired filtration on K is obtained by the pro-cdh-sheafifying
the left Kan extension along Smp — Schy of Fy,( K|gm, from Theorem O

Remark 4.9. In view of , Theorem implies that for X € Schy®® with
dim(X) < oo, we have

HY(Z(n)PM(X) =0 fori>2dim(X)+ n. (30)

In particular, F;rocdhK(X) is supported in cohomological degrees < 2dim(X) —n
for each n € N, so the induced spectral sequence is bounded.

4.2 Fiber functors of the pro-cdh topos

In this subsection, we prove Theorem [4.4] except the part of enough points. Let
Shv.(C) be the category of T-sheaves of sets on a site (C, 7).

Definition 4.10. A fibre functor of Shv,(C) is a continuous morphism of topoi
¢* : Shv.(C) & Set : ¢u, or equivalently, a functor ¢* : Shv (C) — Set which
preserves colimits and finite limits.

Definition 4.11. ([SGA41, Thm.IIl.4.1], [SGA41|, 1.8.10.14]) Let T be a topology
on Schg such that every scheme is covered by affine ones. An affine S-scheme
Spec(R) — S is said to be T-local if for every T-covering {Y; — X }icr, the map

HHom(Spec(R), Y:) — Hom(Spec(R), X) (31)
el

18 surjective.

For a topology 7 on Schg as in Definition there is a bijection between fibre
functors of Shv,(Schg) and affine S-schemes Spec(R) — S which are 7-local. To get
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the fibre functor associated to a 7-local ring R, one first replaces R with the pro-

object “lim” Spec(R)y) in Schg, where the limit is over factorisations
Spec(R)—Spec(Ry)—S

with Spec(R)) € Schg. Then the fibre functor is given by
Shv,recan (Schg) — Set : F — F(R) := li F(R)). 32
Verocan (Schs) = Set; s F(R):=  colim F(1) (32)
Example 4.12. (1) The Nisnevich local S-schemes are those Spec(R) — S such
that R is a henselian local ring.

(2) The cdh local S-schemes are those Spec(R) — S such that R is a henselian
valuation ring, [GK15], [GLOI].

Definition 4.13. ([SGA41, Exposé IV, Déf.6.4.1], [SGA41, Exposé IV, Prop.6.5(a)])
A topos Shv,(C) has enough points when a morphism f in Shv.(C) is an isomor-

phism if and only if ¢(f) is an isomorphism for all fibre functors ¢, Def. This

is equivalent to that a family {Y; — X}tier in C is a covering family if and only if

Uierd(Y;) — (X)) is surjective for all fibre functors QSB

By Deligne’s completeness theorem, if C' is an essentially small category with
fibre products, and every 7-covering is refinable by a finite one, then Shv,(C) has
enough points, [SGA42, Prop.VI1.9.0] or |[Joh77, Thm.7.44, 7.17]. Since the pro-cdh
toplogy is not finitary, the last statement of Theorem [£.14] does not follows from the
Deligne theorem.

Now, Theorem [£.4] is a consequence of the following.

Theorem 4.14 ([KS23|). The pro-cdh local S-rings R are those Spec(R) — S
such that R is a henselian local ring and R = O xx A, where A is a local ring of
Krull dimension 0, K is the residue field of A and O is a henselian valuation ring of
KE. If the underlying topological space of S is noetherian of finite Krull dimension,
Shvprocdn(Schg) has enough points.

In what follows, we prove the first statement of Theorem [£.14 The second
statement will be proved in

First, we show that procdh local rings R are of the form described in Theorem
The following composition of a Zariski covering and the procdh covering

{Spec M — A%} L {Spec Oslz, ] U Spec Og[%, y] — A%} (33)
<xn7yn> neN Y

shows that procdh local rings satisfy:

"Here, we have used the same symbol for an object X of C and the sheafification of the presheaf
hom(—, X) it represents.
12For example, R = O and R = A are both pro-cdh local rings.
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(*) Va,b € R; we have a|b or bla or a and b are both nilpotent.

This implies that R,.q is a valuation ring, and in particular, R has a unique minimal
prime ideal n, which equals the set of nilpotents. Moreover, all zero divisors of R
are nilpotent by virtue of the procdh covering

neN

(z", zy) (zy) (y) (zy)

Hence, the map R — Ry, and therefore R — (R/n) X Ry is injective. We claim
that the latter is also surjective. Consider a commutative diagram

0 n R R/n 0 (35)

! } |

0 ﬂRn Rn Ru/an —0

By a diagram chase, n — nR, being surjective implies R — (R/n) Xj(n) Rn being
surjective. For a € nand s € R\ n, (x) implies that there is b € n such that
b/1 = a/s, which proves the desired surjectivity.

So we have shown R — (R/n) Xy Ra is both injective and surjective. The
Krull dimension of R, is zero because n is a minimal prime, and we have already
observed that R/n = Ryeq is a valuation ring, so it suffices to show that R/n is
henselian. But procdh local rings are Nisnevich local rings, also known as henselian
local rings, and quotients of henselian local rings are henselian local rings.

Next, we show that for R = O X A as in Theorem R is a pro-cdh local.
We want to show that is an epimorphism for all procdh coverings. It suffices
to consider the generator coverings described in the definition. Noting that R is

henselian local, the desired lifting condition with respect to Nisnevich coverings
follows from [Stal8, 04GG, Item(7)].

Suppose we have a proabstract blowup square {Z,, — X },en U{Y — X} and
a morphism f : Spec(R) — X. If the image of the induced map Spec(K) —
Spec(O) — X does not lie in Zj, then it lifts through Y because ¥ — X is an
isomorphism over X \ Zy. By the valuative criterion for properness, the lifting
extends to g : Spec(O) — Y. On the other hand, the morphism Spec(A) — X
induced by f factors through the open X\ Zy C X since A is local and the composite
Spec(K) — Spec(A) — X factors through X \ Zy by the assumption. So, it lifts to
a morphism h : Spec(A) — Y. These morphisms g and h factor through some open
affine of Y, so they glue to give a lifting Spec(R) — Y — X since Spec(O xg A) =
Spec(O)Uspec(k)Spec(A) is the categorical pushout in the category of affine schemes.

On the other hand, if Spec(K) — X factors through Zj, then Spec(O) — X also
factors through Zy. The morphism Spec(A) — X doesn’t necessarily factor through
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Zy but Tz, is sent into the maximal ideal of A, which consists of nilpotent elements
of A. Since Zy, is finitely generated, this implies that Spec(A) — X factors through
Zy, for some n > 0. Then, we glue these morphisms as in the previous case to get a
morphism Spec(R) — Z,,, which factors f.

4.3 Homotopy dimension of the pro-cdh topos

Theorem 4.15 ([KS23|). Let S be a qcgs scheme of finite valuative dimension
d > 0 with Noetherian underlying topological space. Then, Shvprocdn(Schs,S) has
homotopy dimension < 2d (see Definition for valuative dimension).

Remark 4.16. There exists a Noetherian scheme of dimension one with procdh
homotopy dimension two.

Corollary 4.17 ([KS23]). Let X be a noetherian scheme and F be a pro-cdh sheaf
of abelian groups on Schx. Then, we have a vanishing of the pro-cdh cohomology:

Hioeqn(X,F) =0 for i > 2dim(X). (36)

Proof. This follows from Theorem and Lemma [6.22 O

In what follows, we give a proof of Theorem [4.15]in case S is noetherian.

Definition 4.18. Let X be a qcgs scheme. By a modification of X, we mean
a morphism of schemes Y — X which is proper, of finite presentation, and an
isomorphism over a dense gc open D C X. We let Modx C Schx denote the full
subcategory of modifications of X. We call a morphism in Modx a modification.

Remark 4.19. (1) fY' =Y, Y” — Y are morphisms in Modx then Y’ xy Y" is
again in Modyx. In particular, Modx admits finite limits, calculated in Schy,
and is therefore is filtered.

(2) We do not ask modifications to be birational, i.e. Y9¢" = X9¢" so that finite
limits in Modx are more nicely behaved. But, we can refine any object in
Y € Modx by Y’ which is birational to X. To see this in case X is noetherian,
let Y — X be a modification which is an isomorphism over a dense open
D C X. Then, letting Y’ be the closure of the image of D — Y, Y’ — X is
as is wanted.

