TOWARDS A NON-ARCHIMEDEAN ANALYTIC ANALOG
OF THE BASS-QUILLEN CONJECTURE

MORITZ KERZ, SHUJI SAITO, AND GEORG TAMME

ABSTRACT. We suggest an analog of the Bass—Quillen conjecture for
smooth affinoid algebras over a complete non-archimedean field. We
prove this in the rank-1 case, i.e. for the Picard group. For complete
discretely valued fields of residue characteristic 0 we prove a similar
statement for the Grothendieck group of vector bundles K.

INTRODUCTION

For a ring A let us denote by Vec,(A) the set of isomorphism classes
of finitely generated projective modules of rank r. The Bass—Quillen con-
jecture predicts that for a regular noetherian ring A the inclusion into the
polynomial ring A[ty,...,t,] induces a bijection

Vec,(A) = Vec, (A[t1, ..., tn])

for all n,r > 0. Based on the work of Quillen and Suslin on Serre’s problem
the conjecture has been shown in case A is a smooth algebra over a field [13].

In this note we discuss a potential extension of this conjecture to affinoid
algebras in the sense of Tate. Let K be a field which is complete with respect
to a non-trivial non-archimedean absolute value and let A/K be a smooth
affinoid algebra. In rigid geometry a building block is the ring of power
series converging on the closed unit disc

Alty,. o ta) ={f =D axtF € Altr, ... ta] | g
K

|k|—o00

0},

which serves as a replacement for the polynomial ring in algebra.
Using these convergent power series the following positive result in anal-
ogy with Serre’s problem is obtained in [14].

Example 1 (Liitkebohmert). All finitely generated projective modules over
K(ty,...,t,) are free.

Unfortunately, over more general smooth affinoid algebras one has the
following negative example [9, 4.2].

The authors are supported by the DFG through CRC 1085 Higher Invariants (Univer-
sitat Regensburg).
1



2 MORITZ KERZ, SHUJI SAITO, AND GEORG TAMME

Example 2 (Gerritzen). Assume the ring of integers K° of K is a discrete
valuation ring with prime element w. For the smooth affinoid K-algebra
A= K(t1,t2)/(t? —t3 — 1) the map

Pic(A) — Pic(A(t))
s not bijective.

This example shows that for our purpose the ring of convergent power
series A(t) is not entirely appropriate. Let 7 € K \ {0} be an element
with |7| < 1. As an improved non-archimedean analytic replacement for
the polynomial ring over A we are going to use the pro-system of affinoid
algebras “ t}i_}rgt 7 A(t). It represents an affinoid approximation of the non-

quasi-compact rigid analytic space (AL )" since
: _ 0 1 \an
lim A1) = HO((A4)™,0).

Note that the latter non-affinoid K-algebra is harder to control, compare
[10, Ch. 5] and [3].

As a non-archimedean analytic analog of the Bass—Quillen conjecture one
might ask:

Question 3. Is the map
Vec,(A) — t}lgrlt Vec, (A(t))
a pro-isomorphism for A/K a smooth affinoid algebra?

We give a positive answer for r = 1.

Theorem 4. For A/K a smooth affinoid algebra the map
Pic(A) — tEgrlt Pic(A(t))

is a pro-isomorphism.

The Picard group Pic(A) of an affinoid algebra A is isomorphic to the
cohomology group H!(Sp(A), O*).

In case the residue field of K has characteristic zero, one has the expo-
nential isomorphism exp : O(1) = O*(1), where O(1) C O is the subsheaf
of rigid analytic functions f with |f|swp < 1 and O*(1) C O* is the subsheaf
of functions f with |1 — f|sup < 1. Based on this isomorphism [9, Satz 4]
reduces Theorem [ in case of characteristic zero to a vanishing result for
the additive rigid cohomology group H'(Sp(A), O(1)) which is established
in [I]. As the articles [I] and [2] are written in German and are not easy to
read, we give a simplified proof of their main results in Section [I| based on
the cohomology theory of affinoid spaces [17].

