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ABSTRACT. In this paper, we study the Brauer-Manin pairing of smooth proper varieties over
local fields, and determine the p-adic part of the kernel of one side. We also compute the A0

of a potentially rational surface which splits over a wildly ramified extension.

1. INTRODUCTION

Let k be a p-adic local field, and let X be a proper smooth geometrically integral variety
over k. Let CH0(X) be the Chow group of 0-cycles on X modulo rational equivalence. An
important tool to study CH0(X) is the natural pairing due to Manin [M1]

CH0(X)× Br(X) −→ Q/Z,(M)

where Br(X) denotes the Grothendieck-Brauer group H2
ét(X,Gm). When dim(X) = 1, us-

ing the Tate duality theorem for abelian varieties over p-adic local fields, Lichtenbaum [L1]
proved that (M) is non-degenerate and induces an isomorphism

(L) A0(X) ∼−→ Hom(Br(X)/Br(k),Q/Z).
Here Br(X)/Br(k) denotes the cokernel of the natural map Br(k) → Br(X), and A0(X)
denotes the subgroup of CH0(X) generated by 0-cycles of degree 0. An interesting question
is as to whether the pairing (M) is non-degenerate when dim(X) ≥ 2. See [PS] for surfaces
with non-zero left kernel. See [Y2] for varieties with trivial left kernel. In this paper, we are
concerned with the right kernel of (M) in the higher-dimensional case.

1.1. We assume that X has a regular model X which is proper flat of finite type over the
integer ring ok of k. It is easy to see that the pairing (M) induces homomorphisms

CH0(X) −→ Hom(Br(X)/Br(X ),Q/Z),(1.1.1)

A0(X) −→ Hom(Br(X)/Br(k) + Br(X ),Q/Z),(1.1.2)

where Br(X)/Br(k)+Br(X ) denotes the quotient of Br(X) by the image of Br(k)⊕Br(X ).
If dim(X) = 1, then Br(X ) is zero, and the map (1.1.2) is the same as (L) (cf. [CTOP]
1.7 (c)). Our main result is the following:

Theorem 1.1.3. Assume that the purity of Brauer groups holds for X (see Definition 2.1.1
below). Then:

(1) The right kernel of the pairing (M) is exactly Br(X ), that is, the map (1.1.1) has
dense image with respect to the natural pro-finite topology on the right hand side.
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(2) The map (1.1.2) is surjective.

Restricted to the prime-to-p part, the assertion (1) is due to Colliot-Thélène and Saito [CTS].
The assertion (2) gives an affirmative answer to [CT3] Conjecture 1.4 (c), assuming the purity
of Brauer groups, which holds if dim(X ) ≤ 3 or if X has good or semistable reduction (cf.
Remark 2.1.2 below). Roughly speaking, Theorem 1.1.3 (1) asserts that if an element of
ω ∈ Br(X) ramifies along the closed fiber of X , then there exists a closed point x ∈ X such
that the restriction ωx ∈ Br(x) of ω is non-zero. We will in fact prove the following stronger
result on the ramification of Brauer groups:

Theorem 1.1.4 (Corollary 3.2.3). Let U be either X itself or its henselization at a closed
point. Put U := U [p−1] and assume that the purity of Brauer groups holds for U . If X is
henselian local, then assume further that all irreducible components of Y are regular. Then
the kernel of the map

ψx : Br(U) −→
∏
v∈U0

Q/Z , ω 7→ (invv(ω|v))v∈U0

agrees with Br(U ), where U0 denotes the set of closed points on U .

The prime-to-p part of Theorem 1.1.4 has been proved in [CTS]. We will prove the p-primary
part of this result using Kerz’s idèle class group [Ke]. The method of the proof gives also an
alternative proof of the prime-to-part in [CTS].

1.2. As an application of Theorem 1.1.3 (2), we give an explicit calculation of A0(X) for a
potentially rational suface X/k, a proper smooth geometrically connected surface X over k
such that X ⊗k k

′ is rational for some finite extension k′/k. For such a surface X , the map
(1.1.2) has been known to be injective (see Proposition 4.1.2 below), and hence bijective by
Theorem 1.1.3 (2). On the other hand, for such a surface X , we have

Br(X)/Br(k) ≃ H1
Gal(Gk,NS(X)),

where NS(X) denotes the Néron-Severi group of X := X ⊗k k, and Gk denotes the absolute
Galois group of k. Thus knowing theGk-module structure of NS(X), we can compute A0(X)
by determining which element of Br(X) are unramified along the closed fiber of X . For
example, consider a cubic surface for a ∈ k×

X : T 3
0 + T 3

1 + T 3
2 + aT 3

3 = 0 in P3
k = Proj(k[T0, T1, T2, T3]).

If a is a cube in k, then X is isomorphic to the blow-up of P2
k at six k-valued points in the

general position (Shafarevich) and we have A0(X) = 0. We will prove the following result,
which is an extention of results in [CTS] Example 2.8.

Theorem 1.2.1 (Theorem 4.1.1). Assume that ordk(a) ≡ 1 mod (3) and that k contains a
primitive cubic root of unity. Then we have

A0(X) ≃ (Z/3)2.

In his paper [Da], Dalawat provided a method to compute A0(X) for a potentially rational
surface X , which works under the assumption that the action of Gk on NS(X) is unramified.
Theorem 1.1.3 provides a new method to compute A0(X), which does not requires Dalawat’s
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assumption. Note that p may be 3 in Theorem 1.2.1, so that the action of Gk on NS(X) may
ramify even wildly.

1.3. Let ok be as before, and let X be a regular scheme which is proper flat of finite type
over ok. Assume that X has good or semistable reduction over ok. Let d be the absolute
dimension of X , and let r be a positive integer. In [SS1], we proved that the cycle class map

ϱd−1
m : CHd−1(X )/m −→ H2d−2

ét (X , µ⊗d−1
m )

is bijective for any positive integer m prime to p. Here µm denotes the étale sheaf of m-th
roots of unity. As a new tool to study CHd−1(X ), we introduce the p-adic cycle class map
defined in [Sa2] Corollary 6.1.4:

ϱd−1
pr : CHd−1(X )/pr −→ H2d−2

ét (X ,Tr(d− 1)).

Here Tr(n) = Tr(n)X denotes the étale Tate twist with Z/prZ-coefficients [Sa2] (see also
[Sch] §7), which is an object of Db(X ,Z/prZ), the derived category of bounded complexes
of étale Z/prZ-sheaves on X . This object Tr(n) plays the role of µ⊗n

m , and we expect
that Tr(n) agrees with Z(n)ét ⊗L Z/prZ, where Z(n)ét denotes the conjectural étale motivic
complex of Beilinson-Lichtenbaum ([Be], [L2], [Sa2] Conjecture 1.4.1 (1)). Concerning the
map ϱd−1

pr , we will prove the following result:

Theorem 1.3.1. The cycle class map ϱd−1
pr is surjective.

We have nothing to say about the injectivity of ϱd−1
pr in this paper (compare with [Y1]). A key

to the proof of Theorem 1.3.1 is the non-degeneracy of a canonical pairing of finite Z/prZ-
modules

H2d−2
ét (X ,Tr(d− 1))×H3

Y,ét(X ,Tr(1)) −→ Z/prZ
proved in [Sa2] Theorem 10.1.1. We explain an outline of the proof of Theorem 1.3.1. Let
Y , U , Ax be as in Theorem 1.1.4. Let X0 and Y0 be the sets of all closed points on X and
Y , respectively, and let sp : X0 → Y0 be the specialization map of points. By the duality
mentioned above, there is an isomorphism of finite groups

H2d−2
ét (X ,Tr(d− 1)) ∼−→ H3

Y,ét(X ,Tr(1))
∗,

where we put M∗ := Hom(M,Q/Z) for abelian group M . We will construct an injective
map

θpr : H
3
Y,ét(X ,Tr(1))

� � //
∏
x∈U0

prBr(Ax[p−1])

whose dual fits into a commutative diagram

CHd−1(X )/pr
ϱd−1
ℓr // H2d−2

ét (X ,Tr(d− 1)) //∼ H3
Y,ét(X ,Tr(1))

∗

⊕
x∈U0

⊕
v∈Spec(Ax[p−1])0

Z/prZ
(ψpr )

∗
// //

OO

⊕
x∈U0

(
prBr(Ax[p−1])

)∗
.

(θpr )
∗

OOOO
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Here ψpr denotes the direct product of the pr-torsion part of the map ψx in Theorem 1.1.4 for
all x ∈ U0, which is injective by Theorem 1.1.4 and its dual (ψpr)∗ is surjective. Therefore
Theorem 1.3.1 will follow from this commutative diagram and the surjectivity of (θpr)∗ and
(ψpr)

∗ (see §6 for details).

1.4. This paper is organized as follows. In §3, we will prove Theorem 1.1.4 in a stronger
form. In §4, we compute A0 of cubic surfaces to prove Theorem 1.2.1. In §5 and §6, we will
prove Theorem 1.1.3 and Theorem 1.3.1, respectively.
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enko for valuable comments and discussions and to The University of Nottingham for their
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to Professor Moritz Kerz for his valuable suggestion to simplify the proof of Theorem 1.1.4.

NOTATION

1.5. For an abelian group M and a positive integer n, nM and M/n denote the kernel and
the cokernel of the map M ×n−→ M , respectively. For a field k, k denotes a fixed separable
closure, and Gk denotes the absolute Galois group Gal(k/k). For a discrete Gk-module M ,
H∗(k,M) denote the Galois cohomology groups H∗

Gal(Gk,M), which are the same as the
étale cohomology groups of Spec(k) with coefficients in the étale sheaf associated with M .

1.6. Unless indicated otherwise, all cohomology groups of schemes are taken over the étale
topology. For a commutatitive ring R with unity and a sheaf F on Spec(R)ét, we often write
H∗(R,F ) for H∗(Spec(R),F ).

