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Abstract. We suggest an analog of the Bass–Quillen conjecture for
smooth affinoid algebras over a complete non-archimedean field. We
prove this in the rank-1 case, i.e. for the Picard group. For complete
discretely valued fields of residue characteristic 0 we prove a similar
statement for the Grothendieck group of vector bundles K0.

Introduction

For a ring A let us denote by Vecr(A) the set of isomorphism classes
of finitely generated projective modules of rank r. The Bass–Quillen con-
jecture predicts that for a regular noetherian ring A the inclusion into the
polynomial ring A[t1, . . . , tn] induces a bijection

Vecr(A)
∼−→ Vecr(A[t1, . . . , tn])

for all n, r ≥ 0. Based on the work of Quillen and Suslin on Serre’s problem
the conjecture has been shown in case A is a smooth algebra over a field [13].

In this note we discuss a potential extension of this conjecture to affinoid
algebras in the sense of Tate. Let K be a field which is complete with respect
to a non-trivial non-archimedean absolute value and let A/K be a smooth
affinoid algebra. In rigid geometry a building block is the ring of power
series converging on the closed unit disc

A〈t1, . . . , tn〉 = {f =
∑
k

ckt
k ∈ AJt1, . . . , tnK | ck

|k|→∞−−−−→ 0},

which serves as a replacement for the polynomial ring in algebra.
Using these convergent power series the following positive result in anal-

ogy with Serre’s problem is obtained in [14].

Example 1 (Lütkebohmert). All finitely generated projective modules over
K〈t1, . . . , tn〉 are free.

Unfortunately, over more general smooth affinoid algebras one has the
following negative example [9, 4.2].

The authors are supported by the DFG through CRC 1085 Higher Invariants (Univer-
sität Regensburg).
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Example 2 (Gerritzen). Assume the ring of integers K◦ of K is a discrete
valuation ring with prime element π. For the smooth affinoid K-algebra
A = K〈t1, t2〉/(t21 − t32 − π) the map

Pic(A)→ Pic(A〈t〉)
is not bijective.

This example shows that for our purpose the ring of convergent power
series A〈t〉 is not entirely appropriate. Let π ∈ K \ {0} be an element
with |π| < 1. As an improved non-archimedean analytic replacement for
the polynomial ring over A we are going to use the pro-system of affinoid
algebras “ lim

t7→πt
”A〈t〉. It represents an affinoid approximation of the non-

quasi-compact rigid analytic space (A1
A)an since

lim
t7→πt

A〈t〉 = H0((A1
A)an,O).

Note that the latter non-affinoid K-algebra is harder to control, compare
[10, Ch. 5] and [3].

As a non-archimedean analytic analog of the Bass–Quillen conjecture one
might ask:

Question 3. Is the map

Vecr(A)→ “ lim
t7→πt

” Vecr(A〈t〉)

a pro-isomorphism for A/K a smooth affinoid algebra?

We give a positive answer for r = 1.

Theorem 4. For A/K a smooth affinoid algebra the map

Pic(A)→ “ lim
t7→πt

” Pic(A〈t〉)

is a pro-isomorphism.

The Picard group Pic(A) of an affinoid algebra A is isomorphic to the
cohomology group H1(Sp(A),O∗).

In case the residue field of K has characteristic zero, one has the expo-
nential isomorphism exp : O(1)

∼−→ O∗(1), where O(1) ⊂ O is the subsheaf
of rigid analytic functions f with |f |sup < 1 and O∗(1) ⊂ O∗ is the subsheaf
of functions f with |1 − f |sup < 1. Based on this isomorphism [9, Satz 4]
reduces Theorem 4 in case of characteristic zero to a vanishing result for
the additive rigid cohomology group H1(Sp(A),O(1)) which is established
in [1]. As the articles [1] and [2] are written in German and are not easy to
read, we give a simplified proof of their main results in Section 1 based on
the cohomology theory of affinoid spaces [17].

However in case ch(K) > 0 this approach using the exponential isomor-
phism does not apply. Instead, in Section 2 we explain how to pass from
a vanishing result for the additive cohomology groups to a vanishing result
for the multiplicative cohomology groups in the absence of an exponential
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isomorphism. Based on the latter vanishing the proof of Theorem 4 is given
in Section 3.

In Section 4 we prove the following stable version of Question 3:

Theorem 5. Let K be discretely valued, and assume that the residue field
of K has characteristic zero. Let A/K be a smooth affinoid algebra. Then

K0(A)→ “ lim
t7→πt

”K0(A〈t〉)

is a pro-isomorphism.

