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ABSTRACT. A main theme of the paper is a conjecture of Bloch-Kato on the image of
adic regulator maps for a proper smooth varigtyover an algebraic number fiefd The
conjecture for a regulator map of particular degree and weight is related to finiteness of two
arithmetic objects: One is theprimary torsion part of the Chow group in codimensibaf

X. Another is an unramified cohomology groupXf As an application, for a regular model

Z of X over the integer ring of, we show an injectivity result on torsion of a cycle class map
from the Chow group in codimensianof .2 to a newp-adic cohomology of2” introduced

by the second author, which is a candidate of the conjectaée motivic cohomology with

finite coefficients of Beilinson-Lichtenbaum.

1. INTRODUCTION

Let k£ be an algebraic number field and 184, be the absolute Galois groupal(k/k),
wherek denotes a fixed algebraic closureiofLet X be a projective smooth variety ovir
and putX := X ®;, k. Fix a primep and integers, m > 1. A main theme of this paper is a

conjecture of Bloch and Kato concerning the image ofittaalic regulator map
reg"™ + CH'(X,m) ® Qp — Hegn(k, H ™71 (X, Qy(r)))

from Bloch'’s higher Chow group to continuous Galois cohomolog¥ o{[BK2], Conjecture

5.3). Seg;3 below for the definition of this map in the cagem) = (2, 1). This conjecture
affirms that its image agrees with the subspagék, H; ™ ~'(X,Q,(r))) defined in loc.

cit., and plays a crucial role in the so-called Tamagawa number conjecture on special values
of L-functions attached t&. In terms of Galois representations, the conjecture means that a

1-extension of continuoug-adic representations 6f;,

0 — Hy "N (X, Qy(r) — E—Q, —0
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arises from da-extension of motives over
0 — A* ™ Y X)(r) — M — h(Spec(k)) — 0,

if and only if £ is a de Rham representation Gf,. There has been only very few known
results on the conjecture. In this paper we consider the following condition, which is the

Bloch-Kato conjecture in the special cagem) = (2,1):
H1: The image of the regulator map
reg = regQ,l : CHQ(X7 1) ® @p - Hclont(kv Hé2t(77 @p(2>>>

agrees withH ) (k, HZ (X, Q,(2))).
We also consider a variant:

H1*: The image of the regulator map with, /Z,-coefficients
reng/Zp : CHQ(X7 1) ® Qp/Zp - Hcl;al(kv He?t(Ya QP/ZP(Q)))

agrees withH ! (k, H2 (X, Q,/Z,(2)))piv (see§2.1 for the definition of this group

We will show thatH1 always implieH1*, which is not straight-forward. On the other hand

the converse holds as well under some assumptions. See Remark 3.2.4 below for details.

Fact 1.1. The conditiorH1 holds in the following cases
(1) H%(X, 0x) = 0 ([CTR1], [CTR2], [Sal]).
(2) X is the self-product of an elliptic curve over= Q with square-free conductor and
without complex multiplication, ang > 5 ([Md], [FI], [LS], [Lal]).
(3) X is the elliptic modular surface of levéloverk = Q andp > 5 ([La2]).
(4) X is a Fermat quartic surface ovér= Q or Q(+/—1) andp > 5 ([O]).

A main result of this paper relates the conditidh* to finiteness of two arithmetic objects.
One is thep-primary torsion part of the Chow groupH?(X) of algebraic cycles of codi-
mension two onX modulo rational equivalence. Another is an unramified cohomology of

X, which we are going to introduce in what follows.
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Let o, be the integer ring ok, and putS := Spec(ox). We assume that there exists a
regular schemeZ” which is proper flat of finite type ove$ and whose generic fiber i¥.

We also assume the following:
(x) Z has good or semistable reduction at each closed poist of characteristicp.

Let K = k(X)) be the function field oX'. For an integey > 0, let 277 be the set of all points
x € 2 of codimensiony. Fix an integen > 0. Roughly speaking, the unramified cohomol-
ogy groupH"*'(K,Q,/Z,(n)) is defined as the subgroup &' (Spec(K),Q,/Z,(n))
consisting of those elements that are “unramified” along/al .2™*. For a precise defini-
tion, we need the-adicétale Tate twisg,. (n) = T,.(n)4 introduced in [SH]. This object is
defined inD®( 2%, Z/p"7Z), the derived category of bounded complexegtafe sheaves of
Z/p"Z-modules onZ", and expected to coincide withi(2) @ Z/p"Z. HereI'(2) de-
notes the conjectur&tale motivic complex of Beilinson-Lichtenbaum [Be], [Li1]. We note
that the restriction of, (n) to 2°[p~'] := 2" ®; Z[p~'] is isomorphic tou’", where,
denotes theétale sheaf of"th roots of unity. ThenH;"'(K,Q,/Z,(n)) is defined as the
kernel of the boundary map étale cohomology groups

Hi ™ (Spec(K), Qy/Zy(n)) — P H(Spec(Oy.), Too(n),

whereZ . (n) denotedim ,>; T,(n). There are natural isomorphisms
Hy, (K, Qy/Z,(0)) =~ Hy(2.Q,/Z,) and  Hi (K, Qp/Zy(1)) = Br(Z ) piors,

whereBr(.2") denotes the Grothendieck-Brauer graiif( 2", G, ), and for an abelian group

M, M, denotes itgp-primary torsion part. An intriguing question is as to whether the
group H:(K,Q,/Z,(n)) is finite, which is related to several significant theorems and
conjectures in arithmetic geometry (see Remark 4.2.10 below). In this paper we are con-

cerned with the case = 2. A crucial role will be played by the following subgroup of
H (K, Qp/Zy(2)):

Hy (K, X;Q,/Z,(2))

= I (H (X, Qy/Z,(2)) — HE, (Spec(K), Qy/Z,(2)) ) 1 (K, Q,/Z,(2).

Our finiteness result is the following:
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Theorem 1.2.Let X and 2" be as above, and assume> 5. Then

(1) H1* implies thatCH?(X),.ors and H2 (K, X;Q,/7Z,(2)) are finite.

(2) Assume that the reduced part of every closed fibet 9fS has simple normal cross-
ings onZ", and that the Tate conjecture holds in codimensidor the irreducible
components of those fibers. Then the finiteness of the gl@Hﬁ(sX)p_tors and
H} (K, X;Q,/Z,(2)) impliesH1*.

The assertion (2) is a converse of (1) under the assumption of the Tate conjecture. We obtain

the following result from Theorem 1.2 (1) (see also the proof of Theorem £5.inbelow):
Corollary 1.3. H} (K, X;Q,/Z,(2)) is finite in the four cases in Fadt1.

We will also prove variants of Theorem 1.2 over local integer rings (see Theorems 3.1.1, 5.1.1
and 7.1.1 below). As for the finiteness Bf, (K, Q,/Z,(2)) over local integer rings, Spiess
proved thatH? (K,Q,/Z,(2)) = 0, assuming thab,. is an/-adic local integer ring with

( # p and that eithef/*(X, Ox) = 0 or 2" is a product of two smooth elliptic curves ovgr

([Spi], §4). In [SSa], the authors extended his vanishing result to a more general situation that
oy Is ¢-adic local with? # p and thatZ™ has generalized semistable reduction. Finally we
have to remark that there exists a smooth projective suttaweéth p,(X) # 0 over a local

field & for which the conditiorH1* does not hold and such th@H? (X ), is infinite [AS].

We next explain an application of the above finiteness result to a cycle class map of arith-
metic schemes. Let us recall the following fact due to Collio&i€he, Sansuc, Sauland

Gros:

Fact 1.4([CTSS] [Gr]). Let X be a proper smooth variety over a finite field of characteristic
¢ > 0. Letp be a prime number, which may be the same&.a3hen the cycle class map

restricted to thep-primary torsion part
CHZ(X>p-tors - Hgt(X7 Z|p"L(2))
is injective for a sufficiently large > 0. If ¢ # p, thenZ/p"Z(2) denotegs;”. If £ = p, then

Z/p"Z(2) denotesh; Q% ,,,[—2] with Q% . the étale subsheaf of the logarithmic part of
the Hodge-Witt shedf; Q% ([BI1], [Il] ).



p-ADIC REGULATOR AND FINITENESS 5
In this paper, we study an arithmetic variant of this fact. We expect that a similar result holds
for proper regular arithmetic schemes, i.e., regular schemes which are proper flat of finite
type over the integer ring of a number field or a local field. To be more precise, dgt X
and.Z” be as in Theorem 1.2. Theadicétale Tate twisf, (2) = ¥,(2) - mentioned before

replace<Z/p"Z(2) in Fact 1.4, and there is a cycle class map
o7 : CHN(Z) /p" — Hy(2,%,(2)).
We are concerned with the induced map

: CHQ(%)p-tors - Hgt(%a T:(2)).

Q?)-torsm
It is shown in [SH] that the group on the right hand side is finite. So the injectivity of this
map is closely related with the finiteness@HQ(%)p_torS. The second main result of this

paper concerns the injectivity of this map:

Theorem 1.5(§5). Assume that{?(X, Ox) = 0. ThenCH?*(2") 115 IS finite andg? . ,. is

injective for a sufficiently large > 0.

The finiteness 0€H?(.2),..rs iN this theorem is originally due to Salberger [Sal], Colliot-
Thélene and Raskind [CTR1], [CTRZ2]. Note that there exists a projective smooth sitface
over a number field witti7?(V, ¢y,) = 0 whose torsion cycle class map

CH*(V)petors — He (V. 1)
is not injective for some bad primeand any- > 1 [Su] (cf. [PS]). Our result suggests that we
are able to recover the injectivity of torsion cycle class maps by considering a proper regular
model of V' over the ring of integers ik. The fundamental ideas of Theorem 1.5 are the
following. A crucial point of the proof of Fact 1.4 in [CTSS] and [Gr] is Deligne’s proof of the
Weil conjecture [DeZ2]. In the arithmetic situation, the role of the Weil conjecture is replaced
by the conditiorH1, which implies the finiteness 6fH?(X),.io;s andH3 (K, X; Q,/Z,(2))
by Theorem 1.2 (1). The injectivity result in Theorem 1.5 is derived from the finiteness of

those objects.

This paper is organized as follows. 38, we will review some fundamental facts on Ga-

lois cohomology groups and Selmer groups which will be used frequently in this paper. In
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§3, we will prove the finiteness dfH?(X),..,s in Theorem 1.2 (1). Ir§4, we will review
p-adic étale Tate twists briefly and then provide some fundamental lemmas on cycle class
maps and unramified cohomology groups.§H we will first reduce Theorem 1.5 to The-
orem 1.2 (1), and then reduce the finitenes$igf( K, X; Q,/Z,(2)) in Theorem 1.2 (1) to

Key Lemma 5.4.1. I6, we will prove that key lemma, which will complete the proof of
Theorem 1.2 (1).§7 will be devoted to the proof of Theorem 1.2 (2). In the appendix A,
we will include an observation that the finitenessfif. (K, Q,/Z,(2)) is deduced from the

Beilinson—Lichtenbaum conjectures on motivic complexes.

Acknowledgements.The research for this article was partially supported by JSPS Postdoc-
toral Fellowship for Research Abroad and EPSRC grant. The second author expresses his
gratitude to University of Southern California and The University of Nottingham for their
great hospitality. The authors also express their gratitude to Professors Wayne Raskind,

Thomas Geisser and Ivan Fesenko for valuable comments and discussions.



p-ADIC REGULATOR AND FINITENESS 7

NOTATION

1.6. For an abelian group/ and a positive integet, let,, A/ andM /n be the kernel and the
cokernel of the map/ == M, respectively. Se&2.3 below for other notation for abelian
groups. For a field:, let k be a fixed separable closure, anddat be the absolute Galois
group Gal(k/k). For a discreteZ;,-module M, let H*(k, M) be the Galois cohomology
groupsH¢,, (G, M), which is the same as thtale cohomology groups &fpec(k) with

coefficients in thetale sheaf associated witl.

1.7. Unless indicated otherwise, all cohomology groups of schemes are taken od&i¢he
topology. For a schemé(, an étale sheaf# on X (or more generally an object in the
derived category of sheaves ofy;) and a pointz € X, we often write H(X,.7) for
H}(Spec(Ox.), #). For a pure-dimensional schemé and a non-negative integer let
X7 be the set of all points o of codimensiory. For a pointr € X, let x(x) be its residue
field. For an integen > 0 and a noetherian excellent scheixieCH,,(X) denotes the Chow
group of algebraic cycles oN of dimensionn modulo rational equivalence. KX is pure-
dimensional and regular, we will often Wri(éHdim(X)*"(X) for this group. For an integral
schemeX of finite type overSpec(Q), Spec(Z) or Spec(Z,), we defineCH?*(X, 1) as the
cohomology group, at the middle, of the Gersten complex of Milldegroups

K (L) — @ wy) — P z

yeX1! reX?2

wherelL denotes the function field of . As is well-known, this group coincides with a higher
Chow group ([BI3], [LeZ2]) by the localization theory ([Bl4], [Lel1]) and the Nesterenko-Suslin
theorem [NS] (cf. [To]).

1.8. In§§4—7, we will work under the following setting. Létbe an algebraic number field
or its completion at a finite place. Let be the integer ring of and putS := Spec(oy). Let
p be a prime number, and l&t” be a regular scheme which is proper flat of finite type over

S and satisfies the following condition:

If pis not invertible onZ", then.Z™ has good or semistable reduction at each

closed point ofS of characteristicp.
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Let K be the function field of2". We defineH? (K, Q,/Z,(2)) and H3.(K, X;Q,/Z,(2))
in the same way as in the introduction:
H (K, Qy/Z4(2)) i= Ker (H(K, Qp/Z(2) — @ yess H(2,Tc(2)))
Hy (K, X;Q,/Z,(2))
= Im(HY(X, Qy/2,(2)) — H*(K, Qy/Z,(2))) N HY(K, Qy/Z,(2),
where¥ ., (n) denoteﬂLn +~>1%,(n). If kis an algebraic number field, then this setting is the

same as that in the introduction.

1.9. Letk be an algebraic number field, and 18t — S = Spec(ox) be as in 1.8. In this
situation, we will often use the following notation. For a closed poist S, leto,, (resp.k,)

be the completion o, (resp.k) atv, and letF, be the residue field df,. We put
%} =2 ®ok 0y, Xv =2 ®ok kva Y;) =2 ®ok ]Fv

and writej, : X, — Z, (resp.i, : Y, — Z,) for the natural open (resp. closed) immersion.

We putY,, := Y, xg, F,, and writeX for the set of all closed point ofi of characteristig.

1.10. Letk be an/-adic local field with? a prime number, and 12" — S = Spec(o;) be as
in 1.8. In this situation, we will often use the following notation. [&be the residue field of
k and put
X =2 @,k Y:=%,F.
We writej : X — 2" (resp.i : Y — Z°) for the natural open (resp. closed) immersion. Let

k" be the maximal unramified extension/gfand leto™ be its integer ring. We put

X =2 ®,, 0", X" =2 ®,, k", Y :=Y xpF.
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2. PRELIMINARIES ON GALOIS COHOMOLOGY

In this section, we provide some preliminary lemmas which will be frequently used in this
paper. Letk be an algebraic number field (global field) or its completion at a finite place
(local field). Leto, be the integer ring of, and putS := Spec(oy). Letp be a prime number.

If k& is global, we often writel for the set of the closed points ¢hof characteristig.

2.1. Selmer group. Let X be a proper smooth variety ovépec(k), and putX := X ®, k.
If % is global, we fix a non-empty open subggt C S\ X' for which there exists a proper
smooth morphism2y, — U with 27, xp, k ~ X. Forv € S', letk, andF, be as in the

notation 1.9. In this section we are concerned withmodules
V:=H(X,Q,(n)) and A:=H(X,Q,/Z,(n)).

For M = V or A and a non-empty open subdétC Uy, let H*(U, M) denote thettale

cohomology groups with coefficients in the smooth sheaf/grassociated td/.

