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ABSTRACT. We develop a theory of sheaves and cohomology on
the category of proper modulus pairs. This complements [4], where
a theory of sheaves and cohomology on the category of non-proper
modulus pairs has been developed.

CONTENTS
Introduction 1
1. Review of presheaf theory on modulus pairs )
2. Review of sheaf theory on non-proper modulus pairs 9
3. A cd-structure on MSm 13
4. Sheaves on MSm and MCor 16
5. Cohomology in MNST 20
6. Relation with NST 27
7. Passage to derived categories 32
Appendix A. Categorical toolbox, II 36
References 40
INTRODUCTION

This is a sequel to [4], where a theory of sheaves and cohomology on
the category M Cor of non-proper modulus pairs has been developed.
This paper complements it by using work from [2] and [10] to develop
a theory of sheaves and cohomology on the category MCor of proper
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modulus pairs. This completes the repairs to the mistake in [3]. The
basic aim of both works is to lay a foundation for a theory of motives
with modulus, to be completed in [5], generalizing Voevodsky’s theory
of motives in order to capture non Al-invariant phenomena.

In [4], Voevodsky’s category Cor of finite correspondences on smooth
separated schemes of finite type over a fixed base field &k, was enlarged
to the larger category of (non-proper) modulus pairs, MCor: Objects
are pairs M = (M, M>) consisting of a separated k-scheme of finite
type M and an effective (possibly empty) Cartier divisor M on it
such that the complement M° := M \ M> is in Sm (we call it the
smooth interior). The group MCor(M, N) of morphisms is defined
as the subgroup of Cor(M°, N°) consisting of finite correspondences
between smooth interiors whose closures in M x; N are proper!' over
M and satisfy certain admissibility conditions with respect to M> and
N*°. Let MCor C MCor be the full subcategory consisting of objects
(M, M>) with M proper over k.

We then define MPST (resp. MPST) as the category of additive
presheaves of abelian groups on MCor (resp. MCor). We have a pair
of adjunctions

(0.0.1) MPST < MPST,
—
where 7% is induced by the inclusion 7 : MCor — MCor and 7; is its
left Kan extension (see Lemma 1.2.3).
The main aim of [4] was to develop a sheaf theory on MCor gener-
alizing Voevodsky’s theory of sheaves on Cor.

Definition 1. We define MINST to be the full subcategory of MPST
of such objects F' that Fy; is a Nisnevich sheaf on M for every M =
(H, M) € MCor, where F); is the presheaf on ‘M ;s which associates
F(U, M>= x5; U) to an étale map U — M.

Definition 2. Let " be the subcategory of MCor which have the
same objects as M Cor and such that a morphism f € MCor(M, N)
belongs to ¥ if and only if f© € Cor(M?°, N°) is the graph of an
isomorphism M° ~ N° in Sm that extends to a proper morphism
7 : M — N of k-schemes such that M> = f N°°.

Now the main result of [4] is the following.

Theorem 1 (|4, Th. 2]). The following assertions hold.

Here we stress that we do not assume it is finite over M.
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(1) The inclusion MINST — MPST has an exact left adjoint ay;,
such that

(anisF) (M) = lim (Fiv)nis(N)
Nexfin  pr

for every F € MPST and M € MCor, where (Fy)nis @5 the
Nisnevich sheafification of the preshseaf Fyy on Myis. In par-
ticular MINST is a Grothendieck abelian category.

(2) For M € MCor, let Zy(M) = MCor(—, M) € MPST be
the associated representable presheaf. Then we have Zy (M) €
MNST and there is a canonical isomorphism for any i > 0

and FF € MINST:

Exthnse(Zu(M), F) = lim Hi (N, Fy).
Nexfin | pr

The aim of the present paper is to introduce a sheaf theory on M Cor.

Definition 3. We define MINST to be the full subcategory of MPST
of such objects F' that nF € MINST.

Note that by definition, 71 : MPST — MPST induces a functor
Tnis - MINST — MINST .

Now the main result of this paper is the following.

Theorem 2 (see Lemmas 4.2.2 and 4.2.5, Theorems 4.2.4, 5.1.1 and
5.1.3).

(1) We have 7*(MINST) C MNST. Letting
N . MINST — MNST

be the induced functor, the pair of adjoint functors (%) induces
a pair of adjoint functors
TNis
MNST ¢~ MNST,

AL

where Tnis 15 exact and fully faithful. The functor ™ is also
exact.

(2) The inclusion MINST — MPST has an exact left adjoint
anis such that anim = Tnis@nis-  In particular, MNST is a
Grothendieck abelian category.

(3) For M € MCor, let Zy(M) = MCor(—,M) € MPST be
the associated representable presheaf. Then we have Zy(M) €
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MNST and there is a canonical isomorphism for any i > 0
and FF € MNST:

EXti\/INST (ZtF(M)7 F) = hg Hlilis(ﬁa (TNisF)N>’
Nesfin M

where Y .= ¥ " MCor.

Finally we explain relations between cohomologies for MINST and
NST. We denote by PST (resp. NST) Voevodsky’s category of
presheaves (resp. Nisnevich sheaves) with transfers. The functor w :
MCor — Cor, w(M, M=) = M \ |[M>| induces a pair of adjunctions

MPST <, PST,

—

in a similar way as (0.0.1). (See §6.2 for details.)

Theorem 3 (see Proposition 6.2.1 and Theorem 6.3.2). The following
assertions hold.

(1) We have
w(MNST) c NST and w*(NST)C MNST.

The functors wy and w* induce a pair of adjoint functors

wNis
MNST :— NST,

H
such that

v Nis  V *
WNisONis = anjgW!, W Anig = ANisW

where al;, : PST — NST is Voevodsky’s sheafification functor.
Moreover, wN® and wyis are exact and W™ is fully faithful.

(2) For any FF € MNST and X € Sm and i > 0, we have a
canonical 1somorphism

Hl’ilis(X7 wNisF) =~ hgl H]i]iS<M, FM)
MeMSm(X)

where MSm(X) = {M € MCor | M° = X} is viewed as a
cofiltered ordered set [4, Lemma 1.7.4].

A key ingredient of the proofs is Theorem 3.2.2, which is based on
the works [10] and [2].
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Notation and conventions. In the whole paper we fix a base field
k. Let Sch be the category of separated schemes of finite type over k,
and let Sm be its full subcategory of smooth schemes. We write Cor
for Voevodsky’s category of finite correspondences [14].

An additive functor between additive categories is called strongly ad-
ditive if it commutes with all representable direct sums. A Grothendieck
topology is called subcanonical if every representable presheaf is a sheaf.

Let C and D be sites, and v : C — D a functor. We say that
u is continuous (resp. cocontinuous) if the functor u* : D—C (resp.

Uy : ¢ — 25) between categories of presheaves carries sheaves to sheaves.
(cf. [SGA4, II1] and [2, §A.1].)

1. REVIEW OF PRESHEAF THEORY ON MODULUS PAIRS

1.1. Categories of modulus pairs. A modulus pair M consists of
M € Sch and an effective Cartier divisor M> C M such that the
open subset M° := M — |M®>| is smooth over k. (The case |[M>| =
0 is allowed.) We say that M is proper if M is. Note that M is
automatically reduced, and M° is dense in M [4, Rem. 1.1.2 (3)].

Let M, My be modulus pairs. Let Z € Cor(My, MS) be an elemen-
tary (= integral) finite correspondence in the sense of Voevodsky [14].
We write zV for the normalization of the closure Z of Z in My x My
and p; : 7N M; for the canonical morphisms for i = 1,2. We say Z
is admissible (resp. left-proper) for (My, My) if piM® > piMS® (resp.
7 is proper over M).

By [4, Prop.1.2.3 and 1.2.6], modulus pairs and left proper admissible
correspondences define an additive category that we denote by M Cor.
We write M Cor for the full subcategory of M Cor whose objects are
proper modulus pairs.

We write MSm for the category with same objects as MCor a
morphism of MSm(Mj, M;) being a (scheme-theoretic) k-morphism
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fo : MP — M3 whose graph belongs to MCor(M;, M). We write
MSm for the full subcategory of MSm whose objects are proper mod-
ulus pairs.

We write MCor™ for the subcategory of MCor with the same ob-
jects and the following condition on morphisms: o« € MCor(M, N)
belongs to MCorﬁ“(M N) if and only if, for any component Z of a,
the projection Z — M is finite, where Z is the closure of Z in M x N.
We write MCor™™ for the full subcategory of MCor whose objects are
proper modulus pairs.

We write MSm™ for the subcategory of MSm with the same objects
and such that a morphism f : M — N belongs to MSm™ if and only
if fo: M° — N° extends to a k-morphism f : M — N. We write
MSm®™ for the full subcategory of MSm whose objects are proper
modulus pairs. A morphism f : M — N in MSm®™ is minimal if we
have f*N = M.

Remarks 1.1.1.
(1) For M € MSm™ set M"Y := (MN M| :~) where p : Y
M is the normalization and M |5z is the pull-back of M to

M. Then p: MN — M is an isomorphism in MCor™ and
MSm (but not in MSm"™ in general).

(2) Let f : M — N be a morphism in MSm™. The reducedness
of M, the separatedness of N and the denseness of M° in M

imply that this extension f is unique. This s yields a forgetful
functor MSm™ — Sch, which sends M to M.

We have the following commutative diagram of inclusion functors

MSm™ 2~ MSm <~— MSm

(1.1.1) lﬁ l L

MCor'™ e MCor <—— MCor

1.2. Presheaves.

Definition 1.2.1. By a presheaf we mean here an additive contravari-
ant functor to the category of abelian groups. (A functor is called
additive if it commutes with finite coproducts.)

(1) The category of presheaves on MSm (resp. MSm, MSm™) is
denoted by MPS (resp. MPS, MPS™).

