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Abstract. We connect two developments aiming at extending
Voevodsky’s theory of motives over a field in such a way to en-
compass non-A1-invariant phenomina. One is theory of reciprocity
sheaves introduced by Kahn-Saito-Yamazaki. Another is theory of
the triangulated category logDMeff of logarithmic motives launched
by Binda, Park and Østvær. We prove that the Nisnevich coho-
mology of reciprocity sheaves is representable in logDMeff .

Introduction

We fix once and for all a perfect base field k. The main purpose
of this paper is to connect two developments aiming at extending Vo-
evodsky’s theory of motives over k in such a way to encompass non-
A1-invariant phenomina. One is the theory of reciprocity sheaves intro-
duced by Kahn-Saito-Yamazaki ([6] and [7]) and developed in [15] and
[3]. Voevodsky’s theory is based on the category PST of presheaves
with transers, defined as the category of additive presheaves of abelian
groups on the category Cor of finite correspondences: Cor has the
same objects as the category Sm of separated smooth schemes of fi-
nite type over k and morphisms in Cor are finite correspondences.

1991 Mathematics Subject Classification. 14F42 (14F06, 14C25, 14A21).
Key words and phrases. motives, reciprocity sheaves, logarithmic geometry.
The author is supported by the JSPS KAKENHI Grant (20H01791).

1



2 SHUJI SAITO

Let NST ⊂ PST be the full subcategory of Nisnevich sheaves, i.e.
those objects F ∈ PST whose restrictions FX to the small étale site
Xét over X are Nisnevich sheaves for all X ∈ Sm. Voevodsky proved
that NST is a Grothendieck abelian category and defined the trian-
gulated category DMeff of effective motives as the localization of the
derived category D(NST) of complexes in NST with respect to an
A1-weak equivalence (see [9, Def. 14.1]). It is equipped with a functor
M : Sm→ DMeff associating the motive M(X) of X ∈ Sm.

Let HINis ⊂ NST be the full subcategory consisting of A1-invariant
objects, namely such F ∈ NST that the projection πX : X ×A1 → X
induces an isomorphism π∗X : F (X) ' F (X×A1) for any X ∈ Sm. We
say that F ∈ HINis is strictly A1-invariant if πX induces isomorphisms

π∗X : H i
Nis(X,FX) ' H i

Nis(X ×A1, FX×A1) for all i ≥ 0.

The following theorem plays a fundamental role in Voevodsky’s theory.

Theorem 0.1. (Voevodsky [16]) Any F ∈ HINis is strictly A1-invariant
and we have a natural isomorphism

(0.1.1) H i
Nis(X,FX) ' HomDMeff (M(X), LA1

F [i]) for X ∈ Sm,

where LA1
: D(NST)→ DMeff is the localization functor.

Notice that there are interesting and important objects of NST
which do not belong to HINis. Such examples are given by the sheaves
Ωi of (absolute or relative) differential forms, and the p-typical de
Rham-Witt sheaves WmΩi of Bloch-Deligne-Illusie, and smooth com-
mutative k-group schemes with a unipotent part (seen as objects of
NST), and the complexes Rε∗Z/pr(n) in case ch(k) = p > 0, where
Z/pr(n) is the étale motivic complex of weight n with Z/pr coefficients
and ε is the change of site functor from the étale to the Nisnevich topol-
ogy. For such examples, (0.1.1) fails to hold since πX : X ×A1 → X
induces an isomorphism M(X ×A1) 'M(X) in DMeff but the maps
induced on cohomology of those sheaves are not isomorphism.

The category RSCNis of reciprocity sheaves is a full abelian sub-
category of NST that contains HINis as well as the non-A1-invariant
objects mentioned above. Heuristically, its objects satisfy the property
that for any X ∈ Sm, each section a ∈ F (X) “has bounded ram-
ification at infinity” and the objects of HINis are special reciprocity
sheaves with the property that every section a ∈ F (X) has “tame”
ramification at infinity1. Slightly more exotic examples of reciprocity
sheaves are given by the sheaves Conn1 (in case ch(k) = 0), whose sec-
tions over X are rank 1-connections, or Lisse1

` (in case ch(k) = p > 0),

1This heuristic viewpoint is manifested in [10, Th. 2].
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whose sections on X are the lisse Q`-sheaves of rank 1. Since RSCNis

is an abelian category equipped with a lax symmetric monoidal struc-
ture by [13], many more interesting examples can be manufactured by
taking kernels, quotients and tensor products (see [3, §11.1] for more
examples).

The main purpose of this article is to establish the formula (0.1.1)
for all F ∈ RSCNis in a new category which enlarges DMeff (see (0.2)).
It is the triangulated category logDMeff of logarithmic motives intro-
duced by Binda, Park and Østvær in [2]. Let lSm be the category
of log smooth and separated fs log schemes of finite type over k and
lCor be the category with the same objects as lSm and whose mor-
phisms are log finite correspondences (see [2, Def. 2.1.1]). Let PShltr

be the category of additive presheaves of abelian groups on lCor and
Shvltr

dNis ⊂ PShltr be the full subcategory consisting of those F whose
restrictions to lSm are dividing Nisnevich sheaves (see [2, Def. 3.1.4]).
It is shown in [2, Th. 1.2.1] that Shvltr

dNis is a Grothendieck abelian
category, and logDMeff is defined as the localization of the derived
category D(Shvltr

dNis) of complexes in Shvltr
dNis with respect to a �-weak

equivalence, where � is P1 with the log-structure associated to the
effective divisor ∞ ↪→ P1 (see [2, Def. 5.2.1]2). It is equipped with
a functor M : lSm → logDMeff associating the logarithmic motive
M(X) of X ∈ lSm. Thanks to [1, Th. 1,1], the standard t-structure
on D(Shvltr

dNis) induces a t-structure on logDMeff called the homotopy
t-structure and its heart is identified with the abelian full subcategory
CIltr

dNis ⊂ Shvltr
dNis consisting of strictly �-invariant objects in the sense

[2, Def. 5.2.2]3. Now we can state the main result of this paper.

Theorem 0.2. (Theorems 6.1 and 6.3) There exists an exact and fully
faithful functor

(0.2.1) Log : RSCNis → CIltr
dNis : F → F log = Log(F ).

For X ∈ Sm we have a natural isomorphism

(0.2.2) H i
Nis(X,FX) ' HomlogDMeff (M(X, triv), L�F log[i]),

where L� : D(Shvltr
dNis) → logDMeff is the localization functor and

(X, triv) is the log-scheme with the trivial log-structure.

2 In fact it is defined in loc.cite. as the localization of the homotopy category of
complexes in Shvltr

dNis with respect to a �-local descent model structure.
3It is an logarithmic analogue of Voevodsky’s strict A1-invariance.
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We remark (see Remark 5.6) that for F = Ωi, F log(X) for X ∈ lSm
whose underlying scheme is smooth, agrees with the sheaf of logarith-
mic differential forms of X at least assuming ch(k) = 0 4.

We now explain the organization of the paper.
In §1 we discuss some preliminaries and fix the notation. We recall

the definitions and basic properties of modulus (pre)sheaves with trans-
fers from [4], [5], [7] and [15]. It is a generalization of Voevodsky’s
(pre)sheaves with transfers to a version with modulus. The category
MCor of modulus correspondences is introduced. Its objects are pairs
X = (X,D), where X is a separated scheme of finite type over k
equipped with an effective Cartier divisor D such that the interior
X −D = X is smooth. The morphisms are finite correspondences on
the interiors satisfying some admissibility and a properness condition.
Let MPST be the category of additive presheaves of abelian groups
on MCor. A full subcategory MNST ⊂MPST of Nisnevich sheaves
is defined and there is a functor (see §1(20))

ωCI : RSCNis →MNST .

For every F ∈ RSCNis and X ∈ Sm, it provides an exhaustive filtra-
tion on the group F (X) of sections over X which measures depth of
ramification along a boundary of a partial compactification of X: For
(X,D) ∈ MCor with X −D = X, we get the subgroups F̃ (X,D) ⊂
F (X) with F̃ = ωCIF such that F̃ (X,D1) ⊂ F̃ (X,D2) if D1 ≤ D2.

In §2 we prove as a key technical input an analogue of Zariski-
Nagata’s purity theorem ([17, X 3.4]) for F̃ (X,D) as above. It asserts
the exactness of the sequence

0→ F̃ (X,D)→ F (X)→
⊕
ξ∈D(0)

F (X
h

|ξ − ξ)

F̃ (X
h

|ξ, ξ)
,

in case X ∈ Sm and D is reduced simple normal crossing divisor,

where D(0) is the set of the irreducible components of D and X
h

|ξ is the

henselization of X at ξ. In [11], this result is generalized to the case
where D may not be reduced under the assumption that X admits a
smooth compactification.

In §3 we review higher local symbols for reciprocity sheaves con-
structed in [12]. It is an effective tool with which one can decide when
a given element of F (X) with F ∈ RSCNis and X ∈ Sm belongs to

4The assumption is necessary to use [10, Cor. 6.8] proved in case ch(k) = 0. We
expect that it is removed by using a forthcoming work of K. Rülling extending [10,
Cor. 6.8] to the case ch(k) > 0.
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F̃ (X,D) as above. The construction of the pairing depends on push-
forward maps for cohomology of reciprocity sheaves constructed in [3]
(which means that Theorem 0.2 depends on the result of [3]).

