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Let X be a regular scheme of finite type over Fp or Z.

There is the following ‘folklore conjecture’, generalizing the
analogous conjecture of Bass on K -groups:

Conjecture A Hq
M(X , Z(r)) is finitely generated for all q, r .

Here

Hq
M(X , Z(r)) = Hq

Zar (X , Z(r)M) = CH r (X , 2r − q)

is the motivic cohomology of X , defined as the Zariski
cohomology of the motivic complex Z(r)M or, equivalently, as
the Bloch’s higher Chow group.



A quick review on Bloch’s higher Chow group :

z r (X , q) =free abelian group on the set of closed integral

subschemes of codimension r of X ×∆q

which intersects all faces ∆s ⊂ ∆q properly,

where

∆q = Spec(Z[t0, . . . , tq]/(

q∑
i=0

ti − 1))

is the algebraic standard q-simplex and faces ∆s ⊂ ∆q are
given by substituting 0 for some of t0, . . . , tq.

One can view ∆q as an algebraic analogue of the standard
q-simplex in topology and z r (X , q) as an analogue of the free
abelian group on the set of continuous maps ∆q → X .



We then get Bloch’s cycle complex :

z r (X , •) : · · · z r (X , q)
∂−→ · · · z r (X , 1)

∂−→ z r (X , 0),

where the boundary map ∂ is the alternating sum of pull-back
maps to faces of codimension 1.

Bloch’s higher Chow group is defined as :

CHr (X , q) = Hq(z
r (X , •)).

We note
CHr (X , 0) = CHr (X ),

the Chow group of algebraic cycles of codimension r on X
modulo rational equivalence.

Remark z r (X , q) is a free abelian group of infinite rank.



The only known general results on Conjecture A are:

Theorem(Dirichlet, Mordell-Weil) The groups

H2
M(X , Z(1)) = Pic(X ), H1

M(X , Z(1)) = H0(X ,O×
X )

are finitely generated for X of arbitrary dimension (e.g. for
X = Spec(Ok) with a number field k , LHS is its ideal class
group and RHS is its unit group).

Theorem(Quillen) Conjecture A holds for X of dimension 1.

Theorem (Bloch, Kato-S., Colliot-Thélène-Sansuc-Soulé)
If X is regular and projective of dimension d over Fp or Z,

H2d
M (X , Z(d)) = CHd(X ) = CH0(X )

is finitely generated.



Observation: All these results are obtained by considering
some regulator maps or cycle maps.

E. g., the last result comes from higher class field theory: The
following reciprocity map is shown to be injective:

ρX : CHd(X ) = CH0(X ) −−−→ πab
1 (X ),

X : a regular proper scheme of dimension d over Fp or Z,

πab
1 (X ) : the abelian fundamental group of X .

In case X = Spec(Ok) for a number field k , this is the Hilbert
class field theory.

Finiteness result on πab
1 (X ) due to Katz-Lang then implies

that CHd(X ) is finitely generated.



Second observation: By a commutative diagram

CHd(X )/n
ρX−−−→ πab

1 (X )/n∥∥∥ y'
H2d

M (X , Z/nZ(d))
ρ2d,d

X−−−→ H2d
ét (X , Z/nZ(d)) ,

where d = dim(X ),

ρX is interpreted as a cycle map into étale cohomology. Here

Hq
M(X , Z/nZ(r)) = CHr (X , 2r − q; Z/nZ)

is the motivic cohomology with finite coefficients defined by

CHr (X , q; Z/nZ) = Hq(z
r (X , •)⊗L Z/nZ).



We have a short exact sequence:

0 → Hq
M(X , Z(r))/n → Hq

M(X , Z/nZ(r))

→ Hq+1
M (X , Z(r))[n] → 0,

where M[n] = Ker(M
n−→ M) for a module M .

We are led to the following weak form of Conjecture A :

Conjecture B Hq
M(X , Z/nZ(r)) is finite for any integer

n > 0 (for X regular of finite type over Fp or Z).

Conjecture B relates to Conjecture A like the weak
Mordell-Weil theorem relates to the strong one.



Now we discuss the target of the cycle map and our results.

The definition of the suitable étale cohomology needs some
care, because we have to consider p-torsion in characteristic p.

There are two cases.

(geometric case) : X is a smooth scheme over Spec(F) where
F is a finite field,

(arithmetic case) : X is a regular scheme flat of finite type
over Spec(Z).

First consider the geometric case.



Let X be a smooth variety over a finite field F.