1.7. For a scheme X , a sheaf F on Xét and a point x ∈ X , we often write H∗
x(X,F ) for

H∗
x(Spec(OX,x),F ). For a point x ∈ X , κ(x) denotes its residue field. We often write X0

for the set of all closed points on X . For a pure-dimensional scheme X and a non-negative
integer q, Xq denotes the set of all points on X of codimension q. For an integer n ≥ 0 and a
noetherian excellent scheme X , CHn(X) denotes the Chow group of algebraic cycles on X
of dimension n modulo rational equivalence; if X is regular of pure dimension d, we often
write CHn(X) for CHd−n(X).

2. PRELIMINARIES

In this section, we introduce some terminology and notions which will be useful throughout
this paper.

2.1. Purity of Brauer groups.

Definition 2.1.1. Let X be a noetherian scheme.
(1) For a closed immersion ιZ : Z → X with codimX(Z) ≥ 2, we say that the purity of

Brauer groups holds for the pair (X,Z), if R3ι!ZGm,X = 0.
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(2) We say that the purity of Brauer groups holds for X , if the purity of Brauer groups
holds for any pair (X,Z) with codimX(Z) ≥ 2.

Remark 2.1.2. There are some known cases on this purity problem:
(1) For a noetherian regular scheme X with dim(X) ≤ 3, the purity of Brauer groups

holds for X ([Ga]).
(2) For a noetherian regular scheme X and a prime number ℓ invertible on X , the purity

of Brauer groups holds for X with respect to the ℓ-primary torsion part ([RZ], [Th],
[F]).

(3) For a regular scheme X over Fp, the purity of Brauer groups holds for X with respect
to the p-primary torsion part ([Mi], [Gr], [Sh]).

(4) Let p be a prime number, and let k be a henselian discrete valuation field of charac-
teristic zero whose residue field is perfect of characteristic p. Then for a smooth or
semistable family X over the integer ring of k, the purity of Brauer groups holds for
X with respect to the p-primary torsion part ([Sa2] Corollary 4.5.2). This purity fact
is a consequence of a result of Hagihara [Sa2] Theorem A.2.6, which relies on the
Bloch-Kato-Hyodo theorem on étale sheaves of p-adic vanishing cycles ([BK], [H]).

2.2. Milnor K-groups and filtration. For a field K, we define the Milnor K-group KM
2 (K)

as
KM

2 (K) := (K×)⊗2/J,

where J denotes the subgroup of (K×)⊗2 generated by symbols

a1 ⊗ a2 with a1, a2 ∈ K× and a1 + a2 = 0 or 1.

When K is a discrete valuation field, we define the associated filtration UmKM
2 (K) ⊂ KM

2 (K)
(m ≥ 0) as the full group KM

2 (K) if m = 0, and as the subgroup generated by symbols of the
form

{1 + πma, b} with a ∈ oK and b ∈ K×

if m ≥ 1, where oK denotes the integer ring of K and π denotes a prime element of oK . Let
p be a prime number which is different from ch(K), and put

H2(K) := H2(K,µ⊗2
p ).

We define the filtration Um on H2(K) as that induced by Um on KM
2 (K) via the norm residue

symbol
KM

2 (K) −→ H2(K).

Now let K be a henselian discrete valuation field of mixed characteristic (0, p). Let F be the
residue field of oK , and let π be a prime element of oK . Put

ZqF := Ker(d : Ωq
F → Ωq+1

F ), Ωq
F,log := Im(dlog : KM

q (F ) → Ωq
F )).

Then by [BK] Theorem (5.12), we have isomorphisms

(2.2.1) grmUH
2(K) ≃


Ω2
F,log ⊕ Ω1

F,log (m = 0),
Ω1
F (0 < m < e′, p̸ |m),

Ω1
F/Z1

F ⊕ F/F p (0 < m < e′, p|m)
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defined by the following assignments respectively for a1, a2 ∈ oK and b1, b2, b3 ∈ o×K :

{b1, b2}+ {π, b3} 7→ (dlog(b1) ∧ dlog(b2), dlog(b3)),

{1 + πma1, b1}+ {1 + πma2, π} 7→ a1 · dlog(b1)−m−1 · da2 ,
{1 + πma1, b1}+ {1 + πma2, π} 7→

(
a1 · dlog(b1), a2

)
.

Lemma 2.2.1. Let K be a henselian discrete valuation field of mixed characteristic (0, p).
Let F be the residue field of oK . Then

(1) There is a short exact sequence

0 −→ Br(F )⊕H1(F,Q/Z) −→ Br(K) −→ Br(Kur)GF −→ 0,

where Kur denotes the maximal unramified extension of K and GF = Gal(F/F )
denotes the absolute Galois group of F .

(2) If K contains a primitive p-th root of unity, then the image of the map

pBr(F )⊗ µp(K) −→ pBr(K)⊗ µp(K) ≃ H2(K)

is contained in U e′H2(K), where e′ denotes the natural number p · ordK(p)/(p− 1).

Proof. (1) There is a short exact sequence

0 −→ H2(F, (Kur)×) −→ H2(K,Gm) −→ H2(Kur,Gm)
GF −→ 0

obtained from the Hochschild-Serre spectral sequence

Eu,v
2 = Hu(F,Hv(Kur,Gm)) =⇒ Hu+v(K,Gm),

and Hilbert’s theorem 90. The assertion follows from the direct decomposition

(Kur)× ≃ Z× (our
K)

×, a 7→ (ord(a), aπ−ord(a)),

where π denotes a fixed prime element of oK .
(2) The assertion is a variant of [BK] Lemma (5.1) (ii), whose details are left to the reader

as an exercise. □

3. UNRAMIFIEDNESS THEOREM FOR BRAUER GROUPS

Let k be a henselian discrete valuation field of characteristic 0 whose residue field F is
finite and has characteristic p. Let ok be the integer ring of k and put S := Spec(ok).

3.1. Two generalizations on unramifiedness. Let U be an integral scheme which is faith-
fully flat of finite type over S. Let V be the divisor on U defined by the radical of (p) ⊂ OU .
We call ω ∈ Br(U) unramified along V , if ω is contained in the image of Br(U ) → Br(U). If
U is regular, this condition is equivalent to that ω belongs to the subgroup Br(U ) ⊂ Br(U).
Following the ideas of Colliot-Thélène–Saito in [CTS] §2, we introduce two generalized no-
tions of unramifiedness.

Definition 3.1.1. (0) We say that an étale morphism f : B → U is quasi-cs along V , if
it satisfies the following two conditions.
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(i) For any generic point η of V , there exists exactly one connected component B′

of B which splits completely over η (namely, the image of g := f |B′ contains η
and g−1(η) is isomorphic to the sum of finitely many copies of η).

(ii) Each connected component ofB splits completely over some generic point of V .
(1) We say that ω ∈ Br(U) is quasi-unramified along V , if there exists an étale map

B → U quasi-cs along V such that ω|Bk
∈ Br(Bk) belongs to the image of Br(B).

(2) We say that ω ∈ Br(U) is 0-unramified, if its specialization ω|v ∈ Br(v) is zero for
any closed point v on U whose closure in U is finite over S.

Remark 3.1.2. (1) Let ω ∈ Br(U) be unramified along V . Then ω is quasi-unramified
along V obviously, and we see that ω is 0-unramified as follows. Indeed, for a closed
point i : v → U whose closure in U is finite over S, there is a commutative diagram
of schemes

v � � //

i
��

Spec(ov)

��
U � � // U ,

where ov is the integer ring of κ(v). Hence ω|v is zero by the fact that Br(ov) is zero.
(2) For a generic point η of V , let Aη be the henselization of OU,η at its maximal ideal,

and let Kη be the fraction field of Aη. Then we have

(3.1.3)
⊕
η∈V 0

Br(Aη) ≃ lim−→
B

Br(B),

where B ranges over all étale U -schemes which are quasi-cs along V (note that the
set of such B’s endowed with a natural semi-order is co-filtered). Hence ω ∈ Br(U)
is quasi-unramified along V if and only if its restriction to

⊕
η∈V 0 Br(Kη) belongs to

the subgroup
⊕

η∈V 0 Br(Aη).
(3) If U is regular and the purity of Brauer groups holds for U (in the sense of Definition

2.1.1), then ω ∈ Br(U) is quasi-unramified along V if and only if ω is unramified
along V . Indeed, assuming the purity of Brauer groups, one can easily see that the
restriction map

H3
V (U ,Gm) −→

⊕
η∈V 0

H3
η (Uη,Gm)

is injective, and that the restriction map

Br(U)/Br(U ) −→
⊕
η∈V 0

Br(Kη)/Br(Aη)

is injective as well.

3.2. Unramifiedness theorem. Let X be either an integral proper flat scheme over S or its
henselization at a closed point. Let Y be the divisor on X defined by the radical of (p) ⊂ OX .
Let Z ⊂ X be a closed subscheme of pure codimension one with Y ⊂ Z. Let Zf be the
union of the irreducible components of Z which is flat over S, and put U := X − Zf . Put

U := X − Z, V := Y ∩ U , d := dim(X ) = dim(U ).
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By Remark 3.1.2 (1), the following implications hold for elements of Br(U):

quasi-unramified along V ⇐= unramified along V =⇒ 0-unramified.

The main result of this section is the following implication:

Theorem 3.2.1. Assume that U is regular in codimension 1. If X is henselian local, then
assume further that U = X (and V = Y = Z) and that all irreducible components of Y
are regular. Then an arbitrary 0-unramified element of Br(U) is quasi-unramified along V .

Remark 3.2.2. (1) By Remark 3.1.2 (2), the assertion in Theorem 3.2.1 is equivalent to
the claim that any 0-unramified element maps to zero under the natural map

Br(U) −→
⊕
η∈V 0

Br(Kη)/Br(Aη).

(2) If U is regular, then Br(U) is torsion. In this case the prime-to-p part of Theorem
3.2.1 is due to Colliot-Thélène–Saito [CTS] Théorème 2.1.

By Remark 3.1.2 (3), we obtain the following corollary:

Corollary 3.2.3. Assume that the purity of Brauer groups holds for U . Then the following
three conditions for ω ∈ Br(U) are equivalent:

(1) ω is 0-unramified.
(2) ω is quasi-unramified along V .
(3) ω is unramified along V , i.e., belongs to Br(U ).