In §4, we prove the following result: Let MCorfin
ls be the subcategory

of MCor whose objects are pairs (X,D) such that X ∈ Sm and the
reduced divisor Dred underlying D is a SNCD on X and whose mor-
phisms are modulus correspondences satisfying a finiteness conditions
instead of the properness condition (see §1(5)). Then, for F ∈ RSCNis,
the association

F̃ log : (X,D)→ ωCIF (X,Dred)

gives a presheaf on MCorfin
ls , which gives rise to a cohomology theory

H i
log(−, F̃ log) on MCorfin

ls , called the i-th logarithmic cohomology with
coefficient F (see Definition 4.4). The higher local symbols for F plays
a fundamental role in the proof of the result .

In §5, we prove the invariance of logarithmic cohomology under
blowups: Let Λfin

ls be the subcategory of MCorfin
ls whose objects are the

same as MCorfin
ls and whose morphisms are those ρ : (Y,E)→ (X,D)

where E = ρ∗D and ρ are induced by blowups of X in smooth cen-
ters Z ⊂ D which are normal crossing to D (see the beginning of the
section). Then, for F ∈ RSCNis and ρ : Y → X in Λfin

ls , we have

ρ∗ : H i
log(X , F ) ∼= H i

log(Y , F ) for ∀i ≥ 0.

In §6, we prove Theorem 0.2, which is a formal consequence of the
theorems in §4 and §5.

Acknowledgements. The author would like to thank Kay Rülling, F.
Binda and A. Merici for many valuable discussions and comments. He
is also grateful to A. Merici to whom he owes crucial ideas for §2. The
author also thanks the referee for very careful reading and numerous
suggestions improving this paper.

1. Preliminaries

We fix once and for all a perfect base field k. In this section we recall
the definitions and basic properties of modulus sheaves with transfers
from [4] and [15].

(1) Denote by Sch the category of separated schemes of finite type
over k and by Sm the full subcategory of smooth schemes. For
X, Y ∈ Sm, an integral closed subscheme of X × Y that is
finite and surjective over a connected component of X is called
a prime correspondence from X to Y . The category Cor of
finite correspondences has the same objects as Sm, and for
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X, Y ∈ Sm, Cor(X, Y ) is the free abelian group on the set of
all prime correspondences from X to Y (see [16]). We consider
Sm as a subcategory of Cor by regarding a morphism in Sm
as its graph in Cor.

Let PST be the category of additive presheaves of abelian
groups on Cor whose objects are called presheaves with trans-
fers. Let NST ⊆ PST be the category of Nisnevich sheaves
with transfers and let

aVNis : PST→ NST

be Voevodsky’s Nisnevich sheafification functor, which is an ex-
act left adjoint to the inclusion NST→ PST. Let HI ⊆ PST
be the category of A1-invariant presheaves and put HINis =
HI∩NST ⊆ NST.

(2) Let Smpro be the category of k-schemes X which are essentially
smooth over k, i.e. X is a limit lim←−i∈I Xi over a filtered set I,

where Xi is smooth over k and all transition maps are étale.
Note SpecK ∈ Smpro for a function field K over k thanks
to the assumption that k is perfect. We define Corpro whose
objects are the same as Smpro and morphisms are defined as
[10, Def. 2,2]. We extend F ∈ PST to a presheaf on Corpro by
F (X) := lim−→i∈I F (Xi) for X as above.

(3) We recall the definition of the category MCor from [4, Defini-
tion 1.3.1]. A pair X = (X,D) of X ∈ Sch and an effective
Cartier divisor D on X is called a modulus pair if X − D ∈
Sm. Let X = (X,DX), Y = (Y,DY ) be modulus pairs and
Γ ∈ Cor(X−DX , Y −DY ) be a prime correspondence. Let Γ ⊆
X×Y be the closure of Γ, and let Γ

N → X×Y be the normal-
ization. We say Γ is admissible (resp. left proper) if (DX)

Γ
N ≥

(DY )
Γ
N (resp. if Γ is proper over X). Let MCor(X ,Y) be

the subgroup of Cor(X−DX , Y −DY ) generated by all admis-
sible left proper prime correspondences. The category MCor
has modulus pairs as objects and MCor(X ,Y) as the group of
morphisms from X to Y .

(4) Let MCorls ⊂ MCor be the full subcategory of (X,D) ∈
MCor with X ∈ Sm and |D| a normal crossing divisor on X.

(5) Let MCorfin ⊂ MCor be the full subcategory of the same
objects such that MCorfin(X ,Y) are generated by all admissi-
ble finite prime correspondences, where finite prime correspon-
dences are defined by replacing the left properness in (3) by
finiteness. We also define MCorfin

ls = MCorfin ∩MCorls.
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(6) There is a canonical pair of adjoint functors λ a ω:

λ : Cor→MCor X 7→ (X, ∅),

ω : MCor→ Cor (X,D) 7→ X −D,
(7) There is a full subcategory MCor ⊂MCor consisting of proper

modulus pairs, where a modulus pair (X,D) is proper if X is
proper. Let τ : MCor ↪→MCor be the inclusion functor and
ω = ωτ .

(8) Let MPST (resp. MPST) be the category of additive presheaves
of abelian groups on MCor (resp. MCor) whose objects are
called modulus presheaves with transfers. For X ∈ MCor, let
Ztr(X ) = MCor(−,X ) be the representable object of MPST.
We sometimes write X for Ztr(X ) for simplicity.

(9) By the same manner as (2), the category MCorpro is defined
and F ∈ MPST is extended to a presheaf on MCorpro (see
[10, §3.7]).

(10) The adjunction λ a ω induces a string of 4 adjoint functors
(λ! = ω!, λ∗ = ω!, λ∗ = ω∗, ω∗) (see [4, Pr. 2.3.1]):

MPST

ω!

←−
ω!−→
ω∗
←−
ω∗−→

PST

where ω!, ω∗ are localisations and ω! and ω∗ are fully faithful.
(11) The functor τ yields a string of 3 adjoint functors (τ!, τ

∗, τ∗):

MPST

τ!−→
τ∗
←−
τ∗
−→

MPST

where τ!, τ∗ are fully faithful and τ ∗ is a localisation; τ! has a
pro-left adjoint τ !, hence is exact (see [4, Pr. 2.4.1]). We will
denote by MPSTτ the essential image of τ! in MPST.

(12) The modulus pair � := (P1,∞) has an interval structure in-
duced by the one of A1 (see [7, Lem. 2.1.3]). We say F ∈
MPST is �-invariant if p∗ : F (X ) → F (X ⊗ �) is an iso-
morphism for any X ∈ MCor, where p : X ⊗ � → X is the
projection. Let CI be the full subcategory of MPST consisting
of all �-invariant objects and CIτ ⊂ MPST be the essential
image of CI under τ!.

(13) Recall from [7, Theorem 2.1.8] that CI is a Serre subcategory of

MPST, and that the inclusion functor i� : CI →MPST has
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a left adjoint h�0 and a right adjoint h0
�

given for F ∈ MPST
and X ∈MCor by

h�0 (F )(X ) = Coker(i∗0 − i∗1 : F (X ⊗�)→ F (X )),

h0
�(F )(X ) = Hom(h�0 (X ), F ).

For X ∈ MCor, we write h�0 (X ) = h�0 (Ztr(X )) ∈ CI, and by

abuse of notation, we let h�0 (X ) denote also for τ!h
�
0 (X ) ∈ CIτ .

(14) For F ∈ MPST and X = (X,D) ∈ MCor, write FX for the
presheaf on the small étale site Xét over X given by U → F (XU)
for U → X étale, where XU = (U,D|U) ∈MCor. We say F is
a Nisnevich sheaf if so is FX for all X ∈MCor (see [4, Section
3]). We write MNST ⊂ MPST for the full subcategory of
Nisnevich sheaves and put

MNSTτ = MNST∩MPSTτ , CIτNis = CIτ ∩MNSTτ .

By [4, Prop. 3.5.3] and [5, Theorem 2], the inclusion functor
iNis : MNST→MPST has an exact left adjoint aNis such that
aNis(MPSTτ ) ⊂ MNSTτ . The functor aNis has the following
description: For F ∈MPST and Y ∈MCor, let FY,Nis be the
usual Nisnevich sheafification of FY . Then, for (X,D) ∈MCor
we have

aNisF (X,D) = lim−→
f :Y→X

F(Y,f∗D),Nis(Y )

where the colimit is taken over all proper maps f : Y → X that
induce isomorphisms Y − |f ∗D| ∼−→ X − |D|.

(15) By [5, Pr. 6.2.1], ω∗ and ω! from (10) respect MNST and NST
and induce a pair of adjoint functors (which for simplicity we
write ω! and ω∗). Moreover, we have

ω!aNis = aVNisω!.

By [7, Lem. 2.3.1] and [5, Pr. 6.2.1a)], for F ∈ PST, we
have F ∈ HI (resp F ∈ HINis) if and only if ω∗F ∈ CIτ (resp
ω∗F ∈ CIτNis).

(16) We say that F ∈MPST is semi-pure if the unit map

u : F → ω∗ω!F

is injective. For F ∈ MPST (resp. F ∈ MNST), let F sp ∈
MPST (resp. F sp ∈ MNST) be the image of F → ω∗ω!F
(called the semi-purification of F . See [15, Lem. 1.30]). For
F ∈MPST we have

aNis(F
sp) ' (aNisF )sp.
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This follows from the fact that aNis is exact and commutes with
ω∗ω!. For F ∈MPSTτ we have F sp ∈MPSTτ since τ is exact
and ω∗ω!τ! = τ!ω

∗ω!.
(17) Let CIτ,sp ⊂ CIτ be the full subcategory of semipure objects

and consider the full subcategory

CIτ,spNis = CIτ,sp ∩MNSTτ ⊂ CIτNis .