However in case ch(K) > 0 this approach using the exponential isomor-
phism does not apply. Instead, in Section [2] we explain how to pass from
a vanishing result for the additive cohomology groups to a vanishing result
for the multiplicative cohomology groups in the absence of an exponential
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isomorphism. Based on the latter vanishing the proof of Theorem [ is given
in Section [3
In Section [4] we prove the following stable version of Question

Theorem 5. Let K be discretely valued, and assume that the residue field
of K has characteristic zero. Let AJ/K be a smooth affinoid algebra. Then

Ky(A) — tEgrlt Ko(A(t))
s a pro-isomorphism.

The proof of Theorem [5 uses a regular model X'/K° of A, i.e. resolu-
tion of singularities, and “pro-cdh-descent” [15] for the K-theory spectrum
of schemes, so it is rather non-elementary. Of course for such fields K

Theorem [5| comprises Theorem [, as there is a surjective determinant map
det : Ky — Pic.

Notations. We denote the supremum seminorm [5, Sec. 3.1] of a rigid an-
alytic function f on an affinoid space X by |f|sup. For a real number r > 0
we denote by Ox (1) C Ox the subsheaf of functions of supremum seminorm
< r. We often omit the subscript X if no confusion is possible. We write
0° C O for the subsheaf of functions of supremum norm < 1.

If 0 < r < 1, functions of the from 1 + f with |f|swp, < r are invertible,
and we denote by O*(r) C O* the subsheaf of invertible functions of this
form.

We use similar notations K(r), K°, K*(r) for corresponding elements of
the field K or complete valued extensions of K.

If a is an analytic point of an affinoid space [8, Sec. 2.1], we denote the
completion of its residue field by F,.

For the closed polydisk Sp(K (t1,...,tq)) of radius 1 and dimension d over
K we use the notation IB%?( or simply B

An affinoid algebra A/K is called smooth if A®x K’ is regular for all finite
field extensions K C K’. As a general reference concerning the terminology
of rigid spaces we refer to [5].

1. VANISHING OF ADDITIVE COHOMOLOGY (AFTER BARTENWERFER)

The aim of this section is to give new, more conceptual proofs of the main
results of [I] and [2]. Our techniques are based on cohomology theory for
affinoid spaces as developed by van der Put, see [I7] and [§]. Let K be a
field which is complete with respect to the non-archimedean absolute value
| -] : K — R. We assume that the absolute value | - | is not trivial. All
affinoid spaces we consider in this section are assumed to be integral.

Let M, N be sheaves of O°-modules on the affinoid space X = Sp(A).
We say that M is weakly trivial if there exists r € (0,1) with O(r)M = 0.
Note that this just means that there exists f € K°\ {0} with fM =0. We
say that an O°-morphism u : M — N is a weak isomorphism if coker(u)
and ker(u) are weakly trivial. Note that the weak isomorphisms are exactly
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those morphisms which are invertible up to multiplication by elements of
K°\ {0}. We say that M is weakly locally free (wlf) if there is a finite
affinoid covering X = U;¢;U; and weak isomorphisms ((’)[OJL)"Z ~ M|y, for
each ¢ € I.

Note that for M wlf the Ox-module sheaf M ®os, Ox is coherent and
locally free.

Lemma 6. Let ¢ : M — N be an O°-morphism of wif sheaves on X =
Sp(A) and assume that there exists f € A° such that

feoker(p @1: M®po O = N ®po O) = 0.
Then there exists r € (0,1) such that fK(r)coker(y)) = 0.

Proof. Without loss of generality M = (0°)™ and N' = (0°)". Let C be
the cokernel of 1. By Tate’s acyclicity theorem [5, Cor. 4.3.11] we get an
exact sequence

HY (X, M ®00 0) = HY(X,N @00 0) = H(X,C @00 O),

where the right hand A-module is f-torsion by assumption. Let eq,...,e, €
N (X) be the canonical basis elements. So we deduce that feq, ..., fe, have
preimages I1,...,l, € H(X, M ®p- O) = A™. Choose r € (0,1) such that
K(r)ly,...,K(r)l, C (A°)™. O

Proposition 7. Let M be an O°-module sheaf on X = Sp(A) such that
M ®pg. Ox is coherent and locally free as Ox-module sheaf. Then the
following are equivalent:
(i) M is wlf.
(ii) For each finite set of points R C X there is an injective O°-linear
morphism ¥ : (O°)" — M and f € O°(X) with f(xz) # 0 for all
x € R such that f coker(¥) = 0.
(iii) For each point x € X there is an injective O°(X)-linear morphism
U, @ (0" - M and f, € O°(X) with fy(x) # 0 such that
fz coker(¥) = 0.

