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0 Introduction

The principal aim of this paper is to show the following three theorems on the resolution
of singularities of an arbitrary reduced excellent scheme X of dimension at most two.

Theorem 0.1 (Canonical controlled resolution) There exists a canonical finite sequence
of morphisms
WZX,:XH X1 X():X

such that X' is reqular and, for each i, X;11 — X; is the blow-up of X; in a permissible
center D; C X; which is contained in (X;)sing, the singular locus of X;. This sequence
is functorial in the sense that it is compatible with automorphisms of X and (Zariski or
étale) localizations.

We note that this implies that 7 is an isomorphism over X,., = X — X4, and we recall
that a subscheme D C X is called permissible, if D is regular and X is normally flat along
D (see 2.1). The compatibility with automorphisms means that every automorphism of X
extends to the sequence in a unique way. The compatibility with the localizations means
that the pull-back via a localization U — X is the canonical resolution sequence for U
after suppressing the morphisms which become isomorphisms over U. It is well-known
that Theorem 0.1 implies:

Theorem 0.2 (Canonical embedded resolution) Let i : X — Z be a closed immersion,
where Z is a reqular excellent scheme. Then there is a canonical commutative diagram

X/L)Zl

|
X —— 7z

where X' and Z' are reqular, i' is a closed immersion, and © and w7 are proper and

surjective morphisms inducing isomorphisms © (X — Xing) — X — Xging and WEI(Z —

Xsing) =7 — Xsing. Moreover, the morphisms © and w5 are compatible with automor-

phisms of (X, Z) and (Zariski or étale) localizations in Z.

In fact, starting from Theorem 0.1 one gets a canonical sequence 2’ = Z,, — ... Z; —
Zy = Z and closed immersions X; — Z; for all 4, such that Z;,; — Z; is the blow-up
in a regular center D; contained in (X;)siny and X;41 C Z;44 is identified with the strict
transform of X; in the blow-up Z;1; — Z;. Then Z;,1 — Z; is proper (in fact, projective)
and surjective, and Z;,; is regular since Z; is.

For several applications the following refinement is useful:

Theorem 0.3 (Canonical embedded resolution with boundary) Let i : X — Z be a closed
immersion into a reqular scheme Z, and let B C Z be a simple normal crossings divisor
such that no irreducible component of X is contained in B (equivalently, (Z — B) N X is
dense in X ). Then there is a canonical commutative diagram

-/ /
X 7 L B’

le sz( FBJ/
X 45z B
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where i and k' are closed immersions, wx, mz; and 7w are projective, surjective, and
isomorphisms outside Xging U (X N B), and B' = 7,*(B) U E, where E is the exceptional
locus of 7 (which is a closed subscheme such that wz is an isomorphism over Z —mz(E)).
Moreover, X' and Z' are reqular, B’ is a strict normal crossings divisor on Z', and
X' intersects B’ transversally on Z'. Furthermore, wx, mz and g are compatible with
automorphisms of (Z, X, B) and with (Zariski or étale) localizations in Z.

More precisely, we prove the existence of a commutative diagram

7B . B/:Bm —_— Bm—l Bl —_— B():B
Ty . Z/:Zm —_— Zm—l Zl —— Z():Z
T X' =X, — X1 X — Xo=X

where the vertical morphisms are closed immersions and, for each i, X;;1 = Blp,(X;) —
X, is the blow-up of X; in a permissible center D; C (X;)sing, Ziv1 = Blp,(Z;) — Z;
is the blow-up of Z; in D; (so that Z;, is regular and X, is identified with the strict
transform of X; in Z;;1), and B,y is the complete transform of B;, i.e., the union of
the strict transform of B; in Z;,; and the exceptional divisor of the blow-up 7,1 — Z;.
Furthermore, D; is B;-permissible, i.e., D; C X, is permissible, and normal crossing with
B; (see Definition 3.1), which implies that B; ; is a simple normal crossings divisor on
Z;yq if this holds for B; on Z;.

