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ABSTRACT. We prove cancellation theorems for reciprocity sheaves
and cube-invariant modulus sheaves with transfers of Kahn—Miyazaki—
Saito-Yamazaki. It generalizes a cancellation theorem for A'l-
invariant sheaves with transfers, which was proved by Voevodsky.
As an application, we get some new formulas for internal hom’s of
the sheaves Q' of absolute Kihler differentials.
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0. INTRODUCTION

We fix once and for all a perfect field k. Let Sm be the category of
separated smooth schemes of finite type over k. Let Cor be the cate-
gory of finite correspondences: Cor has the same objects as Sm and
morphisms in Cor are finite correspondences. Let PST be the cate-
gory of additive presheaves of abelian groups on Cor, called presheaves
with transfers. Let NST C PST be the full subcategory of Nisnevich
sheaves, i.e. those objects ' € PST whose restrictions F'x to the small
étale site Xy over X are Nisnevich sheaves for all X € Sm. By a fun-
damental result of Voevodsky, the inclusion NST — PST has an exact

1991 Mathematics Subject Classification. 19E15 (14F42, 19D45, 19F15).
The first author is supported by the Swiss National Science Foundation (SNF),
project 200020-178729.
The second author is supported by JSPS KAKENHI Grant (15H03606).
1



2 A. MERICI AND 8. SAITO

left adjoint ay;, such that for any F € PST and X € Sm, (aX, F)x is
the Nisnevich sheafication of F'y as a presheaf on Xyis. In Voevodsky’s
theory of motives, a fundamental role is played by Al-invariant objects
F € NST, namely such F that F(X) — F(X x A') induced by the
projection X x A' — X are isomorphisms for all X € Sm. The A!l-
invariant objects form a full abelian subcategory HIni, € NST that
carries a symmetric monoidal structure @¥ such that

FaYs G =haNsql (F @pgr G) for F,G € Hly,

where ®pgr is the symmetric monoidal structure on PST induced
formally from that on Cor and hoAl’NiS is a left adjoint to the inclusion
functor HIy;s — NST, which sends an object of NST to its maximal
Al-invariant quotient in NST. For integers n > 0, the twists of F' €

HIy;, are then defined as
F1)=F ¥ G,, F(n):=Fnh-1)cn5 Gnm;

where G,,, € NST is given by X — I'(X, 0*) for X € Sm.
Noting that — @5 G, is an endo-functor on Hlys, we get a natural
map:
(0.1)
LEG - HOHIPST(F, G) — HOHIPST(F<1), G(l)) for F',G € Hly;, .

One key ingredient in Voevodsky’s theory is the Cancellation theorem
[15, Cor, 4.10], which implies the following theorem:

Theorem 0.1. For F,G € Hlyis, tp g s an isomorphism.

The purpose of this paper is to generalize the above theorem to
reciprocity sheaves. The category RSCy;s of reciprocity sheaves was
introduced in [5] and [6] as a full subcategory of NST that contains
HIy;s as well as interesting non-A!-invariant objects such as the ad-
ditive group scheme G,, the sheaf of absolute Kihler differentials
and the de Rham-Witt sheaves 17,,Q°. In [10], a lax monoidal structure
(-, -)rRscy, on RSCyys is defined in such a way that

(F,G)rscy, = F @i G for F,G € Hlys .
It allows us to define the twists for /' € RSCyjs recursively as
F<1> = (F7 Gm)RSCNis7 F<n> = (F<7L - 1>7 Gm>RSCNis'

Some examples of twists were computed in [10]: if F' € Hly;s, then
F(n) = F(n), in particular Z(n) = KM (the Milnor K-sheaf), and
G, (n) = Q" if ch(k) = 0.
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By the fact that (—, G,,)rscy,. is an endo-functor on RSChy;s, we
get a natural map (cf. (5.14)) :
(0.2)

LEG - HOHlPST(F, G) — HOIHPST(F<1>, G<1>) for F',G € RSCyjs,
which coincides with (0.1) if F,G € HIyi. We will also get a natural
map in NST:

(0.3) Ar: F — Hompgp (KM, F(n)) for F € RSCyi,

using the functoriality of (—, G,,)rscy,, Where Hompgr denotes the
internal hom in PST.
The main result of this paper is the following:

Theorem 0.2 (Theorems 5.4 and 5.2). The maps tpg and Ap are
1somorphisms.

As an application of the above theorem, we prove the following.

Corollary 0.3. (Theorem 6.2) Assume ch(k) = 0. For integers m,n >
0, there are natural isomorphisms in NST':

Hompgr(Q", Q™) = Q" " @ Qm_”_l,
HO—mPSTUC%v Qm) =,

where Q' = 0 for i < 0 by convention.

Let PS be the category of additive presheaves of abelian groups on
Sm (without transfers). Note that PST is viewed as a subcategory
of PS. By a lemma due to Kay Riilling (see Lemma 1.1), we have a
natural isomorphism in PS:

(0.4) Hompgr (G, Q™) = Hompg (G, Q™) for any G € PST,
where Hompg is the internal hom in PS. Thanks to (0.4), the iso-
morphisms of Corollary 0.3 and its explicit descriptions (6.1) and (6.3)
imply

Homps(Q", Qm) = {wl A (—) + wa A d(—) | wi € Q;n—n’ Wy € Q;n—n—l}’

Hompg (KM, ™) = {w A dlog(—) | w € Q"1

where dlog : KM — Q™ is the map {z1, ..., z,} — dlogz; A- - -Adlogz,,.
It would be an interesting question if there is a direct proof of these

formulas which does not use the machinery of modulus sheaves with
transfers explained below.

Reciprocity sheaves are closely related to modulus sheaves with trans-
fers introduced in [3] and [4]: Voevodsky’s category Cor of finite cor-
respondences is enlarged to a new category MCor of modulus pairs:
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Its objects are pairs X = (X, D) where X is a separated scheme of
finite type over k and D is an effective Cartier divisor on X such that
X°:=X —|D| € Sm (X° is called the interior of X'). The morphisms
are finite correspondences on interiors satisfying some admissibility and
properness conditions. Let MCor C MCor be the full subcategory
of such objects (X, D) that X is proper over k. There is a symmetric
monoidal structure ® on MCor, which also induces that on M Cor by
restriction (cf. §1(19)) .

We then define MPST (resp. MPST) as the category of additive
presheaves of abelian groups on MCor (resp. MCor). We have a
functor

w:MCor — Cor ; (X, X,) = X — | X,

and two adjunctions

MPST <~ MPST, MPST ¢ PST,

— —

where w* is induced by w and wj is its left Kan extension, and 7* is
induced by the inclusion 7 : MCor — MCor and 7 is its left Kan
extension, which turned out to be exact and fully faithful.

For F € MPST and X = (X, D) € MCor write Fly for the presheaf
on the small étale site X¢ over X given by U — F(Xy) for U — X
étale, where Xy = (U,D xx U) € MCor. We say F' is a Nisnevich
sheaf if so is Fly for all X € MCor. We write MNST C MPST for
the full subcategory of Nisnevich sheaves.

The replacement of the Al-invariance in this new framework is the
C-invariance, where O := (P!, c0) € MCor: Let CI C MPST be the
full subcategory of those objects F' that F(X) — F(X ®0) induced by
the projection X ® 0 — X are isomorphisms for all X € MCor. Let
CI" € MPST be the essential image of CI under 7y and CI™** ¢ CI"
be the full subcategory of semipure objects F, namely such objects
that the natural map F(X,D) — F(X — D,() are injective for all
(X,D) € MCor. We also define CIyY = CI™" NMNST as a full
subcategory of MNST. A symmetric monoidal structure ®g¢y (resp.
De*P) on CI™* (resp. on CIZP) can be defined in the same spirit as
R (see §3).

The relationship between reciprocity (pre)sheaves and [-invariant
modulus (pre)sheaves with transfers is encoded in

RSC = w,(CI™) and RSCyy = w,(CIEY).

There is a pair of adjoint functors

wCI wCI

CI"*? <~ RSC and CIZ? < RSCy
@, N
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such that wC'F = w*F for F € HI. Moreover, the lax monoidal
structure on RSCyjs is induced by the symmetric monoidal structure
on CI{:? via the formula:

(F,G)rscy, = g,(gCIF ®1§ff’$p c_dCIG) for F,G € RSCyjs .

The endo-functor — @gy” w*G,, on CIZ? induces a natural map for
T,5Pp.
F e CIL™:

(0.5) vp : F' = Homypgyp (W' G, F Do W Gyp),

where Homypgy denotes the internal hom in MPST. Now Theorem
0.2 will be a consequence of the following result:

Theorem 0.4 (Cor 3.6). For F' € RSCyj, and F = wC'F € CIY?,
the map vz is an tsomorphism.

We give an outline of the content of the paper:

e In section 1 we first review basic definitions and results of the
theory of modulus (pre)sheaves with transfers and reciprocity
sheaves from [3], [4] and [13]. We also prove some technical
lemmas which will be used in the later sections.

e In section 2 we define the contraction functors v on CI™** and
CIL{;?, which generalize Voevodsky’s contraction functors on
HI and HIy (cf. [7, Lecture 23]) to the setting of modulus
(pre)sheaves with transfers. We prove some technical lemmas
which will be used in the later sections.

e In section 3 we define the symmetric monoidal structure ®g&;
(resp. @) on CI™* (resp. on CILY) using results from
section 1. The endo-functor — ®&; w*G,, on CI™* induces a
natural map for F' € CI™*:

(0.6) vp o F — Homypgp (W' G, F @& w'Gry).

We state the main Theorem 3.4: 1 is an isomorphism. Theo-
rem 0.4 is deduced from it by using results from sections 2.

The last half of the section is devoted to the proof of the split-
injectivity of the map ¢p (0.6). In order to construct a section
of 1, we follow the same strategy as [15] by generalizing the
techniques used in loc. cite.

e In section 4 we finish the proof of Theorem 3.4 by showing the
surjectivity of tp. We again follow the same strategy as [15]
by generalizing the results of [16, Section 2.7]: here a technical
problem is that for (X, D) € MCor, the diagonal map X —
X x X does not induce a map (X, D) — (X,D) ® (X, D) in
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MCor but only induces a map (X,2D) — (X,D) ® (X, D),
where 2D — X is the thickening of D — X defined by the
square of the ideal sheaf. This is the main reason why we need to
work with CI™*" instead of CI” employing much more intricate
arguments than those in [15] and [16, Section 2.7], for which we
need the technical results in §1 and §2.

e In section 5 we deduce Theorem 0.2 from Theorem 0.4.

e In section 6 we deduce Corollary 0.3 from Theorem 0.2.
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Conventions. In the whole paper we fix a perfect base field k. Let

Sm be the category of k-schemes X which are essentially smooth over
k,ie. X is a limit 1'&12,61 X, over a filtered set I, where X; is smooth

over k and all transition maps are étale. Note Spec K € Sm for a
function field K over k thanks to the assumption that k is perfect.
We frequently allow F' € PST to take values on objects of Sm by
F(X):= lim, _, F(X;) for X as above.

1. RECOLLECTION ON MODULUS SHEAVES WITH TRANSFERS

In this section we recall the definitions and basic properties of mod-
ulus sheaves with transfers from [3] and [13] (see also [6] for a more
detailed summary).

(1) Denote by Sch the category of separated schemes of finite type
over k and by Sm the full subcategory of smooth schemes. For
X,Y € Sm, an integral closed subscheme of X x Y that is
finite and surjective over a connected component of X is called
a prime correspondence from X to Y. The category Cor of
finite correspondences has the same objects as Sm, and for
X,Y € Sm, Cor(X,Y) is the free abelian group on the set of
all prime correspondences from X to Y (see [7]). We consider
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Sm as a subcategory of Cor by regarding a morphism in Sm
as its graph in Cor.

Let PST = Fun(Cor, Ab) be the category of additive presheaves

of abelian groups on Cor whose objects are called presheaves
with transfers. Let NST C PST be the category of Nisnevich
sheaves with transfers and let

ayy, : PST — NST

be Voevodsky’s Nisnevich sheafification functor, which is an ex-
act left adjoint to the inclusion NST — PST. Let HI C PST
be the category of Al-invariant presheaves and put Hlyi =
HINNST C NST. The product x on Sm yields a sym-
metric monoidal structure on Cor, which induces a symmetric
monoidal structure on PST in the usual way.

We recall the definition of the category MCor from [3, Def-
inition 1.3.1]. A pair X = (X,Dx) of X € Sch and an
effective Cartier divisor D on X is called a modulus pair if
X —|Dx| € Sm. Let X = (X,Dx), Y = (Y, Dy) be mod-
ulus pairs and I' € Cor(X — Dx,Y — Dy) be a prime cor-
respondence. Let I' € X x Y be the closure of I', and let
T — X xY be the normalization. We say I'is admissible (resp.
left proper) if (Dx)zv > (Dy )z~ (resp. if T is proper over X).
Let MCor(&X,Y) be the subgroup of Cor(X —Dx,Y —Dy) gen-
erated by all admissible left proper prime correspondences. The
category M Cor has modulus pairs as objects and MCor(X,))
as the group of morphisms from X to ).

Let MCor;,;, C MCor be the full subcategory of (X,D) €
MCor with X € Sm and |D| a simple normal crossing divisor
on X. As observed in [13, Remark 1.14], after assuming reso-
lution of singularities, we can assume MCor = MCor,,, as for
every object (X, D) € MCor there exists a proper birational
map p: X’ — X that is an isomorphism on X — |D| and such
that |p* D] is a simple normal crossing divisor. Hence the mod-
ulus correspondence (X', D’) — (X, D) induced by the graph
of p is invertible in MCor.

There is a canonical pair of adjoint functors \ - w:

A:Cor - MCor X — (X,0),

w:MCor — Cor (X,D)— X —|D|,

There is a full subcategory MCor C MCor consisting of proper
modulus pairs, where a modulus pair (X, D) is proper if X is
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proper. Let 7 : MCor — MCor be the inclusion functor and
W= wr.

(6) For all n > 0 there is an endofunctor (1)™ on MCor preserving
MCor, such that (X, D)™ = (X,nD) where nD is the n-th
thickening of D.

(7) We have two categories of modulus presheaves with trasnfers:

MPST = Fun(MCor, Ab) and MPST = Fun(MCor, Ab).

Let Zy(X) = MCor(—,X) € MPST be the representable
presheaf for X € MCor. In this paper we frequently write X
for Z,(X) for simplicity.

(8) The adjunction A 4 w induce a string of 4 adjoint functors

(A = WA =w, A\, = w* w,) (cf. [3, Pr. 2.3.1]):

g!
—

MPST — PST

—
Q*
—

where w,,w, are localisations and w' and w* are fully faithful.
(9) The functor w yields a string of 3 adjoint functors (wy,w*, w)
(cf. [3, Pr. 2.2.1]):

wy
—

MPST ¢ PST

Wi
—

where w), w, are localisations and w* are fully faithful.
(10) The functor 7 yields a string of 3 adjoint functors (n, 7%, 7.):

Ul

=
MPST 7~ MPST

Tx
—

where 71, 7, are fully faithful and 7 is a localisation; 7y has a pro-
left adjoint 7', hence is exact (cf. [3, Pr. 2.4.1]). We will denote
by MPST" the essential image of 77 in MPST. Moreover, we
have (cf. [3, Lem. 2.4.2])

*

(1.2) W =wn, w=T71'Ww, nw=w".