Geisser and Levine constructed an étale cycle map:

ρs,r
X : H s

M(X , Z/nZ(r)) → H s
ét(X , Z/nZ(r)),

where Z/nZ(r) on RHS denotes the following complex of étale
sheaves on X :

Z/nZ(r) = µ⊗r
m ⊕WνΩ

r
X ,log [−r ],

if n = mpν with p = ch(F) and m invertible in F. Here

µm = the étale sheaf of m-th roots of unity, and

WνΩ
r
X ,log = logarithmic part of de Rham-Witt sheaf WνΩ

r
X .



Theorem (M. Artin, Milne) H s
ét(X , Z/nZ(r)) is finite.

Thus the injectivity of

ρs,r
X : H s

M(X , Z/nZ(r)) → H s
ét(X , Z/nZ(r)),

would imply that H s
M(X , Z/nZ(r)) is finite.

Higher class field theory implies ρs,d
X for d = dim(X ), induces

H s
M(X , Z/nZ(d))

'−→H s
ét(X , Z/nZ(d)) for s = 2d .

We also remark

H s
M(X , Z/nZ(d)) = CHd(X , 2d − s; Z/nZ) = 0 for s > 2d .



Theorem 1 (Jannsen - S.)

Let X be smooth projective of dimension d over F.

Let q ≥ 0 be an integer and ` be a prime.

Then ρs,d
X induces an isomorphism

H s
M(X , Z/`nZ(d))

'−→H s
ét(X , Z/`nZ(d))

for 2d ≥ s ≥ 2d − q,

if (BK)q+2,` holds over X , and one of the following holds :

(1) q ≤ 2, or

(2) (RS)d , or

(3) (RES)q.



We explain and discuss the assumptions:

(BK)q,` over X :The cup product for Galois cohomology

H1
Gal(L, Z/`Z(1))⊗q → Hq

Gal(L, Z/`Z(q))

is surjective for any field L finitely generated over a residue
field of X (Milnor-Bloch-Kato conjecture).

The surjectivity of the above map is known to hold if

q = 2 (Merkurjev-Suslin) or

` = ch(L)(= ch(F)) (Bloch-Gabber-Kato) or

` = 2 (Voevodsky).

It has been announced by Rost and Voevodsky that it holds in
general.



(RS)d : For any Y integral and proper of dimension ≤ d over
F, there exists a proper birational morphism π : Y ′ → Y such
that Y ′ is smooth over F.

For any U smooth of dimension ≤ d over F, there is an open
immersion U ↪→ Y such that Y is projective smooth over F
and Y − U is a simple normal crossing divisor on Y .



(RES)q : For

Z , a regular scheme of fintie type over F,

D ⊂ Z , a simple normal crossing divisor on Z ,

Y ⊂ Z , an integral closed subscheme of dimension ≤ q such
that Y \D is regular,

there exists a projective morphism π : Z ′ → Z such that

(1) Z ′ is regular and π−1(Z − D) ' Z − D,

(2) D ′ = π−1(D) is a simple normal crossing divisor on Z ′,

(3) the proper transform Y ′ of Y in X ′ is regular and
normally crossing to D ′.



Theorem 1 in case q ≤ 2 follows from that under the
assumption (RES)q, in view of the following:

Theorem R (Hironaka, Cossart, Cossart-Jannsen-S.)
(RES)q holds for q ≤ 2.

The proof is based on the theory of characteristic polyhedra
developed in 1960’s by Hironaka.

A method of Zariski (refined later by Lipman) shows that any
excellent surface can be desingularized by a succession of
blowups and normalizations.

In the above theorem only blowups with a regular center
normally crossing to boundaries (= inverse images of D) are
allowed in the process of desingularization.



Using a seminal result of Soulé, further generalized by Geisser,
Kahn, and Jannsen, Theorem 1 implies the following:

Corollary 1 Let the assumption be as in Theorem 1. Assume
further that X is finite-dimensional in the sense of Kimura and
O’Sullivan. Then we have

H s
M(X , Z(d)) '

⊕
all prime `

H s
ét(X , Z`(d))

for 2d − 1 ≥ s ≥ 2d − q,

if q ≤ 2, or (RS)d holds, or (RES)q holds.

Remark : It is conjectured that any smooth projective vairiety
X over a finite field is finite-dimensional. The conjecture is
true in case there exists a surjective finite map Y → X where
Y is a product of abelian varieties and curves.



Now we consider the arithmetic case.

Here we assume :

X : regular and flat of finite type over S = Spec(Ok),

Ok : the ring of integers in k ,

k : a number field or its completion at a finite place.