In fact, the second main theorem of this paper, Theorem 5.9, states a somewhat more
general version, in which B can contain irreducible components of X. Then one can
assume that D; is not contained in the strongly Bj-regular locus Xpges (see Definition
5.1), and one gets that X’ is normal crossing with B (Definition 3.1). This implies that
7 is an isomorphism above Xpges © X,¢g, and, in particular, again over X,., — B. In

addition, this Theorem also treats non-reduced schemes X, in which case (X'),q is regular
and normal crossing with B and X’ is normally flat along (X),cq.

Moreover, we obtain a variant, in which we only consider strict transforms for the normal
crossings divisor, i.e., where B;,; is the strict transform of B;. Then we only get the
normal crossing of X’ (or X/ , in the non-reduced case) with the strict transform B of B
in 7'

Theorem 0.1, i.e., the case where we do not assume any embedding for X, will also
be proved in a more general version: Our first main theorem, Theorem 5.6, allows a
non-reduced scheme X as well as a so-called boundary on X, a notion which is newly
introduced in this paper (see section 4). Again this theorem comes in two versions, one
with complete transforms and one with strict transforms.

Our approach implies that Theorem 5.6 implies Theorem 5.9. In particular, the canonical
resolution sequence of Theorem 5.9 for B = () and strict transforms (or of Theorem 0.3
for this variant) coincides with the intrinsic sequence for X from Theorem 0.1. Thus, the
readers only interested in Theorems 0.1 and 0.2 can skip sections 3 and 4 and ignore any
mentioning of boundaries/normal crossings divisors (by assuming them to be empty).
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We note the following corollary.

Corollary 0.4 Let Z be a regular excellent scheme (of any dimension), and let X C Z
be a reduced closed subscheme of dimension at most two. Then there exists a projective
surjective morphism w : Z' — Z which is an isomorphism over Z — X , such that 7= (X)),
with the reduced subscheme structure, is a strict normal crossings divisor on Z'.

In fact, applying Theorem 0.3 with B = (), we get a projective surjective morphism
m 41 — Z with regular Z;, a regular closed subscheme X; C Z; and a strict normal
crossings divisor By on Z; such that m; is an isomorphism over Z — X (in fact, over
Z — (Xaing)), and ;1 (X) = X; U B;. Moreover, X; and B intersect transversally. In
particular, X; is normal crossing with B; in the sense of Definition 3.1. Hence we obtain
the wanted situation by composing m; with m : Z/ — Z;, the blow-up of Z; in the
By-permissible (regular) subscheme X, and letting X’ = 7, ' (X; U B;) which is a simple
normal crossings divisor, see Lemma 3.2.

Moreover we mention that Theorem 0.3 is applied in a paper of the second and third
author [JS], to prove a conjecture of Kato and finiteness of certain motivic cohomology
groups for varieties over finite fields. This was a main motivation for these authors to
work on this subject.

To our knowledge, none of the three theorems is known, at least not in the stated gener-
ality. Even for dim(X) = 1 we do not know a reference for these results, although they
may be well-known. For X integral of dimension 1, Theorem 0.1 can be found in [Be]
section 4, and a proof of Theorem 0.3 is written in [Jal.