The proof of Theorem 5 uses a regular model X/K◦ of A, i.e. resolu-
tion of singularities, and “pro-cdh-descent” [15] for the K-theory spectrum
of schemes, so it is rather non-elementary. Of course for such fields K
Theorem 5 comprises Theorem 4, as there is a surjective determinant map
det : K0 → Pic.

Notations. We denote the supremum seminorm [5, Sec. 3.1] of a rigid an-
alytic function f on an affinoid space X by |f |sup. For a real number r > 0
we denote by OX(r) ⊆ OX the subsheaf of functions of supremum seminorm
< r. We often omit the subscript X if no confusion is possible. We write
O◦ ⊆ O for the subsheaf of functions of supremum norm ≤ 1.

If 0 < r < 1, functions of the from 1 + f with |f |sup < r are invertible,
and we denote by O∗(r) ⊆ O∗ the subsheaf of invertible functions of this
form.

We use similar notations K(r),K◦,K∗(r) for corresponding elements of
the field K or complete valued extensions of K.

If a is an analytic point of an affinoid space [8, Sec. 2.1], we denote the
completion of its residue field by Fa.

For the closed polydisk Sp(K〈t1, . . . , td〉) of radius 1 and dimension d over
K we use the notation BdK or simply Bd.

An affinoid algebra A/K is called smooth if A⊗KK ′ is regular for all finite
field extensions K ⊂ K ′. As a general reference concerning the terminology
of rigid spaces we refer to [5].

1. Vanishing of additive cohomology (after Bartenwerfer)

The aim of this section is to give new, more conceptual proofs of the main
results of [1] and [2]. Our techniques are based on cohomology theory for
affinoid spaces as developed by van der Put, see [17] and [8]. Let K be a
field which is complete with respect to the non-archimedean absolute value
| · | : K → R. We assume that the absolute value | · | is not trivial. All
affinoid spaces we consider in this section are assumed to be integral.

Let M,N be sheaves of O◦-modules on the affinoid space X = Sp(A).
We say that M is weakly trivial if there exists r ∈ (0, 1) with O(r)M = 0.
Note that this just means that there exists f ∈ K◦ \ {0} with fM = 0. We
say that an O◦-morphism u : M → N is a weak isomorphism if coker(u)
and ker(u) are weakly trivial. Note that the weak isomorphisms are exactly
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those morphisms which are invertible up to multiplication by elements of
K◦ \ {0}. We say that M is weakly locally free (wlf) if there is a finite
affinoid covering X = ∪i∈IUi and weak isomorphisms (O◦Ui

)ni ' M|Ui for
each i ∈ I.

Note that for M wlf the OX -module sheaf M⊗O◦X OX is coherent and
locally free.

Lemma 6. Let ψ : M → N be an O◦-morphism of wlf sheaves on X =
Sp(A) and assume that there exists f ∈ A◦ such that

f coker(ψ ⊗ 1 :M⊗O◦ O → N ⊗O◦ O) = 0.

Then there exists r ∈ (0, 1) such that fK(r) coker(ψ) = 0.

Proof. Without loss of generality M = (O◦)m and N = (O◦)n. Let C be
the cokernel of ψ. By Tate’s acyclicity theorem [5, Cor. 4.3.11] we get an
exact sequence

H0(X,M⊗O◦ O)→ H0(X,N ⊗O◦ O)→ H0(X, C ⊗O◦ O),

where the right hand A-module is f -torsion by assumption. Let e1, . . . , en ∈
N (X) be the canonical basis elements. So we deduce that fe1, . . . , fen have
preimages l1, . . . , ln ∈ H0(X,M⊗O◦ O) = Am. Choose r ∈ (0, 1) such that
K(r)l1, . . . ,K(r)ln ⊂ (A◦)m. �

Proposition 7. Let M be an O◦-module sheaf on X = Sp(A) such that
M ⊗O◦X OX is coherent and locally free as OX-module sheaf. Then the
following are equivalent:

(i) M is wlf.
(ii) For each finite set of points R ⊂ X there is an injective O◦-linear

morphism Ψ : (O◦)n → M and f ∈ O◦(X) with f(x) 6= 0 for all
x ∈ R such that f coker(Ψ) = 0.

(iii) For each point x ∈ X there is an injective O◦(X)-linear morphism
Ψx : (O◦)n → M and fx ∈ O◦(X) with fx(x) 6= 0 such that
fx coker(Ψ) = 0.

