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Abstract. In this paper, we prove a form of purity property for the � = (P1,∞)-invariant

replacement h�
0 (X) of the Yoneda object Ztr(X) for a proper modulus pair X = (X,X∞)

over a field k, consisting of a smooth proper k-scheme and an effective Cartier divisor on it.
As application, we prove the analogue in the modulus setting of Voevodsky’s fundamental
theorem on the homotopy invariance of the cohomology of homotopy invariant sheaves with
transfers, based on a main result of [20]. This plays an essential role in the development
of the theory of motives with modulus, and among other things implies the existence of a
homotopy t-structure on the category MDMeff(k) of Kahn-Saito-Yamazaki.
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1. Introduction

In a series of landmark papers from the 1990’s ([26], [27], [28]), Voevodsky introduced and
studied the derived category of effective motives DMeff(k) over a field k. It is defined as the
localization of the derived category D(NST) of (unbounded) complexes of Nisnevich sheaves
on the category of smooth correspondences (i.e. the category of smooth schemes with some
extra functoriality, called transfers structure, for finite surjective maps) over k with respect
to the projection maps A1 × X → X. This condition leads to the homotopy invariance of
every homology theory representable in DMeff(k), and is a cornerstone of the construction.
Explicitly, a sheaf F is called homotopy invariant if the natural map

F (X)→ F (X × A1)

induced by the projection X ×A1 → X is an isomorphism. On this note, recall the following

Theorem 1.0.1 (5.6 [27], 24.1[18]). Let F be a homotopy invariant presheaf (of abelian
groups) with transfers on Sm(k). Then the Nisnevich sheaf with transfers FNis associated
with F is homotopy invariant. If k is perfect, the presheaves H i

Nis(−, FNis) have a canonical
structure of homotopy invariant presheaves with transfers.
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The above result is usually called the homotopy invariance of the cohomology and plays a
fundamental role in the theory of motives. Theorem 1.0.1 implies that DMeff(k) is equivalent
to the triangulated subcategory of D(NST) consisting of those complexes having homotopy
invariant cohomology sheaves [28, p. 205] (the perfectness assumption was removed later up
to inverting p in the coefficients. See [24]). Another consequence of 1.0.1 is the fact that
the standard t-structure on the derived category D(NST) induces a t-structure on DMeff(k),
whose heart is equivalent to the category of homotopy invariant sheaves. This is the so-called
homotopy t-structure. Thus, thanks to Voevodsky’s result, the category of motives, abstractly
defined as a Bousfield localization of D(NST), admits a fairly concrete description.

Imposing A1-invariance is enough for capturing many geometric and arithmetic proper-
ties of smooth schemes. However, it was already noticed by Voevodsky in [28, 2.2] that
this is too much to ask in other interesting situations. For example, the Picard group
Pic(X) of a smooth k-scheme X is canonically isomorphic to the motivic cohomology group
HomDMeff(k)(M(X),Z(1)[2]), where M(X) denotes the image of the Yoneda object Ztr(X)

of X in DMeff(k). On the other hand, we do not have any “motivic” description for Pic(X)
when X is a singular variety, since the functor X 7→ Pic(X) considered on Sch(k) (rather
then on Sm(k)) is not A1-invariant.

But even if one is interested in smooth schemes only, there are natural objects which do
not admit a description in Voevodsky’s world. Perhaps the most striking example is given
by the abelianized fundamental group πab1 (−) computed on smooth varieties over positive
characteristic fields. In this case, it is well-known that πab1 (A1

k) is far from being trivial,
due to the existence of the Artin-Schrier covers x 7→ x − xp. Other examples are given by
the sheaves of differential forms Ω∗−, the de Rham-Witt complexes, W∗Ω

∗
− (see e.g. [4]), the

commutative algebraic groups (with unipotent part) considered as sheaves with transfers (see
e.g. [23]), as well as the natural generalization of Bloch’s higher Chow groups, like additive
Chow groups [15], [16] and the higher Chow groups with modulus [2], [13].

With the goal of developing a theory of motives in which non A1-invariant objects can be
represented, the second author together with Kahn and Yamazaki introduced a generalized
framework in [12], [10], [11], [20], based on the principle that the category of smooth schemes
over k should be replaced by the larger category of modulus pairs, MCor(k) over a (perfect)
field k. Objects are (as the name suggests) pairs X = (X,X∞) consisting of a separated
k-scheme of finite type X and an effective (possibly empty) Cartier divisor X∞ on it (the
modulus) such that the complement X \X∞ = X is smooth. Morphisms are given by finite
correspondences between the smooth complements, subject to certain admissibility conditions.
Together, they form a symmetric monoidal category. See 2.1 for the precise definition. Write
MPST for the category of additive presheaves of abelian groups on MCor(k), and MPST
for the subcategory of presheaves defined on the smaller category MCor of proper modulus
pairs, i.e. pairs X = (X,X∞) such that the total space X is proper.

The idea behind this is that the pair X looks like a (partial) compactification of the smooth
scheme X in which the scheme structure of the boundary (the divisor X∞) plays a non-trivial
role. This approach is inspired by the theory of cycles with modulus [2], [13], a generalization
in higher dimension of the classical theory of Jacobian varieties of Rosenlicht and Serre [22].

In this context, the role played by the affine line in Voevodsky’s world is played by its
compactified cousin

� = (P1,∞)

i.e. the projective line P1, with reduced divisor at infinity (informally called “the cube”).
The key property which replaces A1-invariance is the so-called cube invariance: a presheaf of
abelian groups F on MCor(k) is called �-invariant if for every (proper) modulus pair X the



SEMI-PURITY FOR CYCLES WITH MODULUS 3

canonical map
F (X)→ F (X⊗�)

induced by X ⊗ � → X is an isomorphism. We write CI ⊂ MPST for the category of �-
invariant presheaves with transfers on modulus pairs. Starting from this, it is possible to define
a new category of effective motivic complexes, MDMeff(k), obtained as localization of the
category of complexes of Nisnevich sheaves with transfers on MCor(k) (note that the sheaf
property is rather subtle in this context, see §2.1 and [10, 3]) with respect to the projection
maps X ⊗ � → X. The canonical forgetful functor X = (X,X∞) 7→ ω(X) := X = X \ X∞
induces then an adjoint pair

ωeff : MDMeff(k)� DMeff(k) : ωeff

which satisfies the property that ωeff(M(X)) = M(X, ∅) for every smooth and proper k-
scheme X. See [10, 7.3]. The functor ωeff is fully faithful, so that Voevodsky’s category
DMeff(k) can be presented as a further localization of the bigger category MDMeff(k).

We now have all the ingredients to state one of the main results of the present paper.

Theorem 1.0.2 (see Theorem 2.2.1). Let F ∈ CIτ be a �-invariant presheaf with transfers.
Then for every X ∈MCorls, the map

H i(XNis, FNis)→ H i((X⊗�)Nis, FNis)

induced by X⊗�→ X is an isomorphism (see §2.1 for the notation FNis and Hq(XNis, FNis)).

The superscript CIτ denotes the essential image of CI under τ! : MPST→MPST, i.e. the
left Kan extension of a presheaf defined on proper modulus pairs to a presheaf defined on every
modulus pair, while the subscript MCorls stands for the subcategory of log smooth modulus
pairs, i.e. X = (X,X∞) such that X is smooth and |X∞| is a strict normal crossing divisor
on X.

As in Voevodsky’s case, Theorem 1.0.2 implies the existence of a homotopy t-structure
(under an assumption on resolution of singularities, see 2.3, Theorem 2.3.5, [11, Thm. 4 and
Thm. 3.7.1]) on MDMeff(k), whose heart is equivalent to the category CINis of �-invariant
Nisnevich sheaves.

Another consequence is the following result on the representability of the cohomology of
�-invariant sheaves. Let MDMeff(k) be the analogue of MDMeff(k) built out of the bigger

category MCor, and let L� : D(MNST) → MDMeff(k) be the localization functor, where
MNST ⊂MPST is the full subcategory of Nisnevich sheaves.

Theorem 1.0.3 (see Theorem 2.3.1). Let F • be a complex of Nisnevich sheaves with transfers
on MCor be such that H i(F •) ∈ CIτNis = τ!CINis for all i ∈ Z. For X ∈MCorls, there exists
a natural isomorphism

HomMDMeff(k)(M(X), L�(F •[i])) ∼= H i
Nis(X, F

•).

As application, we get the following description (see 2.3.3) of relative Suslin homology [19]
for proper modulus pairs X:

Hi(X,X∞) = HomMDMeff(k)(ω
effM(Spec (k)),M(X)[−i])

which gives in particular the representability of the Kerz-Saito Chow group of zero cycles with
modulus in MDMeff(k), over any perfect field. Note that thanks to 1.0.2, the assumption on
resolution of singularities in loc.cit. is now removed).

Thanks to [20], Theorem 1.0.2 was previously known to hold under the extra assumption
of semi-purity of the sheaf FNis. In informal terms, this property can be understood as an
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analogue of the Gersten property in the modulus setting: let (O, (Π)) be a pair consisting of
a regular henselian ring O (essentially of finite type over k), and (Π) is the ideal generated by
a non-zero element Π in the maximal ideal of O. We think (O, (Π)) as limit object of MCor
in the usual way. Let K be the function field of O. Then a Nisnevich sheaf F on MCor is
semipure if the map

F (O, (Π))→ F (K, ∅)
is injective for every such pair (this definition is actually slightly stronger then the one used in
the paper, see 2.1). Unfortunately, this property is not satisfied by every object in CIτNis. It
is however (somehow surprisingly) satisfied by a large class of objects: the Nisnevich sheaves

of the form τ!h
�
0 (X)Nis for every modulus pair X = (X,X∞) with X smooth and projective.

The symbol h�0 (−) denotes the �-replacement functor on MPST (i.e. the left adjoint of
the inclusion CI ⊂MPST, see 2.1), applied then to the representable presheaf Ztr(X). This
is the analogue of the Suslin-Voevodsky h0(−) construction (see [25], [18]). The key result of
this paper is then the following

Theorem 1.0.4 (see Theorem 2.1.3). For X ∈MCorproj, τ!h
�
0 (X)Nis is semi-pure.

The proof of this result, which can be reformulated into a problem about algebraic cycles,
occupies Sections 3-6. From this, it is possible to prove Theorem 1.0.2 without semi-purity
assumptions on F , together with all the other mentioned corollaries.

We now briefly discuss the contents of the different sections, and we give some ideas about
the proofs.

Section 2 contains a recollection of definitions and results from [10], [11] and [20], together
with the exact statements of the main theorem and some applications. We then begin with
the proof of the semipurity result for modulus pairs of dimension 1 (i.e. for curves). This
is achieved by means of a direct and explicit computation in Section 3. In fact, we prove a
more general result, namely Theorem 3.1.2. To pass from the case of curves to the case of
surfaces, we need to develop some moving techniques for cycles with modulus, and we do so
in Section 5 after some preliminaries in Section 4. The idea behind the technical arguments
in Section 5 is ultimately simple, and goes back to the Bloch-Quillen’s formula, relating the
group of 0-cycles on a surface to the cohomology of the sheaf K2. Let us explain it for the
reader’s convenience.

Let X be a regular integral surface defined over a field F and let η be its generic point.
Recall that the sheaf K2,X has a Gersten resolution

(1.1) 0→ K2,X → ιη,∗K2(k(η))
T−→

⊕
y∈X(1)

ιy,∗K1(k(y))
∂−→

⊕
x∈X(2)

ιx,∗K0(k(x))

where the first map T is the tame symbol T = (Ty)y∈X(1) and ∂ agrees with the divisor map

under the identification
⊕

x∈X(2) ιx,∗K0(k(x)) = Z0(X), where the latter denotes the free
abelian group of zero cycles on X. The cokernel of ∂ is then canonically identified with the
Chow group of zero cycles CH0(X). It is a well known fact (first discovered by Bloch [3]) that
(1.1) is a flasque resolution of the sheaf K2,X , so that H2(X,K2,X) ∼= CH0(X). The important
remark for us, however, is simply the fact the (1.1) is a complex, so that the composition ∂ ◦T
is zero in the free abelian group Z0(X), and that the image of ∂ is the subgroup of zero cycles
rationally equivalent to zero.

In particular, we can add to any class γ =
∑

y(fy) ∈
⊕

y∈X(1) K1(k(y)) for rational functions

fy ∈ k(y)×, an element of the form T{a, b} without altering the image under ∂, i.e. without
altering the cycle ∂(γ), rationally equivalent to zero. We call any such class T{a, b} a moving
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symbol. A careful choice of {a, b} ∈ K2(k(η)) allows us to rearrange in a convenient way any
relation in the Chow group.

In geometric terms, this can be summarized as follows. Assume that X is quasi-projective.
Suppose for simplicity that ∂(γ) = divZ(f), for an integral curve Z ⊂ X, and that Z is the
zero locus of a global section s of a very ample line bundle on X. Choose another section t of
the same line bundle so that s/t ∈ k(η)× is a rational function on X. Next, choose another
rational function a/b, ratio of two global sections of a (possibly different) line bundle on X
which gives a global lift of the rational function f on Z. We now have

∂T ({s/t, a/b}) = divZ(f)− div(t)(a/b) + div(a)(s/t)− div(b)(s/t) = 0 ∈ Z0(X)

so that divZ(f) is now the sum of 3 new cycles. The key observation is that the global
sections a, b and t can be chosen in a very controlled way by means of suitable applications
of Bertini-type theorems, giving a good control on the newly found cycles.

In our application, this simple picture becomes substantially more intricate. The regular
surface X is replaced by the smooth generic fiber X = XK of an integral relative surface X
over the spectrum of a henselian local ring O, which comes equipped with an effective Cartier
divisor D , surjective over S = Spec O. We briefly mention the three main points that we have
to address.

First, we need to impose some extra conditions on the rational functions on the curves
on X, the modulus condition, i.e. we have to replace K1(k(y)) with suitable relative K1

groups with respect to the divisor D ×S K on X (see 5.1). Second, we need to work with
a subgroup of the group Z0(X), generated by closed points in X whose closure in X has a
special behavior with respect to the special fiber Ds of D . We call it the modulus condition
over O (see Definition 3.1.1). Finally, the global sections like a, b and t above need to have a
model over S satisfying a (rather weak) good intersection property with respect to Ds. This
is achieved by means of some new Bertini-type theorems over a local base, which we develop
in Section 4.

With a suitable combination of these moving techniques, the global injectivity result, The-
orem 2.1.3, can be then reduced from the case of surfaces to the case of curves.

Finally, in Section 6, we complete the proof in arbitrary dimension. This is essentially
achieved by reducing to the case of surfaces, using again the Bertini theorems of Section 4.

Notations and conventions. Throughout this paper, k will denote a fixed ground field and
O a Noetherian local domain, whose residue field is a finite extension of k (most of the time,
O will be essentially of finite type over k). We write K for the function field of O.

We will use Roman capital letters to denote schemes over k or over K, and we follow
the convention that Script letters (like X ) will denote schemes over O. Our main object of
interest is the category of modulus pairs MCor over k (see Section 2.1), and its variants.
Objects of MCor will be denote by Gothic letters (like X).

2. Main theorem and applications to �-invariant sheaves

2.1. Review on basic definitions and statement of the main theorem. We collect
some basic definitions and results from [10]. We fix a base field k which is assumed to
be perfect. Let Sch be the category of k-schemes separated and of finite type over k and
Sm ⊂ Sch be the full subcategory of smooth schemes. Let MCor be the category of modulus
pairs: The objects are pairs X = (X,X∞) with X ∈ Sch and a (possibly empty) effective
Cartier divisor X∞ ⊂ X such that X − |X∞| ∈ Sm. A modulus pair X = (X,X∞) is proper
(resp. projective) if X is proper (resp. projective) over k. Let MCor ⊂ MCor be the full
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subcategory of proper modulus pairs and write MCorproj for the subcategory of projective
modulus pair. A basic example of an object of MCor is the cube

� := (P1
k,∞).

An admissible prime correspondence from X = (X,X∞) to Y = (Y , Y∞) is a prime corre-
spondence V ∈ Cor(X,Y ) with X = X − |X∞| and Y = Y − |Y∞| satisfying the following
condition

X∞|V N ≥ Y∞|V N ,

where V
N → V ⊂ X × Y is the normalization of the closure of V . It is called left proper if

V is proper over X. We denote by MCor(X,Y) ⊂ Cor(X,Y ) the subgroup generated by
left proper admissible prime correspondences. By [10, Prop 1.2.3] MCor(X,Y) is preserved
by the composition of finite correspondences so that we can define the category MCor with
objects the modulus pairs and morphisms given by admissible left proper correspondences.
We denote by MCor the full subcategory with objects the proper modulus pairs.

Let MPST (resp. MPST) be the category of additive presheaves of abelian groups on
MCor (resp. MCor). For F ∈ MPST and X = (X,X∞) ∈ MCor write FX for the
presheaf on the étale site X ét over X given by U → F (XU ) for U → X étale, where XU =
(U,X∞×X U) ∈MCor. We say F is a Nisnevich sheaf if so is FX for all X ∈MCor (see [10,
Section 3]).