Definition 4.20. Let S be a gcgs scheme. For X € Schg we define

RZ(Xnis) = / Yis-
Y eMod
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Explicitly, RZ(Xnis) € Arr(Schx) is the category whose objects are morphisms U —
Y such that U € Ynis and Y € Modyx, and morphisms are commutative squares

U——=U

L

Y —=Y
We abbreviate U — Y to (U/Y).

Remark 4.21. As it is a category of arrows in a category admitting finite limits,
Arr(Schy ) admits finite limits and they are calculated component wise: lim(A;/B;) =
(lim A;/lim B;). If each (A;/B;) is in RZ(Xnis), then one checks that lim(A;/B;)
is again in RZ(Xnis). Thus, RZ(Xnjs) admits finite limits, and they are calculated
termwise.

Definition 4.22. We equip RZ(Xnis) with a Grothendieck topology generated by:

1. families of the form
{(Ui/Y) = (U/Y)}ier (Nis)
such that {U; — U} is a Nisnevich covering, and
2. families of the form
{(Y xy U)Y") - (U/Y)} (Car)

for morphisms Y’ —'Y in Modx.

We will write Shv(RZ(Xnis)) for the topos associated to the topology generated by
coverings of the form (Nis|) and (Car)).

Remark 4.23. F' € PSh(RZ(Xnis),S) satisfies descent for families of the form
(Car) if and only if it sends each (Y’ xy U/Y’) — (U/Y) to an equivalence Indeed,
assume F' satisfies descent for . If Y - Y in Mody is a closed immersion,
then (Y')*Y™ =Y’ so we have for U' =Y’ xy U

F(U/Y) = lim F(U'/Y")*@m D) « im FU'/Y') = FU'/Y') - (37)

where the first equivalence holds by the assumption. For a general Y/ — Y in Mod x,
also holds since each diagonal Y' — (Y’)*¥™ is a closed immersion in Modx
so F((U')Y")*w/M™) ~ F(U'/Y") by what we have seen. Conversely, if F' sends
families of the form (Car|) to equivalences, then it clearly satisfies Cech descent for
such families. Consequently, we have

Shv(RZ(Xni), §) = | lim Shvwis(Vais, S), (38)
where the limit is along pushforwards fi : Shvnis(Ys, S) — Shvnis(Ynis,S) for
morphisms f: Y’ — Y in Modx.
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Proposition 4.24. Let X be a qcgs scheme and suppose F € PSh(RZ(Xnis), S)
has descent for the coverings (Nis). Then the sheafification aF € Shv(RZ(Xnis),S)
satisfies

aF(U)Y) = colimy e (nmody) y FY'xy U/Y"). (39)

Proof. First we show that the presheaf aF' defined via (39)) is a sheaf. By definition,
a presheaf on RZ(Xyjs) is a sheaf if and only if it has descent for coverings of the
form and in Definition The presheaf aF in the statement certainly
sends modifications to equivalences, so it has descent for coverings of the form

by remarks

For Nisnevich coverings, we notice that a presheaf F' has descent for coverings
of the form if and only if the restriction to the small Nisnevich site Yyis for
each Y € Modx has Nisnevich descent if and only if it sends distinguished Nisnevich
squares to cartesian squares. Take (U/Y') € RZ(Xn;is) and a distinguished Nisnevich
square {Uy — U, Uy — U} with Upy = Uy Xy Uy. Then, for any Y/ — Y in Mody,
we have

F(Y/ Xy U/Y,) = F(Y/ Xy Uo/Y/) XF(Y’XYUol/Y’) F(Y’ Xy Ul/Y,)

by the assumption that F' has descent for (Nis). Taking the colimit over Y’ and
using the fact that filtered colimits commute with fibre products we find

aF'(U/Y) = aF(Uo/Y) Xarwy, /vy el (U1/Y),
which proves that aF is a sheaf.

To conclude that a is the sheafification functor, it suffices to show that if F' is
already a sheaf, then F' — aF is an equivalence. But this is clear, since sheaves
send modifications to isomorphisms, resp. equivalences, by Rem[4.23] O

Proposition 4.25. If X is a qcgs scheme of finite valuative dimension d > 0 with
Noetherian underlying topological space, RZ(Xnis, S) has homotopy dimension < d.

Proof. This follows from [CM21], Cor.3.11, Thm.3.18] (see also Example [6.21]) and
Remark 2). O

Definition 4.26. Let S be a qcgs scheme. For X € Schg, we consider the canonical
projection functor

PX : RZ(XNiS,S) — SChS; (U/Y) — U
and the functor induced by restriction

PSh(Schg, S) — PSh(RZ(Xnis),S);  F— Fopy.
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By composing this with the sheafification functor PSh(RZ(Xnis), S) — Shv(RZ(Xnis), S),
we get
pj( : Sthmth(SChg,S) — ShV(RZ(XNiS),S). (40)

Remark 4.27. Using Proposition 4.24] we have the following concrete description.

(p}F)(U/Y) = COhmY’EModX F(YIXXU).

Recall that a morphism of sites ¢ : C' — D is cocontinuous if for every U € C
and covering family U = {U; — ¢U };cs there is a covering family {V; — U;} such
that {¢pV; — @U }ier refines U, [SGA41) Def.I11.2.1], [Stal8, 00XJ].

Proposition 4.28. Let X be a qcgs scheme of finite valuative dimension with
Noetherian underlying topological space. Then, px s cocontinuous.

Proof of Theorem in case S is noetherian: The proof is by induction on the
Krull dimension d of S. Suppose F' € Shvprocdn(Schg, S) has Feog—1 = *. We want
to show that F'(S) is non-empty. By Proposition and Example

p* = ps : Shvprocdn(Schg, §) — Shv(RZ(Swis), S)

is a left adjoint of a morphism of oco-topoi and preserves n-connective objects so
that (p*F)<a4—1 = *. Since the homotopy dimension of Shv(RZ(Snis),S) is < d by
Proposition the space (p*F')(S) is non-empty. Since

(p*F)(S) = COhmYGModS F(Y)

by Remark we can find a modification Y — S such that F(Y') is non-empty.
Up to refining Y, we can assume that Y8 = S8 by Remark [4.19(2).

If d = 0, we have Y = S and we are done with this step. If d > 0, there
exists a nowhere dense non-empty closed subscheme of finite presentation Zy C S
such that Y — S is an isomorphism over S\Zy and Ey := Zy xg Y is also a
nowhere dense closed subscheme of finite presentation in Y. Note we now have
0 < dim Zy < d—1 and similar for 5. We continue to have (F[sch,, )<24-1 = * and
(Flsehg, )<2d—1 = * by Exam By the induction hypothesis, Shvpocdn(Schz, , S)
and Shvprocdn(Schg, , S) have homotopy dimension < 2d — 2, so by Rem

F(Zn)§1 >~ F(En)gl =« for all n.
Since PSh(N, ) has homotopy dimension < 1 by Exam we get

(}jé% F(Zy))<o = (}Liég F(E,))<o = *,
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which means that these spaces are non-empty and connected. By Prop[4.3] we have
a cartesian square

() F(Y)

| |

hmneN F(Zn) E—— limneN F(En)

where F(Y) is non-empty and both lim,cy F(Z,) and lim,,cy F'(E,) are non-empty
connected. This implies that F'(S) is non-empty as desired. This completes the
proof of Theorem{4.15]

Proof of Proposition in case S is noetherian: For (U/Y) € RZ(Xnis) and a
procdh covering {V; — U}ier in Schg, we want to find a morphism Y’ — Y in
Modx and a Nisnevich covering {W; — U xx Y'},cy, a function J — I; j — i ,
and commutative triangles

Wj--=V

N\

U.

Since procdh coverings are refined by finite length compositions of generator procdh
coverings, it suffices to prove the claim for distinguished Nisnevich coverings and
pro-abstract blowup coverings.

For Nisnevich coverings the statement is obvious since for any (U/Y") € RZ(Xnis),
a Nisnevich covering {U; — U}ier gives rise to a Nisnevich covering {(U;/Y) —

(U/Y)}ier of (U/Y).
Consider (U/Y) € RZ(Xnis) and a pro-abstract blowup covering
U={Z, > Ulpen U{W = U}.

We will find a morphism Y’ — Y in Modx such that letting U’ = U xy Y”, the
morphism U’ — U factors through either W or Z,, for some n. By the noetherian
assumption, U has finitely many generic points so by Lemma [4.31] we can assume
that U is irreducible with the generic point 7. As such it suffices to treat the
following two cases.