By [15, Th. 0.1 and 0.4], we have aNis(CIτ,sp) ⊂ CIτ,spNis .
(18) We write RSC ⊆ PST for the essential image of CI under ω!

(which is the same as the essential image of CIτ,sp under ω!

since ω! = ω!τ! and ω!F = ω!F
sp). Put RSCNis = RSC∩NST.

The objects of RSC (resp. RSCNis) are called reciprocity
presheaves (resp. sheaves). By [15, Th. 0.1], we have

(1.0.1) aVNis(RSC) ⊂ RSCNis.

We have HI ⊆ RSC and it contains also smooth commutative
group schemes (which may have non-trivial unipotent part),
and the sheaf Ωi of Kähler differentials, and the de Rham-Witt
sheaves WnΩi (see [6] and [7]).

(19) NST is a Grothendieck abelian category by [16, Lem. 3.1.6] and
we can make RSCNis its full sub-abelian category as follows:
We define the kernel (resp. cokernel) of a map φ : F → G in
RSCNis to be that of φ as a map in NST. Here we need (1.0.1)
to ensure that the cokernel of φ in NST stays in RSCNis. By
definition, a sequence 0→ F → G→ H → 0 is exact in RSCNis

if and only if it is exact in NST.
(20) By [7, Prop. 2.3.7] we have a pair of adjoint functors:

(1.0.2) CI
ωCI

←−
ω!−→

RSC,

where ωCI = h0
�
ω∗ and it is fully faithful. It induces a pair of

adjoint functors:

(1.0.3) CIτ
ωCI

←−
ω!−→

RSC,

where ωCI = τ!h
0
�
ω∗ and it is fully faithful. Indeed, let F = τ!F̂

for F̂ ∈ CI and G ∈ RSC. In view of (13) and the exactness
and full faithfulness of τ!, we have

HomCIτ (F, τ!h
0
�ω
∗G) ' HomCI(F̂ , h

0
�ω
∗G) '

HomMPST(F̂ , ω∗G) ' HomMPST(τ!F̂ , ω
∗G) ' HomRSC(ω!F,G).
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In view of (15), (1.0.3) induce pair of adjoint functors:

(1.0.4) CIτ,spNis

ωCI

←−
ω!−→

RSCNis,

2. Purity with reduced modulus

For F ∈MPST, we put

F−1 = Ker
(

HomMPST((P1 − 0,∞), F )
i∗1−→ F

)
,

F
(1)
−1 = Ker

(
HomMPST((P1, 0 +∞), F )

i∗1−→ F
)
,

Note that if F ∈ CIτ,spNis , one has F−1, F
(1)
−1 ∈ CIτ,spNis and

(2.0.1)

F
(1)
−1 (X ) = HomMPST(h�,sp0,Nis(P

1, 0 +∞)0,HomMPST(Ztr(X ), F )),

F−1(X ) = lim−→
n

HomMPST(h�,sp0,Nis(P
1, n · 0 +∞)0,HomMPST(Ztr(X ), F ))

for X ∈MCor, where

h�,sp0,Nis(P
1, n·0+∞)0 = Coker

(
Z = Ztr(Spec k, ∅) i1−→ h�,sp0,Nis(P

1, n·0+∞)
)
.

Definition 2.1. For e1, . . . , er ∈ {0, 1}, put

τ (e1,...,er)F = τ (er) · · · τ (e1)F,

where
τ (0)F = F−1 and τ (1)F = F−1/F

(1)
−1 ,

where the quotient is taken in MPST.

The existence of retractions in the following lemma was suggested
by A. Merici. It implies τ (e1,...,er)F ∈ CIτ,spNis if F ∈ CIτ,spNis .

Lemma 2.2. For F ∈ CIτ,spNis , the inclusion F
(1)
−1 → F−1 admits a

retraction sF : F−1 → F
(1)
−1 such that for any map φ : F → G in CIτ,spNis ,

the following diagram is commutative:

F−1
sF //

φ

��

F
(1)
−1

φ
��

G−1
sF // G

(1)
−1

In particular τ (1)F ∈ CIτ,spNis if F ∈ CIτ,spNis .

Proof. In view of (2.0.1), this follows from [3, Lem. 2.4]. �
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Theorem 2.3. Let F ∈ CIτ,spNis . Let K{t1, . . . , tn} be the henselization
of K[t1, . . . , tn] at (t1, . . . , tn) and X = SpecK{t1, . . . , tn} and D =
{te11 · · · tenn = 0} ⊂ X with e1, . . . , en ∈ {0, 1}. For a subset I ⊂ [1, n]
let iH : H ↪→ X be the closed immersion defined by {ti = 0}i∈I and
DH = {

∏
j∈[1,n]−I

t
ej
j = 0} ⊂ H. Then

(2.3.1) Rνi!HF(X ,D) = 0 for ν 6= q := |I|,

and there is an isomorphism

(2.3.2) (τ (eI)F )(H,DH) ' Rqi!HF(X ,D) with eI = (ei)i∈I ∈ Zq≥0.

Proof. The proof is divided into two steps.

Step 1: We prove (2.3.1) and (2.3.2) in case q = |I| = 1.
For ν = 0 (2.3.1) follows from the semipurity of F and [15, Th.

3.1]. Thus it suffices to show (2.3.1) only for ν > 1. Let J = {j ∈
[1, n] | ej 6= 0} and r = |J |. If dim(X ) = 0, the assertion is trivial. If
r = 0, the assertion follows from [15, Cor. 8.6(3)]. Assume r > 0 and
dim(X ) ≥ 1, and proceed by the double induction on r and dim(X ).
Without loss of generality, we may assume

(♠) e1 6= 0, and H = {t1 = 0} if H ⊂ |D|.
Let ι : Z ↪→ X be the closed immersion defined by {t1 = 0} and
DZ = {te22 · · · terr = 0} ⊂ Z and D′ = {te22 · · · terr = 0} ⊂ X . By [15,
Lem. 7.1], we have an exact sequence sheaves on XNis:

0→ F(X ,D′) → F(X ,D) → ι∗(F
(e1)
−1 )(Z,DZ) → 0,

which gives rise to a long exact sequence of sheaves on HNis:
(2.3.3)

· · · → Rνi!HF(X ,D′) → Rνi!HF(X ,D) → Rνi!Hι∗(F
(e1)
−1 )(Z,DZ) → · · · .

By the induction hypothesis, Rνi!HF(X ,D′) = 0 for ν > 1. In case
H 6= Z, we have a Cartesian diagram of closed immersions

H ∩Z ι′ //

iH∩Z
��

H
iH
��

Z ι // X
and we have an isomorphism

Rνi!Hι∗(F
(e1)
−1 )(Z,DZ) ' ι′∗R

νi!H∩Z(F
(e1)
−1 )(Z,DZ).

By the induction hypothesis, Rνi!H∩Z(F
(e1)
−1 )(Z,DZ) = 0 for ν > 1 noting

F
(e1)
−1 ∈ CIτ,spNis by Lemma 2.2. So the desired vanishing follows from
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(2.3.3). Moreover, the assumptions (♠) and H 6= Z imply that H 6⊂
|D|. Then (2.3.2) (with q = 1) follows from [15, Lem. 7.1(2)].

In case Z = H, we have

Rνi!Hι∗(F
(e1)
−1 )(Z,DZ) = Rνι!ι∗(F

(e1)
−1 )(Z,DZ),

which vanishes for ν > 0. Hence (2.3.3) gives the desired vanishing
together with an exact sequence:

0→ (F
(e1)
−1 )(H,DH)

δ−→ R1i!HF(X ,D′) → R1i!HF(X ,D) → 0.

By [15, Lem. 7.1(2)] we have an isomorphism

(F−1)(H,DH) ' R1i!HF(X ,D′)

through which δ is identified with the map induced by the canonical

map F
(e1)
−1 → F−1. This proves the desired isomorphism (2.3.2) in case

Z = H and completes Step 1.

Step 2: We prove the theorem by the induction on q assuming q > 0.
Let I = {i1, . . . , iq} ⊂ [1, n] and Y ⊂ X be the closed subscheme
defined by {ti1 = 0}. Let iY : Y ↪→ X and iH,Y : H → Y be the
induced closed immersions. By Step 1 we have Rνi!YF(X ,D) = 0 for
ν 6= 1 and we have an isomorphism

(τ (ei1 )F )(Y,DY ) ' R1i!YF(X ,D) with DY = {te11 · · ·
∨
t
ei1
i1
· · · tenn = 0} ⊂ Y .

Note τ (ei1 )F ∈ CIτ,spNis by Lemma 2.2. Thus, by the induction hypoth-
esis, we have Rνi!H,Yτ

(ei1 )F(Y,DY ) = 0 for ν 6= q − 1. By the spectral
sequence

Ea,b
2 = Rbi!H,YR

ai!YF(X ,D) ⇒ Ra+bi!HF(X ,D),

we get the desired vanishing (2.3.1) and an isomorphism

Rqi!HF(X ,D) ' Rq−1i!H,YR
1i!YF(X ,D) ' Rq−1i!H,Y(τ (ei1 )F )(Y,DY )

' (τ (ei2 ,...,eiq )(τ (ei1 )F ))(H,DH) ' (τ (ei1 ,ei2 ,...,eiq )F )(H,DH),

where the third isomorphism holds by the induction hypothesis. This
completes the proof of the theorem. �

We say X = (X,D) ∈ MCor reduced if so is D. The following
corollaries 2.4 and 2.5 are immediate consequences of Theorem 2.3.