We write MNST ⊂ MPST for the full subcategory of Nisnevich sheaves. By [10, Prop.
3.5.3] the inclusion MNST → MPST has an exact left adjoint aMNis such that (aMNisF )X
is the Nisnevich sheafication of FX for F ∈ MPST and X = (X,X∞) ∈ MCor. Write
FNis = aMNisF for F ∈MPST. For F ∈MNST, we write

(2.1) H i(XNis, F ) = H i(XNis, FX) for F ∈MNST.

We let MNST ⊂ MPST be the full subcategory of those F such that τ!F ∈ MNST. By
[10, Prop. 3.7.3] the inclusion MNST → MPST has an exact left adjoint aNis such that
aMNisτ! = τ!aNis.

By [10, Prop 2.2.1, Prop 2.3.1, Prop 2.4.1] there are three pairs of adjoint functors (ω!, ω
∗),

(ω!, ω
∗) and (τ!, τ

∗):

(2.2) PST
ω∗
//MPST

τ∗
//

ω!oo
MPST

ω! //τ!oo
PST,

ω∗
oo

which are given by

ω∗F (X,X∞) = F (X \ |X∞|), ω!H(X) = H(X, ∅),(2.3)

ω∗F (X,X∞) = F (X \ |X∞|), ω!G(X) ∼= lim−→
X∈MSm(X)

G(X),(2.4)

τ∗F (X) = F (X), τ!G(U) ∼= lim−→
X ∈Comp(U)

G(X),(2.5)

where MSm(X) is the subcategory of MCor with objects the proper modulus pairs (X,X∞)
such that X − |X∞| = X and the morphisms of modulus pairs which map to the identity
in Cor(X,X), and Comp(U) is the category of compactifications of U = (U,U∞), namely
objects are proper modulus pairs X = (X,U∞ + Σ), where U∞ and Σ are effective Cartier
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divisors on X so that X \ |Σ| = U and U∞|U = U∞, and the morphisms are those which map

to the identity in MCor(U,U). The functors ω!, ω!, τ! are exact and we have

ω! = ω!τ! and τ!ω
∗ = ω∗.

We now introduce two basic properties of MPST and MPST. The fist property is semi-
purity

Definition 2.1.1. We say F ∈MPST is semi-pure if the unit map F → ω∗ω!F is injective.

The second property is an analogue of homotopy invariance exploited by Voevodsky. In
order to make sense of it, recall that the categories MCor and MCor enjoy a symmetric
monoidal structure defined as follows. For X = (X,X∞) and Y = (Y , Y∞), the modulus pair
X⊗Y is given as

X⊗Y = (X × Y ,X∞ × Y +X × Y∞).

See [10, 1.4]. We can now give the following definition:

Definition 2.1.2. We say F ∈ MPST (resp. F ∈ MPST) cube invariant if for any X ∈
MCor (resp. X ∈MCor), the pullback along X⊗�→ X induces an isomorphism

F (X) ∼= F (X⊗�).

We write CI ⊂MPST and CI ⊂MPST for the full subcategories of cube invariant objects,
and CIτ ⊂MPST for the essential image of CI under τ! : MPST→MPST. We also write
CIτNis = CIτ ∩MNST.

By [20, Lem.1.16], we have

(2.6) CIτ ⊂ CI and CI = τ−1
! (CI).

By [11, Prop. 3.2.6(1)] the inclusion CI→MPST admits a left adjoint h�0 given by

h�0 (F )(Y) = coker
(
F (X⊗�)

i∗0−i∗1−→ F (Y)
)

for F ∈MPST, Y ∈MCor,

where iε : (Spec k, ∅) → � is the morphism in MCor induced by a k-rational point ε ∈
P1 − {∞}. For X ∈MCor we write

h�0 (X) = h�0 (Ztr(X)),

where Ztr(X) = MCor(−,X) ∈MPST is the Yoneda object of X. By abuse of notation we

write h�0 (X) for τ!h
�
0 (X). By [10, Lem. 1.8.3] and (2.5) and the exactness of τ!, we have

h�0 (X)(U) = coker
(
MCor(U⊗�,X)

i∗0−i∗1−→ MCor(U,X)
)

for U ∈MCor.

Finally we write h�0 (X)Nis = aMNish
�
0 (X). We now state the main theorem of this paper.

Theorem 2.1.3. For X ∈MCorproj, h�0 (X)Nis is semi-pure.

2.2. Strict �-invariance of �-invariant sheaves. Let MCorls ⊂MCor be the full sub-
category of objects (X,X∞) with X ∈ Sm and |X∞| a simple normal crossing divisor on X.
As an application of Theorem 2.1.3, we prove the following theorem, which plays a funda-
mental role in theory of motives with modulus.

Theorem 2.2.1. For F ∈ CIτ and X ∈MCorls, we have an isomorphism

π∗ : Hq(XNis, FNis) ' Hq((X⊗�)Nis, FNis)

for any integer q ≥ 0, induced by the projection π : X⊗�→ X.
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Proof. By [20, Theorem 0.6 and 0.8], the assertion holds if we assume further that F is
semi-pure. In general we may write F = τ!G with G ∈ CI. We have the surjective map in
MPST ⊕

α∈G(Y)

Ztr(Y)→ G,

where the direct sum ranges over all Y ∈ MCor and α ∈ G(Y), which induce the Yoneda
maps α : Ztr(Y) → G in MPST. By Chow’s Lemma, we can in fact assume that the sum
ranges over Y ∈MCorproj. Since G ∈ CI, it factors through a surjective map

P :=
⊕

α∈G(Y)

h�0 (Y)→ G.

Let H be its kernel so that we have an exact sequence in CI

0→ K →
⊕

α∈G(Y)

h�0 (Y)→ G→ 0.

By the exactness of τ! and aMNis this induces an exact sequence

(2.7) 0→ aMNisτ!K → H → F → 0 with H = aMNis(τ!P ) =
⊕

α∈G(Y)

h�0 (Y)Nis.

By Theorem 2.1.3 H is semi-pure and hence so is aMNisτ!K (see [20, Lemma 1.25]). Moreover
H and aMNisτ!K are in CIτ by [20, Theorem 0.6] and (2.6) and [10, Proposition 3.7.3]. Hence
Theorem 2.2.1 holds for H and aMNisτ!K. Now it holds also for F by the long exact sequence
of cohomology groups arising from (2.7). �

2.3. Representability of cohomology of �-invariant sheaves. Recall that the category
MDMeff(k) is defined as the the �-localization (see [10, §6.3]):

L� : D(MNST)→ D(MNST)� := MDMeff(k).

of the (unbounded) derived category of sheaves D(MNST). For X ∈ MCor let M(X) =

L�(Ztr(X)) (the motive of X).

Theorem 2.3.1. Let F • ∈ D(MNST) be such that H i(F •) ∈ CIτNis for all i ∈ Z. For
X ∈MCorls, there exists a natural isomorphism

HomMDMeff (M(X), L�(F •[i])) ∼= H i(XNis, F
•).

Proof. Let

�
n
ν = ker

(
⊕
i

(pi)∗ : Ztr(�
⊗n

)→
⊕

1≤i≤n
Ztr(�

⊗n−1
)
)
,

where pi : �
⊗n → �⊗n−1

is the projection omitting the i-th component. By [10, 5.6.3] it
suffices to show that the natural map

F • → RC∗(F
•) := HomD(MNST)(�

•
ν , F

•)

induces an isomorphism H i(XNis, F ) ' H i(XNis, RC∗(F )). By [10, Proposition 3.7.12], the
category D(MNST) is left t-complete, i.e. for any object F • the canonical map

F • → holim←−−−
n

τ≥−nF
•
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is an equivalence. Combining this with the equivalence F • → hocolim−−−−−→n
τ≤nF

• (right com-

pleteness), we may assume up to a shift that F • = F [0] for some F ∈ CIτNis. Thus we are
reduced to show that for X = (X,X∞) ∈MCorls with X henselian local,

H i(RC∗(F ))(X) = 0 for i 6= 0 and F (X) ' H0(RC∗(F ))(X).

Let F → I• with I• ∈ K(MNST) be an injective resolution. Then

H i(RC∗(F ))(X) ' H i(Tot
(
HomMNST(�

•
ν , I
•)(X)

)
)

' H i(Tot
(
HomMNST(Ztr(X)⊗�•ν , I•)

)
).

Hence we have a spectral sequence

Ep,q1 = Hq(HomMNST(Ztr(X)⊗�−pν , I•))⇒ Hp+q(RC∗(F ))(X).

Noting

Hq(HomMNST(Ztr(X)⊗�−pν , I•)) ' Hq((X⊗�−pν )Nis, F ),

we get Ep,q2 = 0 unless p = q = 0 by Theorem 2.2.1. This complete the proof. �

For F ∈MNST, let C∗(F ) be the Suslin complex with modulus (see [11, Def.3.2.4]). It is
a complex in MNST whose non-zero terms are in non-positive degrees and whose term in
degree −n for n ∈ Z≥0 is given by

Cn(F )(Y) := HomMNST(Ztr(Y)⊗�nν , F ) (Y ∈MCor).

Corollary 2.3.2. For X ∈MCorls and F ∈MNST, there exists a natural isomorphism

(2.8) HomMDMeff (M(X), L�(F [i])) ∼= H i(XNis, τ!C∗(F )).

In particular, we have a natural isomorphism

(2.9) HomMDMeff (M(X),M(Y)[i]) ' H i(XNis, τ!C∗(Y)) for Y ∈MCor.

Proof. By Lemma 2.3.4 below, the natural map F [0]→ C∗(F ) induces an isomorphism

L�(τ!F [0]) ∼= L�(τ!C∗(F )) in MDMeff .

Hence the first assertion follows immediately from Theorem 2.3.1. �

Remark 2.3.3. Let Y = (Y , Y∞) ∈MCor be a proper modulus pair. Taking X = (Spec k, ∅),
(2.9) implies a natural isomorphism

HomMDMeff (M(Spec k, ∅),M(Y)[−i]) ∼= Hi(Y , Y∞),

where the right hand side is the Suslin homology considered in [19, Definition 3.1] and gen-
eralizing the homology defined by Suslin and Voevodsky in [25] (see [11, Rem. 3.3.2(1)]). In
particular we have a natural isomorphism

HomMDMeff (M(Spec k, ∅),M(Y)) ∼= CH0(Y , Y∞),

where the right hand side is the Chow group of zero-cycles with modulus considered in [13].

We consider the �-localization:

L�,p : D(MPST)→ D(MPST)�,

L� : D(MNST)→ D(MNST)� := MDMeff(k),

Lemma 2.3.4. For F ∈MNST, L�(F ) ' L�(C∗(F )) in MDMeff(k).
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Proof. We have a functor

aNis : D(MPST)� → D(MNST)�

induced by the exact functor aNis : MPST→MNST. By [11, Theorem 2.6.4 and 2.8.1], for
G ∈MPST we have an isomorphism in D(MPST)�:

(2.10) L�,p(G) ' L�,p(C∗(G)p),

where C•(G)p = HomMPST(�
•
ν , G). Hence, for F ∈ MNST we get an isomorphism in

MDMeff(k):

L�(F ) ' L�(aNisiNisF )
(1)
' aNisL

�,p(iNisF )
(2)
' aNisL

�,p(C•(iNisF )p)

(3)
' L�(aNisC∗(iNisF )p)

(4)
' L�(C•(F )),

where (1) and (3) follows from the commutativity of the diagram (see [10, Proposition 6.3.2])

D(MPST)
L�,p
//

aNis

��

D(MPST)�

aNis

��
D(MNST)

L�
// D(MNST)�

,

and (2) follows from (2.10), and (4) follows from an isomorphism

C∗(F ) ' aNisC∗(iNisF )p

which is obtained by applying aNis to [11, (3.5)]. �

As further application, we remind the reader of the following result, which uses Theorem
2.2.1 as geometric input in a crucial way, and that is parallel to one of the main results of
[28]. In order to apply the results of [20], we assume that the following condition (which is a
form of resolution of singularities) holds.

(RS) For any X ∈ Sm, there exists an open immersion X ↪→ X such that X is smooth and
proper over k and that X −X is the support of a simple normal crossing divisor on
X.

Theorem 2.3.5 (see [11], Theorem 4 and Theorem 3.7.1). Assume that k has resolution
of singularities (RS). The standard t-structure on D(MNST) induces a t-structure, the ho-
motopy t-structure on MDMeff(k) via the inclusion MDMeff(k) ↪→ D(MNST). Its heart
is CINis, which is a Serre subcategory of MNST. Moreover, we can identify the image of
MDMeff(k) in D(MNST) as

MDMeff(k) = {F • ∈ D(MNST) |H i(F •) ∈ CINis for every i ∈ Z}

We remark that the assumption (RS) is necessary since Theorem 2.2.1 is proved only for
X ∈MCorls. See the [11, 3.7].

3. Semi-purity for relative curves

In this Section, we prove a variant (in fact, a generalization) of Theorem 2.1.3 for relative
curves. This is generalization is necessary for the reduction of the main theorem from case of
relative surfaces to the case of relative dimension 1.
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3.1. Statement and first reductions. Let O be a local normal domain and fix a non-zero
element Π ∈ O. Let C be a normal scheme proper surjective of relative dimension 1 over
O. Let Cη be the generic fiber. Note that Cη is regular. Let D ⊂ C be an effective Cartier
divisor which is finite over O. Let Q(C ) be the function field of C .

Definition 3.1.1. We say that a closed point x ∈ Cη satisfies the modulus condition over
O (for short, x satisfies (MC)O) if the following holds. Let Z be the closure of x in C , and
let ZN → Z be its normalization with the natural map νZ : ZN → C . Then we have an
inequality of Cartier divisors

ν∗ZD ≤ ν∗Z(Π),

where (Π) is the Cartier divisor on Spec O defined by Π.

Theorem 3.1.2. Take f ∈ Q(C ) satisfying the following conditions:

(i) f = 1 + γs with γ ∈ OC ,D, the semi-localization of C at the generic points of D, and
s ∈ OC ,D a local equation of D.

(ii) Every prime component of divCη(f) satisfies (MC)O .

Let W ⊂ C ×O P
1
O be the closure of the graph Γf ⊂ Cη ×η P1

η of f . Then, for any irreducible

component T of W with its normalization TN and the natural maps νT : TN → P1
O and

µT : TN → C , we have

(3.1) µ∗T (D) ≤ ν∗T (1O + P1
(Π)),

where 1O and P1
(Π) are Cartier divisor on P1

O .

First we claim that it suffices to prove the theorem assuming O is a henselian DVR. Note
A = ∩

p⊂A
Ap for a normal domain A, where p range over all prime ideals of height one. Thus

we may check (3.1) locally at a point t of codimension one in TN . It suffices to consider
the case where t lies on the inverse image of T ∩ (D ×O P1

O) ⊂ C ×O P1
O . Since D ×O P1

O is

finite over P1
O by the assumption on D, the closure {t} of t in TN is finite over P1

O . Noting

dim({t}) = dim(T )−1 = dim(P1
O)−1, this implies that t maps to a point of codimension one

in P1
O , and hence maps to a point of codimension≤ 1 in Spec O. Since (3.1) can be checked

étale locally, we may replace O by its henselization at a point of codimension one and C by
its base change. This proves the claim.

In what follows O is a henselian DVR with a prime element π and Π = πe for an integer
e > 0. Let K be the quotient field and v be the normalized valuation of O.

Since (3.1) can be checked étale locally, the above theorem follows from the following local
version. Let A be the henselization of the local ring of C at a closed point, which is an integral
normal local domain essentially of finite type over O with dim(A) = 2. Let s ∈ A be a local
equation of D. By the assumption, A/(s) is finite flat over O and A/(πe, s) is Artinian. By
ZMT the natural map O[s]→ A induces finite map φ : SpecA→ SpecR with R = O{s}. Let
Q(A) be the quotient field of A.

Theorem 3.1.3. Let A and s be as above. Take f ∈ Q(A) satisfying the following conditions:

(i) f = 1 + γs with γ in the semi-localization of A at the primes lying over (s) ⊂ A.
(ii) We have πe/s ∈ (A/p)N for all hight-one primes p such that vp(f) 6= 0 and p does not

divides (π).

Let W ⊂ SpecA[τ ] be the closure of (τ − f = 0) ⊂ SpecQ(A)[τ ]. Then, for any irreducible
component T of W with its normalization TN , we have

(3.2) (τ − 1)πe/s ∈ Γ(TN ,O).
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Note that Theorem 3.1.2 immediately implies Theorem 6.2.2 in dimension 1. Indeed, if
X = (C,C∞) is in MCor with dim(C) = 1, we can apply Theorem 3.1.2 with C = C ×k S,
and D = C∞ ×k S. Then Cη = CK and in view of Proposition 6.2.3 and diagram (6.3),
Theorem 3.1.2 gives the injectivity of the map

jO,(Π) : h�0 (X)(O, (Π))→ CH0(CK , C∞,K)

as required.

3.2. Valuative criterion for modulus condition on O{s}.

Definition 3.2.1. For n ∈ Z>0 and f =
∑
i≥0
ais

i ∈ R− {0}, we define

νe(f) ≥ n def⇔ v(ai) ≥ n− ei for all i ≥ 0.

We easily check the following.

Lemma 3.2.2. Let f, g ∈ R− {0} and n,m ∈ Z>0.