We fix a prime p > 2.

We assume that all reduced closed fibers of X −→ S are
SNCD and that the fibers over every point of Spec(Ok) of
characteristic p is reduced.



Then, by work of Geisser and K. Sato, there is a cycle map

ρs,r
X : H s

M(X , Z/pnZ(r)) → H s
ét(X , Z/pnZ(r)),

where Z/pnZ(r) is an incarnation of the étale motivic complex

Z(r)ét
M ⊗L Z/pnZ

constructed by Sato.

Theorem (Sato) H s
ét(X , Z/pnZ(r)) is finite.

(The proof depends on results of Bloch-Kato, Hyodo and Tsuji
on p-adic vanishing cycles.)

Thus the injectivity of ρr ,s
X would implies H s

M(X , Z/pnZ(r)) is
finite.



Theorem 2 (Jannsen - S.) Let the assumption be as above
and let d = dim(X ).

(1) Assume k is a local field and that p is different from the
residue characteristic. Assuming (BK)4,p over X ,

H s
M(X , Z/pnZ(d))

'−→H s
ét(X , Z/pnZ(d)) for 2d ≥ s ≥ 2d−2.

(2) Assume k is a number field and that X has good
reduction over every point of Spec(Ok) of characteristic
p. Assuming (BK)3,p over X ,

H s
M(X , Z/pnZ(d))

'−→H s
ét(X , Z/pnZ(d)) for 2d ≥ s ≥ 2d−1.

Here Theorem 1 (geometic case) has been only partially
extended to arithmetic case due to a technical obstacle in
p-adic Hodge theory.



We explain the basic idea of the proof of the above results.

First look at the case that dim(X ) = 1, i.e.,

X is a proper smooth curve over a finite field F, or

X = Spec(Ok) for a number field k .

We have the localization sequence

H1(η, Z/nZ(1)) →
⊕
x∈X0

H2
x (X , Z/nZ(1)) → H2(X , Z/nZ(1))

→ H2(η, Z/nZ(1)) →
⊕
x∈X0

H3
x (X , Z/nZ(1)) → 0 ,

η : the generic point of X ,

X0 : the set of the closed points of X .



Using the Kummer theory and the purity theorem for étale
cohomology, it induces an exact sequence

0 → CH1(X )/n
ρ2,1

X→ H2
ét(X , Z/nZ(1)) →

Ker
(
Br(k)

ι→
⊕
x∈X0

Br(kx)
)
,

k is the residue field of η (= the function field of X ),

kx is the completion of k at x , and

Br(k) (resp. Br(kx)) is the Brauer group of k (resp. kx).

By a fundamental result in number theory (Hasse principle for
central simple algebras over k), the last term vanishes, which
shows that ρ2,1

X is an isomorphism.



In order to extend the above localization argument to the
higher dimensional case, we introduce

KC•(X , Z/nZ) : (Kato complex for X of finite type over Z)

· · ·
⊕
x∈Xa

Ha+1
Gal (κ(x), Z/nZ(a)) →

⊕
x∈Xa−1

Ha
Gal(κ(x), Z/nZ(a−1)) → · · ·

· · · →
⊕
x∈X1

H2
Gal(κ(x), Z/nZ(1)) →

⊕
x∈X0

H1
Gal(κ(x), Z/nZ),

Xa = {x ∈ X | dim {x} = a}, and

the term in degree a is the direct sum of Galois cohomology of
residue fields κ(x) of x ∈ Xa.



In case X is a proper smooth curve over a finite field F or
X = Spec(Ok) for a number field k ,

KC•(X , Z/nZ) =⊕
x∈X1

H2
Gal(κ(x), Z/nZ(1)) →

⊕
x∈X0

H1
Gal(κ(x), Z/nZ),

which is identified with

Br(k)[n]
ι→

⊕
x∈X0

Br(kx)[n],

where

M[n] = Ker(M
n−→ M) for a module M .



We define the Kato homology of X by

KHa(X , Z/nZ) = Ha(KC•(X , Z/nZ)) (a ≥ 0).

Lemma 1 Let d = dim(X ). Assuming (BK)q+1,` over X , we
have a long exact sequence

KHq+2(X , Z/`n) →

H2d−q
M (X , Z/`n(d))

ρ2d−q,d
X→ H2d−q

ét (X , Z/`n(d))

→ KHq+1(X , Z/`n)

In conclusion the bijectivity of ρ∗,dX for X regular proper of
dimension d over F or Z follows from the following conjecture:



Conjecture K (Kato) Let X be either

a smooth proper variety over Spec(F), or

a regular proper flat scheme over Spec(Ok) for the ring Ok of
integers in a number field k .