Corollary 2.4. Take F ∈ CIτ,spNis and (X,D) ∈ MCorls reduced. Let
x ∈ X(n) with K = k(x) and let X = Xh

|x be the henselization of X at
x. Then

H i
x(XNis, F(X,D)) = 0 for i 6= n.
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Choosing an isomorphism

ε : X ' SpecK{t1, . . . , tn}
such that D|X = {te11 · · · tenn = 0} ⊂ X with e1, . . . , en ∈ {0, 1}, there
exists an isomorphism depending on ε:

θε : τ (e1,e2,...,en)F (x) ' Hn
x (XNis, F(X,D)).

Corollary 2.5. For F ∈ CIτ,spNis and X = (X,D) ∈ MCorls reduced,
the following sequence is exact:

0→ F (X,D)→ F (X −D, ∅)→
⊕
ξ∈D(0)

F (Xh
|ξ − ξ, ∅)

F (Xh
|ξ, ξ)

.

The idea of deducing the following corollary from the above is due
to A. Merici.

Corollary 2.6. Let X = (X,D) ∈MCorls be reduced.

(1) Assume given an exact sequence in MNST:

(2.6.1) 0→ H
φ−→ G

ψ−→ F

such that F,G,H ∈ CIτ,spNis and that ω!ψ is surjective in NST.
If X is henselian local,

0→ H(X )→ G(X )→ F (X )→ 0

is exact.
(2) Let γ : F → G be a map in CIτ,spNis such that ω!γ is an isomor-

phism. Then F (X )→ G(X ) is an isomorphism.
(3) For F ∈ CIτ,spNis , the unit map u : F → ωCIω!F induces an

isomorphism F (X ) ∼= ωCIω!F (X ).

Proof. To show (1), it suffices to show the surjectivity of G(X ) →
F (X ). Let η ∈ X be the generic point and consider the following
commutative diagram of the Cousin complexes:

0 // H(X ) //

��

H(η) //

φ(η)

��

⊕
x∈X(1)

H1
x(X,HX ) //

H1
x(φ)

��

⊕
y∈X(2)

H2
y (X,HX )

H2
y(φ)

��
0 // G(X ) //

��

G(η) //

ψ(η)

��

⊕
x∈X(1)

H1
x(X,GX ) //

H1
x(ψ)

��

⊕
y∈X(2)

H2
y (X,GX )

H2
y(ψ)

��
0 // F (X ) // F (η) //

⊕
x∈X(1)

H1
x(X,FX ) //

⊕
y∈X(2)

H2
y (X,FX )



14 SHUJI SAITO

By Corollary 2.4, the horizontal sequences are exact. By the assump-
tion, ψ(η) is surjective. By a diagram chase we are reduced to showing
the following.

Claim 2.6.1. (i) For x ∈ X(1), the sequence

H1
x(X,HX )→ H1

x(X,GX )→ H1
x(X,FX )

is exact.
(ii) For y ∈ X(2), H2

y (φ) is injective.

To show (i), by Corollary 2.4, it suffices to show the exactness of
τ (e)H → τ (e)G→ τ (e)F for e ∈ {0, 1}. The case e = 0 follows from the
left exactness of the endofunctor HomMPST(X ,−) on MNST for any
X ∈MCor. We have a commutative diagram

τ (1)H
φ //

sH
��

τ (1)G
ψ //

sG
��

τ (1)F

sF
��

τ (0)H
φ //

pH

OO

τ (0)G
ψ //

pG

OO

τ (0)F

pF

OO

where p∗ are the projections and s∗ is a right inverse of p∗ coming from
the retractions from Lemma 2.2. We have

φ ◦ pH = pG ◦ φ, ψ ◦ pG = pF ◦ ψ, φ ◦ sH = sG ◦ φ, ψ ◦ sG = sF ◦ ψ.

By a diagram chase, the case e = 1 follows from the case e = 0.
To show (ii), by Corollary 2.4, it suffices to show the injectivity of

τ (e)H → τ (e)G for e ∈ {(0, 0), (0, 1), (1, 0), (1.1)}. The case e = (0, 0)
follows from the same left exactness as above, and the other cases from
this case thanks to Lemma 2.2.

To show (2), we may assume X is henselian local. Then it follows
from (1). (3) follows from (2) since ω!u is an isomorphism. This com-
pletes the proof of the corollary. �

3. Review on higher local symbols

In this section we recall from [12] the higher local symbols for reci-
procity sheaves, which is a fundamental tool to prove Theorem 4.2,
one of the main theorems of this paper. First we introduce some basic
notations. In this section X is a reduced noetherian separated scheme
of dimension d <∞ such that X(0) = X(d).

3.1. Let K be a field. For an integer r ≥ 0, let KM
r (K) be the Milnor

K-group of K. Let A be a local domain with the function field K. For



RECIPROCITY SHEAVES AND LOGARITHMIC MOTIVES 15

an ideal I ⊂ A, let K
M

r (A, I) ⊂ KM
r (K) denote the subgroup generated

by symbols

{1 + a, b1, . . . , br−1} with a ∈ I, bi ∈ A×.
Let A be a noetherian excellent 1-dimensional local domain with func-
tion field K and residue residue field F . Let Ã be the normalization
of A and S be the set of the maximal ideals of Ã. For m ∈ S, denote
κ(m) = Ã/m. Then we define

(3.1.1) ∂A :=
∑
m∈S

Nmκ(m)/F ◦∂m : KM
r (K)→ KM

r−1(F ),

where ∂m : KM
r (K) → KM

r−1(κ(m)) denotes the tame symbol for the

discrete valuation ring Ãm, the localization of Ã at m, and Nmκ(m)/F is
the norm map.

3.2. For x, y ∈ X we write

y < x :⇐⇒ {y} ( {x}, i.e., y ∈ {x} and y 6= x.

A chain on X is a sequence

(3.2.1) x = (x0, . . . , xn) with x0 < x1 < . . . < xn.

The chain x is a maximal Paršin chain (or maximal chain) if n = d

and xi ∈ X(i). Note that the assumptions on X imply xi ∈ {xi+1}
(1)

.
We denote

mc(X) = {maximal chains on X}.
A maximal chain with break at r ∈ {0, . . . , d} is a chain (3.2.1) with
n = d − 1 and xi ∈ X(i), for i < r, and xi ∈ X(i+1), for i ≥ r. We
denote

mcr(X) = {maximal chain with break at r on X}.
For x = (x0, . . . , xd−1) ∈ mcr(X), we denote by b(x) the set of y ∈ X(r)

such that

(3.2.2) x(y) := (x0, . . . , xr−1, y, xr, . . . , xd−1) ∈ mc(X).

In the rest of this section, we fix F = ωCIG ∈ CIτ,spNis with G ∈
RSCNis (cf. (1.0.4)). We also fix a function field K over the base
field k. Let X be an integral scheme of fintie type over K and assume
d = dim(X) ≥ 1. Recall from [12, §5] that we have a collection of
bilinear pairings (cf. the convention from §1(9))

(3.2.3)
{

(−,−)X/K,x : F (K(X))⊗KM
d (K(X))→ F (K)

}
x∈mc(X)

.

The following properties hold for all a ∈ F (K(X)) (see Remark 3.3
below):
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(HS1) Let X ↪→ X ′ be an open immersion where X ′ is an integral
K-scheme of dimension d. Then for all β ∈ KM

d (K(X))

(a, β)X/K,x = (a, β)X′/K,x.

(HS2) Let x = (x0, . . . , xd−1, xd) ∈ mc(X) and Z ⊂ X be the closure
of z = xd−1, and set x′ = (x0, . . . , xd−1) ∈ mc(Z). Assume
a ∈ F (OX,z) and let a(z) ∈ F (K(Z)) be the restriction of a.
Then

(a, β)X/K,x = (a(z), ∂zβ)Z/K,x′ for β ∈ KM
d (K(X)),

where ∂z : KM
d (K(X)) → KM

d−1(K(Z)) is the map (3.1.1) for
A = OX,z.

(HS3) Let D ⊂ X be an effective Cartier divisor with ID ⊂ OX its
ideal sheaf. Assume that X \ D is regular so that (X,D) ∈
MCorpro and that a ∈ F (X,D). For x = (x0, . . . , xd−1, xd) ∈
mc(X), we have

(a, β)X/K,x = 0 for β ∈ KM

d (OX,xd−1
, IDOX,xd−1

).

(HS4) Let x′ ∈ mcr(X) with 0 ≤ r ≤ d− 1. For β ∈ KM
d (K(X))

(a, β)X/K,x′(y) = 0 for almost all y ∈ (
¯
x′).

Assume either r ≥ 1 or that r = 0, X is quasi-projective,
and the closure of x1 in X is projective over K, where x′ =
(x1, . . . , xd). Then∑

y∈b(x′)

(a, β)X/K,x′(y) = 0.