(1) If νe(f) ≥ n and νe(g) ≥ n, then νe(f ± g) ≥ n.
(2) If νe(f) ≥ n and νe(g) ≥ m, then νe(fg) ≥ nm.
(3) νe(π

mf) ≥ n+m if and only if νe(f) ≥ n.

Lemma 3.2.3. Let p ⊂ R be a height-one prime not dividing (π) such that πe/s ∈ (R/p)N .
Then p is generated by an element of the form

g = a0 + a1s+ · · · amsm ∈ O[s]

such that am ∈ O× and νe(g) ≥ v(a0).

Proof. Since s mod p ∈ R/p is finite over O, there is a monic irreducible polynomial

g = a0 + a1s+ · · · amsm ∈ O[s] (am = 1)

such that g ∈ p. This implies p = (g) by the irreducibility of g. Put θ = πe/s mod p ∈
Q(R/p). From g = 0 ∈ R/p, we get

θm +
∑

1≤i≤m

aiπ
ei

a0
θm−i = 0 ∈ Q(R/p).

Since g ∈ O[s] is irreducible over K, this gives a minimal equation of θ over K. Since θ is finite
over O by the assumption, this implies aiπ

ei/a0 ∈ O for all i, which implies νe(g) ≥ v(a0). �

Lemma 3.2.4. Let f ∈ R and a0 = f mod s ∈ O. Assume

(MC)R For any height-one prime p dividing f but not dividing (π), πe/s ∈ (R/p)N .

Assume further a0 6= 0. Then νe(f) ≥ v(a0).

Proof. Considering the prime decomposition of f in R, this follows from Lemmas 3.2.2 and
3.2.3. �

3.3. Criterion for modulus condition on A. Let the assumption be as in the statement
of Theorem 3.1.3 Write X = SpecA and D = (s) ⊂ X. Let ψ : X̃ → X be the blowup with

center in (s, πe) and D′ ⊂ X̃ be the proper transform of D. Write

X+ = X̃ −D′ = SpecA[t]/(st− πe)

with the induced map ψ+ : X+ → X. For a height-one prime p ⊂ A write Zp = {p} ⊂ X and

let Z ′p ⊂ X̃ be its proper transform.
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Lemma 3.3.1. Assume p does not divide (π). Then the following conditions are equivalent.

(i) πe/s ∈ (A/p)N .
(ii) Z ′p ⊂ X+ ⇔ Z ′p ∩D′ = ∅.

Proof. (ii) is equivalent to that Z ′p,+ := Z ′p ∩X+ is finite over O. Note that Z ′p,+ is the irre-

ducible component of ψ−1
+ (Zp) = X+×XZp which is flat over O. Let φ : ZNp = Spec (A/p)N →

Zp be the normalization and ZNp,+ = Zp,+×ZpZ
N
p . Note that ZNp,+ is the irreducible component

of X+ ×X ZNp which is flat over O. The map φ induces a finite surjective map ZNp,+ → Zp,+.

Hence it suffices to show that (i) is equivalent to that ZNp,+ is finite over O. Note that the

latter condition is equivalent to ZNp,+ = ZNp . Now the desired equivalence follows easily by
noting

(3.3) X+ ×X ZNp = Spec (A/p)N [t]/(st− πe).

Indeed, if (i) holds, there exist θ ∈ (A/p)N such that sθ = πe. Hence (3.3) implies ZNp,+ '
Spec (A/p)N . To see the converse, assume ZNp,+ ' Spec (A/p)N . Note (A/p)N is a DVR
and let Π be a prime element of it. Write s = uΠn, π = vΠm in A with m,n ∈ Z≥0 and
u, v ∈ ((A/p)N )×. It suffices to show m ≥ n. Assume the contrary m < n. Then

ZNp,+ ' Spec (A/p)N [t]/(uΠn−mt− v) ' SpecA[1/Π],

which contradicts the assumption. �

Lemma 3.3.2. Let g ∈ A satisfies the condition:

(MC)A For any height-one prime p ⊂ A dividing (g) but not dividing (π), πe/s ∈ (A/p)N .

Then there exists N > 0 such that for any α ∈ O, g + απN ∈ A satisfies (MC)A.

This follows from Lemma 3.3.1 and the following.

Lemma 3.3.3. Let the notation be as in Lemma 3.3.1. Assume that g ∈ A satisfies (MC)A.
Then there exists N > 0 such that for any α ∈ O and any irreducible component T of
Zα := (g + απN ) ⊂ X = SpecA which is flat over O, we have T ′ ∩D′ = ∅, where T ′ ⊂ X̃ is
the proper transform of T .

Proof. Consider the finite map

φ : X → Y = SpecR

and put W = φ(Z) and Wα = φ(Zα). Then W = (h) and Wα = (hα) with h = NA/R(g) and
hα = NA/R(gα). Removing from W (resp. Wα) the component not flat over O, we get an

effective divisor Wfl ⊂ Y (resp. Wα,fl ⊂ Y ). Let ψY : Ỹ → Y be the blowup with center

in (s, πe) with the exceptional divisor E ⊂ Ỹ . We have X̃ ' Ỹ ×Y X with φ̃ : X̃ → Ỹ the

projection. Let D′Y (resp. W ′fl, resp. W ′α,fl) be the proper transform in Ỹ of DY = (s) ⊂ Y

(resp. Wfl, resp. Wα,fl). Then we have D′ = φ̃−1(D′Y ) and T ′ ⊂ φ̃−1(W ′α,fl) for T ′ as in the

lemma. Thus it suffices to show W ′α,fl ∩ D′Y = ∅. The assumption implies that h satisfies

(MC)R and so Lemma 3.3.1 (in case A = R) implies W ′fl ∩D′Y = ∅. By the assumption we

can write hα = h + λπN with λ ∈ R. Around S := D′Y ∩ E, Ỹ is regular and (σ, π) with
σ = s/πe is a system of regular parameters. The condition W ′fl ∩D′Y = ∅ implies h = πmh′

with m ∈ Z≥0 and h′ ∈ O×
Ỹ ,S

. Taking N so large that N > m, we get

hα = h+ λπN = πmh′ + λπN = πm(h′ + λπN−m)

and h′ + λπN−m ∈ O×
Ỹ ,S

, which implies W ′α,fl ∩D′Y = ∅ as desired. �
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Let d = [A : R]. For f ∈ A and α ∈ R we can express the norm of α+ f to R as

(3.4) NA/R(α+ f) =

d∑
i=0

αd−iσi(f),

where σi(f) are symmetric polynomials of homogeneous degree i in the conjugates f1, . . . , fr
of f over R, which are independent of α.

Lemma 3.3.4. Assume that g = a+ λs ∈ A where a ∈ O − {0} and λ ∈ A, satisfies (MC)A
from Lemma 3.3.2. Then we have νe(σi(g)) ≥ iv(a).

Proof. We may assume g = πn + λs ∈ A with n ∈ Z≥0 and λ ∈ A. For each i ∈ Z≥0 there
exist integers ci,j with 0 ≤ j ≤ i such that for any β ∈ O, we have

(3.5) σi(g + β) =
i∑

j=0

ci,jσj(g)βi−j .

Thus it suffices to show νe(σi(λs)) ≥ ni. By Lemma 3.3.3 there exists an integer N > n such
that for all α ∈ O, gα = uαπ

n + λs ∈ A satisfies (MC)A, where uα = 1 + απN−n ∈ O×. By
[] this implies that hα := NA/R(gα) ∈ R satisfies (MC)R. Noting hα mod s = udαπ

dn, this
implies νe(hα) ≥ dn by Lemma 3.2.4. By (3.4) we have

hα =

d∑
i=0

(uαπ
n)d−iσi(λs).

By Lemma 3.2.2, νe(hα) ≥ dn for various choices of α implies νe(σi(λs)) ≥ ni as desired. �

3.4. Proof of the main theorem for curves. We now prove Theorem 3.1.3. Let φ :
SpecA[τ ] → SpecR[τ ] be the finite map induced by φ : SpecA → SpecR and put WR =
φ(W ). It suffices to show (3.2) for any irreducible component T of WR. Let Σ be the set
of height-one primes p ⊂ A not dividing (π) such that vp(f) 6= 0. For each p ∈ Σ take a
generator hp of p∩R as in Lemma 3.2.3. Let Σ− ⊂ Σ be the subset of p such that vp(f) < 0.
By Theorem 3.1.3(i), f ∈ A×q for any prime q dividing (s). From this we see that Σ− coincides
with the set of height-one primes p ⊂ A such that vp(γ) < 0. We can choose l ∈ Z≥0 and
ep ∈ Z>0 for p ∈ Σ− such that hγ ∈ A for

h = πl
∏

p∈Σ−

h
ep
p .

Put a = h mod s ∈ O. Note a 6= 0 since hp for p ∈ Σ is not divisible by s. We have

g := hf = a+ λs with λ = hγ + (h− a)/s ∈ A.

By the construction we have

W ⊂ (hτ − g) ⊂ SpecA[τ ],

and hence

(3.6) WR ⊂ (NA/R(hτ − g)) ⊂ SpecR[τ ].

Put σi = σi(h− g) and t = τ − 1. Since h− g ∈ sA, we have

(3.7) σi ∈ siR.
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By (3.4), we have

NA/R(hτ − g) = NA/R(ht+ (h− g)) =
d∑
i=0

td−ihd−iσi.

By the construction, h (resp. g) satisfies the condition (MC)R (resp. (MC)A). Hence Lemmas
3.2.4 and 3.3.4 imply

νe(h) ≥ v(a) and νe(σi(g)) ≥ iv(a).

By (3.5) this implies

(3.8) νe(σi) ≥ iv(a) and νe(h
d−iσi) ≥ dv(a).

By (3.7) and (3.8), we can write

(3.9) hd−iσi =
∑
j≥i

ci,js
j with v(ci,j) ≥ dv(a)− ej.

We then get

(3.10) NA/R(hτ − g) =

d∑
i=0

td−i
(∑
j≥i

ci,js
j
)

=
∑
j≥0

sj
( ∑

0≤i≤min{j,d}

ci,jt
d−i).

Write n = v(a) and take an integer N > 0 such that Ne ≥ nd. Let T be an irreducible
component of WR and Q(T ) be its function field. Multiplying (3.10) by tN−d/sN , (3.6)
implies an equality in Q(T ):

0 =
∑
0≤j

1

sN−j
( ∑

0≤i≤min{j,d}

ci,jt
N−i)

=
∑

0≤j≤N
(t/s)N−j

( ∑
0≤i≤min{j,d}

ci,jt
j−i)+

∑
j≥N+1

sj−N
( ∑

0≤i≤min{j,d}

ci,jt
N−i).

Put

θ = πet/s and ρj = πej−nd, γj =
∑

0≤i≤min{j,d}

ci,jt
j−i for 1 ≤ j ≤ N.

Multiplying the latter equation by ρN , we get an equality on Q(T ):∑
0≤j≤N

γjρjθ
N−j + ρN

∑
j≥N+1

sj−N
( ∑

0≤i≤min{j,d}

ci,jt
N−i) = 0.

Note that the second term lies in Γ(T,O) and that γjρj ∈ Γ(T,O) for 0 ≤ j ≤ N in view

of (3.9). By definition we have γ0 = c0,0 = hd mod s = ad and ρ0 = π−nd. Hence, writing

a = uπn with u ∈ O×, we have γ0ρ0 = ud ∈ O×. Hence θ is integral over T so that
θ ∈ Γ(TN ,O) as desired.

4. Bertini theorems over a base

In this Section, let S be the spectrum of a Noetherian local domain O. Let m be the
maximal ideal of O, and write k for the residue field O/m. Finally, let K be the function field
of O. If X is any S-scheme, write Xη for its generic fiber and Xs for the reduced special
fiber. Recall some notations and definitions from e.g. [8] or [21, Section 4].

Definition 4.0.1. A hyperplane H ⊂ PNS is a closed subscheme of the projective space PNS
over S corresponding to an S-rational point of the dual (PNS )∨ := GrS(N − 1, N).
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By definition, GrS(N − 1, N)(S) is the set consisting of surjective maps of O-modules,
q : O⊕N+1 → E such that E is a free O-module, of rank N . Fixing a basis {e0, . . . , eN} of

O⊕N+1, we can write the kernel of q as
∑N

i=0〈ai〉ei ⊂ ON+1, for elements ai ∈ O, where 〈a〉
denotes the submodule of O generated by a. Fixing homogeneous coordinates X0, . . . , Xn

on PNS , then the hyperplane H corresponding to q is the zero locus of the linear polynomial

q(X) =
∑N

i=1 aiXi. Note that, since the map is surjective, at least one of the ai’s is not in
the maximal ideal m.

The same polynomial q(X) defines the hyperplane Hη ⊂ PNK , corresponding to the K-point
of GrS(N−1, N) (or equivalently, to aK point of GrK(N−1, N)) given by qK : K⊕N+1 → E⊗S
K. Conversely, given a hyperplane L ⊂ PNK , defined by a linear polynomial p(X) =

∑N
i=1 λiXi

with λi ∈ K, its closure L ⊂ PNS corresponds to the quotient O⊕N+1 → O⊕N+1/(
∑N

i=1〈λi〉ei∩
O⊕N+1). Explicitly, it is given by the linear polynomial q(X) obtained by p(X) by re-
moving the denominators. In general, L might contain the fiber over the closed point
PNs = PNS ×S k. In this case, L does not define an S-point of GrS(N − 1, N), since the

O-module O⊕N+1/(
∑N

i=1〈λi〉ei ∩ O⊕N+1) is not free.

4.0.1. It is convenient to have a coordinate free description. For a free O-module of finite
rank, write PS(E) for the associated projective bundle over S. In this case, we will write
GrS(E) for the Grassmannian of hyperplanes in PS(E). An S-point of GrS(E) is a surjective
map of O-modules q : E → M with M free and with N = ker(q) free of rank 1. Any
such q induces a closed immersion H = PS(M) ↪→ PS(E), and we call H the hyperplane
corresponding to q (or, equivalently, to N).

4.0.2. Let E be again a free O-module of finite rank, and let F be a submodule of E such
that the quotient E/F is also free. The inclusion of F into E determines a closed immersion
GrS(F ) ↪→ GrS(E), see e.g. [5, III.2.7]. On S-points, the inclusion

GrS(F )(S) ↪→ GrS(E)(S)

is explicitly given as follows. Let N be a 1-dimensional free submodule of F such that the
quotient F/N is free. Since by assumption the quotient E/F is free, the quotient E/N is
again free and therefore determines a point q : E → E/N of GrS(E). Thus sending F → F/N
to E → E/N gives a well defined map on the set of S-points of the two Grassmannians.

4.1. Specialization. If S is the spectrum of a DVR, we have GrS(K) = GrS(S) by the
valuative criterion of properness. This gives a well defined specialization map

GrS(N − 1, N)(K)→ Grk(N − 1, N)(k),(4.1)

(q : ON+1 → E) 7→ (q ⊗S k : k⊕N+1 → E ⊗S k)

given in coordinates by taking a polynomial q(X) =
∑N

i=1 aiXi and reducing it modulo the
maximal ideal of O. In this case, we can in fact assume that every ai ∈ O and at least one
of the does not belong to m (up to dividing by a suitable power of a uniformizer of O), so
that dimk(E ⊗S k) = rkS(E) = N . When dim(S) > 1, this is in general not the case, since
the closure of a hyperplane L given by a K-rational point of GrS(N − 1, N) might contain
the whole fiber PNs , and thus it cannot be specialized to a hyperplane in PNs . In other words,
GrS(N − 1, N)(K) 6= GrS(N − 1, N)(S).

The specialization map is however always defined when we restrict to the set of S-points

sp: GrS(N − 1, N)(S)→ Grk(N − 1, N)(k)



SEMI-PURITY FOR CYCLES WITH MODULUS 17

or, in coordinate free terms

spE : GrS(E)(S)→ Grk(E)(k), (E →M) 7→ (E ⊗S k →M ⊗S k)

which is always surjective.
The following Lemma is a variant of an argument due to Jannsen and the second author

in [8]. If S is regular and of dimension 1, the proof is easier, and it can be extracted from the
proof of [8, Theorem 0.1]. If dim(S) > 1, the argument is more delicate.

Lemma 4.1.1. Let E be a free O module of finite rank, and let P = GrS(E). Let V be a
Zariski dense open subset of PK and let U be a Zariski dense open subset of Ps. Suppose that
k is infinite. Then the set

sp−1(U(k)) ∩ V (S) ⊂ P (S)

is not empty. Here V (S) = V (K) ∩ P (S) ⊂ P (K).