In 1939 Zariski [Zal] proved Theorem 0.1 (without discussing canonicity or functoriality)
for irreducible surfaces over algebraically closed fields of characteristic zero. Five years
later, in [Za3], he proved Corollary 0.4 (again without canonicity or functoriality) for
surfaces over fields of characteristic zero which are embedded in a non-singular threefold.
In 1966, in his book [Ab3], Abhyankar extended this last result to all algebraically closed
fields of positive characteristic # 2,3, or 5, making heavy use of his papers [Ab2] and
[Ab4]. Around the same time, Hironaka [H6] sketched a shorter proof of the same result,
over all algebraically closed ground fields, based on a different method. Recently a shorter
account of Abhyankar’s results was given by Cutkosky [Cu2]. For all excellent schemes of
characteristic zero, i.e., whose residue fields all have characteristic zero, and of arbitrary
dimension, Theorems 0.1 and 0.3 were proved by Hironaka in his famous 1964 paper
[H1] (Main Theorem 1*, p. 138, and Corollary 3, p. 146), so Theorem 0.2 holds as well,
except that the approach is not constructive, so it does not give canonicity or functoriality.
These issues were addressed and solved in the later literature, especially in the papers by
Villamayor, see in particular [Vi], and by Bierstone-Millman, see [BM], by related, but
different approaches. In these references, a scheme with a fixed embedding into a regular
scheme is considered, and in [Vi], the process depends on the embedding. The last issue
is remedied by a different approach in [EH]. In positive characteristics, canonicity was

addressed by Abhyankar in [Ab5].

There are further results on a weaker type of resolution for surfaces, replacing the blowups
in regular centers by different techniques. In [Za2] Zariski showed how to resolve a surface
over a not necessarily algebraically closed field of characteristic zero by so-called local
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uniformization which is based on valuation-theoretic methods. Abhyankar [Abl] extended
this to all algebraically closed fields of positive characteristics, and later extended several
of the results to more general schemes whose closed points have perfect residue fields.
In 1978 Lipman [Li] gave a very simple procedure to obtain resolution of singularities
for arbitrary excellent two-dimensional schemes X in the following way: There is a finite
sequence X,, — X,, — ... X7 — X of proper surjective morphisms such that X, is regular.
This sequence is obtained by alternating normalization and blowing up in finitely many
isolated singular points. But the processes of uniformization or normalization are not
controlled in the sense of Theorem 0.1, i.e., not obtained by permissible blow-ups, and
it is not known how to extend them to an ambient regular scheme Z like in Theorem
0.2. Neither is it clear how to get Theorem 0.3 by such a procedure. In particular, these
weaker results were not sufficient for the mentioned applications in [JS]. This is even
more the case for the weak resolution of singularities proved by de Jong [dJ].

It remains to mention that there are some results on weak resolution of singularities for
threefolds over a field k by Zariski [Za3] (char(k) = 0), Abhyankar [Ab3] (k algebraically
closed of characteristic # 2,3, 5) — see also [Cu2], and by Cossart and Piltant [CP1], [CP2]
(k arbitrary), but this is not the topic of the present paper.

Our approach is roughly based on the strategy of Levi-Zariski used in [Zal], but more
precisely follows the approach (still for surfaces) given by Hironaka in the paper [H6]
cited above. The general strategy is very common by now: One develops certain invariants
which measure the singularities and aims at constructing a sequence of blow-ups for which
the invariants are non-increasing, and finally decreasing, so that in the end one concludes
one has reached the regular situation. The choices for the centers of the blow-ups are
made by considering the strata where the invariants are the same. In fact, one blows
up ‘the worst locus’; i.e., the strata where the invariants are maximal, after possibly
desingularising these strata. The main point is to show that the invariants do finally
decrease. In characteristic zero this is done by a technique introduced by Hironaka in
[H1], which is now called the method of maximal contact (see [AHV] and Giraud’s papers
[Gi2] and [Gi3] for some theoretic background), and an induction on dimension.

But it is known that the theory of maximal contact does not work in positive characteristic.
There are some theoretic counterexamples in [Gi3|, and some explicit counterexamples for
threefolds in characteristic two by Narasimhan [Nal], see also [Co2] for an interpretation
in our sense. It is not clear if the counterexamples in [Na2|, for threefolds in any positive
characteristic, can be used in the same way. But in section 15 of this paper, we show
that maximal contact does not even exists for surfaces, in any characteristic, even if
maximal contact is considered in the weakest sense. Therefore the strategy of proof has
to be different, and we follow the one outlined in [H6], based on certain polyhedra (see
below). That paper only considers the case of a hypersurface, but in another paper [H3|
Hironaka develops the theory of these polyhedra for ideals with several generators, in
terms of certain ‘standard bases’ for them (which also appear in [H1]). The introduction
of [H3] expresses the hope that this theory of polyhedra will be useful for the resolution of
singularities, at least for surfaces. Our paper can be seen as a fulfilment of this program.