Proof. Clearly, (ii) implies (iii). We first prove (iii) implies (i). Choose for
each point x ∈ X a map Ψx and fx as in (iii). There is a finite set of points
x1, . . . , xk ∈ X such that we get a Zariski covering

X =
⋃

i∈{1,...,k}

{x ∈ X | fxi(x) 6= 0}.

By [5, Lem. 5.1.8] there exists ε ∈
√
|K×| such that the Ui = {x ∈

X | |fxi(x)| ≥ ε} cover X. Then the morphisms Ψxi |Ui are weak isomor-
phisms, so M is wlf.

We now prove that (i) implies (ii). As M⊗O◦X OX is locally free there
exists a finitely generated projective A-module M with M∼ =M⊗O◦X OX ,

[5, Sec. 6.1]. By AR we denote the semi-local ring which is the localization of
A at the finitely many maximal ideals R. Choose a basis b1, . . . , bn of the free
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AR-module M ⊗A AR. Without loss of generality we can assume b1, . . . , bn
are induced by elements of M(X). We claim that the latter elements give
rise to a morphism Ψ as in (ii). Indeed, by elementary algebra we find
f ′ ∈ A◦ such that f ′(x) 6= 0 for all x ∈ R and such that

f ′ coker(An →M) = 0.

We conclude by Lemma 6. �

Proposition 8. Let φ : X → Y be a finite étale morphism of affinoid spaces
over K and let M be a wlf O◦X-module. Then φ∗M is a wlf O◦Y -module.

Proof. Let X = Sp(A) and Y = Sp(B). The OY -module sheaf φ∗(M)⊗O◦Y
OY = φ∗(M⊗O◦X OX) is coherent and locally free. For y ∈ Y let R be the

finite set φ−1(y) and let M ⊂ B be the maximal ideal corresponding to y.
From Proposition 7 we deduce that there is an injective O◦X -linear morphism

Ψ : (O◦X)n →M
whose cokernel is killed by some f ∈ A◦ which does not vanish on R. Then
as the induced homomorphism φ] : B → A is finite the prime ideals of B
containing the ideal I = (φ])−1(Af) are exactly the preimages of the prime
ideals in A which contain f , see [6, Sec. V.2.1]. So we can find g ∈ I ∩ B◦
which is not contained in M . Then the cokernel of the injective morphism

φ∗(Ψ) : φ∗(O◦X)n → φ∗(M).

is g-torsion. By Proposition 7 we see that it suffices to show that φ∗(O◦X) is
wlf.

Note that for V ⊂ Y an affinoid subdomain O◦X(φ−1(V )) is the integral
closure of O◦Y (V ) in A ⊗B OY (V ) = OX(φ−1(V )) [5, Thm. 3.1.17]. As the
field extension Q(B) → Q(A) is separable, it is not hard to bound this
integral closure as follows. Let b1, . . . , bd ∈ O◦(X) induce a basis of the free
BM -module A⊗B BM . This basis induces an injective O◦Y -linear morphism

Ψ : (O◦Y )d → φ∗(O◦X).

Let δ be the discriminant of b1, . . . , bd. Then by [6, Lem. V.1.6.3] the cokernel
of Ψ is δ-torsion.

As the point y ∈ Y was arbitrary we conclude from Proposition 7 that
φ∗(O◦X) is wlf. �

For a sheaf M on X we write Moc for the associated overconvergent
sheaf. The sheaf Moc is given on an affinoid open subdomain U ⊂ X by

Moc(U) = colimU⊂U ′M(U ′)

where U ′ runs through all wide neighborhoods of U in X. Note that there is
a canonical morphismMoc →M. For the definition and basic properties of
overconvergent sheaves see [8, Sec. 2]. The following proposition is a simple
consequence of Tate’s acyclicity theorem [5, Cor. 4.3.11].

Proposition 9. Let X = Sp(A) be an affinoid space.
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(i) For any finite affinoid covering U of X the Čech cohomology groups
H i(U ,O◦) are weakly trivial (as K◦-modules) for all i > 0.

(ii) The canonical map

H i(V,OX(r)oc|V )→ H i(V,OV (r))

is surjective for every affinoid subdomain V ⊂ X, every r > 0 and
integer i > 0.

Proof. (i): Note that for each affinoid open subdomain U of X the Čech
complex (C(U ,O), d) consists of complete normed K-vector spaces and the
differential is continuous. To be concrete, we work with the supremum norm.
The continuous morphism

di−1 : Ci−1(U ,O)→ Zi(U ,O)

is surjective by [5, Cor. 4.3.11], so it is open according to [7, Thm. I.3.3.1].
In other words there exists r ∈ (0, 1) such that Zi(U ,O(r)) is contained in
di−1(Ci−1(U ,O◦)). This means that H i(U ,O◦) is K(r)-torsion.