Proof. Let Z be the complement of V in PK , and let Z be the closure of Z in P . Let Z(S)
be the set of S-points of Z, i.e. Z(S) = Z(K) ∩ P (S). We begin by noting that it is enough
to show that sp−1(U(k) \ sp(Z(S))) 6= ∅, i.e. that

(4.2) sp−1(U(k)) ∩ V (S) ⊃ sp−1(U(k) \ sp(Z(S)))

and that the latter is not empty. To show the inclusion (4.2), note that

sp−1(U(k) \ sp(Z(S))) = sp−1(U(k)) \ sp−1(sp(Z(S))) = sp−1(U(k)) ∩ sp−1(sp(Z(S)))c

where the complement of sp−1(sp(Z(S))) is taken in P (S). It is now easy to see that

sp−1(sp(Z(S)))c ⊂ V (S),

since V (S) = (Z(S))c and Z(S) ⊂ sp−1(sp(Z(S))). This proves (4.2).
Since sp is surjective, the set sp−1(U(k) \ sp(Z(S))) is not empty if and only if U(k) \

sp(Z(S)) is not empty. Since U is open and Ps is an irreducible rational variety over an
infinite field k, the set U(k) \ sp(Z(S)) is not empty as long as sp(Z(S)) is nowhere dense in
Ps. Up to shrinking V further and choosing coordinates on P , we can assume that Z ⊂ PK
is a hypersurface, given by a homogeneous polynomial

∑
cIX

I , with the obvious multi-index
convention. Cleaning the denominators, we get an integral homogeneous equation

∑
aIX

I ,
with aI ∈ O, defining the closure Z of Z in P .

We can now divide the proof in two cases. Suppose first that there exists an index I such
that aI /∈ m. Then Z intersects the special fiber Ps properly, and sp(Z(S)) = (Z ∩ Ps)(k).
Since Z ∩Ps is a proper closed subset of the irreducible scheme Ps, it follows that U \ (Z ∩Ps)
is open and dense in Ps, and therefore has a k-rational point as remarked above.

Suppose now that aI ∈ m for every I. This is the case when Z ⊃ Ps. Let P (S)o ⊂ P (S)
be the subset consisting of those points (x0 : . . . : xN ) ∈ P (S) such that xi /∈ m for every i =
0, . . . , N . Similarly, write V (S)o for the intersection V (S)∩P (S)o and Z(S)o = Z(S)∩P (S)o.
We have an inclusion

V (S) ∩ sp−1(U(k)) ⊃ V (S)o ∩ sp−1(U(k)o) ⊃ sp−1(U(F )o \ sp(Z(S)))

where U(F )o is the set of F -points of the open dense subset of Ps given by U \
⋃N
i=0(Xi = 0).

It is clear that the restriction of sp to P (S)o is also surjective, so that in order to show our
claim it is enough to prove that sp(Z(S)o) is nowhere dense in Ps. Let

n = min{m ∈ Z≥0 | aI ∈ mm for every I, but aJ /∈ mm+1 for some J} ≥ 1

and write A = {I |aI /∈ mn+1}. Let L be the subspace of the finite dimensional k-vector space
mn/mn+1 generated by the set {aI}I∈A, and choose a basis {bλ}λ∈Λ for L. Note that V 6= 0.
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For every (x0 : . . . : xN ) ∈ Z(S)o (which we can assume to be non empty, since otherwise
there is nothing to prove) we have then a non trivial linear relation

∑
J∈Σ aJx

J = 0 in

L ⊆ mn/mn+1. Spelling this out using the basis {bλ}λ∈Λ, we get∑
J∈Σ

aJx
J =

∑
λ∈Λ

(
∑
J∈Σ

νJ,λx
J)bλ = 0

where aJ =
∑

λ∈Λ νJ,λbλ ∈ V , for νJ,λ in k. Since the bλ are a basis, we have (
∑

J∈Σ νJ,λx
J) =

0. Write Wλ for the proper closed subscheme of Ps given by (
∑

J∈Σ νJ,λX
J = 0). It follows

from the above discussion that

sp(Z(S)o) ⊂
⋂
λ∈Λ

Wλ(F ),

and since
⋂
λ∈ΛWλ is a proper closed subset of the irreducible scheme Ps, it is nowhere dense

as required. �

Remark 4.1.2. The conclusions of Lemma 4.1.1 hold if we replace PNS or GrS(N − 1, N) with
any projective S-scheme P such that P has irreducible fibers, Ps = P⊗Sk is a rational variety,
the specialization map sp: P (S)→ Ps(k) is surjective and U and V are open subsets (dense)
in their fibers.

Thanks to the previous Lemma we can parametrize good hyperplanes H ⊂ PNS over S using
subsets of the form V (S) ∩ sp−1(U(k)), for an open subset V of GrK(N − 1, N), giving the
prescribed behavior on the generic fiber Hη, and an open subset U of Grk(N−1, N), imposing
conditions on the special fiber Hs. We will call a hyperplane H ⊂ PNS general if it corresponds
to an S-rational point of a set of the form V (S) ∩ sp−1(U(k)) ⊂ GrS(N − 1, N)(S). See [8,
Remark 0.2.(i)]

4.2. Constructing good sections. We now explain how to apply the previous construction.
As in the previous Section, S will denote the spectrum of a local domain O, with function
field K and residue field k. Let X be a smooth projective geometrically integral variety over
K and let X be a model of X over S, i.e. an integral projective S-scheme which is surjective
over S and such that Xη = X. Let D be an effective Cartier divisor in X , and suppose that
D restricts to an effective Cartier divisor on the special fiber Xs. Assume in this section that
dim(X) ≥ 2.

Theorem 4.2.1. Let (X ,D) be as above, and fix a projective embedding X ⊂ PNS . If k is
infinite, there exists a general (in the sense specified above) hyperplane H ⊂ PNS such that the
intersection H ·X = H×PNS

X is surjective over S, has smooth geometrically integral generic

fiber (H ·X )η and such that D ·H is an effective Cartier divisor on H ·X which restricts to
an effective Cartier divisor on the special fiber (H ·X )s.

Proof. By the classical Theorem of Bertini, [9, Theorem 6.3], there exists a dense open subset
V ⊂ GrK(N − 1, N) such that for every H ∈ V (K), the intersection H ∩ X is smooth,
geometrically integral, and intersects properly D = Dη, i.e. H ∩ D is a Cartier divisor
in H ∩ X. Similarly, there exists a dense open subset U of Grk(N − 1, N) such that no
hyperplane L corresponding to a k-rational point of U satisfies Ass(L ∩Xs) ∩ |Ds| 6= ∅, since
Ds is a Cartier divisor on Xs, and therefore its support |Ds| does not contain any associated
point of Xs. Note that L ∩Xs 6= ∅ for every hyperplane L over k, since dim(Xs) ≥ 2.

By Lemma 4.1.1, the set T = sp−1(U(k)) ∩ V (S) is not empty. For H ∈ T , we now claim
that all the other required properties are satisfied. Since (H ·X )s = Hs ·Xs is in particular
not empty, H ·X is automatically surjective over S. Let (H ·X )ns ⊂ H ·X be the union of
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the irreducible components of H ·X which are not surjective over S. Note that (H ·X )nsη = ∅
so that we can then replace H ·X with the closure in X of H ·X \ ((H ·X )ns) without
altering the generic fiber. So we can assume that every component of H ·X is surjective over
S. But since the generic fiber Hη · X is smooth and geometrically integral, H ·X is now
automatically geometrically irreducible, and generically geometrically reduced. Replacing
H ·X with (H ·X )red, we can finally assume that H ·X is integral.

Since Hs ∈ U(k), we have by construction that D restricts to an effective Cartier divisor
on (H · X )s. Finally, note that no component D ′ of D can contain the generic point of
H ·X , since otherwise D ′s contains an irreducible component of Hs ·Xs and by assumption
Ass(Hs ·Xs) ∩ |Ds| = ∅. Thus D restricts to a Cartier divisor on H ·X . �

We will need a finer version of the previous Theorem, namely an Altman-Kleiman type
Bertini theorem for hypersurface sections containing a (closed) subscheme of the generic fiber.
We first recall some notation.

Let F be a field and let Y be an F -scheme of finite type. Let y be a point of Y . The
embedding dimension ey(Y ) of Y at y is defined as the dimension of the k(y) vector space
dimk(y)(Ω

1
Y/F,y⊗OY,y k(y)). Following the convention of [14], for a positive integer e > 0 write

Ye for the locally closed subscheme of Y consisting of those y ∈ Y such that ey(Y ) = e.

Theorem 4.2.2. Let (X ,D) be as above and suppose that d = dim(X) ≥ 3. Let Z be a
closed subscheme of X, and suppose that the estimate

(4.3) maxe≤d−1{e+ dim(Ze)} ≤ d− 1

holds. Let Z be the closure of Z in X , and suppose moreover that Ass(Z ×S k) ∩ |Ds| = ∅.
If k is infinite, there exists a hypersurface section H of X , of large degree, such that H ⊃ Z ,
the generic fiber Hη is smooth and geometrically irreducible, and such that D ·H is an effective
Cartier divisor on H ·X which restricts to an effective Cartier divisor on the special fiber
(H ·X )s.

Proof. Fix an embedding ι : X → PNS and let O(n) = i∗OPNS
(n) for n ≥ 1. Let IZ be the

ideal sheaf of Z in X , and let ID be the (locally principal) ideal of D in X . Write IZs (resp.
IDs) for the restriction of IZ (resp. of ID) to the special fiber Xs. Write D1

s , . . . ,D
m
s for the

irreducible components of Ds. Finally, let J be the ideal sheaf of Xs in X . By assumption,
the restriction IDs ⊗ OZs as well as the restrictions IDi

s
⊗ OZs for i = 1, . . . ,m are the ideal

sheaves of a Cartier divisor on Zs. Choose n sufficiently large so that

H1(X ,O(n)) = H1(X , IZ ⊗O(n)) = H1(X ,J ⊗ IZ ⊗O(n)) = 0,(4.4)

H1(X , ID∩Z (n)) = H1(Xs, IDs∩Zs(n))H1(Xs, IDi
s∩Zs(n)) = 0(4.5)

for every i = 1, . . . ,m. Write En for the free O-module of finite rank H0(X ,O(n)) and

Ẽn for the finitely generated torsion free submodule H0(X , IZ ⊗ O(n)) ⊂ En. We have a
commutative diagram for each i

(4.6)

Ẽn H0(X , IZ /IZ ∩D(n))

H0(X , IZs(n)) H0(Xs, IZs/IZs∩Di
s
(n))

where every arrow is surjective (the left vertical one by (4.4) and the horizontal ones by (4.5)).
Note that the last term H0(Xs, IZs/IZs∩Di

s
(n)) is non zero thanks to the assumption on Zs

and Ds. Choose a section s0 ∈ Ẽn such that the restrictions s0 7→ si0 ∈ H0(Xs, IZs/IZs∩Di
s
(n))
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are non zero for all i. Let Fn be a maximal free submodule of Ẽn containing s0 (i.e. Fn is
a free submodule of En containing s0, such that its rank rkS(Fn) is maximal i.e. rkS(Fn) =

dimKẼn ⊗S K). Note that this is possible since Ẽn is torsion free. We are going to consider
S-points of the Grassmannian GrS(Fn) to parametrize our good sections. We have

GrS(Fn)(S) ⊂ GrS(Fn ⊗S K)(K)
ιK−→ GrK(En ⊗S K)(K)

and since Fn⊗SK = Ẽn⊗SK = H0(X, IZ ⊗O(n)), we can identify the image of ιK with the
set

GrS(Fn ⊗S K)(K) = {Hη ⊂ P(En ⊗S K) |Hη ⊃ Z}
i.e. with the set of degree n hypersurface sections of X containing Z. By the Bertini theorem
of Altman and Kleiman [14, Theorem 7], the estimate (4.3) implies that a general element
of GrK(Fn ⊗S K)(K) is smooth and geometrically irreducible. Let U be such open set of
GrK(Fn ⊗S K). Let

sp: GrS(Fn)(S)→ Grk(Fn)(k)

be the specialization map. Let Mn be the image of Fn ⊗S k in H0(Xs, IZs(n)) and let Kn =
kerFn ⊗S k → H0(Xs, IZs(n)). Then Grk(Kn) is a proper closed subspace of Grk(Fn ⊗S k)
(see 4.0.2), and the specialization map sp restricts to a surjective specialization map

sp: GrS(Fn)(S) \ sp−1(Grk(Kn)(k))→ Grk(Mn)(k)

Now, the short exact sequence

0→ H0(Xs, IZs∩Di
s
(n))→ H0(Xs, IZs(n))→ H0(Xs, IZs/IZs∩Di

s
(n))→ 0.

pulls back to a short exact sequence

0→ V i
n ∩Mn →Mn →Mn/(V

i
n ∩Mn)→ 0

where V i
n is the subspace H0(Xs, IZs∩Di

s
(n)) and the last term Mn/(V

i
n ∩Mn) is non zero,

since s0 ∈ Fn restricts by construction to a non zero element of H0(Xs, IZs/IZs∩Di
s
(n)). In

particular, Grk(Vn ∩Mn) defines a proper closed subspace of Grk(Mn), so that the set

Φ = GrS(Fn)(S) \ (sp−1(Grk(Kn)(k)) ∪
m⋃
i=1

sp−1(Grk(V
i
n ∩Mn)(k)))

is not empty. An element of Φ corresponds to a hypersurface section H of X containing Z ,
and such that no component of D can contain its generic point, since its defining equation is
non zero in

H0(Xs, IZs/IZs∩Di
s
(n)) ⊂ H0(Xs,OXs/IDi

s
(n)).

Thus, a general (in the sense specified above) hypersurface section of X containing Z satisfies
the property that D ·H is an effective Cartier divisor which restricts to a Cartier divisor on
the special fiber, as in the proof of Theorem 4.2.1. Now any element in U(S) ∩Φ satisfies all
the required properties. �

We now discuss another version of a Bertini-type theorem concerning sections of relative
surfaces, imposing very mild conditions on the special fiber. Before that, we introduce the
following Definition.

Definition 4.2.3. Let C be an integral scheme, proper surjective and of relative dimension
1 over S. Let D be an effective Cartier divisor on C , and suppose that D is finite over S.
Let Cη be the generic fiber of C . We say that a closed point x ∈ Cη \ |D| satisfies the strong

modulus condition over O ( for short, x satisfies (SMC)O) if the closure Z = {x} of x in C
satisfies Zs ∩ |Ds| = ∅.
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We remark that if a closed point x satisfies (SMC)O , then in particular its closure Z satisfies
the weaker modulus condition (MC)O in the sense of Definition 3.1.1. Explicitly, for every
non-zero element Π ∈ O we have

ν∗Z(D) ≤ ν∗Z(Π)

where νZ : ZN → Z → C is the composition of the normalization morphism with the inclusion
Z ⊂ C and (Π) is the Cartier divisor on S defined by Π, as well as its pullback to C . This
is clear, since if x satisfies (SMC)O , ν∗Z(D) = 0 as Weil divisor on ZN , and ν∗Z(Π) is always
effective.

Proposition 4.2.4. Let (X ,D) be as in 4.2, suppose moreover that X has dimension 2 over
S and that k is infinite. Fix an embedding X ↪→ PS(E) for a free O-module E. Let Z be
a purely 1 dimensional closed subscheme of X, let Z be its closure in X , and suppose that
Ass(Z ×S k) ∩ |Ds| = ∅. Fix an open subset V ⊂ GrK(E ⊗S K). Then a general section
H ∈ GrS(E)(S) satisfies the following conditions

i) The generic fiber Hη belongs to V (K), when we see the hyperplane H as represented
by an S-point of GrS(E).

ii) The intersection H ·X is surjective over S, and D ·H is an effective Cartier divisor
D on H ·X which is finite over S.

iii) Every x ∈ Hη ∩ Z satisfy (SMC)O with respect to D.

Proof. By assumption, D restricts to an effective Cartier divisor on the special fiber Xs. Let
|Ds| be its support. It is a 1 dimensional closed subscheme of Xs, and in particular it does
not contain any associated point of Xs. Thus, there is an open subset U ′ ⊂ Grk(E⊗S k) such
that for every L ∈ U ′(k), we have Ass(L ∩Xs) ∩ |Ds| = ∅, as in the proof of Theorem 4.2.1.
In particular, Ds restricts to a Cartier divisor on L ∩Xs for every such L, and its support is
therefore a finite set of closed points.

In a similar way, we have by assumption that Ds restricts to a Cartier divisor on Zs. Let
W ⊂ Zs be its support. It consists of finitely many closed points of Xs. Let U ′′ be the subset
of Grk(E⊗S k) such that for every L ∈ U ′′(k), L∩W = ∅. Since W is zero dimensional, U ′′ is
open and dense in Grk(E⊗S k). Let U = U ′∩U ′′. Now, the set T = sp−1(U(k))∩V (S) is not
empty by Lemma 4.1.1 and we claim that every H ∈ T satisfies all the required conditions.
The item (i) is satisfied by definition. All the properties in (ii) are achieved thanks to Theorem
4.2.1, apart from the finiteness of D over S, which follows from Zariski’s Main Theorem, noting
that the fiber of D over the closed point of S is finite and not empty.

Finally, for every x ∈ Hη ∩ Z, note that the closure {x} of x in X is contained in Z , so

that {x} ∩ |Ds| ⊂ W . But {x} ⊂ H ·X as well, and since by choice Hs ∈ U ′′(k), we must

have {x} ∩ |Ds| = ∅ giving the required strong modulus condition over O. �

Remark 4.2.5. In this Section, we have assumed in every statement that the residue field k of S
is infinite to guarantee the existence of k-rational points in dense open subsets U ⊂ Grk(E⊗Sk)
of the restriction to k of a Grassmannian GrS(E) for some free O-module E (of finite rank).