We will prove Theorem 3.2.1 in §§3.3–§3.4 below.

3.3. An idèle class group. Let the notation be as in §3.2. The following construction of
idèle class groups is a slight modification of [Ke] §3 and §4 (cf. [S1]).

Definition 3.3.1. (1) A chain on X is a sequence of points P = (p0, p1, . . . , ps) on X
such that

{p0} ⊂ {p1} ⊂ · · · ⊂ {ps},
where the closures are take on X . The dimension d(P ) of a chain P = (p0, . . . , ps)

is defined as dim {ps}.
(2) A Parshin chain on (X , Z) is a chain P = (p0, . . . , ps) such that dim {pi} = i for

0 ≤ i ≤ s and such that pi ∈ Z for i ≤ s− 1 and ps ∈ U .
(3) A Q-chain on the pair (X , Z) is a chain P = (p0, . . . , ps−2, ps) such that dim {pi} =

i for i ∈ {0, 1, . . . , s− 2, s} and that pi ∈ Z for i ≤ s− 2 and ps ∈ U .

For a chain P = (p0, . . . , ps), let O h
X,P be the finite product of henselian local rings con-

structed as in [KS] Definition 1.6.2 (1) and [Ke] Definition 3.1, and let KP be the product
of its residue fields. By definition KP is a ring over the residue field of ps and we have the
induced map if ps ∈ U :

(3.3.1) ιP : Spec(KP ) −→ U.

Let P (resp. Q) be the set of Parshin chains (resp. Q-chains) on (X , Z). For an integer
j > 0, let Pj be the set of P ∈ P with d(P ) = j).
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Remark 3.3.2. A closed point x ∈ U0 gives rise to Px = (y, x) ∈ P1, where y is the unique
point of {x} ∩ Y . We identify U0 with a subset of P1 by the assignment x 7→ Px.

Definition 3.3.3. For a Weil divisor D such that |D| ⊂ Z, we define the idèle group of
(X , D) as

I(X , D) := Coker
( ⊕
P∈Pd

UD(P )KM
d(P )−1(KP ) →

⊕
P∈P

KM
d(P )−1(KP )

)
,

where D(P ) is the multiplicity of the prime divisor {pd−1} in D for P = (p0, . . . , pd) ∈ Pd.
For Weil divisors D,D′ such that |D|, |D′| ⊂ Z and D′ ≥ D, we have a natural surjective
map

I(X , D′) → I(X , D).

There exists a natural homomorphism

ψ :
⊕
Q∈Q

KM
d(P )−1(KP ) → I(X , D)

whose (P,Q)-componets ψP,Q are defined as follows. Take Q = (p0, . . . , ps−2, ps) ∈ Q. If
P = (p0, . . . , ps−2, ps−1, ps) ∈ P for ps−1 ∈ Z, the natural inclusion KQ ⊂ KP induces
(note d(Q) = d(P ))

ψP,Q : KM
d(Q)−1(KQ) → KM

d(P )−1(KP ).

If P = (p0, . . . , ps−2, ps−1) ∈ P for ps−1 ∈ U , KP is the product of the residue fields of
discrete valuations on KQ induced by ps−1. Thus we have the residue symbol (note d(Q) =
d(P ) + 1)

ψP,Q : KM
d(Q)−1(KQ) → KM

d(P )−1(KP ).

Definition 3.3.4. Let D be a Weil divisor such that |D| ⊂ Z. We define the idèle class group
of (X , D) as

C(X , D) = Coker
(⊕
P∈Q

KM
d(P )−1(KP )

ψ−→ I(X , D)

)
.

Note that for P ∈ P , KP is a product of d(P )-dimensional local fields, and that there is a
natural injective map due to Kato [K] §3.4 Proposition 3

ΦP : Br(KP ) → Hom(KM
d(P )−1(KP ),Q/Z).

Proposition 3.3.5. There exists a canonical homomorphism

Φ : Br(U) → lim−→
|D|⊂Z

Hom(C(X , D),Q/Z)

fitting into the following commutative diagram for any P ∈ P:

Br(U) Φ //

ι∗P
��

lim−→|D|⊂Z Hom(C(X , D),Q/Z)

��
Br(KP )

ΦP // Hom(KM
d(P )−1(KP ),Q/Z)
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where the left vertical map is induced by the map (3.3.1) and the right vertical map is induced
by the natural map KM

d(P )−1(KP ) → I(X , D).

Proof. The assertion follows from the same argument as for the construction of the reciprocity
map in [KS] §3 using the reciprocity law proved in loc. cit. (3.7.4). □

Proposition 3.3.6. For any Weil divisor D such that |D| ⊂ Z, the natural map⊕
x∈U0

Z −→ C(X , D)

is surjective (cf. Remark 3.3.2).

Proof. The assertion is proved by the same argument as in [Ke] Corollary 6.8 and the follow-
ing fact (cf. [Ke] Corollary 6.7). For an arbitrary P ∈ P , there exists an integer m such that
the natural map

KM
d(P )−1(KP ) −→ C(X , D)

annihilates Um′
KM
d(P )−1(KP ) for any m′ ≥ m. □

3.4. Proof of Theorem 3.2.1. Let the notation be as in §3.2. For P = (p0, . . . , pd) ∈ Pd,
write AP = O h

X ,P ′ with P ′ = (p0, . . . , pd−1) and let FP = KP ′ be the product of the residue
fields of AP . For each η ∈ Y 0, let Rη ⊂ Pd be the set of Parshin chains P = (p0, . . . , pd) ∈
Pd with pd−1 = η. For η ∈ Y 0 and P ∈ Rη, there are natural injective ring homomorphisms

ιη,P : Aη → AP , Kη → KP .

We will prove the following lemma:

Lemma 3.4.1. For each η ∈ V 0, the maps ιη,P with P ∈ Rη induce an injective map

(3.4.2) Br(Kη)/Br(Aη) −→
∏
P∈Rη

Br(KP )/Br(AP ).

We first prove the theorem admitting this lemma. Indeed, we get

Ker
(

Br(U) →
∏
x∈U0

Br(x)
)

⊂ Ker
(

Br(U) →
∏
P∈Pd

Br(KP )

)
by Propositions 3.3.6 and 3.3.5 and the injectivity of ΦP . Hence Lemma 3.4.1 implies the
theorem.

Proof of Lemma 3.4.1. Fix an η ∈ V 0. Let Aη be the strict henselization of Aη, and let Kη be
the fraction field of Aη. We define AP as the product of the strict henselizations of the direct
factors of AP (i.e., a product of copies of Aη), and define KP as the product of the fraction
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fields of the direct factors of AP (i.e., a product of copies of Kη). There is a commutative
diagram with exact rows

0 // H1(η,Q/Z) //

a

��

Br(Kη)/Br(Aη) //

(3.4.2)
��

Br(Kη)

��

0 //
∏
P∈Rη

H1(FP ,Q/Z) //
∏
P∈Rη

Br(KP )/Br(AP ) //
∏
P∈Rη

Br(KP ),

where the vertical arrows are restriction maps, and the exactness of each row follows from
Lemma 2.2.1 (1). The right vertical map is obviously injective. It remain to show the injectiv-
ity of the left vertical map a, which we prove in what follows. Recall that κ(η) is the function
field of Yη = {η} ⊂ X , and that Yη is either a integral proper scheme over a finite field, or
its henselization at a regular closed point.

Take a dense open regular subset Y ′ ⊂ Yη if Yη is proper over a finite field, and let Y ′ = Yη
if Yη is henselian local. Let R ′ be the subset of Rη consisting of all Parshin chains P =
(p0, p1, . . . , pd) ∈ Pd with pi ∈ Y ′ for i = 0, 1, . . . , d−1. For P = (p0, p1, . . . , pd) ∈ R ′, let
YP be the henselization of Y ′ along (p0, p1, . . . , pd−2), which is a direct sum of the spectra of
discrete valuation rings. Let zP be the direct sum of the closed points of YP and put xP = p0.
There is a commutative diagram

0 // H1(Y ′,Q/Z) //

c

��

H1(η,Z/pZ) //

a′

��

⊕
y∈(Y ′)1

H2
y (Y

′,Q/Z)

b

��∏
P∈R′

H1(xP ,Q/Z)
d //

∏
P∈R′

H1(FP ,Q/Z) //
∏
P∈R′

H2
zP
(YP ,Q/Z),

where the vertical arrows are natural restriction maps, and the upper row is exact by the purity
of branch locus [SGA2] Exposé X Théorème 3.4 (i). The lower row is a complex (but not
necessarily exact) and the arrow d is defined as the composite map

dP : H1(xP ,Q/Z) ≃ H1(Spec(O h
Y ′,p0),Q/Z) −→ H1(YP ,Q/Z) → H1(FP ,Q/Z)

for each P ∈ R ′. The map dP for P = (p0, p1, . . . , pd) ∈ R ′ is injective if the closures
{pi} ⊂ Y ′ are regular at xP = p0 for 0 ≤ i ≤ d − 2. Therefore, in order to show that a′

is injective, it is enough to verify that b and c are injective, by a simple diagram chase in the
above diagram. The map c is injective by the Čebotarev density theorem [Se2] Theorem 7,
if Yη is proper over a finite field. If Y ′ is henselian local, then c is obviously injective. The
injectivity of b is checked as follows. We have

H2
y (Y

′,Q/Z) ≃ H0(y,R2i!yQ/Z) (iy : y ↪→ Spec(O h
Y,y))

for any y ∈ (Y ′)1, and we have

H2
zP
(YP ,Q/Z) ≃ H0(zP , R

2i!PQ/Z) (iP : zP ↪→ YP )
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for any P ∈ R ′. Moreover if P = (p1, p2 . . . , pd) with pd−1 = y, then we have R2i!PQ/Z ≃
τ ∗R2i!yQ/Z, where τ : zP → y is the natural map which is essentially étale. Hence b is
injective. Thus a′ and a are injective and we obtain Lemma 3.4.1, which completes the proof
of Theorem 3.2.1. □

3.5. Application to arithmetic schemes. Let X be an integral scheme which is proper flat
of finite type over Spec(Z). Put X := X ⊗Z Q.