(ii): In order to show part (ii) of the proposition it suffices to show that
for each finite covering U = (Ul)l∈L of V by rational subdomains of X the
map

(1) H i(U ,OX(r)oc)→ H i(U ,O(r))

is surjective. This is a consequence of

Claim 10.

(i) For i > 0 the image of di−1 : Ci−1(U ,O(r))→ Zi(U ,O(r)) is open.
(ii) The image of Zi(U ,OX(r)oc)→ Zi(U ,O(r)) is dense.

Part (i) of the claim is a consequence of Proposition 9(i). For part (ii) of
the claim note that for each rational subdomain

U = {|g1| ≤ |g0|, . . . , |gr| ≤ |g0|}
of X the image of Ooc

X (U) → O(U) is dense. To see this observe that

for ε > 1 and ε ∈ |K∗|Q the set U is a Weierstraß domain inside {|g1| ≤
ε|g0|, . . . , |gr| ≤ ε|g0|}.

For ξ ∈ Zi(U ,O(r)) we find ξ′ ∈ Ci−1(U ,O) with d(ξ′) = ξ, using again
[5, Cor. 4.3.11]. Find a sequence ξ′j ∈ Ci−1(U ,Ooc

X ) such that its image in

Ci−1(U ,O) converges to ξ′. Then d(ξ′j) ∈ Zi(U ,Ooc) is a sequence approxi-

mating ξ. By [8, Lem. 2.3.1] for large j we have d(ξ′j) ∈ Zi(U ,OX(r)oc). �

Theorem 11 (Bartenwerfer/van der Put). We have

H i(Bd,O(r)) = 0

for all r > 0 and integers i > 0.

Idea of proof (van der Put). Using Tate’s acyclicity theorem the theorem is
equivalent to the following two statements:
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• for all r > 0 and integers i > 0 the cohomology group

H i(Bd,O/O(r)) = 0,

• H0(Bd,O)→ H0(Bd,O/O(r)) is surjective.

Using the linear fibrations φ : Bd → Bd−1, base change [8, Thm. 2.7.4] and
the fact that for any fibre φ−1(a) ∼= B1

Fa
over an analytic point a of Bd−1 we

have

(OBd/OBd(r))|φ−1(a)
∼= OB1

Fa
/OB1

Fa
(r),

compare Lemma 23, we reduce the theorem to the case d = 1. In fact, by
what is sayed and using the one-dimensional case of the theorem we get that

φ∗(OBd/OBd(r)) =
⊕
N
OBd−1/OBd−1(r),

Rjφ∗(OBd/OBd(r)) = 0 (j > 0)

and we conclude by the Leray spectral sequence and by induction on d.
In the one-dimensional case the theorem follows from an explicit com-

putation based on the Mittag–Leffler decomposition. For details see [17,
Thm. 3.15]. �

Corollary 12. The cohomology group

H i(Bd,O◦)

is K(1)-torsion for all integers i > 0.

Remark 13. In fact, in [4] Bartenwerfer shows that H i(Bd,O◦) = 0 for
every i > 0.

Lemma 14. Let X = Sp(A) be an affinoid space such that the cohomology
group H i(X,O◦) is weakly trivial for some i > 0. Then for any wlf O◦-
module M the cohomology group H i(X,M) is weakly trivial.

Proof. Below we are going to construct for every point x ∈ X a function
fx ∈ A◦ with fx(x) 6= 0 and with fxH

i(X,M) = 0. As the fx generate
the unit ideal in A, there exist finitely many points x1, . . . , xr ∈ X and
c1, . . . , cr ∈ A◦ with

c1fx1 + · · ·+ crfxr =: c ∈ K◦ \ {0}.

Then cH i(X,M) = 0.
In order to construct such fx for given x ∈ X we use Proposition 7

in order to find an injective O◦X -linear morphism Ψ : (O◦)n → M and
f ′ ∈ O◦(X) with f ′(x) 6= 0 and such that f ′ coker(Ψ) = 0. From the long
exact cohomology sequence corresponding to the short exact sequence

0→ (O◦)n Ψ−→M→ coker(Ψ)→ 0

it follows that we can take any nonzero fx ∈ K(r)f ′, where r ∈ (0, 1) is
chosen such that K(r)H i(X,O◦) = 0. �
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Theorem 15. For X/K a smooth affinoid space and for M a wlf O◦X-
module the cohomology groups H i(X,M) are weakly trivial (as K◦-modules)
for all i > 0.