If k is finite, this is the case over the maximal pro `-extension of k for every prime number
`, hence over some extension k′/k of degree a power of `. If the ring O is moreover assumed to
be Henselian (and this is the case in our applications), let O ′ be the unramified extension of
O corresponding to k′/k and let S′ = Spec (O ′). We have then a surjective specialization map
sp: GrS′(E ⊗S S′)(S′) → Grk′(E ⊗S k′)(k′), and we can lift k′-rational points to S′-rational
points.

In other words, we can find good hyperlane sections (in the sense specified above) for X
over S′.
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5. Moving by tame symbols

This Section contains a key ingredient of the proof of the main theorem in dimension 2.
The main idea is to replace an arbitrary finite set of relations in the Chow group of zero
cycles with modulus on a surface by a more controlled one, in which “cancellations”, in the
appropriate sense, no longer occur. This is achieved by an iterated applications of a moving
argument by tame symbols, i.e. by adding cycles which are obtained as boundaries of classes
in the K2 of the function field of the surface. In this form, our argument is inspired by a
moving lemma in the context of cycles on a singular variety due to Marc Levine, see [17], [6].
A similar moving technique has been used in [1].

5.1. Setting. We now fix the setting for our moving argument. From now until the end of
this Section, we fix a Henselian local ring O, with fraction field K and residue field k. We
assume that k is infinite.

Let X be a smooth projective K-surface, D an effective Cartier divisor on X. Assume that
X is the generic fiber of an integral relative surface X over S, and that D is the generic fiber
of an effective Cartier divisor D on X which restricts to an effective Cartier divisor Ds on
the special fiber Xs.

Let Z be a reduced, purely 1-dimensional closed subscheme of X, with irreducible compo-
nents Z1, . . . , Zn. Assume that the closure Z of Z in X satisfies

Ass(Z ×S k) ∩ |Ds| = ∅.

Write K(Z) for the ring of total quotients of Z. Since Z is reduced by assumption, we have
K(Z) =

∏n
i=1K(Zi), where K(Zi) is the field of functions of the (integral) component Zi for

i = 1, . . . , n. Each f ∈ K(Z)× is then determined by the restrictions fi = f|Zi .

Let π : ZN =
∐n
i=1 Z

N
i → Z be the normalization morphism. By definition, a function

f ∈ K(Z)× satisfies the modulus condition if for each i = 1, . . . , n, we have

(5.1) fi ∈
⋂

x∈π−1(Zi∩D)

ker(O×
ZNi ,x

→ (OZNi ,x/IDOZNi ,x)×) ⊂ K(Zi)
× = K(ZNi )

where ID denotes the ideal sheaf of D. Pick up then a function f satisfying the modulus
condition, and write γ for its divisor, i.e. γ = divZ(f) =

∑n
i=1 divZi(fi). By (5.1), we have

γ ∈ F̂ (D)(X, |D|) ⊂ Z0(X \D).

where F̂ (D)(X, |D|) is the subgroup of Z0(X \D) generated by divisors of functions satisfying
the modulus condition. See [13]. The quotient

Z0(X \D)/F̂ (D)(X, |D|) =: CH0(X|D)

is by definition the Chow group of zero cycles with modulus.
Let Σ be the set of closed points in X where cancellations occur in the expression of γ.

Explicitly, let γi = divZi(fi). Then

Σ = {x ∈ X(0)|x /∈ |γ|, but x ∈ |γi| for some i = 1, . . . , n}.

Note that Σ ∩D = ∅.

Our goal in this Section is to rewrite the cycle γ as a sum of divisors of functions on carefully
chosen curves so that cancellations in the above sense no longer occur. After this, every term
in the sum will be given by points satisfying the modulus condition (MC)O , in the sense of
Definition 3.1.1 (this cannot be guaranteed with the expression γ =

∑n
i=1 divZi(fi), precisely

because of the presence of cancellation points). This will allow us to apply directly the results
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of Section 3 to each individual term. We summarize the precise statement in the point 5.4.1
below.

5.2. Good intersection. Let p : X̂ →X be a repeated blow up along the closure of closed
points lying over points of Σ and points of Z ∩ D such that the following conditions are
satisfied:

(1) Let X̂ = X̂ ×SK be the generic fiber of X̂ . Let D̂ be the strict transform of D in X̂,

and let D′ = D̂+ED be its total transform. Then the support |D′| is a strict normal

crossing divisor in X̂ (and so are the supports of ED and D̂).
Write E = EΣ +ED, where ED is the exceptional divisor lying over points of Z∩D,

and EΣ is the exceptional divisor lying over points of Σ.
(2) Let Ẑ be the strict transform of Z. Then Ẑ is regular at each point of Ẑ ∩ p−1(Σ),

and at each point of Ẑ ∩D′, and Ẑ intersects |D′ + EΣ| transversally (which means

that Ẑ intersects |D′ + EΣ| only in the regular locus, and transversally).

In particular, for each point x of Ẑ ∩ p−1(Σ) and of Ẑ ∩ D′, there is exactly one

component of Ẑ passing through x.

The above conditions can be achieve using e.g. [21, Theorem A.1]. By considering, if necessary,
further blow-ups, we can also assume that each component EΣ,j of E lying over a point x in

Σ intersects at most one of the strict transforms Ẑi of Zi.
For consistency, write D̂ for the strict transform of D in X̂ and D ′ = D̂ + ED for the total

transform. Similarly, write E = ED + EΣ for the exceptional divisor. Clearly, D ′ restricts to
a Cartier divisor on the special fiber X̂s. If we denote by Ẑ the strict transform of Z , note
that the condition

(5.2) Ass(Ẑ × k) ∩ |D̂s + ED ,s| = ∅

holds.
Write f̂ ∈ K(Z)× = K(Ẑ)× for the rational function on Ẑ induced by f , and write similarly

f̂i for the rational function on Ẑi induced by fi. By condition (2) above, we have OZNi ,y
∼= OẐ,y

for every y ∈ Ẑ ∩D′ and every i = 1, . . . , n, where we identify a point y ∈ Ẑ ∩D′, which lives
on at most one component Ẑi, with the the corresponding point in ZNi . In particular, the
modulus condition (5.1) implies that

f̂ ∈ 1 + ID′OẐ,y for every y ∈ Ẑ ∩D′.

In other words, the function f̂ satisfies the modulus condition on Ẑ with respect to D′ =
D̂ + ED.

Let γ̂ =
∑n

i=1 divẐi(f̂i) be the divisor of f̂ on Ẑ. By construction, it satisfies p∗(γ̂) = γ,

as cycles on X. Note that by (2), in the expression of γ̂, cancellations in the above sense
no longer occur, and there may be points in |γ̂| which do not satisfy (MC)O in the sense
of Definition 3.1.1. To remedy this, we can carefully choose rational functions gλ on each
exceptional line EΣ,λ such that the following holds.

For each σ ∈ Σ, write {ξ1
σ, . . . , ξ

n(σ)
σ } for the set p−1(σ) ∩ Ẑ. Let γσ be the 0-cycle

γσ =

n(σ)∑
i=1

vẐ,i(f̂)[ξiσ]

where vẐ,i(f̂) is the order of f̂ at the point ξiσ. Note that this is well defined, since by

construction, each ξiσ lies in exactly one component of Ẑ, and Ẑ is regular there. By definition,
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γσ appears in the expression of γ̂ but p∗(γσ) = 0 as cycle in Z0(X \D). Write then Eσ for

the exceptional divisor p−1(σ). It is, by (1), a connected union of rational lines in X̂, each
of which defined over a finite extension Li of the residue field k(σ) of σ. We choose then a
rational function gi ∈ Li(t) on each Eiσ

∼= P1
Li

such that

(5.3) vẐ,i(f̂) = ordξiσ(gi), and γσ =
∑
i∈I(σ)

divEiσ(gi),

where I(σ) is the index set of the lines Eiσ connecting the points in the set {ξ1
σ, . . . , ξ

n(σ)
σ }.

Note that cancellations appear in the expression of γσ in (5.3) exactly in the points Eiσ∩E
j
σ

for i 6= j, but away from EΣ ∩ Ẑ. Moreover, since Σ ∩D = ∅, we have EΣ ∩D′ = ∅ and the
functions gi satisfy tautologically the modulus condition with respect to D′.

We can then define the cycle

γ′ = γ̂ −
∑
σ∈Σ

∑
i∈I(σ)

divEiσ(gi)

and γ′ satisfies p∗(γ
′) = p∗(γ̂) = γ. By construction, for each point x ∈ |γ′|, the map p

induces an isomorphism OX̂,x ∼= OX,x, since we have removed from the support of γ̂ each

point lying above the center of the blow-up, and for every cancellation point ξ in the above
sense, there is exactly one component of Ẑ passing through ξ and meeting transversally exactly
one component of EΣ there. Changing the notation, write Z ′ for the closed subscheme defined
by Ẑ ∪ EΣ, and f ′ for the rational function defined by

f ′|Ẑ = f̂ , f ′|Eiσ
= g−1

i for every σ ∈ Σ, i = 1, . . . , n(σ)

We will then denote by Z ′i the integral components of Z ′, and by f ′i the restriction f ′|Z′i
. We can

then write γ′ = divZ′(f
′), using the convention introduced above, and note that f ′ satisfies

the modulus condition on Z ′ with respect to D′. The advantage of passing from γ to γ′ will
be clear in the next section.

We finally remark that the closed subscheme Z ′ of X̂ defined by Ẑ ∪ EΣ is still in good
position with respect to D ′ in the sense that

Ass(Z ′ ×S k) ∩ |D ′s| = ∅
so that no associated point of Z ′ can be a generic point of D ′. This is clear for the components
defined by Ẑ by (5.2), and it is clear by construction for the components of EΣ, using the
fact that Σ ∩D = ∅.

5.3. Reduction I. We keep the notation of the previous section. Recall that a point x ∈ X̂
is a cancellation point for divZ′(f

′) if x /∈ |divZ′(f
′)| (i.e. x does not appear in the support

of the divisor) but there exists i ∈ {1, . . . , n} such that f ′i ∈ mxOZ′i,x, i.e. x appears as a zero

of the restriction of f to one of the components of Z ′. Note that if this happens, there must
exist another component j 6= i such that fj has a pole at x, with matching multiplicity. Write

Σ̂ for the set of cancellation points.
We fix the following two sets

T0 = {x ∈ X̂|f ′i ∈ mxOZ′i,x, for some i, and f ′ ∈ OZ′,x},

T∞ = {x ∈ X̂|f ′ /∈ O×Z′,x} − T0

Informally, we will refer to T0 as the set of zeros of f ′ (note that these are regular points of f ′),
and to T∞ as the set of poles of f ′. In particular, T∞ contains every point x of intersection of
different irreducible components of Z ′ where f ′ does not extend to a regular function in the
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local ring of Z ′ at x. Note that by condition (2) of 5.2 and the modulus condition of f ′, we

have T∞ ∩D′ = ∅. By construction, the set T∞ contains also every cancellation point x ∈ Σ̂.
We also write Λ for the set

Λ = (T0 ∪ T∞)q (D′ ∩ Z ′)
The argument will involve the choice of several auxiliary objects. We begin by choosing a very
ample hypersurface section Γ ⊂ X̂ such that Γ ∩ Λ = ∅. We assume that H0(X̂,OX̂(Γ)) =
E ⊗S K for a free S-module E of finite rank corresponding to a projective embedding

ιE : X̂ ↪→ PS(E)

so that O(Γ) = (ι∗EOPS(E)(1))η.

Choose a global section β ∈ H0(X̂,OX̂(Γ)) such that the divisors od zeros of β. say B = (β)
is integral, satisfies B∩Λ = ∅ and intersects |D′| transversally (which means that B intersects
|D′| in the regular locus, and transversally). This can be achieved by the classical theorem
of Bertini over K, and we will use our refinement, Theorem 4.2.1 to take care of the model
over O of the section. In particular, B has a model B over S, surjective over S such that D ′

restricts to an effective Cartier divisor on it, finite over S. If we add to this an application
of Proposition 4.2.4, we can moreover assume the following. Let V ′ be the set of points in
Z ′ ∩ B. Note that V ′ ∩ D′ = ∅. Let V ′ be the closure of V ′ in X̂ . Then V ′s ∩ Ds = ∅. In
other words, every x ∈ Z ′ ∩B satisfies (SMC)O with respect to D′.

The following lemma is another application of Bertini’s theorem 4.2.1.

Lemma 5.3.1. There exists a hypersurface section L ⊂ X̂, of sufficiently large degree, such
that the following conditions are satisfied.

a) L ∩ Λ = ∅ and L intersects D′ properly.

b) H1(X̂,OX̂(L)⊗ IZ′∪D′∪B) = 0

c) There exists a section t0 ∈ H0(X̂,OX̂(L)⊗ IZ′) such that the divisor of zeros of t0
satisfies (t0) = Z ′ ∪ Z ′′, with

Z ′′ ∩ Λ = Z ′′ ∩ Z ′ ∩ (B ∪D′) = Z ′′ ∩B ∩D′ = ∅,
and Z ′′ intersects |D′|+B transversally.

d) Let V ′′ be the set of points in Z ′′ ∩B, and let V ′′ be the closure of V ′′ in X̂ . Then
V ′′s ∩Ds = ∅.

Moreover, L = Lη for a hypersurface section L of X̂ , which is surjective over S and satisfies
the property that D ′ ∩ L is an effective Cartier divisor, finite over S.

Proof. Everything follows from Bertini’s theorem and its variants. We remark that the final
condition d) is achieved by another application of Proposition 4.2.4. �

Note in particular that if V0 = B ∩ (Z ′ ∪ Z ′′), then every x ∈ V0 satisfies (SMC)O .

As before, we may assume that H0(X̂,OX̂(L)) = M ⊗S K for a free S-module M corre-
sponding to another projective embedding

ιM : X̂ ↪→ PS(M)

so that O(L) = (ι∗MOPS(M)(1))η.
Write (t0) = Z0 and write f0 for the rational function on Z0 induced by f ′ on Z ′ and

by the constant function 1 on Z ′′. Let T ′∞ be the set of poles of f0 in the above sense,

T ′∞ = {x ∈ X̂|f0 /∈ O×Z0,x
} − T0. Then T ′∞ ⊃ T∞, and by construction it is disjoint from

Λ−T∞. Moreover, T ′∞∩D′ = ∅, and f0 ∈ 1+ ID′OZ0,x for every x ∈ D′∩Z0, i.e. the function
f0 satisfies the modulus condition on Z0 with respect to D′.
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Lemma 5.3.2. There exists a lift t∞ ∈ H0(X̂,OX̂(L)) of the restriction of t0 to D′ ∪ B
such that the divisor of zeros (t∞) = Z∞ of t∞ is regular, intersects |D′| transversally and
Z∞ ∩ (T0 ∪ T ′∞) = ∅.

Proof. Let t1, . . . , tm be sections of H0(X̂,OX̂(L) ⊗ ID′ ⊗ IB) such that the rational map

X̂ 99K Pm−1
K that they define is a locally closed immersion on X̂ \ |D′ ∪ B|. We can add

t0 to the t′is so that the rational map ψ : X̂ 99K PmK given by the sections (t0, t1, . . . , tm) of

H0(X̂,OX̂(L)) is also a locally closed immersion on X̂ \ |D′ ∪B|, and since the base locus of
the linear system associated to (t0, t1, . . . , tm) is

(B ∪D′) ∩ Z0 = (D′ ∩ Z0)qB ∩ Z0,

it is in fact a morphism away from (B ∪D′) ∩Z0. Thus ψ is birational, hence separable, and
has image of dimension equal to two. By the classical theorem of Bertini, a general divisor
Z∞ = (t∞) in the linear system V (t0, t1, . . . , tm) is irreducible and generically reduced, and
regular away from (B ∪D′) ∩ Z0. Since (T0 ∪ T ′∞) ∩D′ = ∅, and also (T0 ∪ T ′∞) ∩B = ∅, the
set (T0 ∪ T ′∞) (which is zero dimensional) is away from the base locus, hence we can assume
that Z∞ ∩ (T0 ∪ T ′∞) = ∅. Note that by construction,

Z0 ∩D′ = Z∞ ∩D′, Z0 ∩B = Z∞ ∩B.

Up to a scalar, the section t∞ ∈ H0(X̂,OX̂(L)) is of the form t∞ = t0 + α, with α in

H0(X̂,OX̂(L)⊗ ID′ ⊗ IB). By condition c) of the previous Lemma, together with (2) of 5.2,
we can assume that at every point y ∈ Z0 ∩D′, the functions (t0, π) form a regular system of
parameters of OX̂,y, where π is a local equation for |D′| (note that IB,y ∼= OX̂,y since y /∈ B
by choice). If ID′,y = (πe), we can then choose α satisfying

αy = ayπ
e ∈ ID′,y ⊂ OX̂,y

with ay ∈ O×X̂,y, so that t∞,y = t0 + ayπ
e defines a regular divisor at y, intersecting |D′|

transversally and tangent to Z0.
The same argument works if we replace D′ by B, noting that (D′ ∩ Z0) ∩ B ∩ Z0 = ∅ and

that Z0 intersects B transversally. Thus we can assume that Z∞ is regular at every point of
Z∞ ∩ B as well. Explicitly, let b be a local equation for B in a neighborhood of y ∈ Z0 ∩ B.
As before, note that ID′,y ∼= OX̂,y since this time y /∈ D′. If IB,y = (b), we can choose α

satisfying the additional property

αy = cyb ∈ IB,y
with cy ∈ O×X̂,y, so that t∞,y = t0 + cytb defines a regular divisor at y. �

We now extend the function f0 to a function h on Z0 ∪ Z∞ by setting h = (f0, 1) ∈
K(Z0)× ×K(Z∞)×.