(2) The category of presheaves on MCor (resp. MCor, MCor™)
is denoted by MPST (resp. MPST, MPST™))
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(3) We write
Z : MCor — MPST, MCor — MPST,
Zin . MCor™ — MPST™,

for the associated representable presheaf functors.
(4) For M € MSm, we denote by ZP(M) the presheaf with values
in abelian groups defined by

MSm > N — ZMSm(N, M),

where for any set S we denote by ZS the free abelian group on

S.

Diagram (1.1.1) induces a commutative diagram of functors on presheaf
categories:

* *

MPS™ < MPS —" - MPS

(1.2.1) Tﬁ T T

MPST™ <~ MPST —~~ MPST

Lemma-Definition 1.2.2 ([4, Def. 1.8.1 and Lemma 1.8.2]). For

M = (M, M*) € MSm, we denote by Comp(M) the category whose

objects are morphisms M 2 N in MSm™ such that

(i) N € MSm;

(ii) jn: M — N is a dense open immersion;

(iit) jn is minimal, i.e., M™ = j5 N°;

(iv) we have N* = Mg + C for some effective Cartier divisors
Mz, C on N satisfying N \ |C| = j(M). (Note that, therefore,
M> = jy Mg.)

For Ny, Ny € Comp(M) we define

Comp(M)(N1, Np) = {y € MSm(Ny, Np) [y 0 jn, = j, }-
The category Comp(M) is nonempty, ordered and cofiltered.

Lemma 1.2.3 ([4, Prop. 2.4.1 and Lemma 2.4.2]).

(1) The functor T : MCor — MCor of (1.1.1) yields a string of 3
adjoint functors (1, 7", Ty):

u
—

MPST 7~ MPST,
a

where 1,7, are fully faithful, 7 is a localisation and the ad-
Junction map Id — 7% is an isomorphism. The functors 7
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and T commute with all colimits and 7 has a pro-left adjoint
represented by Comp, hence is exact.
(2) The same statements as (1) hold for the functor s : MSm —
MSm.
(3) For G € MPST and M € MSm, we have
nG(M) ~ hg G(N).

NeComp(M)

(4) For G € MPS and M € MSm, we have
TaG(M)~ 1l G(N).

NeComp(M)

Lemma 1.2.4 ([4, Prop. 2.5.1]). Let b : MCor™ — MCor be the
inclusion functor from (1.1.1). Then b yields a string of 3 adjoint
functors (b, b",b,):

b,

b
MPST™ ¢ MPST,
b

where b, b, are localisations; b* is exact and fully faithful; b, has a pro-
left adjoint, hence is exact. For F € MPST™ and M € MCor, we
have (see Definition 2)
(1.2.2) bE(M) = limy F(N).

Nexfin | pr
The same statements hold for b, from (1.1.1).

Lemma 1.2.5 ([4, Prop. 2.6.1]). Let ¢ : MSm — MCor be the func-
tor from (1.1.1). Then c yields a string of 3 adjoint functors (¢, c*,c,):

—
MPS & MPST,

Cx

where ¢* is exact and faithful (but not full). The same statements hold
for ™ and ¢ from (1.1.1). We have

(1.2.3) Tt =T1ic", 'n=TaC,

(1.2.4) A =ik, b = by, b = byc™.

For the readers’ convenience, we recall the following lemma from [4,
Lemma A.8.1]:

Lemma 1.2.6. Let C,D be abelian categories and let C' C C,D' C D
be full abelian subcategories. Let ¢ : C — D and ¢’ : C' — D’ be additive
functors satisfying cic = ipc, where ic : C' — C and ip : D' — D are
the inclusion functors.



MOTIVES WITH MODULUS, II 9

(1) If c is faithful, so is c.

(2) Suppose that ip is strongly additive or has a strongly additive
left inverse (for example, a left adjoint). If ¢ andic are strongly
additive, so is c.

(3) Suppose that ic has a left adjoint ac. If ¢ has a left adjoint d,
then d' = acdip is a left adjoint of <. If d and a¢ are exact, so
is d'. Moreover, acd = d'ap if ip has a left adjoint ap.

(4) Suppose that ic and ip have left adjoints ac and ap, that ap is
exact, and that apc = cac. If ¢ is exact, then so is .

2. REVIEW OF SHEAF THEORY ON NON-PROPER MODULUS PAIRS

In this section we recall some basic definitions and properties on
sheaves on categories of non-proper modulus pairs from [4, §4.1 and
§4.2].

Let Sq be the product category of [0] = {0 — 1} with itself, depicted
as

00 ——01

L

10 ——11.

For any category C, denote by C59 for the category of functors from
Sq to C. A functor f: C — € induces a functor 59 :CSa — 59,

Let Q € MSm®Y. We write Q(ij) = (Q(ij), Q*(i5)) for all i,j €
{0,1}. We also write Q°(ij) := Q(ij) — |Q>(ij)|.

2.1. The MV cd-structure.
Definition 2.1.1.

(1) A Cartesian square

v

W —V

(2.1.1) ql pl

U —— X
in Sch is called an elementary Nisnevich square if u is an open
embedding, p is étale and p~ (X \ U)rea — (X \ U)req is an
isomorphism. In this situation, we say U UV — X is an el-
ementary Nisnevich cover. Recall that an additive presheaf is
a Nisnevich sheaf if and only if it transforms any elementary

Nisnevich square into a cartesian square [15, Cor. 2.17], [16,
Thm. 2.2].
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(2) A diagram (2.1.1) in MSm™ is called an MV -square if it be-
comes an elementary Nisnevich square (in Sch) after replacing
X, U,V,W by X,U,V,W (cf. Remark 1.1.1(2)) and all mor-

phisms are minimal.

Proposition 2.1.2 ([4, Prop. 3.2.3 (2)]). The cd-structure Py on

MSm™ consisting of MV -squares is strongly complete and strongly
regular, hence complete and regular in the sense of [15] (see [4, Def.

A.7.1 and A.7.4]).

We define MNS™ to be the full subcategory of MPS™ consisting of
sheaves with respect to the Grothendieck topology associated to Py fin.
Let o

(2.1.2) atis : MPS™ — MNS™

be the sheafification functor, that is, the left adjoint of the inclusion
functor gﬁg\ﬁs : MNS™ < MPS™. It exists for general reasons and is
exact [SGA4, 11.3.4].

Lemma 2.1.3 ([4, Lemma 3.1.3]). Let M € MSm™. Let Myis be the
category of morphisms f : N — M in MSm™ such that [ is étale
and f*MOO = N, endowed with the topology induced by Pyysn, and

let (M)xis be the (usual) small Nisnevich site on M. Then we have an
1somorphism of sites

Myis — (M)nis, N — N,

whose inverse is given by (p : X — M) — (X, p*(M*>)). (This iso-
morphism of sites depends on the choice of M) O

Notation 2.1.4. Let M = (M,_MOO) € MSm™ and F' € MPS™. We
write Fiy for the presheaf on (M)¢ which associates F'(U, U x5 M)
to an étale map U — M. By Lemma 2.1.3, F € MNS™ if and only if

Fy is a sheaf on (M )y for every M € MSm™.

Let MNST™ be the full subcategory of MPST™ consisting of
all objects F € MPST™ such that ¢™F e MNS™ where ™ :
MPST™ — MPS™ is from (1.2.1).

We write if2 : MNST™ — MPST™ for the inclusion functor and
AnNis - MINST — MNS for the functor induced by ¢™*. By definition,
we have

fink -fin __ -fin finNis
(2.1.3) € INis = Ls,NisC :
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Theorem 2.1.5 ([4, Th. 3.5.3]). The functor i, has an exact left
adjoint
aln . MPST™ — MNST®
satisfying
(2.1.4) Al = ™
In particular MNST™ s Grothendieck. Moreover, MNST™ is closed

under infinite direct sums in MPST™ and the inclusion functor i, :
MNST — MPST™ is strongly additive.

2.2. The MV cd-structure.

Definition 2.2.1 ([4, Def. 4.1.1]). A diagram in MSm is called an
MV -square if it is isomorphic in MSm5? to Q?q(Q) for some MV
square () in Definition 2.1.1, where l_)?q is the functor induced on squares
by b, : MSm™ — MSm from (1.1.1). Let Pyy be a cd-structure on
MSm given by the collection of MV-squares.

Theorem 2.2.2 ([4, Th. 4.1.2]). The cd-structure Py is strongly
complete and strongly regular, in particular complete and reqular (see
[4, Def. A.7.1 and A.7.4]).

Remark 2.2.3. In view of Lemma 2.1.3, the topology defined by P,y
is subcanonical. This is also true for Pyy by [10, Th. 4.5.1].

We write MINS for the full subcategory of MPS consisting of sheaves
with respect to the Grothendieck topology on MSm associated toPyy .
We denote by i, ;s : MNS — MPS the inclusion functor.

Lemma 2.2.4. The functor i, ;s : MNS — MPS has an ezxact left
adjoint a, ;s In particular MINS s Grothendieck. Moreover, the fol-
lowing conditions are equivalent for F' € MPS.

(i) F € MNS.
(ii) It transforms any MV™-square
W—V
(2.2.1) Q- l l
U—M

mto an exact sequence
0 - FM)— FU)® F(V)— F(W).
Proof. The first two assertions follow from the general properties of

Grothendieck topologies [SGA4, Exp. II]. The equivalence (i) <=
(i) follows from [15, Cor. 2.17] in view of Theorem 2.2.2. O
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Lemma-Definition 2.2.5 ([4, Lemma 4.5.1]). For F' € MPST, one
has ¢*F € MNS if and only if b*F € MNSTﬁn, where

b*: MPST — MPST™, ¢*: MPST — MPS

are from (1.2.1).

We define MINST to be the full subcategory of MPST consisting of
those F' enjoying these equivalent conditions. We denote by iy :
MNST — MPST the inclusion functor, and by pNs . MINST —
MNST™ the functor induced by b*.

Recall the functor b, : MPST — MPST from Lemma 1.2.4.