Definition 2.1.1. (1) Assume that is local. LetH(k, V) and H, (k, V') be as defined in
[BK2], (3.7). For x € {f, g}, we define

H!(k, A) :== Im(H!(k, V) — H'(k, A)).

(2) Assume that is global. ForM € {V, A} and a non-empty open subgétC S, we
define the subgroufl; ;;(k, M) C H;

cont

(k, M) as the kernel of the natural map

Hclont k M - H cont kWM /Hf(kIHM X H cont kWM)/Hl(kU?M)
veUl veS\U

If U c Uy, we have

HY (0, M) = Ker(H' (U, M) — [T wesior H

cont

(ko M)/ H (i, M) ).
We define the groufl} (k, M) and Hy 4 (k, M) as

Hgl(kaM) = h_H)l H},U(kJM>7 Hllnd(kaM) = 11_1’1)1 Hl(UuM)a

UcCUy UcUy
whereU runs through all non-empty open subset$/pf These groups are indepen-

dent of the choice dfl, and 2y, (cf.[EGA4], 8.8.2.5).
(3) If kis local, we defind?! ,(k, M) to be H}  (k, M) for M € {V, A}.

cont
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Note thatH! ,(k, A) = H'(k, A).

2.2. p-adic point of motives. We provide a key lemma from-adic Hodge theory which
play crucial roles in this paper (see Theorem 2.2.1 below). Assumé tisad p-adic local
field, and that there exists a regular scheftiewhich is proper flat of finite type ove$ =
Spec(oy) With 2" ®,, k ~ X and which has semistable reduction. Lahdn be non-negative
integers. Put

Vi= (X, Q),  Vi(n)=V'®q, Qyn),
and

H’H—l(%, TSnRj*@p(n)> = {liﬁszl H’H_l(e%" TSnR.]*:u?’"n)} ®Zp Qp7

wherej denotes the natural open immersiin— .2". There is a natural pull-back map
ot HY (2, reu Rj.Qy(n) — HIH(X,Qy(n)).
Let H (2, 1<, Rj.Q,(n))° be the kernel of the composite map
ot HHY (2, 7, RjQy(n)) > HH(X,Qy(n) — (VI (n)) .
For this group, there is a composite map

a: HYY (2 1<, Rj,Q,(n))° — FUH™(X,Q,(n)) — H.

cont

(k, V' (n)),

whose first arrow is induced hy. The second arrow is an edge homomorphism a Hochschild-

Serre spectral sequence

Eg’v = H"

cont

(k, V*(n)) = Heoui (X, Qp(n)) (= H*™ (X, Qy(n))).

cont

and F'* denotes the filtration o/ ™! (X, Q,(n)) resulting from this spectral sequence. Con-

cerning the image af, we show the following:

Theorem 2.2.1.Assume thap > n + 2. Thenlm(a) = H,(k, V'(n)).

Proof. We use the following comparison theorem of log syntomic complexespeauic
vanishing cycles due to Kato, Kurihara and Tsuji ([Kal], [Ku], [KaZ2], [Ts2]). kebe the

closed fiber of2" — S and let. : Y — 2 be the natural closed immersion.
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Theorem 2.2.2(Kato/Kurihara/Tsuji ). For integersn,r with0 < n <p —2andr > 1,
there is a canonical isomorphism
082 (n) = Ll (TenRjapy”)  in DY(Ze, L)1),

whereslos(n) = sl°(n) »- is the log syntomic complex defined by Kptal] (cf. [Ts1]).

Put
H(Z, ng(”)) = {lim >y H(Z,5%(n))} ©z, Qp,
and defineH" (.2, sgf(n))o as the kernel of the composite map

H™Y (2,558 (n)) > HHN (2, 7euRQy(n)) 5 (VI ()™,

n

where we have used the propernesstofoverS. There is an induced map

M H (2555 )° < B2 7R Q) Hl (b, V().

n

On the other hand, we have the following fact ([La3], [Ne2], Theorem 3.1):
Theorem 2.2.3(Langer/Nekovar). Im(7) agrees withi7 (k, V*(n)).

By these facts, we obtain Theorem 2.2.1. O

Remark 2.2.4. (1) Theoren2.2.3 is an extension of the-adic point conjecture raised by
Schneider in the good reduction cg&eh]. This conjecture was proved by Langer-
Saito[LS] in a special case and by Nek#\[Nel]in the general case.

(2) Theorem2.2.3 holds unconditionally om, if we define the spacH" ™! (2, s}éﬁf(n))

using Tsuji's version of log syntomic complex&s (n) (r > 1) in [Ts1], §2.

2.3. Elementary facts onZ,-modules. For an abelian group/, let Mp;, be its maximal
divisible subgroup. For a torsion abelian groip, let Cotor(M) be the cotorsion part
M /Mpy,. We say that &,-module M is cofinitely generated ovek, (or simply, cofinitely
generated] if its Pontryagin duaHomy, (M, Q,/Z,) is a finitely generatet,-module.

Lemma2.3.1.Let0 — L — M — N — 0 be a short exact sequenceZf-modules.
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(1) Assume that,, M and N are cofinitely generated. Then there is a positive integer

such that for any: > r, we have an exact sequence of finite abeliagroups
0— L — M — ;N — Cotor(L) — Cotor(M) — Cotor(N) — 0.

Consequently, taking the projective limit of this exact sequence with respett iq

there is an exact sequence of finitely generaiganodules
0—T,(L) = T,(M)— T,(N) — Cotor(L) — Cotor(M) — Cotor(N) — 0,

where for an abelian groupl, 7,,(A) denotes itp-adic Tate module.

(2) Assume that. is cofinitely generated up to a group of finite exponent, iLg;, is
cofinitely generated an@otor(L) has a finite exponent. Assume further thdt
is divisible, and thatV is cofinitely generated and divisible. Thénand M are
cofinitely generated.

(3) Assume thak is cofinitely generated up to a group of finite exponent. Then for a divis-
ible subgroupD C N and its inverse imag®’ C M, the induced mapD’)p;, — D
is surjective. In particular, the natural maplp;, — Np;, IS Surjective.

(4) If Lpiy = Npiyw =0, then we haVMDiV = 0.

Proof. (1) There is a commutative diagram with exact rows

0 L M N 0

Xpr l Xpr l Xpr l

0 L M N 0.

One obtains the assertion by applying the snake lemma to this diagram, fotiog A) ~
A/p" for a cofinitely generate@,-moduleA and a sufficiently large > 1.
(2) Our task is to show th&totor(L) is finite. By a similar argument as for (1), there is an

exact sequence for a sufficiently large> 1
0— L — M — N — Cotor(L) — 0,

where we have used the assumptiond.aand /. Hence the finiteness 6fotor(L) follows

from the assumption tha¥ is cofinitely generated.
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(3) We have only to show the cage= Np;,. For aZ,-moduleA, we have
Apiv = Im (Homzp (Qp,A) — A)

by [J1], Lemma (4.3.a). SincExtgp(Qp,L) = 0 by the assumption o, the following

natural map is surjective:
Homygz, (Q,, M) — Homgz,(Q,, N).

By these facts, the natural mapp;, — Np;, IS surjective.

(4) For aZ,-moduleA, we have
Apiy = 0 <= Homz,(Q,,A) =0
by [J1], Remark (4.7). The assertion follows from this fact and the exact sequence
0 — Homg, (Q,, L) — Homg, (Q,, M) — Homgz, (Q,, N)

This completes the proof of the lemma. O

2.4. Divisible partof H'(k, A). Letthe notation be as §2.1. We prove here the following
general lemma, which will be used frequentlytiB8-7:
Lemma 2.4.1.Under the notation in Definitiog.1.1 we have
Im<Hilnd(k7 V) - Hl(kv A)) = Hl(kv A)Diva
Im(H,(k, V) — H'(k,A)) = H,(k, A)piy.
Proof. The assertion is clear i is local. Assume that is global. Without loss of generality

we may assume that is divisible. We prove only the second equality and omit the first one
(see Remark 2.4.9 (2) below). LEy C S be as ing2.1. We have

(2.4.2) Im(H},U(k, V) — HY (U, A)) = H},U(k, A)piv
for non-empty ope/ C U,. This follows from a commutative diagram with exact rows

0 H}’U(k’ V) - Hl(U7 V) - HUES\U Hclont(kw V)/H;(kvv V)

| | |

0 — H}y(k, A) — HYU, A) — [Tvessv H (ky, A)/H} (ky, A)
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and the facts thatoker(«) is finite and thaker () is finitely generated ovek,. By (2.4.2),

the second equality of the lemma is reduced to the following assertion:

(2.4.3) lim (H}y(k, Apiy) = (hg H}yU(k,A))> Div.
UcUy UcUy

To show this equality, we will prove the following sublemma:

Sublemma 2.4.4.For an open subsét C U,, put
Cy = Coker(H;, (k, A) — Hj(k, A)).

Then there exists a non-empty open subset U, such that the quotierit;; /Cy, is divisible

for any open subséf C U;.

We first finish our proof of (2.4.3) admitting this sublemma. LUgtC U, be a non-empty
open subset as in Sublemma 2.4.4. Noting ﬂﬁﬁg(k, A) is cofinitely generated, there is an

exact sequence of finite groups
Cotor(H}le(kg A)) — 001:01"(H}7U(k:7 A)) — Cotor(Cy /Cy,) — 0

for openU C U; by Lemma 2.3.1(1). By this exact sequence and Sublemma 2.4.4, the
natural mapCotor(Hj ;, (k, A)) — Cotor(H}(k, A)) is surjective for any opetV C Uy,

which implies that the inductive limit

lim Cotor(Hj ;(k, A))
UcCUy

is a finite group. The equality (2.4.3) follows easily from this.

Proof of Sublemma 2.4.%Ve need the following general fact:

Sublemma 2.4.5.Let N = {N,}.ca be an inductive system of cofinitely generaigd
modules indexed by a filtered sétsuch thatCoker(N, — N,/) is divisible for any two
AN e Awith M > A Let L be a cofinitely generated,-module and{ f\ : Ny — L}xea
be Z,-homomorphisms compatible with the transition maps/ofThen there exists, € A

such thatCoker (Ker(fy,) — Ker(f,)) is divisible for anyA > .

Proof of Sublemma 2.4.5.Let f,, : N, — L be the limit of f,. The assumption oV’
implies that for any two\, A’ € A with A’ > ), the quotienfm(f,/)/Im(f\) is divisible, so
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that
(2.4.6) Cotor(Im(fy)) — Cotor(Im(f)) is surjective
By the equalitylm(f) = lim e Im(f)), there is a short exact sequence

0 — lim (Im(fx)piv) — Im(fos) — lim Cotor(Im(fy)) — 0,
AeA AeA

and the last term is finite by the fact (2.4.6) and the assumptioritistofinitely generated.

Hence we get

h_H} (Im(f)\)Div) = Im(foo)Div-
AeA

Sincelm( f-)piy has finite corank, there exists an elemgnte A such thatim(f))p;, =

Im( fo)piv fOr any A > \q. This fact and (2.4.6) imply the equality
(2.4.7) Im(fy) = Im(fy,) forany\ > Ao.
Now let A € A satisfy\ > \q. Applying the snake lemma to the commutative diagram

N)\O HN)\HN)\/N)\O *>0

o W

0——L=—L——0,

we get an exact sequence
Ker(f\,) — Ker(fy,) — Nr/N,, SR Coker(fy,) — Coker(f)),
which proves Sublemma 2.4.5, beucaég N, is divisible by assumption. O

We now turn to the proof of Sublemma 2.4.4. For non-empty dpea U,, there is a

commutative diagram with exact rows

H'(Up,A) —  H'(WUA) — @ A1 L% g2u,, A)
UGU()\U

o | al o |

0— @ H/lg(kwA) - @ H/lg(kmA) - @ H/lg(kmA)?
veS\Uy veS\U veUp\U

where we put

H}g(kv,A) = Hl(k:v,A)/H;(kv,A)
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for simplicity. The upper row is obtained from a localization exact sequenétaté coho-

mology groups and the isomorphism
H*(Uy, A) ~ H (k,, A)JH (F,, A) ~ A(—=1)" forve Uy\ U,

where we have used the fact that the actiordizpfon A is unramified atv € U,. The map
ay is obtained from the facts thaf; (k,, A) = H' (k,, A)pi if v ¢ ¥ and thatH'(F,,, A) is
divisible (recall thatd is assumed to be divisible). It gives
(2.4.8) Ker(ay) = € (A(=1)%") piy.

veUp\U
Now let ¢, be the composite map

du : Ker(ay) — @@ A(-1)% 2% HA(U,, A),

UGU()\U

and let
Yy : Ker(¢y) — Coker(ry,)

be the map induced by the above diagram. Note that
Cy ~ Ker(vy), since H}’U(k, A) = Ker(ry).

By (2.4.8), the inductive systefiKer(ay)}ycy, and the mapg ¢y oy, satisfy the as-
sumptions in Sublemma 2.4.5. Hence there exists a non-empty open &lbset/, such
that Ker(¢y)/Ker(¢y-) is divisible for any oper/ C U’. Then applying Sublemma 2.4.5
again to the inductive systegier(¢y)}ucy: and the mapq«y }uycur, we conclude that

there exists a non-empty open subSetC U’ such that the quotient

Ker(¢yy)/Ker(yy,) = Cy/Cr,

is divisible for any open subsét C U;. This completes the proof of Sublemma 2.4.4 and

Lemma 2.4.1. O

Remark 2.4.9. (1) By the argument after Sublemra.4, Cotor(H,(k, A)) is finite.
(2) One obtains the first equality in Lemmal.1 by replacing the local termH}g(kv, A)
in the above diagram witRotor(H ' (k,, A)).
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2.5. Cotorsion part of H'(k, A). Assume that is global, and let the notation be as in
§2.1. We investigate here the boundary map
vy + H — P A(-1)%
ve(Up)?
arising from the localization theory iatale topology and the purity for discrete valuation
rings. Concerning this map, we prove the following standard lemma, which will be used in

our proof of Theorem 1.2:

Lemma2.5.1. (1) The map

. G
6U0,Div . H k A D1v B @ ]Fv Div

ve(Up)?t
induced by, has cofinitely generated cokernel.

(2) The map

6U0,Cotor : COtOI( @ COtOI‘ )GFU)
ve Uo)

induced by, has finite kernel and cofinitely generated cokernel.

We have nothing to say about the finiteness of the cokernel of these maps.