Claim 5.3.3. For every x ∈ Z0 ∩D′ = Z∞ ∩D′, we have h ∈ O×Z0∪Z∞,x.

Proof. In a neighborhood of x ∈ Z0∩D′, the scheme Z0∪Z∞ is defined by the principal ideal

IZ0IZ∞ = (t0(t0 + axπ
e)),

where (πe) = ID′,x and ax ∈ O×X̂,x as in the previous lemma. We have then the following

exact sequence of OX̂,x-modules

0→ OX̂,x/(t0(t0 + axπ
e))→ OX̂,x/(t0)×OX̂,x/(t0 + axπ

e)→ OX̂,x/(t0, axπ
e)→ 0
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By assumption, the function f0 satisfies the modulus condition, i.e. f ∈ 1 + ID′OX̂,x. Thus

f0 − 1 = 0 mod (t0, axπ
e). In other words, the pair (f0, 1) determines a regular function

h ∈ OX̂,x/(t0(t0 + axπ
e)) = OZ0∪Z∞,x,

as required. Note that h is automatically invertible at x. �

Write T̂∞ = {x ∈ X̂ |h /∈ O×Z0∪Z∞,x} \ T0, and write T̂0 = T0 coherently (note that T̂0 is

precisely the set of zeros of h, in the sense discussed above). By Claim 5.3.3, we have that

T̂∞ ∩D′ = ∅.
We now choose yet another section of O(L), as in the following lemma.

Lemma 5.3.4. Let Σ̂ ⊂ T̂∞ be the cancellation set for h (or, equivalently, for f0, or equiv-

alently for f ′). There exists a section s∞ ∈ H0(X̂,O(L)) such that its zero locus H = (s∞)
satisfies the following properties.

i) H is integral, intersects |D′| transversally (which means that H intersects |D′| only
in the regular locus, and transversally).

ii) H contains T̂∞, and is regular along each point of Σ̂ (note that T̂∞ ⊃ Σ̂).
iii) The restriction of s∞ to Z0 ∪ Z∞ determines a global section

hs∞ ∈ H0(Z0 ∪ Z∞,O(L))

iv) H∩(Λ−T̂∞) = H∩Z0∩D′ = H∩D′∩L = H∩D′∩B = H∩B∩Z0 = H∩B∩Z∞ = ∅.
Moreover, H = Hη for a hypersurface section H of X̂ , which is is surjective over S and
satisfies the property that D ′ ∩H is an effective Cartier divisor on H , finite over S.

Proof. We first take care of the generic fiber H. Its model over S, with the required property,
will be obtained using Theorem 4.2.2 applied to the set T̂∞ and with respect to the embedding
ιM in PS(M). Finiteness over S of the restriction of the divisor D ′ is achieved by the same
token of Proposition 4.2.4.

Write Σ̂ = {ξ1, . . . , ξr}, and for i = 1, . . . , r. Recall that, by construction, we have (Z0 ∪
Z∞) ∩ Σ̂ = Z0 ∩ Σ̂ = Z ′ ∩ Σ̂, and that at each point ξi ∈ Σ̂, there are exactly two regular
components of Z ′ passing through ξ, and intersecting transversally there. We can then choose
a regular system of parameters (u1,i, u2,i) ⊂ OX̂,ξi generating the maximal ideal of the local

ring of X̂ at ξi such that IZ0,ξi = (u1,i, u2,i), so that u1,i and u2,i are local parameters for the
two components Z ′1,i and Z ′2,i of Z ′ passing through ξi. Since ξi is a cancellation point, we
have

ordZ′1,i,ξi(f
′) + ordZ′2,i,ξi(f

′) = 0.

Write λi = ordZ′2,i,ξi(f
′), and suppose (up to exchanging the components) that λi > 0. We

can then write f ′ = ai

u
λi
1

mod u2, for ai ∈ O×Z′2,ξi and f ′ = biu
λi
2 mod u1, for bi ∈ O×Z′1,ξi , using

that OZ′1,ξi and OZ′2,ξi are DVRs.
Let Iξi ⊂ OX̂ be the ideal sheaf of the point ξi, and define Jξi ⊂ Iξi to be the subsheaf of

Iξi locally generated by (Jξi)ξi = (uλi+1
1,i , u2,i) ⊂ OX̂,ξi . Let J be the product

∏r
i=1 Jξi and let

Ĵ = JJ∞, where J∞ ⊂ OX̂ is the ideal sheaf of the points in T̂∞ \ Σ̂.

We now choose s∞ ∈ H0(X̂,OX̂(L) ⊗ Ĵ) such that s∞,ξi 6= 0 in (Jξi/Jξi ∩ I2
ξi

)ξi . Note

that, if necessary, we could have replaced L with another hypersurface section of X̂ so to have
enough global sections of OX̂(L)⊗ J from the beginning (we remark that J does not depend
on the later modifications, such as the choices of t0 and t∞).
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Write H for the divisor of zeros of s∞. As remarked above, the classical theorem of Bertini
implies that H is integral, that it intersects transversally |D′| (since |D′| ∩ T̂∞ = ∅) and that
satisfies condition iv) on the avoidance of the specified set of closed points. In particular,

each point of H ∩ D′ is a regular point of H. In a neighborhood of ξ ∈ Σ̂, we can write
s∞ = uλ+1

1 + εu2, with ε ∈ O×
X̂,ξ

by assumption, so that H is regular at ξ. Condition ii) is

then achieved.
The function h is a rational function on Z0 ∪ Z∞ (i.e. an element of the ring of total

quotients of Z0 ∪ Z∞), and it’s not defined precisely at the finite set of points T̂∞. Consider
now the function s∞h. We claim that s∞ can be chosen in the previous step so that s∞h ∈
OZ0∪Z∞,x for every x ∈ T̂∞. In particular, the function s∞h gives rise to an element of
H0(Z0 ∪ Z∞,O(L)).

For x = ξ ∈ Σ̂, this is a direct consequence of the construction. Indeed, OZ0∪Z∞,x =
OZ′1∪Z′2,x, where Z ′1 and Z ′2 are the two regular components of Z0 ∪ Z∞ passing through x.
We have then a short exact sequence, as in the proof of Claim 5.3.3

0→ OZ′1∪Z′2,x → OX̂,x/(u2)×OX̂,x/(u1)→ OX̂,x/(u1, u2)→ 0

and an equality

(5.4) hs∞ = (
a

uλ1
, buλ2)(uλ+1

1 + εu2) = (au1, εbu
λ+1
2 ) ∈ OX̂,x/(u2)×OX̂,x/(u1),

with a and εb units, from which it follows that (hs∞)Z′1∩Z′2 = 0 in OX̂,x/(u1, u2) = k(x), so

that hs∞ gives rise to an element of OZ′1∪Z′2,x. Note in particular that the required lifting

property can be achieved together with the regularity of H. For x ∈ T̂∞ \ Σ̂, where the

regularity of H is not required, it is enough to choose s∞ such that s∞,x ∈ ĴNx = mN
x ⊂ OX̂,x

for a sufficiently large N (depending on x) so that hs∞ = 0 mod Ĵx. This forces hs∞ to be
regular on Z0 ∪ Z∞ at x. Note that H will be, in general, highly singular there.

Finally, since the base locus of the linear system |H0(X̂,OX̂(L) ⊗ Ĵ)| is disjoint from the

zero dimensional sets (Λ − T̂∞), Z0 ∩D′, D′ ∩ L, D′ ∩ B, B ∩ Z0 = B ∩ Z∞, thanks to the

condition T̂∞ ∩ D′ = ∅, we can assume that H satisfies condition iv). Here we are using in

particular the fact that T̂∞∩D′∩ (Z∞∪L) = T̂∞∩D′∩ (Z∞∪L) = ∅, which is a consequence
of Lemma 5.3.2 and the fact that h is a regular invertible function on Z0 ∪ Z∞ at every
x ∈ D′ ∩ Z0 = D′ ∩ Z∞, which is ensured by Claim 5.3.3.

Similarly, since T̂∞ ∩ |D′| = ∅, condition i) (i.e. the transversality of the intersection) can
be achieved as well. �

Let Z0 (resp. Z∞) be the closure of Z0 (resp. Z∞) in X̂ . For every N > 0, write EN for
the free S-module

EN = H0(X̂ , ι∗EOPS(E)(N)).

Combining the closed embedding ιM with the N -fold embedding ιEN and following the result
with the Segre embedding (see [7, 4.3.3]), we get a composite embedding

ι : X̂ ↪→ PS(M ⊗ EN )

For N > 0 sufficiently large, we have that

H1(X̂,OX̂(L+NΓ)⊗ IZ0∪Z∞) = H1(X̂ , ι∗MOPS(M)(1)⊗ ι∗EOPS(E)(N)⊗ IZ0∪Z∞) = 0

by Serre’s vanishing theorem. This gives in particular a surjection

H0(X̂,OX̂(L+NΓ))
φ−→ H0(Z0 ∪ Z∞,O(L+NΓ))→ 0
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Figure 1. The configuration of curves on the generic fiber after Lemma 5.3.5

The restriction of βN ∈ H0(X̂,OX̂(NΓ)) to Z0 ∪ Z∞ determines a section

βNs∞h ∈ H0(Z0 ∪ Z∞,O(L+NΓ)),

which we are going to lift in an appropriate way thanks to the following result.

Lemma 5.3.5. There exists a section s0 ∈ H0(X̂,OX̂(L + NΓ)) such that φ(s0) = βNs∞h
and such that its zero locus F = (s0) satisfies the following properties.

v) F is integral, regular along each point of Σ̂.
vi) F ∩D′ ∩ L = F ∩D′ ∩ Z0 = F ∩H ∩D′ = ∅, and F intersect |D′| transversally.
vii) F intersects H \ (Z0 ∪ Z∞) transversally, which means that every intersection
point of F and H away from Z0 ∪ Z∞ is a regular point of both F and H, and that
they intersect transversally there.

Moreover, F = Fη for a hypersurface section F of X̂ , which is is surjective over S and
satisfies the property that D ′ ∩F is an effective Cartier divisor on F , finite over S.

Proof. We keep the notations of Lemma 5.3.4. Consider the torsion-free submodule

˜M ⊗S EN = H0(X̂ , ι∗MOPS(M)(1)⊗ ι∗EOPS(E)(N)⊗ IZ0∪Z∞)

of the free module M ⊗S EN .

Let s1, . . . , sm be a basis for a maximal free submodule E′ of ˜M ⊗S EN , and denote by the
same letters the corresponding sections of H0(X̂,O(L+NΓ) ⊗ IZ0∪Z∞). As in the proof of
Lemma 5.3.2, the si’s define a rational map

X̂ 99K Pm−1
K
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that is locally a closed immersion on X̂ \ (Z0 ∪ Z∞). Let s̃0 be any lift of βNs∞h to a

global section in H0(X̂,OX̂(L + NΓ)), and let λ ∈ O − {0} be a non-zero element such
that λs̃0 ∈ M ⊗S EN . Adding λs̃0 to the set (s1, . . . , sm) defines another free submodule

E′′ = E′ ⊕ 〈λs̃0〉 of M ⊗S EN , of rank m + 1, since s̃0 /∈ H0(X̂,O(L+NΓ) ⊗ IZ0∪Z∞) (so
that, a fortiori, λs0 is S-linearly independent of the si’s). By construction, we have that the
linear system V (s̃0, s1, . . . , sm) is nothing but the linear system associated to the sub-vector
space E′′ ⊗S K of the vector space (M ⊗S EN )⊗S K or, equivalently to the K-points of the
Grassmannian GrS(E′′ ⊗S K)(K).

Next, notice that the base locus of V (s̃0, s1, . . . , sm) is zero dimensional, given by (s̃0) ∩
(Z0 ∪ Z∞), and disjoint from the sets D′ ∩ L, D′ ∩ Z0 = D′ ∩ Z∞, and D′ ∩ H. Indeed,
D′∩H ∩ (Z0∪Z∞) = ∅ by condition iv) of Lemma 5.3.4, while D′∩L∩ (Z0∪Z∞) = ∅ by the
choice of L (missing Λ) and the choice of t∞ in Lemma 5.3.1. As for the set D′ ∩ (Z0 ∪ Z∞),
note that by choice s̃0 restricts to βNs∞h on Z0 ∪ Z∞, and we have that B ∩ Z0 ∩D′ = ∅ by
the choice of B (which forces B ∩ Z∞ ∩D′ = ∅, since Z0 ∩D′ = Z∞ ∩D′). In particular, βN

is a unit at each point x ∈ Z0 ∪ Z∞ ∩D′.
We are then left to consider the term s∞h in a neighborhood of any x ∈ D′∩Z0 = D′∩Z∞

in Z0 ∪Z∞ in order to prove that the base locus of V (s̃0, s1, . . . , sm) is disjoint from D′ ∩Z0.
Restricting s̃0/β

N to the components Z0 and Z∞ we get

(5.5) s̃0/β
N
|Z0

= f0 · s∞|Z0
, s̃0/β

N
|Z∞ = 1 · s∞|Z∞ .

The function f0 satisfies the modulus condition on Z0 with respect to D′, so f0 is a unit at
every x ∈ D′ ∩ Z0. By Lemma 5.3.4, H = (s∞) is disjoint from Z0 ∩D′, thus s∞ is a unit at
every x ∈ D′ ∩ Z0. The same analysis works for the restriction to Z∞. Thus, independently
of the choice of the lift s̃0, the base locus of V (s̃0, s1, . . . , sm) is disjoint from the sets in vi).

By the classical theorem of Bertini, there exists an open subset U of GrS(E′′⊗SK) such that
every hypersurface section F corresponding to a K point of U is irreducible and generically
reduced, and satisfies both vi) and vii). Chose a section s0 ∈ E′′ with F = (s0) such that
F = F ×S K belongs to U . We also write s0 for the corresponding section over K (so that
F = (s0)).

We now turn to the regularity (over K) in a neighborhood of each cancellation point ξ ∈ Σ̂.

Thanks to the fact that β is a unit at ξ (since B ∩ Σ̂ = ∅) and the fact that s∞h is given by
the expression in (5.4), in a neighborhood of ξ any lifting of βNhs∞ is of the form

s0 = µ1u1 + µ2u
λ+1
2 + µ12u1u2, µ12 ∈ OX̂,ξ, µ1, µ2 ∈ O×X̂,ξ

in particular, F = (s0) is automatically regular at ξ as required.
Finally, we turn to the last required conditions about the model F of F , given by a point

of
GrS(E′′)(S) ⊂ GrS(E′′ ⊗S K)(K)

This can be achieved via a minor modification of the proof of Theorem 4.2.2. Surjectivity over
S is clear. As for the condition on D ′, we argue as follows. Let D1

s , . . . ,D
r
s be the irreducible

components of D ′s. Let G be another hypersurface section of X̂ , surjective over S and such
that the following two conditions are satisfied

a) G ∩ (Z0 ∪Z∞) ∩Ds = GK ∩ (Z0 ∪ Z∞) ∩D′ = ∅
b) G ∩D i

s 6= ∅ for each i = 1, . . . , r.

Both conditions can be easily achieved by the classical theorem of Bertini. Let U ′ ⊂ Grk(E
′′⊗S

k) be the open subset such that for every H ∈ U ′(k), we have H ∩ (G ∩ D) = ∅ (note that
the intersection necessarily takes place in the special fiber). Choosing s0 ∈ E′′ in the set
U(S)∩ sp−1(U ′(k)), not empty thanks to Lemma 4.1.1, does then the job. Indeed, conditions
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a) and b) force to have, as in the proof of 4.2.2, that the restriction s0 7→ s0
i of s0 is not zero

in H0(X̂s,OX̂s
/IDi

s
) for all i. Thus D ′s restricts to a Cartier divisor on Fs, and its support is

therefore a finite set of closed points. �

We summarize what we achieved so far in the following proposition. We keep the above
notations.

Proposition 5.3.6. Let X̂ be as above. Then there exist integral curves H and F such that
the following conditions are satisfied

a’) Both H and F are regular in a neighborhood of Σ̂.
b’) Both H and F intersect transversally |D′| (in particular, they are regular there),
and H ∩ F ∩ |D′| = ∅.

c’) Both F and H have integral models F and H over S, which are surjective over
S and satisfy the property that the restriction of D ′ to them is an effective Cartier
divisor, finite over S.

d’) Let τ = t0/t∞ ∈ K(X̂) as rational function on X̂. Then the restriction of τ
to F and to H satisfy the modulus condition with respect to D′ ∩ F and to D′ ∩ H
respectively.

Moreover, we have γ′ = divF (τ)− divH(τ) as zero cycles on X̂.