Remark 3.3. The properties (HS1)-(HS4) are slight variants of the
(stronger) properties (HS1)-(HS4) in [12, Proposition 5.3], where the
Milnor K-group KM

d (Kh
X,x) of the iterated henselization Kh

X,x of K(X)

along the chain x is used instead of KM
d (K(X)). The version stated

here follows easily using the natural maps ιx : K(X) → Kh
X,x and the

commutative diagram in the situation of (HS2):

KM
d (Kh

X,x)
∂x // KM

d−1(Kh
Z,x′)

KM
d (K(X))

∂z //

ιx

OO

KM
d−1(K(Z)),

ιx′

OO
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and the commutative diagram in the situation of (HS4):

KM
d−1(Kh

X,x′)

ιy

��
KM
d (K(X))

ιx′
66

ιx′(y)

// KM
d−1(Kh

X,x′(y)).

where ∂x (resp. ιy) is defined in [12, (4.1.1)] (resp. [12, (3.2.3)]).

We also note that K
M

d (OX,xd−1
, IDOX,xd−1

) in (HS2) coincides with the

Zariski stalk at xd−1 of the sheaf V d,X|D defined in [12, 4.4].

For a scheme Z over k, write ZK = Z ⊗k K. If ZK is integral, we
denote by K(Z) the function field of ZK . We quote the following result
from [12, Pr. 7.3]. It is a key tool in the proof of Theorem 4.2.

Proposition 3.4. Let X ∈ Sm and assume D is a reduced SNCD
on X with ID ⊂ OX its ideal sheaf. Let U ⊂ X be an open subset
containing all the generic points of D. Let a ∈ F (X \D). Assume that
for all function fields K/k and for all x = (x0, . . . , xd−1, xd) ∈ mc(UK)

with xd−1 ∈ D(0)
K , we have

(a, β)XK/K,x = 0 for all β ∈ KM
(OX,xd−1

, IDOX,xd−1
).

Then a ∈ F (X,D).

4. Logarithmic cohomology of reciprocity sheaves

For X = (X,D) ∈ MCorls, we write Xred = (X,Dred) ∈ MCorls.
We say X = (X,D) ∈MCorls is reduced if X = Xred.

Definition 4.1. Let F ∈MPST.

(1) We say that F is log-semipure if for any X ∈MCorls, the map
F (Xred) → F (X ) is injective. Note that if F is semipure, F is
log-semipure (cf. §1(16)).

(2) We say that F is logarithmic if it is log-semipure and satisfies
the condition that for X ,Y ∈MCorls with X reduced and α ∈
MCorfin(Y ,X ), the image of α∗ : F (X ) → F (Y) is contained
in F (Yred) ⊂ F (Y).

Let MPSTlog be the full subcategory of MPST consisting of logarith-
mic objects and put MNSTlog = MNST∩MPSTlog.

Theorem 4.2. Any F ∈ CIτ,spNis is logarithmic, i.e. CIτ,spNis ⊂MNSTlog.

We need a preliminary for the proof of the theorem.
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Lemma 4.3. Let F ∈ CIτ,spNis . Let An
K = SpecK[x1, . . . , xn] be the

affine space over a function field K over k and V = SpecK{x1, . . . , xn}
be the henselization of An

K at the origin and Li = {xi = 0} ⊂ V for
i ∈ [1, n]. For an integer 0 < r ≤ n, the natural map

K{xr+1, . . . , xn}[x1, . . . , xr]→ K{x1, . . . , xn}
induces a map in MCorpro (cf. §1(9)):

ρr : (V,L1 + · · ·+ Lr)→ (Ar
S, {x1 · · ·xr = 0}) ' (A1, 0)⊗r ⊗ (S, ∅),

where S = SpecK{xr+1, . . . , xn}. It induces

(4.3.1) ρ∗r : F (Ar
S, {x1 · · ·xr = 0})→ F (V,L1 + · · ·+ Lr)

Then F (V,L1 + · · ·+ Lr) is generated by the image of ρ∗r and

F (V,L1 + · · ·+
∨
Li + · · · Lr) for i = 1, . . . , r.

Proof. For Y ∈ MCor, let FY ∈ MPST be defined by FY(Z) =
F (Y ⊗Z). Clearly, we have FY ∈ CIτ,spNis for F ∈ CIτ,spNis . We prove the
lemma by the induction on r. The case r = 1 holds since by [15, Lem.
7.1 and Lem 5.9], ρ1 induces an isomorphism

F (A1,0)(S)/F (A1,∅)(S)
'−→ F (V,L1)/F (V ).

By definition L1 = SpecK{x2, . . . , xn} and we have a map in MCorpro:

(V,L1 + · · ·+ Lr)→ (A1, 0)⊗ (L1,L1 ∩ (L2 + · · ·+ Lr))
induced by the natural map K{x2, . . . , xn}[x1] → K{x1, . . . , xn}. By
[15, Lem. 7.1 and Lem 5.9], it induces an isomorphism

F (A1,0)(L1, E)/F (A1,∅)(L1, E)
'−→ F (V,L1+· · ·+Lr)/F (V,L2+· · ·+Lr)

with E = L1∩(L2+· · ·+Lr). By the induction hypothesis, F (A1,0)(L1, E)

is generated by F (A1,0)(L1, Ej) with Ej = L1 ∩ (L2 · · · +
∨
Lj + · · · Lr)

for j = 2, . . . , r together with the image of the map

(F (A1,0))(A1,0)⊗r−1

(S) = F (A1,0)⊗r(S)→ F (A1,0)(L1, E)

induced by

(L1, E)→ (Ar−1
S , {x2 · · ·xr = 0}) ' (A1, 0)⊗r−1 ⊗ (S, ∅)

coming from the map K{xr+1, . . . , xn}[x2, . . . , xr] → K{x2, . . . , xd}.
This proves the lemma. �

Proof of Theorem 4.2 : By Corollary 2.6(3), we may assume F = ωCIG
for G ∈ RSCNis. Take X = (X,D),Y = (Y,E) ∈ MCorls with X
reduced and let α ∈MCorfin(Y ,X ) be an elementary correspondence.
We need to show that α∗(F (X )) ⊂ F (Yred). The question is Nisnevich
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local over X and Y . Hence we may assume (X,D) = (V,L1+· · ·+Lr) ∈
MCorpro under the notation from Lemma 4.3. If r = 0, we have
α ∈ MCor((Y, ∅), (X, ∅)) by the assumption α ∈ MCorfin(Y ,X ) so
that

α∗(F (X )) = α∗(F (X, ∅)) ⊂ F (Y, ∅) ⊂ F (Yred).

Assume r > 0 and proceed by the induction on r. By Lemma 4.3, we
may assume then

(X,D) =M := (A1, 0)⊗r ⊗ (S, ∅) for S ∈ Smpro .

On the other hand, by Corollary 2.5, we have an exact sequence

0→ F (Y,Ered)→ F (Y − Ered, ∅)→
⊕
ξ∈E(0)

F (Y h
|ξ − ξ, ∅)

F (Y h
|ξ , ξ)

.

Hence we may replace Y with its Nisnevich neighborhood of a generic
point ξ of E. Using the assumption that k is perfect, we may then
assume the following condition (♠). Recall that α is by definition an
integral closed subscheme of (Y − E)× (X −D) finite surjective over
Y − E and its closure α in Y ×X is finite surjective over Y .

(♠) Let Y ′ be the normalization of α and E ′ := E ×Y Y ′. Then,
X, Y , E and E ′ are irreducible, and α, Y ′, Ered and E ′red are
essentially smooth over k.

Let g : Y ′ → Y and f : Y ′ → X be the induced maps. We have
E ′ = g∗E ≥ f ∗D as Cartier divisors on Y ′ by the modulus condition
for α. Hence these maps induce

F (X,D)
f∗−→ F (Y ′, E ′)

g∗−→ F (Y,E).

We claim that α∗ : F (X,D)→ F (Y,E) agrees with this map. Indeed,
this follows from the equality

Γf ◦t Γg = α ∈ Cor(Y − E,X −D),

where tΓg ∈ Cor(Y − E, Y ′ − E ′) is the transpose of the graph of g
and Γf ∈ Cor(Y ′ − E ′, X − D) is the graph of f . By definition this
follows from the equality

tΓg ×Y ′−E′ Γf = α ⊂ (Y − E)× (X −D)
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which one can check easily noting Y ′ → α is an isomorphism over α
since α is regular by (♠). Then we get a commutative diagram

F (Y ′, E ′red)

↪→
��

F (Y ′, Ered ×Y Y ′)
g∗ //

↪→
��

F (Y,Ered)

↪→
��

F (X,D)
f∗ // F (Y ′, E ′)

g∗ // F (Y,E)

where the top inclusion comes from the inequality Ered×Y Y ′ ≥ E ′red as
Cartier divisors on Y ′ thanks to the sempurity of F (cf. §1(16)). Hence
it suffices to show f ∗(F (X,D)) ⊂ F (Y ′, E ′red). By replacing (Y,E)
with (Y ′, E ′), we may now assume that α is induced by a morphism
f : Y → X = Ar × S. Then α factors in MCor as

(Y,E)
i−→ (A1, 0)⊗r ⊗ (Y, ∅)→ (A1, 0)⊗r ⊗ (S, ∅),

where the first map is induced by the map

i = (prAr ◦ f, idY ) : Y → Ar × Y,

and the second induced by

idAr × (prS ◦ f) : Ar × Y → Ar × S.