Proof. By Lemma 14 we can assume without loss of generality thatM = O◦.
We use induction on i > 0. The base case i = 1 is handled in the same way
as the induction step, so let us assume i > 1 and that we already know weak
triviality of Hj(U,O◦) for all 0 < j < i and smooth affinoid spaces U/K.

By [12, Satz 1.12] there exists a finite affinoid covering U = (Ul)l∈L and
finite étale morphisms φl : Ul → Bd. From the Čech spectral sequence

Epq2 = Hp(U , Hq(O◦))⇒ Hp+q(X,O◦)

we see that H i(X,O◦) has a filtration whose associated graded piece grp is a
subquotient of Hp(U , H i−p(O◦)). By Proposition 9(i), gri is weakly trivial.
By our induction assumption, H i−p(O◦)(U) is weakly trivial for 0 < p < i
and for U an intersection of opens in U , hence gri−p is weakly trivial for these
p. It thus suffices to show that gr0 is weakly trivial or that H i(Ul,O◦Ul

) is
weakly trivial for all l ∈ L.

So in order to show Theorem 15 we can assume without loss of generality
that M = O◦X and that there exists a finite étale morphism φ : X → Bd.

For all j > 0 we get morphisms

(2) Rjφ∗(O◦X) ' Rjφ∗(OX(1))← Rjφ∗(OX(1)oc).

with a weak isomorphism on the left and a surjective morphism on the right.
The surjectivity follows from Proposition 9(ii). However, by base change [8,
Thm. 2.7.4] the right hand side of (2) vanishes for j > 0.

Combining this observation with the Leray spectral sequence we see that
it suffices to show that H i(Bd, φ∗(O◦X)) is weakly trivial for i > 0. From
Proposition 8 we deduce that φ∗(O◦X) is wlf as an O◦Bd-module, so we con-
clude by using Theorem 11 and Lemma 14. �

The following corollary, which we will apply in the next sections, was first
shown in [1] and [2].

Corollary 16 (Bartenwerfer). For X/K smooth affinoid there exists s ∈
(0, 1) such that the map

(3) H i(X,O(sr))→ H i(X,O(r))

vanishes for all r > 0 and integers i > 0.

Proof. Choose π ∈ K(1) \ {0} and write s′ = |π|. By Theorem 15 we can
assume without loss of generality that πH i(X,O(1)) = 0 for i > 0. Now
we claim s = s′2 satisfies the requested property of the corollary. Indeed,
for r > 0 set r′ = max{|π|n | n ∈ Z, |π|n ≤ r}. Then we get a commutative
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square

H i(X,O(s′r′)) //

o
��

H i(X,O(r′))

o
��

H i(X,O(1))
=0 // H i(X,O(1))

where the lower horizontal map is multiplication by π and the vertical maps
are induced by the isomorphisms O(s′r′) ∼= O(1) and O(r′) ∼= O(1) given
by multiplying with the appropriate powers of π. The morphism (3) is the
composition of

H i(X,O(sr))→ H i(X,O(s′r′))
=0−−→ H i(X,O(r′))→ H i(X,O(r)).

�

2. Vanishing of multiplicative cohomology

Given r′ < r we write O(r, r′) := O(r)/O(r′) and, if r′ < r ≤ 1,
O∗(r, r′) := O∗(r)/O∗(r′).
Lemma 17. For r′ < r ≤ 1 we have isomorphisms of sheaves of sets
O(r)

∼−→ O∗(r) and O(r, r′)
∼−→ O∗(r, r′) given by f 7→ 1 + f . If r′ ≥ r2, the

latter isomorphism is an isomorphism of abelian sheaves.

Proof. Most of the claims are easy. To see that f 7→ 1 + f induces a map
on the quotient sheaves O(r, r′) → O∗(r, r′) note that if f, g are functions
of supremum seminorm < 1, then |f − g|sup < r′ if and only if |(1 + f)(1 +
g)−1 − 1|sup < r′. Indeed, this follows from the computation |f − g|sup =
|(1+f)−(1+g)|sup = |((1+f)(1+g)−1−1)(1+g)|sup = |(1+f)(1+g)−1−1|sup,
where we used that |1 + g|sup = |(1 + g)−1|sup = 1. �

Given an affinoid space X, we consider the following condition on the real
number 0 < s ≤ 1:

The map H i(X,O(sr))→ H i(X,O(r))

vanishes for all r > 0 and integers i > 0.
(4)

Proposition 18. Let X/K be smooth affinoid. Assume that s satisfies (4).
Then the map

H1(X,O∗(sr))→ H1(X,O∗(r))
vanishes for every r ∈ (0, s).