Proof. Clearly, (ii) implies (iii). We first prove (iii) implies (i). Choose for
each point z € X a map ¥, and f, as in (iii). There is a finite set of points
x1,...,2 € X such that we get a Zariski covering

X= |J {zeX|ful) #0}
ie{l,...,k}
By [5, Lem. 5.1.8] there exists € € +/|K*| such that the U; = {z €
X | |fz;(x)] > €} cover X. Then the morphisms W, |y, are weak isomor-
phisms, so M is wlf.

We now prove that (i) implies (ii). As M ®pg Ox is locally free there
exists a finitely generated projective A-module M with M™ = M ®ps Ox,
[0, Sec. 6.1]. By Ar we denote the semi-local ring which is the localization of
A at the finitely many maximal ideals R. Choose a basis by, . .., b, of the free
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Ag-module M ® 4 Ar. Without loss of generality we can assume by, ..., b,
are induced by elements of M(X). We claim that the latter elements give
rise to a morphism ¥ as in (ii). Indeed, by elementary algebra we find
f € A° such that f'(z) # 0 for all z € R and such that

[ coker(A™ — M) = 0.
We conclude by Lemma [6] O

Proposition 8. Let ¢ : X — Y be a finite étale morphism of affinoid spaces
over K and let M be a wif O -module. Then ¢+ M is a wif Oy--module.

Proof. Let X = Sp(A4) and Y = Sp(B). The Oy-module sheaf ¢.(M) @0
Oy = ¢ (M ®og. O x) is coherent and locally free. For y € Y let R be the
finite set ¢~!(y) and let M C B be the maximal ideal corresponding to .
From Propositionmwe deduce that there is an injective O%-linear morphism

U (0%)" =M
whose cokernel is killed by some f € A° which does not vanish on R. Then
as the induced homomorphism ¢* : B — A is finite the prime ideals of B
containing the ideal I = (¢f)~1(Af) are exactly the preimages of the prime

ideals in A which contain f, see [0, Sec. V.2.1]. So we can find g € I N B°
which is not contained in M. Then the cokernel of the injective morphism

P+(V) : 02 (O%)" = ¢u(M).
is g-torsion. By Proposition [7| we see that it suffices to show that ¢.(0%) is
wlf.
Note that for V C Y an affinoid subdomain O% (¢~1(V)) is the integral
closure of O%.(V) in A®@p Oy (V) = Ox(¢~1(V)) [Bl, Thm. 3.1.17]. As the
field extension Q(B) — Q(A) is separable, it is not hard to bound this

integral closure as follows. Let by,...,bq € O°(X) induce a basis of the free
Bjyr-module A ®p Bys. This basis induces an injective Oy -linear morphism

U (05)! = 6.(0%).

Let 6 be the discriminant of by, . . ., bg. Then by [0, Lem. V.1.6.3] the cokernel
of ¥ is -torsion.
As the point y € Y was arbitrary we conclude from Proposition [7] that

+(0%) is wlf. O
For a sheaf M on X we write M°¢ for the associated overconvergent
sheaf. The sheaf M°€ is given on an affinoid open subdomain U C X by
MOC(U) = COlimUcU/ M(U/)
where U’ runs through all wide neighborhoods of U in X. Note that there is
a canonical morphism M°¢ — M. For the definition and basic properties of

overconvergent sheaves see [§, Sec. 2]. The following proposition is a simple
consequence of Tate’s acyclicity theorem [5, Cor. 4.3.11].

Proposition 9. Let X = Sp(A) be an affinoid space.
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(i) For any finite affinoid covering U of X the Cech cohomology groups
H'(U,O°) are weakly trivial (as K°-modules) for all i > 0.
(ii) The canonical map

H'(V,0x(r)*|v) — H'(V, Oy (r))
is surjective for every affinoid subdomain V C X, every r > 0 and

integer 1 > 0.