(11) For FF € MPST and X = (X, D) € MCor, write Fiy for the
presheaf on the small étale site X over X given by U — F(&y)
for U = X étale, where Xy = (U, Djy) € MCor. We say F' is
a Nisnevich sheaf if so is Fy for all X € MCor (see [3, Section
3]). We write MINST C MPST for the full subcategory of
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Nisnevich sheaves. Let MNST C MPST be the full subcate-
gory of such objects F' that nF' € MNST. By [3, Prop. 3.5.3]
and [4, Theorem 2], the inclusion functors

inis - MNST — MPST  and iy : MNST — MPST

admit exact left adjoints ay;, and anis respectively and there
are natural isomorphisms

* *
(1.3) TiaNis ™~ OnisTi and  anisT™ 22 T s,

and the adjunction from (10) induces an adjunction

MNST — MNST.

I
The functor ay, has the following description: For F' € MPST
and Y € MCor, let Fy nis be the usual Nisnevich sheafification
of Fy. Then, for (X, D) € MCor we have

(1.4) anis F'(X, D) = lim - Fiy, p=py nis(Y),

fiY—=X
where the colimit is taken over all proper maps f : Y — X that
induce isomorphisms Y — |f*D| = X — |D|.
(12) For X € Sch, let Sh(Xyis, Ab) be the abelian category of ad-
ditive sheaves on Xyis. By definition of MINST, we have an
additive functor for X = (X, D) € MCor,

MNST — Sh<XN157 Ab) ; F— Fx.

The functor is not exact in general but it is left exact by (1.4).
(13) By [4, Pr. 6.2.1], the functors w* and w, respect MNST and
NST, and induce a pair of adjoint functors

MNST —» NST,

<—
which are both exact. Moreover, we have

_ Vv * %V
Wiy = ANwy  and  aywt = wiay.

(14) We say that F' € MPST (resp. MPST) is semi-pure if the
unit map
u: F— w'wF (resp. u: F — w'wFF)

is injective. For F' € MPST (resp. F' € MPST), let F*P ¢
MPST (resp. F*» € MPST) be the image of F' — w*w,F
(resp. F' — w*w F) (called the semi-purification of F'). One
easily sees that the association F' — F*P gives a left adjoint to
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the inclusion of the full subcategories of semipure objects into
MPST and MPST. For FF € MPST we have

n(F°P) ~ (nF)*F.
This follows from the fact that 71 is exact and commutes with
w*w and w*w, since mw* = w* and wyn = 7 (cf. (10)). In

particular /' € MPST is semiupre if and only if so is nF' €
MPST. For F' € MPST we have
QNis(Fsp) = (QNisF)Sp’

where the (_)® on the right is defined for F € MINST in the
same way as above. This follows from the fact that ay;, is exact
and commutes with w*w, and w*w, (cf. (13)).
Let O := (P!, 00) € MCor. We say F € MPST is O-invariant
if p* : F(X) — F(X®0) is an isomorphism for any X € MCor,
where p : X ® 0 — X is the projection. Let CI be the full
subcategory of MPST consisting of all O-invariant objects.

Recall from [6, Theorem 2.1.8] that CI is a Serre subcategory
of MPST, and that the inclusion functor i7 : CI - MPST has
a left adjoint kg and a right adjoint A given for F' € MPST
and X € MCor by

hS(F)(X) = Coker(if — it : F(X @ 0) — F(X)),

RO(F)(X) = Hom(KJ(X), ),
where for a € k the section i, : X — X ® O is induced by the
map k[t] — k[t]/(t —a) = k. B B

For X € MCor, we write hy (X) = h§(Z (X)) € CL
Let CI" = 1 CI € MPST be the essential image of CI under
71. In this paper, for F' € CI, we let F' denote also nF € CI”

by abuse of notation. Let CI*” C CI (resp. CI™*" C CI") be
the full subcategory of semipure objects. By (1.5), we have

F°? € CI" for F € CI',
and 7 and 7" induce an equivalence of categories
7 CI?P ~ CI™? . 1*

with natural isomorphisms 71 ~ ¢d and n7* ~ id.
We also consider the full subcategories

CI, = CI" NMNST c MNST,
CIL,, = CI' NMNST C MNST.
CIL? = CI"*? "MNST C MNST.
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By [13, Th. 0.4], we have

(1.9) an;s(CI™) € CIY .
By [4, Th. 2 (1)], n and 7* induce an equivalence of categories
(1.10) 7 CIE, ~ CIgY : 7

with natural isomorphisms 7*71 ~ id and n7* ~ id.

(17) We write RSC C PST for the essential image of CI under
wy (which is the same as the essential image of CI™* under w,
since wy = wyn and w, F' = w, F*?). Put RSCy;s = RSCNNST.
The objects of RSC (resp. RSCyis) are called reciprocity
presheaves (resp. sheaves). We have HI C RSC and it contains
also smooth commutative group schemes (which may have non-
trivial unipotent part), and the sheaf Q¢ of Kihler differentials,
and the de Rham-Witt sheaves W' (see [5] and [6]).

(18) By [6, Prop. 2.3.7] we have a pair of adjoint functors:

wy

(1.11) CI _a RSC,

«—

where w® = Alw* and it is fully faithful. Tt induces a pair of
adjoint functors:

@y

(1.12) CI" _oi RSC,

-
where w€T = 7 hlw* and it is fully faithful. Indeed, let F' = v

for F € CI and G € RSC. In view of (15) and the exactness
and full faithfulness of 71, we have

HOIIlCIT(F, th%,u*G) ~ HOIIICI<F, h%w*G) ~
Homypst(F, w*G) ~ Homypst (1 F, w*G) ~ Homgsc(w, F, G).

By [6, Theorem 2.4.1(2)], (1.12) induce a pair of adjoint func-
tors:

W)

(113) CIu? & RSCNiS,

Nis w
plli

If F' € CI", the adjunction induces a canonical map
F— gCIg!F

which is injective if F' € CI™*.
(19) MCor is equipped with a symmetric monoidal structure given
by

<X7DX)®(Y7DY) = (X X Y7DX XY + X x DY)7
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and MCor is clearly a ®-subcategory. Notice that the prod-
uct is not a categorical product since the diagonal map is not
admissible. It is admissible as a correspondence

(X,Dx)™ = (X,Dx)® (X,Dyx)  forn>2

The symmetric monoidal structure ® on MCor (resp. MCor)
induces a symmetric monoidal structure on MPST (resp. MPST)
in the usual way, and 71, wy and w, from (10), (9) and (8) are all
monoidal (see [10, §3]).

We end this section with some lemmas that will be needed in the
rest of the paper.

The proof of the following Lemma is due to Kay Riilling. We thank
him for letting us include it in our paper.

Lemma 1.1. Let p be the exponential characteristic of the base field
k. Let F € PST such that
(1) for all dominant étale maps U — X in Sm the pullback F(X) —
F(U) is injective,
(2) F has no p-torsion.
Then, for any G € PST, the natural map

Hompgr(G, F') — Hompg (G, F)
s an isomorphism.

Proof. (Kay Riilling) First we prove Hompgt(G, F') = Homps (G, F),
i.e. any morphism ¢ : G — F' of presheaves on Sm is also a morphism
in PST. We have to show ¢(f*a) = f*¢(a) in F(X), for a € G(Y)
and f € Cor(X,Y) a prime correspondence. By (1) we can reduce to
the case X = Spec K, with K a function field over k. In this case we
can write f* = h,g*, where h : Spec L. — Spec K is induced by a finite
field extension L/K and ¢ : Spec L — Y is a morphism. Since ¢ is a
morphism of presheaves on Sm, we are reduced to show

(1.14) hep(a) = p(hea), a€ G(L).

It suffices to consider the following two cases:

Ist case: L/K is finite separable. Let E/K be a finite Galois exten-
sion containing L/K and denote by j : Spec E — Spec K the induced
morphism and by o; : Spec E — Spec L the morphism induced by all
K-embeddings of L into E. Since G € PST we obtain in G(F)

j*hea = (h' o j)*a = Z o} (a).
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Thus
j*p(ha) = o(j*h.a) ZU = oipla) = j*h.p(a).

Since j* : F(L) — F(E) is injective by (1) this shows (1.14) in this
case.

2nd case: L/K is purely inseparable of degree p. In this case we
have h*h, = (h' o h) : G(L) — G(L) is multiplication by p as well as
h.h*: G(K) = G(K). Thus

h*o(hea) = p(h*h.a) = ppla) = hh.p(a);
applying h, yields
pe(h.a) = phao(a);

thus (1.14) follows from (2).

Next we prove the analogous statement for internal hom’s. Indeed,
note that for X € Sm, Hompgr(Z(X), F) € PST also satisfies (1)
and (2) above and that we have

(1.15) Hompgp(Zy(X), F) = F(X x —) = Hompg(hx, F)) in PS,
where hyx = Z(Homgmy,(—, X)). Thus for G € PST
Hompgy (G, F)(X) = Hompsr(Z (X), Hompgr (G, F))
= Hompst(G @75 Zi,(X), F)
= Hompgsr (G, Hompgyp(Ze (X)), F7))
= Hompg(G, Hompgr(Zi(X), F)), by (1.14)
= Hompg(G, Hompg(hx, F)), by (1.15)
= Hompg (G ®@F° hy, F)
= Homps(hx, Hompg (G, F))
= Hompg (G, F)(X).
This completes the proof of Lemma 1.1. O

Lemma 1.2. For F' € PST and X € Sm, we have a natural isomor-
phism

w” I"IO_mPST(Ztr(X>; F) = HO_mMPST(Ztr(Xa ®)7C_U*F)-
Proof. For Y = (Y, FE) € MCor with V =Y — |E|, we have natural

isomorphisms

w" Hompgr(Ze(X), F)(V) =~ Hompgr (Z:(X), F)(V) ~ Hompst (X XV, F)
~ Hommpst((X, @) RV, W'F) ~ HO_mMPST(Ztr(X> @)7Q*F)(y)-

This proves the lemma. O
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Lemma 1.3. For FF € MPST and X € Sm, we have a natural iso-
morphism

Wy HO_mMPST(Ztr(Xa 0), F) ~ Hompgy(Zy(X), w F).

Proof. For Y € Sm, we have natural isomorphisms

W HO_mMPST(Ztr(X» 0), F)(Y) ~ HO—mMPST(Ztr(Xv 0), F)(Y,0)
~ HomMPST(Ztr(X X Y, @), F) ~ HOIDPST(X X Y, Q|F)
~ Hompgr (Zu(X), w F)(Y).

This proves the lemma. O

Lemma 1.4. A complex in C* in NST such that C" € RSC for all
n € Z is exact if and only if C*(K) is exact as a complezx of abelian
groups for any function field K .

Proof. The cohomology sheaves H{,.(C*) are in RSCy;s by [13, Th.0.1].
Hence for all X € Sm, by [13, Th. 0.2] there is an injective map
(HE.C*)(X) — (HE.,C*)(k(X)). Hence the lemma follows from the
fact that (HG,,C*)(k(X)) = H"(C*(k(X))), since k(X) is henselian
local. O

Lemma 1.5. For G € RSC and F € PST such that F is a quotient
of a representable sheaf, Hompgr(F,G) € RSC.

Proof. First assume F = Z(X) with X € Sm. Put G = w®'G € CI”
(cf. (18)). The adjunction (1.12) implies w,G ~ G. Lemma 1.3 implies
a natural isomorphism

Hompgy(Zu(X), G) ~ w, HO—mMPST(Ztr(Xv 0), é)
Thus it suffices to show

Homypgr(Ze: (X, 0), é) e CI'".

The C-invariance follows directly from the one for G. The fact that it
is in MPST" follows from [13, Lemma 1.27(2)].

Now assume there is a surjection Z,(X) — F in PST, where X €
Sm. It induces an injection

Hompgy(F, G) — Hompgy(Ze:(X), G).

Since Hompgr(Z(X),G) € RSC as shown above and RSC C PST
is closed under finite products and subobjects, we get Hompgr(F, G) €
RSC as desired. This completes the proof. O
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Lemma 1.6. Let F € MNST be such that F*? € CI{;, (c¢f (16)).
For any function field K over k, we have

Hl(P}{, F(P}OOJFOO)) =0 fO'f’ 1> 0.

Proof. If F' is semi-pure, the assertion follows from [13, Th. 9.1]. In
general we use the exact sequence in MNST:

0=>C—=>F—=F?—=0

to reduce to the above case noting H'(Pj¢, C(p1 g40)) = 0 for i > 0
since C(p1_ o400y 18 supported on {0, 0}. O
Lemma 1.7. For F' € CI" and a function field K over k, we have

anisF'(K) — QNisF(E ® K).
Proof. We consider the exact sequence in MPST:

0—=+C—=F—=F?—=0 with wC=0.
Since ay;, is exact, from this we get an exact sequence in MINST:
0 = anisC = ani ' — ani  F°P — 0.

Since Cip1_ o100 is supported on {Og, 0ox }, we have by (1.4)

(QNisC)(P}(,O—i-oo) = C(P}(,O-&-OO)'

Hence the exact sequence gives rise to a commutative diagram

0 C(K) F(K) FP(K)

P -

0—CO®K) —ayF(O® K) — an  FP(OQ K)

The left (resp. right ) vertical map is an isomorphism since C' € CI”
(resp. thanks to [13, Th. 10.1]). This completes the proof. O

Let A} = Spec k[t] be the affine line with the coordinate ¢. Consider
the map in PST:

A, : ZulAL = {0}) > Gy,
given by t € G,,,(A} — {0}) = k[t,t']*, and the map in PST:
Ac, : Zin(Af) = G,
given by t € G,(A}) = k[t]. Note that \g,, and \g, factor through
Coker(Z —5 Zy (Al — {0})) and  Coker(Z —% Zy(AL)),

with 4; and 4y induced by the points 1 € A} — {0} and 0 € A} respec-
tively.
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Lemma 1.8. (1) The composite map

W Zix (P, 0+ 00) = Z (A; — {0}) 1 G,

mduces an isomorphism
(1.16) alwhf (g, ) — G,

where Og,, = Coker(Z —% Zy.(P',0 + 00)) € MPST.

(2) The composite map
W Za (P, 200) ~ Z (AD) 2% @,

mduces an isomorphism
(1.17) aywhy (Oa,) — G,

where Og, = Coker(Z — Z, (P!, 200)) € MPST.
Proof. We prove only (2). The proof of (1) is similar. By [13, Lem. 1.36
and Th. 0.1], we have a,wih5(Og,) € RSCyjs. Hence, by Lemma

1.4, it suffices to show that the map Zi, (A')(K) Ao G,(K) =K for a
function field K over k, induces an isomorphism wh5 (g, )(K) ~ K.
We know that Zi(A})(K) is identified with the group of 0-cycles on
Al = A' ®; K. Then, by [6, Th. 3.2.1], the kernel of Z,(A")(K) —
wih (O, )(K) is generated by the class of 0 € AL and divas (f) for
f € K(t)* such that f € 1+m2 Op1_,, Where m, is the maximal ideal
of the local ring Op1_, of P1 at co. Now (2) follows by an elementary
computation. ]

Lemma 1.9. We have
Homypgr(G, F) € MNST for G € MPST, FF € MNST.
Proof. Put H = Homp;pgy(G, F). Let X € MCor and

)/lv 1}
U——m=x

be a MV™-square as defined in [3, Def. 3.2.1]. By [3, Def. 4.5.2 and
Lem. 4.2.3], it suffices to show the exactness of

0= HX)—HU)®H(V)—=HW).
By the adjunction, we have

H(X) = Homypst (G, FY) with F*Y = Hompypgr(Zu(X), F)).
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Hence it suffices to show the exactness of the following sequence in
MPST:

0= F* = FYaFY —» .
Taking Y € MCor, this is reduced to showing the exactness of

0> FXR)Y) > FURY)@FVRY) = FWRY).