Proposition 2.2.6 ([4, Prop. 4.5.4]). We have b(MNST™) c MNST.
Let by, : MNST™ — MNST be the restriction of b, so that we have
(2.2.2) Q!Z%ils = IxisDnis-

Then by, s an exact left adjoint of NS and is fully faithful.
Theorem 2.2.7 ([4, Lemma 4.5.3, Th. 4.5.5 and Prop. 4.5.6]). The

category MINST contains Z. (M) for any M € MCor. The inclusion
functor iy, : MINST — MPST has an ezact left adjoint

ani : MPST — MINST

given by ani, = brnialBb*.  In particular, MNST is Grothendieck.
Moreover, MINST is closed under infinite direct sums in MPST, and
inis 48 strongly additive. We have

N

fin __ * is
(2.2.3) byisNis = anishrs AsNis€ — € Qniss

where ¢ is the functor determined by Lemma-Definition 2.2.5. This

Junctor is exact, strongly additive and has a left adjoint ¢\ = aNisCls Nis-

Notation 2.2.8. Let M € MCor and F' € MNST.Esing Notation
2.1.4, we define F); := (l_)NlSF)M, which is a sheaf on (M )js.

Proposition 2.2.9 ([4, Prop. 4.6.3]). Let FF € MNST, and let M €
MCor. Then there is a canonical isomorphism for any i > 0:

EXtiMNST<Ztr(M)7F) = hgl Hli\Iis(Na Fy).
Nexfin | pr

Moreover, we have
lim  Hy (N, (RY(;®)F)n) = 0 for all ¢ > 0.
Nexfin | pr

Corollary 2.2.10. We have Extyngr(Ze: (M), F) =0 fori > dim M.
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Proof. For any N € £ | M, we have dim N = dim M. Therefore
the statement follows from Proposition 2.2.9 and the known bound for
Nisnevich cohomological dimension. 0

3. A CD-STRUCTURE ON MSm

In this section we introduce a cd-structure on MSm and describe
its main properties, following the works of Miyazaki [10] and Kahn-
Miyazaki [2]. For this we need to start with the “off-diagonal” functor.

3.1. Off-diagonal.

Definition 3.1.1. Define MEt as the category such that

(1) objects are those morphisms f : M — N in MSm such that
f°: M° — N° is étale, and

(2) a morphism from f : M; — N; to g : My — N, is a pair
of morphisms (s : My — Ms,t : N; — N,) in MSm which
commute with f, g and such that s® and ¢° are open immersions.

For modulus pairs M and N, we define the disjoint union of M and
N by
MUN :=(MUN,M>®LN>).
Obviously, we have (M LI N)° = M° LI N°.
Theorem 3.1.2 ([10, Th. 3.1.3]). There ezists a functor
OD : MEt - MSm
such that for any f : M — N, one has a functorial decomposition
M xny M = M UOD(f).

Moreover, we have OD(f)° = M° X o M°\ A(M?), where A : M° —
M® X o M s the diagonal morphism. In particular, if f° is an open
immersion, then OD(f)° =0, hence OD(f) = 0. We call the functors
the off-diagonal functors.

3.2. The MV cd-structure.

Definition 3.2.1. Let 7' be an object of MSm®? of the form
T(00) —= T(01)

(3.2.1) qu lpT
T(10) —= T'(11).

Then T is called an MV -square if the following conditions hold:
(1) T is a pull-back square in MSm.
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(2) There exist an MV-square S (cf. Definition 2.2.1) such that
S(11) € MSm, and a morphism S — T in MSm®? such that
the induced morphism S° — T° is an isomorphism in Sm®¢
and S(11) — T'(11) is an isomorphism in MSm. In particular,
T° is an elementary Nisnevich square.

(3) OD(gr) — OD(pr) is an isomorphism in MSm.

We let Pyv be the cd-structure on MSm consisting of MV-squares.
The following are the main results of [10].

Theorem 3.2.2 ([10, Th. 4.3.1, 4.4.1 and 4.5.1]). The cd-structure
Py is complete and reqular. The associated topology is subcanonical.

Corollary 3.2.3. Define MINS C MPS as the full subcategory con-
sisting of sheaves with respect to the Grothendieck topology on MSm
associated with Pyrv. Then there exists a pair of adjoint functors

Gs Nis

(3.2.2) MPS ;. MNS,

1s,Nis
o

where isnis 15 the natural inclusion and its left adjoint asnis s exact.
Moreover, MINS is Grothendieck. For F' € MPS, the following condi-
tions are equivalent.

(1) F € MINS.

(2) For any MV-square Q) as (3.2.1), the associated sequence

(323) 0 — F(T(00)) — F(T(10)) x F(T(01)) — F(T(11))
1S exact.

Proof. Same as for Lemma 2.2.4: the first two assertions are general
facts on Grothendieck topologies, and the equivalence (i) <= (ii)
follows from [15, Cor. 2.17] in view of Theorem 3.2.2 (1). O

The following are the main results of [2]. To state them, we need a
definition.

Definition 3.2.4.

(1) For any square S € MSm®?, we define categories Comp(S) as
the full subcategories of S | MSm®% consisting of those objects
S — T such that S(ij) — T'(ij) belongs to Comp(S(ij)) for
any (ij) € Sq. Here, Comp(—) is from Definition 1.2.2.

(2) For an MV™-square S in MSm™, an object S — 759(Q) in
Comp(S) is an MV-completion of S if () is an MV-square. We
write

Comp(S)™MY c Comp(9)

for the full subcategory consisting of MV-completions of S.
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Theorem 3.2.5. The following assertions hold.

(1) [2, Th. 1]. The functor 75 : MSm — MSm is continuous in
the sense of [SGA4, Exp. III] for the topologies given by Pyv
and Pyry .

(2) [2, Th. 1.5.6]. For any MV™-square S such that S(11) is nor-
mal, Comp(S)MV is cofinal in Comp(S).

Corollary 3.2.6. Let S be an MV™-square such that S(11) is normal.
Then, for any i,j € {0,1}, the subcategory of Comp(S(ij)) defined by

{T(ij) | T € Comp(5)""}
is cofinal in Comp(S(ij)).

Proof. By Theorem 3.2.5 (1), it suffices to prove that the subcateogry
{T(ij) | T € Comp(S)} is cofinal in Comp(S(ij)) for any i, j € {0,1}.
To show this we need the following

Lemma 3.2.7. For any morphism f :V — U in MSm"™ and for any
M € Comp(U), there exists N € Comp(V) such that f induces a
morphism N — M in MSm™

Proof. Take any N € Comp(V). Let ' be the graph of the rational
map N --» M and let 7 : ' — N. Then 7 induces an isomorphism
N := (I,m*N*>) = N and N" € Comp(V). Therefore, by replacing
N with N’, we may assume that f:U — V extends to a morphism of
schemes p : N — M. Moreover, by taking blow up Blg_¢(N) — N
and pulling back the divisor, we may assume that there exists an ef-
fective Cartier divisor D on N with N —V = |D|. Since the admis-
siblity of V' — U implies p" M|~ = *U°°|VN < Volon = N¥|on
9, Lemma 3.14] shows that there exists a positive integer n such that
p*M>|gn < (N*+nD)|gv. Then N” := (N,N*+nD) € Comp(V),
it dominates N and P induces a morphism N” — M in MSm™, as de-
sired. U

The corollary immediately follows from the lemma when (i,j) =
(1,1). We prove the case (i,7) = (1,0). Take any N € Comp(S(10))
and any 7" € Comp(S). Since Comp(S(10)) is filtered, there exists
T'(10) € Comp(S(10)) which dominates both N and 7°(10). By the
lemma there exists 77(00) € Comp(S(00)) such that S(00) — S(10)
extends to 7"(00) — T(10). Since Comp(S(00)) is ordered we may
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assume that 77(00) dominates 7°(00). Then the resulting diagram
T'(00) —= T(01)

L

T'(10) — T(11)

is an object of Comp(S) dominating 7', and 7"(10) dominates N by
construction. This proves the case (i,j) = (1,0). The proof for (i, j) =
(0,1) is completely the same.

Finally we prove the case (¢, 7) = (0,0). Take any N € Comp(S(00))
and take any T" € Comp(S). Since Comp(S(00)) is filtered, there
exists 77(00) € Comp(S(00)) which dominates both N and 7'(00).
Then the square obtained by replacing 7'(00) with 7”(00) dominates
T'. This finishes the proof of Corollary 3.2.6. U

Remark 3.2.8. The essential point of the above proof is the fact that
the diagram category Sq does not have a loop, and therefore the use
of the graph trick terminates in finitely many steps. We remark that
we can generalize the proof to a much more abstract argument, cf. [1,
Lemma C.6].

4. SHEAVES ON MSm AND MCor
4.1. Sheaves on MSm.

Lemma 4.1.1. The category MINS is closed under infinite direct sums
and the inclusion functor isnis is strongly additive.

Proof. Indeed, the sheaf condition is tested on finite diagrams, hence
the presheaf given by a direct sum of sheaves is a sheaf. 0

Theorem 4.1.2. The following assertions hold.

(1) We have 75(MINS) C MNS and 74(MNS) C MNS, where 7}
and 1o are from Lemma 1.2.3. Hence we obtain functors

Nis . MINS — MINS and Ts,Nis MNS — MNS

s R
such that

- Nis y - :
(411) ZS,NiSTs - Ts ZS,NiS’ TS!ZS,NiS - Z57NiSTS,NiS7

and that TN is right adjoint to Tsnis. (See (1.1.1) for 75.)
(2) For F € MPS, one has F' € MNS if and only if 7,,F € MINS.
(3) We have

(412) Qs NisTs! = Ts,Niss,Nis
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(4) The functor Ts nis 15 fully faithful and exact. Moreover, the func-

tor TSN‘S preserves injectives.

Proof. First we prove (1). The first assertion follows from the continu-
ity of 75 (Theorem 3.2.5 (1)). Similarly, the second assertion morally
follows from the “continuity of 7!” (see [2, Rem. 1]): we give a proof
based on Theorem 3.2.5 (2).