Proof. (i): Note that for each affinoid open subdomain U of X the Cech
complex (C(U,O),d) consists of complete normed K-vector spaces and the
differential is continuous. To be concrete, we work with the supremum norm.
The continuous morphism

d=1. 7N U, 0) = Z4U, 0)

is surjective by [3, Cor. 4.3.11], so it is open according to [7, Thm. 1.3.3.1].
In other words there exists r € (0,1) such that Z'(U, O(r)) is contained in
d=H(C1 (U, 0°)). This means that H' (U, O°) is K (r)-torsion.

(ii): In order to show part (ii) of the proposition it suffices to show that
for each finite covering U = (U;);cr, of V' by rational subdomains of X the
map
(1) H'(U, Ox(r)*) — H'U, O(r))

is surjective. This is a consequence of

Claim 10.
(i) For i > 0 the image of d'~': C"" (U, O(r)) — Z'(U,O(r)) is open.
(ii) The image of Z*(U, Ox(r)°°) — Z*(U,O(r)) is dense.
Part (i) of the claim is a consequence of Proposition [9fi). For part (ii) of
the claim note that for each rational subdomain

U={lg:il < lgol,-- - 1gr[ < lgol}
of X the image of O(U) — O(U) is dense. To see this observe that
for ¢ > 1 and e € |K*|9 the set U is a Weierstra} domain inside {|g;| <
elgol, - - -, lgr| < elgol}- ,

For ¢ € Z'(U,O(r)) we find & € C"1(U,0) with d(¢') = &, using again
[5, Cor. 4.3.11]. Find a sequence & € C=HU,0%) such that its image in
C (U, O) converges to &'. Then d(&}) € Z'(U,0°°) is a sequence approxi-
mating . By [8, Lem. 2.3.1] for large j we have d(§}) € ZY U, Ox(r)°%). O
Theorem 11 (Bartenwerfer/van der Put). We have

H{(B O®r)) =0
for all r > 0 and integers i > 0.

Idea of proof (van der Put). Using Tate’s acyclicity theorem the theorem is
equivalent to the following two statements:
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e for all » > 0 and integers ¢ > 0 the cohomology group
H{(B, 0/0O(r)) =0,
e H(BY O) — H°(BY O/O(r)) is surjective.
Using the linear fibrations ¢ : B¢ — B!, base change [8, Thm. 2.7.4] and

the fact that for any fibre ¢~1(a) = IB%};Q over an analytic point a of B4~ we
have

(Op1/Opi(r)5-10) = Osy, [Osy. (1),
compare Lemma we reduce the theorem to the case d = 1. In fact, by
what is sayed and using the one-dimensional case of the theorem we get that

¢+(Opa/Oga(r)) = @ Opa-1/Oga-1(r),
N

R ¢.(Opa/Oga(r)) =0 (j >0)

and we conclude by the Leray spectral sequence and by induction on d.

In the one-dimensional case the theorem follows from an explicit com-
putation based on the Mittag—Leffler decomposition. For details see [17,
Thm. 3.15]. (]

Corollary 12. The cohomology group
H(B¢,0°)
is K(1)-torsion for all integers i > 0.

Remark 13. In fact, in [4] Bartenwerfer shows that H(B?, 0°) = 0 for
every © > 0.

Lemma 14. Let X = Sp(A) be an affinoid space such that the cohomology
group H'(X,0°) is weakly trivial for some i > 0. Then for any wif O°-
module M the cohomology group H'(X, M) is weakly trivial.

Proof. Below we are going to construct for every point x € X a function
fr € A° with f.(z) # 0 and with f, H'(X, M) = 0. As the f, generate
the unit ideal in A, there exist finitely many points z1,...,x, € X and
Cly...,cp € A° with

lezl +t e f, =i c€ K° \ {0}

Then ¢ HY(X, M) = 0.

In order to construct such f, for given x € X we use Proposition
in order to find an injective OS%-linear morphism ¥ : (0°)" — M and
/'€ 0°(X) with f/(x) # 0 and such that f’coker(¥) = 0. From the long
exact cohomology sequence corresponding to the short exact sequence

0— (0°)" LM coker(¥) — 0

it follows that we can take any nonzero f, € K(r)f’, where r € (0,1) is
chosen such that K(r) H'(X,0°) = 0. O
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Theorem 15. For X/K a smooth affinoid space and for M a wif O%-
module the cohomology groups H'(X, M) are weakly trivial (as K°-modules)
for all i > 0.