Proof. Properties a’) and b’) are direct consequences of Lemma 5.3.4 and of Lemma 5.3.5.
Since moreover

D′ ∩ (Z∞ ∪ L) ∩H = D′ ∩ (Z∞ ∪ L) ∩ F = D′ ∩ (Z0 ∪ L) ∩H = D′ ∩ (Z0 ∪ L) ∩ F = ∅,
thanks to Lemma 5.3.4 part iv) and 5.3.5 part vi), the choice of t∞ in Lemma 5.3.2 guarantees
that τ ∈ 1 + IDOX̂,x for x /∈ D′ ∩ Z∞, so that τ|F ∈ 1 + ID′OF,x for every x ∈ F ∩ D′ and

that τ|H ∈ 1 + ID′OH,x for every x ∈ H ∩D′ (note that here we are using the property that
Z∞ ∩D′ ∩ (F ∪H) = ∅). We can now compute

0 = divZ∞(1) = F · Z∞ −H · Z∞ −N(B · Z∞),

γ′ = divZ′(f
′) = F · Z0 −H · Z0 −N(B · Z0).

We subtract the two equations and collect to get γ′ = divF (τ) − divH(τ) − NdivB(τ). But
t0/t∞ = 1 on B thanks to Lemma 5.3.2, thus the term NdivB(τ) vanishes and we get the
required expression for γ′. �

5.4. Reduction II. We keep the notations of Section 5.3. In order to further improve the
expression of γ′, we introduce some auxiliary divisors. As before, we take care of the models
over S by means of the techniques developed in Section 4.

Lemma 5.4.1. There exists a hypersurface section H ′ ⊂ X̂ , such that the following condi-
tions are satisfied. Let H ′ = H ′

η be the generic fiber.

(1) H ′ is integral, regular, and H ′|D′ ≥ H|D′ +N ·B|D′
(2) H ′ ∩ T̂0 = H ′ ∩ T̂∞ = H ′ ∩ (F ∩H) = H ′ ∩ F ∩D′ = H ′ ∩ F ∩B = ∅.
(3) H1(X̂,OX̂(H ′)⊗ ID′) = 0.
(4) H is integral, surjective over S. Moreover, D ′ restricts to an effective Cartier divisor

on H ′ which is finite over S.

Proof. Everything can be achieved by using the classical theorem of Bertini over K, while the
condition (4) on the integral model can be achieved by means of Theorem 4.2.1.

More precisely: property (3) can be achieved by taking H ′ of sufficiently large degree, and
property (2) is clear since all the relevant sets are zero dimensional. As for property (1), notice
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that H intersects |D′| transversally by construction (by lemma 5.3.4). Similarly, B intersects
|D′| transversally by choice and away from H (since H ∩ D′ ∩ B = ∅ by Lemma 5.3.4). A
local analysis around a neighborhood of any point in (B ∩D′)q (H ∩D′) shows that H ′ can
be chosen to be regular there. Note that H ′ can be chosen to intersect D′ transversally at
each point x ∈ H ∩D′, and will be tangent to D′ at each point x ∈ B ∩D′. We can moreover
ask that H ′ intersects |D′| transversally at each point of (H ′ ∩D′) \ (D′ ∩ (B ∪H)). �

Write g = (s0/s∞β
N )|D′ ∈ H0(D′,O(H +N ·B)). By property (1) above, we can consider

the image of g in H0(D′,O(H ′)), and choose a lift G along the surjection (guaranteed by
property (3)).

H0(X̂,OX̂(H ′))→ H0(D′,OD′(H ′))→ 0

Write W0 for the divisor of zeros of G. Note that div(G) = W0−H ′ ∈ Z1(X̂) by construction.

Claim 5.4.2. W0 is regular in a neighborhood of every point x in W0∩D′ and W0∩D′∩H ′ = ∅.

Proof. Again by construction, any point x in D′ such that either s0 or s∞β is not a unit
is a regular point of |D′|. Let then π be a local equation for |D′| in a neighborhood of

x, so that D′ = (πe). Any lift G of g is then in a neighborhood of x in X̂ of the form
G = (s0 +aπes∞β

N )/(s∞β
N ) for a ∈ OX̂,x, so that W0 is locally given by s0 +aπes∞β

N = 0.

This is enough to conclude. In fact, observe that by condition b’) in Proposition 5.3.6 and
condition (2) of Lemma 5.4.1, for every x ∈ H ′∩|D′|, we have that s0,x ∈ O×X̂,x. In particular,

s0 +aπes∞β
N is not in the maximal ideal of OX̂,x, showing that W0∩D′∩H ′ = ∅ as required.

As for the regularity, note that if x ∈ D′ ∩W0, we have G|D′ = g = (s0/s∞β
N )|D′ and this

time s∞β
N is a unit there. Since F = (s0) intersects |D′| transversally, any lift as above is

automatically regular. �

Following the path of Lemmas 5.3.2 and 5.3.4, we can now alter G by any section of
H0(X̂,OX̂(H ′)⊗ ID′) such that

1’) W0 is regular,

2’) W0 ∩ F ∩H ′ = W0 ∩ T̂0 = W0 ∩ T̂∞ = ∅
For condition 1’), note that regularity away from D′ can be achieved by standard Bertini.
Along D′, this is guaranteed by Claim 5.4.2. As for condition 2’), it follows from the fact that

T̂0 ∩D′ = T̂∞ ∩D′ = ∅ and that F ∩H ′ ∩D′ = ∅.
We now proceed as follows. Let Λ̂ be the following set

Λ̂ = (F ∩D′) ∪ (H ′ ∩D′) ∪ (W0 ∩D′) ∪ (T̂0 ∪ T̂∞) ∪ (F ∩H ′) ∪ (B ∩D′).
Choose another hypersurface section L′ of X̂, of sufficiently large degree, such that L′∩Λ̂ = ∅.
As before, we may assume that H0(X̂,OX̂(L′)) = M ′ ⊗S K for a free S-module M ′, corre-

sponding to a projective embedding ιM ′ : X̂ ↪→ PS(M ′) so that O(L′) = (ι∗M ′OPS(M ′)(1))η.
We can choose the degree of L′ to be sufficiently large so that

(5.6) H1(X̂,OX̂(L′)⊗ ID′∪W0) = H1(X̂ , ι∗M ′O(1)⊗ ID ′∪W0) = 0.

where W0 is the closure of W0 in X̂ .
We now let Ξ be the set of cancellation points in the expression of γ′ as divF (τ)−divH(τ),

which moreover do not satisfy (MC)O. Explicitly

Ξ = {ξ ∈ F ∩H | ordF,ξ(τ) = ordH,ξ(τ)} ∩ {ξ ∈ F ∩H | ξ does not satisfy (MC)O} ⊆ Σ̂

Fix ξ ∈ Ξ, and let λ = λξ be the order of vanishing of τ at ξ, i,e.

ordF,ξ(τ) = ordH,ξ(τ) = λ
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Choose a global section l∞ ∈ H0(X̂,OX̂(L′)) such that, if (l∞) denotes its divisor of zeros,
we have:

i) (l∞) is integral, and regular.
ii) ξ ∈ (l∞), and (l∞) ∩ (Ξ \ {ξ}) = ∅.
iii) (l∞) intersects F , |D′|, H, H ′, B and W0 transversally, which means that (l∞) inter-

sects each divisor in the regular locus, and transversally.
iv) (l∞) ∩D′ ∩ (F ∪H ′ ∪B) = (l∞) ∩D′ ∩W0 = ∅, and (l∞) ∩ (T̂0 ∪ T̂∞) \ {ξ} = ∅
v) For every closed point y ∈ (l∞) in the set

(5.7) (((l∞) ∩W0) ∪ ((l∞) ∩H ′) ∪ ((l∞) ∩ F ) ∪ ((l∞) ∩H) ∪ ((l∞) ∩B) \ Ξ

we have that y satisfies (SMC)O .

vi) (l∞) = (L∞)η for a hypersurface section L∞ of X̂ which is surjective over S and
satisfies the property that D ′ restricts to an effective Cartier divisor on L∞, which is
finite over S.

The last two conditions follow from Theorem 4.2.2 (applied to the inclusion of the closure of
the point ξ) and Proposition 4.2.4 for the embedding ιM ′ . A general choice of l∞ satisfies all
the other properties, noting that the only closed condition is ii), but by construction F and H
are regular and tranverse to each other there, so that (l∞) can be itself chosen to be regular
at ξ, and intersecting F and H transversally.

By (5.6), we have a surjection

H0(X̂,OX̂(L′))→ H0(D′ ∪W0,OX̂(L′)|D′∪W0
)→ 0

Claim 5.4.3. There exists a lift l0 of the restriction of l∞ to D′ ∪W0 such that

i’) (l0) ∩ Ξ = ∅, (l0) is regular and intersect transversally |D′|.
ii’) (l0) ∩ (T̂∞ ∪ T̂0) = ∅
iii’) (l0) ∩D′ ∩ (F ∪H) = ∅
iv’) For every closed point y ∈ (l0) in the set

(5.8) ((l0) ∩ F ) ∪ ((l0) ∩H) ∪ ((l0) ∩H ′) ∪ ((l0) ∩B)

we have that y satisfies (SMC)O .

v’) (l0) = (L0)η for a hypersurface section L0 of X̂ which is surjective over S and
satisfies the property that D ′ restricts to an effective Cartier divisor on L0, which is
finite over S.

Proof. Regularity away from D′ ∪W0 is clear, as well as the condition (l0)∩Ξ = ∅, since Ξ is
away fromD′, and condition 2’) guarantees that Ξ is away fromW0. Note thatD′∩W0∩(l∞) =
∅, and that (l∞) intersects transversally both W0 and |D′|, so that we can choose the lift l0
to be regular there as well.

Since (D′∪W0)∩(T̂∞∪T̂0) = ∅, condition ii’) is clear. Similarly, since (l∞)∩D′∩(F∪H) = ∅
by iv), we get condition iii’).

As for the last two conditions, we argue as in the proof of Lemma 5.3.5 to further refine
the choice of l0. More precisely, consider the torsion free-submodule

M̃ ′ = H0(X̂ , ι∗M ′O(1)⊗ ID ′∪W0)

of the free module M ′ = H0(X̂ , ι∗M ′O(1)).

Let l1, . . . , lr be a basis for a maximal free submodule E′′ of M̃ ′, and denote by the same
letters the corresponding sections of H0(X̂,OX̂(L′) ⊗ ID′∪W0). Let l̃0 be any lift of the
restriction of l∞ to D′∪W0 to a global section in M ′n⊗SK, and let λ ∈ O−{0} be a non-zero

element such that λl̃0 ∈M ′n. We can then add λl̃0 to the li’s to get a rank r+1 free O-module
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E′′′. We can now apply Proposition 4.2.4 to the corresponding locally closed immersion to
get iv’).

Finally, to get v’), we argue again as in the last part of the proof of Lemma 5.3.5. We
quickly sketch the argument: a general section of Grk(E

′′′ ⊗S k)(k) contains the special fiber
Vs of the closure V of every point in (l∞) ∩ (W0 \ D′). But those points satisfy (SMC)O

thanks to v) above, and therefore Vs is not contained in any component of Ds. But then we

can assume that the image of l0 is not zero in H0(X̂s,OX̂s
/IDi

s
) for each component D i

s of

D ′s, which means in particular that we can chose it so that L0 satisfies the property that D ′

restricts to an effective Cartier divisor on it, finite over S as required. �

We summarize for the reader’s convenience what we have achieved so far. For simplicity,
we focus on the salient properties of the new objects constructed.

Proposition 5.4.4. Let X̂ be as above, and let ξ be a cancellation point for the cycle γ′. Then
there exist integral curves, (l0) and (l∞), divisors of zeros of sections l0, l∞ ∈ H0(X̂,OX̂(L′))

of a very ample hypersurface section L′ of X̂ such that the following conditions are satisfied.

(1) Both (l0) and (l∞) are regular, and have integral models L0 and L∞ over S, which
are surjective over S and satisfy the property that the restriction of D ′ to them is an
effective Cartier divisor, finite over S.

(2) Both (l0) and (l∞) intersect transversally |D′|.
(3) (l0) is disjoint from T̂∞ ∪ T̂0 ∪ Ξ.
(4) (l∞) passes through ξ, and intersects both F and H and H ′ transversally there.
(5) Both (l0) and (l∞) are chosen so that every closed points in the sets (5.7) and (5.8)

satisfy the strong modulus condition (SMC)O .

(6) Let l0/l∞ ∈ K(X̂) as rational function on X̂. Then the restriction of l0/l∞ to B, F ,
H ′, H and W0 satisfy the modulus condition with respect to D′.

The new sections (l0) and (l∞) will be used to remove, from the expression of γ′, the
specified cancellation point ξ. This is the content of the next subsection.

5.4.1. Moving. We can now compute. Note that by construction each zero cycles appearing
is supported on X̂ \D′. Adding to γ′ the boundary of { s0

s∞βN
, l0l∞ } ∈ K2(K(X̂)) we get

γ′ = divF (τ)− divH(τ)

= divF (τ)− divH(τ) + λ
(

divF

( l0
l∞

)
− divH

( l0
l∞

)
+

+ div(l0)

( s0

s∞βN

)
− div(l∞)

( s0

s∞βN

)
−NdivB

( l0
l∞

))
Collecting the terms containing F and H gives then

(5.9) γ′ = divF

(τ lλ0
lλ∞

)
−divH

(τ lλ0
lλ∞

)
+λdiv(l0)

( s0

s∞βN

)
−λdiv(l∞)

( s0

s∞βN

)
−NλdivB

( l0
l∞

)
,

and each curve appearing in the expression has an integral model over S, which is surjective
and satisfies the property that D ′ restricts to an effective Cartier divisor on it, finite over S.

In this newly found expression for γ′, note that ξ does not appear in the support of any
of the divisors involved. Indeed, ξ does not appear in the last 3 terms by construction, while

the function
τlλ0
lλ∞

is a unit at ξ thanks to the choices of l0 and l∞ (note in particular that we

are using the fact that (H ∪F )∩D′ ∩ (l∞) = ∅, so that the expression
τlλ0
lλ∞

is indeed a unit at

every point of F ∩D′ and at every point of H ∩D′.
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Since l0/l∞ = 1 along D′ and (l∞)∩D′∩B = ∅, note that the last term divB

(
l0
l∞

)
satisfies

the modulus condition. Finally, note that thanks to properties v) and iv’) above, every divisor
appearing in (5.9) except Ξ− {ξ} satisfies the modulus condition (MC)O .

We are now left to correct the second and the third term of (5.9) to get the modulus
condition with respect to D′. Write γ′′ for the cycle

γ′′ := divF

(τ lλ0
lλ∞

)
− divH

(τ lλ0
lλ∞

)
−NλdivB

( l0
l∞

)
.

Note that, by construction and what remarked above, the cycle γ′′ already satisfies the
modulus condition with respect to D′. Arguing as above, we add to (5.9) the boundary

of {G, l0l∞ } ∈ K2(K(X̂)) to find

γ′ = γ′′ + λ
(

div(l0)

( s0

s∞βN
G−1
|(l0)

)
− div(l∞)

( s0

s∞βN
G−1
|(l∞)

)
− div(l0)(G) + div(l∞)(G)

)
= γ′′ + λ

(
div(l0)

( s0

s∞βN
G−1
|(l0)

)
− div(l∞)

( s0

s∞βN
G−1
|(l∞)

)
+ divW0

( l0
l∞

)
− divH′

( l0
l∞

))
We now note the following

(1) By construction, l0 = l∞ mod IW0 . Thus the term divW0

(
l0
l∞

)
vanishes.

(2) l0
l∞
∈ 1 + ID′OH′,x for every x ∈ H ′ ∩ D′. Note that we are in particular using

the fact that (l∞) ∩ H ′ ∩ D′ = ∅, which implies that l∞ is a unit at every point
x ∈ H ′ ∩D′ ⊃ H ∩D′.

(3) The function G is constructed as global lift of the restriction of s0
s∞βN

to D′. Moreover,

for every x ∈ (l0)∩D′ we have that G|(l0),x ∈ O×(l0),x, since (H ′∪W0)∩D′∩(l0) = ∅. In

particular, we have that G−1
|(l0),x ∈ O

×
(l0),x, so that s0

s∞βN
G−1
|(l0) is regular and invertible

at every x ∈ D′ ∩ (l0), and it’s congruent to 1 mod ID′ . In other words, it satisfies the
modulus condition. The same argument applies verbatim to s0

s∞βN
G−1
|(l∞) on (l∞).

Thus γ′ simplifies as

γ′ = γ′′ + λ
(

div(l0)

( s0

s∞βN
G−1
|(l0)

)
− div(l∞)

( s0

s∞βN
G−1
|(l∞)

)
− divH′

( l0
l∞

))
and every term satisfies the modulus condition with respect to D′ as well as every closed point
appearing in the expression satisfies (MC)O , with the only exception of the points in Ξ−{ξ}.
Repeating the argument using γ′′ + NλdivB

(
l0
l∞

)
instead of γ′, we can remove every other

cancellation point ξ′ ∈ Ξ which do not satisfy (MC)O .

6. Further reductions and the proof

6.1. Relative correspondences. In order to prove our main result, we need to slightly
generalize the notion of admissible correspondence to schemes that are not necessarily smooth
and of finite typer over a field.