In his fundamental paper [H1], Hironaka uses two important invariants for measuring the
singularity at a point x of an arbitrary scheme X. The primary is the v-invariant v5(X) €



NN and the secondary one is the dimension e,(X) € N (with 0 < e,(X) < dim(X)) of
the so-called directrix Dir,(X) of X at x. Both only depend on the cone C,(X) of X
at x. Hironaka proves that for a permissible blow-up X’ — X and a point 2’ € X’ with
image © € X the v-invariant is non-increasing: v} (X') < vi(X). If equality holds here
(one says 2’ is near to x), then the (suitably normalized) e-invariant is non-decreasing. So
the main problem is to show that there cannot be an infinite sequence of blow-ups with
‘very near’ points x’ — x (which means that they have the same v- and e-invariants).

To control this, Hironaka in [H3] and [H6| introduces a tertiary, more complex invariant,
the polyhedron associated to the singularity, which lies in R%,. It depends not just on
Cx(X), but on the local ring Ox , of X at x itself, and also on various choices: a regular
local ring R having Ox , as a quotient, a system of regular parameters yy, ..., y,, U1, ..., U,
for R such that wg,...,u. are ‘parameters’ for the directrix Dir,(X), and equations
fi,- -, fm for Ox, as a quotient of R (more precisely, a (u)-standard base of J = ker(R —
Ox.)). In the situation of Theorem 0.2, R is naturally given as Oz, but in any case,
such an R always exists after completion, and the question of ruling out an infinite se-
quence of very near points only depends on the completion of Ox, as well. In the case
considered in section 13, it is not a single strictly decreasing invariant which comes out
of these polyhedra, but rather the behavior of their shape which tells in the end that
an infinite sequence of very near points cannot exits. This is sufficient for our purpose,
but it might be interesting to find a strictly decreasing invariant also in this case. In the
particular situation considered in [H6] (a hypersurface over an algebraically closed field),
this was done by Hironaka; see also [Ha| for a variant.

As a counterpart to this local question, one has to consider a global strategy and the
global behavior of the invariants, to understand the choice of permissible centers and the
global improvement of regularity. Since the v-invariants are nice for local computations,
but their geometric behavior is not so nice, we use the Hilbert-Samuel invariant Ho, , €
NY as an alternative primary invariant here. They were extensively studied by Bennett
[Be], who proved similar non-increasing results for permissible blow-ups, which was then
somewhat improved by Singh [Sil]. Bennett also defined global Hilbert-Samuel functions
Hx : X — NN, which, however, only work well and give nice strata in the case of so-called
weakly biequidimensional excellent schemes. We introduce a variant (Definition 1.30)
which works for arbitrary (finite dimensional) excellent schemes. This solves a question
raised by Bennett. The associated Hilbert-Samuel strata

X(v)={re X | Hx(z) =v} for ve NV,

are then locally closed, with closures contained in X(>v) = {x € X | Hx(z) > v}. In
particular, X (v) is closed for maximal v (here p > v if u(n) > v(n) for all n).

Although our main results are for two-dimensional schemes, the major part of this paper is
written for schemes of arbitrary dimension, in the hope that this might be useful for further
investigations. Only in part of section 5 and in sections 10 through 14 we have to exploit
some specific features of the low-dimensional situation. According to our understanding,
there are mainly two obstructions against the extension to higher-dimensional schemes:
The fact that in Theorem 2.14 one has to assume char(k(z)) = 0 or char(k(x)) > dim(X),
and the lack of good invariants of the polyhedra for e > 2, or of other suitable tertiary
invariants in this case.