Take F' € MINS. By Lemma 2.2.4, it suffices to show that the
sequence

0— T;F(M) — T]F(U) X T[F(V) — T{F(W)

is exact for any Q € Pyv as in (2.2.1). By Remark 1.1.1 (1), we may
assume that M is normal. Since a filtered colimit of exact sequences
of abelian groups is exact, the desired assertion follows from Lemma
1.2.3 (4), Corollary 3.2.3 and Corollary 3.2.6. Finally the adjointness
follows from Lemma 1.2.3 (2). This completes the proof of (1).

(2) follows from (1) and Id = 777, by Lemma 1.2.3 (2).

(3) follows from (4.1.1) by adjunction.

In (4), the exactness of 7, nis follows from Lemma 1.2.6 (4) applied
to ¢ = 7y, using (1), (3) and Lemma 2.2.4. It then implies the preser-

Nis

vation of injectives by 7,°. The full faithfulness of 7, nis follows from

that of 75 (Lemma 1.2.3 (2)) and (4.1.1). O

Remark 4.1.3. By [SGA4, 11, Prop. 1.3], the continuity of 7, implies
a priori the existence of a left adjoint 7, nis to 7 on sheaves of sets,
having the following properties:

(1) (4.1.2);

(2) ToNis = Qs NisTs, 105 Nis;

(3) Tsnis commutes with representable colimits;

(4) 75 nis sends a representable sheaf to the corresponding repre-

sentable sheaf.

All this extends to sheaves of abelian groups by [SGA4, II, Prop.
6.3.1]. The one property which is missing is the right formula of (4.1.1).
From (4.1.2), we deduce a base change morphism

(4.1.3) Totls,Nis = L NisTs,Nis

that we have shown above to be an isomorphism. By (4), this isomor-
phism is clear on the generators Z[M| (M € MSm) of the Grothendieck
category MINS, since both topologies on MSm and MSm are sub-
canonical (Th. 2.2.2 and 3.2.2 (1)). But both sides of (4.1.3) are a
composition of left and right exact functors, so this is not sufficient to
get the general case. Thus the recourse to Theorem 3.2.5 (2) seems
necessary to prove Theorem 4.1.2 (1).
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4.2. Sheaves on MCor. The following is an analogue of Lemma-
Definition 2.2.5:

Lemma-Definition 4.2.1. For ' € MPST, one has nF' € MINST
if and only if ¢*F € MINS. (See (1.1.1) forc.)

We write MINS'T for the full subcategory of MPS'T consisting of those
F € MPST that enjoy these equivalent conditions. Let inis : MINST —
MPST be the inclusion functor and let mnis : MINST — MNST and
NS MINST — MNS be such that

(4.2.1) inisTNis = Tiinis, G NisC = Crinis.
Proof. Let F' € MPST. Then
nF € MNST = 74" F = ¢'nF € ¢ MNST C MNS
where we used (1.2.3) and Lemma-Definition 2.2.5; by Theorem 4.1.2

(2), this implies ¢*F € MINS. This reasoning can be reversed. O
Lemma 4.2.2.
(1) For any M € MCor, the presheaf Z,(M) € MPST belongs to
MNST.
(2) We have a natural isomorphism
(4.2.2) TonisC & NP

Proof. (1) follows from Theorem 2.2.7, since nZy, (M) = Z,(TM). (2)
is a consequence of (4.2.1) and the corresponding isomorphism for
presheaves (1.2.3). O

Lemma 4.2.3. Let us consider the “2-Cartesian product category”
MNS xpns MNST, that is, the category of triples (Fs, Fy, ) consist-
ing of F; € MNS, F, € MNST and an isomorphism ¢ : Ts NisEs =
cNSFy, in MNS. The functor

MNST — MNS xpyns MNST,
defined by F + (NSF, 7o F, 0p), where Op : TonisC S F = NS F s
from (4.2.2), is an equivalence of categories.

Proof. The same statement was proven for presheaves in [4, Lemma
2.7.1]; full faithfulness follows from this, and essential surjectivity fol-
lows from Lemma-Definition 4.2.1. O
Theorem 4.2.4. The following assertions hold.
(1) The functor ins is strongly additive and has an ezact left adjoint
anis- Consequently, MINST is Grothendieck. We have

NiS *
(423) C " GNis = G5 NisC TNisONis = ANisT!-
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(2) The functor &N has a left adjoint cnis = anisCrinis. Moreover,
N is exact, strongly additive, and faithful.

Proof. By Definition of MINST, the strong addtivity of iyjs follows
from that of iy, (Theorem 2.2.7 and Lemmma 1.2.6 (2)). We then
use Lemma 4.2.3 and [4, Lemma 2.7.1] to construct ayis by patching
asNis and ay;, over ag v, i.e., we want ayis to verify (4.2.3); a for-
mal argument shows that such a patching is determined by the second
isomorphism of (2.2.3) and by the one of (4.1.2).

c
as,Nisl las,Nis iaNis
Nis

MNS . MNS <5 MNST

MNST.

The second isomorphism of (4.2.3) easily implies that ayi is left
adjoint to inis. Then (2) follows from Lemma 1.2.5, Lemma 4.1.1 and
Lemma 1.2.6 (3).

Finally, the exactness of ayjs is a consequence of the first isomorphism
of (4.2.3) since c™® is faithfully exact as we have just shown. O

Lemma 4.2.5. The following assertions hold.

(1) We have 7*(MINST) C MNST.
(2) Let 7V : MNST — MNST be the functor characterized by

(4.2.4) TN = INisT o

Then ™ is a right adjoint of Tis, and Tvis 18 fully faithful,
exact, and strongly additive. Moreover, TN® preserves injectives
and 1is strongly additive.

Remark 4.2.6. We will see in Theorem 5.1.1 below that 7% is also
exact.

Proof. Let F € MNST so that ¢*F € MNS. By Theorem 4.1.2 (1),
we have ¢*7*F = 7)c*F € MNS. In view of Lemma-Definition 4.2.1,
this proves that 7*F € MINST, whence (1).

In (2), the existence (and uniqueness) of 7 follows from (1) (and
the full faithfulness of iy, and inis). The adjointness is shown by using
the full faithfulness of iy;, and iyjs, the adjoint pair (7, 7*), (4.2.1) and
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(4.2.4). Similarly, the full faithfulness of ;s follows from that of =
(Proposition 1.2.3) and (4.2.1). The strong additivity (resp. exactness)

of mvis follows from Proposition 1.2.3, Theorem 4.2.4 and Lemma 1.2.6

2) (resp. (4)), applied with ¢ = 7; the latter implies that 7N preserves
(2) (resp. (4)), app ; p p

injectives. Finally, its strong additivity is reduced to that of 7* (Lemma
1.2.3 (1)), injs (Theorem 2.2.7) and inis (Theorem 4.2.4) by the full
faithfulness of iyjs. O

5. COHOMOLOGY IN MNST

5.1. Main result. We begin with the following.

Theorem 5.1.1. The functor 7™ : MNST — MNST from Lemma
4.2.5 1s exact.

The proof will be given later in this section (see Corollary 5.5.1). We
now deduce its consequences.

Lemma 5.1.2. For any M € MCor, F' € MNST, G € MNST and
q > 0, we have natural isomorphisms
EXtMNST(Ztr< ), NISG) EthMNST<ZtT(M)7 G),
EXtMNST(Ztr(M)7 F) = EthMNST(Ztr(M)>TNiSF)'

Proof. By Theorem 5.1.1, 7N is exact and it preserves injectives by
Lemma 4.2.5. Hence we have

Rq(iNiS>TNiSG - Rq(iNisTNis)G - Rq(T*ZNiS)G - T*RqZNiSG

for any G € MNST by [4, Th. A.9.1]. Using the projectivity of Z (M)
in MPST and that of n1Z(M) = Zy,(M) in MPST, and using Prop.

A.1.1 twice, we get isomorphisms

Extdngr (nisZu (M), TV5G) ~ MPST(Z (M), R (inis) T °G)
~ MPST(Zy(M), 7" Rliy;;G) =~ MPST (11 Z, (M), Ry ,G)
~ MPST(Zi:(M), Riin;G) ~= Extynst(@nisZe (M), G).
Moreover, anisZi (M) = Zi (M) and ay; Z (M) = Zy (M) by Theorem
2.2.7 and Lemma 4.2.2 (1), whence the first formula by evaluating both

sides at M. The second one follows from the first by taking G = mni F,
since TNy = 1d. O

Let M € MCor and F' € MNST. Using Notation 2.2.8, we define
Fyr = (misF) p, which is a sheaf on (M )nis.
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Theorem 5.1.3. For any p > 0, M € MCor and F € MNST, we
have a natural isomorphism
(5.1.1) Extlnse(Za(M), F)~ lim  H3, (N, Fy).
Nexfin| M
Moreover, we have
lim  Hy, (N, (R1(B)) i F)v) = 0 for all g > 0.
NG;HH\LM

Proof. Combine Proposition 2.2.9, Lemma 4.2.5 and Lemma 5.1.2. [
Corollary 5.1.4. We have Extlngr(Zw: (M), F) =0 for ¢ > dim M.
Proof. Same as for Corollary 2.2.10. O

5.2. A generation lemma. We now start proving Theorem 5.1.1. We
need some preliminaries.

Lemma 5.2.1. Let F' € MPST such that ay; ' = 0. Then F' may be
written as a quotient of a direct sum of

Zi(M/U) := Coker (Z(U) — Zi(M)),

where M € MSm, U — M is a covering for the Grothendieck topol-
ogy on MSm™ associated to Pypyen from Proposition 2.1.2, and the
cokernel is taken in MIPST. Moreover we have ay;Ze,(M/U) = 0.