This follows from the fact that MV™-squares are preserved by the
product ® in MCor. U

Proposition 1.10. (i) For F,G € MPST, we have a natural iso-
morphism

anis(F @mpst G) = ani(anis F @mpsT aniG)

induced by the natural maps F' — an; F' and G — ay; G-
(ii) For F,G € MPST, we have a natural isomorphism

anis(F @mpst G) ~ axis(anisF @mpst anisG)
induced by the natural maps F — anis F' and G — anisG.

Proof. For H € MINST, we have isomorphisms

HomMNST(QNiS(F QMPST G), H) ~ HOIHMPST(F mpst G, H)
~ Hommpst(F, Homypgr (G, H))

(x1)
~ HommpsT (ayisF HO_mMPST (G,H))

~ HomMPST(QNiSF ®MPST G, H)
= HomMPST(G,HO_mMPST(QNisFa H))

(*2)
~ Hompmps(ayisG, HO_IHMPST (anisF, H))

~ Hommpst (ani I @mpst ani G, H)

~ HommnsT (@i (xisF @mpsT aniG), H)

where (x1) and (+2) follow from the fact Homypgr(A, H) € MNST
for A € MPST by Lemma 1.9. This proves (i).
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For F,G € MPST, we have isomorphisms

(x1)
nanis(F @mpst G) =~ anisT (F @mpst G)

(*2)
~ ayio(F QmpsT T1G)

(*3)
= QNis(QNisT!F ®MPST QNisT!G)

(x4)
=~ anis(Manis F' @vpst TianisG)

(x5)
~ anis T (anis F' @mpsT anisG)

(x6)
=~ Tianis(anisF' @mpsT anisG)

where (1), (%4) and (x6) follow from (1.3), (x¥2) and (x5) follow from
the monoidality of 7 ([10, §3.8]) and (x3) follows from (i). Since 7 is
fully faithful, this implies (ii). This completes the proof of the lemma.

O

Lemma 1.11. There are natural isomorphisms for F,G € MPST

(1.18)  (F ®mpst G)* ~ (F* @mpst G)” ~ (F*F @mpst G7)™.

Proof. We have an exact sequence in MPST:
0—>C—F — F? -0 with w(C =0.

Since (—) @mpsT G : MPST — MPST is right exact, we get an exact
sequence

C 3mpst G — F Qumpest G — FP Qmpst G — 0.

We have w(C @umpst G) = 0 since w; : MPST — PST is monoidal by
(10, §3.6]. Hence we get an isomorphism (F @nmpst G)®? ~ (F*P @MmpsT

G)*. This implies (1.18). O
Lemma 1.12. There are natural isomorphisms for F,G, H € MPST
(1.19) he (F*)* = h(F)*,

(1.20) o (F @mpst G) = h5'(hS (F) @mpst h5(G)).

Proof. We have an exact sequence in MPST:
0—-C—F — F? -0 with w(C =0.
From this we get an exact sequence in MPST:

h5(C) = hJ(F) — hJ(F**) = 0
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since A : MPST — MPST is right exact. We have wh(C') = 0 since
w : MPST — PST is exact and h5(C) is a quotient of C. Hence we
get an isomorphism wh (F) ~ wh5(F*). This implies (1.19).

For H € CI, we have isomorphisms

HomCI<hoi(F ®@wmpst G), H) ~ HomypsT(F @mpst G, H)
>~ HOI’HMPST(F, HomMPST(G7 H))

(;) HOHIMPST(hoi<F)7 Homypgr (G, H))
(F) QOMPST G7 H))
(F) @mpst G), H))

where (x) follows from the fact that Homypgr (G, H) € CI for H € CI,
which follows easily from the definition. This shows

hoi(F ®mpst G) ~ hoi(hoi(F) ®mpst G),
which implies (1.20). O

~ HomMPST h

(ho
~ HOIHCI(hE(h%I

From (1.9), we have ay;(CI™) C CI{;?, which implies
CLNiS(CISP) C CIf\ﬁs .

Indeed, for F' € CI*, we have nanisF' ~ aynF € CIG?Y by (1.3),
which implies aniF' € CI{, by definition (cf. (11) and [4, Def. 3]).
Thus we get an induced functor

(1.21) axs : CI? — CIY, .

By definition we have

(1.22) ast(F) = anisj(F) for  F € CI*,

where j : CI*? — MPST is the inclusion.

Lemma 1.13. aSL is a left adjoint to the inclusion CLE, — CI*.

Proof. This follows easily from the fact that ayjs is a left adjoint to the
inclusion MNST — MPST and the inclusions CI*” — MPST and
CI{, — MNST are fully faithful. O

Lemma 1.14. Consider the functors
h5"® . MPST — CI” : F — hi(F)”,

hEﬁfE : MPST — CIZ. : F — aSLhS P (F).
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(i) The functor h?’sl’ (resp. hEﬁfs) is a left adjoint to the inclusion
CI’’ — MPST (resp. CI{, — MPST). For F €¢ MPST,
we have natural isomorphisms

ho " (F) = hgPhg P (F)  and  hoxi(F) = ho S ho R (F).
(ii) For F € MPST, the natural map F — anisF' induces isomor-
phisms
h(?,ffs(F) = hOD,i\SIZi)s<aNisF>'
(iii) For F € MPST, we have natural isomorphisms
h?’SP(F @mpst G) ~ hoi’SP(hoi’SP(F) ®MPST hoﬁ’Sp(G))a
ho kb (F @npst G) 2 hoiE (hoii(F) @nps Bo R (G)):

Proof. The first statement of (i) follows from the left-adjointness of Ay,
(—)* and ayis. The second statement of (i) is a formal consequence of
the first since the inclusions are fully faithful.

To show (ii), consider the commutative diagram

CIy. < . Crv

leis tj
MNST —-~ MPST

where the functors are inclusions. For F' € MPST and G € CIg, we
have isomorphisms

(1)

ivSP N i,sp . .
HomCIT\f’is (ho,NismNisR G) Homersr (hy ianis F ic1G)

(%2) . ..
~ Hommpst (ianisF, jiciG)

~ HOHlMpsT(Z-aNiSFa ijNisG)

(*3) .
~ HOHIMNST(GNiSFa ]NisG)

~ HOII]MPST(F, ijNisG)
~ Hommpst(F, jiciG)

(x4) O.s .
~ HOH]MPST(hOD’ pF, ZCIG)

*5 =
(2) HOH]MPST<CL§iIShOD’SpF, G)

where (x1) and (x5) (resp. (%2) and (x4), resp. (x3)) follow from
Lemma 1.13 (resp. (i), resp. the full faithfulness of ¢). This proves (ii).
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For F,G € MPST, we have natural isomorphisms

(1.

—
=}
N

12
=

hoi’Sp(F ®mpst G) (F @mpst G)7)*

(F*? @mpsT G*P)*P)°P

—
—
—
oo

=

12
=

-
IZ\;3
>

—~
—
[\~
=

=

12
=

hS(F*?) @mpst hy (GP))*

F*?) @mps hy (G*P))*P)*

—
=
=
o

=

12
=
=

-
I3=

=z
>
—~ —~

F*P)*? @npsT hoi(GSp)Sp)Sp)Sp
P(F) @npst by (G))7)”
hy*(F) @mpst hy ™ (G))

= hg*P(hg""(F) @mps g (G))

This proves the first isomorphism of (iii). From this we get natural
isomorphisms

hGRE (F @mpst G) = ho2 (hg P (F) @mpst hy"(G))

(*1) 75 75 78
~ horbanis(ho " (F) @mpst by ™" (G))

—~
—
=
©

=

e e
= =
O <eg g

12
=

=
—_
L
o o0 0O o0 o0 o O o0

—~ —~ —~ —~ —~ —~ —~ —~
0

12
=

(*2) T Os O,s
>~ hg Nisnis (Ao Nis (F) @MmpsT g i (G))
(%3

) Osp 10,8 O,s
= hO,N;iDs(h’O,NIiDs<F) ®MPST hO,NziDs<G>)

where (x1) and (*3) follow from (ii) and (*2) follows from Proposition
1.10 in view of (1.22). This completes the proof of the lemma. O
2. SOME LEMMAS ON CONTRACTIONS
For an integer a > 1 put g = (P, a(0 + o)) € MCor and
0%, = Ker (Z (@) = Z = Zie(Spec k, 0)).

The inclusion A* — {0} — A induces a map G - T in MCor for
all a. Note that the composite map

(2.1) o

red

o Oa,,

is an isomorphism, where Og,, is from (1.16).
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For FF € MPST, we write

+F = Coker (Homppgr(T, F) — Homppsr(@', F)) € MPST,

where the map is induced by " & Tin MCor. If F ¢ CI", the
projection [1 — Spec k induces an isomorphism
F = Homypgr(Spec k, F) ~ Homypgr (O, F).

Thus we get an isomorphism

(2.2)
VF ~ Hompgpgr (T, F) 2 Homygper (B (@), F) for F € CI",

red’ red

where the equality (%) follows from the adjunction from (15). Note
~vF € CI™ for F' € CI"™*”. We also define

Wist = a7 F € MINST .
By (2.2) and Lemma 1.9, we have

WwisF = vF for F e CI{,,
We write for an integer n > 1 (cf, §1(19))

n times
n ~Y _(1) n ~ /—H
(2.3) V" F & Homygpgp (o) MPST" F) 247 T3 F,

Notice that it is

The proof of the following Lemma is due to Kay Riilling. We thank
him for letting us include it in our paper.

Lemma 2.1. The unit map
24)  anhS@AY)7 S wrwan hH@EY) 2w (G, @ Z)

is an isomorphism, where the second isomorphism in (2.4) holds by
Lemma 1.8 and (2.1).

Proof. (Kay Riilling) The unit map is injective by semipurity. It re-
mains to show the surjectivity. By definition of the sheafification func-
tor, it suffices to show the surjectivity on (Spec R, (f)), where R is
an integral local k-algebra and f € R\ {0}, such that R; is regular.
Denote by
1 Zy (P10 + 00)(R, ) = R} ® Z

the precomposition of (2.4) evaluated at (R, f) with the quotient map
Ztr(Pla 0 + OO)(R7 f) - @Nish%l(i(l))sp'

We show that v is surjective. To this end, observe that for a € RJT
we find N > 0 and b € R such that

(2.5) ab=f~, and af" €R.
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Set W := V(t¥ — a) C Spec Rf[t, 1/t] and K := Frac(R).

The map Cor(K,A' — {0}) — Pic(Pk,0+ oo) = K* @ Z which
induces the second isomorphism of (2.4) sends a prime correspondence
V(ao+ art + ...a,t") to ((—1)"ag/a,, ), hence we have:

(2.6) v(V(ag+art +...a,t")) = ((=1)"ao/a,, )

provided that V(ag + a1t + . ..a,t") € MCor((R, f), (P',0+ 00)).
For any a € Ry, consider h = tN —a and let h = [], h; be the
decomposition into monic irreducible factors in K[t,1/t] and denote
by W; C Spec R¢[t,1/t] the closure of V(h;). (Note that W; = W; for
i # 7 is allowed.)
The W; correspond to the components of W which are dominant over
Ry; since W is finite and surjective over Ry, so are the W;. We claim

(2.7) W; € MCor((R, f), (P',0+ c0))
Indeed, let I; (resp. J;) be the ideal of the closure of W; in Spec R]t]
(resp. Spec R|[z| with z = 1/t). By (2.5)

bt¥ — f¥el; and [N — fNaz" e J;.

Hence (f/t)Y € R[t]/I; and (f/2)N € R[z]/J;. Tt follows that f/t
(resp. f/z) is integral over R[t]/I; (resp. R[z]/J;); thus (2.7) holds.

We claim
B(3 W) = (<D "a, N,

Indeed, it suffices to show this after restriction to the generic point of
R, in which case it follows directly from the definition of the W; and
(2.6). Since Y(V(t £ 1)) = (—(%£1),1), this implies the surjectivity of
1 and proves the lemma.

O

Corollary 2.2. (1) There is a natural isomorphism

N A e

(2) For F € CIY, we have a natural isomorphism
(2.8) vEF ~ Homyrpgyp (W G, F).

Proof. (1) is a direct consequence of Lemma 2.1. In view of (2.2), (2)
follows from (1) and the adjunctin of ay;, and that from §1(14). O

Lemma 2.3. Consider an exact sequence 0 - A - B — C — 0 in
MNST.
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(1) Assume A, B,C € CI;,. Then the following sequence in NST
0= wyA—=wyB = wyC =0

18 exact.
(2) Assume w,A =0 and C € CI;F. Then the following sequence

0 — yA(K) - yB(K) - yC(K) — 0
1s exact for any function field K over k.

Proof. First assume A, B,C' € CIy,. Then all terms of the sequence
in (1) are in RSCyjs. By Lemma 1.4, it suffices to show the exactness
of
0 = yA(K) = yB(K) - ~+C(K) =0

for a function field K over k. .

By (2.2), we have vF(K) = Hom(Twy ., F) for all F € CT™ where
57(«1631,;( = ﬁﬁ?j@Spec K. Since ﬁg)d?K is a direct summand of Z, (P}, 0+
00), it is enough to show that

Extyngt (Zir (P, 04 00), A) = 0.
By using [3, Th.2(2)] we can compute
EXt1MNST(Ztr(P}{7 0+ 00),A4) =~ Hlllis(P}{a A(P}(70+oo))7

where we used the fact that any proper birational map X — Pl is an
isomorphism. Thus the vanishing follows from Lemma 1.6. This proves
(1).

Next we assume w,A = 0 and C' € CI;”. For a function field K
over k, we have a commutative diagram

0—= AP, 0+ 00) —= B(PY, 0+ 00) —= C(Pk, 0+ 00) —= 0

where the sequences are exact since for every effective Cartier divisor
D on P,

EthMNST(Ztr(P}O D), A) ~ Hlilis(P}{v A(P}K,D)) =0,

by [3, Th.2(2)] and the fact that Ap1 p) is supported on the zero-
dimensional scheme |D| by the assumption. Finally, Ker(c) = 0 by [13,
Th. 3.1], hence the snake lemma gives the exact sequence of (2). O
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Proposition 2.4. (1) Take F € CIGY (¢f §1(16)). For X =
(X,Dx) € MCor,, (c¢f. §1(3)), there exists a map functorial
m X:

(2.9) YE(X) = H'(P' x X, Fpigy).
Moreover, if X is henselian local, it is an isomorphism.

(2) Let F € MINST be such that F** € CI;P. For X € Sm, there
exists a map functorial in X :

(2.10) YF(X) — H' (P' x X, Fpi.x).

T

Moreover, it is an isomorphism either if F' € CIy,, and X s
henselian local, or if X = Spec(K) is the spectrum of a function
field over k and the natural map F(K) — F(O ® K) is an
1somorphism.

Proof. Let L = (P',0). We prove (1). By (2.2) and [13, Lem. 7.1],
there exists an exact sequence of sheaves on (P! x X)yjq:

(211) O—)Fp1®)( —>FL®X—>i*’7FX — 0,

where 7 : X — P! x X is induced by 0 € P!. Taking cohomology, we
get the map (2.9). If X is henselian local, we have

(2.12) H'P!' x X, Frox) ~ HY(X,Fy) =0

thanks to [13, Th. 9.3]. Note that the map F(X) — F(L® X) induced
by the projection L®X — X is an isomorphism by the O-invariance of
F. Since the projection factors as L @ X — P! ®@ X — X, this implies
the map F(P' ® X) — F(L ® X) is surjective. This implies that the
map (2.9) is an isomorphism.