Theorem 3.5.1. Assume that the purity of Brauer groups holds true for X . Then there is an
exact sequence:

0 −→ Br(X ) −→ Br(X) −→
∏
x∈X0

Br(x)/Br(ox),

where for x ∈ X0, ox denotes the integral closure of Z in κ(x).

Remark 3.5.2. For x ∈ X0, Br(ox) is a finite 2-torsion group by the classical Hasse principle.

Proof. The above sequence is a complex by the properness of X . We show that the resulting
specialization map

Br(X)/Br(X ) −→
∏
x∈X0

Br(x)/Br(ox)

is injective. Let P be the set of all prime numbers. For p ∈ P , let Zh
p be the henselization of

Z at (p). Put Qh
p := Frac(Zh

p), and let Qp be the set of all closed points on XQh
p
. We construct

the map
α :

∏
x∈X0

Br(x)/Br(ox) −→
∏
p∈P

∏
v∈Qp

Br(v)

as follows. Let x be a closed point on X and let v be a closed point on XQh
p
. We define the

(x, v)-component of α as the natural restriction map (resp. the zero map), if the composite
map v → XQh

p
→ X factors through x → X (resp. otherwise). Note that for v ∈ Qp,

there exists a unique x ∈ X0 such that the composite map v → XQh
p
→ X factors through

x → X , and that this uniqueness implies the well-definedness of α. Now let us consider a
commutative diagram of specialization maps

Br(X)/Br(X ) //

��

∏
x∈X0

Br(x)/Br(ox)

α

��⊕
p∈P

Br
(
XQh

p

)/
Br
(
XZh

p

)
//
∏
p∈P

∏
v∈Qp

Br(v),

whose commutativity follows from the definition of α. In this diagram, the bottom horizontal
arrow is injective by Corollary 3.2.3, and the left vertical arrow is injective by the localization
exact sequences

· · · // Br(X ) // Br(X) //
⊕
p∈P

H3
Yp(X ,Gm) // · · · ,
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· · · // Br
(
XZh

p

)
// Br

(
XQh

p

)
// H3

Yp

(
XZh

p
,Gm

)
// · · · ,

with Yp := X ⊗Z Fp, and the excision isomorphism

H3
Yp(X ,Gm) ≃ H3

Yp(XZh
p
,Gm) for each p ∈ P .

Hence the upper horizontal map is injective as well and we obtain the theorem. □

4. ZERO-CYCLES ON CUBIC SURFACES

In this section, we compute A0 of cubic surfaces explicitly using the unramifiedness theo-
rem proved in the previous section.

4.1. Setting and results. Let k, ok,F and p be as in the beginning of §3. Let a be an element
of k× which is not a cube in k. We are concerned with a cubic surface

X := {T 3
0 + T 3

1 + T 3
2 + aT 3

3 = 0} ⊂ Proj(k[T0, T1, T2, T3]) = P3
k.

Let ζ3 be a primitive cubic root of unity in k.

Theorem 4.1.1. (1) Assume p ̸= 3. Then we have

A0(X) ≃


0

Z/3
Z/3⊕ Z/3

if ordk(a) ≡ 0 mod 3,

if ordk(a) ̸≡ 0 mod 3 and ζ3 ̸∈ k,

if ordk(a) ̸≡ 0 mod 3 and ζ3 ∈ k.

(2) Assume p = 3, ordk(a) ≡ 1 mod 3 and ζ3 ∈ k. Then we have

A0(X) ≃ Z/3⊕ Z/3.

(1) is stated in [CTS] Example 2.8 under a slightly simpler setting. We include a proof of
(1) here for the convenience of the reader. (2) is a new result and would be the first example
of a potentially rational surface which splits over a wildly ramified extension and whose A0

is computed explicitly. It would be interesting to find cycles which generate A0(X) in the
theorem.

To prove Theorem 4.1.1, we need the following three facts, where X is as before.

Proposition 4.1.2 (Colliot-Thélène). The following map induced by the Brauer-Manin pair-
ing is injective:

A0(X) −→ Hom(Br(X)/Br(k),Q/Z).

Proof. The case X(k) ̸= ∅ is stated in [CT1] Proposition 5. Otherwise, the assertion follows
from his injectivity result in loc. cit. Proposition 7 (b) and the same arguments as in loc. cit.
Proposition 5 (cf. [Bl] Theorem (2.1), Proposition (A.1)). See also [S2] Theorem A and [Kh]
p. 70 Corollaire 2 for generalizations. □
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Proposition 4.1.3. Let U be a regular scheme which is faithfully flat over S and satisfies
U ⊗ok k ≃ X . Let η be a generic point of U ⊗ok F, let Aη be the henselization of OU ,η and
let Kη be the fraction field of Aη. Assume that

(4.1.4) ι−1(Br(Aη)) = 0, where ι : Br(X) → Br(Kη).

Then the following map induced by the Brauer-Manin pairing is surjective:

A0(X) −→ Hom(Br(X)/Br(k),Q/Z),

Proof. By (4.1.4), Theorem 3.2.1 and Remark 3.1.2 (2), the map in question has dense image.
As we mentioned in §1.2, Br(XL)/Br(L) is zero for L = k( 3

√
a). Hence Br(X)/Br(k) is a

finite 3-torsion and the assertion follows. □
To state the third fact, we assume that k contains ζ3, and fix an isomorphism

(4.1.5) 3Br(k(X)) ≃ H2(k(X), µ⊗2
3 ), x 7→ x⊗ ζ3,

where k(X) is the function field of X . Consider rational functions

f :=
T0 + ζ3T1
T0 + T1

, g :=
T0 + T2
T0 + T1

∈ k(X)×

and put
e1 = (a, f)ζ3 , e2 = (a, g)ζ3 ∈ 3Br(k(X)),

where for u, v ∈ k(X)×, (u, v)ζ3 denotes the inverse image of {u, v} ∈ H2(k(X), µ⊗2
3 ) under

the isomorphism (4.1.5).

Theorem 4.1.6 (Manin [M2]). e1 and e2 belong to Br(X), and Br(X)/Br(k) is a free Z/3-
module of rank 2 generated by e1 and e2.

4.2. Proof of Theorem 4.1.1 (1). Without loss of generality, we may assume that a ∈ ok −
{0} with ordk(a) = 0, 1 or 2. Consider a projective flat model of X over S := Spec(ok)

(4.2.1) X = Proj
(
ok[T0, T1, T2, T3]/(T

3
0 + T 3

1 + T 3
2 + aT 3

3 )
)
⊂ P3

S.

Let η be the generic point of Y := X ⊗ok F, let Aη be the henselization of OX,η and let Kη

be the fraction field of Aη. We divide the problem into 4 cases as follows.

Case (i): p ̸= 3, a ∈ o×k and ζ3 ∈ k. In this case it is easy to see that X is smooth over S.
Once we show

(4.2.2) Br(X) = Br(X ) + Im(Br(k) → Br(X)),

then A0(X) = 0 by Proposition 4.1.2. Since we have

Br(X ) = Ker(Br(X) → Br(Kη)/Br(Aη)),

by the purity of Brauer groups for X , it is enough to show

(4.2.3) Im(Br(X) → Br(Kη)) ⊂ Br(Aη) + Im(Br(k) → Br(Kη)),

in order to show (4.2.2). Since p ̸= 3 and ζ3 ∈ k, there is an exact sequence

(4.2.4) 0 −→ 3Br(Aη)⊗ µ3(k) −→ H2(k(X), µ⊗2
3 )

δ−→ κ(η)×/3 −→ 0

and it is easy to check δ(ei ⊗ ζ3) = 0 for i = 1, 2, which implies (4.2.3) by Theorem 4.1.6.
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Case (ii): p ̸= 3, a ∈ o×k and ζ3 ̸∈ k. In this case, the assertion is reduced to the case (i)
immediately by a standard norm argument.

Case (iii): p ̸= 3, ordk(a) = 1, 2 and ζ3 ∈ k. One can easily check that the fixed model X
is regular at η ∈ Y , i.e., OX,η is a discrete valuation ring. By Propositions 4.1.2, 4.1.3 and
Theorem 4.1.6, we have only to show

ι−1(Br(Aη)) = 0, with ι : Br(X) → Br(Kη).

Note that we have the exact sequence (4.2.4) in this case as well. For

ω = α e1 + β e2 ∈ 3Br(X) ⊂ 3Br(k(X)) (α, β ∈ Z/3),

we have

δ(ω ⊗ ζ3) = ordk(a) · fαgβ = ordk(a) ·
(
T0 + ζ3T1
T0 + T1

)α(
T0 + T2
T0 + T1

)β

∈ κ(η)×/3,

where we regarded f and g as rational functions on Y . Thus it is enough to show

Lemma 4.2.5. For α, β ∈ Z, assume that fαgβ ∈ κ(η)× belongs to (κ(η)×)3. Then we have
α ≡ β ≡ 0 mod 3.

Proof. Let E be the elliptic curve over F defined as

E := Proj
(
F[T0, T1, T2]/(T 3

0 + T 3
1 + T 3

2 )
)
⊂ P2

F.

It is easy to see that κ(η) is the rational function field in one variable over the function field
F(E). Since (F(Y )×)3∩F(E)× = (F(E)×)3 and f, g ∈ F(E)×, the assumption of the lemma
implies that fαgβ ∈ (F(E)×)3. We now look at the divisors on E

divE(f) = 3([P ]− [O]), divE(g) = 3([Q]− [O]),

where we put

O := (1 : −1 : 0), P := (1 : −ζ3 : 0), Q := (1 : 0 : −1).