Proof. We first prove:

Lemma 19. Assume that s satisfies (4) for the affinoid space X. For any
integer i > 0, r ∈ (0, s), and ξ ∈ H i(X,O∗(sr)) there exists a decreasing
zero sequence (rn) in (0, s) with r0 = r and a compatible system

(ξ′n) ∈ lim
n
H i(X,O∗(rn))

such that ξ′0 ∈ H i(X,O∗(r)) is equal to the image of ξ under H i(X,O∗(sr))→
H i(X,O∗(r)).
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Proof. Put r0 = r and inductively rn+1 = r2
n/s. Explicitly, rn = (r/s)2ns.

Since r < s, the rn form a decreasing zero sequence.
Put ξ0 = ξ. We will inductively construct elements ξn ∈ H i(X,O∗(srn))

such that the images of ξn and ξn+1 in H i(X,O∗(rn)) coincide. Denote this
common image by ξ′n. Then (ξ′n)n≥0 is the desired compatible system.

Assume that we have already constructed ξn. From the commutative
diagram with exact rows

H i(X,O(srn)) // H i(X,O(srn, s
2rn+1)) //

��

H i+1(X,O(s2rn+1))

=0 by (4)
��

H i(X,O(srn)) //

=0 by (4)
��

H i(X,O(srn, srn+1)) //

��

H i+1(X,O(srn+1))

H i(X,O(rn)) // H i(X,O(rn, srn+1)) // H i+1(X,O(srn+1))

we see that H i(X,O(srn, s
2rn+1))→ H i(X,O(rn, srn+1)) vanishes for i > 0.

Since srn+1 ≥ r2
n and s2rn+1 = sr2

n ≥ (srn)2, we may apply Lemma 17 to
deduce that also H i(X,O∗(srn, s2rn+1)) → H i(X,O∗(rn, srn+1)) vanishes.
From the commutative diagram with exact rows

H i(X,O∗(srn))

��

// H i(X,O∗(srn, s2rn+1))

=0
��

H i(X,O∗(srn+1)) // H i(X,O∗(rn)) // H i(X,O∗(rn, srn+1))

we deduce the existence of the desired element ξn+1 ∈ H i(X,O∗(srn+1))
such that the images of ξn and ξn+1 in H i(X,O∗(rn)) coincide. �

Lemma 20. Let X/K be smooth affinoid, and let (ξn) ∈ limnH
1(X,O∗(rn))

be a compatible system where the rn form a decreasing zero sequence in (0, 1).
Then there exists a finite affinoid covering U of X such that (ξn) lies in the
image of limnH

1(U ,O∗(rn)).

Proof. Let U be a finite affinoid covering of X such that ξ0 lies in the image
of H1(U ,O∗(r0)). We claim that then ξn lies in the image of H1(U ,O∗(rn))
for all n. Recall that for any abelian sheaf F the map H1(U ,F)→ H1(X,F)
is injective, and an element ξ ∈ H1(X,F) belongs to the image of this map
if and only if ξ|U = 0 in H1(U,F|U ) for every U ∈ U .

Fix U ∈ U . We want to show that ξn|U = 0 in H1(U,O∗(rn)). By
Corollary 16 there exists m ≥ n such that H1(U,O(rm)) → H1(U,O(rn))
vanishes. Under the sequence of maps

H1(U,O∗(rm))→ H1(U,O∗(rn))→ H1(U,O∗(r0))

we have ξm|U 7→ ξn|U 7→ 0. Hence the element ξm|U lifts to an element ηm
in H0(U,O∗(r0, rm)). We claim that the image of ηm in H0(U,O∗(r0, rn))
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has a preimage in H0(U,O∗(r0)). In view of the commutative diagram with
exact rows

H0(U,O∗(r0)) // H0(U,O∗(r0, rn)) // H1(U,O∗(rn))

H0(U,O∗(r0)) // H0(U,O∗(r0, rm)) //

OO

H1(U,O∗(rm))

OO

this will imply that ξn|U = 0.
To prove the claim, note that Lemma 17 gives bijections H0(U,O∗(r0)) ∼=

H0(U,O(r0)) and H0(U,O∗(r0, rn)) ∼= H0(U,O(r0, rn)) and similarly for
rn replaced by rm. On the other hand, by the choice of m, the map
H1(U,O(rm)) → H1(U,O(rn)) vanishes. This implies the existence of the
desired lift in view of the commutative diagram with exact rows

H0(U,O(r0)) // H0(U,O(r0, rn)) // H1(U,O(rn))

H0(U,O(r0)) // H0(U,O(r0, rm)) //

OO

H1(U,O(rm)).