We prove (2). Consider the exact sequence of sheaves on (P! x X )yis:

(2.13) 0= Fpiyxy — Frox — ixA\xF — 0,

where A\x F' = i*(Frgx/Fpixx). The injectivity of the first map follows
from [13, Th. 3.1] noting Fpi,x = Fgh, ! and F* € CI{;’ by the
assumption. Taking cohomology over an étale U — X, we get a map
natural in U:

)\XF(U) — Hl(Pl X U, FP1><U)'
To define the map (2.10), it suffices to show the following.

Claim 2.5. There exists a natural map of sheaves on Xyjig:

Prx : (’YNisF)X — Ax F.

IThe point is that X has the empty modulus.
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It is an isomorphism if F' € CIy,. If FF € MNST and F*? € CI,
then ¢r i (WisF)x = (VF)k — Ak F is an isomorphism for a function
field K over k.

By definition, Ax F' is the sheaf on Xy;s associated to the presheaf

(2.14) A F U — limg F(V, 0v)/F(V, 0),
\%4

where V' ranges over étale neighborhoods of 0y = i(U) C P! x U. On
the other hand, we have

(YF)x(U) = F(P' x U,0 + 00)/F (P! x U, ).

Since the colimit in (2.14) does not change when taken over étale neigh-
borhood of 0y C A! x U, there is a natural map

(YF)x(U) = F(A' x U,0)/F(A' x U,0) — \xF(U),

which induces the desired map ¢pp x.

Next we show ¢r x is an isomorphism if ' € CIy,, or if ' € MINST
with F*? € CI;? and X = K is a function field over k. If F' is semi-
pure, the assertion follows from [13, Lem. 7.1]. In general we consider
the exact sequence in MINST:

(2.15) 0—>C—F— F?—0 with w,C=0.

It gives rise to a commutative diagram of sheaves on (P x X )yis:

sp
0—>CP1><X—>FP1XXéFP1><X—>O

]

sp
0 —— Crox — Frox — F%

where the upper (resp. lower) sequence is exact by the exactness of
w, : MNST — NST from §1(13) (resp. by (12)). The right vertical
map is injective by [13, Th. 3.1]. This implies the exactness of the
lower sequence of the following commutative diagram on Xyjs:

00— (O)x —= (vF)x —= (7F*?)x —=0

lsﬂc,x l%@F,X l‘PFSP,X

0 AxC Ax F Ax FP

The upper sequence is exact by Lemma 2.3. Since we know that pps x
is an isomorphism, it suffices to show that ¢¢ x is an isomorphism.
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Indeed, for an étale U — X with U henselian local, we have
(7C)x(U) = C(P' x U, 0 + 00) /C(P! x U, 00)
~lig C(V,0v)/C(V.0) = AxC(V),
%

where V' are as in (2.14) and the isomorphism comes from the excision
noting that Cipixpo+ee) (resp. Cpixu,)) is supported on {0y, ooy}
(resp. oop). This proves that ¢¢ x is an isomorphism and completes
the proof of the claim.

To show the second assertion of (2), we look at the cohomology exact
sequence arising from (2.13). Note that F(P! x X) — F(L ® X) is
surjective since F(X) — F(L ® X) by the assumption. Hence it
suffices to show H'(P! x X, Frox) = 0. If F is semi-pure, this follows
from (2.12). In general it is reduced to the above case using (2.15) and
noting H*(P! x X, CLgx) = 0 since CLgx is supported on 0 x X. This
completes the proof of the lemma. O
Corollary 2.6. Let G € CI" and K be a function field K over k.

(1) There is a natural isomorphism
Vi G(K) =~ H' (P, ay;,G).
(2) The natural map
’ygNiSG(K) - ’YQNisGsp(K)
18 an isomorphism.
Proof. Letting F = ay; G, we have F* = ;G € CI{;F by §1(1.9).
By Lemma 1.7, F satisfies the second assumption of Proposition 2.4(2).

Hence (1) follows from Proposition 2.4(2). (2) follows from isomor-
phisms

YaniG(K) = H' (Pg, aG) =~ H' (P, wiayG) ~ H' (P, ax;w G)
~ H' (P, axuw G*) = H' (P, a3, GF) =~ 7ay; G (K),
where the third (resp. last) isomorphism follows from §1(13) (resp.
Proposition 2.4). O
Lemma 2.7. Let F € CI'.
(1) The natural map
VF(K) = yan F(K)
s an isomorphism for any function field K over k.
(2) The natural map ayn;YF*P — yan F*P is injective.
(3) The natural map wyan; VP — wiyanF'™P is an isomorphism.
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Proof. Consider the exact sequence in MPST:
(2.16) 0—>C—F— F?—0 with w,C=0.

By §1(1.7), we have C, F*? € CI". It gives rise to an exact sequence in
MNST:

0 = anisC = ani ' — ani  FP — 0

and a commutative diagram

0 ——C(K) VE(K) VEP(K) —=0

| | |

0—— ’YQNisC(K) — yay; F(K) — WQNisFS‘D(K) —0

The upper sequence is exact thanks to (2.2). The lower sequence is
exact by Lemma 2.3(2) noting ayn; F'*? € CIyY by [13, Th. 10.1] and
wian;C = axw,C = 0 (cf. §1(13)). Since Cip1 o) is supported on
{0k, 00K}, we have by §1(1.4)

(QNisC)(P}{,OJroo) = C(P}{,(H»oo):

where we used the fact that any proper birational map between normal
schemes of dimension 1 is an isomorphism. Hence the left vertical map
is an isomorphism. Hence we may assume that F'is semi-pure. By
§1(1.9), we have ay, F € CIyP. By [13, Lem. 5.9], we have natural
isomorphisms

VF(K) ~ F(AL,0)/F(Ak,0),
Yay F(K) =~ QNisF(A}OO)/QNisF<A}<7®)'

Hence (1) follows from [13, Th. 4.1].

To show (2) and (3), first note that F**? € CI™*" by the assumption
and §1(1.7) and hence yF*P € CI™*". By §1(1.9), ayn;svE*? and yay; '
are in CI{?, and hence w,an7F*™ and w,yay;F* are in RSCyis.
Hence (2) (resp. (3)) follows from (1) for F' = F*P and [13, Cor. 3.4]
(resp. Lemma 1.4).

U

Lemma 2.8. Consider a sequence A — B — C in CI" such that
wiayisA = wian; B = wian; ¢ — 0
s exact in NST. Then the following sequence
YanisA(K) = yay; B(K) = van;C(K) = 0

15 exact for any function field K over k.
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Proof. In view of the right exactness of the functor
H'(Pg,—): NST — Ab,

the lemma follows from Corollary 2.6(1) by applying the above functor
to the first exact sequence. 0

Corollary 2.9. Let F € CIyY. Then for any function field K we have
an isomorphism yF(K) = ywClw, F(K)

Proof. Let q : v(F)(K) — v(w®w,F)(K) be the map induced by the
unit map F — wCw F for the adjunction (1.13), which is injective

since it factors the map F — w*w F. Notice that ¢ is injective by
(2.2) and the fact that HomMpST(EﬁQ > -) breserves injective maps,

hence it is enough to show that it is surjective. Let () be the presheaf
cokernel of F' — w®w F', hence Q € CI” and w,@Q = 0. By Lemma 2.8
we have an exact sequence

VF(E) % 1w F(K) = yay,Q(K) = 0.
By Corollary 2.6(2) we have that
YanisQ(K) = yan Q7 (K) =0,
hence ¢ is surjective. U
Proposition 2.10. For F' € CI{?, there is a natural isomorphism
w vl ~w, HO_mMPST(&*Gm’ F) ~ Hompgy (G, w, ).

Proof. The first isomorphism follows from (2.2) and Corollary 2.2. For
F € MPST and X € Sm, put

PY = Homypgr(Zu (X, 0)), F).
Note that F' € CI{;F implies FX € CI{;?. We compute

—(1
W F(X) = Homypgr @iy, F)(X, 0)
=(1
~ HOI’HMPST(D( ) FX) = ’)/FXU{Z),

red»

HO_HH)ST(Gm, %F)(X) = HOIHPST(GWHO_IHPST<X7 Q!F))
= HO_mPST(Gma&!FX)(k)7

where the last isomorphism comes from Lemma 1.3. Hence it suffices

to show that there exists a natural isomorphism for any F' € CI{.”:

~vF (k) ~ Hompgt (G, w, F).



30 A. MERICI AND S. SAITO

We have isomorphisms

(x1)

Hompgr (G, w F') ~ Hommpst(w G, w'w) F)
(%2)
= HomMPST( & &F)
*3)
(N HomMPST(Dﬁd,w W,F)
(*4) (x 5)

YWww F (k) ~ vF(k),

where (k1) follows from the fact that w* is fully faithful (cf. §1(8)),
and (%2) from the adjunction from §1(15) (see also (1.12)) in view of
the fact w*G,, € CI" by Lemma 2.1, (x¥3) from Lemma 2.1, (%4) by
(2.2) and (x5) by Corollary 2.9,

U

3. WEAK CANCELLATION THEOREM
For F,G € MPST we write (cf. §1(16), (19) and Lemma 1.14)
F®c G = hi(F ®wmpst G) € CI,
F ®% G = hi*"(F @ypsr G) € CI?,
F @8 G = Wi (F @mpst G) € CLY, .

Proposition 3.1. The product @cy (resp. @, resp. @ey™”) defines
a symmetric monoidal structure on CI (resp. CI*?, resp. CISNpis .

Proof. The assertion follows immediately from the fact that Qnpst
defines a symmetric monoidal structure on MPST except the associa-
tivity. We prove it only for @ey*” (other cases are similar). We need
to show a natural 1som0rphlsm for F,G, H € CI{,:

(F ®le ,Sp G) 1s ,Sp H~F ®le ,Sp (G ®le ,Sp H)

For simplicity we write A = hODIfI’l’S For F,G,H € CI¥,, we have

isomorphisms

(x1)
~ )\()\Z(F QMPST G) XMPST )\H)

(2
~ A A(F @mpst G) @mpsT AH)

(*3)
~ M(F ®@mpst G) @mpst H)

where (k1) (resp. (x2), resp. (x3)) follows from Lemma 1.14 (7i7) (resp.
(i), resp. (i4i)). The lemma follows from this and the associativity of
®MPST- O

AN(F @mpst G) QmpsT H)
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For F,G € CI" we write
F ®@c1 G = 1hf (1" F @mpst 7°G) € CI',
F @2 G =nhl*(*F @ppsr 7°G) € CI™*,
FRE™ G = T;ho N (T"F @umpst 7°G) € CIGY.

By §1(1.3), we have a natural isomorphism

(3.1) anis(F ®¢y G) =~ ®NIS e

In view of the equivalences (1.8) and (1.10), Proposition 3.1 implies
Proposition 3.2. The product @cr (resp. @&y, resp. ®le ) defines

a symmetric monoidal structure on CI" (resp. CI™*P, resp. CIY).
There is a natural isomorphism for F,G, H € CIyY
(3.2) (Fag™ Q) ogy™ H ~ F ogy™ (G oge™ H).
For F' € CI};, and an integer d > 0, we put
(33) F(d) = (@) " o5 F.

Note F(d) = F(m)(n) with d = m + n by (3.2).

For F € CI" and f € F(X) with X € MCor, consider the composite
map

—() 5w S ) —)
D’red ®MPST Ztr(‘)() — Dred ®MPST F— Dred e F.

By the adjunction (ﬁfngj ®@mpst —) 1 Homypgr (ﬁ(l) —) this gives rise

red?
to a natural map

—(1
(3.4) e F = (@Y, @01 F),
which induces
(3.5) 3P (O 0 F),

noting the adjunction from §1(14) and the fact that v : MPST —
MPST preserves semipure objects.
If F' € CIy, this induces a natural map

(3.6) tpt F°P — ~(F(1)).

which generalizes to a natural map for n € Z>; (cf. (3.3) and (2.3))
(3.7 s F o5 4" (F(n),

noting

Y'F = HomMPST((E( ))®CI" F) for FeCI"

red

thanks to the adjunction from (15).
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Question 3.3. For F' € CI?, is the map (3.6) an isomorphism?
We will prove the following variant.

Theorem 3.4. For ' € CI", the map (3.5) is an isomorphism.
Before going into its proof, we give some consequences.

Corollary 3.5. For F € CI" the map (3.5) gives an isomorphism
~ —=(1) _s
wir : Wi F S w0 9% F),
For F € CI{,, the map (3.7) induces an isomorphism
Wi s W B = wy"F(n).

Proof. The functors w, and ay;, are exact and w,ay; G = way; G for
all G € MPST. Hence Theorem 3.4 gives a natural isomorphism

Wit Wi P i,y (O 0 F).
This proves the first assertion since Lemma 2.7(3) implies

=1 s =0 s

WiV (Ureq @1 F) = wyans(Dreq @27 F).-
The second assertion for the case n = 1 follows directly from the first.
For n > 1, we proceed by the induction on n to assume

(3.8) Wt w F S wy" R (n - 1).
Then we have isomorphisms

(x1)

_ (
wY"F(n) ~ wyy" 'F(n)

*2) _
= _HomPST(Gma‘«_U!’Yn 1F(”)) =

(:3)

Hompgr (G, wy" ' F(1)(n — 1)) Hompgr (G, w, F(1))

(x4) (*5)
~ wyF(1) ~ wf,

where (x1) follows from (2.3), (x2) follows from Proposition 2.10 noting
7" 'F(n) € CIgY, (x3) follows from (3.8), (x4) follows from Propo-
sition 2.10 and (x5) follows from the case n = 1. This completes the
proof. 0
Corollary 3.6. For F' € RSCy;, and F = wC'F € CI{, (cf. (1.13)),
the map (3.7) V% : F' — 4" F(n) is an isomorphism.

Proof. We have a commutative diagram

n
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where the vertical arrows come from the adjunction (1.13). The left
(resp. right) vertical arrow is an isomorphism (resp. injective) since
wwC ~ id (resp. by the semipurity of v"F(n)). Since gCIg!L% is an
isomorphism by Corollary 3.5, this implies L% is an isomorphism by

Snake Lemma. O
Corollary 3.7. For F € CI{.?, there is a natural injective map
pr:Y"F(n) = ww F

whose composite with the map (3.7) % : F — vy"F(n) coincides with
the unit map u : F — wCYw F for the adjunction (1.13). In particular
(3.7) is injective.

Proof. Define pr as the composite

w (o, p)

Y'E(n) = A"ww, F(n) © = WOl F

ZCIW!F :
WO F =2 4"wClw F(n) from Corollary 3.6. Clearly we have pp ot} =
u. We easily see that pr coincides with the composite

where the second map is the inverse of the isomorphism ¢

UJCI W|Ln —1
V() —5 0w F(n) 2 WO R,

where the first map is injective by the semipurity of 7" F'(n) and the
second map is induced by the inverse of the isomorphism wt} @ w F' =
wy"F(n) from Corollary 3.5. This completes the proof. O

In the rest of this section we prove the following.
Proposition 3.8. For F' € CI", the map (3.5) ¥ is split injective.