Case 1: n € Zy. In this case, (Zp)red = Ured- This means the (finitely many)
generators of Zy, are nilpotent, so Z, = U for some n. Hence, Y’ =Y and the
trivial covering {U — U} give a square on the left of (?77?).

Case 2: n € Zy. We will build a square as on the right of (??) with V; = U’. By
the assumption n &€ Zy, the morphism W — U is an isomorphism over a dense open
subset of U. Since U — Y is étale, W — U — Y is generically flat. More precisely,
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letting 17" C Y be the closure of the image of Zj in Y, the morphism W — Y is flat
over Y\T and T is nowhere dense in Y by the assumption n & Z.

By Raynaud-Gruson [RG71l, Th.5.2.2], [Stal8], 081R], there is a blowup Y’ — Y
with a center contained in 7' such that the strict transform W/ — Y’ of W — Y
is flat. Since U’ := Y’ xy U — Y’ is étale, this implies that W/ — U’ is flat
by Lemma So now we have a flat proper morphism which is generically an
isomorphism. This implies it is globally an isomorphism by Lemma So we
obtain a factorisation U’ & W’ — W — U, which completes the proof of Proposition
4,28

Here are some lemmas that were used above.

Lemma 4.29. Suppose that W — U is any morphism of schemes, U — Y is étale
and W —Y is flat. Then W — U s also flat.

Proof. Exercise. O

Lemma 4.30. Suppose that f: W — U is a flat, proper morphism of schemes, and
D C U is a schematically dense open such that D xy W — D is an isomorphism.
Then W — U is an isomorphism.

Proof. Exercise.

O]

Lemma 4.31. Let Y be a noetherian scheme and U — Y be an étale morphism,
and suppose U™ = ng Uny is a decomposition of the space of generic points of U
into clopens. Then there exists a cartesian square

U,uU, —=U

L

Y’ Y

such that
1. Y' =Y s a proper morphism which is an isomorphism over a dense gc open

of Y, and
2. there are identifications ng = (U{)8™ and m = (U7)5*".

Proof. Let Uy C U and U; C U be the closures of g and n; respectively. Since
UpUU; — U — Y is generically étale, there is some dense open D C Y over which
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it is étale, [Stal8, 07RP], and in particular, flat and of finite presentation. So we can
apply Raynaud-Gruson platification, [Stal8, 081R], to find a blowup Y’ — Y which
is an isomorphism over D C Y, and for which the strict transform UjUU; — Y of
Uy U; — Y is flat. By Lemmathis implies Uy U U; — Y’ xy U is also flat. It
is proper and an isomorphism over a dense open by construction, so it is in fact an
isomorphism, Lem Now the second condition is satisfied, since Uj — U factors
through Uy — Up and this latter is an isomorphism generically by construction. [

4.4 Conservativity of the fiber functors

Theorem 4.32. Suppose S is a qcgs scheme with Noetherian topological space of
finite Krull dimension. Then, Shvprocdn(Schs) has enough points.

Proof. Suppose that Y = {Y; — Y }icr is a family of morphisms in Schg such that
the morphism of sets U;¢(Y;) — ¢(Y) is surjective for every fibre functor ¢. We
want to show that ) is refinable by a procdh-covering. We work by induction on
the Krull dimension of Y, the base case being ¥ = @ with dimY = —1. In this
base case, either I is empty, or I is nonempty and each Y; — Y is an isomorphism.
Both of these are already covering families, so no refinement is necessary.

Now we do the induction step. The functor p3- : Shvrocan(Schg) — Shv RZ(Yis)
from preserves colimits and finite limits by Proposition So by composition,
every fibre functor ¢ of Shv RZ(Yxjs) induces a fibre functor

Sthrocdh(SChS)&; RZ(Yst) i} Set.

By assumption, our family ) is sent to a surjection of sets under each such fi-
bre functor ¢ o pj.. Since the site RZ(Yxis) is finitary so it has enough points
by Deligne’s completeness theorem, it follows that pj,) is a surjective family of
sheaves in Shv(RZ(Yxis)). This means that, locally, we can lift the section idy of
(PyY)((Y/Y)) = homgehg (p((Y/Y)),Y) = homgeno(Y,Y). Explicitly, this means
that there exists a covering {(U;/Y’) — (Y/Y)};cs such that the family {U; —
Y’ — Y}jes refines V. Since Y/ — Y is a modification, there is a nowhere dense
closed subscheme of finite presentation Z; — Y outside of which Y/ — Y is an
isomorphism. Since Y has finite Krull dimension and Zy — Y is nowhere dense,
dim Zy < dimY. So by the induction hypothesis, the pullbacks Z,, xy Y of )V to
each Z, also admit refinements by procdh-coverings (here we are using that fibre
functors preserve finite limits to know that each ¢(Z, xy J) is a surjective mor-
phism of sets). Composing all these procdh coverings produces a procdh-covering
of Y which refines the original ). O
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5 Elmanto-Morrow’s motivic complex

In this section, we let F = Q or F,, and Schi"® be the category of gcgs schemes
over F and review the construction of Elmanto-Morrow’s motivic complex Z(n)FM
as an object of PSh(Schy™®, D(Z)). It is constructed by modifying the cdh-local
motivic complex Z(n)°M using other cohomology theories: Hodge-completed derived
de Rham complexes in case F = Q and syntomic complexes in case F = F,. The
construction is motivated by a pullback square in PSh(Sch9°% Sp):

K—" >T1C |, (41)
K\LH trcdh l
—> Qcdh TC

where KH is the homotopy K-theory, Definition [3.9] and
tr: K — TC, (42)

is the cyclotomic trace ([BHMO93], [DGM13]) and TC is the integral topological cyclic
homology, which is a sort of a ‘linearlisation’ of K and provides a more computable
invariant built from Hochschild homology (see [HIN19] for a survey). The map tr¢?"
is induced by tr via the equivalence KH ~ a.qy K, Theorem [3.10] The pullback
square follows from the latter equivalence and the fact that the fiber of tr is a cdh
sheaf by [LT19, Th. A.3].

For X/Q, TC(X) agrees with HC™(X/Q) = H(X/Q)"S", the negative cyclic
homology. Antieau [Anl9] defined a complete filtration,

{Fﬁm HC(X/@)} on HC(X/0)

and natural equivalences

_ —=>n . n m
&0 Fen HCT (X/Q) = L g[2n] := lim LY, /LOST [2n].

m>n
Here, LS /Q is the derived de Rham complex equipped with the Hodge-filtration

{LQ)Z(T/LQ} . If X = Spec(A), picking a simplicial polynomial resolution P, — A,
neN

> ) >
LQ)—J@ = colimpgepop Q;,qn/@,

n

computed as the total complex of an associated bicomplex. In general LQ% 0 is the
£1)

Zariski sheafification of the presheaf Sch — D(Q); X — LQ%& 0)/0 (see §
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For X/F,, BMS defined a complete filtration

{F]_Q,‘MS T(J(X)}nEN on TC(X)

with associated graded quotients
8Fpys TC(X) = Z(n)™" (X)[2n]

for a natural object Z(n)»" € PSh(Sch%iqs,D(Zp)) called the syntomic complex.

There exists another definition of Z(n)*" using the prismatic cohomology theory of
Bhatt-Scholze (see §5.2)).

Elmanto-Morrow defined Z(n)® so to fit into a pullback square in PSh(Sch%Cqs, D(Z))

—~>n

Z(n)"™ —— LQ~ )

|

—~>n

Z(n)th E—— acdhLQ:/Q
if F = @Q, and a pullback square

Z(n)EM — Z(n)¥®

-

Z(n)°h —— a.qg,Z(n)¥™
if F = IF,, and proved the following..
Theorem 5.1 ([EM23]). There exists a tower in PSh(Schi“®, Sp)
o FEAK — Py K — - — FRuK = K,

and equivalences
g K = Z(n)EM[2n).

So, we get an Atiyah-Hirzebruch spectral sequence:
EPT = Hﬁ;q(X,Z(—q)) = K_, 4(X) for X € Schy®

defining Hi (X, Z(n)) := H'(Z(n)™(X)).

In view of Theorems [5.1] and it is a natural question if two constructions
Z(n)®M and Z(n)Procdh coincide.
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Theorem 5.2 (Kelly-S). For X € Schg® of finite dimension, there is a natural

equivalence
Z(n)Preet(X) = Z(n)"M (X)

functorial in X.