In the latter case assume that either n is odd or k is totally
imaginary.

Then:

KHa(X , Z/nZ) '
{

Z/nZ
0

a = 0

a 6= 0 .



The case dim(X ) = 1 rephrases the classical result on the
Brauer group of a global field.

Kato proved the conjecture in case dim(X ) = 2.

In general the following result has been known due to
Colliot-Thélène and Suwa (geometric case) and Jannsen-S.
(arithmetic case)

Theorem Let the assumption be as above. Then

KHa(X , Q/Z) '
{

Q/Z
0

a = 0

0 < a ≤ 3

where
KHa(X , Q/Z) = lim

−→
n

KHa(X , Z/nZ).



Theorem 1 follows from the following result.

Theorem 3 (Jannsen-S.):

Let X be projective smooth of dimension d over F.

Let t ≥ 1 be an integer.

Then we have

KHa(X , Q/Z) '
{

Q/Z
0

a = 0

0 < a ≤ t

if either t ≤ 4 or (RS)d , or (RES)t−2 holds.

The same conlusion holds by replacing Q/Z by Z/`nZ
assuming (BK)t,`.



We now discuss the proof of Theorem 3.

Define étale homology of separated schemes of finite type
f : X → Spec(F) by

H ét
a (X , Z/nZ) := H−a

ét (X , Rf !Z/nZ) .

Using purity results for étale cohomology, a method of
Bloch-Ogus gives rise to the niveau spectral sequence

E 1
p,q(X , Z/nZ) =

⊕
x∈Xp

Hp−q
Gal (κ(x), Z/nZ(p))

⇒ H ét
p+q(X , Z/nZ) .



Theorem (Jannsen-S.-Sato): There is an isomophism of
complexes

E 1
∗,−1(X , Z/nZ) ∼= KC∗(X , Z/nZ)(−) ,

where C (−) means to take the negative differentials in a
complex C . Hence

KHa(X , Z/nZ) ∼= E 2
a,−1(X , Z/nZ).

Theorem 3 on the Kato conjecture now follows by studying
the niveau spectral sequence carefully.



The first key observation is that the Kato conjecture implies
the following fact : For

X , projective smooth over F,

Y = Y1 ∪ Y2 ∪ · · · ∪ YN ⊂ X , SNCD,

KHa(U , Z/nZ) of U = X − Y has a combinatoric description
as the homology of the complex

(Z/nZ)π0(Y (d)) → (Z/nZ)π0(Y (d−1)) →
. . . → (Z/nZ)π0(Y (1)) → (Z/nZ)π0(X ) ,

π0(Y
(a)) is the set of the connected components of the sum of

all a-fold intersections of the irreducible components
Y1, . . . , YN of Y .



Conversely the Kato conjecture for X is deduced from such a
combinatoric description of KHa(U , Z/nZ) for a suitable
choice of U = X − Y .

On the other hand,
a weight argument using the affine Lefschetz theorem and the
Weil conjecture proved by Deligne shows :

if one of the divisors Y1, . . . , YN on X is very ample, the étale
homology H ét

a (U , Q/Z) for a ≤ d has the same combinatoric
description.

(Here we need take the coefficient Q/Z, not Z/nZ since we
use a weight arguemnt.)



Since the niveau spectral sequence

E 1
p,q(U , Z/nZ) =

⊕
x∈Up

Hp−q
Gal (κ(x), Z/nZ(p))

⇒ H ét
p+q(U , Z/nZ)

satisfies
E 2

a,−1(U , Q/Z) ' KHa(U , Q/Z),

E 1
a,q(U , Q/Z) = 0 for q < −1,

the above combinatoric desription of KHa(U , Q/Z) is deduced
from the vanishing of the higher terms of the niveau spectral
sequence for such U :

E∞a,q(U , Q/Z) = 0 for q > −1.



In order to show the vanishing, we pick up any element

α ∈ E∞a,q(U , Q/Z)

and then take a hypersurface section of high degree

Z ⊂ X containg the support Supp(α) of α

so that α is killed under the restriction

E∞a,q(U , Q/Z) → E∞a,q(U\Z , Q/Z).

The point is that the assumption (RES)q allows us to make a
very careful choice of Z (after desingularizing Supp(α)) such
that the above restriction map is shown to be injective by the
induction on dim(U). This implies α = 0. Q.E.D.