We have tried to write the paper in such a way that it is well readable for those who are
not experts in resolution of singularities (like two of us) but want to understand some
results and techniques and apply them in arithmetic or algebraic geometry. This is also
a reason why we did not use the notion of idealistic exponents [H7]. This would have
given the extra burden to recall this theory, define characteristic polyhedra of idealistic
exponents, and rephrase the statements in [H5]. Equipped with this theory, the treatment
of the functions defining the scheme and the functions defining the boundary would have
looked more symmetric; on the other hand, the global algorithm clearly distinguishes
these two.

We now briefly discuss the contents of the sections. In the first section we discuss the
primary and secondary invariants (local and global) of singularities mentioned above. In
the second section we discuss permissible blow-ups and the behavior of the introduced
invariants for these, based on the fundamental results of Hironaka and Bennett.

In section 3 we study similar questions in the setting of Theorem 0.3, i.e., in a ‘log-
situation” X C Z where one has a ‘boundary’: a normal crossings divisor B on Z. We
define a class of log-Hilbert-Samuel functions HY, depending on the choice of a ‘history
function’ O : X — { subdivisors of B} characterizing the ‘old components’ of B at z € X.
Then H{(x) = (Hx(z),n), where n is the number of old components at z. This gives
associated log-Hilbert-Samuel strata

X@)={reX| H{(z)=v} for 7eN'xN.

For a B-permissible blow-up X’ — X, we relate the two Hilbert-Samuel functions and
strata, and study some transversality properties.

In section 4 we extend this theory to the situation where we have just an excellent scheme
X and no embedding into a regular scheme Z. It turns out that one can also define the
notion of a boundary B on X: it is just a tuple (By,..., B,) (or rather a multiset, by
forgetting the ordering) of locally principal closed subschemes B; of X. In the embedded
situation X C Z, with a normal crossings divisor B on Z, the associated boundary
Bx on X is just given by the traces of the components of B on X and we show that
they carry all the information which is needed. Moreover, this approach makes evident
that the constructions and strategies defined later are intrinsic and do not depend on
the embedding. All results in section 3 can be carried over to section 4, and there is a
perfect matching (see Lemma 4.21). We could have started with section 4 and derived
the embedded situation in section 3 as a special case, but we felt it more illuminating to
start with the familiar classical setting; moreover, some of the results in section 4 (and
later in the paper) are reduced to the embedded situation, by passing to the local ring
and completing (see Remark 4.20, Lemma 4.21 and the applications thereafter).

In section 5 we state the Main Theorems 5.6 and 5.9, corresponding to somewhat more
general versions of Theorem 0.1 and 0.3, respectively, and we explain the strategy to prove
them. Based on an important theorem by Hironaka (see [H2] Theorem (1,B) and the
following remark), it suffices to find a succession of permissible blowups for which locally
the Hilbert-Samuel invariants decrease. Although this principle seems to be well-known,
and might be obvious for surfaces, we could not find a suitable reference and have taken
some effort to provide a precise statement and (short) proof of this fact in any dimension
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(see Corollaries 5.22 and 5.28). The problem arising is that the lexicographically ordered
set NV, and even the subset of Hilbert functions, does not have the property that every
strictly decreasing sequence is finite, contrary to some claims in the literature. We resort
to the fact that the corresponding statement holds for the set of Hilbert polynomials.
This is proved in Theorem 1.17; previously this was only known for Hilbert polynomials
of monomial ideals. After these preparations we define a canonical resolution sequence
(proof of Theorem 5.30). The proof of its finiteness is reduced to two key theorems,
Theorem 5.34 and 5.38, which exclude the possibility of certain infinite chains of blow-
ups with near (or O-near) points. The key theorems concern only isolated singularities
and hence only the local ring of X at a closed point z, and they hold for X of arbitrary
dimension, but with the condition that the ‘geometric’ dimension of the directrix is < 2
(which holds for dim(X) = 2). As mentioned above, for this local situation we may
assume that we are in an embedded situation.