Proof. For a non-empty opeli C U,, there is a commutative diagram of cofinitely generated

Z,-modules
H1<U7 A)Div l) @ veUo\U ((A(_l)GFU)DiV

HY(Uy, A) — H\(U, A) l

@ veU\U A<_1)GF”

where the lower row is obtained from the localization theorgtale cohomology and the

H?*(Uy, A),

purity for discrete valuation rings, ang; is induced by,. Let

fu : Cotor(HY (U, A)) — @ Cotor (A(—1)%)

be the map induced hy;;. By a diagram chase, we obtain an exact sequence

Ker(fy) — Coker(yy) — Coker(ay) — Coker(fy) — 0.
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Taking the inductive limit with respect to all non-empty open subgets U,, we obtain an
exact sequence

Ker(dy,,cotor) — Coker(dy, piv) — h_rr>1 Coker(ay) — Coker(dy, cotor) — 0,

UcCUyp

where we have used Lemma 2.4.1 to obtain the equakiie&, cotor) = h_n>1 veu, Ker(fu)
and Coker(dy, piv) = lim ey, Coker(yr). Sincelim ey, Coker(ay) is a subgroup of
H?(Uy, A), it is cofinitely generated. Hence the assertions in Lemma 2.5.1 are reduced to
showing thater(dy, cotor) IS finite. We prove this finiteness assertion. The lower row of the

above diagram yields exact sequences

(2.5.2) Cotor(H*(Uy, A)) — Cotor(H* (U, A)) — Cotor(Im(ay)) — 0,
(2.5.3) T,(Im(By)) — Cotor(Im(ay)) @ Cotor )GFU)
veUo\U

where the second exact sequence arises from the short exact sequence

0 — Im(ay) — P A(-1) — Im(By) — 0
veUo\U

(cf. Lemma 2.3.1(1)). Taking the inductive limit of (2.5.2) with respect to all non-empty
openU C Uy, we obtain the finiteness of the kernel of the map
Cotor(H'(k, A)) — lim Cotor(Im(ar)).
UcUy
Taking the inductive limit of (2.5.3) with respect to all non-empty operr U,, we see that
the kernel of the map
lim Cotor(Im(ay)) — @ Cotor (A(—1)“™),
UcCUo ve(Up)!
is finite, because we have
limy 7,,(Im(6)) C T,(H2(Up, A))
UcUy
and the group on the right hand side is a finitely generdjethodule. Thuser(dy, cotor) IS

finite and we obtain Lemma 2.5.1. O
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2.6. Local-global principle. Let the notation be as if2.1. If k£ is local, then the Galois
cohomological dimensiond(k) is 2 (cf. [Se], 1.4.3). In the case thdtis global, we have
cd(k) = 2 either ifp > 3 or if k is totally imaginary. Otherwise{9(k, A) is finite 2-torsion

for ¢ > 3 (cf. loc. cit., 11.4.4, Proposition 13, 11.6.3, Theorem B). As for the second Galois
cohomology groups, the following local-global principle due to Jannsen {d2]Theorem

4) plays a fundamental role in this paper (see also loc.&@it.Corollary 7):

Theorem 2.6.1(Jannsen. Assume that is global and that # 2(n — 1). Let P be the set
of all places ofk. Then the map

H2(k, H'(X,Q,/Zy(n))) — D H*(ko, H'(X,Qp/Zy(n)))

veP

has finite kernel and cokernel, and the map

H?(k, H'(X, Qp/Zy(n))piv) — @ H?(ky, H'(X, Qp/Zy(n))Div)

veEP
is bijective.
We apply these facts to the filtratidif on #*(X, Q,/Z,(n)) resulting from the Hochschild-

Serre spectral sequence

(2.6.2) Ey’ = H"(k, H(X,Q,/Z,(n))) = H"""(X,Q,/Z,(n)).

Corollary 2.6.3. Assume that is global and that # 2n. Then
(1) F?H(X,Q,/Z,(n))pi is cofinitely generated an@otor(F*H* (X, Q,/Z,(n))) has
a finite exponent.
(2) Forv € P, putX, := X ®; k,. Then the natural maps
FPHY(X, Qp/Zp(n)) — @ FPH'(X,,Qp/Zy(n)),

veEP

F2Hi(X, @p/zp<n))Div - @ F2Hi<va@p/Zp(n))Div

veP

have finite kernel and cokern@nd the second map is surjectjve

Proof. Let o, be the integer ring o, and putS := Spec(o). Note that the set of all finite

places oft agrees withs*.
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(1) The groupH?(k,, H=%(X,Q,/Z,(n))ps) is divisible and cofinitely generated for any
v € St anditis zero ifp Jv and X has good reduction at by the local Poitou-Tate duality
[Se], 11.5.2, Treoeme 2 and Deligne’s proof of the Weil conjecture [De2] (see [Sat2], Lemma
2.4 for details). The assertion follows from this fact and Theorem 2.6.1.

(2) We prove the assertion only for the first map. The assertion for the second map is

similar and left to the reader. For simplicity, we assume that
(#) p > 3 or k is totally imaginary.

Otherwise one can check the assertion by repeating the same arguments as below in the
category of abelian groups modulo finite abelian groups.(Bywe havecd, (k) = 2 and

there is a commutative diagram

H(k, H(X, Qp/Zy(n))) — D vesr H?(ko, H*(X, Qp/Zy(n)))

i i

F2Hi<X7Qp/Zp(n)> D ves FQHi(Xanp/Zp(n)>7

where the vertical arrows are edge homomorphisms of Hochschild-Serre spectral sequences

and these arrows are surjective. Since
H*(k,,H*(X,Q,/Z,(n))) =0 for archimedean places

by (%), the top horizontal arrow has finite kernel and cokernel by Theorem 2.6.1. Hence

it is enough to show that the right vertical arrow has finite kernel. ForwagyS*, the v-
component of this map has finite kernel by Deligne’s criterion [Del] (see also [Sat2], Remark
1.2). If v is prime top and X has good reduction at, then thev-component is injective.
Indeed, there is an exact sequence resulting from a Hochschild-Serre spectral sequence and

the fact thatd(k,) = 2:

Hi_l(Xm @p/Zp<n)) R Hi_l(yy QP/ZP(n)))Gk”

s HP(ky, H (X, Q) Z,(n))) — FPH(X,,Qy/Z,(n)).
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The edge homomorphisthis surjective by the commutative square

H7H (Y, Qp/Zy(n)) — H Yy, Qp/Zy(1))) 5
| |
H' (X, Qu/Zy(n) = HH (X, Qy/Zy(n))) .
HereY, denotes the reduction of atv andY, denotesY, ®y, F,. The left (resp. right)
vertical arrow arises from the proper base change theorem (resp. proper smooth base change
theorem), and the top horizontal arrow is surjective by the factdt@t,) = 1. Thus we

obtain the assertion. O
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3. FINITENESS OF TORSION IN ACHOW GROUP

3.1. Finiteness of CH?(X ) ,tors- LELE, S, p andX be as in the beginning ¢, and letX
be a proper smooth geometrically integral variety duesc(k). We introduce the following

technical condition:
HO: The groupH3 (X, Q,(2))% is trivial.

If k& is global,HO always holds by Deligne’s proof of the Weil conjecture [De2]. Wiieis

local, HO holds if dim(X) = 2 or if X has good reduction (cf. [CTR2§6); it is in general

a consequence of the monodromy-weight conjecture. The purpose of this section is to show
the following result, which is a generalization of a result of Langer [La4], Proposition 3 and

implies the finiteness assertion fjlﬂﬂz()()p_m]rS in Theorem 1.2 (1):

Theorem 3.1.1.AssuméH0, H1* and eitherp > 5 or the equality
(*g) H;(k‘, HQ(Yv Qp/Zp(2)))Div = Hl(ka HQ(yv Qp/Zp(2)))Div-

ThenCH? (X)), IS finite.

Remark 3.1.2. (1) (x,) holds if H?(X, Ox) = 0 or if k is ¢-adic local with? # p.
(2) Crucial facts to this theorem are Lemmag.2, 3.3.5 and 3.5.2 below. The short
exact sequence in Lemra2.2 is an important consequence of the Merkur’ev-Suslin

theorem[MS].

3.2. Regulator map. We recall here the definition of the regulator maps
(321) regy - CH2<X7 1) A — Hilnd(k7 H2(77 A(Z)))

with A = Q, or Q,/Z,, assumingH0. The general framework cgtale Chern class maps and
regulator maps is due to S@{So1], [So2]. We include here a more elementary construction
of reg 4, which will be useful in this paper. L&t := k(X)) be the function field ofX. Take

an open subsdf, C S\ X = S[p~!] and a smooth proper schen#;, over U, satisfying
Zue Xu, Spec(k) ~ X. For an open subsét C Uy, put 2y := 2y, xu, U and define

N'HY(Zy, p5?) = Ker (H( 2y, p5?) — H (K, 15?)).
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Lemma 3.2.2. For an open subséf C Uy, there is an exact sequence
0 — CH*(2y,1)/p" — N'H*(Zy, p13?) — »CH*(Zy) — 0

Sees1.7 for the definition ofCH?( 2y, 1).

Proof. The following argument is due to Bloch [BI], Lecture 5. We recall it for the conve-
nience of the reader. There is a localization spectral sequence
(3.2.3) B = @ H( Pt = (20,157,

p
ze(Zy )¢
By the relative smooth purity, there is an isomorphism
EiL,v ~ @ ]_]U—u(gj7 ME)%Q_U)’
ze(Zy)"
which implies thatN'H3( 2y, u5?) is isomorphic to the cohomology of the Bloch-Ogus

p

complex

HY (K, 15) — @ H'.m) — P z/z.
ye(2u)! z€(Zu)?
By the Merkur’ev-Suslin theorem [MS], this complex is isomorphic to the Gersten complex

K'"E)/p— @ k) — @ z/pz
ye(2y)! z€(2u)?
On the other hand, there is an exact sequence obtained by a diagram chase

0 — CH*(Z2y,1) ® Z/p"Z — CH*( 2y, 1, Z/p"Z) — ,»CH*(Zy) — 0.
Here CH?*(.2y, 1; Z/p"Z) denotes the cohomology of the above Gersten complex and it is
isomorphic toN'H?3( 2y, 1i57). Thus we obtain the lemma. O
Put
M* = Hq(ya A(Q)) with A S {va QP/ZP}

For an open subsét C U, let H*(U, M) be theétale cohomology with coefficients in the

smooth sheaf associated witlh?. There is a Leray spectral sequence
By = H'(U,M") = H""(2y, A(2)).
By Lemma 3.2.2, there is a natural map

CH2( 2y, 1) ® A — H¥( 2y, A(2)).
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Noting thatE}” is zero or finite byHO, we define the map
reg,, 4 CH*(2y,1) ® A — H'(U, M?)

as the composite of the above map with an edge homomorphism of the Leray spectral se-
quence. Finally we defineeg, in (3.2.1) by passing to the limit over all non-empty open

U C U,. Our construction ofeg , does not depend on the choicelgfor 2y, .

Remark 3.2.4. By Lemma2.4.1, H1 always impliesH1*. If k£ is local, H1* conversely
impliesH1. As for the case that is global, one can check th&tl* impliesH1, assuming
that the groupKer(CH?*(27,) — CH?(X)) is finitely generated up to torsion and that the

Tate conjecture for divisors holds for almost all closed fiberg2gf /Us.

3.3. Proof of Theorem 3.1.1. We start the proof of Theorem 3.1.1, which will be completed

in §3.5 below. By Lemma 3.2.2, there is an exact sequence
(3.3.1) 0— CH(X,1)® Q,/Z, % N'H*(X,Q,/Z,(2)) —> CH2(X)ptors — 0,
where we put

N'H(X,Q,/Z,(2)) = Ker(H* (X, Q,/Z,(2)) — H*(K,Q,/Z,(2))).

In view of (3.3.1), Theorem 3.1.1 is reduced to the following two propositions:

Proposition 3.3.2. (1) If k is local, thenCH?(X),.,s is cofinitely generated ové,,.
(2) Assume that is global, and thaCoker (regq, /7 )piv i cofinitely generated ovef,,.
ThenCH?(X),.r is cofinitely generated ové,,.

Proposition 3.3.3. AssuméH0, H1* and eitherp > 5 or (x,). Then we have
Im(¢) = N'H*(X, Qp/Zp(2))piv-
We will prove Proposition 3.3.2 i§3.4 below, and Proposition 3.3.3§3.5 below.

Remark 3.3.4. (1) If k is local, thenH?*(X, Q,/Z,(2)) is cofinitely generated. Hence

Proposition3.3.2 (1) immediately follows from the exact seque(®8.1)
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(2) Whenk is global, thenH™ (k, A)pi,/H, (k, A)piy With A := H?*(X,Q,/Z,(2)) is
cofinitely generated by Lemn2a.1. HenceH1* implies the second assumption of

Proposition3.3.2 (2).

Let F** be the filtration on7*(X,Q,/Z,(2)) resulting from the Hochschild-Serre spectral
sequence (2.6.2). The following fact due to Salberger ([Sal], Main Lemma 3.9) will play key
roles in our proof of the above two propositions:

Lemma 3.3.5(Salberger. The following group has a finite exponent

N'HY(X,Q,/Z,(2)) 0 F*HY(X,Q,/Z,(2)).

3.4. Proof of Proposition 3.3.2. For (1), see Remark 3.3.4 (1). We prove (2). Put
H? = H*(X,Q,/Z,(2)) and I :=¢(CH*(X,1)®Q,/Z,) C H®

(cf. (3.3.1)). LetF™ be the filtration on/? resulting from the spectral sequence sequence
(2.6.2), and pulV'H?® .= N'H*(X,Q,/Z,(2)). We havel" C (F'H?)pi, = (H*)piy by HO,
and there is a filtration of/*

0C I+ (F?°H?)py, C (F'H?)py, C H®.

By (3.3.1), the inclusionV!H?® C H? induces an inclusio®H?(X), io;s C H?/I". We show
that the image of this inclusion is cofinitely generated, using the above filtratidiorit

suffices to show the following lemma:

Lemma 3.4.1. (1) The kernel ofH?(X),cors — H?/(I" + (F2H?)py,) is finite.
(2) The image oCH? (X)), ors — H3/(F*H?)p;, is finite.
(3) PutM := (F'H?®)py, /(I'+ (F?*H?)py, ). Then the assumption of Propositisns.2 (2)

implies thatM is cofinitely generated.

Proof. (1) There is an exact sequence
0 — (N'H?* N (F2H*)pi,) /(I N (F2H?)piy) — CH*(X)piors — H? /(I + (F*H?)py, ).

Hence (1) follows from Lemma 3.3.5 and Corollary 2.6.3 (1).
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(2) LetU, and Zy, — U, be as in§3.2. For non-empty opeli C U, there is a commu-

tative diagram up to a sign

N'H*( 2y, Qp/Z,y(2)) —= CH(2y) ® Z,
i@
H( 2y, Qp/Zy(2)) —= HY (2, Z,(2))
by the same argument as for [CTS&I, Proposition 1. Here the top arrow is the composite of
NH3(21,Q,/Z,(2)) — CH*(Z0)ptors (cf. Lemma 3.2.2) with the natural inclusion. The
bottom arrow is a Bockstein map and the right vertical arrow is the cycle class mép .of
Taking the inductive limit with respect to all non-empty C U,, we obtain a commutative
diagram (up to a sign)
N3 —— CH*(X) ® Z,
igmd
H? — H; (X, Z,(2)),
where H} ,(X,Z,(2)) is defined as the inductive limit off*(.27,,Z,(2)) with respect to

U C Uy. Now this diagram yields a commutative diagram (up to a sign)

CH?(X) petors CH*(X) ® Z,

l i Qcont

H? [(F'H?)piv = Heoni (X, Z,(2)),

cont

where H*

cont

(X,Z,(2)) denotes the continuowtale cohomology [J1] and the bottom arrow
is injective byHO and loc. cit., Theorem (5.14). The image®f, is finitely generated over
Z, by [Sa], Theorem (4-4). This proves (2).
(3) We put
N = (F'H*)pi, /{" + (F*H* N (F'H?)py,)} = Coker(reng/Zp)Div,
which is cofinitely generated by assumption. There is an exact sequence
(F?H? N (F'H?)py) ) (F?H?)pyy — M — N — 0,

where the first group has a finite exponent by Corollary 2.6.3Y1i¥ divisible and cofinitely
generated, and/ is divisible. HencelM is cofinitely generated by Lemma 2.3.1(2). This

completes the proof of Lemma 3.4.1 and Proposition 3.3.2. O
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3.5. Proof of Proposition 3.3.3. We put
NF'HP(X, Qp/Zy(2)) = N'H?(X, Qu/Zp(2)) N F'H?(X, Qp/Zy(2))-

Note that N'H?(X,Q,/Z,(2))piw = NF'H*(X,Q,/Z,(2))pwy by HO. There is an edge

homomorphism of the spectral sequence (2.6.2)
(3.5.1) ¢ FUH3(X,Q,/Z,(2)) — H'(k, H*(X,Q,/Z,(2))).

The composite of in (3.3.1) andy agrees withregg , . Thus by Lemma 3.3.5, we are
reduced to the following lemma, which generalizes [LS], Lemma (5.7) and extends [Lal],
Lemma (3.3):

Lemma 3.5.2. Assume eithep > 5 or (x,). Them)(NF'H?*(X,Q,/Z,(2))piy) is contained
in H}(k, H*(X,Q,/Zy(2))).