Proof. By Lemmall4] we can assume without loss of generality that M = O°.
We use induction on ¢ > 0. The base case ¢ = 1 is handled in the same way
as the induction step, so let us assume ¢ > 1 and that we already know weak
triviality of H7(U, ©°) for all 0 < j < i and smooth affinoid spaces U/K.
By [12, Satz 1.12] there exists a finite affinoid covering U = (U;);er, and
finite étale morphisms ¢; : U; — B?. From the Cech spectral sequence

B}t = HP(U, H1(0°)) = H'™(X,0%)

we see that H'(X, 0°) has a filtration whose associated graded piece gr” is a
subquotient of HP(U, H"P(0°)). By Proposition @(i), gr! is weakly trivial.
By our induction assumption, H""?(0°)(U) is weakly trivial for 0 < p < i
and for U an intersection of opens in I/, hence gr'? is weakly trivial for these
p. Tt thus suffices to show that gr’ is weakly trivial or that H*(Uj, Op,) is
weakly trivial for all [ € L.

So in order to show Theorem [15| we can assume without loss of generality
that M = O% and that there exists a finite étale morphism ¢ : X — B?.
For all 7 > 0 we get morphisms

(2) RI$.(0%) =~ R ¢.(0x (1)) ¢ R 6.(Ox(1)*).

with a weak isomorphism on the left and a surjective morphism on the right.
The surjectivity follows from Proposition |§|(11) However, by base change [8,
Thm. 2.7.4] the right hand side of vanishes for j > 0.

Combining this observation with the Leray spectral sequence we see that
it suffices to show that H(B?, ¢.(0%)) is weakly trivial for i > 0. From
Proposition [§ we deduce that ¢.(0%) is wlf as an Og,-module, so we con-
clude by using Theorem [T and Lemma [14] O

The following corollary, which we will apply in the next sections, was first
shown in [I] and [2].

Corollary 16 (Bartenwerfer). For X/K smooth affinoid there exists s €
(0,1) such that the map

(3) H'(X,0(sr)) — H'(X,0(r))
vanishes for all r > 0 and integers i > 0.

Proof. Choose m € K (1) \ {0} and write s’ = |r|. By Theorem (15 we can
assume without loss of generality that = H(X,O(1)) = 0 for i > 0. Now
we claim s = 52 satisfies the requested property of the corollary. Indeed,
for r > 0 set ¥ = max{|x|" | n € Z, |r|™ < r}. Then we get a commutative
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square
H{(X,0(s'"")) — H(X,0(1"))

| ]
H'(X,0(1)) =~ H'(X,0(1)
where the lower horizontal map is multiplication by 7 and the vertical maps
are induced by the isomorphisms O(s'r') = O(1) and O(r') = O(1) given

by multiplying with the appropriate powers of 7. The morphism is the
composition of

Hi{(X,0(sr)) — H(X,0(s'r")) =% H'(X,00")) — H(X,O(r)).
a

2. VANISHING OF MULTIPLICATIVE COHOMOLOGY

Given ' < r we write O(r,r") := O(r)/O(r') and, if v < r < 1,
O*(r,r'") := O*(r) ] O*(1).
Lemma 17. For v’ < r < 1 we have isomorphisms of sheaves of sets
O(r) = O*(r) and O(r,r") = O*(r,7') given by f +— 1+ f. If v’ > 12, the
latter isomorphism is an isomorphism of abelian sheaves.
Proof. Most of the claims are easy. To see that f — 1 4+ f induces a map
on the quotient sheaves O(r,r’) — O*(r,r’) note that if f, g are functions

of supremum seminorm < 1, then |f — glsup < 7’ if and only if |(1 4+ f)(1 +
9)"! — 1sup < '. Indeed, this follows from the computation |f — glsup =

(L f)=(149)lsup = [(1+ ) (1+9) " =1)(1+9)lsup = [(1+f)(1+9) " ~1lsup,
where we used that |1+ glsup = [(1 4+ g) sup = 1. O