Take O to be the origin of the elliptic curve E, and define zero-cycles C,C ′ on E as C :=
[P ]− [O], C ′ := [Q]− [O]. Since fαgβ = h3 for some h ∈ κ(η)× by assumption, we have

α · C + β · C ′ = divE(h)

as zero-cycles, and the residue class α·C+β·C ′ is zero in A0(E) ≃ E(F). Hence the assertion
follows from the linear independence of C and C ′ in the Z/3-vector space 3E(F). □

Case (iv): p ̸= 3, ordk(a) = 1, 2 and ζ3 ̸∈ k. Consider the scalar extension

X ⊗ok oL −→ X (L := k(ζ3)),

which is étale by the assumption p ̸= 3. Then we have

ι−1(Br(Aη)) = 0, with ι : Br(X) → Br(Kη)

by the previous case and a standard norm argument. Therefore by Propositions 4.1.2 and
4.1.3, the assertion is reduced to the following proposition due to Colliot-Thélène [CT5],
which holds without the assumption p ̸= 3:
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Proposition 4.2.6 (Colliot-Thélène). Let ei (i = 1, 2) be the elements of Br(XL) in Proposi-
tion 4.1.6. Then Br(X)/Br(k) is a free Z/3-module of rank 1 generated by CoresXL/X(e1),
where CoresXL/X denotes the corestriction map Br(XL) → Br(X).

Proof. Put G := Gal(L/k), which has order 2. Let σ be the generator of G. We prove

(4.2.7) σ(e1) = e1 and σ(e2) = −e2 in 3Br(XL),

which implies the assertion by a standard norm argument. To prove (4.2.7), we work with
Galois cohomology groups of the function field

F := L(XL) = k(X)(ζ3).

Since 3Br(XL) ⊂ H2(F, µ3), it is enough to show the following two claims:
(1) For u, v ∈ F×, we have σ((u, v)ζ3) = −(σ(u), σ(v))ζ3 in H2(F, µ3).
(2) We have {

a,
T0 + ζ−1

3 T1
T0 + T1

}
= −

{
a,
T0 + ζ3T1
T0 + T1

}
in H2(F, µ⊗2

3 ).

We first show (1). Since Z/3 ≃ µ⊗2
3 as Gk-modules, we have

σ((u, v)ζ3) = σ({u, v} ⊗ ζ3) = {σ(u), σ(v)} ⊗ σ(ζ3)

= {σ(u), σ(v)} ⊗ ζ−1
3 = −(σ(u), σ(v))ζ3 .

We next show (2). Take an affine open subset of X as follows:

{x3 + y3 + z3 + a = 0} ⊂ A3
k

(
x =

T0
T3
, y =

T1
T3
, z =

T2
T3

)
.

Then noting that H2(F, µ⊗2
3 ) is a 3-torsion, we compute{

a,
x+ ζ−1

3 y

x+ y

}
+

{
a,
x+ ζ3y

x+ y

}
=

{
a,
x2 − xy + y2

(x+ y)2

}
=

{
a,
x3 + y3

(x+ y)3

}
= {a,−a− z3} =

{
a

z3
,− a

z3
− 1

}
= 0.

This completes the proof of Proposition 4.2.6 and Theorem 4.1.1 (1). □

4.3. Proof of Theorem 4.1.1 (2). Without loss of generality, we may assume a = π (a prime
of ok). Let X be the projective flat model of X over ok defined in (4.2.1). We will use the
following affine open subset:

(4.3.1) U := Spec(ok[x, y, z]/(x3 + y3 + z3 + π))

(
x =

T0
T3
, y =

T1
T3
, z =

T2
T3

)
.

Let Xs be the special fiber of X → S, which is irreducible. Let Y be the reduced part of Xs

and let η be the generic point Y . It is easy to see that we have

(4.3.2) U ∩ Y = Spec(F[x, y, z]/(x+ y + z)).

Put e := ordk(3). We show the following lemma.

Lemma 4.3.3. OX,η is a discrete valuation ring with absolute ramification index 3e.
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Proof. Put t = x+ y + z. Then we have

(4.3.4) t3 + π(1 + πe−1u) = x3 + y3 + z3 + π = 0 in OU,η = OX,η,

where we put

u := −ϵ1
(
x2(y + z) + y2(z + x) + z2(x+ y) + 2xyz

)
with ϵ1 := 3π−e ∈ o×k .

In view of (4.3.2), this implies that t generates the maximal ideal of OX,η (and that u belongs
to O×

X,η). Hence OX,η is a noetherian one-dimensional local ring with maximal ideal generated
by t, which is a discrete valuation ring. The ramification index of OX,η over ok is 3 by (4.3.4),
which implies that the absolute ramification index of OX,η is 3e. □

Let Aη be the henselization of OX,η as before, and let Kη be its fraction field. We put

H := H2(Kη, µ
⊗2
3 )

in what follows. Since k contains ζ3, we have

3Br(Aη)⊗ µ3(k) ⊂ U3e′H

by Lemma 2.2.1 (2), where U∗H denotes the filtration on H defined in §2.2 and e′ denotes
pe/(p − 1) = 3e/2. As before, by Propositions 4.1.2, 4.1.3 and Theorem 4.1.6, we ought to
show

ι−1(Br(Aη)) = 0, with ι : Br(X) → Br(Kη).

Hence it is enough to show the following:

Proposition 4.3.5. Let α, β ∈ Z/3, and put

ω := αe1 + βe2 = α(π, f)ζ3 + β(π, g)ζ3 ∈ 3Br(X).

Assume that
ι(ω)⊗ ζ3 = α{π, f}+ β{π, g} ∈ 3Br(Kη)⊗ µ3(k) ≃ H

belongs to U3e′H . Then we have α = β = 0, i.e., ω = 0.

Note that κ(η) = F(y, z) by (4.3.2). By (4.3.4), we have π = −t3(1 + πe−1u)−1 and

ω = −α{1 + πe−1u, f} − β{1 + πe−1u, g} ∈ U3(e−1)H.

One can derive the proposition easily from the following lemma, where the Bloch-Kato iso-
morphisms (see (2.2.1)) are defined with respect to the prime element t ∈ Aη.

Lemma 4.3.6. (1) {1+πe−1u, f} belongs toU3e′−2H , whose residue class in gr3e
′−2

U H ≃
Ω1
η is zdy − ydz up to the multiplication by a constant in F×.

(2) {1+πe−1u, g} belongs to U3e−2H , whose residue class in gr3e−2
U H ≃ Ω1

η is zdy−ydz
up to the multiplication by a constant in F×.

Proof of Lemma 4.3.6. We first prove (1). Since x3 + y3 + z3 + π = 0, we have

(4.3.7) u = ϵ1(y
2z + yz2 + tv) with v := −(x2 + (t− x)2 + π · t−1)

(note that π · t−1 is contained in the maximal ideal of Aη). On the other hand, we have

(4.3.8) f =
x+ ζ3y

x+ y
= 1 + (ζ3 − 1)

y

x+ y
= 1 + te

′ ϵ2y

z
+ te

′+1 ϵ2y

z(z − t)
,
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where ϵ2 := (1 − ζ3) · t−e
′ ∈ A×

η . We define a filtration UnK×
η (n ≥ 0) on K×

η as the full
group K×

η for n = 0 and the subgroup {1 + tnc | c ∈ Aη} for n ≥ 1. We recall the following
standard facts:

Sublemma 4.3.9. For a, b ∈ Aη, h ∈ UnK×
η (n ≥ 0) and integers ℓ,m, ν ≥ 1, we have

{1 + tℓa+ tmb, h} ≡ {1 + tℓa, h}+ {1 + tmb, h} mod U ℓ+m+nH(1)

{1 + tℓa(1 + tmb)±ν , h} ≡ {1 + tℓa, h} mod U ℓ+m+nH(2)

{1 + tℓa, 1 + tmb} ≡ −
{
1 +

tℓ+mab

1 + tℓa
,−tℓa

}
mod U ℓ+2mH.(3)

Proof of Sublemma 4.3.9. (1) follows from the equality

(1 + tℓa)(1 + tmb)

1 + tℓa+ tmb
= 1 +

tℓ+mab

1 + tℓa+ tmb

and (3) (cf. [BK] Lemma (4.1)). The assertion (2) follows from a similar computation. (3)
follows from similar computations as in [Sa2] Lemma 8.7.4. □
We turn to the proof of Lemma 4.3.6 (1), and put ϵ3 := 3t−3e ∈ A×

η . Then we have

{1 + πe−1u, f} =

{
1 + πe−1ϵ1(y

2z + yz2 + tv), 1 + te
′ ϵ2y

z
+ te

′+1 ϵ2y

z(z − t)

}
≡

{
1 + t3e−2ϵ3v, 1 + te

′ ϵ2y

z

}
+

{
1 + t3e−3ϵ3(y

2z + yz2), 1 + te
′+1 ϵ2y

z(z − t)

}
+

{
1 + t3e−3ϵ3y

2z, 1 + te
′ ϵ2y

z

}
+

{
1 + t3e−3ϵ3yz

2, 1 + te
′ ϵ2y

z

}
,

where the congruity holds modulo U3e′−1H by Sublemma 4.3.9 (1)–(3) and (4.3.4). There-
fore, it is enough to show

Lemma 4.3.10. (1) The sum{
1 + t3e−2ϵ3v, 1 + te

′ ϵ2y

z

}
+

{
1 + t3e−3ϵ3(y

2z + yz2), 1 + te
′+1 ϵ2y

z(z − t)

}
∈ U3e′−2H

maps to zdy−ydz up to the multiplication by a constant in F×, under the Bloch-Kato
isomorphism gr3e

′−2
U H ≃ Ω1

η with respect to the prime element t ∈ Aη.

(2)
{
1 + t3e−3ϵ3y

2z, 1 + te
′ ϵ2y

z

}
belongs to U3e′−1H .

(3)
{
1 + t3e−3ϵ3yz

2, 1 + te
′ ϵ2y

z

}
belongs to U3e′H .

Proof. (1) Let ϵ2ϵ3 ∈ κ(η)× be the residue class of ϵ2ϵ3 = 3(1− ζ3)t
−3e′ ∈ A×

η , which in fact
belongs to F× by (4.3.4). We note that 3|e′ and that ch(η) = 3. By Sublemma 4.3.9 (3) and
(4.3.7), the first term (resp. the second term) of the sum of symbols in question maps to

ϵ2ϵ3 ·
(2y2z + yz2)dy + (2y2z + y3)dz

z2

(
resp. ϵ2ϵ3 ·

z(y + z)2dy − y(y + z)2dz

z2

)
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under the Bloch-Kato isomorphism, cf. (2.2.1). Since ch(η) = 3, the sum of these 1-forms
agrees with ϵ2ϵ3(zdy − ydz).