We start the proof of this lemma. The assertion is obvious under the assumypbioH¢nce
we are done it is /-adic local with? # p (cf. Remark 3.1.2 (1)). It remains to deal with the

following two cases:

(1) & is p-adic local withp > 5.
(2) k is global andy > 5.

Put A := H*(X,Q,/Z,(2)) for simplicity. We first reduce the case (2) to the case (1).

Suppose that is global. Then there is a commutative diagram

NF'H?(X,Q,/Zy(2) o H(k, A)

| |

H veSt NF1H3(XU7 QP/Z;D(2))D1V - HveSl Hl(kva A)7

where the vertical arrows are natural restriction maps. By this diagram and the definition of
Hgl(k, A), the case (2) is reduced to the case (1). We prove the case (1). We first reduce
the problem to the case whele has semistable reduction. By the alteration theorem of de
Jong [dJ], there exists a proper flat generically finite morphiém— X such thatX’ is

projective smooth ovelr and has a proper flat reqular model over the integral closwgo,,
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in I'(X'’, Ox.) with semistable reduction. There is a commutative diagram

NF'H*(X, Qy/Zy(2))piv —= H'(k, A) —= H'(k, A)/Hy(k, A)
| | |

NF'H3(X',Q,/Z,(2))piy — HY(L,A') — H' (L, A")/H (L, A"),
where we putl := Frac(o’) andA’ := H*(X' ®, k,Q,/Z,(2)), and the vertical arrows are
natural restriction maps. Our task is to show that the composite of the upper row is zero.
BecauseX’ and X are proper smooth varieties ovierthe restriction map : A — A’ has
a quasi-section : A’ — A with sor = d - id4, whered denotes the extension degree of
the function field ofX’ @ k over that ofX. Hence by the functoriality off;(k, A) in A,
the right vertical arrow in the above diagram has finite kernel, and the problem is reduced to
showing that the composite of the lower row is zero. Thus we are reduced to the case where
X has a proper flat regular modél” over S = Spec(o;) with semistable reduction. We
prove this case. Let: X — 2" be the natural open immersion. There is a natural injective
map

a, : H( 2, 1<a Rjupy’) = HY (X, 1)

induced by the natural morphisv’rz_(gllzj*/,tz‘?i2 — Rj,u2%. By Theorem 2.2.1, it suffices to

P

show the following two lemmas (see also Remark 3.5.6 below):
Lemma 3.5.3. N'H?(X, u5?) C Im(cy,) for anyr > 1.

Lemma 3.5.4.Put
Hg('%> TSQRj*@p/Zp(z)) = hi>n HB(%a T§2Rj*/i§“2)a and
r>1
HY (2,72 Rj. Q[ Z,(2))° := Ker(Hg(%, T2 Rj.Q,/Z,(2)) — H*(X, @p/Zp(z)))-
Then the canonical map

H* (X, 7<2Rj.Q)(2))" — H*(Z,7<2Rj.Q,/Z,(2))°

has finite cokernel, wher?( 2", 7«2 Rj.Q,(2))" is as we defined if2.2.

Proof of Lemma3.5.3. We use the following fact due to Hagihara ([SH], A.2.4, A.2.6),

whose latter vanishing will be used later§é:
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Lemma 3.5.5(Hagihara). Letn,r andc be integers witln. > 0 andr, ¢ > 1. Then for any

g < n + cand any closed subscherfeC Y with codim 4 (Z) > ¢, we have

Hy(Z, TSnRj*/L?Tn) =0= H%—H(‘%’ Tzn-I-le*ﬂ;%n)'

To show Lemma 3.5.3, we compute the local-global spectral sequence

EY = @ HI(Z m2Rjupy?) = H (2, <2 Rjupiy?).
reZ @
By the first part of Lemma 3.5.5 and the smooth purity for pointsxqiwe have

B H"(K, p?) (if u=10)
! B exe H " (x, pi?™") (if v < 2).

Repeating the same computation as in the proof of Lemma 3.2.2, we obtain
N'HY(X, (i5?) ~ By* = BX? — HYZ, reaRjpil?),

which implies Lemma 3.5.3. O

Remark 3.5.6. Lemma3.5.3 extends a result of Langer-Saiffh. S|, Lemma5.4)) to regular
semistable families and removes the assumptifdh], Lemma(3.1) concerning Gersten’s
conjecture for algebraid<-groups. Therefore the same assumption in loc. cit., Thedem

has been removed as well.

Proof of Lemma 3.5.4By the Bloch-Kato-Hyodo theorem on the structureaidic vanish-
ing cycles ([BK1], [Hy]), there is a distinguished triangle of the following formZif(2%)
(cf. [SH], (4.3.3)):
TeaRjupiy” — T<aRjuiy e — T<aRjupiy? — (<o Rjupip?)[1]

Takingétale cohomology groups, we obtain a long exact sequence
(35.7) o — HYZ, T§2Rj*u§i2) — HI(Z, T§2Rj*/1§)r%-s> — HI(Z, T§2RJ*M§)92)

T HY 2 raRj) — -
We claim thatH (2", 7<2 Rj. ) is finite for anyq andr. Indeed, the claim is reduced to

the case = 1 by the exactness of (3.5.7) and this case follows from the Bloch-Kato-Hyodo

theorem mentioned above and the propernesg aiverS. Hence taking the projective limit
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of (3.5.7) with respect te and then taking the inductive limit with respectd4ave obtain a

long exact sequence
= HUZ 1<2Rj1y(2)) — HUZ 72 RjQp(2)) — HUZ 7<2RjQp/Z,(2))

— HN X T2 RjZy(2) — -+,
where H1(Z', 7<oRj.Z,(2)) is finitely generated oveZ, for any ¢. The assertion in the

lemma easily follows from this exact sequence and a similar long exact sequeataeof

cohomology groups ok . The details are straight-forward and left to the reader. O

This completes the proof of Lemma 3.5.2, Proposition 3.3.3 and Theorem 3.1.1.
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4. CYCLE CLASS MAP AND UNRAMIFIED COHOMOLOGY

Let %k, S, p, 2 and K be as in the notation 1.8. In this section we give a brief review of
p-adic étale Tate twists and provide some preliminary results on cycle class maps. The main

result of this section is Corollary 4.2.7 below.

4.1. p-adic étale Tate twist. Let n andr be positive integers. We recall here the funda-
mental properties (S1)—(S7) listed below of the objgdtn) = <, (n)y € D*( 2, Z/p"Z)
introduced by the second author [SH]. The properties (S1), (S2), (S3) and (S4) characterizes
Z,(n) uniquely up to a unique isomorphism Ipf (2%, Z/p"Z).

(S1) There is an isomorphism: T, (n)|y ~ us" onV := 2 [p~'].

(S2) %,.(n) is concentrated if0, n].

(S3)Let Z7 C 2 be a locally closed regular subscheme of pure codimensiarth
ch(Z) = p. Leti : Z — 2 be the natural immersion. Then there is a canoni-
cal Gysin isomorphism

Gys} : W Q5 [—n —c] = TenyRI'T,(n) In DY(Zs, Z)p"70),
wherell;. Q7 | . denotes thétale subsheaf of the logarithmic part of the Hodge-Witt
sheafly; Q% ([BI1], [I1] ).

(S4) Forz € 2" andq € Zso, we definéZ/p"Z(q) € Db(xs, Z/p"Z) as

i if ch(x
2y L) =" (if ch( )Zép)
mQa},log[_Q] (If Ch(x) - p)
Then fory,z € 2 with ¢ := codim(z) = codim(y) + 1, there is a commutative

diagram

_ 8val

H" Ny, Z2/p"Z(n — ¢ + 1)) — H"“(2, Z/p"Z(n — ¢))
Gys?yl leSZE

H+ Y (2, %, (n) —2= HM (2, %,(n).

Here forz € 27, Gys; is induced by the Gysin map {$3) (resp. the absolute
purity [RZ], [Th], [FG]) if ch(z) = p (resp.ch(z) # p). The arrows™ denotes the
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boundary map in localization theory aritf*! denotes the boundary map of Galois
cohomology groups due to KafldCT], §1.

(S5) LetY be the union of the fibers 6™ /S of characteristicp. We define thétale sheaf
vy, onY as
V{};l = Ker ((9“1 : @ yevo Ly W QZIOIg — @xeyl Ty W, QZ;@),
where fory € Y, i, denotes the canonical map— Y. Leti and;j be as follows
V=2pl Lo & — vV
Then there is a distinguished triangle v (2%, Z/p"Z)

i*y}’ﬁ;l[—n— 1] —7 T (n) LA TgnRj*u?r" — Z'*Vg;l[—”L

wheret’ is induced by the isomorphishin (S1)and the acyclicity propert{S2). The

arrow g arises from the Gysin morphisms(f83), o is induced by the boundary maps

of Galois cohomology grougsf. (S4)).

(S6) There is a canonical distinguished triangle of the following forndit{ 2% ):

Os,r p*

Trps(n) —— T(n) T (m)[1] —— Trps(n)[1].

(S7) H(Z,%.(n)) is finite for anyr andi (by the properness of").

Remark 4.1.1. These properties of,(n) deeply rely on the computation on te&ale sheaf

of p-adic vanishing cycles due to Bloch-Kg®K1] and HyoddHy].

Lemma 4.1.2.Put

HY(2, %2, (n) = lim HY(2,%,(n),  HY(Z,Tw(n)) == lim H(Z, T, (n)),

r>1 r>1

Hq<%', IQ])(”)) = Hq(%, TZP (n)) ®Zp Qp'
Then there is a long exact sequenc&gfmodules
- — HY(Z,%,(n)) — HYZ, T, (n)) — HU(Z,Teo(n))
— HTY( Tz, (n)) — -
HY(Z, %z, (n)) is finitely generated ovek,,, (2", T (n)) is cofinitely generated ovéx,,,

and H1( %', Tg,(n)) is finite-dimensional oveQ,,.
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Proof. The assertions immediately follow from (S6) and (S7). The details are straight-

forward and left to the reader. OJ

4.2. Cycle class map.Let us review the definition of the cycle map
o) : CHY(Z")/p" — H*(Z, %, (n)).
Consider the local-global spectral sequence

(4.2.1) B = @@ H(2,T,(n) = H(Z,%,(n)).
TEZ ™

By (S3) and the absolute cohomological purity [FG] (cf. [RZ], [Th]), we have

(4.2.2) E}Y ~ @ H" “(x,Z/p"Z(n —u))  forv <n.

reEZ U

This implies that there is an edge homomorph&ii' — H*"(2,%,(n)) with
E™ &~ Coker (aval P yern H'(y. 2/ 2(1)) — P resn B, Z/p’”Z))
= CH"(2)/p’,
whered"! is as in (S4). We defing” as the composite map
op : CH'(2) /p" ~ Ey" — H*(Z,%,(n)).
In what follows, we restrict our attention to the case- 2.
Lemma 4.2.3.LetY be the fiber ofZ~ — S over a closed point of, and let K" be the
function field of2". Put
N'H(Z,%,(2)) :== Ker(H'(2,%,(2)) — H' (K, u5?)),
N2, %,(2)) o= Ker (H(2,5,(2) = D) yevo Hi(2,T,(2))).
(1) N'H3(2,%.(2)) is isomorphic to the cohomology of the Gersten complex magdulo

KNE) pr— @ ww) o — P Z/r'Z,

yeZ'! €22
and there is an exact sequence

0 — CH*(Z2,1)/p" — N'H*(2,%,(2)) — »CH*(Z) — 0

Sees1.4 for the definition oCH?(.2, 1).
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(2) There are isomorphisms

HY2,5,(2) = Ker (0 : @) yerioy 50)* /" — @D vy Z/0'Z).
N2H(2,%,(2)) ~ Coker (aval D oy 5) /07— P ey Z/pTZ>

= CHy—o(Y)/p",

whered denotes the Krull dimension of .

Proof. (1) follows from the same argument as for Lemma 3.2.2. One can prove (2) in the

same way as for (1), using the spectral sequence

EfY= @ HP(2.T.(n) = HY(2,%(n))

zeZvNY
and the purity isomorphism
E}"’ ~ @ H" (2, Z/p"Z(n —u)) forv<n
zeZvNY

instead of (4.2.1) and (4.2.2). The details are straight-forward and left to the reader[]

Corollary 4.2.4. ,-CH?*(2") is finite for anyr > 1, andCH?(2"),rs is cofinitely generated.

Proof. The finiteness of. CH?*(:2") follows from the exact sequence in Lemma 4.2.3 (1) and
(S7)in§4.1. The second assertion follows from Lemma 4.1.2 and the fact€ Hi&t2),,-ors
is a subquotient of73( 2, Too(2)). O

The following lemma will be used in the proof of Theorem 1.5.

Lemma 4.2.5. Assume that the natural inclusion

io: N'H3( 2, %(2)) & H3(2, %0 (2))
has finite cokernel. Then there exists a positive integsuch that the kernel of the map
 CHA(2 ) piors — HN(2,5,(2))

2
Qp-tors,r

agrees With CH?(.2") p-ors ) piv fOr @anyr > ry.
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Proof. The following argument is essentially the same as the proof of [CTSS], Corollaire 3.
We recall it for the convenience of the reader. By the exact sequence in Lemma 4.2.3 (1), we
have
Cotor(N'H?* (2, T (2))) =~ Cotor(CH?*(Z ) p-tors)-
By (S4) in§4.1 and the same argument as [CTS8], one can show the commutativity of

the following diagram up to a sign:
NH3 (X, FT0o(2)) — CH*(Z) ptors
iO Qyzg—tors,'r'
HY (2, Too(2) =L HY (2, To(2) — HY(2,,(2),
where the lower row is an exact sequence induced by the distinguished triangle
xp" 600,r
obtained by taking the inductive limit of the distinguished triangle of (S6) with respect to

s > 0. The above diagram induces the following commutative diagram up to a sign:

Cotor(NH3(2, T(2))) — Cotor(CH*(2) p-tors)
Cotor(H3(Z, %o (2))) —Z = Cotor(H3 (2, %00 (2))) —=" = HY(Z,%,(2)),
where the lower row remains exadt.*(2", T, (2)) andCotor( H3(2, T (2))) are finite by
(S7) and Lemma 4.1.2. Henég ,. is injective for anyr with p"- Cotor( H*(.2", T (2))) = 0.

The finiteness o€oker (i) implies the injectivity ofi;. Thus we obtain Lemma 4.2.5. O

Remark 4.2.6.If k is ¢-adic local with? # p, then we hav& ., (2) = Q,/Z,(2) by definition
and

HYZ,%s0(2)) = H(Z, Qu/Z(2)) = H(Y, Q,/Z,(2))
by the proper base-change theorem, wheralenotes the closed fiber s — S. The
last group is finite by Deligne’s proof of the Weil conject{e2]. Hencegf,_tors,r for 2" is
injective for a sufficiently large > 1 by Lemmat.2.5. On the other hand, it is global or
p-adic local, thenH?( 2", T, (2)) is not in general finite. Therefore we consider the finiteness

of the groupH; (K, X; Q,/7Z,(2)) to investigate the injectivity of,

-tors,r "
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Corollary 4.2.7. If H2 (K, X;Q,/Z,(2)) is finite, then there is a positive integersuch that
Ker (0 tors,r) = (CHA(2)prtons) iy O @Ny 7 > 1,

Proof. Let i, be as in Lemma 4.2.5. Sin€®ker(i) is a subgroup of7? (K, X;Q,/Z,(2))
(cf. (4.2.9) below), the assumption implies tliatker(iy) is finite. Hence the assertion fol-

lows from Lemma 4.2.5. O

Remark 4.2.8. By the spectral sequené¢é.2.1)and the isomorphisms i@.2.2)with n = 2,
there is an exact sequence
0 — NHYZ,Tx(2)) —= HY2,Tn(2)) — HE(K, Qy/Zy(2))

2
0Qp /2y

— CH*(2)®Q,/Z, —2 HYZ,%To0(2)) — -+
Because the groupH* (2, % (2)) are cofinitely generatedcf. Lemmad.1.2), this exact

(4.2.9)

sequence implies that? (K, Q,/Z,(2)) is cofinitely generated if and only @H*(2") ®

Q,/Z, is cofinitely generated.
We mention here some remarks on unramified cohomology groups.