Given an affinoid space X, we consider the following condition on the real
number 0 < s < 1:
() The map H'(X,O(sr)) — H (X, O(r))

vanishes for all » > 0 and integers ¢ > 0.
Proposition 18. Let X/K be smooth affinoid. Assume that s satisfies .
Then the map
HY(X,0*(sr)) — HY(X,0*(r))

vanishes for every r € (0,s).
Proof. We first prove:

Lemma 19. Assume that s satisfies ‘ for the affinoid space X. For any
integer i > 0, r € (0,s), and £ € H'(X,O*(sr)) there exists a decreasing
zero sequence (ry) in (0,s) with ro = r and a compatible system

(&) € lim H'(X, 0% (1))

such that & € HY(X,0*(r)) is equal to the image of £ under H'(X, O*(sr)) —
H'(X,0*(r)).
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Proof. Put ry = r and inductively 7,1 = r2/s. Explicitly, 7, = (r/s)*"s
Since r < s, the 7, form a decreasing zero sequence.

Put & = £. We will inductively construct elements &, € H' (X, O*(sry))
such that the images of &, and &,41 in H (X, O*(r,)) coincide. Denote this
common image by &/,. Then (&,)n>0 is the desired compatible system.

Assume that we have already constructed &,. From the commutative
diagram with exact rows

X O S’I”n)) — HZ(X, O(STH, 827“n+1)) E— I{i—i_l()(7 O(SQTTH-I))

| v
HY (X, O(s1y)) — H(X, O(srm, stms1)) —— HH(X, O(srp41))
e ]

H(X,0(ry)) — H (X, 0(rp, s7pny1)) — HTH (X, 0(sr41))

we see that H'(X, O(sry,, s%rny1)) — HY(X, O(ry, srp11)) vanishes for i > 0.
Since sr,11 > r2 and s%r, 11 = sr2 > (sr,)%, we may apply Lemma [17 to
deduce that also H' (X, O*(sry, s?rni1)) — HY(X,O*(ry, 5741)) vanishes.
From the commutative diagram with exact rows

HZ(X’ O*(Srn)) - Hl(Xa O*(STna 52Tn+1))

| -

H'(X,0*(srp41)) — H' (X, 0*(ryp)) — H'(X, O*(rp, srp41))

we deduce the existence of the desired element §,11 € H X, 0% (smps1))
such that the images of &, and &, in H'(X, O*(ry,)) coincide. O

Lemma 20. Let X/K be smooth affinoid, and let (&,) € lim,, H*(X, O*(ry,))
be a compatible system where the r, form a decreasing zero sequence in (0,1).
Then there exists a finite affinoid covering U of X such that (&,) lies in the
image of lim,, H*(U, O*(ry)).

Proof. Let U be a finite affinoid covering of X such that &y lies in the image
of HY (U, O*(rp)). We claim that then &, lies in the image of H* (U, O*(ry,))
for all n. Recall that for any abelian sheaf F the map H' (U, F) — H'(X, F)
is injective, and an element ¢ € H'(X, F) belongs to the image of this map
if and only if £|y = 0 in HY(U, F|y) for every U € U.

Fix U € U. We want to show that &)y = 0 in H'(U, O*(r,)). By
Corollary [16] there exists m > n such that H' (U, O(ry,)) — HY (U, O(ry))
vanishes. Under the sequence of maps

HY(U,0*(rm)) = HYU, O*(rn)) — HYU, O*(rp))

we have &, |y — &n|u — 0. Hence the element &, |y lifts to an element 7,
in HO(U, O*(r9,7)). We claim that the image of 1, in HY(U, O*(r,7,))



NON-ARCHIMEDEAN BASS-QUILLEN 11

has a preimage in H°(U, O*(rg)). In view of the commutative diagram with
exact rows

U O* TO)) - HO(Uv O*(TO’ TTL)) - Hl(U7 O*(T’n))

T !

U O* TO)) O(Uv O*(T()v Tm)) - HI(U7 O*(Tm))

this will imply that &,|y = 0.