Note that i is a section of the projection Ar×Y → Y . Thus we are re-
duced to showing i∗(F ((A1, 0)⊗r⊗(Y, ∅)) ⊂ F (Y,Ered). By Proposition
3.4 this follows from the following.

Claim 4.3.1. Take a ∈ F ((A1, 0)⊗r ⊗ (Y, ∅)). There exists an open
neighborhood U ⊂ Y of the generic point of E such that for every
function field K over k and every δ = (δ0, . . . , δe−1, δe) ∈ mc(UK) with

ξ := δe−1 ∈ E(0)
K and e = dim(Y ), we have

(i∗(a)K , γ)YK/K,δ = 0 for ∀γ ∈ KM

e (OYK ,ξ,mξ)

for the pairing from (3.2.3):

(−,−)YK/K,δ : F (K(Y ))⊗KM
d (K(Y ))→ F (K).

Proof. After replacing Y by an open neighborhood of the generic point
of E, we may assume that Y = Spec(A) is affine andEred = Spec(A/(π))
for π ∈ A and moreover that writing

Ar×Y = SpecA[x1, . . . , xr], (A1, 0)⊗r⊗(Y, ∅) = (Ar
Y , {x1 · · ·xr = 0}),
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we have

i(Y ) =
⋂

1≤i≤r

{xi − uiπmi = 0} with mi ∈ Z≥0, ui ∈ A×.

Let δ = (δ0, . . . , δe) be as in the claim and put δ′ = (δ0, . . . , δe−1) ∈
mc((Ered)K). Put X̃K = Ar × YK and F = {π = 0} ⊂ X̃K . Note
d := dim(X̃K) = e+ r. Let zj for e ≤ j ≤ d− 1 be the generic point of

Zj =
⋂

1≤i≤d−j

{xi − uiπmi = 0} ⊂ X̃K

which lies over δe
5, and wj for e− 1 ≤ j ≤ d− 2 be the generic point of

Wj = F ∩ Zj+1 = {π = x1 = · · · = xd−j−1 = 0}
which is contained in the closure of zj+1. Note dim(Zj) = dim(Wj) = j
and the section i induces isomorphisms

(4.3.2) YK ' Ze and (Ered)K ' We−1.

Let σ = (i(δ′), we, . . . , wd−2, η1, ν) ∈ mc(X̃K), where ν is the generic
point of X̃K lying over δe and η1 is the generic point of D1 = {x1 =
0} ⊂ X̃K contained in the closure of ν and i(δ′) ∈ mc(We−1) is the

image of δ′ under (4.3.2). Take any γ ∈ KM

e (OYK ,ξ,mξ) and put

(4.3.3) β = {ι(γ),
u1π

m1 − x1

u1πm1
, . . . ,

urπ
mr − xr
urπmr

} ∈ KM
d (OX̃K ,ν),

where ι : KM
e (OYK ,δe) → KM

e (OX̃K ,ν) is induced by the projection

X̃K → YK . For a ∈ F ((A1, 0)⊗r ⊗ (Y, ∅)) and its restriction aK ∈
F ((A1, 0)⊗r ⊗ (YK , ∅)), we have

0 = (aK , β)X̃K/K,σ = −
∑

τ∈X̃(1)
K −{η1}

τ>wd−2

(aK , β)X̃K/K,(i(δ′),we,...,wd−2,τ,ν)

= −(aK , β)X̃K/K,(i(δ′),we,...,wd−2,zd−1,ν)

= ±((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−2,zd−1),

β1 = {ι1(γ),
u2π

m2 − x2

u2πm2
, . . . ,

urπ
mr − xr
urπmr

} ∈ KM
d−1(OZd−1,zd−1

)

where ι1 : KM
e (OYK ,δe) → KM

e (OZd−1,zd−1
) is induced by the dominant

map Zd−1 → YK induced by the projection X̃K → YK . The first
equality follows from §3 (HS3) applied to D1 ⊂ X̃K noting that β lies in

K
M

d (OX̃K ,η1
,mη1) since (u1π

m1−x1)/u1π
m1 ∈ 1+x1OX̃K ,η1

. The second

5Although Y is assumed to be irreducible, YK may not be so and possibly a
finite product of schemes essentially smooth over k noting k is perfect.
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follows from (HS4). The third equality holds since zd−1 is the unique

τ ∈ X̃(1)
K − {η1} such that τ > wd−2 and (aK , β)X̃K/K,(i(δ′),we,...,wd−2,τ,ν)

may not vanish, which follows from (HS2) noting ι(γ)|F = 0. Finally
the last equality follows from (HS2). When r = 1, the last term in the
above formula is equal to ((aK)|YK , γ)YK/K,δ by (4.3.2) so that the proof
is complete. When r > 1, we further get

0 = ((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−2,zd−1)

= −
∑

τ∈Z(1)
d−1−{wd−2}
τ>wd−3

((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−3,τ,zd−1)

= −((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−3,zd−2,zd−1)

= ±((aK)|Zd−2
, β2)Zd−2/K,(i(δ′),we,...,wd−3,zd−2),

β2 = {ι2(γ),
u3π

m3 − x3

u3πm3
, . . . ,

urπ
mr − xr
urπmr

} ∈ KM
d−1(OZd−2,zd−2

),

where ι2 : KM
e (OYK ,δe) → KM

e (OZd−2,zd−2
) is induced by the domi-

nant map Zd−2 → YK induced by the projection X̃K → YK . The
above equalities hold by the same arguments as above except that

for the third equality, there are a priori two τ ∈ Z(1)
d−1 − {wd−2} with

τ > wd−3 for which ((aK)|Zd−1
, β1)Zd−1/K,(i(δ′),we,...,wd−3,τ,zd−1) may not

vanish. One is zd−2 and another is the generic point η2 of Zd−1 ∩
D2 with D2 = {x2 = 0} ⊂ X̃K which is contained in the closure
of zd−1. But ((aK)|Zd−1

, β1)Zd−1/K,(i(δ′),we,...,wd−3,η2,zd−1) = 0. Indeed,
(aK)|Zd−1

∈ F (Spec(OZd−1,η2), η2) since Zd−1 and D2 intersect transver-

sally in X̃K . Hence the vanishing follows from (HS3) applied to Zd−1∩
D2 ⊂ Zd−1 noting

(
(u2π

m2 − x2)/u2π
m2
)
|Zd−1

∈ 1 + x2OZd−1,η2 so that

β1 ∈ KM
d (OZd−1,η2 ,mη2). Repeating the same arguments, we finally get

0 = ((aK)|Ze , ιr(γ))Ze/K,(i(δ′),ze) = ((aK)|YK , γ)YK/K,δ,

where ιr : KM
e (OYK ,δe) → KM

e (OZe,ze) is induced by the isomorphism

Ze → YK induced by the projection X̃K → YK and the second equal-
ity follows from (4.3.2). This completes the proof of the claim and
Theorem 4.2. �

Definition 4.4. For F ∈MNSTlog and an integer i ≥ 0, consider the
association

H i
log(−, F ) : MCorfin

ls → Ab ; (X,D)→ H i(XNis, F(X,Dred)).

By the definition this gives a presheaf on MCorfin
ls , which we call the

i-th logarithmic cohomology with coefficient F .
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5. Invariance of logarithmic cohomology under blowups

Let the notation be as in §4.

Definition 5.1. Let Λfin
ls be the class of morphisms ρ : (Y,E)→ (X,D)

in MCorfin
ls satisfying the following conditions:

(a) ρ is induced by a proper morphism ρ : Y → X inducing an

isomorphism Y \ E '−→ X \D and E = ρ∗D.
(b) Zariski locally on X, ρ : Y → X is the blowup of X in a smooth

center Z ⊂ D which is normal crossing to D.

Here, a smooth Z contained in D is normal crossing to D if letting
D1, . . . , Dn be the irreducible components of D, there exists a subset
I ⊂ {1, . . . , n} such that Z ⊂ ∩

i∈I
Di and Z is not contained in Dj for

any j 6∈ I and intersects
∑
j 6∈I
Dj transversally. Note that the condition

is equivalent to that called strict normal crossing in [2, Def. 7.2.1].

Theorem 5.2. For F ∈ CIτ,spNis and ρ : Y → X in Λfin
ls , we have

(5.2.1) ρ∗ : H i
log(X , F ) ∼= H i

log(Y , F ) for ∀i ≥ 0.

Proof. Write Y = (Y,E) and X = (X,D). First we prove the theorem
in case i = 0. We may assume that D is reduced and E = ρ∗D. By
[4, Pr. 1.9.2 b)], ρ is invertible in MCor so that ρ∗ : F (X ) ∼= F (Y).
Since this factors through F (Y,Ered) by Theorem 4.2, we get (5.2.1)
for i = 0.