As a basic tool for various considerations, we study a situation as mentioned above, where
a local ring O (of arbitrary dimension) is a quotient R/J of a regular local ring R. In
section 6 we discuss suitable systems (y,u) = (y1, ..., Yn, U1, - - -, Ue) of regular parameters
for R and suitable families f = (f1,..., fi,) of generators for J. A good choice for (y,u)
is obtained if u is admissible for J (Definition 6.1) which means that uy, ..., u. are affine
parameters of the directrix of O (so that e is the e-invariant recalled above). We study
valuations associated to (y,u) and initial forms (with respect to these valuations) of
elements in J and their behavior under change of the system of parameters. As for f, in
the special case that J is generated by one element (case of hypersurface singularities),
any choice of f = (f1) is good. In general, some choices of f = (f1,..., f) are better
than the other. A favorable choice is a standard basis of J (Definition 1.19) as introduced
in [H1]. In [H3] Hironaka introduced the more general notion of a (u)-standard base of J
which is more flexible to work with and plays an important role in our paper.

In section 7 we recall, in a slightly different way, Hironaka’s definition [H3| of the poly-
hedron A(f,y,u) associated to a system of parameters (y,u) and a (u)-standard basis
f, and the polyhedron A(J,u) which is the intersection of all A(f,y,u) for all choices
of y and f as above (with fixed u). We recall Hironaka’s crucial result from [H3] that
A(f,y,u) = A(J,u) if v is admissible and (f,y,u) is what Hironaka calls well-prepared,
namely normalized (Definition 7.12) and not solvable (Definition 7.13) at all vertices.
Also, there is a certain process of making a given (f,y,u) normalized (by changing f)
and not solvable (by changing y) at finitely many vertices, and at all vertices, if R is
complete. One significance of this result is that it provides a natural way of transforming
a (u)-standard base into a standard base under the assumption that u is admissible.

As explained above, it is important to study permissible blow-ups X’ — X and near
points 2 € X’ and x € X. In this situation, to a system (f,y,u) at z we associate
certain new systems (f’,y',u') at z/. A key result proved in section 8 is that if f is a
standard base, then f’ is a (u')-standard base. The next key result is that the chosen
u' is admissible. Hence, by Hironaka’s crucial result mentioned above, we can transform
(f',y',u) into a system (¢', 2/, u’), where ¢’ is a standard base.

The Key Theorems 5.34 and 5.38 concern certain sequences of permissible blowups, which
arise naturally from the canonical resolution sequence. We call them fundamental se-
quences of B-permissible blowups (Definition 5.33) and fundamental units of permissible



blowups (Definition 5.36) and use them as a principal tool. These are sequences of B-
permissible blowups
Xpn— ... X1 - X=X,

where the first blowup is in a closed point z € X (the initial point), and where the later
blowups are in certain maximal B-permissible centers C;, which map isomorphically onto
each other, lie above x, and consist of points near to . For a fundamental sequence there
is still a B-permissible center C,, C X,, with the same properties; for a fundamental unit
there is none, but only a chosen closed point z,, € X,, (the terminal point) which is
near to x. In section 9 we study some first properties of these fundamental sequences. In
particular we show a certain bound for the d-invariant of the associated polyhedra. This
suffices to show the first Key Theorem 5.34 (dealing with the case e,(X) = 1), but is also
used in section 14.