Proof. Let G = ¢*F € MINS. Take f € G(L) = F(L) for L € MSm.
By (2.2.3) we have a ;G = 0. By [4, Lemma 4.3.2], we have p*f =
0 for a cover ¢ : U — M — L in MSmy;,, where U — M is a
strict Nisnevich cover and M — L is in ¥™. Hence the Yoneda map
ZP(L) — G in MPS given by f (see Definition 1.2.1 (4) for ZP(L))
factors through

ZP(L)U) := Coker(ZP(U) — ZP(L))
(see Definition 1.2.1 (4) for ZP(—)). By the adjunction (e, c*) this
induces a map ¢Z”(L/U) — F, and
aZP(LJU) ~ Coker(aZP(U) — aZP(L)) ~ Coker(Z,(U) — Z, (L)),

where the first isomorphism follows from the right exactness of ¢, as a
left adjoint. This implies that the Yoneda map y(f) : Zw(L) — F in
MPST factors through the cokernel of Z,(U) — Zyu(M) — Zi(L).
Thus we get an induced map y(f) : Zu(M/U) — F. Since the map
Ziy(M) — Zi(L) is an isomorphism in MPST, the image of y(f)
coincides with that of y(f). Collecting them over all pairs (L, f), this
proves the lemma. Finally the last statement follows from [4, Th.
4.5.7]. O
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5.3. The 7 construction.

Definition 5.3.1. Let M, N € MCor.
(1) We put
Ztr<M)T = T[T*Ztr(M) € MPST .

Note Z,(M)™ € MNST by Lemma 4.2.5.

(2) Let MCor” (N, M) be the subgroup of MCor(N, M) generated
by elementary correspondences Z in Cor(N°, M°) which satisfy
the condition:

(#) There exists a dense open immersion j : N — L with L
proper such that the closure Z of Z in L x M is proper
over L.

Lemma 5.3.2. For N, M as above, the condition (M) is independent
of the choice of 7 : N — L, and we have

Ztr(M)T(N> - MCOI‘T(N, M)

Proof. If j' : N — T’ is another choice equipped with (proper) surjec-
tive f: L — L' such that j' = f7, writing Z' c T' x M for the closure
of Z, f induces a proper surjective map 7' — 7. Then it is easy to see
that 7 is proper over T’ if and only if so is Z over L. This proves the
first assertion. To show the second assertion, we note that by Lemma
1.2.3 (3),
Zu (M) (N) = hgl MCor (L, M).
LeComp(N)

The second assertion follows from this using the first assertion (see the
proof of [4, Lemma 1.8.3]). O

Lemma 5.3.3. For M, N € MCor, we put
Zi(M)™(N) = MCor™ (N, M) " MCor™ (N, M) C MCor(N, M).
Then ZE(M)™ defines an object of MPST™. Moreover we have
bZy (M) = Zu(M)".

Proof. The first assertion follows from Lemma 5.3.2. For N’ € £ | N
(see Definition 2), Lemma 5.3.2 implies

MCor” (N, M) = Zy(M)"(N) = Zy(M)"(N') = MCor™ (N, M),

where the second equality follows from the fact that N’ ~ N in MCor.
By definition this implies

Z(M)7(N') = MCor™ (N, M) N MCor™ (N’ M),
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which proves the second assertion in view of the isomorphisms

bZg (M)T(N) = lim  Zg (M)"(N'),

N'exfic | N
MCor(N,M) = lim MCor™(N', M),
N’EEﬁH\LN
which hold by (1.2.2) and [4, Prop. 1.9.2]. O

Remark 5.3.4. We can prove that Zi" (M) lies in MNST™ (so that
we may remove aif. in Theorem 5.4.1(1) below).

5.4. Exactness of a certain Cech complex.

Theorem 5.4.1. Let p : U — M be a covering for the Grothendieck
topology on MSmM™ associated to Pypysn from Proposition 2.1.2. De-

note by U x5 U the fiber product in MSm™ (see [4, Prop. 1.10.4 and
Cor. 1.10.7]).

(1) The Cech complex
= aNiZit (U xar U)T = alf ZEH(U)T = a2t (M)™ — 0
is ezact in MNST,
(2) The Cech complex
= LU xpy U = Zy(U) = L (M) — 0
is exact tn MINST.

Theorem 5.4.1 (2) follows from (1) by applying the exact functor by,
from Proposition 2.2.9 and using isomorphisms

l—)lealeZflrn(M)T = QNis[—)!Z?rn(M)T = QNisZtT(M)T = Ztr(M)T7

where the first isomorphism follows from (2.2.3), the second from Lemma
5.3.3 and the last equality follows from the fact that Z(M)” € MNST
thanks to Lemma 4.2.5 (1).

We need some preliminaries for the proof of (1). It is inspired by
that of [4, Th. 3.4.1], with some elaboration. Take (X, D) € MCor
and a point x € X. Let {X,}.ea be the filtered system of connected
affine étale neighborhoods of x € X. Let

(5.4.1) S = lim X,
AEA

be the henselization of X at . Take M € MCor and let D be the
category of diagrams

(5.4.2) SLz5M
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of k-schemes with f quasi-finite such that Z — S x M is a closed
immersion and V' ¢ S x M for any irreducible component V of Z.
We denote (5.4.2) by (Z, f, g). A morphism from (Z, f,g) to (Z', f', ')
is given by a morphism ¢ : Z — Z’ which fits into a commutative
diagram

(5.4.3) S ¢

Note that ¢ is automatically a closed immersion, so D is a cofiltered
ordered set as it is stable under unions. For (Z, f,g) € D let E(Z) =
E(Z, f,g) be the set of irreducible components V' of Z which belong to
MCor™((S, D), M), i.e. such that f|y is finite and surjective over an
irreducible component of S and satisfies the admissibility condition:
(5.4.4) (fivv) (D xx S) > (giyv)* (M),

where v : V¥ — V is the normalization and iy : V < Z is the
inclusion. Let E7(Z) C E(Z) be the subset of those V' which belong
to ZE(M)7(S, D), i.e. satisfying the following condition: there exists
A € A such that (Z, f, g) (resp. V < Z) is the base change via S — X,
of

(5.4.5) Xa<P 2y DU BT (resp. Vi Zy),

where V) is an irreducible component of 7, satisfying the condition:
(&) V) is finite over X, and satisfies the admissibility condition

(546) (f)\ o Z'VA ] ’U)\)*(D Xx X)\) > (g)\ o iVA @) U)\)*(MOO),

similar to (5.4.4). Moreover, letting Vi = hy(Vy) with hy =
(fr.90) @ Zx — X\ x M (V) is finite over X, by the ﬁnite_ness of
Vi — X)), there exists a dense open immersion X, — X, with

X, proper such that the closure ‘7,\ of VA in X, x M is proper
over X,.

Let L™(Z) be the free abelian group on the set E7(Z).

Lemma 5.4.2. Let V) be as in (&)y and X, = X\ (A, p € A) be a
map in the system of étale neighborhoods of x € X. Let

(5.4.7) X, <"z, SN (resp. V, > Z,)
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be the base change of (5.4.5) (resp. Vy\ — Zy). If V\ C Z\ satisfies
(&), then any component of V, satisfies (&),,.

Proof. The finiteness over X,, and the admissibility condition of (&),
are clear. To check the last condition of (&),, let X, < X, be the
normalization in X, of X from (&), and let V,, = h,(V,,) with h, =
(fir9,) : Z, — X, x M (V, is finite over X, by the finiteness of
V, — X,). Then Vu c Vi X x, X, so that the closure Vu of V# in
X_u x M is contained in V) X5y X_u, which is proper over Z by the

assumption. Hence VTM is also proper over X_M, which implies the desired
condition. 0

Lemma 5.4.3. For a commutative diagram (5.4.3), there is a natural
induced map

v« E"(Z) = E"(Z")
which makes E™ a covariant functor on D.

Proof. Take V € E(Z) and let V' = (V). By the finiteness of V — S,
V' is finite over S and closed in Z’. The admissibility condition (5.4.4)
for V' implies that for V' by [4, Lemma 1.2.1]. Hence V' € E(Z').
Suppose V € E7(Z). To show V' € E7(Z'), take A € A and V) as
in (). Thanks to Lemma 5.4.2, we may assume that the diagram
(5.4.3) is the base chage via S — X of

Z
2N
XA PA M
PNPA
Z

and V' =V xx, S with V| = ¢(V3). Since V) is finite and surjective
over a component of X, so is Vy, which implies that it is an irreducible
component of Z{. The admissibility condition (5.4.6) for V) implies
that for Vi by [4, Lemma 1.2.1]. Letting h = (f},g4) : Z4 — X\ x M,
we have hy = h\p, so that h)\(V)) = h,(V)). Hence V] satisfies the
last condition of (&), since V) does. This implies V' € E7(Z"). O

Proof of Theorem 5.4.1 (1). It suffices to show the exactness of

(5.4.8) - = ZMNU %, U)(S) = ZIU)(S) — Z(M)™(S) = 0
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where S = (S, D xx S) with (X, D) and S as in (5.4.1). We first note
that for a closed subscheme Z C Sx U x;- - - x37U finite and surjective
over an irreducible component of S, the image of Z in S x M is finite
over S. From this fact we see that (5.4.8) is obtained as the inductive
limit of

(5.4.9) - = L(Z x57 (U x570)) = L(Z x57U) = L"(Z) —= 0

where Z ranges over all closed subschemes of S x M that is finite
surjective over an irreducible component of S. It suffices to show the
exactness of (5.4.9).

Since Z is finite over a henselian local scheme S, Z is a disjoint union
of henselian local schemes. Thus the Nisnevich cover Z x5 U — Z
admits a section sg : Z — Z X35 U. Define for k > 0

sk 1= 50 Xy ldgs = Z )iz U = Zx70xg U =Zxg 01,
where T" is the k-fold fiber product of U over M. Then the maps
(si): LT(Z x7 U") = L™(Z x5 O 1)
give us a homotopy from the identity to zero. 0
5.5. Proof of Theorem 5.1.1.

Corollary 5.5.1.
(1) Let G € MPST. If ay; G =0, then ay "G = 0.
(2) The base change morphism anisT* = T Say,, is an isomor-
phism.
(3) The functor ™ is ezact.