To show (5.2.1) for i > 0, it suffices to prove Riρ∗F(Y,Ered) = 0. The
problem is Nisnevich local so we may assume that ρ is induced by a
blowup ρ : Y → X in a smooth center Z ⊂ D normal crossing to
D. By [8, Cor. 9], Nisnevich locally around a point of Z, (X,D) is
isomorphic to

(Ac, L1 + · · ·+ Lr)⊗W with W = (W,W∞) ∈MCorls,

where Ac = Spec k[t1, . . . , tc] with c = codimz(Z,X) and Li = V (ti)
for i = 1, . . . , r with 1 ≤ r ≤ c, and Z corresponds to 0 ×W . Hence
the theorem follows from the following proposition. �

Proposition 5.3. Let F ∈ CIτ,spNis and W = (W,W∞) ∈ MCorls.
Let An = Spec k[t1, . . . , tn] and put Li = V (ti) for 1 ≤ i ≤ n. Let
ρ : Y → An be the blow-up at the origin 0 ∈ An and L̃i ⊂ Y be the
strict transforms of Li for 1 ≤ i ≤ n and E = ρ−1(0) ⊂ Y . For any
1 ≤ r ≤ n, we have

(5.3.1) RiρW∗F(Y,L̃1+···+L̃r+E)⊗W = 0 for i ≥ 1,

where ρW := ρ× idW : Y ×W → A2 ×W .
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Lemma 5.4. Proposition 5.3 holds for n = 2.

Proof. The case r = 1 is proved in [3, Lem. 2.13] and we show the case
r = 2.6 Put D = L1 + L2. By the case i = 0 of Theorem 5.2, we get

(5.4.1) F(A2,D)⊗W ∼= ρW∗F(Y,L̃1+L̃2+E)⊗W .

Set
F := F(Y,L̃1+L̃2+E)⊗W ,

and A2
W = A2 ×W with the projection p : A2

W → W . Since RiρW∗F
for i ≥ 1 is supported in 0×W , we have

RiρW∗F = 0⇐⇒ p∗R
iρW∗F = 0

⇐⇒ (p∗R
iρW∗F)w = 0 for ∀w ∈ W

⇐⇒ H0(A2
Ww
, RiρW∗F) = 0 for ∀w ∈ W,

where Ww is the henselization of W at w. Hence, it suffices to show
H0(A2

W , R
iρW∗F) = 0 assuming W is henselian local. Then, we have

Hj(A2
W , R

iρW∗F) = 0, for all i, j ≥ 1.

By (5.4.1) and [3, Lem. 2.10]

H i(A2
W , ρW∗F) = H i(A2

W , F(A2,D)⊗W) = 0.

Thus the Leray spectral sequence yields

H0(A2
W , R

iρW∗F) = H i(Y ×W,F), i ≥ 0,

and we have to show, that this group vanishes for i ≥ 1. We can write

A2 = Spec k[x, y] and L1 = V (x), L2 = V (y) ⊂ A2.

Then we have

Y = Proj k[x, y][S, T ]/(xT − yS) ⊂ A2 ×P1.

Denote by
π0 : Y ↪→ A2 ×P1 → P1 = Proj k[S, T ]

the morphism induced by projection and let π : Y ×W → P1
W be its

base change. Then π0 induces an isomorphism E ' P1, and we have

(5.4.2) L̃1 = π−1
0 (0), L̃2 = π−1

0 (∞).

Set s = S/T = x/y and write

P1 \ {∞} = A1
s := Spec k[s], P1 \ {0} = Spec k[1

s
].

Set U := A1
s ×W and V := (P1 \ {0})×W and

U := (A1
s, 0)⊗W , V := (P1 \ {0},∞)⊗W .

6The following argument is adopted from [3, Lem. 2.13], but the present case is
easier.
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We have

π−1(U) = A1
y × U, π−1(V ) = A1

x × V,
and the restriction of π to these open subsets is given by projection.
Furthermore, E ×W ⊂ Y is defined by y = 0 on π−1(U) and by x = 0
on π−1(V ). In view of (5.4.2), we have

(5.4.3) F|π−1(U) = F(A1
y ,0)⊗U , F|π−1(V ) = F(A1

x,0)⊗V .

Thus [3, Lem. 2.10] yields

Rjπ∗F = 0 for j ≥ 1,

and it remains to show

(5.4.4) H i(P1
W , π∗F) = 0 for i ≥ 1.

where P1
W = P1 ×W . For this consider the map

a0 : Y → A1
x ×P1

which is the closed immersion Y ↪→ A2×P1 followed by the projection
A2 → A1

x. Let a : Y ×W → A1
x×P1×W be its base change. In view

of (5.4.2), the map a induces a morphism in MCor:

α : (Y, L̃1 + L̃2 + E)⊗W → (A1
x, 0)⊗ (P1,∞)⊗W ,

which is an isomorphism over (A1
x, 0)⊗ (P1\{0},∞)⊗W . Setting

F1 := Hom(Ztr(A
1
x, 0), F ) ∈ CIτ,spNis ,

it induces a map of Nisnevich sheaves on P1
W :

π∗(α
∗) : F1,(P1,∞)⊗W → π∗F ,

which becomes an isomorphism over (P1 − {0}) ×W . Hence (5.4.4)
follows from

H i(P1
W , F1,(P1,∞)⊗W) = 0 for i ≥ 1,

which follows from [15, Th. 0.6]. �

Lemma 5.5. Let N > 2 be an integer and assume that Proposition
5.3 holds for n < N . Let (X,D) ∈ MCorls and Z ⊂ X be a smooth
integral closed subscheme with 2 ≤ codim(Z,X) =: c < N . Assume

D = D1 + · · ·+Dr +D′ with r ≤ c,

where D1, . . . , Dr are distinct and reduced irreducible components of
D containing Z and D′ is an effective divisor on X such that none
of the component of D′ contains Z and Z is transversal to |D′|. Let
ρ : Y → X be the blow-up of X in Z and D̃i, D̃

′ ⊂ Y be the strict
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transforms of Di and D′ respectively and EZ = ρ−1(Z). Then, for all
W = (W,W∞) ∈MCorls,

RiρW∗F(Y,D̃1+···+D̃r+EZ+D̃′)⊗W = 0 for i ≥ 1,

where ρW : Y ×W → X ×W denotes the base change of ρ.

Proof. 7 The question is Nisnevich local around the points in Z ×W .
Let z ∈ Z ×W be a point and set A := OhX×W,z. For V ⊂ Y ×W we
denote by V(z) := V ×X×W SpecA. By assumption we find a regular
system of local parameters t1, . . . , tm of A, such that

(Di ×W )(z) = V (ti) for 1 ≤ i ≤ r, (Z ×W )(z) = V (t1, . . . , tc),

(D′ ×W )(z) = V (t
ec+1

c+1 · · · t
em0
m0 ) with c+ 1 ≤ m0 ≤ m,

(X ×W∞)(z) = V (t
em0+1

m0+1 · · · t
em1
m1 ) with m0 ≤ m1 ≤ m.

LettingK be the residue field of A, we can choose a ring homomorphism
K ↪→ A which is a section of A→ K. Then we obtain an isomorphism

K{t1, . . . , tm}
'−→ A.

Let ρ1 : Ãc → Ac be the blow-up in 0. By the above

ρW : (Y, D̃1 + · · ·+ D̃r + EZ + D̃′)⊗W → (X,D)⊗W
is Nisnevich locally around z isomorphic over k to the morphism

(Ãc, L̃1 + · · ·+ L̃r + E)⊗W ′ → (Ac, L1 + · · ·+ Lr)⊗W ′,

(W ′ = (Am−c
K , (

m1∏
i=c+1

teii )))

induced by a map (Ãc, L̃1 + · · ·+ L̃r + E)→ (Ac, L1 + · · ·+ Lr) as in
Proposition 5.3. Hence the statement follows from the proposition for
n = c < N . �

Proof of Proposition 5.3. The proof is by induction on n ≥ 2. The case
n = 2 follows from Lemma 5.4. Assume n > 2 and the proposition is
proven for Am with m < n. In case r = 1, Proposition 5.3 is proved
in [3, Th. 2.12]. Assume r ≥ 2. Let Z := L1 ∩ L2 ⊂ An and Z̃ ⊂ Y
be the strict transform of Z. Denote by ρ′ : Y ′ → Y the blow-up of Y
in Z̃ and L̃′i, E

′ ⊂ Y ′ be the strict transforms of L̃, E respectively and
E ′′ = (ρ′)−1(Z̃). Note that Z̃ = L̃1 ∩ L̃2 intersecting transversally with
L̃3 + · · ·+ L̃r + E and codim(Z̃, Y ) = 2. Hence, by Lemma 5.5

Riρ′W∗F(Y ′,L̃′1+···+L̃′r+E′+E′′)⊗W = 0 for i ≥ 1.

7The proof is adopted from [3, Lem. 2.14].
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Since Theorem 5.2 has been proved for i = 0, we have

ρ′∗F(Y ′,L̃′1+···+L̃′r+E′+E′′)⊗W = F(Y,L̃1+···+L̃r+E)⊗W .

Hence we obtain

(5.5.1) RiρW∗F(Y,L̃1+···+L̃r+E)⊗W = Ri(ρρ′)W∗F(Y ′,L̃′1+···+L̃′r+E′+E′′)⊗W .

Denote by σ : Ŷ → An the blow-up in Z and L̂i ⊂ Ŷ be the strict
transform of Li and Ξ = σ−1(Z). By Lemma 5.5 we get

(5.5.2) RiσW∗F(Ŷ ,L̂1+···+L̂r+Ξ)⊗W = 0 for i ≥ 1.

Denote by σ′ : Ŷ ′ → Ŷ the blow-up in Ẑ = σ−1(0) ⊂ Ξ and L̂′i, Ξ′ ⊂ Ŷ ′

be the strict transforms of L̂i, Ξ respectively and Ξ′′ = σ′−1(Ẑ). Note

that Ẑ ⊂ L̂3 ∩ · · · ∩ L̂n ∩ Ξ and codim(Ẑ, Ŷ ) = n− 1 and Ẑ intersects

transversally with L̂1 + L̂2. Thus by Lemma 5.5 and the case i = 0 of
Theorem 5.2, we obtain

(5.5.3) Rσ′W∗F(Ŷ ′,L̂′1+···+L̂′r+Ξ′+Ξ′′)⊗W = F(Ŷ ,L̂1+···+L̂r+Ξ)⊗W .