Strategy of the proof: Using Theorem (a description of fiber functors of
Shvprocdn (Schg, Set)) and Theorem [4.5] (the finiteness of its cohomological dimen-
sion), we give a characterization of Z(n)P™°" by a list of properties (see Theorem
below). Elmanto-Morrow showed that Z(n)FM satisfies those properties.

Theorem 5.3. Assume given Z(n) € PSh(Schi“® D(Z)) satisfying the following
conditions.

(a) There is an equivalence 1 : Z(n)™ ~ Z(n)|gm, in PSh(Smp, D(Z)).

(b) Z(n) is finitary, i.e. commutes with filtered colimits of rings.

(c) Z(n) € Shvprocan(Schyp®, D(Z)).

(d) Let ¢ : L""Z(n)"™ — Z(n) be the map in PSh(Schi*® D(Z)) induced from 1
by adjunction. Then, ¢(R) is an equivalence for all pro-cdh local rings R.

Then, ¢ induces an equivalence Z(n)PM(X) ~ Z(n)(X) for any X € Schi*c.
Proof. We apply Theorem [1.4[(1) to F = L*™Z(n)* and G = Z(n). Note that
L¥™Z(n)™™ is finitary by a formal reason and so is Z(n) by (b). Moreover, (c)
implies aprocdnZ(n)(X) = Z(n)(X) for X € Schy®. Hence, the theorem follows
from (d) and Corollary [4.4(1). O
Now, Theorem [5.2] is a consequence of the following.

Theorem 5.4 (Elmanto-Morrow [EM23]). Z(n)™™ satisfies the conditions (a), (b),
(c), (d) of Theorem[5.3

We will give a proof of Theorem in what follows. We start with a brief review
on some basic definitions and facts.

5.1 Hodge-completed derived de Rham complexes

Let CAlg;, be the category of k-algebras and CAlgﬁozy C CAlg;, be the full subcategory
of polynomial k-algebras .
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Definition 5.5. We define a functor LQ_ ;. : CAlg,, — D(k) as the left Kan exten-
sion along CAIgiOly — CAlgy, of the functor

CAIgl™ — D(k) ; R — Q¥ .

where Q;%:/k is the de Rham complex. It is equipped with a decreasing filtration called

the derived Hodge filtration {LQ%%} N by left-Kan extending the Hodge filtration
ne

on Q% . for R € CA|g£Oly- The graded pieces are computed a
LR /105 = Ll ] for R CA,

where L, is the cotangent complex of R/@ JI71]. The Hodge-completed derived
de Rham complex mR/k for R € CAlg, is defined as the limit of the diagram:

N = D(k) 5 n = L/ LG,
We define E?L/k € PSh(Schy, D(k)) as the Zariski sheafication of the presheaf
SCth — D(k’) ) X — mr(X7o)/k.

The derived Hodge filtration induces a complete decreasing N-indexed filtration {m?/lk}
on m,/k

neN

Example 5.6. (i) ([[I71]) For X € Smy, LQx/, = ;.

(ii) ([Bhal2]) If k¥ = C and X is a scheme of finite type over C, H*(I//EZX/(C) is
canonically isomorphic to the singular cohomology with C-coefficients of the
associated C-points of X. -

(iii) ([Bhal2]) Assume ch(k) = 0. If X is of finite type over k, then H* (L ) is
canonically isomorphic to Hartshorne’s algebraic de Rham cohomology [Har75]|El

An important result relevant to the construction of Z(n)* is the following result
due to Antieau [Anl9].

Theorem 5.7. There exists a functorial complete decreasing Z-indexed filtration
{F{ILKR HC_(X/k)} , O negative cyclic homology HC™ (X /k) for X € Schy with
ne

/\Zn

Remark 5.8. If ch(k) = 0, LQ_ j, and HC™ (= /k) / Fijk belong to Shvap,(Schy, D(k)).
13The left hand side is the cofiber in D(k) of LQIZJ;l — LQ}%?]C.
' It is the left Kan extension along CAlgh®"¥ — CAlg, of CAlgi®? — D(k) ; R — Q.
15Choosing a closed immersion i : X < Y with Y € Smy, it is defined as the cohomology of the
formal completion along X of Q% /> which is shown to be independent of i.
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5.2 Syntomic complexes Z(n)%"

By [BMS19], for any qcgs Fp-scheme X, there exists a functorial complete decreasing
N-indexed filtration™]

{F];}MS TC(X)}neN on TC(X) (43)

with associated graded quotients
B s TOX) > Z(n)™"(X)[2n]

for a natural object Z(n)*" € PSh(Schr,,D(Z,)) called the syntomic complex. It
is an analog of the motivic filtration on algebraic K-theory and of deep interest in
arithmetic geometry. For a regular F,-algebra R, we have

Z(n)*"(R) = BT prost (R, W, )[—n] € D(Zp), (44)

where RT o6 (R, WQﬁJg) is a complex which computes the pro-étale cohomology of

Spec(R) with coefficient W, = m W, , where W, are from (14). The

syntomic complex Z(n)®" € PSh(Schr,,D(Z,)) is recovered from as follows.
For each integer r > 0, we define a functor

Z(n)™*(=)/p" : CAlgg, — D(Z/p"Z)
as the left Kan extension along CAIgfﬁZly — CAlgg of the functor
CAIgl? — D(Z/p"Z) ; R — RUe(R, W,Qih,)[-nl,
and define for A € CAlgg,
Z(n)*"(A) :=MmZ(n)>"(A)/p" € D(Zyp).

Then, Z(n)™" is the Zariski sheafication of the presheaf
Sch%i — D(Zy) ; X — Z(n)™(I'(X, 0)).

5.3 Motivic complexes Z(n)*M

A key ingredient is the following pullback square in PSh(Sch, Sp)

K—">T1C | (45)
l trcdh l
KH ——= ag, TC

'6[BMST9] treats quasi-syntomic rings and it is extended to all p-complete rings in [AMMN20].
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where tr°" is induced by tr via the equivalence KH ~ a.q, K (Theorem [3.10)).
The pullback square follows from the latter equivalence and the fact that the fiber
of tr is a cdh sheaf by [LT19, Th. A.3]. A key result in [EM23]| is the following.

Theorem 5.9 ([EM23]). (1) Recall TC(X) = HC™(X/Q) for X € Schg. The
cdh-local trace map tr°" : KH — acqp, HC™(—/Q) as a map in PSh(Schg, Sp)
admits a unique extension to a map of filtered presheaves

FoKH — Fiikracan HC (—/Q),

where the filtration on the left is from Theorem [3.13 and that on the right is
induced from Fgr HC™(—/Q) in Theorem by the cdh sheafication.

(2) The cdh-local trace map tr*™” : KH — acqp TC as a map in PSh(Schg,, Sp)
admits a unique extension to a map of filtered presheaves

FonKH — Fgysacdn TC,
where the filtration on the right is induced from by the cdh sheafication.

Definition 5.10 ([EM23]). (1) For a qcgs Q-scheme X, define a decreasing Z-
indexed filtered spectrum Fgy\K(X) as the pullback in the category of filtered
spectra of the diagram

FaK(X) Fixr HC™ (X/Q)

| |

trcdh

FenKH —— Fiiggacan HC™ (X/Q)

(2) For a qcqs Fp-scheme X, define a decreasing Z-indexed filtered spectrum Fgy K (X)
as the pullback in the category of filtered spectra of the diagram

FanK(X) Fiys TC(X)

| |

. t cdh .
chhKH LI FBMSath TC(X)

Let F denote Q or F,,. For n € Z, Elmanto-Morrow’s weight-n motivic complex
of a qcgs F-scheme X is defined as

Z(n)"M(X) = (g, K (X))[~2n]. (46)
Theorem 5.11 ([EM23]). For any qcqs F-scheme X, the following hold.

(1) Z(n)*M(X) = 0 forn < 0 and F K (X) = K(X), so Fgy K (X) is N-indeved.
If dim,(X) < oo, there exists an integer N such that Fig\K(X) is supported
in cohomological degrees < N — n for each n € N, so it induces a bounded
Atiyah-Hirzebruch spectral sequence (|9)).

39



(2) If F = Q, there exists a pullback square

Z(H)T(X) 0% (47)

—~>n

Z(n)*h(X) < (acan L g)(X)

In particular, Z(n)*M(X) € D(Z).
(2) If F =T, there exists a pullback square

Z(n)"M(X) Z(n)™(X) (48)

| |

SYyn

Z(n) ™ (X) == (acdnZ(n)™")(X)

In particular, Z(n)*™(X) € D(Z).
(3) Z(n)*M is ﬁm’tarﬂ
(4) There is an equivalence Z(n)*™ ~ Z(n)EMlsm]F in PSh(Smp, D(Z)).
(5) For any local F-algebra A, we have an equivalence

L*™Z(n)™(A) ~ 7="Z(n)FM(A),

where TS™ is the truncation in cohomological degrees < n.