For the proof of Proposition 3.8 we first recall the construction of
[15]. Take X,Y € Sm. For an integer n > 0 consider the rational
function on A x Al :

it —1
gn = .
ngJrl — Ty

Let Dyy (gn) be the divisor of the pullback of g, to (A} —0) x X x
(AL, —0) x Y. Take a prime correspondence

(3.9) Z € Cor((A}, —0) x X, (Al —0) xY).

Let Z C PL x X x PL, x Y be the closure of Z and Z" be its nor-
malization.
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Lemma 3.9. (1) Let N > 0 be an integer such that

(310) N(Ol + OOl)|7N 2 (02 + 002)|ZN'
Then, for any integern > N, Z intersects properly with |Dxy (gy)|
and any component of the intersection Z - Dxy (gy,) is finite and

surjective over X. Thus we get
pn(Z) € Cor(X,Y)
as the pushforward of Z - Dxy(g,) in X X Y.
= Al_0) @ or € Cor(X,Y), then one can take

2) If Z = Idar—oy @ W for W € Cor(X,Y), th k

N =11 (1) and p,(Z) =W.
(3) For any Z as in (3.9) such that p,(Z) is defined and for any

f € Cor(X")Y'") with X")Y" € Sm, p,(Z & [) for

Z® f € Cor((A}, —0) x (X x X'), (A}, —0) x (Y xY"))
1s defined and we have
pn(Z® f)=pa(Z)® f € Cor(X x X' Y xY').
(4) For an integer N > 0 let
Cor™((Al —0) x X, (AL, —0) xY)

be the subgroup of Cor((A; —0)x X, (Al —0)xY)) generated
by prime correspondences satisfying the condition (3.10). Then
the presheaf on Sm given by

X — Cor™((AL —0) x X, (AL, —0) xY)
1s a Nisnevich sheaf.

Proof. The assertions are proved in [15, Lem. 4.1, 4.3 and 4.5] except
that (4) follows from the fact that the condition (3.10) is Nisnevich
local on X. O

For an integer a > 1 put o = (P*,a(0 + o0)) € MCor. Take
X = (X,X.),Y = (YY) € MCor with X = X — | X.| and ¥ =
Y —

|Y|. For a > 1 take a prime correspondence

Z € MCor(ﬁ(a) ® X,E(l) ®Y).
By definition Z € Cor(X,Y) and it satisfies

(311) (02 + 002) SN + (Yoo) =N S CL(Ol + 001)

Z Z Vil (X°°)|ZN7

|Z

where Z"" is the normalization of the closure Z of Z in Pl xXxP! xY.
For integers n,m > a, we consider the rational function on Aglﬁ1 X
Al x AL
h=tg, + (1 —t)gm.
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Let Dxary(h) be the divisor of the pullback of h to (AL —0) x X x
A} x (AL, —0)xY. By [15, Rem. 4.2], Z x A} intersects properly with
|Dx ary (h)| and any component of the intersection (Z x A})-Dx a1y (h)
is finite and surjective over X x A}. Thus we get

pn(Z x A}) € Cor(X x A}Y).
It is easy to see
(3.12)  dgpn(Z x A}) = pm(Z)  and  iipu(Z x Ay) = pu(Z).
Lemma 3.10. For n,m > a, pn(Z x A}) € MCor(X ® 0, D).

Proof. Let V be any component of (Z x Al)- Dxa1y(h) and V be its
closure in

P, xXxP, xP, xY.
Let W C X x A} x Y be the image of V and W be its closure in
X x P} x Y. Then we have W = 7(V), where

TP, x X xP/ xP, xY 5> XxP; xY
is the projection. We want to show

(YOO)‘WN < (7 X OO)|WN + (XOO X P%)‘WN.

Since - V' = W' is proper and surjective, this is reduced to showing

(YOO)|VN < (7 X OO)‘VN + (Xoo X P%)lVN
by [9, Lem. 2.2]. By (3.11) and the containment lemma [9, Pr. 2.4]
(see also [1, Lem. 2.1]), we have

(Yoo) v + (02 + 002) v < a(01 + 001)

v —N"‘(XOO XP%)

1% ek

Thus it suffices to show

a(01 + OOl)|VN S (02 -+ OOQ)lVN + OO|VN'
Using [9, Pr. 2.4] again, this follows from
(3.13) CL(Ol + OOl)|T < (02 + OOQ)|T + o9y

where T C P, x P; x P! is any component of the closure of the
divisor of h on (A} —0) x A} x (A;, —0). By an easy computation, T
is contained in one of the closures D(H), D(J,), D(J,,) of the divisors
of

H = t(a7™ =27 ) (1 = 22) + (27" = 1) (2™ — 2),

_ .n+l _ .m+1
Ip =27 =29, Sy =] — 29
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respectively. Letting P, — 0 = Speck[r;] with 7; = x;t fori = 1,2,
D(H), D(J,), D(J,,,) are defined in (P} —0) x A} x (P} —0) by the
ideals generated by

H = 17 = o) (= 1)+ (1= 7 ) — 1),

J=m—1t J =1 th
Hence, D(H), D(J,,), D(J,) do not intersect with co; x Py x Al .
By the assumption n,m > a, the ideals (J,,, x{), (J;n, x}) C k[, x2]
contain x5 and the ideals (J), (), (J!,, ") C k[r1, T2] contain 7o, which
implies (3.13) (without the last term) if 7" is contained in D(.J,,) or
D(J,).
On the other hand, the ideal (H,z¢) C k[xy,z2,t] contains x5 and
the ideal (H',7{) C k[r, T2,t] contains 7. Over P} — 0 = Spec k[u]
with u=¢"1, D(H) N (AL, x (P} —0) x Al)) is the zero divisor of

H = (e = 2™ (1 = a) + u(@f™ = 1) (@™ — ),
and D(H) N ((PL, —0) x (P} —0) x (P%, — 0)) is the zero divisor of
B = (i = )y = 1) + u(l = ) (7 — 74,

The ideal (H,z¢) C k[xy, 22, u] contains uxy and the ideal (H',7%) C

k[T1, T2, u] contains ury. This shows (3.13) if 7' C D(H) and completes
the proof of the claim. O

Lemma 3.11. Forn > a we have p,(Z) € MCor(X,)).
Proof. This follows from Lemma 3.10 and (3.12). O
For an integer N > a let
MCor™(T, @ x, 0, @ ¥) ¢ MCor(@, @ X, T, @ V)
be the subgroup generated by prime correspondences lying in
Cor™((A' —0) x X, (A' —0) x Y).
By Lemma 3.11, we get a map forn > N > a

(3.14) P MCor™(@, @ x, 8, ®Y) — MCor(X,)).

TE

The map (3.14) induces a map of cubical complexes

(3.15) p@*: MCor™ (@@ xed",0,0Y) - MCor(XaD", ).

red
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By the construction the following diagram is commutative if n > N >
b> a:
(3.16)

(a)o
MCor™ @ @ x T, T, ® ¥) 2~ MCor(X 0", ))

red
lﬁ* %

MCor™(@Y, @ x o T80, 0 )
0

red

=(a)

red*

where /3* is induced by the natural map 4 :0,_, — O

Corollary 3.12. For m,n > N > a, p\”* and p\° are homotopic.

Proof. By Lemma 3.10, we get a map
(3.17)

Smn = pr(—x A : MCor™ (@ e x, T, ®Y) = MCor(X®0,Y)
(a)

such that 0o s, = ,053) — pn’, where
0 =iy —ii: MCor(X ®0,Y) - MCor(X,)).
Let

: MCor™ (@, @ ¥ o T, 0, ® ¥) - MCor(X¥ 0,

Ted y)
be the map (3.17) defined replacing X by X ® T'. Then we have that
do ((_1)z8z ) + ( 1)@ 1 z 1 Lo o= p(a)z pgs)z

m,n

hence {(—1)"s!, ,}: gives the desired homotopy. O

Let Z € MCor™(T“ ox, T".2Y), then for all W € MCor(X', X),
by [15, Lemma 4.4]

Z o (Idar_ {0}®W)ECor J(AY = 0) x X, (A —0) x Y).
Moreover, by [3, Prop 1.2.4(i)] we have
Zo (IdAl {0} & W) S Mcor<|:|red ® X red ® y)
which implies that

LoW)™ = Homgphsr @y Dot © Zur(Y))
= MCor™ (@5 (). DY)
is an object of MPST, which is a subobject of
Lo(Y) = Homygpsy O\, Ohuy © Zu(V)) € MPST,

red» —red
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and we have

(3.18) L.(Y) = ling Lo(Y)™)

N>0
The above construction gives a map of complexes in MPST:
VL ()™ = Cu(Y),

where Co(—) is the cubical Suslin complex. Let

PN Hy(CuLy(V)™) — Hy(Cu(Y))

be the map in MPST induced on cohomology presheaves. Thanks to
Corollary 3.12, the diagram

(a)

Hi(CuLo(V)N)) = hE(Y)

j o

Hi(CoLa(Y))
commutes for integers N’ > N. Hence, by (3.18) we get maps
PV Hi(CoLa(Y)) = D7 ().

Putting & = (N ® Y, we have

red

=(a) =
Ce(La(Y)) = HomMPST(Dredv Homypsr(L, ®)).
Recall that for FF € MPST and X € MCor, we have by the Hom-

tensor adjunction an isomorphism:
hoD Homypgr(Zi(X), F) = Homypgr (Ze (X)), hE(F))-
Hence, we get an isomorphism

Ho(CuLo(Y)) ~ Homyper (O, 15(®)),

red?
where hP(®) = H;(C,(®)) and we have an isomorphism

W (®) = h(EL, @ V) =0 ©@c Y € CI.

Hence we get a natural map

(3.19) P 7u Oy ®c1 V) = hE(Y).

where

Yo(F) = HomMPST(ESZL,F) for F € MPST,
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and by abuse of notation, for C' € CI, we let C' denote also nC' € CI"
(cf. §1(16)). In view of (3.16), the following diagram is commutative
(recall that we assume b > a), :

(a)
=) ;37 P ]
HO_mMPST(Dreda hE(@)) — hE(y)

ﬁ* /
5

=) .5
HO_mMPST(D h(?(‘b))

red’
Now take any F' € CI" and consider a presentation in MPST:
A— B —F —0,

where A, B are the direct sum of h§ () for varying ) € MCor. We
then get a commutative diagram

—(1 —(1 —(1
Ya(@L) @cr A) = 7T @ct B) = a0y ®c1 F) — 0
o )

A B F 0,

where the vertical maps are induced by (3.19). The upper sequence is

exact by the right-exactness of ®cr and the fact that ﬁfnaezl is a projective

object of MPST. Thus we get the induced map in MPST:

a —(1
(3.20) o : 7Dy ®c1 F) = F.
Write pp = ,0%1).
Claim 3.13. The map pp splits ¢tp.

Proof. By the construction of pp, this is reduced to the case F' = hoi(y)
for Y € MCor, which follows from Lemma 3.9(2). O

The following result concludes the proof of Proposition 3.8:
Lemma 3.14. For F € CI", pg factors through
P2 Doy O F) — F*.
Moreover it splits the map (¥ from (3.5).
Proof. Take X € MCor and let ¢ be in the kernel of

HOIHMPST(E(«Z 2 X, 05, ®c F) — Hommpst(T © X, Ty @ F).



40 A. MERICI AND S. SAITO

Note that the map is surjective since Eﬁiﬁl ® X is a projective object of
MPST by Yoneda’s lemma. By the definition of semi-purification (cf.
§1(14)), there exists an integer m > 0 such that

=(m)

Bre =0 in Hommpst (O, ® X(m),ﬁﬁfj ®ct F),

m

where 3, : g @ xm ﬁf,le)d ® X (cf. §1(6)). Then the maps from

red
(3.20) induce a commutative diagram

Homppst (Chey © X, Oy ©c1 F) —25— F(X)

Hommpst (T @ XM T, @0 F) 22> F(X™)

pi)

o X, T @ F)

red

=(m)

Homympst (0,4

where 6, is induced by 6,, : X™ — X and the triangle commutes by
(3.16). We have

02 0r(p) = pe” B (9) = 0.

Hence pr(p) lies in the kernel of 6%, which is contained in the kernel
of the map

spx : F(X) — F*P(X)
by the definition of semi-purification. Hence the composite map

—(1 —(1 s
Spx © P - HomMPST(quezi X X, Dfﬂe)d XcI F) — F p(X)

factors through HomMPST(ﬁi)d ® X, ﬁgj ®ap F) inducing the desired
map p3. Finally, to show the last assertion, consider the commutative
diagram

F—% @Y 0c F) 22~ F

L]

P Lo (O @8 F) 2 P
where ppip = idp by Claim 3.13. This implies p¥t} = idps»r since
I — F*P is surjective. This completes the proof of Lemma 3.14. 0
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4. COMPLETION OF THE PROOF OF THE MAIN THEOREM

In this section we prove the following result:

Proposition 4.1. For ¢ € HOHIMPST(DUL@X Dred®y) with X, Y €

MCor, there exists f € MCor(X,Y) such that ¢ and ids0) @ f have
red

the same image in HomMPST(DE,e)d ®RX Dmd Q& Y).

First we deduce Theorem 3.4 follows from Proposition 4.1. By
Proposition 3.8 it suffices to show the surjectivity of the map (3.5)
7. Proposition 4.1 implies that the following composition

WE(Y) = 1T ®cr V) = 7(Crr 88 V) = 1Oy 0% K5 (D))
is surjective. Since the last obJect is semi-pure, it factors through
h5 ()P, proving the desired surjectivity for F' = hg()).
For a general F' € CI" consider a surjection
q: @ hg(YV) — F
Y—F
which gives a commutative diagram

[m] s Buy’ _(1) S
DY) —= DOy & V)

q°? L

For — ey (T 9% F)

where the top arrow is surjective and the vertical arrows are surjec-
tive since representable presheaves are projective objects of MPST by

Yoneda’s lemma and the functors (1) and O, 21 ®cr - commute with
direct sums and preserves surjective maps. ThlS proves the desired
surjectivity of ¢p.

The proof of Proposition 4.1 requires a construction analogous to the
one in [16]. For a variable T over k and for i > 1, we put

Oy = (P},i(0 + o))
where P is the compactification of G,,r = Speck[T,T~]. We also
put (cf. (2.1)):
ngfred = Ker (Ztr(ﬁg)) % Z = Zy(Speck, 0)) € MPST,
where pr : PL — Speck is the projection. Let e be the composite of
prand iy : Z — Ztr(D( ) induced by 1 € PL. Then e is an idempotent
of EndMPST(Dg)) and id — e € EndeST(D(Tl)), with id denoting the
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identity on D(T) , is a splitting of DT red — D . Thus, we get a direct

sum decomposition in MPST (cf. (2.1)):
oY =gy ez with O, = (id— )T
For FF € MPST and integers iq,...,i, > 1, let

i1)

T HomMPST (ng ) (Zn)

®--@0y", F) - HOlﬂﬂMPST(D(Tmd® ‘@ eas F)
be the projection induced by the above decomposition.

For X € Sm and a € T'(X,0%), let [a] € Cor(X,A' — {0}) be the
map given by z — a, where A! = Spec k[z].

Lemma 4.2. (1) The correspondences
(71, (U], [TU], [1] € Cor((Ar —{0}) x (A — {0}), (A" — {0}))
lie in MCor(E(Tl) ® ES),E(”). Moreover we have
(7] + [U) = [TU) = [1] = 0 € Homuese(Dy’ © Ty, ny @),

(2) The correspondences

[=T1,[-U], [-TU],[-1] € Cor((A} — {0}) x (A;; — {0}), (A" — {0}))
lie in MCor (O ) Dé), g’ )) Moreover we have
=11+ [<U] = [=TU] = [1] = 0 € Homnpsr @y © T, 15/(@")).
Proof. The first assertion of (1) follows from the fact
[I=ptde[l]),  [Ul=pde[]), [TU]=

where 1 : (AL —{0}) x (A}, —{0}) — (A}, — {0}) is the multiplication
W = TU, which lies in MCor(0Yy @ T\, T)) by [13, Claim 1.21].