Remark 4.2.10. (1) Forn = 0, we have

Hu1r<K7 @p/zp(o)) = Hl(%a QP/ZP)'
If & is global, thenH (K, Q,/Z,(0)) is finite by a theorem of Katz-Lafj§L] .
(2) Forn =1, we have
Hﬁr(K, Qp/Zp(1)) = Br(Z) petors-

If & is global, the finiteness df 2. (K, Q,/Z,(1)) is equivalent to the finiteness of the
Tate-Shafarevich group of the Picard variety6f(cf. [G], lll, [Tal]).

(3) Forn =d:=dim(%"), HL (K, Q,/Z,(d)) agrees with a group considered by Kato
[KCT], who conjectured that

HYYK,Q,/Z,(d)) =0 if p#2ork has no embedding int&.

His conjecture is a generalization, to higher-dimensional proper arithmetic schemes,
of the corresponding classical fact on the Brauer groups of local and global integer

rings. Thed = 2 case is proved ifKCT] and thed = 3 case is proved ifJS].
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We prove here that’2 (K, Q,/Z,(2)) is related with the torsion part of the cokernel of a
cycle class map, assuming its finiteness. This result will not be used in the rest of this paper,
but shows an arithmetic meaning &8¢ (K, Q,/Z,(2)). See also Appendix B below for a

zeta value formula for threefolds over finite fields using unramified cohomology.

Proposition 4.2.11.Assume thatf? (K, Q,/Z,(2)) is finite. Then the order of
Coker(g%p : CHY(2) ® Z, — HY (%, %2,(2))) petors

agrees with that off? (K, Q,/Z,(2)).

Proof. By Lemma 4.1.2 H*( %', %4,(2)) is finitely generated ovef,, andCoker (07 )p-tors

is finite. Consider the following commutative diagram with exact rows (cf. Lemma 4.1.2):
0—  CHYZ)ptas — CH*(2)®Z, — CH*(2)®Q, — CH*(Z)®Q,/Z, — 0

al Q%pl QépJ/ Qép/zpl
0 — Cotor(H*(2,%(2))) = HY(Z,%2,(2)) —» H{(Z,%q,(2)) = H*(Z,%x(2)),
wherea denotes the map obtained from the short exact sequence in Lemma 4.2.3 (1). See the

proof of Lemma 4.2.5 for the commutativity of the left square. By the finiteness assumption

onH3 (K,Q,/Z,(2)), we see that
Coker(a) ~ gt H* (2, %o (2)) i= H* (X, To(2))/N'H* (2, T (2))

(cf. Lemma 4.2.3 (1)) and that the natural nié&g (o3 ) — Ker(gép/zp) is zero (cf. (4.2.9)).

Hence by a diagram chase on the above diagram, we obtain a short exact sequence
0 — grvH} (2, %T(2)) — Coker(g%p)p_tors — Ker(Q?Qp/Zp) — 0.

Comparing this sequence with (4.2.9), we obtain the assertion. O
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5. FINITENESS OF AN UNRAMIFIED COHOMOLOGY GROUP

5.1. Finiteness ofH? (K, X; Q,/Z,(2)). Letk,S,p, 2 andK be as in the notation 1.8.
In this and the next section, we prove the following result, which implies the finiteness asser-
tiononH3 (K, X;Q,/Z,(2)) in Theorem 1.2 (1). Se8.1 for the conditiorHO.

Theorem 5.1.1.AssuméH0, H1* and eitherp > 5 or the equality
(*9) Hy (k, H*(X,Qp/Z(2)))iv = H' (k, H*(X, Qy/Zy(2)) i

ThenH? (K, X;Q,/Z,(2)) is finite.

In this section we reduce Theorem 5.1.1 to Key Lemma 5.4.1 stat¢gl4rbelow. We will

prove the key lemma if6. We first prove Theorem 1.5 admitting Theorem 5.1.1.

Proof of Theorem 1.5.The assumptiod/?(X, 0'y) = 0 impliesH1* and(x,) (cf. Fact 1.1,
Remark 3.2.4, Remark 3.1.2(1)). Hent& (K, X;Q,/Z,(2)) is finite by Theorem 5.1.1.
By Corollary 4.2.7, there is a positive integgrsuch that

Ker(02 orss) = (CH*(2 ) ptors)piv ~ foOr anyr > rq.

Thus it remains to check thz&i)tHz(ﬂlf)p_tors is finite, which follows from the finiteness of

CH2(X)p_torS (cf. Theorem 3.1.1) and [CTR2], Lemma 3.3. This completes the proofl]

5.2. Proof of Theorem 5.1.1, Step 1. We reduce Theorem 5.1.1 to Proposition 5.2.2 below.
Let N'H3(X,Q,/Z,(2)) (resp.gr H*(X,Q,/Z,(2))) be the kernel (resp. the image) of the
natural map

HY (X, Qp/Z(2)) — H*(K,Q,/Zy(2)).

In view of Lemma 4.2.3, there is a commutative diagram with exact rows
N'H3(X, Qp/Zy(2)) — H3(X, Q,/Z,(2)) — gr(])\,HB’(X, Qp/Zp(2))

(5.2.1) ‘hl ‘SQl El

D N°Hy (2,%(2)) = @ Hy,(2,%x(2) = @ D Hy(Z Tx(2)),

vest vest veSt yey?
where the arrows, andd arise from boundary maps in localization theory ands induced

by the right square. Note that we have

Ker(d) = H. (K, X; Qy/Z,(2)).
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Proposition 5.2.2. AssuméH0, H1* and eitherp > 5 or (x,). ThenKer(?)p;, = 0.

The proof of this proposition will be started §%.3 below and finished in the next section.

We first finish the proof of Theorem 5.1.1, admitting Proposition 5.2.2. It suffices to show:

Lemma 5.2.3. AssumeH1* if k is global. TherKer(0) is cofinitely generated.

Proof. The case that is local is obvious, becaudé®( X, Q,/Z,(2)) is cofinitely generated.
Assume that: is global. We use the notation fixed in 1.9. By Lemma 4. H2( 2", T, (2))
is cofinitely generated. Hence it suffices to shGwker(d; ) is cofinitely generated, wherg

isasin (5.2.1). There is a commutative diagram

CH*(X,1) ® Q,/Z, - D vest CHa2(Y,) ® Q,/Z,

| lz

N'HY (X, Q,/Z,(2)) —"= @ vest N*H} (2,5 (2),
where the right vertical isomorphism follows from Lemma 4.2.3(2) arid the boundary
map of the localization sequence of higher Chow groups. See (3.3.1) for the left vertical
arrow. SinceN?Hy. (2, %(2)) is cofinitely generated for any € S*, it suffices to show
that for a sufficiently small non-empty open subSet S, the cokernel of the boundary map

o : CH(X, 1) ® Qy/Z, — @ CHya(Y,) ® Qy/Z,

ve(U)

is cofinitely generated. Note th@tl,_,(Y,) = CH'(Y,) if Y, is smooth. Now let/ be a non-
empty open subset 6f\ X for which 2" xsU — U is smooth. Putl := H*(X,Q,/Z,(2)),

viewed as a smooth sheaf 6. There is a commutative diagram up to a sign

CH*(X,1) ® Qp/Zy s @D vevr CH'(Y,) ® Qp/Zy

€80, /7, l i U

H'(k, A) Y P e A(—1)%

See§2.5 for . The right vertical arrow; is defined as the composite map

CHI(Yv) ® Qp/Zy — HQ(YW Qp/Zp(1)) — H2(?vv Qp/Zp<1))GF” = A(_l)GF"a
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where the first injective map is the cycle class map for divisor¥,orNote thatCoker(0y)

is divisible and thaier(7;/) has a finite exponent by the isomorphism
Ker(e) = H'(Fy, H' (Ys, Qy/Z,(1))) = H' (F,, Cotor(H' (X, Q,/Zy(1))))

forv € U', where the first isomorphism follows from the Hochschild-Serre spectral sequence

for Y,. Hence to prove thatoker(dy) is cofinitely generated, it suffices to show that the map

d =100y : CH*(X,1)® Qp/ 2y — @ (A(_l)GFU)DiV
veUl
has cofinitely generated cokernel (cf. Lemma 2.3.1(2)). Finally sihdeer(regg /7 )piv

is cofinitely generated by1* (cf. Lemma 2.4.1)9’ has cofinitely generated cokernel by

Lemma 2.5.1(1). Thus we obtain Lemma 5.2.3. O

5.3. Proof of Theorem 5.1.1, Step 2We construct a key commutative diagram (5.3.3) be-
low and prove Lemma 5.3.5, which play key roles in our proof of Proposition 5.2.2. We need
some preliminaries. We suppose thas global until the end of Lemma 5.3.1. LEtC S be

the set of the closed points ¢hof characteristip. For non-empty opefy C S, put
2y =X xsU and Zyp ' =2y xs(S\X).

Letju : Zulp~'] — Zu be the natural open immersion. There is a natural injective map
avy : H (2, T2 Rjvepy?) = H (Zulp™], 1y7)

induced by the canonical morphisra, Rju. i’ — Rjupuy’.

Lemma 5.3.1.We haveV'H?*( 2y [p~ ], p5?) C Im(ap,).

Proof. We compute the local-global spectral sequence

E?’v = @ Hg+v(%U,T§2RjU*M?2) — HU+U(%U7T§2RjU*M§2)'

ze(Zy)*
By the absolute cohomological purity [FG] and Lemma 3.5.5 (1), we have
g o, § LK, 1157 (if u=0)
T\ Beeiipy H M@ (if v<2).

Repeating the same computation as in the proof of Lemma 3.2.2, we obtain

NlH?)(%U[p_l]’ugg) = E21’2 = E;Q - H3(%U,T§2RjU*M§T2)7
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which completes the proof of Lemma 5.3.1. O

Now we suppose thétis either local or global, and define the gro¢pas follows:

H3(X,Q,/Z,(2)) (if k is ¢-adic local with? # p)
(5.3.2) W = H3 (X, 7<2Rj.Q, /7, (2)) (if k£ is p-adic local)
lim  H*(2u, 7<2Rju.Q,/Zy(2))  (if k is global),
Ycucs

wherej in the second case denotes the natural open immeiSien 2", and the limit in the
last case is taken over all non-empty open subi$ets S which containy’. By Lemma 3.5.3

and Lemma 5.3.1, there are inclusions
N'H*(X,Q,/Z,(2)) C W C H*(X,Q,/Zy(2))
and a commutative diagram

(5.3.3) NF'H?*(X,Q,/Z,(2))py =  (#O)piv

H''(k, H*(X, Q,/Z,(2))).
Here NF'H3(X,Q,/Z,(2)) is as we defined i§3.5, and we put

(5.3.4) WO = Ker(# — HY(X,Q,/Z,(2))).

The arrowsw and v are induced by the edge homomorphism (3.5.1). We show here the

following lemma, which is stronger than Lemma 3.5.2:
Lemma 5.3.5. Assume eithep > 5 or (x,). Thenlm(w) C H, (k, H*(X,Q,/Z,(2))).

Remark 5.3.6. We will prove the equalitym(w) = H}(k, H*(X, Q,/Z,(2)))piv under the

same assumptions, later in Lemfha.2.
The following corollary of Lemma 5.3.5 will be used later§s.4:
Corollary 5.3.7. AssuméH0, H1* and eitherp > 5 or (x,). Then we have

Im(v) = Im(w) = H (k, H(X, Qy/Z,(2)) o

Proof of Lemmea5.3.5. The assertion under the second condition is rather obvious. In

particular, we are done # is /-adic local with? # p (cf. Remark 3.1.2 (1)). Ik is p-adic
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local withp > 5, the assertion follows from Theorem 2.2.1 and Lemma 3.5.4. Before proving

the global case, we show the following sublemma:

Sublemma 5.3.8.Let & be an/-adic local field with¢ # p. Let 2" be a proper smooth
scheme ove$ := Spec(o). PutA := H(X,Q,/Z,(n)) and
Hi (X, Qp/Zp(n)) := Im (HH (2, Qp/Zy (1)) — HHH(X, Qy/Zy(n)))-
Then we have
Hi(k, A) C Im(F'H (X, Qp/Zy(n)) NVH (X, Qp/Zp(n)) — H' (K, A))

and the quotient is annihilated B¥(A/Ap;, ), whereF'* denotes the filtration induced by the
Hochschild-Serre spectral sequern(@e6.2)

Proof. PutA := Q,/Z,, and letF be the residue field df. By the proper smooth base change

theorem (), acts onA through the quotient:y. It suffices to show the following two claims:

(i) We have
Im(F'H*(X, A(n)) N HiFY(X, A(n)) — H'(k, A)) = Im(H'(F, A) — H'(k, 4)).
(i) We have
Hj(k,A) C Im(H'(F, A) — H'(k, A))
and the quotient is annihilated ¥ (A/Ap;, ).

We show these claims. Lét be the closed fiber 0of2"/S, and consider a commutative

diagram with exact rows

0 — H'(F,H'(Y, A(n))) —— H"™'(Y, A(n)) HHH (Y, A(n))) %

0 H™H (X, A(n)/ F? —— H™Y(X, A(n)))

H (k, A)

where the exactness of the upper (resp. lower) row follows from the factdliét) = 1
(resp.cd(G}) = 2). The arrowsr; ando; are induced by the isomorphisfi* (Y, A(n)) ~
H*(X, A(n)) (proper smooth base change theorem). The asrpis induced by

oy HYHY, A(n)) <= H (2, A(n)) — H™HX, A(n)).
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Sincelm(c}) = H:PH(X, A(n)) by definition, the claim (i) follows from the above diagram.

The second assertion immediately follows from the fact fiigth, A) = Im(H' (F, A)p;, —
H'(k, A)). This completes the proof of Lemma 5.3.8. O

We prove Lemma 5.3.5 in the case tltais global withp > 5. Let # and#° be as in
(5.3.2) and (5.3.4), respectively, and put

A= H*(X,Q,/Z,(2)).
Note that(#°)p;, = #bi, by HO. By a similar argument as for Lemma 2.4.1, we have

Wiy = lim H*(2u, T<aRjurQp/ Zp(2))Div-

Ycucs
Here the limit is taken over all non-empty open subgéts. S which contain}’, and j;,

denotes the natural open immersigfy;[p~'| — 2. By this equality and the definition of

Hgl(k;, A) (cf. Definition 2.1.1), it suffices to show the following sublemma:
Sublemma 5.3.9.Let U be an open subset 6f containingX’, and fix an open subsét’ of

U\ X for which 2y, — U’ is smoothand propej. Put?; := H*( 2y, 7<a Rju.Q,/Z,(2)).

Then for anyr € (#1 )by, its diagonal image

T=(Toesr € || H'(ko, A)/Hj(ky, A) x [ H'(ko, A)/H; (Ko, A)
ve(U")! veS\U’

is zero.

Proof. Since (%4 )piy is divisible, it suffices to show that is killed by a positive integer
independent ofc. By Lemma 5.3.8%, with v € (U’)! is killed by #(A/Ap;,). Next we
computer, withv € X. Let 2, andj, : X, — %, be asin 1.9, and put
Wy = HS(%J77§2ij*@p/Zp(2>>-
By HO overk, we have
Im((WU)DiV — 7%,) C Ker(% — H3(X, Qp/Zp(Q))DiV.