(6) Z(n)*M restricted to the category Schiz*® of noetherian F-schemes is a pro-cdh

sheaf (see Definition[{.1] below).
Remark 5.12. (1) There is a map in Shv z4-(Smq, D(Z)):

Z(n)™ — KM [—n] T Q" o [-n] = Q"

—/Q’ (49)

where the first map is from and the second map sends a local section

{21 20} of KM to dlogziA---Ndlogx,. The map ! in is identified

with the cdh-sheafication of the left Kan extension of along Smg — Schg.
(2) For a smooth Fp,-algebra R and an integer r > 0, we have a map

¢r 2 Z(n)™(R) = Rz (R, WrSdiog)[=n] = RU (R, Wi Qo )[—n] = Z(n)™"(R)/p",

where the first map comes from . The map c*¥" in is identified with
the cdh-sheafication of@T L@, , where L ¢, is the left Kan extension of ¢,
along CAIgISF;” — CAlgg,, where CAIg%’: is the category of smooth Fy,-algebras.

1"F € PSh(Sch®%® () is finitary if for any cofiltered diagram A — X in Sch9°® with affine
transition maps, we have an equivalence F(@l}\ X)) ~ lim | F(Xy).
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Remark 5.13. Assume F =T,. From , we obtain an equivalence
Z(n)Procdh /pr ~ Aprocdh L™ Wr Qg
By [EM23, Cor. 4.31] and Corollary this implies a fiber sequence
(@procan ™™ Wi )(X) — Z(n)™™(X)/p" = (acanvr(n))(X)[—n — 1],
for X € SCh{F‘se, where U,(n) is a presheaf of abelina groups given by

vr(n)(A) = Cokelr(C'_1 —1: W, Q% — WTQZ/dVT_IQZfl) for Fp-algebras A.

Remark 5.14. The same argument as the proof of Theorem[].6 proves the following:
Take F € PSh(Sch,C) for C = Sp or D(Z) satisfying the conditions:

(Z) F e Shvpmcdh(Schnoe,C).
(ii) F is finitary.
(i1i) There is N € Z such that F(R) € CZ*NE for any pro-cdh local ring R.

Then, there exists a natural equivalence

aprocdh(F>—N)(X) ~ F(X) for X € Sch™*® with dim(X) < oo. (50)

We give some examples of F' as in Remark For F' € PSh(Sch,(C), put
NilF := fib(F — aeanF') € PSh(Sch, C), (51)
and consider
NilLQ2” ) € PSh(Schg, D(Q)) and NilHC™(—/Q) € PSh(Schg, Sp),
NilZ(n)¥" € PSh(Schg,, D(Z,)) and NilTC € PSh(Schg,, Sp).
Theorem 5.15. (1) Nilffl?/l@ and NilHC™ (—/Q) satisfy (i), (ii), and (iii) with
N =n and N = 0 respectively. So, we have for X € Schiy’ with dim(X) < oo,
R )
apmcdh(NllLQ_/Q)Z,n(X) ~ NilLQy/q;
apfrocdh<Nﬂ HCi(—/Q))ZD(X) ~ Nil HC’(X/Q)
(2) NilZ(n)™™ and NilTC satisfy (i), (ii), and (iii) with N = n and N = 0

noe

respectively. So, we have for X € Schy’® with dim(X) < oo

aprocan(NIZ(n)™) >, (X) ~ NilZ(n)» (X),
Aprocdh (Nll TC) O(X) ~ Nil TC(X)

>
Bie. mF(R) =0 for any i < —N in case C = Sp and H(F(R)) = 0 for i > N in case C = D(Z).
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Proof. The idea of the proof is borrowed from [EM23]. First we prove (1) for
NilLQ g (i) follows from Example [1.2(2). To show (ii) and (iii) with N = n, we
Q

use a fiber sequence in PSh(Schg, D(

— Zn — n
LO” g = LQ_jq — LQf/Q,

where the middle term is a cdh sheaf by Remark It implies an equivalence

> e
NilLQZ g =~ NIILQ_/Q[fl].

So, it suffices to show that NilLQf’;Q is finitary and that NilLQE;ZQ € D(Q)="! for

any pro-cdh-local ring R. The first assertion follows from the fact that L Q=

NL_ /o 1s finitary and that the cdh sheafication of a finitary presheaf is finitary.
As for the second assertion, by the finitarity and Lemma below, it suffices to
show that NilLQI?/IQ € D(Q)=""! for any local rings R such that the ideal 9t C R

of nilpotent elements is finitely generated and R/ is a valuation ring. Then, we
have
(acan LQ™o))(R) = (acan L) (R/M) = LT iy /0 (52)

where the first equality follows from Remark [3.81) and the second from Theorem
Since LQE;‘Q for a local Q-algebra A is supported in degrees < n — 1, we are
reduced to showing the surjectivity of the map

H"—l(mg’;@) — H"—l(LQfg/m) 10)-

This holds since the map is identified with Q%?é — Q?}; /1m) Q"

We deduce (1) for NilHC™ (—/Q) from (1) for Nﬂf/?f?@. By Remark @ we
have NilFjy. HO™ (—/Q) ~ NilHC™ (- /Q), so Fjxr HC™(—/Q) from Theorem [5.7]
induces a complete and exhaustive N-indexed filtration {FﬁKRNﬂ HC™(—/ Q)}

on NilHC™ (—/Q) with identifications

neN

>
g1t NITHC™ (= /Q) = NilLQ™ o [2n].
—~>n
Moreover, for X € Schg with dim, (X) < oo, (iii) for NilLQ— /Q and Theoremim_

ply that F{jzr NiIlHC™ (X/Q) is supported in cohomological degrees < 2 dim, (X)—n,
so the induced spectral sequence

B = H(NlLQy ) = HHNIHC™ (X/Q),
is bounded. Hence, (1) for Nil HC™ (—/Q) follows from (1) for NilL?E?Q.
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Next, we prove (2) for NilZ(n)®". The conditions (i) and (ii) are shown in
1

[EM23] and we recall some arguments here. First, we claim NilZ(n)¥"[;] = 0.
Using the fact that F§,;q TC from naturally splits after inverting p, the claim
is reduced to Nil TC[%] = 0. By (45), the latter follows from fib(K — KH)[%] =0
(see [TTOT7, Th. 9.6]). Thus, it suffices to show (i) and (ii) for Z(n)*"(—)/p noting
that the cdh sheafication of a finitary presheaf is finitary. It is shown in [EM23]|
that Z(n)™"(—)/p admits a finite increasing filtration whose graded pieces are some
shifts of LQ /Fy with ¢ < n, so the desired assertion follows from the finitarity of
LYY JF, and . To show (iii), by the finitarity and Lemma below, it suffices
to show that NilZ(n)»*(R) € D(Q)=" for any local rings R such that the ideal
M C R of nilpotent elements is finitely generated and R/ is a valuation ring. As

, we have
acanZ(n)¥(R) = acgnZ(n)™*(R/MN) = Z(n)¥*(R/MN).
Hence, (iii) with N = n follows from [AMMN20, Th.5.2] noting (R, ) is a henselian

pair. By the same argument as the proof of (1) for HC™ (—/Q), (2) for Nil TC follows
from (2) for NilZ(n)®™ using a bounded spectral sequence

By = H (NIZy(—j)""(R)) = i Nil TC(R),

arising from the filtration . Here, the boundedness follows from the following
fact proved in [EM23]: For X € Schy,, there exists an integer d > 0 such that
Fivs TC(X) is supported in homological degrees > n — d. O

Lemma 5.16 ([KS23]). (i) Any pro-cdh local ring is a filtered colimit of pro-cdh
local rings of V Xk Q as in Theorem [{.1] where Q is an Artinian local ring.
(i) Any pro-cdh local ring V x g Q as in (i) is a filtered colimit of henselian local
rings Ry such that the ideal Yy C Ry of nilpotent elements is finitely generated

and Ry /My is a valuation ring.

We now give a proof of Theorem The conditions (a), (b), (c) follow from
Theorem [5.11(3), (4), (6). We prove (d). By Theorem [5.11}(5), it suffices to prove
Z(n)®M(R) is supported in cohomological degrees < n for any pro-cdh local ring R.