To prove the claim, note that Lemma [17| gives bijections H°(U, O*(rg)) =
H°(U,O(rq)) and HO(U,O*(rg,m)) = HO(U,O(ro,ry)) and similarly for
rn replaced by r,. On the other hand, by the choice of m, the map
HY(U,O(rp)) — HY(U,O(r,)) vanishes. This implies the existence of the
desired lift in view of the commutative diagram with exact rows

%(U,0(rg)) —= H*(U,O(ro, 1)) — HY(U, O(ry,))

| |-

YU, O(rg)) —= H (U, O(rg, 71n)) — HY(U, O(ryn)).
([

We can now finish the proof of Proposition Using the two preceding
lemmas, it suffices to show that lim, H' (U, O*(r,)) vanishes for every de-
creasing zero sequence (r ) Consider an element (&), in this inverse limit,
and choose representing Cech 1-cocycles ¢, € Z' (U, O*(r,)). Then there
exist 0-cochains 1, € C%(U, O*(r,)) such that ¢, = (ui1 - Onp. Since (r,)
is a zero sequence, the product [[3 Ntk converges in CO(U, O*(ry,)), and
we get G, = 8(1_[1?;0 nn-‘rk)a ie, & =0. U

Corollary 21. For every r € (0,1) we have H' (B, O*(r)) = 0.

Proof. By Theorem s = 1 satisfies condition for X = B?. Hence by
Proposition the identity map on H'(B?, O*(r)) vanishes. O

Corollary 22. Let X/K be a smooth affinoid space. Then there exists
0<r <1 such that

HY(X,0%) = H'(X,0*/O*('))
is ingective for every r' € (0,7).
Proof. By Corollary (16 . 6| there exists 0 < s < 1 satisfying (4 . By Proposi-
tion [18 we can take r = s2. O
3. HOMOTOPY INVARIANCE OF Pic

In this section we prove Theorem [4| Given 0 < r < 1, we set O*(oco,r) =
O*/O*(r). Let X = Sp(A) be an affinoid space, and let p : X x B! — X be
the projection, o : X — X x B! the zero section.
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Lemma 23. For any fibre p~'(a) = IB%};G over an analytic point a of X we
have

;(xEl(ooﬂnﬂp_l(a) = ]E}‘a (OO,’I").
Proof. This follows easily from [8, Lemmas 2.7.1, 2.7.2]. O
Lemma 24. We have R'p,O% (00, r) = 0.

Proof. The sheaf O% 41 (0c0,7) and hence its higher direct images are over-

convergent (see [17, 1.5.3], [8, Lem. 2.3.2]). Hence it suffices to prove that
for any analytic point a of X the stalk Rlp*(’)}xBl (00, 7), vanishes. By base
change [8, Thm. 2.7.4] and Lemma [23| we have

Rlp*(’)}xw(oo,r)a o Hl(IBB},ﬂa, f;}w (00, 1)).
In the exact sequence
1/l * 1/l * 2 /ml x
H' (Bg,, B}:a) — H (Bg,, BlFa(OOa r)) = H*(Bg,, B (r))
the group on the left vanishes because the Tate algebra is a UFD, the group
on the right vanishes by dimension reasons. ([

Fix 7 € K \ {0} with || < 1. Let ¢ denote the coordinate on B'. Then
t + 7t induces a map p.O%, p1(00,7) = pO%, pi (00, 7).

Lemma 25. We have an isomorphism of pro-abelian sheaves

¢ lim ” p. 0% 51 (00,7) = O (00,7)

Nsp1 (00,7) A O% (00, 1) is the iden-
tity. Choose n big enough such that |7"| < r. We claim that the map

Proof. Obviously, O% (o0, ) LN . O%

P+ O% g1 (00,7) = p.O% g1 (00, T)

induced by t — 7"t factors through O% (co,r) 7, P«O% (00, 7). By
overconvergence again it is enough to check this on the stalk at any analytic
point @ of X. By base change and Lemma [23| we have p.O% pi(00,7)q =

H°(Bf, , 0%, (00,7)). By Corollary [21| the natural map H°(Bj, ,0%) —
a Fa a

H°(Bf, , 0%, (o0,r)) is surjective. Any element of HY(B}, ,0*) is of the
a Fa a

form u- f(t) with w € F}, f(0) =1, and | f(t) — 1]sup < 1 (see [5, Cor. 2.2.4]).