(2) Noting that e′ ≥ 3 and that H is a 3-torsion, we have{
1 + t3e−3ϵ3y

2z, 1 + te
′ ϵ2y

z

}
≡ −

{
1 + t3e

′−3ϵ2ϵ3y
3,−t3e−3ϵ3y

2z
}

mod U4e′−3H (Sublemma 4.3.9 (2), (3))

= −
{
1 + (ζ3 − 1)3t−3y3(1 + (ζ3 − 1))2, ϵ3y

2z
}

(t3e′ϵ2ϵ3 = (ζ3 − 1)3ζ23 )

≡ −
{
1 + (ζ3 − 1)3t−3y3, ϵ3y

2z
}

mod U4e′−3H (Sublemma 4.3.9 (2))

=

{
(1 + (ζ3 − 1)t−1y)3

1 + (ζ3 − 1)3t−3y3
, ϵ3y

2z

}
=

{
1 +

3(ζ3 − 1)t−1(y + (ζ3 − 1)t−1y2)

1 + (ζ3 − 1)3t−3y3
, ϵ3y

2z

}
∈ U3e′−1H.

(3) Similarly as for (2), we have{
1 + t3e−3ϵ3yz

2, 1 + te
′ ϵ2y

z

}
≡ −

{
1 + t3e

′−3ϵ2ϵ3y
2z,−t3e−3ϵ3yz

2
}

mod U4e′−3H (Sublemma 4.3.9 (2), (3))

= −
{
1 + t3e

′−3ϵ2ϵ3y
2z, t5e

′−6y3z3ϵ2ϵ3
}

(Steinberg relation)

=
{
1 + t3e

′−3ϵ2ϵ3y
2z, (1− ζ3)ζ

2
3

}
(t5e′ϵ2ϵ23 = (1− ζ3)

5ζ43 )

=
{
1 + t3e

′−3ϵ2ϵ3y
2z, ϵ4(1 + πe−1u)

e
2 te

′
ζ23
}

(ϵ4 := (1− ζ3)π
− e

2 , (4.3.4))

≡
{
1 + t3e

′−3ϵ2ϵ3y
2z, ϵ4ζ

2
3

}
mod U5e′−6H (Sublemma 4.3.9 (3)).

The last term is contained in U3e′H , because ϵ4ζ23 belongs to o×k and F× is 3-divisible. This
completes the proof of Lemmas 4.3.10 and 4.3.6 (1). □

We next prove Lemma 4.3.6 (2). Put ϵ3 := 3t−3e ∈ A×
η . Since

(4.3.11) g =
x+ z

x+ y
=

y

z
· z(t− y)

y(t− z)
=

y

z
·
(
1 +

t(z − y)

y(t− z)

)
,

we have

{1 + πe−1u, g} =

{
1 + πe−1ϵ1(y

2z + yz2 + tv),
y

z
·
(
1 +

t(z − y)

y(t− z)

)}
≡

{
1 + t3e−2ϵ3v,

y

z

}
+

{
1 + t3e−3ϵ3(y

2z + yz2), 1 +
t(z − y)

y(t− z)

}
+

{
1 + t3e−3ϵ3(y

2z + yz2),
y

z

}
where the congruity holds modulo U3e−1H by Sublemma 4.3.9 (1)–(3) and (4.3.4). One
can easily check that the last term belongs to U3eH by similar computations as in Lemma
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4.3.10 (3). One can also check that the sum of symbols{
1 + t3e−2ϵ3v,

y

z

}
+

{
1 + t3e−3ϵ3(y

2z + yz2), 1 +
t(z − y)

y(t− z)

}
∈ U3e−2H

maps to ϵ3(ydz − zdy) under the Bloch-Kato isomorphism gr3e−2
U H ≃ Ω1

η (with respect to
the prime element t ∈ Aη), by Sublemma 4.3.9 (3) and (4.3.7). Here ϵ3 ∈ κ(η)× denotes
the residue class of ϵ3 = 3t−3e, which belongs to F× by (4.3.4). This completes the proof of
Lemma 4.3.6 (2), Proposition 4.3.5 and Theorem 4.1.1 (2). □

5. PROOF OF THEOREM 1.1.3

In this section, we prove Theorem 1.1.3. Let k be p-adic local field, and let ok be the integer
ring of k. Put S := Spec(ok). Let X be a regular scheme which is proper flat of finite type
over S. Let Y be the closed fiber of X /S.

5.1. Proof of Theorem 1.1.3 (1). Let

⟨ , ⟩ : CH0(X)× Br(X) −→ Q/Z

be the Brauer-Manin pairing (M) in the introduction, and let ω be an element of Br(X) with
⟨c, ω⟩ = 0 for any c ∈ CH0(X). It suffices to show that ω belongs to Br(X ). Indeed, ω
is 0-unramified in the sense of Definition 3.1.1 (2), and the assertion follows from Corollary
3.2.3, where we have assumed the purity of Brauer groups for X .

5.2. Proof of Theorem 1.1.3 (2). We start the proof of Theorem 1.1.3 (2), which will be
finished in §5.3 below. Let us recall the map (1.1.2), which we denote by Φ in what follows:

Φ : A0(X) −→ Hom(Br(X)/Br(k) + Br(X ),Q/Z)

By Theorem 1.1.3 (1), Φ has dense image. To prove that Φ is surjective, it is enough to show

Im(Φ) ≃ Z⊕r
p ⊕ T

for some non-negative integer r and some finite group T . We are thus reduced to the following
proposition, where we do not assume the purity of Brauer groups:

Proposition 5.2.1. Put B := Br(X)/Br(k) + Br(X ) and Dℓ := Hom(Bℓ-tors,Q/Z) for a
prime number ℓ. Then:

(1) Dℓ is finitely generated over Zℓ for any ℓ.
(2) If ℓ ̸= p, then Dℓ is finite and the map Φℓ : A0(X) → Dℓ induced by Φ is surjective.

The image of Φp : A0(X) → Dp is a Zp-submodule of Dp.
(3) Dℓ is zero for almost all ℓ ̸= p.

Remark 5.2.2. The ‘ℓ ̸= p’ case of Proposition 5.2.1 (2) is proved in [CTS] Corollaire 2.6.

Proof of Proposition 5.2.1. The assertion (1) is obvious. We prove (2). Note that the map
Φℓ with ℓ ̸= p has dense image with respect to the ℓ-adic topology on Dℓ (by the ℓ-primary
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part of Theorem 1.1.3 (1) and the absolute purity). By a standard norm argument, we may
suppose that X has a k-rational point. Then we have a surjective map⊕

C

A0(C) −→ A0(X).

Here C ranges over the smooth integral curves over k which are finite over X . Since k is a
p-adic field by assumption, we have

A0(C) ≃ Z⊕rC
p ⊕ TC

for a non-negative integer rC and a finite group TC by a theorem of Mattuck [Ma]. In case
ℓ ̸= p, these facts and (1) imply that Im(Φℓ) is finite and dense, so that Φℓ is surjective. To
prove the assertion for Φp, we need to show that the composite map

Z⊕rC
p

� � // A0(C) // A0(X) // Dp

is a homomorphism of Zp-modules, that is, continuous with respect to the p-adic topology.
Let fC : Br(k) → Br(C) be the natural restriction map. Since the above composite map
factors through the map

Z⊕rC
p

� � // A0(C) // Hom(Coker(fC)p-tors,Q/Z),

it suffices to see the continuity of this map, which is a consequence of [S1] Theorem (9.2).
Thus we obtain Proposition 5.2.1 (2).

We next show Proposition 5.2.1 (3). Suppose ℓ ̸= p. Since we have Im(Φℓ) = Dℓ and

Im(Φℓ) ≃ Im(A0(X) → H2N(X,Zℓ(N)))

with N := dim(X), the problem is reduced to the case where X has strict semistable reduc-
tion over S by the alteration theorem of de Jong [dJ] and a standard norm argument using the
functoriality of cycle class maps, where ‘strict’ means that all irreducible components of Y
are smooth. We prove that

⊕
ℓ ̸=p Dℓ is finite, assuming that X /S has strict semistable re-

duction. For a torsion abelian group M , let M ′ be its prime-to-p part. For n ∈ Z, let Q/Z′(n)
be the étale sheaf

⊕
ℓ ̸=p Qℓ/Zℓ(n). Consider a commutative diagram with exact rows

0 // Pic(X )⊗Q/Z′ //

����

H2(X ,Q/Z′(1)) //

a

��

Br(X )′ //
� _

��

0

0 // Pic(X)⊗Q/Z′ // H2(X,Q/Z′(1)) // Br(X)′ // 0.

Since the left vertical arrow is surjective, we have

Br(X)′/Br(X )′ ≃ Coker(a) ≃ Ker
(
H3
Y (X ,Q/Z′(1)) → H3(X ,Q/Z′(1))

)
.

Our task is to show that the complex

(5.2.3) Br(k)′ −→ H3
Y (X ,Q/Z′(1)) −→ H3(X ,Q/Z′(1))
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has finite cohomology group at the middle. Let kur be the maximal unramified extension of
k, and put Xur := X ⊗ok okur and Y := Y ⊗F F. In view of the short exact sequences

0 → H1(F, H2
Y
(Xur,Q/Z′(1))) → H3

Y (X ,Q/Z′(1)) → H3
Y
(Xur,Q/Z′(1))GF → 0,

0 → H1(F, H2(Xur,Q/Z′(1))) → H3(X ,Q/Z′(1)) → H3(Xur,Q/Z′(1))GF → 0

obtained from Hochschild-Serre spectral sequences and the fact cd(F) = 1, we are reduced
to the following lemma:

Lemma 5.2.4. (1) The group H3
Y
(Xur,Q/Z′(1))GF is finite.

(2) The composite map Br(k)′ → H3
Y (X ,Q/Z′(1)) → H3

Y
(Xur,Q/Z′(1))GF is zero.