By and (48), there are fiber sequences (cf. (51])
NilLQp g — Z(n)PM(R) — Z(n)“"(R) if F = Q,

NilZ(n)¥"(R) — Z(n)®™M(R) — Z(n)*"(R) if F = F,.
By the same argument as the proof of Theorem [5.15| we have
Z(n)*™(R) = Z(n)*™(R/MN) = (L*"Z(n)>™)(R/N).
So, Z(n)°d(R) is supported in degrees < n by while Nilf@;}l@ and NilZ(n)"™(R)
are supported in degrees < n by Theorem This proves the desired assertion.

43



6 Appendix: Short reviews on basic notions

6.1 Bloch’s higher cycle complexes

Recall the singular homology H,(X,Z) of a topological space X is the g-th homology
of the chain complex

s s(Xg) L s(Xg-1) % L 5(X,0),

X,q) = @ zr] (T': A, = X continuous),

Agop = {($07$1>"' ,$q) S Rq+1 ‘ Z z, =1, x; 2 0},

0<i<q

0 is the alternating sum of the restriction maps to faces of Atop

For integers r,q > 0, Bloch’s higher Chow groups CH" (X, q) of a scheme X of
finite type over k is defined as an algebraic analog of the singular homology. The
algebraic analog of Atop is

A? = Spec (Zlto, - ,t Zt —1)) (53)

with faces A® = {t;, =---=1t;,_, =0} C Aqllﬂ and that of the complex s(X, o) is

(X)L 2 (Xg - 1) T D (X, 0),

= P z,

zeX™(q)

where X™(q) is the set of codimension n points = € X x AY whose closures {x}
intersect properly with X x T in X x AY for all faces T' C AY, i.e.

codimyxr({z} N (X x F)) >n

and 0 is alternating sum of restriction maps to faces of codimension one.

Example: CH"(X,0) = CH"*(X), CHY(X,1) = O(X)*.

194 — A9 gives a cosimplicial scheme A®.
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6.2 The oo-category of spaces

Recall the category A whose objects are the finite ordered sets [n] ;== {0 <1< -+ <
n} and whose morphisms are the order-preserving maps of sets. For a category C,
the category of simplicial objects is the functor category

C2 = Fun(A%,C).

and the category sSet of simplicial sets is defined to be Set® = Fun(A°, Set). For
K € sSet and n > 0, we write K;,, = K([n]) called the set of n-simplices. By Yoneda,
we have K, = Homgser (A", K), where A™ = Homa (—, [n]) € sSet.

For 0 < j < n, we have the i-th face map d; : [n — 1] — [n] defined as the unique
injective map in A which does not have j in its image. For K € sSet, we have the
corresponding map (also called a face map)

dj K, = K, 1.

The geometric realization is a functor | — | : sSet — Top that builds from a
simplicial set X a topological space | X| obtained by interpreting each element in
X, i.e. each abstract n-simplex in X, as one copy of the standard topological
n-simplex Ay, and then gluing together all these along their boundaries to a big
topological space, using the information encoded in the face maps of X on how these
simplices are supposed to be stuck together.

For 0 < j < n, the j-th horn is the union AT = (J 8;(A™1). By definition,
0<i#j<n
(A})g C (A™)y = Homa([gl,[n]) is the set of those morphisms [¢] — [n] whose
images do not contain {0,1,...,g—1,¢+1,...,n}. We also define the union of the
faces
oA™ = | ) s(Aamh.
0<i<n

By definition, (0A™), C (A"™); = Homa([g],[n]) is the set of those morphisms
[¢] — [n] which are not surjective.

A simplicial set X is a Kan complez if for any 0 < j < n and any diagram
A —— K 54
Jj 4 (54)
A

there exists a dotted arrow making a commutative triangle. An example is the
singular simplicial complex of a topological spacelﬂ

29This follows from the existence of retractions of any geometric simplex to any of its horns.
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For a small category C, the nerve N(C) of C' is a simplicial set given by
A — Set ; [n] — Fun([n],C),

where [n] = {0 <1 < --- < n}is viewed as a category by declaring that for i, j € [n],
there exists a unique morphism ¢ — j if ¢ < 7 and no morphism otherwise. By
[Lur09) 1.1.2.2], K € sSet is the nerve of a category if and only if for any 0 < 7 <n
and any diagram , there exists a unique dotted arrow making a commutative
triangle.

Definition 6.1. An oco-category is a simplicial set C' such that for any 0 < j <n
and any diagram , there exists a (not necessarily unique) dotted arrow making
a commutative triangle. An element of Cy is called an object of C' and that of C1
called a morphism. Given two morphism f,g € Ky such that dif = dog giving a
diagram A2 — C, there exists o : A2 — C making a commutative triangle as (54).
Then, dyo € Cy is called a composition of g and f.

For a oo-category C and x,y € Cp, one can define (not easy!) a mapping space
Map(z,y) which is a Kan complex such that for z,y, z € Cp, there is a morphism
of simplicial sets (cf. [DS11])

Mape(z,y) x Mape(z,y) — Mape(z, )

satisfying the identity and associativity properties. A different model of Map(z,y)
is given by relating co-categories to simplicial categories (see (55)). The homotopy
category hC of C' is the 1-category whose objects are the same as those of C' and
Homypc(x,y) = mo(Mapo(z,y)). Note that a morphism z — y in C' as defined in
Definition is viewed as a point of Map-(x,y). A morphism in C is called an
equivalence if it becomes an isomorphism in AC.

Let Cata be the category of simplicial categorieslﬂ Recall sSet € Cata: For
K, L € sSet, the mapping simplicial set Mapgge (K, L) is defined by

A — Set ; [n] — Homgser (K x A", L),

where for X, Y € sSet, X x Y is a simplicial set given by (X xY),, = X,, x Y,,. For
C € Catp, its simplicial nerve NC' is the simplicial set

[n] — Homcat, (C[A"], C),

where €[A"] is the simplicial category whose objects are elements of [n] = {0 <
-+ < n}. For 0 <1i,j <n, the mapping space is defined as

Mapeqar (i,7) = N ({07} € J € {isi+1,....}),

2lie. categories enriched over sSet.
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the nerve of the partially ordered set consisting of subsets J C [0, n| containing {i, 7}
and contained in {i,7+1,...,j}. Composition

Mapgan) (i, 7) X Mapg(an)(Jj, k) = Mapgian (i, k)
is induced by unions. By [Lur09} 1.1.5.5], it gives a functor
C[A®] : A — Cata ; [n] — C[A"],
which extends to a functor € : sSet — Cata via the Yoneda functor A — sSet.

Theorem 6.2. ([Lur09, §2.2, 1.1.5.10, 2.2.5.1]) We have a pair of adjoint funtors
¢ :sSet T Cata : N.

The functor N sends fibrant simplicial categom'eﬁ to oo-categories. For an oo-
category C and x,y € Cy, there are equivalence in sSet

Mapgjc) (7, y) ~ Mape (2, ). (55)

Definition 6.3. The co-category S of spaces is defined as N(Gpd,,), where Gpd,
is the simplicial category of Kan complexes. Note that the objects of S is the Kan
complezes.

6.3 Algebraic K-theory

Fix a (commutative) ring R and let Projp be the groupoid of finitely generated
projective R-modules with isomorphisms. We have an equivalence

Projp ~ L BAut(P),

IR PeProjgp/~ ( )
where BAut(P) is the groupoid with one object * and Hom(x,*) = Aut(P). The
direst sum @ turns Projp into a symmetric monodial category |§| and the set

Projp/ ~ of isomorphism classes is an abelian monoid with product & and the
identity 0.

22j e. those C € Cata such that Map, (=, y) are a Kan complex for all z,y € C.
23i.e. a category S equipped with a functor 0: S x S — S and a distinguished object e € S and
four basic natural isomorphisms

els ~ s, sUe ~ s, sO(t0u) ~ (sO0t)0Ou), sOt ~ t0s,

which are coherent in the sense that two natural isomorphisms of products of si,...,s, built up
from the four basic ones are the same whenever they have the same source and target. Assume
that the isomorphism classes of objects of S form a set denoted by S/ ~. Then, S/ ~ is an abelian
monoid with product OJ and the identity e. The group completion of S/ ~ is called the Grothendieck
group of S and denoted by Ko(S). In case S = Projg. this is Ko(R).
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Recall the inclusion of the categories
{commutative groups} — {commutative monoids}
admits a left adjoint M — MY" called the group completion.
Definition 6.4. Ko(R) = (Projz/ ~)"".
Taking its nerve, every groupoid X is viewed as an object of the co-category & of
spaces, which is 1-truncated, i.e. m;(X,2) =0 for i > 1 and € X. The symmetric

monoidal structure on Projg turns it into a commutative monoid in S, commutative
up to higher homotopies.