Proof. (1) Since ay;s, 1 and 7* all commute with representable colimits
as left adjoints, we are reduced by Lemma 5.2.1 to G of the form
Zy(M/U), which is equivalent to

s ( Coker(Zy(U)™ — Zyu(M)7)) =0,

where the cokernel is taken in MPST. This follows from Theorem
5.4.1(2).

(2) Let F' € MINST. The base change morphism ay;7*F — 7V8a, F
is defined as the composition

F anisT* (MF) ErNisgy; F

T NiSQNisF
where 7 (resp. €) is the unit (resp. counit) of the adjunction (ay;s, ixis)
(resp. (anis, inis))- Since the second map is an isomorphism by the
full faithfulness of iynjs, it remains to show that the first one is an
isomorphism. By the full faithfulness of mvis (Lemma 4.2.5), it suffices

* *; ; Nis
aNisT aNisT Inis@nisE = aNigiNisT - Onis F
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to show it after applying this functor. But ay; 71 =~ Tnis@nis by Theorem
4.2.4, so we are left to show that the map

aNisT! T* (UF)

* = * -
anisTI T F ANisTIT ENisOnis F

is an isomorphism. This follows from (1), since ay;, ;17" is exact, and
Kernp and Coker np are killed by ay;,-

Finally, (3) This follows from (2), Lemma 1.2.6 (4) and the exactness
of 7*. O

Corollary 5.5.2. The functor 7™ has a right adjoint.

Proof. The category MINST is cocomplete and has a small set of gen-
erators, as a Grothendieck category (Theorem 2.2.7.) Moreover, 77V
respects all representable colimits as an exact, strongly additive functor
(Lemma 4.2.5 and Corollary 5.5.1 (3)). Thus the dual hypotheses of
the “special adjoint functor theorem” [7, V.8, Th. 2] are verified. [

This corollary is striking, since 7y is not cocontinuous [2, Rem. 5.2.1].

6. RELATION wWITH NST

6.1. MNS, MNS and NS. We consider the functors
(6.1.1) W, : MSm — Sm, ws : MSm — Sm,

defined by w, (M) = M° and ws(M) = M°, and the left adjoint to w,,
defined by A\s(X) = (X, 0). We have ws; = w,7s, and:

Proposition 6.1.1 ([2, Th. 1]). The functors ws : MSmyis — Smyis,
w, : MSmy;,, — Smyis and A : Sm — MSm are continuous and
cocontinuous.

Let PS (resp. INS) be the category of abelian presheaves (resp.
Nisnevich sheaves) on Sm. The inclusion 4y y;, : NS < PS has a left
adjoint a}y;,. Let wi : PS — MPS and w} : PS — MPS be the
functors induced by w, and ws. They have left adjoints w, and wq .

Proposition 6.1.2. a) We have w,,(MNS) C NS and w,;(MNS) C
NS.

b) For F € PS, w:F € MNS <= w!F € MNS < F € NS.

c) Let wi\ﬁs : NS — MNS and wsnis : MNS — NS be the functors
such that

. Nis *V -V q
(612) s NisWg = w5257Nis> Z57stwS,NiS = W, 15 Nis)

Nis - both functors are

15 strongly additive. We have ws Nis = a;/NiSwsJistis and

which exist by b). Then w,nis 5 left adjoint to w

exact and WS

\% Nis |V *
(613) Ws,Nis@s Nis = Qg NisWs,!)  Wg Qg Nig = As,NisWs -
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d) Let Y : NS — MNS and wnis © MINS — NS be the functors
defined in the same way as W and wsNis i ¢). Then the similar

statements to c) hold for WY and W Nis-

Proof. a) Since A, is left adjoint to w,, we have w,, = A, hence the
continuity of A\g proves the first assertion. The second one follows from
Theorem 4.1.2, as w,) = W1 Ts -

b) If wiF € MNS, then w!F = 77w?F € MNS by Theorem 4.1.2. If
wiF € MNS, then w,w:F — F € NS by a) since w? is fully faithful.
If F" € NS, then we have w?F' € MINS since w, is continuous.

¢) The second formula of (6.1.3) follows from the cocontinuity of wj
(Proposition 6.1.1) and [SGA4, III, Prop. 2.3 (2)]. We prove the rest
of the assertions by using Lemma 1.2.6 as follows. In the situation
of Lemma 1.2.6, set C = PS, ¢’ = NS, D = MPS, D' = MNS,
(ic,ip) = (i3 niss ts,nis) and (¢, ¢, d) = (Wi, wy'™, wey).

The assumption of Lemma 1.2.6 (2) is satisfied since i, nis is strongly
additive by Theorem 2.2.7, iXNiS is strongly additive by the quasi-
compactness of the Nisnevich topology, and w} is strongly additive
as a left adjoint. Hence wY™ is also strongly additive.

The assumption of Lemma 1.2.6 (3) is satisfied since iZNiS, isNis have
exact left adjoints aZNiS, asNis, and since wy y is exact by [4, Prop. 2.2.1].
Hence the left adjoint wsnis of w}jis is exact, and we have w,nis =
a}g{Nisws,!is,Nis and aZNiSws,! = W5, Nis@s,Nis-

The assumption of Lemma 1.2.6 (4) is satisfied. Indeed, the formula
apc = c'ac¢ coincides with the second formula of (6.1.3) (which we have
proven above), and w? is exact as a left and right adjoint. Hence w'
is exact.

d) is shown by the same argument as c), by the cocontinuity of w,
(Proposition 6.1.1) and by Lemma 1.2.6 applied to C = PS, ' =
NS, D = MPS, D' = MNS, (ic,ip) = (iynis> Lsnis) and (¢, ¢, d) =
(Wi, wi™, w, ).

Indeed, i, is strongly additive (Lemma 4.1.1), w? is exact as a left
and right adjoint, i, \;s has an exact left adjoint ag v, and wy  is exact.
This finishes the proof. O

6.2. MNST, MNST and NST. Let PST be the abelian category of
presheaves on Cor. The graph functor ¢ : Sm — Cor induces an ex-
act faithful functor ¢V* : PST — PS. Let NST be the full subcategory
of PST consisting of F € PST such that ¢"*F € NS. The functor
cV* restricts to ¢V"N5 : NST — NS. The inclusion iy, : NST < PST
has a left adjoint aY;, by [14, Thm. 3.1.4]. By construction, it satisfies

V.Nis V. _ V Vx
(6.2.1) " ag, = agnisC
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We consider the functors
(6.2.2) w : MCor — Cor, w : MCor — Cor,

defined in the same way as (6.1.1). They induce w* : PST — MPST
and w* : PST — MPST, which have left adjoints w, and w;. One has
the obvious identifications

(6.2.3) w*
One also sees from [4, (2.2.1)] (and its analogues for w,,w,) that
*Q]

(6.2.4) ol v

=w, ¢, ¢ Twr=wgct
Proposition 6.2.1. a) We have w,(MINST) C NST andw (MNST) C
NST.
b) For FF € PST, w*F € MNST <« w'F € MNST <«—
F € NST.
c) Let ws © NST — MNST and wyis : MNST — NST be the

functors such that

. Cwr=wrie

10
*

_ o x Vx
=w,C

. Nis * -V % .
(6.2.5) iNisw = Wik, INisWNis = WiiNis,

where the second equality shows that wyis = aysWiinis 0Y X i, = 1d.

Then wyis is left adjoint to W™N®, and we have

v Nis .V %
(6.2.6) WNisONis = AW, W oAy = aNisw”,
(627) Cleles — wi\hSCV’NIS.

Moreover, the functors wyis and w™N® are both exact, wN* is fully faithful,
strongly additive and preserves injectives.

d) Let N : NST — MNST and wy;, : MNST — NST be the
functors defined in the same way as WN® and wyis in ¢). Then the
similar statements as c) holds for w™® and wy,.

Proof. a) First we prove w,(MINST) C NST. Since ¢*(MNST) C
MNS (see Lemma-Definition 2.2.5), we have

¢"*w,(MNST) = w, ,¢"(MNST) C w,,(MNS) C NS,

where the first equality follows from the first equality of (6.2.4), and
the last inclusion follows from Proposition 6.1.2 a). Then by defini-
tion of NST we have w,(MNST) C NST, as desired. The inclusion
wi(MNST) C NST follows from this and Lemma-Definition 4.2.1.

b) follows from Proposition 6.1.2 b), (6.2.4) and the definitions of
NST, MNST and MNST.

c) The full faithfulness of w™® follows from that of w* [4, Prop.
2.2.1], and (6.2.7) follows from (6.2.3). The strategy of the rest of the
proof is similar to that of ¢) in Proposition 6.1.2. In the situation of
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Lemma 1.2.6, set C = PST, C' = NST, D = MPST, D' = MNST,
(ic,ip) = (iki, inis) and (¢, ¢, d) = (w*, wNs w)).

The assumptions of Lemma 1.2.6 (2) and (3) are satisfied, since in;s
is strongly additive by Theorem 4.2.4 (1), iX,, is strongly additive by
the quasi-compactness of Nisnevich cohomology, w* is strongly additive
as a left and right adjoint, iY,,, inis have exact left adjoints ayg,, anis
by [8] and 4.2.4 (2), and w; is exact by [4, Prop. 2.2.1]. Therefore,
the assertions follow, except for the second identity of (6.2.6) and the
exactness of w'Vs, (Note that the exactness of wy;s implies that wNis
preserves injectives.)

We can prove the second identity of (6.2.6) as follows. Its first iden-
tity yields a base change morphism

aNisw™ = leSaKIS
Let ' € PST. We want to show that the morphism anjw*F —
WwNBal. F is an isomorphism. Since ¢ is conservative as MSm and
MCor have the same objects, it suffices to show that the induced
morphism NSayiw* F — NSwNSaY, F is an isomorphism. Since

Nis * (4%3) *, % (6~_2'3) * V*
C aNjsW = QagNisC W = Qg NisWsC

Nis, Nis vV (6:2.7)  Nis (ViNis v (621) Nis V. Vs
C W Ay = Wy anjs = W a’s,Nisc )

the above morphism is rewritten as

(s NisW, CV*F — les ¥N1SCV*F7
which is an isomorphism by Proposition 6.1.2 ¢).