Let S be the spectrum of an excellent normal local domain O, and fix a non-zero element
Π ∈ m. Let K be the field of functions of S. An S-modulus pair is a pair X = (X ,X∞)
consisting of an S-scheme f : X → S, separated and of finite type over S, and an effective
Cartier divisor X∞ on it such that the complement X = X \ X∞ is generically regular

i.e. XK is a regular K-scheme. Let µ : X
N → X be the normalization morphism, and let

ν : X
N → S be the composition f ◦ µ.
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We say that X is admissible for (O, (Π)) if there is an inequality of Cartier divisors

µ∗(X∞) ≥ ν∗((Π))

where (Π) is the Cartier divisor on S defined by Π. A basic example of S-modulus pair which
is admissible for (O, (Π)) is the relative cube

�O,(Π) = (P1
O , 1O + P1

(Π)).

Let X = (X ,X∞) and Y = (Y ,Y∞) be S-modulus pairs. Write X = X \ X∞ and
Y = Y \ Y∞. Assume that X is (O, (Π)) admissible and that Y is proper (i.e. that Y is
proper over S). We define the group of admissible S-correspondences as the subgroup

(6.1) MCor(O,(Π))(X,Y) ⊂ CorK(XK ,YK)

generated by the finite prime correspondences V ∈ CorK(XK ,YK), satisfying the condition

ν∗V (Y∞) ≤ ν∗V (X∞)

where V is the closure of V in X ×S Y and νV : V
N → X ×S Y is the composition of the

(finite) normalization map with the inclusion.

Example 6.1.1. Let Y = (Y ,Y∞) be a proper S-modulus pair, and let Y = YK be the generic
fiber of the complement of Y∞. Taking X = (S, (Π)) in (6.1), we get that

MCor(O,(Π))(X,Y) = MCor(S,(Π))((S, (Π)),Y) ⊂ Z0(Y )

is the subgroup of the group Z0(Y ) = CorK(Spec (K), Y ) of zero cycles on Y generated by
closed points y ∈ Y ⊂ Y satisfying the modulus condition (MC)O in the sense of Definition
3.1.1.

Given a proper S-modulus pair X, we can now define h�0 (X)(O, (Π)) as the cokernel

(6.2) MCor(O,(Π))((O, (Π))⊗�,X)
i∗0−i∗∞−−−−→MCor(O,(Π))((O, (Π)),X)

where (O, (Π))⊗� = �O,(Π) and the map i∗0 − i∗∞ is induced by

CorK(P1
K − {1},XK)

i∗0−i∗∞−−−−→ CorK(Spec (K),XK) = Z0(XK)

Note that the modulus condition is preserved under i∗0 and i∗∞, thanks to the containment
Lemma (see e.g. [16, 2.2]).

If X = (X ×k S,X∞ ×k S) for a proper modulus pair (X,X∞) ∈ MCor, this recovers
precisely the definition in Section 2.

Remark 6.1.2. The notation MCor(O,(Π)) is suggesting that the group of admissible S-
correspondences can be taken as group of morphisms in an additive category of S-modulus
pairs (possibly after further restrictions). We do not need to investigate this point further in
this paper. In particular, we do not claim that our definition is closed under composition.

6.2. A reformulation in terms of algebraic cycles. Let k be again a perfect field, and
X = (X,X∞) ∈MCor a proper modulus pair over k, and let X = X \X∞. Assume that the

total space X is projective. Let h�0 (X)Nis be the Nisnevich sheaf associated to the presheaf

h�0 (X) ∈MPST. See again section 2.1 for details. Recall the statement of Theorem 2.1.3.

Theorem 6.2.1. For X as above, the sheaf h�0 (X)Nis is semi pure, i.e. that the natural map

h�0 (X)Nis → ω∗ω!h
�
0 (X)Nis

is an injective morphism of Nisnevich sheaves.
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This can be checked on stalks, so let (Y , Y∞) ∈ MCor, and let y ∈ Y be a point. Let O
be the henselization of the local ring OY ,y. Write L for the residue field of O, L = k(y), and

K for its field of fractions. Let Π ∈ O be a local equation for Y∞ at y. Theorem 2.1.3 is then
equivalent to the following

Theorem 6.2.2. For X ∈MCorproj, the natural map

jO,(Π) : h�0 (X)(O, (Π))→ (ω∗ω!h
�
0 (X)Nis)(O, (Π)) ↪→ h�0 (X)(K, ∅)

is injective for every pair (O, (Π)), where k ⊂ O is an (equicharacteristic) henselian local
normal domain with field of fractions K and Π ∈ O is a non zero element. Here, we are using
the notation (O, (Π)) to denote the modulus pair (Spec (O), (Π)), where (Π) is the effective
Cartier divisor on Spec (O) defined by Π.

The above statement can be reformulated as follows. Using the definition of h�0 (X), we
have a commutative diagram, with exact columns,

(6.3)

MCor((O, (Π))⊗�,X) MCor(Spec (K)⊗�,X)

MCor((O, (Π)),X) Z0(XK)

h�0 (X)(O, (Π)) h�0 (X)(K, ∅).

i∗0−i∗∞ i∗0−i∗∞

Here, we have used the identification, which can be easily checked using the definition of
admissible correspondences,

MCor(Spec (K),X) = Z0(XK),

where the latter denote the group of 0-cycles on XK . The subgroup MCor((O, (Π)),X)
agrees with the group MCor(O,(Π))((O, (Π)),X) of S admissible correspondences introduced
in the previous paragraph, and is generated by the closed points in XK satisfying the modulus
condition over O. To lighten the notation, we suppress the subscript (O, (Π)) in what follows.

The relationship between the group CH0(XK |X∞,K) and the presheaf h�0 (X) for a modulus
pair X is given by the following Proposition.

Proposition 6.2.3. Let X = (X,X∞) be a proper modulus pair over a field F , and let F ⊂ K
be a field extension. Then

h�0 (X)(K, ∅) = CH0(XK , X∞,K)

where XK denotes the extension X ×F K and X∞,K the pullback of X∞ to XK .

Proof. See [2, Section 3] for a comparison between the groups CHr(Y |Y∞, 0), defined by means
of the cubical cycle complex and the relative Chow groups CHr(Y |Y∞) defined in terms of

divisors of rational functions. This, together with the definition of h�0 (X)(K, ∅) immediately
gives the proof. �

Theorem 6.2.2 is then implied by the injectivity of the natural map

(6.4) jO,(Π) : h�0 (X)(O, (Π))→ CH0(XK , X∞,K)

for every pair (O, (Π)) as above and every X ∈MCorproj.
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6.3. Proof of the main theorem. In view of the previous discussion, in order to prove the
injectivity (6.4) we argue as follows. We keep the same notations as above.

Let α ∈ ker(jO,(Π)). According to the Definition (see [13]), α = 0 in CH0(XK , X∞,K)

means that there exist integral curves C1, . . . , Cn contained in XK , of finite type over K, and
rational functions f1, . . . , fn, with fi ∈ G(CNi , Ci,∞) such that

α =

N∑
j=1

mj [xj ] =

n∑
i=1

divCi(fi) =

n∑
i=1

νi,∗divCNi
(fi)

for closed points xj ∈ MCor((O, (Π)),X) ⊂ Z0(XK), i.e. satisfying the modulus condition

over O. Here νi : C
N
i → Ci ⊂ XK is the composition of the normalization map with the

inclusion. We will consider X ×k S = XS as projective scheme over O, equipped with an
effective Cartier divisor (X∞)S = (X∞)×k S. Write XS for the modulus pair over S given by
XS = (XS , X∞,S).

Write C for the union of the Ci’s and following the convention of Section 5, write α =
divC(f), for f ∈ K(C)× =

∏n
i=1K(Ci)

× a meromorphic function restricting to fi on the

integral component Ci. Let CS be the closure of C in XS . Note that CS is the union of
integral, 2-dimensional subschemes of XS such that

Ass(CS ×S L) ∩ |X∞| = ∅

where X∞,L is seen as effective divisor on the special fiber of XS (it is the base change X×kL).
We divide the proof in the points 6.3.1 - 6.3.3 below.

6.3.1. Step 1. We first suppose that dim(X) ≥ 3. If dim(X) ≤ 2, pass directly to Step 3. Let
Ω = {x ∈ (XK)(0) | ex(C) ≥ 3}. If Ω = ∅, pass directly to Step 2. Otherwise, we proceed as

follows. Let Ω′ be the set of singular points of C. Let ρS : X
′
S → XS be a repeated blow up

along the closure of closed points of lying over points of Ω′ such that the following conditions
are satisfied:

(1) Let C ′S be the strict transform of CS , and let C ′K be its generic fiber. Then C ′K is a
disjoint union of integral regular curves.

(2) Let X ′∞,S be the total transform of X∞,S . Then we have Ass(C ′S ×S L) ∩ |X ′∞,s| = ∅.

Note that the second condition is automatic. Write X′S for the modulus pair (X
′
S , X

′
∞,S). We

have an induced morphism

ρ : X′S → XS .

Let ρK : X
′
K → XK be the repeated blow up of XK at the closed points over Ω′, and let

X ′∞,K = X ′∞,S ×S K. Let X ′K = X
′
K \X ′∞,K . This yields a commutative diagram

MCor((O, (Π)),X′S) Z0(X ′K)

MCor((O, (Π)),XS) Z0(XK)

ι′

ρ∗ ρK,∗

ι

By our assumption, α = ρK,∗divC′K (f ′) ∈ Im(ι), where f ′ is the rational function on C ′K
induced by f on C. Note that K(C)× = K(C ′K)×. A priori, divC′K (f ′) does not belong to

the image of ι′, since there may be new cancellations. Namely, there may be distinct closed
points x and x′ in support of divC′K (f ′) such that ρK(x) = ρK(x′) and ρK(x′) /∈ |α|.

To remedy this, we argue as in Section 5.2. First, let ES be the exceptional divisor of
the blow-up ρS . We can write ES = E∞,S + EΣ,S , where E∞,S is the exceptional divisor
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lying over the closure of points over Ω′ ∩ X∞,K (and EΣ,S is the exceptional divisor on the
complement set). Write EΣ,K = EΣ,S ×S K and similarly E∞,K = E∞,S ×S K. Next, notice

that if x, x′ ∈ X ′K are cancellation points in the above sense, then x, x′ ∈ EΣ,K and not in
E∞,K , since each rational function fi on each component C ′K,i of C ′K by assumption satisfies
the modulus condition. Indeed, we have a commutative diagram

CNi C ′K,i

Ci

∼=

νi

where the vertical map is induced by the blow-up, and the horizontal map is an isomorphism,
since by construction C ′K,i is regular. Since fi ∈ G(CNi , Ci,∞), the support of divC′K (f ′) is

disjoint from C ′K ∩X ′∞,K , so a fortiori disjoint from E∞,K .

Let x ∈ Ω \X∞,K , and write y1, . . . , yr for the set C ′S ∩ ρ
−1
K (x). Let γx be the 0-cycle on

X ′K given by

γx =

r∑
j=1

vj
C′K

(f ′)[yj ]

where vj
C′K

(f ′) is the order of f ′ at the point yj . Note that we can assume that this number

is well defined, since each yj lies exactly in one component of C ′K , and C ′K is regular.
We can now choose a chain of rational lines Lν ∼= P1

K′ ⊂ EΣ,K in the exceptional divisor
EΣ,K and rational functions gν ∈ K(Lν)× = K ′(t) (for some finite field extension K ′/K) such
that γx =

∑
divLν (gν). By construction, each function gν automatically satisfies the modulus

condition with respect to X ′∞,K , since Lν ∩X ′∞,K = ∅, and

ρK,∗(γx) = ρK,∗(
∑

divLν (gν)) = 0.

Repeat the argument for every such x.

Write LS,ν for the closure of Lν in X
′
S , and replace C ′S by C ′′S = C ′S ∪

⋃
ν LS,ν . On the

generic fiber C ′′K = C ′K ∪
⋃
ν Lν we can consider the cycle

α′ = divC′K (f)−
∑
x

γx.

We now have that α′ ∈ Im(ι′) and its image in XK via ρK,∗ agrees with α. Note that even
after adding the LS,ν , the total curve C ′′S satisfies Ass(C ′′S ×S L) ∩ |X ′∞,s| = ∅, and for each
closed point x ∈ C ′′K , we have ex(C ′′K) ≤ 2.

At the end of this operation, we can replace XS with X
′
S and CS with C ′′S and (f1, . . . , fn)

with (f1, . . . , fn, (gν)ν) and assume that Ω = ∅.

6.3.2. Step 2. To perform this Step, we assume that for every closed point x ∈ CK we have
ex(CK) ≤ 2. By an iterated application of Theorem 4.2.2, we can find a relative surface H
over S (i.e. dimS(H) = 2), containing CS and satisfying the following properties

(3) H is integral, surjective over S, and the generic fiber HK is a smooth projective
geometrically integral K-surface.

(4) X∞,S · H is an effective Cartier divisor on H, which restricts to an effective Cartier
divisor on the special fiber Hs.

This follows directly from Theorem 4.2.2 if the residue field of S is infinite. If L is finite,
thanks to Remark 4.2.5, the section H exists after extending the scalars to S′ = Spec (O ′) for
the unramified extension O ′/O of O corresponding to a field extension L′/L of degree `m for
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some prime number ` and some positive integer m. Since the injectivity of the natural map
(6.4) can be checked after base change to S′, we can replace S by S′ and assume that H is
defined over S.

Let µ : H ↪→ XS be the inclusion of H in XS . Let H = (H,X∞,S ·H) as S-modulus pair,
and let Ho

K be the open complement of the generic fiber of X∞,S ·H. We have a commutative
diagram

MCor((O, (Π)),H) Z0(Ho
K)

MCor((O, (Π)),XS) Z0((XS)×S K)

ιH

µ∗ µK,∗

ιX

where the right vertical map is the push-forward of 0-cycles from Ho
K to (XS)×SK. It induces

the left vertical map when restricted to the subgroup of cycles satisfying (MC)O thanks to
another application of the containment Lemma ([16, 2.2]). The push-forward induces a map

µ∗ : h�(H)(O, (Π))→ h�(XS)(O, (Π)).

By construction, the cycle α is in the image of µ∗. It is therefore enough to show that it is

zero in h�(H)(O, (Π)) to conclude.
We can then replace XS by H, and assume that dimS(XS) = 2.

6.3.3. Step 3. At this point, we have the following set of data. We slightly change the notation
in order to be more coherent with the one used in Section 5.

i) An integral projective scheme XS = X , of relative dimension 2 and surjective over
S, with smooth, geometrically integral generic fiber X = Xη.

ii) An effective Cartier divisor D on X , restricting to an effective Cartier divisor Ds on
the special fiber Xs (this is induced by the divisor X∞,S on the original XS).

iii) A zero cycle α on the generic fiber X, which satisfy the modulus condition (MC)O .

In particular, for each point x in the support of α, the closure {x} intersects D in a
finite set of closed points.

iv) A closed subscheme C ⊂ X , with generic fiber Z = Cη consisting of a finite union
of integral curves, Z = Z1 ∪ . . . ∪ Zn, such that D = Dη intersects Z properly. The
divisor D restricts to an effective Cartier divisor on C , which is finite over S.

v) For each i = 1, . . . , n, a rational function fi ∈ K(Zi)
× which satisfy the modulus

condition, fi ∈ G(ZNi , ν
∗
iD), where νi : Z

N
i → X the composition of the normalization

map ZNi → Zi with the inclusion of Zi in X, satisfying α =
∑n

i=1(νi)∗divZNi
(fi).

We let X = (X ,D) be the corresponding proper modulus pair over S. To complete the proof

it is enough to show that α is 0 in h�0 (X)(O, (Π)). The latter group is defined by means of
(6.2).

We are now in the setting of Section 5. With an iterated application of the moving technique
5.4.1 (up to replacing X with another blow-up along the closure of closed points of the generic
fiber, and possibly after replacing S by an étale extension S′), we can further suppose that
for every i = 1, . . . , n, we have

vi) Each Zi is regular in a neighborhood of every closed point x ∈ Zi ∩D
vii) Every x ∈ |(νi)∗divZNi

(fi)|, satisfies the modulus condition (MC)O .

It is then enough to show that each term (νi)∗divZNi
(fi) is zero in h�0 (X)(O, (Π)).

Theorem 3.1.2 implies then that the closure Γfi in P1
K × ZNi of the graph of each fi,

Γfi ∈ Cor(P1
K \ {1}, (ZNi \ ν∗iD))
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actually lands in the subgroup

MCor((O, (Π))⊗�, (Z N
i , ν∗i D))

of finite correspondences satisying the admissibility condition (3.1). Here Zi is the model over
S of Zi (given by property iv) above) and νi : Z N

i → Zi ⊂X is the normalization map. We
see (Z N

i , ν∗i D) as S-modulus pair in the sense of 6.1.
By definition, this implies that Γfi , seen as finite correspondence in Cor(Spec (K)⊗�,X)

via the map νi is in the image of the natural map

MCor((O, (Π))⊗�,X) ⊂MCor(Spec (K)⊗�,X).

Finally, since i∗0 − i∗∞(Γfi) = νi,∗(divZNi
(fi)), it follows from the commutative diagram (6.3)

(applied to the pair X that we are considering here) that (νi)∗divZNi
(fi) = 0 in the group

h�0 (X)(O, (Π)), completing the proof.
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