Let Mong_ (S) be the co-category of commutative monoids in & and Grpg_ (S)
be its full subcategory of group-like objects, i.e. those M € Mong_ (S) such that
mo(M) are groups. Similarly as above, the inclusion

Grpg,__ (S) — Mong_(S)
admits a left adjoint M — MI".

Definition 6.5. K(R) = (Projg)" € Grpg__(S). Forn >0, K,(R) = m,(K(R)).

Connective K-theory spectrum: K(R) (in fact any object of Grpg_(S)) is an
infinite loop space, i.e. there exists a sequence Ty = K(R),T1,T5,... in S*lﬂ such
that for n > 1, T}, are n—connectivﬂ and T,,_1 = QT,, so it gives an object K(R) of
the oo-category Sp of spectra@ Moreover, it belongs to the full subcategory Sps
of connective spectra T = (Ty, T1,. .. ), i.e. its stable homotopy group -

mi(T) = hﬂ”l‘—kn(Tn)
n
vanishes for i < 0, where the transition maps in the colimit are
7Ti+n(Tn) — 7Ti+n(QTn+1) = 7ri+n+1(Tn+1)-
By the construction, K, (R) = m,(K(R)) for n > 0.

Non-connective K-theory spectrum: The map

Ko(R[t]) ® Ko(R[t™"]) -2 Ko(R[t,t 1))

24The category of pointed spaces and pointed maps.
25 e. 73 (Tn, %) = * for i < n.
26 A spectra is a sequence T = (Ty, T4, ...) in S. with structure maps T,,—1 — QT}, for n > 1.
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is not surjective in general unless R is regular. H. Bass used this to define the
negative K-groups K_1(R) = Coker(¢) and K_,(R) for all n > 0 inductively as the
cokernel of

K1 (BIt]) @ K_a (RIE]) 5 Ko (RIL ),

The definition can be upgraded to a spectrum-level version, a non-connective K-
theory spectrum KP(R) with a natural map K(R) — K?(R) inducing an equiv-
alence K(R) ~ 750K (R), i.e. m(K(R)) ~ m;(KB(R)) for i > 0, and for n > 0,
7_n(KP(R)) = K_,(R) defined above.

Exercise 6.6. Let R = k[z,y]/(y?> — 2® + 2?). Using the Mayer-Vietoris property
below, prove K_1(R) ~ Z. Construct a projective R[x~1] module M which does
not come from a projective R-module via ®gR[z 1.

Theorem 6.7. ([WI13, Ch.III, Th.4.3]) Let f : R — S be a ring map and I be an
ideal of R mapped isomorphically into an ideal of S. Then, there exist a long exact
sequence
Ko(S) ® Ko(R/I) = Ko(S/I) = K_1(R) = K_1(S) & K_1(R/I) — K_1(S/I)
— K_Q(R) — K_Q(S) D K_Q(R/I) — K_2(S/I) — e

Globalisation: Let Sch9°® be the category of qcgs schemes and AffSch be the full
subcategory of affine schemes. Thomason proved the presheaf of spectra

AffSch®? — Sp ; X = Spec(R) — KZ(R)
is a Zariski sheaf, i.e. for any Zariski covering Y — X in AffSch,

KB (X) :@(KB(Y)EKB(Y X x Y)?KB(Y xx Y Xx Y)---)
A

«—

We have the sheafification az, : PSh(Sch9® Sp) — Shvyz,, (Sch9°%® Sp). We extend
K? to Shvza,(Sch°® Sp) by applying aza. to the presheaf

Scha°® — Sp: X — KB (I'(X, 0)).

Notation: In this note, we write K for K? and K> for K.
Projective bundle formula: Let X be a qcgs-scheme and £ be a vector bundle
of tank 7 + 1 over X. Consider the projective bundle P = P(£) — X.

Theorem 6.8. Ky(P) is a free Ko(X)-module with basis {|Op(—1)]| i = 0,...,r}.
The map
Kn(X) ®K0(X) KO(]P)) - Kn(]P))

18 a Ting isomorphism.
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6.4 Sheaves with values in co-categories

We will use the oo-category S of spaces and Sp of spectra. We will use also the
oo-categorie D(A) of unbounded complexes of A-modules for a commutative ring
A. Note that the homotopy category of D(A) is the derived category D(A) of
unbounded complexes of A-modules.

Let T be a small category with fiber products and 7 be a Grothendieck topology
on T. For an oo-category C, let PSh(7,C) = Fun(7T°P,C) denote the co-category
of presheaves on T' with values in C and Shv, (7, C) denote the full subcategory of
PSh(T,C) consisting of 7-sheaves. By definition, F' € PSh(T,C) is a 7-sheaf if for
every X € T and every 7-sieve R C X, the restriction map Map(X, F') — Map(R, F)
is an equivalence. By [AHWI7, Lem.3.1.3], F' € PSh(T,C) is a 7-sheaf if and only
if for any 7-covering family {¢; : Y; — X };c; in T, we have an equivalence

FX)=tim ] P0G xxYi,),
[RIEA (ig,... i)l +1

where

[n]GAOp% U Y. Xx - Xx Y;
(i0,....in)Eln+1

is the Cech nerve of the covering family. If Y = L;c;Y; exists in T, the condition
can be written as

F(X):@(F(Y)EF(Y xXY)gF(Y ><XY><XY)-~~)
A —

By [Lur09 6.2.2.7] the inclusion Shv,(7,C) — PSh(7,C) admits a left-exact left
adjoint called the 7-sheafication

ar : PSh(T,C) — Shv,(T,C).

In what follows, we recall an alternative definition Shv,(7,S) using a model
category. Let PShA(T) be the category of simplicial presheaves on T' equipped with
the injective model structure: the weak equivalences are the objectwise weak equiv-
alences, the cofibrations are the monomorphisms, and the fibrations are determined
by the RLP. For F,G € PSh®(T), the mapping space Map(F,G) is defined as

Map(F, G),, = HomPShA(T)(F x A" G),

where A" is considered as an object of PSh(T') as a constant presheaf. The model
category PSh®(T) is simplicial, proper, and combinatorial [Lur(9, A.2.8.2] so that
we can use the machinery of left Bousfield localizations [Lur(9, A.3.7]: For a set ¥
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of morphisms in PSh?(T), we say F € PSh®(T) is ¥-local if for every f: G — H
in ¥, the induced map

f:Map(H, F) — Map(G, F) (56)

is a weak equivalence. A morphism f : G — H is an X-equivalence if, for ev-
ery X-local F, is a weak equivalence. We define the X-local model structure
Y ~'PSh2(T) on PSh?(T'), whose weak equivalences are Y-equivalences and whose
cofibrations are still the monomorphisms, and whose fibrant objects are the fibrant
objects in PSh™(T') that are X-local. The identity functors give a Quillen adjunction
PSh2(T) < ¥ ~'PSh®(T). Moreover, the right derived functor

Ho(X~'PSh?(T")) — Ho(PSh®(T))
is fully faithful and its essential image is the subcategory of Y-local objects.

Now let 7 be a Grothendieck topology on T" and X, be the set of T-covering
sieves viewed as monomorpshims R — X in PSh® (T') with X representable. Then,
Shv(T,S) is identified with the co-category N((E;IPShA (T))t) associated to the
full simplicial sub-category of the fibrant-cofibrant objects of $='PSh™(T).

6.5 cd-structure
Definition 6.9. ([V10, Def.2.1], [AHWT', Def.2.1.1]) Let T be a category with an
initial object ().

(1) A cd-structure on T is a collection P of commutative squares:

V—sY (57)

|

U——X

such that if Q € P and Q' ~ Q in C, then Q' € P.

(2) The Grothendieck topology Tp on T generated by a cd-structure P is the coars-
est topology such that the empty sieve covers () and that for every square (57))
in P, the sieve on X generated by U — X and V — X is a Tp-covering.

Theorem 6.10. ([V10/, JAHW17, Th.3.2.5]) Let T be a small category with a strict
initial object 77| and P be a cd-structure on C. Assume

1. Every square in P is cartesian.

2Ti.e. any morphism X — () is an isomorphism.
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2. The pullback of every square in P wvia every morphism X' — X in T
exists and belongs to P.