Now, the formula we have proven now and the exactness of w* as a
left and right adjoint show that the assumption of Lemma 1.2.6 (4) is
satisfied. Hence w™® is exact, as desired. This finishes the proof of c).

d). The proof is completely parallel to that of c¢). To see this,
it suffices to observe the following: iy, is strongly additive and has
an exact left adjoint by [4, Lem. 4.5.3, Th. 4.5.5], w* is strongly
additive as a left and right adjoint, w, is exact by [4, Prop. 2.3.1],
cN® is conservative since MSm and MCor have the same objects,
the base change morphism ag \;wi = whisg ;/le is an isomorphism by
Proposition 6.1.2 d), and we have the following identifications:

Nis * (2&3) * ok (623) * V*
€ ansW - as Nis€ & = G lew c

le Nis |V (627) Nis Vle 14 (621) Nis |V V ik
W an = W anis — Wy s,NisC

This finishes the proof. O
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6.3. Relation between cohomologies. We now prove Theorem 3
(2) from the introduction.

Lemma 6.3.1. Let I € MINST be an injective object. Then wyis] €
NST is flasque.

Proof. Let U — X in Sm be an open dense immersion. We need to
show the surjectivity of

wiisl (X) = hgrl I(M) = wnis[(U) = h_n>q I(U).

MeMSm(X) NeMSm(U)
We fix M € MSm(X) and will show that the composition (M) —
wrisI (X)) — wnis (U) is already surjective. This follows from the func-
toriality of w', but for clarity we give an explicit argument. Take any
N € MSm(U). Let N’ be the closure of the image of U — N x M, and
let  be the blow-up of N along (N'\U)seq. Set L := (L, L>®) € MCor
where L™ is the pull-back of N*° along the composition L — N —N.
We have a commutative diagram in M Cor

(U,0) — (X, 0)

S

N LM M

for sufficiently large n (see [4, Def. 1.4.1]). Since U — X is an open
dense immersion, Cor(V,U) — Cor(V, X) is injective for any V' € Sm,
which in turn implies the injectivity of Z(L™) — Z.(M) in MNST.
Since I is an injective object, we conclude that I(M) — I(L™) is
surjective. This proves the lemma, as the canonical map I(N) —
wnisI (U) factors through I(L™). O

Theorem 6.3.2.
(1) For any M € MCor, G € NST andp > 0, we have a canonical
1somorphism
Extinst (Ze (M), WNiSG) = HRW (M2, G).
(2) For any X € Sm, F' € MNST and p > 0, we have a canonical
1somorphism
HﬁiS(X’ wNiSF) = %ﬂ le\)lis<M7 FM)
MeMSm(X)

Proof. 1t follows from Proposition 6.2.1 and Theorem [4, Th. A.9.1]
that

(RpiNis)WNis - Rp(iNiszis) = RP(W*Z.‘I\/HS) = W*Rpigis'
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By Prop. A.1.1 and the projectivity of Z (M) and Z) (M°), we get
ExtRingt (Zix (M), w™G) = MPST (Z (M), (RPinis)w™ °G)
> MPST(Z,(M),w* RPiY, ,G) = PST (wiZy (M), RPiY;.G)
= PST(Z;,(M°), R"i%;,G) = Hyy,(M°, G),
whence (1).
Given X € Sm, we define functors I'y : MNST — Ab and T :
NST — Ab by
DY) = lm FOM),  TY(G) = G(X).
MeMSm(X)
We have I'y = I'vwnis. By [4, Th. A.9.1] and Lemma 6.3.1, we get
(RPTY )wnis = RPT'Y for any p > 0, since wyys is exact. Taking an
injective resolution F' — I* in MINST, we proceed
RTR(F) = /IR = Yl (M)
MeMSm(X)
= lim HP(I*(M)) [4, Lemma 1.7.4]
MeMSm(X)
=l limy HE. (N, Fy) (Theorem 5.1.3)
MeMSm(X) Nexfn | M
= hﬂ Hﬁlis(M’ FM)
MeMSm(X)

Here the last isomorphism holds since any N € £ | M gives rise to
an object N € MSm(X). This concludes the proof of (2). O

7. PASSAGE TO DERIVED CATEGORIES

In this section, we extend the previous results to derived categories.
The main result is an extension of Proposition 2.2.9 and Theorem 5.1.3
to unbounded complexes (Proposition 7.4.2 (2) and Theorem 7.5.1 (3)).

7.1. Compactness.

Proposition 7.1.1. Let M € MSm. Then the following objects are
compact:
(1) Z,(M)[0] in D(MNST), and in D(MINST) if M is proper.
(2) Z(M)[0] in D(MNS™) and D(MNS).

Proof. (1) follows from Proposition 2.2.9 (resp. from Theorem 5.1.3)
and the known commutation of Nisnevich cohomology with filtered
colimits of sheaves, via hypercohomology spectral sequences which are
convergent and Corollary 2.2.10 (resp. 5.1.4). (2) is seen similarly,
using [4, (3.6.1) and Prop. 4.4.2]. O
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7.2. Strong additivity.

Theorem 7.2.1.
(1) (c¢f. [4, Prop. 4.3.3 (2)]) The functor RLY® : D(MNS) —
D(MNS™) is right adjoint to D(b, nis) and is strongly additive.
The counit map D(Q&NiS)Rl_)lS\HS — Id is an isomorphism.
(2) The functor R(bY™ o cN%®) is strongly additive.

Proof. (1) The adjunction statement follows from Proposition A.2.5.
The second assertion implies the third by Lemma A.2.7. It remains
to prove the strong additivity of RQSNiS. For this, we check that the
hypothesis of Proposition A.2.8 ¢) are verified: we take the Z(M),
M € MSm™, as a set of generators. We have b nisZ(M) = Z(M).
Their compactness follows from Proposition 7.1.1 (2).

(2) Same argument as (1), using Proposition 7.1.1 (1) as well. O

7.3. From D(MNS™) to D(MNS). We first extend [4, Not. 4.4.1]
from sheaves to complexes of sheaves:

Notation 7.3.1. Let N € MSm™ and let K be a complex on MINS™.

We write K for the complex of sheaves on (N)yis deduced from K via
the isomorphism of sites from [4, Lemma 3.1.3]. If K is a complex on
MNS, we write Ky for (BN*K)y.

The following extends [4, Prop. 4.4.2] to unbounded complexes of
sheaves.

Proposition 7.3.2. Let M € MSm. For K € D(MNS), we have
natural isomorphisms

HOHlD(MNS) (Ztr<M)7 K[’l]) >~ hgl Hf\ﬁs(ﬁ, KN)
NG;HU\LM
~ lim  Hy (N, (R"K)y), i€Z.
NE;HD,LM
Proof. Define as in loc. cit. functors FL : MNS™ — Ab and Iy
MNS — Ab by
Ly(G) = lim  G(N), Ly(F)=F(M).
Nexfir | M

We have Fj/[ = L'jsb; nis and we shall show that the natural transfor-
mation (A.2.1)

(7.3.1) RTj; = RL ) 0 D(b, i)
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is invertible. For this, we apply Lemma A.2.7. Its first condition is
given by [4, Lemma 4.4.3], which says that b, \;; sends injectives to
flabbys; by [4, Th. A.9.1 and Lemma A.9.3|, this already yields iso-
morphisms

(732) RPF%W l> RPEM Ol_)s7Nis7 p Z 0.

We are now left to show the strong additivity of the three functors.
For D(b, x;s), this follows from the strong additivity of b, y;, as a left
adjoint, and Proposition A.2.8 a).

For RF}W and RI';,, we check that the conditions of Proposition
A.2.8 b) are verified. For RI,;, Condition (ii) follows from the vanish-
ing statement in (1) (use the compact projective generator Z of Ab),
and Condition (i) follows similarly from the known commutation of
Nisnevich cohomology with filtered colimits of sheaves. The case of
RI, is reduced to this one by (7.3.2).

Thus we get an isomorphism

Hompmns) (Zor (M), by L[i]) =~ lim  Hy (N, Ly), i€Z

» Zs,Nis
Nexfin pr

for any complex L on MNS™  Setting L = I_)IS\HSK , we get the first

isomorphism thanks to the isomorphism l_)s’NiSl_)SNiS — 1d of [4, Prop.

4.3.3 (2)]. Composing (7.3.1) with RbY™ and using Theorem 7.2.1 (1),
we get an isomorphism

~

(7.3.3) RIY, o RWY™ = RT,,
which yields the second isomorphism of Proposition 7.3.2. 0

7.4. From D(MNS) to D(MNST).

Notation 7.4.1. Let N € MSm™ and let K be a complex on MNSTH,
We write Ky for (DYScNSK) y.

The following extends Proposition 2.2.9 to unbounded complexes of
sheaves.

Proposition 7.4.2. Let M € MCor. For K € D(MNST), we have
a natural isomorphism

Hompunst) (Ze (M), Ki]) >~ lim  Hiy, (N, K)
Nexfin pr
~ lim  Hy (N, (R*D("™)K)y), i€

NG;HDJ,M



MOTIVES WITH MODULUS, II 35

Proof. Define as before functors I';, : MNS — Aband '}, : MNST —
Ab by
Ly (F)=F(M), L}(G)=GM).

We have I'}, = I';, o ¢V thanks to the adjunction (cy, V™) of
Theorem 2.2.7. Moreover, ¢ is exact by this theorem. Let us show
as before that the natural transformation (A.2.1)

(7.4.1) R, = RT,, o D(c"®)

is invertible. We copy the argument of the previous subsection, using
Lemma A.2.7.

Its first condition is given by [4, Lemma 4.6.1], which says that ¢
sends injectives to flabbys; by [4, Th. A.9.1 and Lemma A.9.3], this
already yields isomorphisms
(7.4.2) RPTT 5 RPT, 0 NS, p>0.