=0

OO

�

We can now finish the proof of Proposition 18. Using the two preceding
lemmas, it suffices to show that limnH

1(U ,O∗(rn)) vanishes for every de-
creasing zero sequence (rn). Consider an element (ξn)n in this inverse limit,
and choose representing Čech 1-cocycles ζn ∈ Z1(U ,O∗(rn)). Then there
exist 0-cochains ηn ∈ C0(U ,O∗(rn)) such that ζn = ζn+1 · ∂ηn. Since (rn)
is a zero sequence, the product

∏∞
k=0 ηn+k converges in C0(U ,O∗(rn)), and

we get ζn = ∂(
∏∞
k=0 ηn+k), i.e., ξn = 0. �

Corollary 21. For every r ∈ (0, 1) we have H1(Bd,O∗(r)) = 0.

Proof. By Theorem 11, s = 1 satisfies condition (4) for X = Bd. Hence by
Proposition 18, the identity map on H1(Bd,O∗(r)) vanishes. �

Corollary 22. Let X/K be a smooth affinoid space. Then there exists
0 < r ≤ 1 such that

H1(X,O∗)→ H1(X,O∗/O∗(r′))

is injective for every r′ ∈ (0, r).

Proof. By Corollary 16 there exists 0 < s ≤ 1 satisfying (4). By Proposi-
tion 18 we can take r = s2. �

3. Homotopy invariance of Pic

In this section we prove Theorem 4. Given 0 < r ≤ 1, we set O∗(∞, r) =
O∗/O∗(r). Let X = Sp(A) be an affinoid space, and let p : X ×B1 → X be
the projection, σ : X → X × B1 the zero section.
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Lemma 23. For any fibre p−1(a) ∼= B1
Fa

over an analytic point a of X we
have

O∗X×B1(∞, r)|p−1(a)
∼= O∗B1

Fa

(∞, r).

Proof. This follows easily from [8, Lemmas 2.7.1, 2.7.2]. �

Lemma 24. We have R1p∗O∗X×B1(∞, r) = 0.

Proof. The sheaf O∗X×B1(∞, r) and hence its higher direct images are over-

convergent (see [17, 1.5.3], [8, Lem. 2.3.2]). Hence it suffices to prove that
for any analytic point a of X the stalk R1p∗O∗X×B1(∞, r)a vanishes. By base

change [8, Thm. 2.7.4] and Lemma 23, we have

R1p∗O∗X×B1(∞, r)a ∼= H1(B1
Fa
,O∗B1

Fa

(∞, r)).

In the exact sequence

H1(B1
Fa
,O∗B1

Fa

)→ H1(B1
Fa
,O∗B1

Fa

(∞, r))→ H2(B1
Fa
,O∗B1

Fa

(r))

the group on the left vanishes because the Tate algebra is a UFD, the group
on the right vanishes by dimension reasons. �

Fix π ∈ K \ {0} with |π| < 1. Let t denote the coordinate on B1. Then
t 7→ πt induces a map p∗O∗X×B1(∞, r)→ p∗O∗X×B1(∞, r).

Lemma 25. We have an isomorphism of pro-abelian sheaves

“ lim
t7→πt

” p∗O∗X×B1(∞, r) ∼= O∗X(∞, r)

Proof. Obviously, O∗X(∞, r) p∗−→ p∗O∗X×B1(∞, r) σ∗−→ O∗X(∞, r) is the iden-

tity. Choose n big enough such that |πn| ≤ r. We claim that the map

p∗O∗X×B1(∞, r)→ p∗O∗X×B1(∞, r)

induced by t 7→ πnt factors through O∗X(∞, r) p∗−→ p∗O∗X×B1(∞, r). By
overconvergence again it is enough to check this on the stalk at any analytic
point a of X. By base change and Lemma 23 we have p∗O∗X×B1(∞, r)a ∼=
H0(B1

Fa
,O∗B1

Fa

(∞, r)). By Corollary 21 the natural map H0(B1
Fa
,O∗) →

H0(B1
Fa
,O∗B1

Fa

(∞, r)) is surjective. Any element of H0(B1
Fa
,O∗) is of the

form u ·f(t) with u ∈ F ∗a , f(0) = 1, and |f(t)−1|sup < 1 (see [5, Cor. 2.2.4]).
But then |f(πnt)− 1|sup < |πn| ≤ r. This implies that the map