Finally, by [3, Lem. 2.15], there is an isomorphism of An×W -schemes

(5.5.4) (Ŷ ′, L̂′1, . . . , L̂r,Ξ
′,Ξ′′) ∼= (Y ′, L̃′1, . . . , L̃

′
r, E

′, E ′′).

Altogether we obtain for i ≥ 1

RiρW∗F(Y,L̃1+···+L̃r+E)⊗W = Ri(ρρ′)W∗F(Y ′,L̃′1+···+L̃′r+E′+E′′)⊗W , by (5.5.1),

= Ri(σσ′)W∗F(Ŷ ′,L̂′1+···+L̂′r+Ξ′+Ξ′′)⊗W , by (5.5.4),

= RiσW∗F(Ŷ ,L̂1+···+L̂r+Ξ)⊗W , by (5.5.3),

= 0, by (5.5.2).

This completes the proof of the proposition. �

Remark 5.6. For simplicity, we write

H i
log(−, F ) = H i

log(−, ωCIF ) for F ∈ RSCNis.

By [10, Cor. 6.8], if ch(k) = 0 and F = Ωi, we have

H i
log(−,Ωi) = H i(X,Ωi(log |D|) for (X,D) ∈MCorls .

Hence H i
log(−, F ) for F ∈ RSCNis is a generalization of cohomology of

sheaves of logarithmic differentials.
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6. Relation with logarithmic sheaves with transfers

In this section we use the same notations as [2].
Let lSm be the category of log smooth and separated fs log schemes

of finite type over the base field k and SmlSm ⊂ lSm be the full
subcategory consisting of objects whose underlying schemes are smooth
over k. Let lCor be the category with the same objects as lSm and
whose morphisms are log correspondences defined in [2, Def. 2.1.1].
Let lCorSmlSm ⊂ lCor be the full subcategory consisting of all objects
in SmlSm.

Let PShltr be the category of additive presheaves of abelian groups
on lCor and Shvltr

dNis ⊂ PShltr be the full subcategory consisting of
those F whose restrictions to lSm are dividing Nisnevich sheaves (see
[2, Def. 3.1.4]). It is shown in [2, Th. 1.2.1 and Pr. 4.7.5] that
Shvltr

dNis is a Grothendieck abelian category and there is an equivalence
of categories

(6.0.1) Shvltr
dNis ' Shvltr

dNis(SmlSm),

where the right hand side denotes the full subcategory of the category
PShltr(SmlSm) of additive presheaves of abelian groups on lCorSmlSm

consisting of those F whose restrictions to SmlSm are dividing Nis-
nevich sheaves.

Now we construct a functor

(6.0.2) Log : MNSTlog → Shvltr
dNis.

For X = (X,M) ∈ SmlSm, we put XMP = (X, ∂X), where ∂X ⊂ X is
the closed subscheme consisting of the points where the log-structure
M is not trivial. By [2, Lem. A.5.10], ∂X with reduced structure is a
normal crossing divisor on X so that we can view XMP as an objects
of MCorls. For F ∈MPSTlog and X ∈ SmlSm, we put

(6.0.3) F log(X) = F (XMP ).

Take Y ∈ SmlSm and α ∈ lCor(Y,X). By [2, Def. 2.1.1 and Rem.
2.1.2(iii)], we have

α ∈MCorfin((Y, n · ∂Y), (X, ∂X)) for some n > 0,

where n · ∂Y ↪→ Y is the n-th thickening of ∂Y ↪→ Y . By the assump-
tion F ∈MPSTlog, the induced map

F log(X) = F (XMP )
α∗−→ F (Y, n · ∂Y)

factors through F log(Y) = F (Y, ∂Y) ⊂ F (Y, n · ∂Y) and we get a map

α∗ log : F log(X)→ F log(Y).
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Moreover, for a map γ : F → G in MPSTlog, the diagram

F log(X)
γ //

α∗ log

��

Glog(X)

α∗ log

��
F log(Y)

γ // Glog(Y)

is obviously commutative. Hence the assignment X → F log(X ) gives
an object F log of PShltr(SmlSm) and we get a functor

(6.0.4) Log : MPSTlog → PShltr(SmlSm) ; F → F log.

By the definitions of sheaves ([4, Def. 1] and [2, Def. 3.1.4]) and [4,
Pr. 1.9.2], this induces a functor

MNSTlog → Shvltr
dNis(SmlSm)

which induces the desired functor (6.0.2) using (6.0.1). By the construc-
tion, for F ∈ MNSTlog and X ∈ SmlSm with X = XMP ∈ MCorls,
we have

(6.0.5) H i
Nis(X,FX ) = H i

sNis(X, F
log) (F log = Log(F )),

where the right hand side is the cohomology for the strict Nisnevich
topology (see [2, Def. 4.3.1]).

Theorem 6.1. For F ∈ CIτ,spNis , F log = Log(F ) ∈ Shvltr
dNis is strictly

�-invariant in the sense [2, Def. 5.2.2]. For X ∈ SmlSm with X =
XMP ∈MCorls, we have a natural isomorphism

(6.1.1) H i
Nis(X,FX ) ' HomlogDMeff (M(X), F log[i]),

where logDMeff is the triangulated category of logarithmic motives de-
fined in [2, Def. 5.2.1].

Proof. Let XSm
div be the category of log modifications Y→ X such that

Y ∈ SmlSm (see [2, Def. A.11.12]) and XSm
divsc ⊂ XSm

div be the full
subcategory given by those maps Y→ X that are isomorphic to com-
positions of log modifications along smooth centers (see [2, Def. 4.4.4
and A.14.10]). We have isomorphisms

H i
Nis(X,FX )

(6.0.5)
' H i

sNis(X, F
log)

(∗1)
' lim−→

Y∈XSmdivsc

H i
sNis(Y, F

log)

(∗2)
' lim−→

Y∈XSmdiv

H i
sNis(Y, F

log)
(∗3)
' H i

dNis(X, F
log),

where (∗2) follows from [2, Cor. 4.4.5] and (∗3) from [2, Th. 5.1.8],
and (∗1) is a consequence of Theorem 5.2 in view of (6.0.5) and the
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fact that a log modification of X = (X,M) ∈ SmlSm along smooth
center is induced Zariski locally by a blow up of X in an intersection
of irreducible components of ∂X so that it corresponds to a morphism
in Λfin

ls from Definition 5.1.
Hence the strict �-invariance of F log follows from [15, Th. 0.6].

Finally (6.1.1) follows from [2, Pr. 5.2.3]. �

Now we consider the composite functor

Log′ : RSCNis
ωCI

−→ CIτ,spNis

Log−→ CIltr
dNis,

where CIltr
dNis ⊂ Shvltr

dNis is the full subcategory consisting of strictly
�-invariant objects. By [1, Th. 5.7], CIltr

dNis is a Grothendieck abelian
category.

Lemma 6.2. Log and Log′ have the same essential image.

Proof. This follows directly from the construction and Corollary 2.6(3).
�

In what follows, we let

(6.2.1) Log : RSCNis → CIltr
dNis : F → F log

denote Log′ defined as above. By (6.0.3), we have

(6.2.2) F log(X, triv) = F (X) for F ∈ RSCNis, X ∈ Sm,

where (X, triv) denotes the log-scheme with the trivial log structure.

Theorem 6.3. Log is exact and fully faithful.

Proof. First we prove the full faithfulness. The faithfulness follows from
(6.2.2). Let F,G ∈ RSCNis and γ : F log → Glog be a map in Shvltr

dNis.
By (6.2.2) it induces maps γX : F (X)→ G(X) for all X ∈ Sm. They
are compatible with the action of Cor since by [2, Example 2.1.3(3)],

Cor(Y,X) = lCor(Y, triv), (X, triv)) for X, Y ∈ Sm .

Thus γX for X ∈ Sm give a map γRSCNis
: F → G in RSCNis. To see

Log(γRSCNis
) = γ, it suffices by (6.0.1) to show that Log(γRSCNis

) and
γ induce the same map F log(X) → Glog(X) for X ∈ SmlSm. If X has
the trivial log-structure, this follows immediately from the construction
of γRSC. The general case follows from this in view of the commutative
diagram

F log(X)
γ //

j∗

��

Glog(X)

j∗

��
F log(X\∂X, triv)

γ // Glog(X\∂X, triv)
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where j∗ are induced by the natural map (X\∂X, triv) → X of log-
schemes and are injective by the construction and the semipurity of
ωCIF . This completes the proof of the full faithfulness.

Next we show the exactness of Log. It suffices to show the following.

Claim 6.3.1. Given an exact sequence 0 → F → G → H → 0 in
RSCNis, the induced sequence

0→ F log(X)→ Glog(X)→ H log(X)→ 0

is exact for every X ∈ SmlSm with X henselian local.

Indeed, by the definition of Log, this is reduced to the exactness of

0→ ωCIF (XMP )→ ωCIG(XMP )→ ωCIH(XMP )→ 0,

which follows from Corollary 2.6(2). This completes the proof of The-
orem 6.3. �
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