To show the second assertion of (1), consider as in [17, p.142] the
finite correspondence Z given by the following algebraic subset:

(41) {(V*=(W({T+U)+(1-W)(TU~+1))V+TU =0}

€ Cor((A7 — {0}) x (Ay —{0}) x Ay, Ay — {0})
Let
i0, 71 1 (Ap—0)x (A;—0)x (A}, —0) = (AL—0)x (A —0)x Ay x (A, —0)

be the maps induced by the inclusion of Oy and 1y in Ajy,. Tt is clear
that (i —i3)(Z) = ([TU] + [1]) — ([T] + [U]) since

V2_<TU+1)V+TU=(V—TU)(V_l)’
VP (T+U)WV+TU = (V-T)(V -U)
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We need to check that Z lies in 1\/1(301“(E(T1 )®ES)®EW, ES)). Consider
the compactification (P1)** of AL x Al x A, x A}, given coordinates
with the usual convention [0 : 1] = oo and [1: 0] = 0:

([To : Tl [Uo : Uscl, [Wo : W], [Ve = Vacl).

Then the closure of Z is the hypersurface given by the following poly-
homogeneous polynomial:

ToUoWo V2 — (Weo(ToUse + TocUp) + (Wo — Weo) (TosUse + ToUp) ) Vao Vi
+ TooUs Wo V.
We have to check that it satisfies the modulus condition: letting
©: 72— (P
be the inclusion and letting
Dy = ({0}+{00}) x P, x Py x PL+PLx ({0} +{00}) x Py, x P+ P x Py, x {00} x Py,
Dy = Py x Pj; x Py, x ({0} + {o0}),
we have to check the following inequality:
(4.2) p"(D1) = ¢"(Da).
Consider the Zariski cover of (P)** given by:

{thess = (P' =)< (P'=5)x (P'=7)x (P'=6), . 57,9 € {0,00} }.

Define t, = To/Tp if @ = oo and t, = Ty/Tw if o = 0 and ug, w,, vs
similarly. Then

Z/{avﬁa’ws = Spec(k[tom Ug, Wy, U&])‘

On this cover, the Cartier divisors D; and D, are given by the following
system of local equations:

D, = {(Ua,ﬁ,o,é,tauﬁwo), (Z/{a,ﬁ,oo,(iatauﬁ)} Dy = {(Z/[a,ﬁ,%éa Ua)}
The equation of Z on (P!)** — {0} is of the form

ToUWy — U()F, for some F' € ]{T[Uo][Uo, Us, .. ]

Hence (4.2) is satisfied on Uy g0 if @ =0 or f =0 or v = 0. Fur-

thermore Z N Uso 00000 N Dy = (. Similarly, the equation of Z on
(P1)** — {oo} is of the form

T Ul Wo — 050G, for some G € k[vs|[Up, Uso, - - -]

Hence (4.2) is satisfied on U, g0 if @ = 00 or f = 00 or v = 0.
Furthermore Z N Up 000,00 N Do = 0.
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(2) is proved by the same argument using the following correspon-
dence instead of (4.1):

(V*+ (W(T+U)+(1-W)(TU+1))V+TU =0}
€ Cor((A —{0}) x (Ay — {0}) x Ay, Ay, — {0}).
O
Corollary 4.3. n([TU]) =0 € HOmMPST(DgﬂIled ®E(Ul73qed, hoi(ﬁ(l))).
Proof. This follows from Lemma 4.2 since
[TU)o((id—e)®(id—e)) = [TU]—[TU]o(1®e)—[TU]o(e®1)+[TU]o(e®e)
= [TU] - [T] — [U] + [1] in Hommpsr(@Y @ 05, TY).
O
For X € Sm and a,b € T'(X, 0%), let
[a,b] € Cor(X, (A — {0}) ® (A" — {0}))

be the map given by z — a, w — b, where z (resp. w) is the standard
coordinate of the first (resp. second) A'.

Corollary 4.4. In Homypsp(@y @ O @O0, i@ @ G)), w
have:

[T, V|+|U,V|-TU,V]-[1,V] = [-T,V]+[-U,V]|-[-TU,V]—-[-1,V] = 0.

Proof. This follows from Lemma 4.2 noting the endofunctor - ® g
on MPST is additive and hg(ﬁ(l) ® ﬁ(l)) is a quotient of hg (ﬁ(l)) ®
=)

0. O

Proposition 4.5. The correspondences
U, T, [T, U] € Cor((Ar—{0})x (A, —{0}), (A'—{0}) x (A" —{0}))
lie in MCOI‘(D(I) ® D(l) oY eo" ). Moreover, the element
7([U,7) = 7(IT,U)) € Homapsr (7 eq © O g, 15 (0" @ TY))
lies in the kernel of the map
® Oyrea /@ @T")) -

Homypst (7o @ Ty e (O ©T0))

—(1
HomMPST(DEF,zﬂed
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Proof. (see [16, Corollary 9]) The first assertion is easily checked. To
show the second, consider the map in MCor:

a2 oV ey 755 U S

Composing this with the correspondences of Lemma 4.2(1), we get

5]

+ 157" = 2[1] = 0 € Hompmpsr (T q, k(@)
Noting 7([1])

7'('([5] + [Sil]) =0€ HomMPST(Egieda hﬂﬁ(ﬁﬂ)))

This implies
(4.3)
7([S, V] + 57, V]) = 0 € Hommpsr(T5)es ® Dy e, b/ (T 0 T)).
again noting that the endofunctor - ® ES) on MCor is additive and
hoﬁ(i(l) ® E(l)) is a quotient of hoi(ﬁ(l)) o TV,

On the other hand, by tensoring the correspondence of Corollary 4.3
with another copy of itself we get

(4.4) n([TU,VW])=0

. =(1) =(1) =(1) o=0 o =0

m HomMPST(DT’r’ed ® |:|Ur’ed ® DVred ® |:|W7’ed7 h (D ® 0 ))
There is a map in MCor:

09 00l 5OV o0 o OV 0Oy ;
T—S5,U—=8, V=-S5 W=.5,
which induces an element of
2 —(1 1)
HomMPST(D,(S'l)Ted ® Df%)red’ D;“ 3‘6(1 ® |:|§])red ® Difred ® DE/V)Ted)

Composing this with (4.4) and changing variables (Si,S2) to (T,U),
we get

(45) #([TU,~TU]) = 0 € Hompsr(T7)., @0 b (O 0M)).
We make the following claim:

Claim 4.6. In HomMPST(D(T)Ted ® Dgied, hoﬁ(ﬁ(l) ® ﬁ(l))), we have
(4.6) m([I'U, =TU]) = n([T, =TU)) + = ([U, =TU]),

(4.7) ([T, =TU]) = =([T, U]),

(4.8) 7([U, —TU)) = =([U, T]).
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Indeed, composing the first correspondence of Corollary 4.4 with the
map in MCor:

(4.9) oV ey -V oo o O
given by V' — —TU which is admissible by [13, Claim 1.21], we get
[TU, ~TU] +[1,~TU] — [T, ~TU] — [U,~TU] = 0
in Hommesr (@5 @ Ty, hg(@" 0 8Y)).
Then (4.6) follows from the equality:
w(([1,~TU)) = 0 € Homypsr(Trs © Do i/ @ 0T,
Indeed, we have
[1,=TU] o ((id —e) ® (id — €)) =
[1,-TU]—[1,-TU]o (id®e)—[1,-TU]o (e®id) + [1,-TU] o (e ®e)
= [1,-TU] = [1,-T] = [1,-U] + [1,-1] 20
in HOHIMPST(E(TI) ® E(Ul),ﬁ(l) ® 5(1))7

where the equality (x) above follows from Corollary 4.4. Then (4.7) and
(4.8) follow from Corollary 4.4 by an analogous argument considering
the maps (4.9) given by V. — T'T — —T and V — U, U — —-U
respectively, and noticing that:

[T, —T)o((id—e)® (id — €)) =
[T,—T)—[T,-T)o(id®e)—[T,—T)o(e®id)+ [T, —T] o (e ®e)
=T,-T7)—-[T,-T]—[1,-1]+[1,-1] =0,

and similarly for [U, —U]. This completes the proof of the claim.

By the above claim, (4.5) implies
(4.10)

7T, U]+ n[U,T] = 0 in HomMPST(Eg)

red

® e, 5@ 0 T7)).
Putting (4.3) and (4.10) together we conclude that

7|T,U] —x[U',T] =0 in HomMPST(ﬁg}ed ®ﬁgied, hoi(ﬁ(l) ®i(1))).
This completes the proof of Proposition 4.5. U



CANCELLATION THEOREMS FOR RECIPROCITY SHEAVES 47

Take X', ) € MCor and
—(1 =1
p € Homypsr(Dhy © X, 00, @ V)
It induces
- =(1) =(1)
¢g € Hommpst (g @ X, U, 0q @c1 V).
Let =(1) =(1)
()0* € HomMPST(X ® Dred’ y ® Dred)
be obtained from ¢ by the obvious permutation. It induces
. =1 =1
¢5 € Homppst (X ® O, Y ®ct ).
We then put
o ® Idyw € Homypsr([Oly ® X ® OOl © ¥ © Oi),

red

]di(l) & QO* € HOIHMPST<E(TIL & X & E(l) E(lzi & y (029 if,?d),

e red) —re
red
which induce

—(1 —(1) =(1 —
g ® Id= € HomMPST(Die)d XX ® Df’e)ch Df«e)d ®crt YV Qct Die)d%

red

* —(1 —(1) —(1 1
Ido ® o5 € Homypsr(Dreg © X © Ty Oy ©c1 ¥ ©er 0,0,

For M € MCor, let
o O eoMeTl -0 e Me Tl

red
be the permutation of the two copies of ﬁgi. We have
p ® Ids = (oy) o (Idsw) @ ¢7) o (ox).
red red
Let T be the standard coordinate on A' and let
(4.11) gl gl

be the map given by T' — T~1. For all M € MCor let
®u O oMeOL

red

=(1) =(1)
We can write
YR Idﬁ(l) = Idi(l) ® 90* + (‘732) op+gqo (Uik')7
red red
for some

p,q € Homppsr(T @ X @ T, Ty @ Y @ Twy).
Put

—(1 —(1 —(1 —(1
Ty =T ®ca X @crTey Ty =Dy ®ct Y ©ct Doy



48 A. MERICI AND S. SAITO

Hence we can write
(4.12) vo® ldgo = ldgm & $h+ 00y 0P+ d50 00 i
where
ohy O ®Y @0 Ty
cr'ﬁ’ 3 5521 ®RX® 57(21
g5 :T'x =Ty

—I'y

are induced by 03, 0’y and ¢ respectively. For an integer n > 0 let
X" .= (X,nD) if X = (X, D). Then we consider the map

=(1) =(n)

Homumpst (T @ X @04, Ty) 2 HomMPST(Dred ®X™ @O, Ty)

red

induced by the natural map g, : Ooy@X™ 0" - O e x e T,
Claim 4.7. There is N > 2 such that for all n > N the maps Uﬁy op
and ¢z o o, lie in the kernel of

HOHIMPST(D( L@ X @0, Ty) 2% Homupst (Tl @ X™ @ T, Ty)

red

Proof. By Proposition 4.5, the composite map
Dred ® D(2) & Dv("ed ® Dred —> Dred ® D(l) - hD(Dred) ®CI hD(Df'e)d)

red red

is zero, where o/ = o0 — I ch ® ¢ with o the permutation of the two
'red

copies of Dre)d and ¢ from (4.11). This 1mmed1ately implies the claim
for g5 o o X We now show the claim for Jiy o p. Choose such an
integer N that for all n > N there is map

p( ™) € HomMPSTU:'f‘ezl ® X(n) ® |:|’I("€Zl7 red ® y ii?i)

induced by p. For M, N € MCor, write

Ay = Homppsr (T © M @ T, T @cr N ®cr Ty,

n = 1 1
ALy = Homypsr(Tiny © M® @ 000, T @ct N et D).
Then we have a commutative diagram for n > N

(413) Ayvy L A)(J;
LBS lﬁ%

(n)
A(2 (P'"™)* AS?,)y,

The claim for aﬁ yop follows from this.
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We now complete the proof of Proposition 4.1. We consider the
commutative diagram

—(1 =(1 1
HomMPST(D'ge)d QX ® Df‘e)d’ 'red RY® Df‘ezi) s HomMPST(X ® Dred’ Y ®cr DE“eZZ)

i =
(1))

—(1 n
HOHlMPST(D( hoxmoTn O e yedl),) 2 Hompypst(X™ @ g%, Y @ci O

where the horizontal maps come from (3.19) replacing Y with Y ®
0. By Lemma 3.9(3) and (2) we have

red*
pl((p ® ZdD(l) ) ( ) X Idlju) and  p; (Idﬁ(»lz X (p*) = gp%, where
(4.14) p: HomMPST(D( L@ X, D d ® V) — Hompypst (X, h5 (V)
is the map from (3.19). In view of the diagram, (4.12) and Claim 4.7
imply that there is n > 0 such that §}(¢%5 — p(eg) ® [dD(l)) =0 so
that
(4.15)

% —(n n) =1
Balem — Lz @ pleg)) =0 € Homypest (@) © X™, 0 ®c1 V).

Consider the commutative diagram

Hommpst ([ ® X, Ty @c1 V) Hommpst (T ® X, Ty ®crY)

1 jﬁ;

—(1
Homypst (T ® XM, 5 ®c1 V) — Homppsr Ty © XM, T 0% V)

The two horizontal maps are surjective since representable presheaves

are projective objects of MPST and D,,e)d ®ct Y — Diez Rar Y is

surjective. The map /3 on the right hand side is injective since D7(~521®CI

Y is semi-pure. Hence Proposition 4.1 follows from (4.15).

5. IMPLICATIONS ON RECIPROCITY SHEAVES

Let RSChyis be the category of reciprocity sheaves (see §1 (17)).
Recall that for simplicity, we denote for all F' € RSCyys (cf. §1 (18))

F:=wCF e CILY .

By [10] there is a laz monoidal structure on RSCyss given by (cf.
Proposition 3.1)

(F,G) g(F@lesp G)

RSCN;s
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Following [10, 5.21], we define

(5.1)  F{0):=F, = (F(n—1),

By Corollary 2.2(1), we have ( (3.3))

)RSCNis for n > 1.

(5.2 Fln) = w(Fln = 1)(1)).
By recursiveness of the definition we have
(5.3) (F(n))(m) = F(n+m).

By [10, Prop. 5.6 and Cor. 5.22], we have isomorphisms
(54) (W Gm)®er ™) = Zln) 2 KM, Gln) =2 Q" if ch(k) =0,

where the second isomorphism is defined as follows: for an affine X =
Spec A € Sm, the composite map
(5.5)

Gra(A) @2 G (A) %" = (G Bnst GENT)(A) = Goln) (4) 24 0

sends a® f1®---® f, witha € A and f; € A* to adlogfi A---Adlogf,.
By [10, 5.21 (4)], there is a natural surjective map for F' € RSCyjs

(5.6) F @nst K| — F(n).
Lemma 5.1. The map (5.6) factors through a natural surjective map
(5.7) wi(F @G (' Gn)®e™™) = F(n).