Hence Theorem 2.2.1 and Lemma 3.5.4 imply that= 0 for v € Y. Finally, because the

product of the other components

T H'G A)/HY 0, A)

veS\(U'UX)
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is a finite group, we see that all local componentg a$ annihilated by a positive integer

independent of. This completes the proof of the sublemma and Lemma 5.3.5. O
5.4. Proof of Theorem 5.1.1, Step 3.We reduce Proposition 5.2.2 to Key Lemma 5.4.1
below. We replace the conditions in Proposition 5.2.2 with another condition

N1: We havdm(w) = Im(v) in (5.3.3) andCoker(reng/Zp)Div is cofinitely

generated over,. Hereregg ,, denotes the regulator mgg.2.1)

Indeed, assuminglO, H1* and eitherp > 5 or (x,), we obtainN1, by Corollary 5.3.7 and
the fact that the quotiert (k, A)pi,/H, (k, A)piv, With A = H*(X, Q,/Z,(2)), is cofinitely

generated oveL, for (cf. Lemma 2.4.1). Thus Proposition 5.2.2 is reduced to the following:
Key Lemma 5.4.1. AssuméH0 andN1. Then we hav&er(?)p;, = 0.

This lemma will be proved in the next section.
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6. PROOF OF THE KEY LEMMA

6.1. Proof of Key Lemma 5.4.1. Let

2 HY(X,Q,/Z,2) — P @ HIZ Tw(2))

veSt ye(Yy)0

be the map induced hyin (5.2.1). Put
0 = H*(X,Qy/Z,(2)) [ (N'H*(X,Qp/Z(2))p1v)
and let© C O be the image oKer(d). Note that we have
6 = Ker(6 — gl (X, Q)/2(2) = D ves: @D e Hi(2 5w (2)))
and a short exact sequence
0 — Cotor(N'H*(X,Q,/Z,(2))) — 6 — Ker(d) — 0.

If k£ is global, the assumption of Proposition 3.3.2 (2) is satisfied by the condiioilence
Cotor(N'H?*(X,Q,/Z,(2))) is finite in both casek is local and global (cf. Proposition 3.3.2,

(3.3.1)). By the above short exact sequence and Lemma 2.3.1 (3), our task is to show
Opiw = 0, assuming HO and N1.

Let F* be the filtration onH?(X, Q,/Z,(2)) resulting from the Hochschild-Serre spectral
sequence (2.6.2). We define the filtratibh on © as that induced by* H3(X,Q,/Z,(2)),
and define the filtratiod™*© c O as the pull-back of*©. SinceHO implies the finiteness

of gr2.0, it suffices to show
(6.1.1) (F'©)piy =0, assumingN1.

The following lemma will play key roles:

Lemma 6.1.2. Suppose that is local. Then the following composite map has finite kernel
0y 1 H(k, H'(X,Q,/2Z,(2)) — H*(X,Q,/Z,(2)) —— €D Hy (2 Tw(2)).
yeY o0
Here the first map is obtained by the Hochschild-Serre spectral seq2:1tc2)and the fact
thatcd(k) = 2 (cf. §2.6). Consequently, the grouB*H*(X, Q,/Z,(2)) N Ker(d) is finite.
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Admitting this lemma, we will prove (6.1.1) if56.2—6.3. We will prove Lemma 6.1.2 in
66.4.

6.2. Casek is local. We prove (6.1.1) assuming thais local and that Lemma 6.1.2 holds.
Let F be the residue field of. By Lemma 6.1.2F26 is finite. We prove thatm(F'6 —
grtO) is finite, which is exactly the finiteness gf}gé and implies (6.1.1). Le¥ and#° be
asin (5.3.2) and (5.3.4), respectivelN1 implies

(6.2.1) grpO ~ F'H*(X,Q,/Z,(2)) ] (#°)piv + F?H* (X, Q,/Z,(2))).

If p # ch(TF), then the group on the right hand side is clearly finite. # ch(FF), then Lemma
6.2.2 below implies that the image 6%6 — grk.6 is a subquotient of'otor(#°), which is

finite by the proof of Lemma 3.5.4. Thus we are reduced to

Lemma 6.2.2.1f p = ch(F), thenKer(d) C #'.

Proof. Let the notation be as in the notation 1.10. Recall #at: H?(2", 7<2Rj.Q,/Z,(2))
by definition. There is a commutative diagram with distinguished rows’in2", Z /p"Z)

T(2)

|

TeaRjupiy? —— Rjupiy? —— Ri.Ri'(t<aRjupiy”)[1] — (T2 Rjupip?) 1],

Rjpyy?

Ri, Ri'T,.(2)[1]

% (2)[1]

Ri.Ri'(t)[1] l t[1] J{

wheret is as in (S5) ing4.1. The central square of this diagram gives rise to the left square

of the following commutative diagram (whose rows are not exact):

(X, Qp/Zy(2)) —  Hy(2.%(2)) — 63 Hy(2,%(2))
yey?o

(6.2.3) | | 2|

H3(X,Qp/Zp(2)) — HO(Y,i* R?j.Qp/Zy(2)) — 619/ HO(y,i* R*j.Qyp/ Z(2)).
yeYo

Here we have used the isomorphism Rj. 5" ~ Ri,Ri'<oRj.p’[1]. The composite of
the upper row i9. We haveKer(e;) = # obviously, and; is injective by the second part

of Lemma 3.5.5. Hence we ha¥@r(d) C Ker(ey 0 ¢;) = Ker(ey) = 7. O
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6.3. Casek is global. We prove (6.1.1) assuming thatis global and that Lemma 6.1.2
holds. Let# and#° be as in (5.3.2) and (5.3.4), respectivéijl implies

(6.3.1) erk® ~ FUH(X,Q,/Z,(2))/ (# ) + F2H3(X,Q,/Z,(2))).

We first prove the following lemma:

Lemma 6.3.2.Ker(2) C 7.

Proof. We use the notation in 1.9. By the same argument as for the proof of Lemma 6.2.2,

we obtain a commutative diagram analogous to (6.2.3)

H3 (X, Qp/Zy(2)) — @ Hy, (2,%(2)) — O & Hy(2,%x(2))
veST veST ye(Yy,)0

| | l

H3(X,Qp/Zy(2)) — @D HO(Y,i5R%j0uQp/Zp(2)) == @ D HOy, i3 RjuQp/Zy(2))
veX veEX ye(Yy,)0

The composite of the upper rowas The assertion follows from the facts thatr(e,) = #

and that, is injective (cf. Lemma 3.5.5). O
We prove (6.1.1). By Lemma 2.3.1 (4), it suffcies to show that
(FQé)Div =0= (gr}?é>Div-

SinceF?H?*(X,Q,/Z,(2))NKer(d) has a finite exponent (Corollary 2.6.3 (2), Lemma 6.1.2),
we have(FQé)Div =0. We show(gr}pé)mv = 0. By (6.3.1) and Lemma 6.3.2, we have

ark® C Z =W/ (# )i + Z)  with Z := #° N F?H?(X,Q,/Z,(2)).
By Corollary 2.6.3 (1)Cotor(Z) has a finite exponent, which implies
(gr};é)Div C EDiv = COtOI(WO)DiV =0

(cf. Lemma 2.3.1 (3)). Thus we obtain (6.1.1).

6.4. Proof of Lemma 6.1.2. The case that is p-adic local follows from [Satl1], Theorem
3.1, Lemma 3.2(1) (cf. [Ts3]). More precisely,” is assumed in [Satl}3 to have strict
semistable reduction, but one can remove the strictness assumption easily. The details are

left to the reader.
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We prove Lemma 6.1.2 assuming thais /-adic local with? # p. Note that in this case
2" /S may not have semistable reduction.4f /S has strict semistable reduction, then the

assertion is proved in [Satl], Theorem 2.1. We prove the general case. Put

A:=Q,/Z,
for simplicity. By the alteration theorem of de Jong [dJ], we take a proper generically finite
morphismf : 2" — X such thatZ” has strict semistable reduction over the normalization
S" = Spec(oy) of S'in 2. Note thab, is the composite of a composite map
0y H2(k, H'(X, A(2)) — H*(X,A(2)) 2% HL(2,A(2))
with a pull-back map

(6.4.1) Hy (2,A2) — €D Hy(2, A2

yey?o

Here the arrows'° is the boundary map in localization theory. There is a commutative
diagram

H(k, H(X, A(2))) —— HE(2, A(2))

f*J/ if*

H2(K, HY (X, A(2))) = B (27, A(2)),
whereX' := 2 ®,, k andY’ denotes the closed fiber &”/S’. We have already shown
that Ker(0}) is finite, and a standard norm argument shows that the left vertical arrow has

finite kernel. Thud<er () is finite as well. It remains to show

Lemma 6.4.2.1m(03) N N?Hy (2, A(2)) is finite, whereN?Hy. (2, A(2)) denotes the kernel
of the map(6.4.1)

Proof. First we note that
Im(23) C Im(Hl(F, H%(%“r,/l(z))) — H“}(%,A(Q))).
Indeed, this follows from the fact that factors as follows:

H*(k, H'(X, A(2)) ~ HY(F, H'(k", H (X, A(2))))

— H'(F, H*(X", A(2))) — H'(F, Ho(2™, A(2))) — Hy(Z, A(2)).



p-ADIC REGULATOR AND FINITENESS 49

Hence it suffices to show the finiteness of the kernel of the composite map

v HYF, HA 2™, A(2) — Hy(2,A(2) — @ Hy(2,A(2)).
yeYy?o
There is a commutative diagram with exact rows and columns

HY(F, HA(27™, A(2)))

|

CHyo(Y) ® A > HH(2, A(2)) @ yevo HA(Z, A(2)

| | |

CHy_ (V) © A = HA (2, A(2)) —— @,y HA2™, A(2)),

where the horizontal rows arise from the isomorphisms

N?Hy(2,A(2)) =~ CHyo(Y) ® A, N?Ho( 2™, A(2)) ~ CHyo(Y) ® A
with d := dim(2") (cf. Lemma 4.2.3(2)). The middle vertical exact sequence arises from
the Hochschild-Serre spectral sequenceZ6t /X. A diagram chase shows thitr(v) ~
Ker(:), and we are reduced to showing the finiteneskaf(:). Because the natural restric-
tion mapCHy_5(Y)/CHg_o(Y )iors — CHy_2(Y)/CHy_o(Y )iors is injective by the standard

norm argument, the finitenesslgér(¢) follows from the following general lemma:

Lemma 6.4.3.Lete be a positive integer and léf be a scheme which is separated of finite
type overF := F with dim(Z) < e. Then the groufCH,_(Z)/CH._,(Z)ioss IS a finitely

generated abelian group.

Proof of Lemma5.4.3. Obviously we may suppose thatis reduced. We first reduced the
problem to the case wheté is proper. Take a dense open immersion— Z’ with 7' is

proper. WritingZ” for Z' \ Z, there is an exact sequence
CHe_l(Z”) — CHe_l(Z/) — CHE_l(Z) — O,

whereCH,._,(Z") is finitely generated free abelian group becadse(Z"”) < e — 1. Let
f: Z — Z be the normalization. Sincg is birational and finite, one easily sees that the
cokernel of f, : CHe,l(Z) — CH._1(Z) is finite. Thus we may assumg is a proper
normal variety of dimension over F'. SinceF’ is algebraically closed/ has anF-rational

point. Now the theory of Picard functor (cf. [Muj5) implies the functorial isomorphisms
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CH._1(Z) ~ Picg/p(F), wherePicz,» denotes the Picard functor faf/ . This functor is

representable by a group scheme and fits into the exact sequence of group schemes
0— PICE/F S PiCz/F e NSZ/F e 0,

wherePic}, . is quasi-projective ovef’ and the reduce part ofSz,r is associated with a
finitely generated abelian group. Singes the algebraic closure of a finite field, the group

Picy, (F) is torsion. Lemma 6.4.3 follows immediately from these facts. O

This completes the proof of Lemma 6.4.2, Lemma 6.1.2 and the key lemma 5.4.1]
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7. CONVERSE RESULT

7.1. Statement of the result. Let IF be a finite field, and le¥ be a proper smooth geometri-
cally integral variety oveF. We say thathe Tate conjecture holds in codimensibfor 7, if

theétale cycle class map
CH'(Z) ® Q¢ — H*(Z @ F,Qu(1))

is surjective for a prime number # ch(F) ([Tal], [Ta2]). By [Mil], Theorem 4.1, this
condition is equivalent to that theprimary torsion part of the Grothendieck-Brauer group
Br(Z) = H*(Z,Gy,) is finite for any prime numbef includingch(TF).

Let k,S,p, 2 and K be as in the notation 1.8. In this section, we prove the following

result, which implies Theorem 1.2 (2) (s¢&1 for HO):

Theorem 7.1.1.AssuméH0 and eitherp > 5 or the equality
(*g) H;(k;, H2(77 @p/Zp(Q)))Div = H' (/{;, H2(77 @p/Zp(Z)))Div-
Assume further the following three conditions

F1: CH?*(X)p-tor iS finite.

F2: H3 (K, X;Q,/Z,(2)) is finite.

T : The reduced part of every closed fiber®f/S has simple normal cross-
ings onZ", and the Tate conjecture holds in codimensidar the irreducible

components of those fibers.
ThenH1* holds.
7.2. Proof of Theorem 7.1.1. Let
0 HY(X,Q,/2,(2) — D B Hy(2 Tx(2)).

veS ye(Yy)O

be the map induced hyin (5.2.1). Let# be as in (5.3.2). We need the following lemma:

Lemma 7.2.1. Assume that holds. Then we have

Woiw C Ker(d) + FPH*(X,Q,/Z,(2)).
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This lemma will be proved i357.3—7.4 below. We first finish the proof of Theorem 7.1.1,

admitting Lemma 7.2.1. The assumptiehimplies
CH*(X,1) ® Qy/Zy = N'H*(X, Qp/Z(2))piv-
The assumptioR2 implies the equality
N'H*(X,Qy/Z(2)) = Ker(d)
up to a finite group. Hence by Lemma 7.271, andF2 imply the equality

Im(reng/ZP) = Im(w),

wherew is as in (5.3.3). Thus we are reduced to the following lemma stronger than Lemma
5.3.5:

Lemma 7.2.2. Assume eithep > 5 or (x,). Then we have

Im(w) = HY (k, HA(X, Qp/Z,(2)) o

Proof. If k£ is local, then the assertion follows from Theorem 2.2.1 and Lemma 3.5.4. We
show the inclusiodm(w) > H}(k, H*(X,Q,/Z,(2)))piv, assuming that is global (the
inclusion in the other direction has been proved in Lemma 5.3.5)Z%be as in (5.3.4) and
putA = H*(X,Q,/Z,(2)). By Lemma 2.3.1(3), it is enough to show the following:

(i) The image of the composite map
WO > U (X, Q,/Z,(2)) > H(k, A)

containngl(k:, A)piv, Where the arrow) is as in(3.5.1)
(i) The kernel of this composite map is cofinitely generated up to a group of finite expo-

nent.

(i) follows from Corollary 2.6.3 (1). We prove (i) in what follows. We use the notation fixed
in 1.9. LetU C S be a non-empty open subset which contaihand for whichZy — U
is smooth outside of. Letjy : 2y[p~'] — 2y be the natural open immersion. Put

U':=U\XYandA:=Q,/Z,. Forv e ¥, put

M, = F'H3(X,, A(2))/(H*(Z;, T<aR(j0)+A(2)))Div,
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where the superscriptmeans the subgroup of elements which vanishegiax, A(2)) ~

H3(X, ®p, kv, A(2)). We construct a commutative diagram with exact rows

0 —= Ker(ry) — FUH}(2u[p™], A2)) — = @ vex M,

.| | N

0 —= Ker(ay) HY(U,A) — > @ vex H)},(ky, A),

where F'' on H?*(Zy[p'], A(2)) means the filtration resulting from the Hochschild-Serre
spectral sequence (3.2.3) féty[p~!], andvy is an edge homomorphism of that spectral

sequence. The arrowg anda; are natural pull-back maps, and we put
Hj,(ky, A) := H'(k,, A)/H, (ky, A).