H0(B1
Fa
,O∗B1

Fa

(∞, r))→ H0(B1
Fa
,O∗B1

Fa

(∞, r))

induced by t 7→ πnt factors through F ∗a /F
∗
a (r) ↪→ H0(B1

Fa
,O∗B1

Fa

(∞, r)),
concluding the proof. �

Proof of Theorem 4. Note that Pic(A) ∼= H1(X,O∗). Since X = Sp(A) is
assumed to be smooth, Corollary 22 implies that there exists r ∈ (0, 1) such
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that the map H1(X ×B1,O∗)→ H1(X ×B1,O∗(∞, r)) is injective. It thus
suffices to show that

σ∗ : “ lim
t7→πt

”H1(X × B1,O∗X×B1(∞, r))→ H1(X,O∗X(∞, r))

is a pro-isomorphism.
Using the Leray spectral sequence, Lemma 24 yields an isomorphism

H1(X × B1,O∗X×B1(∞, r)) ∼= H1(X, p∗O∗X×B1(∞, r)).
We combine this with the pro-isomorphism

“ lim
t7→πt

”H1(X, p∗O∗X×B1(∞, r)) ∼= H1(X,O∗X(∞, r))

implied by Lemma 25 to finish the proof. �

4. K0-invariance

In this section we assume that K is a complete discretely valued field
whose residue field has characteristic zero. Let π ∈ K◦ be a prime element.
Then for an affinoid algebra A/K the ring A◦ is noetherian excellent of
finite Krull dimension and a quotient of a regular ring, for excellence see [11,
Sec. I.9].

Let X → SpecA◦ be a blow-up in an ideal whose cosupport is contained
in SpecA◦/(π), i.e. an admissible blow-up in the sense of Raynaud [5, Ch. 8].
For an integer n > 0 set Xn = X ⊗K◦ K◦/(πn).

Proposition 26. There exists n > 0 such that

K0(X )→ K0(Xn)

is injective.

Proof. Let K(X ,Xn) be the homotopy fibre of the map K(X ) → K(Xn)
between non-connective K-theory spectra [18, Sec. IV.10] and let Ki(X ,Xn)
be its homotopy groups. By “pro-cdh-descent” [15] the natural map

“ lim
n

”K0(A◦, A◦/(πn))→ “ lim
n

”K0(X ,Xn)

is a pro-isomorphism. For each n we have an exact sequence

K1(A◦)→ K1(A◦/(πn))→ K0(A◦, A◦/(πn))→ K0(A◦)
∼−→ K0(A◦/(πn))

where the left map is surjective [18, Rmk. III.1.2.3] and the right map is an
isomorphism [18, Lem. II.2.2], so K0(X ,Xn) vanishes as a pro-system in n.
By the exact fibre sequence

K0(X ,Xn)→ K0(X )→ K0(Xn)

this finishes the proof of the proposition. �

Lemma 27. If X is a regular scheme we obtain a natural exact sequence

G0(X1)→ K0(X )→ K0(A)→ 0,

where G0 is the Grothendieck group of coherent sheaves.
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Proof of Theorem 5. As A◦ contains Q and is excellent there exists an ad-
missible blow-up X → A◦ such that X is a regular scheme [16, Thm. 1.1].
Let A◦〈t〉 ⊂ A◦JtK be those formal power series for which the coefficients
converge to zero. Note that A◦ → A◦〈t〉 is a regular ring homomorphism,
so X ′ = X ⊗A◦ A◦〈t〉 is a regular scheme with generic fibre Spec (A〈t〉). Set
X ′n = X ′ ⊗K◦ K◦/(πn).

Applying Lemma 27 to X and X ′ we get a commutative diagram with
exact rows

G0(X1) // K0(X ) // K0(A) // 0

G0(X ′1) //

oσ∗

OO

K0(X ′) //

σ∗

OO

K0(A〈t〉)

σ∗

OO

// 0

where σ is the zero-section induced by t 7→ 0. The left vertical arrow is an
isomorphism as X ′1 = A1

X1
, see [18, Thm. II.6.5]. In order to prove Theorem 5

we have to show that

σ∗ : “ lim
t7→πt

”K0(A〈t〉)→ K0(A)

is a pro-monomorphism. According to Proposition 26 we find n > 0 such
that K0(X ′) → K0(X ′n) is injective. So by a diagram chase it suffices to
show that

σ : “ lim
t7→πt

”K0(X ′n)→ K0(Xn)

is a pro-monomorphism, which is clear as the morphism X ′n
t7→πnt−−−−→ X ′n fac-

tors through Xn. �
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