Consequently, the complex (5.2.3) induces a complex

(5.2.5) Br(k)′ −→ H1(F, H2
Y
(Xur,Q/Z′(1))) −→ H1(F, H2(Xur,Q/Z′(1))),

(3) The complex (5.2.5) has finite cohomology group at the middle.

We first show Lemma 5.2.4 (1). For q ≥ 1, let Y (q) be the disjoint union of the intersections
of q distinct irreducible components of Y . Note that all connected components of Y (q) are
smooth proper varieties over F of dimension dim(X ) − q. By the Mayer-Vietoris spectral
sequence

(5.2.6) Eu,v
1 = H2u+v−2(Y (−u+1),Q/Z′(u)) =⇒ Hu+v

Y
(Xur,Q/Z′(1))

(cf. [RZ] Satz 2.21), we have the following exact sequence of GF-modules:

0 −→ H1(Y (1),Q/Z′) −→ H3
Y
(Xur,Q/Z′(1)) −→ H0(Y (2),Q/Z′(−1)).

Hence the assertion follows from the finiteness of H1(Y (1),Q/Z′)GF due to Katz-Lang [KL].
Lemma 5.2.4 (2) is a consequence of (1) and the fact that Br(k)′ is divisible.

We next show Lemma 5.2.4 (3). For an abelian group M , let ML-div be the subgroup of
elements which are divisible in M by all integers prime to p, that is,

ML-div :=
∩

n∈Z, (n,p)=1

n ·M.

We define a discrete GF-module Ξ as Pic(Xur)/Pic(Xur)L-div. For this group we will prove:

Lemma 5.2.7. (1) Ξ is a finitely generated abelian group.
(2) For any positive integer n prime to p, nPic(Xur) is finite. Consequently, Pic(Xur)L-div

is divisible by integers prime to p (cf. [J] §4), and we have a natural injective map

α : Ξ⊗Q/Z′ � � // H2(Xur,Q/Z′(1)).

(3) The map

α′ : H1(F,Ξ⊗Q/Z′) −→ H1(F, H2(Xur,Q/Z′(1)))

induced by α has finite kernel.
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The proof of this lemma will be given in §5.3 below. We finish our proof of Lemma 5.2.4 (3)
(and Proposition 5.2.1 (3)), admitting this lemma. By Lemma 5.2.7 (1), we have the following
sequence of finitely generated abelian groups with equivariant GF-action:

(5.2.8) Z
diagonal //

⊕
y∈(Y )0

Z
g // Ξ,

where g is induced by the Gysin map
⊕

y∈(Y )0 Z → Pic(Xur). This sequence is a complex by
the semistability of X /S. Because the ℓ-primary part of the complex (5.2.5) has finite coho-
mology group for any ℓ ̸= p by Proposition 5.2.1 (2), one can easily check that the complex
(5.2.8) has finite cohomology group as well (in fact, (5.2.8) is exact because the cokernel of
the first diagonal map is torsion-free). Hence the cohomology group of the induced complex

(5.2.9) Q/Z
diagonal //

⊕
y∈(Y )0

Q/Z
g⊗Q/Z

// Ξ⊗Q/Z,

is finite and its order is the same as that of

Coker
(
g :

⊕
y∈(Y )0 Z −→ Ξ/Ξtors

)
tors.

We denote its order by b. Now we show that the complex (5.2.5) has finite cohomology group.
By a standard norm argument, we may suppose that GF acts trivially on the groups in (5.2.8).
Then consider a commutative diagram of complexes

(5.2.10) H1(F,Q/Z′) //
⊕

y∈Y 0 H1(F,Q/Z′) //

≀
��

H1(F,Ξ⊗Q/Z′)

α′

��
Br(k)′ //

≀

OO

H1(F, H2
Y
(Xur,Q/Z′(1))) // H1(F, H2(Xur,Q/Z′(1))),

where the upper row is induced by (5.2.9), the lower row is the complex (5.2.5) in question
and the bijectivity of the central vertical arrow is obtained from the spectral sequence (5.2.6);
the commutativity of the left square follows from the semistability of X /S. The upper row
has finite cohomology group of order b up to a power of p, and the right vertical arrow α′

has finite kernel by Lemma 5.2.7 (3). Hence the lower row has finite cohomology group of
order dividing b · #(Ker(α′)). This completes the proof of Lemma 5.2.4, Proposition 5.2.1
and Theorem 1.1.3 (2), assuming Lemma 5.2.7. □

5.3. Proof of Lemma 5.2.7. We first prove (1). We change the notation slightly, and put
Ξ(Z) := Pic(Z)/Pic(Z)L-div for a scheme Z. For a smooth variety Z over a field, let NS(Z)
be the Néron-Severi group of Z. The natural map Ξ(Xur) → Ξ(Y ) is injective by the proper
base-change theorem:

Ξ(Xur) //
� _

��

Ξ(Y )
� _

��∏
ℓ ̸=p

H2(Xur,Zℓ(1)) //∼
∏
ℓ ̸=p

H2(Y ,Zℓ(1)).
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We show that Ξ(Y ) is finitely generated. Since Y has simple normal crossings on X , we
have the following exact sequence of sheaves on Yét:

0 −→ O×
Y −→ Gm,Y (1) −→ Gm,Y (2) −→ · · · ,

where Y (1) (q ≥ 1) is as in the proof of Lemma 5.2.4 (1). By this exact sequence, it is easy
to see that the kernel of the natural map Pic(Y ) → Pic(Y (1)) is an extension of a finite group
by a torsion divisible group. Hence the induced map

Ξ(Y ) −→ Ξ(Y (1)) ≃ NS(Y (1))/NS(Y (1))p-tors

has finite kernel, and the assertion follows from the fact that the last group is a finitely gener-
ated abelian group. Thus we obtain Lemma 5.2.7 (1).

Lemma 5.2.7 (2) follows from the finiteness of the groups H1(Xur, µn) with (n, p) = 1.
The details are straight-forward and left to the reader.

We prove Lemma 5.2.7 (3). By the proof of (1), the natural map Ξ(Xur) → Ξ(Y (1)) has
finite kernel and Ξ(Y (1)) is finitely generated, which implies that the left vertical arrow in the
following commutative diagram has finite kernel by a standard norm argument:

H1(F,Ξ(Xur)⊗Q/Z′)
α′

//

��

H1(F, H2(Xur,Q/Z′(1)))

��

H1(F,Ξ(Y (1))⊗Q/Z′) // H1(F, H2(Y (1),Q/Z′(1))),

where the bottom horizontal arrow is defined in the same way as α′ and it has finite kernel by
[SS2] Lemma 6.7 (note that Ξ(Y (1)) = NS(Y (1))/NS(Y (1))p-tors). Hence α′ has finite kernel
as well. This completes the proof of Lemma 5.2.7. □

5.4. Appendix: Degree of 0-cycles. Let X be a regular scheme of finite type over S =
Spec(ok). We do not assume the properness of X /S here. Put Q := X0, and let Qfin be the
subset of Q consisting of all closed points on X whose closure in X are finite over S. If
X is proper over S then we have Qfin = Q. For y ∈ Y 0, let ey be the multiplicity of y in
X ⊗ok F, and let fy be the degree over F of the algebraic closure of F in κ(y).

Theorem 5.4.1. Assume that the purity of Brauer groups holds for X . Then the following
three numbers are equal to one another:

N1 : the order of the kernel of the composite map Br(k) → Br(X) → Br(X)/Br(X ).
N2 : the greatest common measure of the degrees [κ(v) : k] with v ∈ Qfin.
N3 : the greatest common measure of the integers ey · fy with y ∈ Y 0.

Remark 5.4.2. This result was proved by Colliot-Thélène and Saito in [CTS] Théorème 3.1,
up to powers of p. However, their arguments work including powers of p after some modifi-
cation, which we show in what follows.

Proof. By the arguments in [CTS] Théorème 3.1, we have N1|N2|N3. Our task is to show
N1 = N3. Let us consider the composite map

α : Br(k) −→ Br(X)/Br(X )
β−→

⊕
y∈Y 0

H3
y (X ,Gm),
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where the second map β denotes the composite map

β : Br(X)/Br(X ) � � // H3
Y (X ,Gm) //

⊕
y∈Y 0

H3
y (X ,Gm),

and the last map is injective by the purity assumption on Brauer groups (cf. Remark 3.1.2 (3)).
Hence it suffices to show the following lemma:

Lemma 5.4.3. Let η be a generic point of Y . Then the kernel of the composite map

αη : Br(k) � � α //
⊕
y∈Y 0

H3
y (X ,Gm) // H3

η (X ,Gm)

is isomorphic to Z/eηfηZ.

Proof of Lemma 5.4.3. Let Aη (resp. Aη) be the henselization (resp. strict henselization) of
OX,η at its maximal ideal, and letGη be the absolute Galois group of κ(η). By the Hochschild-
Serre spectral sequence

Eu,v
2 = Hu

Gal(Gη, H
v
η (Aη,Gm)) =⇒ Hu+v

η (Aη,Gm)(= Hu+v
η (X ,Gm)),

and a standard purity for Gm ([G] III.6), we have the following exact sequence:

0 −→ H1(η,Q/Z) −→ H3
η (Aη,Gm) −→ H3

η (Aη,Gm)
Gη .

Next let s be the closed point of S, and let kur be the maximal unramified extension of k.
The same computation for S yields an isomorphism H1(F,Q/Z) ≃ H3

s (S,Gm)(≃ Br(k)),
because we haveH3

s (O
sh
S,s,Gm) ≃ Br(kur) = 0 (cf. [Se1] II.3.3). Thus we obtain the following

commutative diagram with exact rows:

0 // H1(F,Q/Z) //∼

α′
η

��

H3
s (S,Gm) //

αη

��

0

��
0 // H1(η,Q/Z) // H3

η (Aη,Gm) // H3
η (Aη,Gm)

Gη ,

where α′
η denotes the map induced by the right square. One can easily show that

α′
η = eη · Res,

where Res denotes the natural restriction map H1(F,Q/Z) → H1(η,Q/Z) induced by the
structure map η → Spec(F). Thus we have

Ker(αη) ≃ Ker(α′
η) ≃ Z/eηfηZ.