The existence obs; follows from the local case of Lemma 7.2.2, and denotes the map

induced by the right square. Note th&tr(a;;) containsH  ;(k, A). Now let

c: W= lim Ker(ry) — lim Ker(ay)
£cucs £cucs

be the inductive limit ofc;;, whereU runs through all non-empty open subsetssofvhich
contains)’ and for whichZy, — U is smooth outside oF’. Because the group on the right

hand side contain&; (k, A), it remains to show that
(iii) Coker(c) has a finite exponent.
(iv) #'1is contained ir#°.
(iv) is rather straight-forward and left to the reader. We prove (iii). FoC S as above,

applying the snake lemma to the above diagram, we see that the kernel of the natural map
Coker(cy) — Coker(¢y)
is a subquotient oKer(by). By the local case of Lemma 7.2.2, we have

Ker(by) ~ @D Im(F*H*(X,, A(2)) — M,)

vel

and the group on the right hand side is finite by Lemma 7.4.1 below. On the other hand,
Coker(¢y) is zero ifp > 3, and killed by2 if p = 2. Hence passing to the limit, we see that

Coker(c) has a finite exponent. This completes the proof of Lemma 7.2.2. O
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7.3. Proof of Lemma 7.2.1, Step 1.We start the proof of Lemma 7.2.1. Our task is to show

the inclusion
(7.3.1) 2(Wpiy) CO(F?H?(X,Q,/Z,(2))).
If £ is global, then the assertion is reduced to the local case, because the natural map

F’H*(X,Q,/Z,(2))) — @D F’H*(X,,Q,/Z,(2)))

ves!

has finite cokernel by Corollary 2.6.3 (2).
Assume now that is local. In this subsection, we treat the case thit/-adic local with
¢ # p. We use the notation fixed in 1.10. Recall thahas simple normal crossings oti

by the assumptiofi . Note thato factors as

HYX,Q,/Z,(2)) — HH (2, Q,/Z,(2) = B Hy(2.Q,/Z,(2)),

yey?o

and thatim(d) C Im(¢). There is an exact sequence
0 — H'(F, Hy( 2", Qp/Zy(2)) — HY (2, Qp/Zy(2)) — H (2™, Q)2 (2)) — 0
arising from a Hochschild-Serre spectral sequence. We Kave) ~ CH,_»(Y) ® Q,/Z,
with d := dim(.2") by Lemma 4.2.3 (2). Hence to show the inclusion (7.3.1), it suffices to
prove
Proposition 7.3.2. (1) Assume that holds. Then the composite map
(7.33)  CHao(Y) ® Qp/Zy — Hy(2,Qy/Zy(2)) — Hy-( 27, Q,/Z,(2))"
is an isomorphism up to finite groups. Consequently, we have
Im(e) ~ H'(F, Hp (2™, Qp/Z,(2)))

up to finite groups.

(2) The image of the composite map
H2(k7H1(X7 Qp/Zp(Q))) - HS(Xa Qp/Zp(Q)) - Hé(%: Qp/Zp(z))

containsH' (F, H2( 2™, Qp/Zy(2)))piv-

We first show the following lemma:
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Lemma 7.3.4. (1) Consider the Mayer-Vietoris spectral sequence
(7.3.5) EYY = B (YD Q2 (u+ 1)) = HE (27, Qy/Zy(2))

obtained from the absolute puritgf. [RZ], [Th], [FG]), whereY (9 denotes the dis-
joint union of g-fold intersections of distinct irreducible components of the reduced

part of Y. Then there are isomorphisms up to finite groups
H'(F, HYA (2, Q,/Z,(2))) = H'(F, B, ),
Hy (27, Qp/Z,(2)) = (B3 ).

(2) AsGy-module, H(k™, H*(X,Q,)) has weight< 2.

Proof of Lemma 7.3.4(1) SinceE}"’ = 0 for any (u, v) with u > 0 or 2u + v < 2, there is

a short exact sequence

(7.3.6) 0 — Ey° — HH(2™,Qy/Z,(2))) — E; " — 0,
and the edge homomorphism

(7.3.7) Byt = Ho (2™, Qp/Zy(2))),

where we have?, ! = Ker(d; ") and E5* = Coker(d;"*) andd; " is the Gysin map
H(Y® Q,/7,) — H*YW Q,/Z,(1))). Note thatE}"" is pure of weightv — 4 by
Deligne’s proof of the Weil conjecture [De2], so thét(F, E“?) (i = 0,1) is finite unless
v = 4. The assertions immediately follow from these facts.

(2) By the alteration theorem of de Jong [dJ], we may assumeZhas projective and
has semistable reduction ovér If X is a surface, then the assertion is proved in [RZ].
Otherwise, take a closed immersioti — PY =: P. By [JS], Proposition 4.3 (b), there
exists a hyperplan& C P which is flat overS and for whichZ := 2" xp H is regular with
semistable reduction ovéf. The restriction mapgi?(X,Q,) — H*(Z,Q,) (Z == Z X,, k)
is injective by the weak and hard Lefschetz theorems. Hence the claim is reduced to the case

of surfaces. This completes the proof of the lemma. O

Proof of Proposition 7.3.2. (1) Note that the composite map (7.3.3) in question has finite
kernel by Lemma 6.4.3 and the arguments in the proof of Lemma 6.4.2. We prove that (7.3.3)
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has finite cokernel, assumifig By the Kummer theory, there is a short exact sequence

(7.38)  0— Pic(YV) ® Q)2 — H* YV, Qy/Zy(1)) — Br(Y")piors — 0

and the differential ma|d1*1’4 of the spectral sequence (7.3.5) factors through the Gysin map
H(Y?,Q,/Z,) — Pic(YV) ® Q,/Z,,

whose cokernel i€H, »(Y) ® Q,/Z,. Hence in view of the computations in the proof of

Lemma 7.3.4 (1), the Gysin mapH, »(Y) ® Q,/Z, — H (2™, Qp/Z,(2)) (cf. Lemma

4.2.3(2)) factors through the map (7.3.7) and we obtain a commutative diagram

(7.3.3)

CHi2(Y) ® Q,/Z, H%(%ura Qp/Zp(2))

l T(m.?)

(CHa—2(Y) ® Qp/Z)%* (B,

where the left vertical arrow has finite cokernel (and kernel) by Lemma 6.4.3 and a standard

norm argument, and the right vertical arrow has finite cokernel (and is injective) by Lemma
7.3.4(1). Thus it suffices to show that the bottom horizontal arrow has finite cokernel. By the

exact sequence (7.3.8), we obtain a short exact sequence
0 — CHy »(Y)®Q,/Z, — ESA — Br(?(l))p_tors — 0.

Our task is to show thdBr(Y ), ) “ is finite, which follows from the assumptidhand

the finiteness of the kernel of the natural map
H'(Gr, Pic(YV) © Q)/Z,) — H'(Gr, H*(Y",Q,/Z,(1)))

(cf. Lemma 7.5.2 ir§7.5 below). Thus we obtain the assertion.

(2) Sincecd (k™) = 1, there is a short exact sequence
0 — H'(K", H (X, Qp/Zy(2))) — H*(X™,Qy/Zy(2)) — H*(X,Qp/Zy(2))% ™ — 0

arising from a Hochschild-Serre spectral sequence. By Lemma 7.3.4 the last group has weight
< —2, and we have isomorphisms up to finite groups
H?(k, H'(X,Qy/Z,(2))) ~ H'(F, H'(k™, H'(X, Q,/Z,(2))))

~ HY(F, H*(X™, Qp/Zp(2))).
Now we plug the short exact sequence (7.3.6) into the localization exact sequence

(7.3.9)

HQ(Xura Qp/Zp(Q)) - H%(%ura QP/ZP(Q))) — HS(%M: @p/Zp(z))'
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Note thati*(2", Q,/Z,(2)) ~ H*(Y,Q,/Z,(2)), so that it has weight —1 (cf. [De2]).
Let E5"" be asin (7.3.5). SincE;l’4 is pure of weight), the induced map

Byt — HY (2, Qp/Z,(2))) /By
has finite image. Hence the composite map
H (X", Qp/Z,(2)) — HHZ ™, Qp/Z,(2))) — By
has finite cokernel, and the following map has finite cokernel as well:
HY(F, H* (X", Qy/Z,(2))) — H'(F, B, ).

Now Proposition 7.3.2 (2) follows from this fact together with (7.3.9) and the first isomor-

phismin Lemma 7.3.4 (1). O

Remark 7.3.10. Let J be the set of the irreducible componentdé? and put

A :=Ker(g : 27 - NS(YW)) with NS(YW):= 5 NS(v,),

yeYo
where fory € Y?, Y, denotes the closurgy} C Y andNS(Y,) denotes its Eron-Severi

group. The arrowgy’ arises from the Gysin mag’ — Pic(Y(")). One can easily show,

assumingl and using Lemma.5.2 in §7.5 below, that the corank off (T, £, "*) overZ,
is equal to the rank oA overZ. Hence Propositionn.3.2 (2) implies the inequality
(7.3.12) dimg, (H?(k, H'(X,Q,(2))) > dimg(A ® Q),

which will be used in the next subsection.

7.4. Proof of Lemma 7.2.1, Step 2.We prove Lemma 7.2.1, assuming thas p-adic local

(see 1.10 for notation). We first show the following lemma:
Lemma 7.4.1.We have

F2H3(X= @p/Zp(2)) C HS(%a T§2Rj*@p/zp(2)) (: W)

Proof of Lemma 7.4.1By (S5) in§4.1, there is a distinguished triangle it (2, Z/p"Z)

(7.4.2) i, [-3] —1— T,(2) — RS —— ik, [-2).
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Applying Ri' to this triangle, we obtain a distinguished trianglelf( Yy, Z/p" Z)

(743) o -3 2 R D (s Ri) 1) —— o, [,

whereGys? := Ri'(g) and we have used the natural isomorphism
(123 Ry [—1] 2 Ri (<2 Rjupiy?).

Now let us recall the commutative diagram (6.2.3):

HB(X7 @p/Zp(z)) H{“/(%, Too(2)) @yEYU H;(%,‘ZOO(Q))

H3(X,Q,/7,(2)) —= H(Y,i*R*j,Q,/Z(2)) ——> @ yeyo H(y,7* R*5.Q,/Z,(2)).

where the middle and the right vertical arrows are induce®byt) in (7.4.3). By the proof

of Lemma 6.2.2, we have*( 2, 7«2 Rj.Q,/Z,(2)) = Ker(ez¢;). Hence it suffices to show

the image of the composite map

0y H (k, H' (X, Q,/Z,(2)) — HY(X,Q)/Z,(2)) = @ Hy(2.Tw(2))

yey?o

is contained inker(\). By the distinguished triangle (7.4.3er(\) agrees with the image
of the Gysin map

P Gysl : D H'(y. Wa ) — D Hy(2,T(2)).

yeyY?o yeyYy?o yeyo

On the other hand, as is seertth4, 0, factors through the maps
HY(F, H(Y, Waioh ) — H' (B, @D ev0 HO(n Wae 2)10))
— @ yevo H'(y, Wao 2 14, )-
Thus we obtain the assertion. OJ

We start the proof of Lemma 7.2.1, i.e., the inclusion (7.3.1), assuming:tisap-adic
local. The triangle (7.4.2) gives rise to the upper exact row of the following diagram whose

left square is commutative and whose right square is anti-commutative:

HYZ,%,(2) — H3 (X, T<eRjpi?) —— H' (Y, vy,

l lesf

H(Z,%,(2)) H(X, 1) Hy (2, %.(2)),
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whereGys? is as in (7.4.3) and the anti-commutativity of the right square follows from (S4)

in §4.1. Hence the maprestricted to# = H*(.2', <2 Rj.Q,/Z,(2)) factors as

W — H'(Y, ) — HH 2, %(2)) — D HAZ . T(2)),

yeY o
wherevy, | = lim vy, By Lemmas 7.4.1 and 6.1.2, it suffices to show that the corank of
(7.4.4) (Y, 14) = €D yevo H(2 5 (2)))

is not greater thadimq, H*(k, H'(X,Q,(2))). We pursue an analogy to the cas¢ ch(F)
by replacingHy (2, Q,/Z,(2)) with H' (Y, vy, ). There is an exact sequence

0— Hl(Fa HO(?7 V%oo)) - H1<Y7 I/ﬁlf,oo) - H1(77 V%OO)G]F —0

arising from a Hochschild-Serre spectral sequence. By [Sat3], Corollary 1.5, there is a Mayer-

Vietoris spectral sequence

Evt = gert(YU-a) i 0bte ) — HOR(Y WL ).

Y<1*“)710g Y,OO
Note thatE®" is of weightb — 1 so thatH(F, E¢*) is finite unless) = 1. Thus we obtain
iIsomorphisms up to finite groups
H'F,H(Y vy ) ~ H'(F, By ),
(7.4.5) Lo 1 G 01
HY (Y, v )07 = (E5")C

with £, ' = Ker(d; ") and EJ"' = Coker(d; "), whered; ' is the Gysin map

H(Y® Q,/z,) — H' (YWY, W, 0L

Y(l),10g>'

There is an exact sequence@f-modules (cf. (7.5.1) below)

0— PlC(?(l)) ® @p/zp — Hl (7(1), Woo QL ) E— Br<Y(1))p-tors — 0.

Y @) log
Hence we see that the group (7.4.4) coincides with the imagé'¢F, 1°(Y, i ) up to
finite groups by the same computation as for Proposition 7.3.2 (1) and the weight arguments

in [CTSS],§2.2. Now we are reduced to showing

dimg, H?(k, H'(X,Q,(2))) > corank(H'(F, H*(Y ,v5. __))) = corank (H(F, E;l’l)),

where the last equality follows from (7.4.5). As is seen in Remark 7.3.10, the right hand side
is equal todimg (A ® Q) under the conditiofT. On the other hand, by [J2], Corollary 7, the

left hand side does not change when one replaceish another prime/’. Thus the desired
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inequality follows from (7.3.11). This completes the proof of Lemma 7.2.1 and Theorem

7.1.1. U

7.5. Appendix to Section 7. Let Z be a proper smooth variety over a finite fiéld For a

positive integerm, we define the object/mZ(1) € D*(Ze,Z/mZ) as
Z/mZ(1) = i ® (W Q0 ~1))

where we factorizedn asm’ - p” with (p,m’) = 1. There is a distinguished triangle of
Kummer theory foiG,, := G,,,7 in D*(Zy)

Z/mZ(1) G —2 G —— Z/mZ(1)[1].

So there is a short exact sequencé&gfmodules
0 — Pic(Z)/m — H*(Z,Z/mZ(1)) — ,,Br(Z) — 0,

whereZ := Z ®p F. Taking the inductive limit with respect taw > 1, we obtain a short

exact sequence ¢fp-modules
(7.5.1) 0 — Pic(Z) ® Q/Z —~ H*(Z,Q/Z(1)) — Br(Z) — 0.

Concerning the arrow, we prove the following lemma, which has been used in this section.

Lemma 7.5.2. The mapH *(F, Pic(Z) ® Q/Z) — H*(F, H*(Z,Q/Z(1)) induced by has

finite kernel.

Proof. Note thatPic(Z) ® Q/Z ~ (NS(Z)/NS(Z)ios) @ Q/Z. By a theorem of Matsusaka
[Ma], Theorem 4, the groupiv(Z)/Div(Z)uum is isomorphic toNS(Z)/NS(Z)ors, Where
Div(Z) denotes the group of Weil divisors ¢fy Div(Z),.. denotes the subgroup of Weil
divisors numerically equivalent to zero. By this fact and the facti&t7) is finitely gener-
ated, there exists a finite famifyC; },c; of proper smooth curves ov&rwhich are finite over
Z and for which the kernel of the natural mai$(Z) — @,.; NS(C;) with C; := C; @ F

Is torsion. Now consider a commutative diagram

N

H(F.NS( H\(F, H*(Z,Q/Z(1))).

|

)®Q/Z)

Z <

@ié] Hl(FJ
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By a standard norm argument, one can easily show that the left vertical map has finite kernel.