Proof. By [10, (5.21.1)], there is a natural surjective map
(58) iy (F ©umpst (@G *MPST) = F(n).

By Lemma 1.14 (ii) and (iii), we have a natural isomorphism

Nis,sp

W anihE (F @pipst (W G ) EMPST) ~ ) (F QRSP (4 Gy ) Bt .

Hence (5.8) induces (5.7). We have a surjective map

) ~
Nis sp Nis sp

W (F @umpst (W Gr)®01 ")) = w(F &gy (W Gp)®er ™).

where the second isomorphism comes from the monoidality of w, (cf.
§1(19)). By the adjunction from (1.1), this induces a surjective map

Nis 8P,

(G4)  ~ .
F ®@pst K '~ w F @pst w (W' Gpy)®or

Nis 1SP

(5.9) Fonst KM = afi (F @pst KM) = w,(F @52 (0 Gy, )Per ™).

By the construction of (5.8), it is straightforward to check that (5.6) is

the composite (5.7) and (5.9). This completes the proof of the lemma.
U
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We have a map natural in X € Sm:

(5.10)

7®Zd)CJVI

F(X) = Hompgr(Zy(X), F) — Hompsr(Zy (X)@nsTK, , FONsTL)
— Hompst (Zi(X) @nst KLY, F(n)),
where the last map is induced by (5.6). Thus we get a map
(5.11) Xp o F — Hompgp (I, F(n)).
Theorem 5.2. For F' € RSCyis, the map \j is an isomorphism.
The proof will be given later. First we prove the following.
Proposition 5.3. The map A} is an isomorphism for n = 1.

Proof. Note KM = G,,, and that for I, Gy, Fh, Go € MPST and maps
f:F — F, g: Gy — Gg, the diagram

w, fOw,g

w, F1 ®pgt w,Gq w Fh @pst w Gy

N
w,(Fy @wmpst G1) e w,(F> @upst G2),

commutes, where the vertical isomorphisms follow from the monoidal-
ity of w,. Thus, by Lemma 5.1, (5.10) with n = 1 coincides with the
composite map:

(5.12)

F(X) = wF(X) w, Homyypgr (W G, F @G w* G ) (X)

~ Hommpst(w* Gy, Homyypgr(Zo (X, 0), F @5 w*Giy))

*1) 18,8
(N HompyrpsT(w” G, ww, Homypgr(Zi:(X,0), F®N P w'Gy))

*2) 18,S
2 Hompsr (G, wy Homyypsr (Zer(X, 0), F @557 0*G,,))

*3
(N) Hompgt (G, Hom(Z,(X), w,(F ®le P wGn))

w, (-®idyr Gy, )(X)

= Hompgr (G, F(L)(X)

where (x1) is induced by the injective unit map G — w®w,G (G €
CIy;) for the adjunction (1.13) and it is an isomorphism by Corollary
2.9 and the fact that Homypgy(Ze(X, 0), F @Y *G,,) € CILY,
(¥2) is given by the fully faithfulness of w®! and w“'G,, = w*G,, by
(6, Lem .2.3.1], (x3) follows from Lemma 1.3, and (*4) holds by the
definition (5.1).
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This gives a commutative diagram

AF

(5.13) F Hompgy (G, F(1))

- |

w,l:;%w, Homyrpgy(w* G, F D Die)d)

where (1 = (- ® idy-q,,) is an isomorphism from Corollary 3.6 (using

Corollary 2.2). This proves the proposition.
O

For F, G € RSCyjs let
(5.14) tp : Hompgt(F, G) — Hompsr(F (1), G(1))
be the composite map
- w* Gm

HOHIPST(F G) g—CI> HomMPST(FV G)
HomMPST(F ®ct W Gy, G ®cr w Gm) o Hompsr(F(1), G(1)).

Theorem 5.4. For F,G € RSCyis, trg 5 an isomorphism.

Proof. We have isomorphisms (cf. §1 (18))

(5.15) Hompgt(F(1), G(1))
= HomPST(wv(F ®Nlb PG ) W'<G ®le P DLZ))
=~ Hommpst(F @g;" w* G, w™w (G &g Dred))
=~ Homypst(F @mpst @' G, 0w (G @y ™ O, )))

red

= HOmMPST(F HomMPST(W Gm7w W'(G ®le P Dred)))

where the first (resp. second) isomorphism follows from (1.12) (resp.
the fact wCw,n(G @ o ) € CIyY). Note that for H € CI™P,

red
the natural map H — QCIL_U!H is injective.
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Hence we get injective maps

(5.16) Homppsr(F, Homyper (@ G, G X5 T1))

— HomMPST(F HomMPST(W G, w w® W'(G ®NIS P Dfﬂe)d)))

< Homypst(F, ww, Homypgr(w* Gy, w© 1u,(G @ SPD )))

(x1) is,s
~ HomMPST(F w® HomPST(Gmawl(G ®N qu(«ed)))

(x2)
>~ HOHIMPST(F w HOIIlPST<GmuG< >))

where the isomorphism (*1) comes from Proposition 2.10 and ww®T ~

id (cf. §1 (18)) and (%2) follows from (5.2). These maps fit into a
commutative diagram

HomMPST(ﬁ; é)

a ~ | wCI
HOIHMPST(F HomMPST (w Gm, G ®NIS 5P Dred)) HOIIlPST(F, G)
N LF,G
Homyres(F, Homypsr (& G, % (G g7 D)) =75 Homesr (F(1), G(1))
(—)

| ™

HomMPST(ﬁaC_UCI HO_HH)ST(GW G<1>))

The two right vertical isomorphisms follow from the full faithfulness of

. The isomorphism « (resp. ) comes from L from Corollaries 3.6
and 2.2 (resp. A} from Proposition 5.3). The squares are commutative
by (5.13) noting that the left vertical maps are viewed as inclusions
under the identifications

W HomMPST(W GmaG®NIS P Dfﬂe)d) ~ Hompgr (G, G(1)))

~ w, Homyper (WG, &w, (G @55 ™ O,))))
coming from Proposition 2.10. This proves that the map tp¢ is an

isomorphism as desired.
O

HOIHMPST(F, G)

~

gCI
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Corollary 5.5. For F,G € RSCyis, there exists a natural injective
map in NST for internal hom:

(5.17) Hompgr(£(1), G(1)) — Hompgr(F, G),
which coincides with the inverse of (5.14) on the k-valued points.

Proof. The surjective map F ®nst G, — F(1) in NST from (5.6)
induces an injective map

Hompgy(F(1),G(1)) — Hompgp(F @nst G, G(1))
~ Hompgy(F, Hompgy (G, G(1))

and the latter is isomorphic to Hompgr(F, G) by Proposition 5.3. This
completes the proof. O

Proof of Theorem 5.2. Consider the map induced by (5.6):

¢ : Hompgr (K, F @nst Ky ) — Hompgy (K, F(n)).
The map (5.11) is then the composition of ¢ and the map
(5.18) F — Hompgp(KY, F @nst K))'); 5 s @ idgen.

On the other hand, we have isomorphisms KM, (1) 2 KM for all i > 1
by (5.4). Hence the map (5.17) for F' = KM, gives an injective map

(5.19) Hompgr (K, F(i)) = Hompgp(KY,, F(i — 1)).
Composing (5.19) for all i < n, we get an injective map
(5.20) Hompgy (K, F(n)) < F

which by definition sends ¢(s ® id) to s for a section s of F'. Hence
the composition

F 0, Hompen (KM, Fln)) S F

is the identity, so (5.11) is an isomorphism, which completes the proof
of Theorem 5.2. dJ

Let G € RSCyjs and X € Sm. By Lemma 1.3 we have a natural
isomorphism

wy Hompypgr((X, 0), w®'G) ~ Hompgp(X, G).
Hence, the unit map id — w%w, from (1.13) induces a natural map

(5.21) HO—mMPST((Xa @);QCIG) — w! Hompgr (X, G).
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It is injective by the semipurity of Homypgr(Z: (X, 0), w®'G), and be-
comes an isomorphism after taking w,. Moreover the following diagram
is commutative:

(5.21)

(5.22) HO—mMPST((Xum CIG) —w® HomPST(X G)

. L%

X, (D), w*G) — w* Hompgp (X, G)

—~ <

HO—mMPST(

where the isomorphism comes from Lemma 1.2.
For G € RSCyjs and X € Sm, we define the following condition:

(&) x The maps (5.21) is an isomorphism.

Theorem 5.6. Let F,G € RSCyis. Assume one of the following:

(a) G satisfies (&) x for any X € Sm.
(b) G satisfies (®)spec(i) for any function field K over k and F' is

the quotient of a direct sum of representable objects.
Then (5.17) is an isomorphism.

Proof. Assume the condition (a). Letting G = wC'G, we have isomor-
phisms for X € Sm

(5.23)  Hompgr(F, G)(X) = Hompgr (F, Hompgr(X, &)

(x1)

where the isomorphism (1) (resp. (*2)) comes from the full faithfull-
ness of w®T (resp. (&)x). Moreover, we have isomorphisms

(5.24)

HO—mMPST((Xv(Z))?é) (*—3) HomMPST((X w)amJMPST@*Gmaé(l)))

= MMPST(Q*GWU I_IO_IHMPST«X? Q))u é(l)))v

where the isomorphism (*3) comes from Corollaries 3.6 and 2.2. We
also have isomorphisms

(5.25)
Hompgr(F(1), G(1))(X) = Hompgr(F(1), Hompgr (X, G(1)))

(—4) Hompgr(w)(F @¢F @ Gin), w Homypsr((X, 0), G(1)))

(—5) HOHIMPST(F ®MPSTCL) Gm,w W) HomMPST((X @),G( )))

= HOIHMPST<§, HO_IHMPST(Q*Gm, %CI% I{O_mMPST«X? (Z))a G(l)))a

= HOmMPST(ﬁ,QCI Hompgr(X, G)) (%) HomMPST(ﬁaHO_mMPST((Xa 0),

G)),
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where (x4) (resp. (%5)) comes from Lemma 1.3 (resp. the adjunction
(1.12)). These maps fit into a commutative diagram

Homprpsr (F, Homprpsr((X,0), Q)
(5.23)

~

(5.24)l/:
HomMPST(ﬁa@MPST(Q*Gm7HoirnMPST((Xa 0),G(1)))) Hompgr(F,G)(X)
(T)L‘—> ‘%](5-17)

Hommpst (F, Homyps (w* G, twy Homypsr (X, 0), G(1))))) <(5:T5) Hompgr(F(1), G(1))(X)

where the injective map (1) comes from the counit map id — w%w,

from the adjunction (1.12). The diagram commutes since the map
(5.24) is induced by the map
HO_mMPST((Xv@)?G) — HO_mMPST(Q*Gm,HO_mMPST«X> (Z))a G(l)))
~ Homypgr((X,0) ® w* Gy, G QP *Gy)

given by f — f ®id,q,,, and the map (5.17) is induced by the sur-
jection F ®@nst Gy, — F(1) from (5.6) and the isomorphism inverse of
(5.11):

Hompgy(F @ Gy, G(1)) — Hompgy(F, G)

given by f ® idg,, — f, and the maps (5.23) and (}) are inclusions
under the identifications

w) Homyrpgp(w* G, Homypgr (X, 0), é(l)) ~ Hompgr(G®X,G(1)))
=W HO_mMPST(%* G, ECI% HO_mMPST((Xa ®)> G ®1(\Tjils,sp 57(«21))

coming from Lemma 1.3 and Proposition 2.10. This proves that (5.17)
is an isomorphism.

Next assume the condition (b). In view of Lemma 1.5, we have
Hompgr(F,G) and Hompgr(F(1),G(1)) are in RSCy;s. Hence, by
Lemma 1.4, it is enough to prove that (5.17) induces an isomorphism

HOJPST(F<D7 G<1>)(K) = MPST(F7 G)(K)

for any function field K over k. This follows from the same computa-
tions as above. U

Lemma 5.7. F' € Hlyy, satisfies (&) x for all X € Sm.



CANCELLATION THEOREMS FOR RECIPROCITY SHEAVES 57
Proof. We have
cI1 ~
HO—mMPST((Xa@)?£ F) = HO_mMPs"r(()Q 0),w"F) (:1) w* Hompgr(X, F)
k3

(g) w Hompgr (X, F),
*2

where the isomorphism (1) follows from Lemma 1.2 and (*2) from the
fact that Hompgr (X, F') € HI so that w* Hompgr (X, F')) € CI” by [6,
Lem. 2.3.1]. This completes the proof. U

Lemma 5.8. If ch(k) =0, Q° satisfies (&)x for all X € Sm.
Proof. Put T' = Hompgy(Zi:(X), ) and
G = MMPST<ZU(X> ®)7£CIQZ')7 G* = QCI I_IO—HH:'ST<ZU”(X)7 Ql)

Note that I' € RSCyjs by Lemma 1.5. By [11, Cor. 6.8], for Y =
(Y, D) € MCor where Y € Sm and D,eq is a simple normal crossing
divisor, we have

(5.26)  G(Y) =T(Y x X, (10g Dyeq X X)((D = Dyeq) x X)).

Hence the conductor ¢ associated to G in the sense of [11, Def. 4.14]
is given as follows (note that Lemma 1.3 implies G € CI(I') under the
notation of loc. cite.): Let ® be as [11, Def. 4.1]. For

a€G(L)=H(X®L,Q") with L € ®,
put ¢¥(a) = 0 if a € H*(X ®; O, Q). Otherwise, put

. 1 i
c%(a) = min {n >1]ac H (X ® O, e QX®kOL(log))} :

where ¢ is a local paramter of O and Q% ¢, (log) is the differential
graded subalgebra of Q% ; generated by Q% », and dlog ¢ (cf. [11,
§6.1 6.3]). Moreover, one easily sees that for Y = (Y, D) € MCor as
(5.26),
G(Y)={a€ G —D) | cf(a) <vy (D) forany L € }
(see [11, Notation 4.2] for vy (D)). Hence, by [11, Th. 4.15(4)], it
suffices to show ¢ = ¢. We know & < ¢ by loc. cite so that it
suffices to show the following: Let L € ® and a € G(L). For r € Z>y,
we have
& (a) <r=cS(a) <.

We prove it by the descending induction on r. By [11, Cor. 4.44]
this is reduced to showing the following: Choose a ring homomorphism

K — Op such that K — Oy — Op/(t) is an identity and extend
it in the canonical way to o : K(x) — Op,, where x is a variable
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and L, = Frac(OL[:v]’é)). Assume c%(a) < r + 1. Then the following

implication holds

(5.27) (a,1 —at"), . =0€ G(K(x)) = (a) <,

where (—, —)r, ., is the local symbol for I = Hompgr (Zi:(X), Q') from

[11, §4.3 4.37]. Since the local symbol is uniquely determined by the

properties (LS1) - (LS4) from [11, §4.3 4.38], we see that it is given by
(a,1 —at"), » = Res(a dlog(1 — xt")),

where

Res, : " (L,) = HY(X®3 Ly, Q™) = T'(K(2)) = H*(X®, K (x), Q")

is induced by the residue map Qf;l — Q%(z), which is defined using the

isomorphism L, ~ K(z)((t)) induced by ¢ : K(z) < Op,. To prove

the implication (5.27), we may assume after replacing a by a — b for

some b € T'(L) with ¢§(b) <,

1 dt
a=—a+

tr tr+i
Then we compute in H%(X ®; K(x), )
Res;(a dlog(1l — xt")) = —rza + fdx.