3. For every square m P, U — X is a monomorphism.

4. For every square i P, the following square belongs to P:

|4 Y

N

VxyV—=Y xxY

Then, F € PSh(T,S) is a Tp-sheaf if and only if F(0) ~ x and F send every square
in P to a cartesian square in S.

An easy argument upgrades the above theorem to coeffcients in any oo-category
C admitting all small limits.

Corollary 6.11. Suppose that C be an oo-category admitting small limits, Then,
F € PSWh(T,C) is a tp-sheaf if and only if F()) ~ % and F sends every square in P
to a cartesian square in C.

6.6 Homotopy dimension

Truncated spaces. Recall that for n > —2 one says that a space K € § is n-
truncated if Map(D"2, K) = Map(S™*!, K), where D"+ is the (n 4 2)-disc, S"*!
is its boundary, the (n+1)-sphere, so S° = xLix and S~! := @, [Lur09, Lem.5.5.6.17).
For n > —1, this is equivalent to asking that m;(K, k) = * for all k € mp(K) and all
i > n, [Lur09, p.xiv]. This leads to a decreasing sequence of full subcategories

S+ %’Sgl (—’SgoPSS_l <—’8§_2:{*}
which in low degrees is
S<1 = l-groupoids, S<o = discrete spaces, S<_1={@ — %}, S<_o={x}.

By definition S<,, C S is the subcategory of {S™""!1— D"2?}.local objects, [Lur09,
Def.5.5.4.1], so localisation P¥ at {S™+! — D2} is a left adjoint

(_)Sn S — Sgn

to inclusion@

28 We mean localisation in the sense of [Lur(9, Def.5.2.7.2]. So S — S<,, is the universal functor
sending every morphism in the strong saturation, [LurQ9, Def.5.5.4.5], of {S™** — D"2} to an
equivalence, [LurQ9, Prop.5.2.7.12], [Lur09, Prop.5.5.4.15].

2% Existence of the left adjoint can be deduced from the adjoint functor theorem, [Lur(9,
Cor.5.5.2.9] or constructed directly using the small object argument applied to the set
{S*—D"*'};5,. See Hatcher’s textbook [Hatl Exam.4.17] for an extremely concrete construction.
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The notion of n-truncatedness is extended to a general oco-category T', such as
T = PSh(C,S) or Shv,(C,S) for a small category C with a Grothendieck topology
7, by declaring an object F' € T' to be n-truncated if the mapping space Mapy (G, F')
is n-truncated for all objects G of T'. If T is presentabl@ then the inclusion admits
a left adjoint, [Lur09, Prop.5.5.6.18],

(_)Sn T — Tgn.
Definition 6.12. Forn > 0, we say F' € T' is n-connective if F,_1 >~ *.

Remark 6.13. ([Lur09, Pr. 6.5.1.12]]) F € T is n-connective if and only if T<oF #
0 and m;(F) = * for all i < n, where m;(F) is the categorical homotopy group:

mi(F) := Tgo(FS” ny F)eTyp,

where 1) is induced by the canonical morphism x — S™ and Tgo is the 0-th truncation
on the slice category T)p.

Remark 6.14. If T' = Shv,(C,Set) has enough points, then F' € Shv,(C,S) is n-
connective if and only if a;m;(F) = * for all i < n, where m;(F) is the homotopy
presheaf of F' and a, is the T-sheafification. This follows from Lemma [6.15 below.

Lemma 6.15. ([Lur09, 5.5.6.28 and 6.5.1.4]) If ¢ : T — T’ is a geometric mor-
phism of oo—topoEL then for any F € T', there is a canonical equivalence

¢ (F<i) ~ (¢"F)<i,
and a canonical isomorphism

¢*(mi(F)) =~ mi(¢™(F)).

The following lemma plays a key role in the proof of Theorem [4.15

Lemma 6.16. Let T,T" be co-topoi and X : T — T’ be a functor. If X\ admits a
right adjoint and preserves the final object, then \ preserves n-connective objects for
allm > 0.

Proof. See [Lur(9, 5.5.6.28] and also [KS23| §7.2]. O

Example 6.17. (1) If ® : Shv,(C,S) — Sis any fibre functox@and F € Shv,(C,S),
we have Fo,, = % = O(F)<p = *.

30i.e. T admits all small colimits and is of the form T' = Ind(T”) for some small category T".

31je. there is a pair of adjoint functors ¢* : T’ < T : ¢, such that ¢* preserves finite limits.

32 As in the case of sets, ® is a fibre functor if it preserves all colimits and finite limits, cf.[Lur09,
Rem.6.3.1.2, Cor.5.5.2.9, Thm.6.1.0.6].
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(2) If X € C is any object and F' € Shv(C,S), we have F<), = % = (F|x)<n = *,
where (—)|x : Shv(C,S) — Shv(C/x,S) is the restriction functor with C)x
equipped with the induced topology: coverings in C, x are precisely those fam-
ilies which are sent to coverings in C; the projection C;x — C'is a continuous
and cocontinuous morphism of sites.

(3) Recall that a morphism of sites ¢ : (C,7) — (D, 0) is cocontinuous if for every
U € C and o-covering family U = {U; — ¢U };cs there is a 7-covering family
{Vi — U} such that {¢V; — ¢U}ier refines U, [Stal8l 00XJ]. By [StalS,
00XL], we have a pair of adjoint functors ¢* : Shv,(D) = : Shv,(C) : ¢..
Here, ¢* = a,;¢P where ¢P : PSh(D) — PSh(C) is the restriction along ¢ and
ar : PSh(C) — Shv,(C) is the 7-sheafification and ¢, = ¢, is the right Kan
extension along ¢ which preserves sheaves by [Stal8, 00XK].

As a right adjoint, global sections Map(x, —) does not preserve n-connectivity in
general. Homotopy dimension describes how badly this fails.

Definition 6.18 ([Lur09, Prop.6.5.1.12, Def.7.2.1.1]). One says the co-topos T' has
homotopy dimension < d if the global section functor Map(x,—) : T — S sends
d-connective objects to 0-connective objects, i.e. for every F' € T, we have

I

ngfl = x = MapT(*, F)S—l EN

Note that the latter condition is equivalent to Mapy(x, F') is non-empty.

Remark 6.19. If Shv,(C,S) has homotopy dimension < d, then we have
F§d+n =k = Map(*aF)Sn = %
for all n > —1, [Lur09, Def.7.2.1.6, Lem.7.2.1.7].

Exercise 6.20. Consider the category N = {0 — 1 — 2 — ...}. An object of
PSh(N, S) is a diagram --- — K(2) — K (1) — K(0) and the global sections functor
is given by {K(n)}peny — limpeny K(n). Show that the homotopy dimension of
PSh(N,S) is <1 but not <0

Example 6.21 ([CM21l, Cor.3.11, Thm.3.18]). If C} is a filtered system of ﬁnitary@
excisive{ﬂ sites with colimit C, then Clausen and Mathew show that Shv(C,S) has
homotopy dimension < d if all Shv(C),S) do. Using this they show that for any
qcgs algebraic space whose underlying topological space has Krull dimension < d,
the oo-topos Shv(Xnis,S) has homotopy dimension < d. It also follows from this
that if X is a qcgs scheme of valuative dimension d then RZ(Xpyis) has homotopy
dimension < d.

33 A site is finitary if it has finite limits and every covering family is refineable by a finite one.
34 A site is excisive if for all U € C, the functor F' — Map(U, F) commutes with filtered colimits.
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Lemma 6.22. If T has homotopy dimension< d, then it also has cohomological
dimension< d.

Proof. See [Lur09, Cro.7.2.2.30]. We give a proof in case T = Shv,(C,S). For a
7-sheaf of abelian groups A on C and an integer n > 0, there exists an Eilenberg-
MacLane object K (A,n) € T such that (cf. [Lur09, 7.2.2.17])

1. K(A,n) is n-connective and n-truncated.
2. There exists an isomorphism H"(C, A) ~ mo Map(*, K (A, n)).

Assume n > d. For a € H"(C,.A), a nullhomotopy of a is equivalent to a global
section of the pullback X of

x«—2 s K(A,n)
|

The lemma follows from the fact that X is (n — 1)-connective, which follows from
the long exact sequence of categorical homotopy groups (see [Lur09, 6.5.1.5]). [
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