But then |f(7"t) — 1|sup < |7"| < 7. This implies that the map

HO(B}?‘N O]E}?a (007 T)) — HO(B%’M ]E}‘a (007 T))
induced by ¢t ~— 7"t factors through F¥/F*(r) — H°(BL , m (00,7)),
a Fy
concluding the proof. O
Proof of Theorem [} Note that Pic(A) = HY(X,0*). Since X = Sp(A) is
assumed to be smooth, Corollary 22| implies that there exists r € (0,1) such
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that the map H'(X x B!, 0*) — H(X x B!, O*(co, 7)) is injective. It thus
suffices to show that

o+ “lim 7" H'(X x B', 0% g1 (00, 1)) = H' (X, O% (o0, 1))

t—mt
is a pro-isomorphism.
Using the Leray spectral sequence, Lemma [24] yields an isomorphism
H'(X x B!, Y xpt (00,7)) =2 HY(X, p, g1 (00,7)).
We combine this with the pro-isomorphism
“lim ” H' (X, p.O% 1 (00,7)) = H' (X, O% (00, 7))

t—mt

implied by Lemma [25] to finish the proof. U

4. Kp-INVARIANCE

In this section we assume that K is a complete discretely valued field
whose residue field has characteristic zero. Let m € K° be a prime element.
Then for an affinoid algebra A/K the ring A° is noetherian excellent of
finite Krull dimension and a quotient of a regular ring, for excellence see |11},
Sec. 1.9].

Let X — Spec A° be a blow-up in an ideal whose cosupport is contained
in Spec A°/(r), i.e. an admissible blow-up in the sense of Raynaud [5, Ch. 8].
For an integer n > 0 set X, = X Qo K°/(7™).

Proposition 26. There exists n > 0 such that
Ko(X) = Ko(&y)
18 injective.
Proof. Let K(X,X,) be the homotopy fibre of the map K(X) — K(X,)

between non-connective K-theory spectra [I8, Sec. IV.10] and let K;(X, &,,)
be its homotopy groups. By “pro-cdh-descent” [15] the natural map

“lim” Ko(A°, A°/(7™)) — “lim” Ko(X, X,)
n n
is a pro-isomorphism. For each n we have an exact sequence
K1(A%) = Ki(A°/(7")) — Ko(A®, A°/(7")) = Ko(A®) = Ko(A°/(7"))

where the left map is surjective [I8, Rmk. II1.1.2.3] and the right map is an
isomorphism [I8], Lem. I11.2.2], so Ky(X, X,,) vanishes as a pro-system in n.
By the exact fibre sequence

Ko(X,X,) = Ko(X) = Ko(X,)
this finishes the proof of the proposition. ([l
Lemma 27. If X is a regular scheme we obtain a natural exact sequence
Go(X1) = Ko(X) — Ko(A) — 0,

where Gq is the Grothendieck group of coherent sheaves.
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Proof of Theorem[5 As A° contains Q and is excellent there exists an ad-
missible blow-up X — A° such that X is a regular scheme [16, Thm. 1.1].
Let A°(t) C A°[t] be those formal power series for which the coefficients
converge to zero. Note that A° — A°(t) is a regular ring homomorphism,
s0 X' = X ®40 A°(t) is a regular scheme with generic fibre Spec (A(t)). Set
X =X QKo K°/(n").

Applying Lemma to X and X’ we get a commutative diagram with
exact rows

Go(Xl) E—— K[)(X) E—— KO(A) —— 0

N
Go(X]) — Ko(X') —> Ko(A(t)) —> 0

where o is the zero-section induced by ¢ — 0. The left vertical arrow is an
isomorphism as ] = A} > see [I8, Thm. 11.6.5]. In order to prove Theorem
we have to show that

0" 1 Tim ™ Ko(A(t) — Ko(A)

is a pro-monomorphism. According to Proposition [26] we find n > 0 such
that Ko(X') — Ko(X)) is injective. So by a diagram chase it suffices to
show that

TR 9 /
g . t}igrlt Ko(Xn) — KO(Xn)
is a pro-monomorphism, which is clear as the morphism X, LiniiiN X! fac-
tors through &,. O
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