We are now left to show the strong additivity of the three functors.
For D(cN®), this follows from the strong additivity of ¢™® (Theorem
2.2.7) and Proposition A.2.8 a). For the two other functors, we need
to check the conditions of Proposition A.2.8 b); this was done for RL',,
in the previous section, and the case of RI'}; is reduced to this one by
(7.4.2).

Thus we get an isomorphism

Hom pounst) (Zi: (M), L{i]) = Hompans) (Zi (M), NSL[i]) i€ Z

for any complex L on MINST, and we get the first isomorphism by
using Proposition 7.3.2. For the second one, composing (7.3.3) with
(7.4.1), we obtain an isomorphism

(7.4.3) RI'Y ~ RIY, o RO o D(cN¥)

which yields the second isomorphism of Proposition 7.4.2. U
7.5. From D(MNST) to D(MNST).

Theorem 7.5.1.
(1) The functor D(mis) : D(MNST) — D(MNST) is fully faith-
ful.

(2) One has isomorphisms
Hompmnst) (Zi (M), K[i]) =~ lig  Hy (N, Ky)
NGZﬁH\LM
= %ﬂ Hf\lis(ﬁa (RbsNisD(QNiSTNiS))KN), 1€ L
NE;HH\LM

for any complex K on MINST, where Ky = (b 5NN K) .
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Proof. Recall that 7yis and 7V are both exact and strongly additive:
see Lemma 4.2.5 (2) and Theorem 5.1.1 (75 is strongly additive as
a left adjoint). Then we get from Proposition A.2.4 an adjunction
(D(7nis), D(7V%)) and from Lemma A.2.7 an isomorphism

D(7*)D(mxis) € D(7™7yis) = D(1d) = 1d

which shows the full faithfulness of D(7yis). This shows (1). (2) now
follows from (1) and Proposition 7.4.2 (2). O

Remark 7.5.2. One can show that the essential image of D(7ns) is
Dynst(MNST) := {K € D(MNST) | H(K) € mnis(MNST) Vi € Z}.

Since the proof involves delicate and lengthy arguments relying on the
notion of left-completeness, we skip it (see [3].)

7.6. D(MINST), D(MNST) and D(INST). We leave it to the reader
to produce an unbounded version of Theorem 6.3.2.

APPENDIX A. CATEGORICAL TOOLBOX, II

A.1. A spectral sequence. The following convenient proposition is
used several times in the paper.

Proposition A.1.1. Let a : B S A @i be a pair of adjoint functors
between abelian categories (a is left adjoint to i). Suppose that A has
enough injectives and that a is exact. Then, for any (A, B) € A x B,
there is a convergent spectral sequence

Exth(B, R%A) = Ext?"(aB, A).
If B is projective, this spectral sequence collapses to isomorphisms
(A.1.1) B(B, R"iA) ~ Ext? (aB, A).
Proof. Fix B. By adjunction, the composition of functors
AL B EED, Ap

is isomorphic to A(aB, —). We then get the spectral sequence from [4,
Th. A.9.1, Ex. A.9.2]. The last fact is obvious. O

A.2. Unbounded derived categories.

Theorem A.2.1 ([6, Th. 14.3.1]). Let A be a Grothendieck category.
a) Let K(A) be the unbounded homotopy category of A. The localisa-
tion functor Ay : K(A) — D(A) has a right adjoint p 4, whose essential
image is (by definition) the full subcategory of homotopically injective
complezes.?

2This is the same notion as Spaltenstein’s K-injective [12].
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b) Let F : K(A) — T be a triangulated functor. Then F has a (uni-
versal) right Kan extension RF relative to A4, given by RF = F o py4.
In particular, any left exact functor F : A — B, where B is another
abelian category, has a total right derived functor RF : D(A) — D(B)
given by RF = Ago K(F) o py.

¢) The restriction of RF to D*(A) is the total derived functor RTF
(cf. [13, §2, Rem. 1.6]).

Let us justify d), which is not in [6]: the point is that p4 carries
D*(A) into K+ (A) [6, Th. 13.3.7).

Definition A.2.2. Let F' : A — B be a left exact functor between
Grothendieck categories. An object C € K(A) is F-acyclic if the
morphism

)\BK(F)C — RF)\AC = )\BK(F)pAAAC

given by the unit map of the adjunction (A4, p4) is an isomorphism.

Ezample A.2.3. If F' is exact, every object of K(A) is F-acyclic.

Let A 5B N C be a chain of left exact functors between Gro-
thendieck categories. The unit map of the adjunction (Ag, pg) yields a
natural transformation

(A.2.1) R(GF) = RG o RF.
The following lemma is made tautological by Definition A.2.2:

Lemma A.2.4. (A.2.1) is a natural isomorphism if and only if F
carries homotopically injectives to G-acyclics. In particular, (A.2.1) is
a natural isomorphism provided G is exact (see Example A.2.3). O

Here is a first application:

Proposition A.2.5. Assume C = A, F right adjoint to G, and G
exact. Then RF is right adjoint to RG = D(G).

Proof. This is a special case of [6, Th. 14.4.5]. O

We come back to the general situation. Suppose that F' carries in-
jectives of A to G-acyclics. Then [4, Th. A.9.1] implies that (A.2.1)
is an isomorphism when restricted to D*(A) ([13, §2, Prop. 3.1], [6,
Th. 13.3.7 and Prop. 13.3.13]). This is not true on D(A) in general,
as pointed out by Ayoub and Riou:

Ezample A.2.6. Let B = Mod-Z[Z/2], A = BY and C = Ab:; let
F = @y and G = H°(Z/2,—). The above hypotheses are verified:
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since Z[Z/2] is Noetherian, a direct sum of injectives is injective. Let
M = (Z/2[n])nen € D(A). We claim that the map

(A.2.2) R(GF)(M) — RG o RF(M)
is not an isomorphism. Indeed, GF = F'G’' where G’ : A — Ab" is
H(Z/2,-) and F' : Ab" — Ab is @y. Let C = RG(Z/2), so that
HI(C) =17Z/2 for ¢ > 0 and HY(C) = 0 for ¢ < 0. Then, by Lemma
A.2.4:
R(GF)(M) = R(F'G')(M) = RF' o RG'(M) = E C[n].
neN
On the other hand,
RG o RF(M) = RG(EP Z/2[n]).
neN

But, in D(B), we have @, yZ/2[n] = [,cnZ/2[n], and RG com-

mutes with products as a right adjoint. Hence

RGo RF(M) =[] Clnl.

neN
For ¢ € Z, we have H( C[n]) = @ Z/2 and HI( ][] C[n]) =
neN q+n>0 neN

1 z/2.

q+n=>0

However, we have the following lemma of Ayoub:

Lemma A.2.7. Suppose that F carries injectives to G-acyclics and
that RF, RG and R(GF) are strongly additive. Then (A.2.1) is an

isomorphism.
(In example A.2.6, RG is not strongly additive.)

Proof (Ayoub). Let M € D(A). We have to show that (A.2.2) is an
isomorphism. Viewing M as an object of K(A), we have an isomor-
phism
hocolim,, 0>, M 5 M

where 0>, is the stupid truncation. This isomorphism still holds in
D(A), because \ 4 is strongly additive. By the hypothesis, this reduces
us to the case where M € D7*(A), and therefore to Grothendieck’s
theorem (cf. Theorem A.2.1 ¢)). O

Let F' : A — B be a left exact functor between Grothendieck cate-
gories. In view of Lemma A.2.7, we need a practical sufficient condition
to ensure that RF'is strongly additive. The following ones are adapted
to the context of this paper:



MOTIVES WITH MODULUS, II 39

Proposition A.2.8. a) If F is strongly additive and exact, RF =
D(F) is strongly additive.
b) Suppose that
(i) For anyp >0, RPF is strongly additive.
(ii) There exists a set £ of compact projective generators of B such
that, for any E € &, there is an integer cdp(E) such that

B(E,RPF(A)) =0 for p > cdp(E) and for all A € A.

Then RE 1is strongly additive.

c¢) Suppose that RF admits a left adjoint G which sends a set (E,) of
compact generators of D(B) to compact objects of D(A). Then RF is
strongly additive.

Proof. a) The strong additivity of F' easily implies that of K (F'), which
in turn implies that of D(F') since Ag is strongly additive as a left
adjoint.

b) Let (Ci)ier € D(A)!. We must show that the map

(A.2.3) P rr(C) = RE(EP C)

is an isomorphism. Since the E[n], E € £, n € Z, are a set of generators
of D(B), it suffices to check this after applying D(B)(E[n], —) for all
(E,n). Since E is projective, we have an isomorphism

D(B)(E[n], D) ~ B(E, H"(D))

for any D € D(B); since E is compact in B, this formula shows that
E[n] is compact in D(B). Therefore we must show that the homomor-
phisms

P B(E, H(RFC;)) — B(E, H"(RF P C1)).
iel iel
are bijective. By (ii), the spectral sequence

B(E, RRFH(C)) = B(E, H"*(RFC))

converges for any C' € D(A). Thus it suffices to show that the homo-
morphisms

P B(E. RPFH(C;)) — B(E, RPFHY(ED C)))

iel i€l

are bijective. By (i), this follows from the compactness of E.
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c¢) Keep the notation of b). We may test (A.2.3) on the E,’s. By
their compactness, we must show that the composition

D D(B)(Ea, RF(C;)a]) — D(B)(Ea, @ RF(C:)la))

el el

— D(B)(Ea, RF(ED C1)la))
iel
is an isomorphism for all ¢ € Z. By adjunction, it is transformed into

@D(A)(G(Ea)> Cilq]) = D(A)(G(E.), @@-MD

which is an isomorphism since the G(E,) are compact. O

Finally, we need a practical sufficient condition to ensure that, in
Condition (i) of Proposition A.2.8 b), the case p = 0 implies the cases
p > 0. This is given by the classical

Lemma A.2.9. Suppose that F' is strongly additive and that, in A,
infinite direct sums of injectives are F-acyclic. Then RPF' is strongly
additive for any p > 0.

Proof. Décalage. O
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