This shows (5.27) and completes the proof.

for « € H(X ®; K,Q'), B € H'(X ®; K, Q).

6. INTERNAL HOM’S FOR )"

In this section, we assume ch(k) = 0. Note that a section of Hompg (2", Q™)
over X € Sm is given by a collection of maps

oy : HO(Y, Q") — H(X x Y,Q™) for Y € Sm,
which are natural in Y € Cor. For
(o, ) € HY(X, Q™ ™) & H(X, Q™ "),
we define
Py HO(Y, Q") = HY (X x Y, Q") ; w— pka Apyw +py A pydw,

where px : X XY — X and py : X xY — Y are the projections.
The naturalness of ¢y’ ; in Y € Cor follows from [2]. Thus we get a
natural map in NST:

(61) Qmn D menfl — MPST(Qn7 Qm) ) (Oé, 5) - {SOQ/L:ZL”B}YESma

where ¢ = 0 for ¢ < 0 by convention. Taking the sections over Spec k,
we get a natural map

(6.2) o QI @ U s Hompgr (7, Q™).
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We also consider the composite map in NST:

(6.3) 0™ CY Homper (7, 0™) 2% Hompgr (KM, Q™),

where the second map is induced by the map dlog : KM — Q. Taking
the sections over Spec k, we get a natural map

(6.4) g Q" — Hompgr (KM, Q™).
The main result of this subsection is the following.
Theorem 6.1. The maps (6.1) and (6.3) are isomorphisms.
First we prove the following.
Proposition 6.2. The maps (6.2) and (6.4) are isomorphisms.

This follows from Lemmas 6.3, 6.4 and 6.5 below, in light of Theorem
5.4. For 1 > 0, let us fix the isomorphisms
(6.5) ol QTN S Q) M () = e

coming from (5.3) and (5.4)

Lemma 6.3. (1) The following diagram is commutative:

" @ Q" Hompsr(2", Q")

L@nl,ml ]

Hompsr (271, 07 1) S Homper(@n-1(1), Qm-1(1))

where the right vertical map is induced by o™ and (™)' of
(6.5).
(2) The following diagram is commutative:

QP e Hompgr (KM, Q™)

lanl,ml T

Hompsr (KM |, 0™ P Hompen (KM (1), Qm1(1))

where the right vertical map is induced by o™ and (")~ of
(6.5).

Proof. By [10, Cor. 5.22], for an affine X = Spec A € Sm and i > 0,
the composite map

0 Qi @y A (7 @ngr Go)(4) E4 Qi) (4) 2
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sends w ® f with w € Q' and f € A* to w A dlogf. Moreover, for
¢ € Hompgr ("1, Q™ 1) and ¢’ = 0™ 0 (1) o (¢™)7!, the diagram

O @y AT

l‘ﬁ@idAx lg&’

Ot @y A
is commutative. Hence (1) follows from the equation

aA(wAdlogf)+ BAdwAdlogf) =(aAw+ B Adw) Adlogf,

where a € Q""" and 8 € Q" ",
(2) follows from (1) and the commutativity of the diagram

AL (1) = )
K -
IC% dlog Qn
which can be verified using (5.5). O

Lemma 6.4. For an integer n > 1, we have
(6.6) Hompsr(Q", G,) = Hompsr (K}, G,) = 0.

Proof. We have isomorphisms

Hompgr (22", G,) HomPST(&!(ﬁ;jl ®erw Gm), Ga)
~ HornMPST(ﬁzf/1 ®cr W' G, w9 Gy)

— * CI
~ Homppst (2" @mpst W G, w ™ Gy)

~ HomMPST((/Zﬁj7HO—mMPST(Q*GmychGa))-

where the first isomorphism is induced by (¢™)~!, inverse of (6.5), and
the second from (1.12). Similarly we have an isomorphism using (¢")~*
instead of (o™)~!

HOHIPST(/C%, Ga) = HomMPST(C_U*/Cf,\,/[_l,HO_mMPST(C_U*Gm,&CIGa))-
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We compute

Homyrpgr(w*Gin, C_UCIGa) (X) — Hompypgr (W G, &CIGa) (K(X))
~ Coker (W'Gq(K (X)) = w%'Go(Pk (x), 0+ o0))
~ Coker (K (X) = H°(Pjx,0)) =0

where the first map is injective by [13, Corollary 0.3], and the first
(resp. last) isomorphism follows from Corollary 2.2(1) (resp. [11, Cor.
6.8]). This completes the proof of Lemma 6.4. O

Lemma 6.5. The maps (6.2) and (6.4) are isomorphisms for n = 0.
Proof. The assertion for (6.4) is obvious since KM = Z for n = 0. We
prove it for (6.2). We have isomorphisms
(67) HOHIPST(GQ, Qz) ~ HomPST(GKiSW!h?(EGG)a QZ)

~ HomMPST(hoﬁ(iGa); wCIQi)

~ HOIHMPST (EGG, OJCIQi)

~ Ker (H°(P", Qp1 (log 00) (c0)) 5, Q).

where the first (resp. last) isomorphism follows from (1.17) (resp. [11,
Cor. 6.8]). Since Op, . (logoo) = 0 for i > 1, Opi(logoo) = Op: and
Q;l/k(log 00) = Qial/k(oo), the standard exact sequence
0 — Op1 @, Qi — Qpi(log co) — Q%l/k(log o00) = 0
induces an exat sequence
0 — Op1(00) @ N — Qb (log co)(00) — Q%,l/k(Qoo) ®r Q1 =0,
where Q"' = 0 if i = 0 by convention. Letting ¢ be the standard
coordinate of A' C P!, we have
HY(P!,Opi(c0)) =k-1@k-t, H'(P',Qpi,(200)) = k - dt,

and dt lifts canonically to a section dt € H°(P', Qp (logoo)(c0)).
Hence we get an isomorphism

(6.8)
H(P', QL (logoo)(00)) ~ (k- 1@k -t) @ Qb @ (k- dt) @4 Q};‘l.

Thus the last group of (6.7) is isomorphic to
k-t®@pQ @k -dt @, Q" ~Q a0
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Hence, from (6.7), we get a natural isomorphism
(6.9) Q- @ QF -~ Hompgr(G,, 7).

Next we claim that the map (6.9) coincides with (6.2) for n = 0. By
Lemma 1.8(2), we have a commutative diagram

AGa

(6.10) Z(A}) G,

L: T(I.N)

W!Ztr(Pl, 200) I w!hoi(ﬁ(;a)

where \g, is given by t € G,(A}) = k[t]. The standard isomorphism
'(Ay) = (4 @ k[t]) & (" @ kft)dt)

induces a natural isomorphism

(6.11) Hompst(Zi:(A}), Q) = Q' (A}) = QL[t] ® Q) '[t] A dt,

where

Ot = P -t Qlad= P Q7 ATt

mEZLsg mEZsg

The map Ag, induces the inclusion

A, : Hompsr(Gq, ') — Hompsr(Zi(A}), Q') = Q'(A})
such that
(6.12) AG, () = pai(t) for ¢ € Hompsr(Gy, Y,

where pa1 @ Ga(A}) = k[t] — Q'(A}) is induced by ¢. The following
claim follows from (6.7), (6.8) and (6.10).

Claim 6.6. The image of Ay, is identified under (6.11) with
Q- t® QA dt C Q] & Q7 A d,
and the composite map
2 0 0 Y Homper(Ga, @) 255 Q1 @ Q11 A dt
is given by the obvious identifications Q% = Q¢ -¢ and Q}:l = Q}:l Adt.
Let
(6.13) Homg, (Gg, Q") C Hompst(G,, )

be the subgroup of G,-linear morphisms. There is a natural isomor-
phism

€:Q 2 Homg, (Gq, Q) ; w {A—= dw} (A€ G,).
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(6.13) is a direct summand since we have a splitting given by
Hompgr(Gq, Q) — Homg, (Gg, ) 5 0 — {\— Ap(1)}.
The other summand is
Hompst(Ga, )" == {| (1) = 0}.

There is a natural map

¢ = Hompsr(G,, )5 we {a— wAda}.
By (6.12), under the identification (6.11), we have

Mo, EW) =w-t, Mg, (€M) =nArdt (we, ne™).

Hence the composite map
. ) / Y- . .
QL @ Q1 2% Hompgr (G, ) 258 QL -t Q1 A dt

is given by the obvious identifications Q% = Q¢ -t and QL' = Qi1 AdL.
By Claim 6.6 this proves the desired claim and completes the proof of
Lemma 6.5. O

To deduce Theorem 6.1 from Proposition 6.2, we need some prelim-
inaries.

Let K be the function field of S € Sm and define Corg, PSTk,
MCor,, MPST, etc. defined as Cor, PST, MCor, MPST, etc.
where the base field k is replaced by K. We have then a map
(6.14)

ric : Homps, (2",27) — Hompgp(2", Q")(K) 5 ¢ = {¥y }yesm,

where 1y for Y € Sm is the composite map
HY(Y, Q") — H°(Y x, K,Q") = H°(Y x;, K,Q™),

where the second map is gy, x (note Y x; K € Smp) and the first
is the pullback by the projection py : Y x; K — Y. Similarly we can
define a map

(6.15) ri : Hompgr, (KM, Q™) — Hompgr (KM, Q™) (K).
By definitions, the following diagrams are commutative.

6.2
Q= @ Q! 2 Hompgr, (27, Q")

TK

Hompgp (2", 2™)(K)
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e (6:4) .
QK e HomPSTK (K:Q/I, Q )

m jT‘K

HO_H@ST(IC%a Qm)(K)

In view of Lemma 1.4, Theorem 6.1 follows from Proposition 6.2 and
the following.

Lemma 6.7. The maps (6.14) and (6.15) are isomorphisms.

For the proof we need the following. Recall from Conventions that
for U = I&Ill U; € Sm and F € PST we let

F(U) =l F(U;).

In general for (Y, Dy) € MCor and F' € MPST, we let
Homygpsr(U, F)(Y, Dy) = li F(U; x; Y Uj x;, Dy),

and for G € MPST we have
Hom(G, Hom(U, F)) = liﬂHom(G, Hom(U;, F)).

Lemma 6.8. For X = (X,D) € MCor and Xx = (Xgk,Dk) €
MCor(K) with X = X X K and D = D Xy K, we have a natural

1somorphism

Hommpst, (Zi( Xk ), w Q") = Hommpst(Ze(X), Homypgr (K, w'Q™)).

Proof. By [3, Pr. 1.9.2 c)] and resolutions of singularities (recall that
we are assuming ch(k) = 0) we may assume X € Sm and Do is
a simple normal crossing divisor. From the explicit computation of
wCO™ in [11, Cor. 6.8],

(w0 (XK, Di) = H* (X, %, (10g(Dk)) (D — D red)

= (W) (Xk, Di) = lim (w'Q") (X %, U, D %, U),
Uucs
where U ranges over the open subsets of S. This proves the lemma. [

We now prove Lemma 6.7. We only prove the assertion for (6.14).
The proof for (6.15) is similar. Put

J— — _®n
Uor = Ug, ®mpst g,

where Og, and Og,, are from Lemma 1.8. By (1.16) and (1.17) and
[10, Theorem 5.20], we have an isomorphism in PST:

(6.16) a¥whl (Ogn) — Q.
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Let O = (P}, 00) € MCorg and ﬁgnyK € MPSTy be defined as
Ogn. We have isomorphisms

(6.17) Hompsr, (2", Q™) ~ Hompsr, (wihs™ (Ogn k), Q™) ~
Hommpst, (Oon, i, w'* Q™) ~ Hommpst(Oan, Homypgr (K, w'Q™)),

where the last isomorphism comes from Lemma 6.8. On the other
hand, by (6.16) and Lemma 1.5, we have Hom(Z.(U), 2™) € RSChxis
for U € Sm. Hence, writing Spec(K) = lér_nZ U; with U; € Sm, we have
isomorphisms (see Conventions)

(6.18)  Hompgp(£2", Q2™)(K) = lim Hompgsr (U;, Hompgp (€27, Q™)) ~
lim Hompg (2", Hompg(Us, ™)) = lim Hompgr (wihg (Ton ), Hompgp (Ui, ™))

~ Hompypst (Oon, wC Hompgr (K, Q™).
Hence Lemma 6.7 follows from Lemma 5.8 and the following.

Claim 6.9. The following diagram is commutative.
(6.19)

(6.17) _
Hompgr, (", Q™) — Hommpst(Oon, Homyypgr (K, wCIQ™))

lTK l/
n m (6.18) ™ CI1 m
Hompgr (927, €2 )(K)—>H0mMPST<DQ"aQ Hompgr (K, Q™))

where the right vertical map is induced by the map (5.21).

To show the above claim, write Agn = A' X (A'—{0})" and Agn i =
Agn @y, K. Take the standard coordinates y on A! and (z4,...,x,) on
(A' — {0})" so that

Agn = Speckly, z1,. ..,z )[z7h, ot
By the definition of Cg», we have natural maps in MPST
(6.20) Zir(Agn,0) — (P',200) @ (P, 0+ 00)®" — O,
which induces a map in PST:
(6.21) Aan : Zp(Agn) — wilgn — Q"
where the last map is induced by (6.16). Let
(6.22) Ao i ¢ Lar(Agn ) — Q"
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be defined as (6.21) replacing k& by K. By the definition of A\g,, and
Ag, (cf. Lemma 1.8) and (5.5), Agn corresponds to
d dx,,
(6.23) wo 1= yﬂ/\---/\i € Q" (Agn).
T Tn
The map (6.20) induces injective maps

(6.24) HomMPST(EQ%HO_mMPST(Ka C_UCIQW)) — HO(AQ",Ka Qm),

(6.25)  Homypst(Oon, wC Hompgr (K, Q™)) < HY(Aqgn i, Q™),

which are compatible with the right vertical map in (6.19) since apply-
ing wy, the map (5.21) is identified with the identity on Hompgr (K, Q™)
via the isomorphism in Lemma 1.3. Hence it suffices to show the com-
mutativity of the diagram

(626) HomPSTK (Qn, Qm) = HO(AQn,K, Qm)
jTK /
Hompgr (27, Q2™)(K)
where « (resp. () is the composite of (6.17) and (6.24) (resp. (6.18)
and (6.25)). By the definition, « is induced by the map Agn  from

(6.22). As Agn i is given by the image wp i of wy from (6.23) under
the pullback map p* : Q"(Aqn) = Q"(Aqn k), we have

a(p) = Pagn x (Wo,i) for ¢ € Hompgr, (2", Q™),

where ©aq, . ¢ O"(Agn x) = Q" (Agn k) is induced by ¢. On the
other hand, by the definition of 3, we have a commutative diagram

HO(AQTLJ{, Qm) HOIHPST(AQn, HOIHPST(K, Qm))

) E

Hompgy(Q", Q™)(K) —— Hompsr (", Hompgy (K, Q™))

~

where A&, is induced by Agn from (6.21). Hence we have

ﬂ(w) = wAQn (U.Jo) for w € HOJPST“)n? Qm)<K)>
where ¥a,, : Q"(Aqr) = Hompgr (K, Q™) (Agn) = Q™(Agn k) is in-
duced by . Then, for ¢ € Hompgr, (2", Q™), we get
Bre(p)) = re(P)ag: (Wo) = Pagn « (P'wo) = Pagn « (wWox) = alp),

which proves the commutativity of (6.26). This concludes the proof
of Claim 6.9, and hence of Lemma 6.8 and therefore also the proof of
Theorem 6.1.
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