The bottom horizontal arrow is bijective, becal8gC;) = 0 for anyi € I by Tsen’s

theorem (cf. [Se], 11.3.3). Hence the top horizontal arrow has finite kernel and we obtain the

assertion. O
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APPENDIXA. RELATION WITH CONJECTURES OFBEILINSON AND LICHTENBAUM

In this appendix, the Zariski sit&,, on a schemeZ always meansét/Z)z.,, and Z

means the usual smadtale site. Lek, p, S, 2" and K be as in the notation 1.8.

A.1. Motivic complex and conjectures. Let Z(2)z.. = Z(2)7,, be the motivic complex

Zar

on Zz.. defined by using Bloch’s cycle complex, and &), be itsétale sheafification,
which are, by works of Levine ([Lel], [Le2]), considered as strong candidates for motivic
complexes of Beilinson-Lichtenbaum ([Be], [Lil]) in Zariski aétale topology, respectively
(see also [Li2], [Li3]). We put

H;ar(‘%u Z(2>) = H;ar('%'v Z(Z)Zal“)? Hgt(%7 Z(2>> = Hgt(‘%fﬂ Z(2)ét)'
In this appendix, we observe that the finiteness1if( K, Q,/Z,(2)) is deduced from the

following conjectures on motivic complexes:

Conjecture A.1.1. Lete : 2 — Z7.. be the natural continuous map of sites. Then
(1) (Beilinson-Lichtenbaum conjectyréNVe have
2(2)zar == T<oReZ(2)ey 1N D(Z7ar).
(2) (Hilbert's theorem)0). We havel®e,Z(2)¢ = 0.

(3) (Kummer theory o [p~"]«). We haveZ(2)¢)| 2 p-1) @ Z/p"Z ~ 2.

This conjecture holds if2" is smooth ovelS by a result of Geisser [Gel], Theorem 1.2 and

the Merkur’ev-Suslin theorem [MS] (see also [GL2], Remark 5.9).
Conjecture A.1.2. Let~? be the canonical map
v CHNZ) = Hyo (2 2(2)) — Ha (2 Z(2)).

Then thep-primary torsion part ofCoker(~?) is finite.

This conjecture is based on Lichtenbaum’s conjecture [Lil] fiat.2", Z(2)) is a finitely
generated abelian group (by the propernes€ofS). The aim of this appendix is to prove

the following:

Proposition A.1.3. If ConjecturesA.1.1 andA.1.2 hold, thenH? (K, Q,/Z,(2)) is finite.
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This proposition is reduced to the following lemma:

LemmaA.1.4. (1) If ConjectureA.1.1 holds, then for- > 1 there is an exact sequence
0 — Coker (pTCHZ(gy) o HA(Z 2(2))) s HE (K, 25" Z(2)) — Ker(o?) — 0,
whereq,. denotes the map induced #¥ and ¢? denotes the cycle class map
o : CHY(2) /p" — Hy(2.%,(2)).
(2) If ConjecturesA.1.1 and A.1.2 hold, thenCoker(ag,,z, ) andKer(gép/Zp) are finite,

whereag, /7, := li_n>1r21 o, and Q(Q@p/zp = h_I)anI 02

To prove this lemma, we need the following sublemma, which is a variant of Geisser’s argu-

ments in [Gel]§6:
Sublemma A.1.5.Put Z/p"Z(2)¢ := Z(2)¢ @ Z/p"Z. 1If ConjectureA.1.1 holds, then
there is a unique isomorphism
ZIp"L(2)sy = %.(2) in D(Z,Z/p"7)

that extends the isomorphism in Conjectéré.1 (3).
We prove Sublemma A.1.5 §A.2 below and Lemma A.1.4 ifA.3 below.
A.2. Proof of Sublemma A.1.5. By Conjecture A.1.1 (3), we have only to consider the case
wherep is not invertible onS. Let us note that

(x)  Z/p"7Z(2)s is concentrated in degregs?2

by Conjecture A.1.1 (1) and (2). L&t, Y,  and; be as follows:

Vi= 2l —— 2 —— Y,
whereY denotes the union of the fibers & /S of characteristip. In étale topology, we

defineRi' and Rj, for unbounded complexes by the method of Spaltenstein [Spa]. We will

prove

(A.2.1) T3 RIZ/pZ(2)a = 14, [—3]  in D(Yee, Z/p'Z),
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using(x) (see (S5) irg4.1 for Vsl/,r)- We first prove Sublemma A.1.5 admitting this isomor-
phism. SinceZ(2)e)|v ®“Z/p"Z ~ 155? by Conjecture A.1.1(3), we obtain a distinguished
triangle from (A.2.1) andx)

iy, 3] —— Z/pL(2)ss —— T<oRjupst —— iy, [—2].

Hence comparing this distinguished triangle with that of (S5Miri, we obtain the desired

isomorphism in the sublemma, whose uniqueness follows from [SH], Lemmas 1.1 and 1.2 (1).
In what follows, we prove (A.2.1). Pu¥ := Z(2)z., @ Z/p"Z and ¥ = Z/p"Z(2) &

for simplicity. Lete : 2% — 7., be as in Conjecture A.1.1. In Zariski topology, we define

Ri},, . and Rjz... for unbounded complexes in the usual way by the finiteness of cohomo-

logical dimension. Becaus& = e*.% is concentrated in degrees 2 by (x), there is a

commutative diagram with distinguished rowsii( 2%, Z /p"Z)

| |

e H — TSQE*RjZar*anr% - <T§3€*iZar*Ri!Zar%)[l] - 6*%[1]
T<oRjer L —— (T<siors Rig L )[1] —— Z[1],

<z

where the upper (resp. lower) row is obtained from the localization triangle in the Zariski

(resp.étale) topology and the arrowsand 5 are canonical base-change morphisms. Since
« is an isomorphism ([MS], [SV], [GL2]){5 is an isomorphism as well. Hence (A.2.1) is

reduced to showing
(A.2.2) T<sRiy K ~ ey,vy,[=3]  IN D(Yzar, Z/p'Z),

whereey : Y5 — Yz, denotes the natural continuous map of sites and we have used the base-
change isomorphisitiz,,. = i«.€; ((Gel], Proposition 2.2 (a)). Finally we show (A.2.2).
Consider the local-global spectral sequence in the Zariski topology

E?ﬂ) - @ Ru+vi$* (RZ;RZ'ZM%) = Ru+vi!Zar‘%/7

zeZUNY
where forx € Y, i, denotes the natural map— Y. We have

E%Y ~ @xeﬁ”“ﬂY Zx*ex*WnQngg (|f V= 2)
o (otherwise)
by the localization sequence of higher Chow groups [Lel] and results of Geisser-Levine

(IGL1], Proposition 3.1, Theorem 7.1), where forc Y, ¢, denotes the natural continuous
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mapzs — Tz., Of sites. By this description aF;-terms and the compatibility of boundary
maps ([GL2], Lemma 3.2, see also [Sz], Appendix), we obtain (A.2.2). This completes the
proof of Sublemma A.1.5.

A.3. Proof of Lemma A.1.4. (1) By Sublemma A.1.5, there is an exact sequence
0 — HG(2.2(2))/p" — Ha(Z.%:(2) — p Ho(22(2)) — 0.
By Conjecture A.1.1 (1) and (2), we have
H (2, 2(2)) = Hy, (2, Z(2)) ~ CHY (2 1).
Thus we get an exact sequence
0 — CH*(2,1)/p" — H3(Z,%,.(2)) — , Hi{( 2, 7(2)) — 0.
On the other hand, there is an exact sequence
0 — N'UHG (2 %:(2) — Hi(Z,%,(2)) — Hyu (K, Z/p"Z(2)) — Ker(¢) — 0

which is a variant of (4.2.9) (see Lemma 4.2.3 /1. In view of the short exact sequence in
Lemma 4.2.3 (1), we get the desired exact sequence.
(2) By Conjecture A.1.1 (1) and (2), the mapin Conjecture A.1.2 is injective. Hence we

get an exact sequence
0 — Coker(a,) — ,»Coker(12) — CHX(2)/p" L% HL(2,Z(2)) /1’
Noting that the composite of /p” and the injective map
HA(2.Z(2)) [y HA(2,T(2))
obtained from Sublemma A.1.5 coincides with we get a short exact sequence
0 — Coker(a,.) — ,Coker(y*) — Ker(p?) — 0,

which implies the finiteness @oker(ag, z,) andKer(Q?Qp/Zp) under Conjecture A.1.2. This

completes the proof of Lemma A.1.4 and Proposition A.1.3. O
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APPENDIXB. ZETA VALUE OF THREEFOLDS OVER FINITE FIELDS

In this appendix B, all cohomology groups of schemes are taken ovétaletopology.
Let X be a projective smooth geometrically integral threefold over a finite igldnd let/
be the function field ofX. We define the unramified cohomolog#/’"! (K, Q/Z(n)) in the

same way as in.8. We show that the groups
H(K,Q/Z(1)) = Br(X) and  H; (K, Q/Z(2))
are related with the value of the Hasse-Weil zeta funcfiox, s) at s = 2:
¢"(X,2) = lim (X, 5)(1 - )7, where g, := ord,—; ((X, s).

Let
0 : CH?*(X) — Hom(CH'(X),Z)
be the map induced by the intersection pairing and the degree map
CH?(X) x CH'(X) — CH3(X) = CH,(X) <% 7.
The mapd has finite cokernel by a theorem of Matsusaka [Ma], Theorem 4. We define

X = |Coker(0)|.

We prove the following formula (compare with the formula in [Ge2])):

Theorem B.1. Assume thaBr(X) and H3 (K, Q/Z(2)) are finite. Thert*(X, 2) equals the

following rational number up to a sign

3 3 1
xxox ) MHulE QZ@N 11 0p x4, (60 T ICH (X, 8o
1 |BI'(X)’ - X g | ( 7Z)t0rs| g ’ ( 7Z)t0rs‘ s

whereCH?(X, i) and CH' (X, /) denote Bloch’s higher Chow groufRI3] and (X, O'x, 2)
denotes the following integer
X(X,Ox,2) =) (1) (2 —i) dims, H/(X, Q) (0<i<2, 0<j5<3).
i\j
This theorem follows from a theorem of Milne ([Mi2], Theorem 0.1) and Proposition B.2
below. For integers, n > 0, we define

(X, n)) = [] H'(X, Ze(n),
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where/ runs through all prime numbers, aitl (X, Z,(n)) (p := ch(F,)) is defined as

H (X, Z,(n) = lim H'"(X, Q% ).

r>1
Proposition B.2. (1) We have

CH?*(X, 4 — 1) tors (i=0,1,2,3)

(B.3) H'(X, Z(2) = {(CHl(X i =6)iors)”  (i=6,7)

where for an abelian group/, we put
M* := Hom(M,Q/Z).
Furthermore,CH' (X, 7)ors and CH?(X,, j)1ors are finite for anyj > 0, and we have
CHY (X, j)tors =0 for j>2 and CH*(X, )i =0 for j > 4.
(2) Assume thaBr(X) is finite. Then we have
H(X, Z(2))uons ~ Br(X)",
and the cycle class map
CH*(X) ® Zy — H (X, Z(2))

has finite cokernel for any prime numbeér
(3) Assume thaBr(X) and H2 (K, Q/Z(2)) are finite. Then the following map given by
the cup product with the canonical element Z ~ H(F,, 2) has finite kernel and

cokernel
¢t HY(X,Z(2)) — H*(X,7Z(2)),

and we have the following equality of rational numbers
[Ker(e")| _ [Hi (K, Q/Z(2))] - |CH (X)) ons|

|Coker(e)] |Br(X)|- %

Proof of Proposition B.2.(1) By standard arguments on limits, there is a long exact sequence
o HI(X,Z(2) — H'(X,2(2) ®2Q — H'(X,Q/Z(2)
— HHY(X,Z(2)) — -
By [CTSS], p. 780, TRoeme 2, p. 782, Téoreme 3, we see that

H(X,7Z(2)) andHi(X,Q/Z(2)) are finite fori + 4, 5.
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Hence we have
H{(X,Z(2)) ~ H ' (X,Q/Z(2)) for i+ 4,5,6.
On the other hand, there is an exact sequence
0 — CH*(X,5 —i)®Q/Z — H" Y X,Q/Z(2)) — CH*(X,4 — i)tors — 0

fori < 3 (IMS], [SV], [GL1], [GL2]), where CH*(X,5 — i) ® Q/Z must be zero because
it is divisible and finite. Thus we get the isomorphism (B.3) foK 3, the finiteness of
CH?*(X, j)tors for 7 > 1 and the vanishing o€ H?(X, j)ios for j > 4. The finiteness of
CH?*(X, 0)tors = CH?(X)iors (cf. [CTSS], p. 780, Thokme 1) follows from the exact se-

quence
0 — CH*(X,1) ® Q/Z — N'H*(X,Q/Z(2)) — CH*(X)tors — 0
(cf. Lemma 3.2.2), where we put
N'H*(X,Q/Z(2)) := Ker(H*(X,Q/Z(2)) — H*(K,Q/Z(2))).
As for the caseé = 6, 7 of (B.3), we have
HI(X,2(2))" = H™ (X, Q/Z(1)

by a theorem of Milne [Mi2], Theorem 1.14 (a). It remains to show

CH'(X, j)iors = H' (X, Q/Z(1)) for j >0,

which can be checked by similar arguments as before.
(2) We haveH® (X, Z(2))* ~ H2(X,Q/Z(1)) and an exact sequence

(B.4) 0 — CHY(X)®Q/Z — H*(X,Q/Z(1)) — Br(X) — 0.
Hence we havé¢H® (X, 2(2))t0rs)* ~ Br(X), assumin@r(X) is finite. To show the second
assertion fo¥ # ch(F,), it is enough to show that the cycle class map

CH*(X) ® Q — H*(X,Qu(2))"

is surjective, wherd” := Gal(F,/F,). The assumption oBr(X) implies the bijectivity of
the cycle class map

CHY(X) ® Q =~ H*(X,Qu(1))"
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by [Ta2], (4.3) Proposition (see also [Mil], Theorem 4.1), and the assertion follow from
[Ta2], (5.1) Proposition. As for the cage= ch(FF,), one can easily pursue an analogy using
crystalline cohomology, whose details are left to the reader.

(3) The finiteness assumption d&r(X) implies the conditionrSS X, 1,¢) in [Mi2] for
all prime numberd by loc. cit., Proposition 0.3. Henc®S X, 2, /) holds by the Poincér
duality, ande* has finite kernel and cokernel by loc. cit., Theorem 0.1.

To show the equality assertion, we put
CH?(X) := lim ,>1 CH*(X)/n,

and consider the following commutative square (cf. [Mi3], Lemma 5.4):

e

CH2(X) Hom(CH'(X),Z)

| 4 K
HY(X,Z(2)) : H°(X,7(2)),

where the top arrow) denotes the map induced By The arrowa denotes the cycle class

map of codimensioR, and/ denotes the Pontryagin dual of the cycle class map @iti-

coefficients in (B.4). The arrow is injective (cf. (4.2.9)) and we have
|Coker(a)| = | Hy, (K, Q/Z(2))]

by the finiteness assumption éf¢, (K, Q/Z(2)) and (2) (cf. Proposition 4.2.11). The arrow

3 is surjective and we have

Ker(8) = H*(X,7(2))one 2 Br(X)",

by Milne’s lemma ([Mi3], Lemma 5.3) and the isomorphisil' (X) ® Z ~ H2(X,Z(1))
(cf. [Ta2], (4.3) Proposition), where we have used again the finiteness assumpito’on

Therefore in view of the finiteness &fer(e*), the mapo has finite kernel and we obtain
Ker(@) = C/3F12<)()tors = CH2(X)torsa

where we have used the finitenesst? (X)) in (1). Finally the assertion follows from

the following equality concerning the above diagram:
Ker(©)] _ [Ker(a)]  [Ker(e!)| [Ker(g)|
|Coker(©)|  |Coker(a)| |Coker(e?)| |Coker(3)]
This completes the proof of Proposition B.2 and Theorem B.1. O
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