This completes the proof of Lemma 5.4.3 and Theorem 5.4.1. □

6. PROOF OF THEOREM 1.3.1

In this section, we prove Theorem 1.3.1. Let the notation be as in §1.3. Put S := Spec(ok)
and let Y be the divisor on X defined by the radical of (p) ⊂ OX.
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6.1. Key diagram. For v ∈ X0, the closure {v} ⊂ X contains exactly one closed point of
Y by the properness of X .

Definition 6.1.1. We define a map of sets sp : X0 → Y0 by the law that sp(v) = x if and
only if x is the closed point of {v} ⊂ X . Since ok is henselian local, there is a natural
identification of sets

sp−1({x}) = {closed points on Spec(O h
X,x[p

−1])} (x ∈ Y0)

where O h
X,x denotes the henselization of OX,x at its maximal ideal.

We construct the key diagram (6.1.4) below. Let U ⊂ Y be a regular dense open subset. For
x ∈ U0, put Ax := O h

X,x and let ψx,pr be the composite map

ψx,pr : prBr(Ax[p−1])
specialization //

∏
v∈sp−1({x})

prBr(v) invariant
∼

//
∏

v∈sp−1({x})

Z/prZ.

We put QU := sp−1(U0), and define a map

ψpr :
∏
x∈U0

prBr(Ax[p−1]) −→
∏
v∈QU

Z/prZ

as the direct product of ψx,pr’s with x ∈ U0. Next we construct a canonical map

θpr : H
3
Y (X ,Tr(1)) −→

∏
x∈U0

prBr(Ax[p−1]),

where Tr(1) = Tr(1)X denotes the p-adic étale Tate twist [Sa2]. For this we will prove

Lemma 6.1.2. Let x be a closed point on U and let Yx be the divisor on Xx := Spec(Ax)
defined by the radical of (p) ⊂ Ax. Then there is a canonical isomorphism

prBr(Ax[p−1]) ≃ H3
Yx(Xx,Tr(1)).

By this lemma, we define the desired map θpr as the restriction map

H3
Y (X ,Tr(1)) −→

∏
x∈U0

H3
Yx(Xx,Tr(1)) ≃

∏
x∈U0

prBr(Ax[p−1]).

Proof of Lemma 6.1.2. Consider the localization exact sequence

H2(Xx,Tr(1)) −→ H2(Xx[p
−1], µpr) −→ H3

Yx(Xx,Tr(1)) −→ H3(Xx,Tr(1)),

where we have used the property that Tr(1) is isomorphic to µpr outside of characteristic p
(cf. [Sa2]). Since Ax[p−1] is a unique factorization domain, we have H2(Xx[p

−1], µpr) ≃
prBr(Ax[p−1]). On the other hand, we have

H2(Xx,Tr(1))
(∗)
≃ prBr(Xx) ≃ prBr(x) = 0,

H3(Xx,Tr(1)) ≃ H3(x,Tr(1)|x) = 0,

where the isomorphism (∗) follows from the Kummer theory for O×
X (cf. [Sa2] §4.5), and the

last vanishing follows from the facts that Tr(1) is concentrated in degree 0 and 1 (cf. loc. cit.)
and that cd(x) = 1. The assertion follows from these facts. □
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Corollary 6.1.3. Under the notation in Lemma 6.1.2, the Gysin map ([Sa2] Theorem 4.4.7)

H1(Yx,Z/prZ) −→ H3
Yx(Xx,Tr(1)).

is injective.

Proof. By Hensel’s lemma, one can take a one-dimensional regular closed subscheme Z ⊂
Xx which is étale over S. Let y be the generic point of Z. Then the composite map

Z/prZ ≃ H1(Yx,Z/prZ) → H3
Yx(Xx,Tr(1)) ≃ prBr(Ax[p−1]) → prBr(y) ≃ Z/prZ

is bijective by the construction of the isomorphism of Lemma 6.1.2. □

We return to the proof of Theorem 1.3.1, and define α as the composite map

α : CHd−1(X )/pr
ϱd−1
pr // H2d−2(X ,Tr(d− 1)) ∼−→ H3

Y (X ,Tr(1))
∗,

where for a Z/prZ-module M , M∗ denotes Hom(M,Z/prZ), and the last isomorphism fol-
lows from the arithmetic duality ([Sa2] Theorem 10.1.1). To prove Theorem 1.3.1, it remains
to show the following:

Lemma 6.1.4. (1) The following diagram is commutative:

(6.1.4) CHd−1(X )/pr
α // H3

Y (X ,Tr(1))
∗

⊕
v∈QU

Z/prZ
(ψpr )

∗
//

OO

⊕
x∈U0

prBr(Ax[p−1])∗,

(θpr )
∗

OO

where the left vertical arrow sends v ∈ QU to the class of v.
(2) The maps θpr and ψpr are injective. Consequently, (θpr)∗ and (ψpr)

∗ are surjective.

We prove (2) in §6.2, and then prove (1) in §6.3 below.

6.2. Proof of Lemma 6.1.4 (2). Put Z := Y \ U and X ′ := X \ Z. For x ∈ U0, let
Xx and Yx be as in Lemma 6.1.2. The map ψpr is injective by Corollary 3.2.1. Indeed this
injectivity is immediately reduced to the case ζp ∈ k by a standard norm argument, because
X ′ is smooth over S by the semistability assumption on X . To show the injectivity of θpr ,
we consider the following commutative diagram:

θpr : H
3
Y (X ,Tr(1))

� � a // H3
U(X

′,Tr(1)) //
∏

x∈U0
H3
Yx
(Xx,Tr(1))

H1(U,Z/prZ) � � b //

c

OO

∏
x∈U0

H1(Yx,Z/prZ),
?�

c′

OO

where a and b are restriction maps, and c and c′ are Gysin maps ([Sa2] Theorem 4.4.7). The
arrow a is injective by the purity for Tr(1) (cf. loc. cit.), and b is injective by the Čebotarev
density theorem [Se2] Theorem 7. The arrow c′ is injective by Lemma 6.1.2 and Corollary
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6.1.3. It remains to show that the induced map Coker(c) → Coker(c′) is injective. Let i be
the closed immersion U ↪→ X ′. Since we have Coker(c) ⊂ H0(U,R3i!Tr(1)) and

Coker(c′) ⊂
∏
x∈U0

H0(Yx, (R
3i!Tr(1))|Yx),

it suffices to show that for an étale sheaf F on a noetherian scheme W , the restriction map

H0(W,F ) −→
∏
x∈W0

H0
(
Spec(O h

W,x),F |Spec(O h
W,x)

)
is injective, which follows from a standard argument using the induction on dim(W ). Thus
we obtain Lemma 6.1.4 (2).

6.3. Proof of Lemma 6.1.4 (1). Put Λ := Z/prZ and N := d − 1 for simplicity. By the
definitions of the maps in (6.1.4), it is enough to show that the following diagram commutes
for each v ∈ QU :

H0(Cv, Λ) ×H3
x(Cv,Tr(1)Cv)

f∗
��

//

(1)

H3
x(Cv,Tr(1)Cv)

tr(Cv,x) //

f∗
��

(2)

Λ

H2N(X ,Tr(N)X)×H3
Y (X ,Tr(1)X) //

f∗

OO

H2d+1
Y (X ,Tr(d)X)

tr(X ,Y )// Λ,

where Cv denotes the normalization of {v} ⊂ X , x denotes the closed point of Cv and f
denotes the canonical finite morphism Cv → X . See [Sa2] Theorem 10.1.1 for the trace
maps. The arrows f∗ arise from the following relative trace morphism with n = 0, 1 (loc. cit.
Theorem 7.1.1):

Gysf : Rf∗Tr(n)Cv −→ Tr(n+N)X [2N ] in Db(Xét, Λ),

and the arrow f ∗ arises from the pull-back morphism (loc. cit. Proposition 4.2.8)

resf : Tr(1)X −→ Rf∗Tr(1)Cv in Db(Xét, Λ).

The commutativity of the square (2) follows from a similar argument as for [Sa2] Lemma
10.2.1. We prove the commutativity (1) of pairings. Consider the following commutative
diagram:

Y � � i //

γ

��
□

X

g

��

Cv
foo

π
~~}}
}}
}}
}}

s � � h // S,
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where s denotes the closed point of S. Note that we have the base-change isomorphism
Rγ∗Ri

! = Rh!Rg∗ by Deligne [SGA4] XVIII.3.1.12.3. To prove the commutativity of pair-
ings in question, it suffices to show that the following diagram commutes in D−(sét, Λ):

(6.3.1) h∗Rπ∗ΛCv ⊗L Rh!Rg∗Tr(1)X
id⊗L Rh!Rg∗(resf )

//

h∗Rg∗(Gysf )⊗L id

��

h∗Rπ∗ΛCv ⊗L Rh!Rπ∗Tr(1)Cv

product
��

Rh!Rπ∗Tr(1)Cv

Rh!Rg∗(Gysf )
��

h∗Rg∗Tr(N)X [2N ]⊗L Rh!Rg∗Tr(1)X
product // Rh!Rg∗Tr(d)X [2N ].

Here the arrows ‘product’ are induced by the canonical morphism

h∗K ⊗L Rh!L −→ Rh!(K ⊗L L ) (K ,L ∈ Db(Sét, Λ))

and the product structure of Tate twists ([Sa2] Proposition 4.2.6). We defined Rh! for un-
bounded objects using a result of Spaltenstein [Sp] Theorem A. Finally one can easily check
the commutativity of (6.3.1) by applying Rh!Rg∗ to the following commutative diagram in
[Sa2] Corollary 7.2.4:

Rf∗ΛCv ⊗L Tr(1)X
id⊗L resf //

Gysf⊗L id

��

Rf∗ΛCv ⊗L Rf∗Tr(1)Cv

product
��

Rf∗Tr(1)Cv

Gysf
��

Tr(N)X [2N ]⊗L Tr(1)X
product // Tr(d)X [2N ].

This completes the proof of Lemma 6.1.4 and Theorem 1.3.1. □
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