For the second Key Theorem 5.38 (dealing with the case e, (X) = 2), one needs some more
information on the (2-dimensional) polyhedra, in particular, some additional invariants.
These are introduced in section 10. Then Theorem 5.38 is proved in the next three
sections. It states that there is no infinite sequence

.—>X2—>X1—>XO

of fundamental units of blow-ups such that the closed initial points and terminal points
match and are isolated in their Hilbert-Samuel strata. After some preparations in section
11, section 12 treats the case where the residue field extension k(z')/k(z) is trivial (or
separable). This is very much inspired by [H6], which however only treats the special
situation of a hypersurface in a regular threefold over an algebraically closed field and
does not contain proofs for all claims. Then section 13 treats the case where there occur
inseparable residue field extensions k(z')/k(x). This case was basically treated in [Col]
but we give a more detailed account and fill gaps in the original proof, with the aid of
the results of section 8, and Giraud’s notion of the ridge [Gil], [Gi3] (faite in French) a
notion which generalizes the directrix.

Finally, in section 14, we show that maximal contact does not exist for surfaces in positive
characteristic p. The counterexample depends on p but then works for any field of that
characteristic.

It will be clear from the above how much we owe to all the earlier work on resolution of
singularities, in particular to the work of Hironaka which gave the general strategy but
also the important tools used in this paper.

Convention: All schemes are assumed to be finite dimensional.



1 Basic invariants for singularities
In this section we introduce some basic invariants for singularities.
1.1 Invariants of graded rings and homogeneous ideals in polynomial rings

Let k be a field and S = k[X3,...,X,] be a polynomial ring with n variables. Let
S, C S be the k-subspace of the homogeneous polynomials of degree n (including 0). Fix
a homogeneous ideal I C S.

Definition 1.1 For integers i > 1 we define v'(I) € NU {oo} as the supremum of the
v € N satisfying the condition that there exist homogeneous 1, ...,p;1 € I such that

S,NI=8SN<ei,....,01> forallp<v.

By definition we have v'(I) < v*(I) < .... We write
vi(I) = (v'(D),v*(D),...,v"™(I),00,00,...)

and call it the v-invariant of I. We have the following result (cf. [H1] Ch. III §1, Lemma

1).

Lemma 1.2 Let I =< ¢1,...,¢0n > with homogeneous elements ¢; of degree v; such
that:

(1) @i €< 1,01 > foralli=1,...,m,
(1) 1y < <ot < vy,

Then we have

. ) <
VZ(]) — { I/'L 3 Z —_ m’
oo, 1> m.
Definition 1.3 Let ¢ = (p1,...,0m) be a system of homogeneous elements in S and

I C S be the ideal that it generates.
(1) ¢ is weakly normalized if it satisfies the condition (i) of Lemma 1.2.
(2) ¢ is a standard base of I if it satisfies the conditions (i) and (ii) of Lemma 1.2.

We have the following easy consequence of 1.2.

Corollary 1.4 Let I C S be a homogeneous ideal and let ¢ = (Yn,...,1;) be a system
of homogeneous elements in I which is weakly normalized.

(1) The following conditions are equivalent:

(i7) degv; = vi(I) fori=1,...,7].
(1¢') Foralli=1,...,7, ¥; has minimal degree in I such that ¥; €<y, ..., ;i1 >.

(2) If the conditions of (1) are satisfied, then 1 can be extended to a standard base of I.
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By the lemma a standard base of I and v*(I) are obtained as follows:

Put vy :==min{v |Fp € S, NI\ {0}} and pick ¢, € S,, NI —{0}.

Put vy :=min{v | Fp € (S, NI)\ (S,N < 1 >) and pick vy € (S, N 1)\ (SN < @1 >).
Proceed until we get I =< ¢1,..., ¢, >. Then (¢1,...,¢n) is a standard base of I and
V() = (1, ..., Vpm,y 00,00,...).

Remark 1.5 Let ¢1,...,%, € I be homogeneous generators of I such that v < vy <
-+ < vy, where v; = deg(1;). Then the above considerations show that

(v1,v9, ..., 1vp,00,...) <v*(I),
because a standard base of I is obtained by possibly omitting some of the vy; for ¢ > 2.

In what follows, for a k-vector space (or a k-algebra) V and for a field extension K/k we
write Vg =V ®; K. From Lemma 1.2 the following is clear.

Lemma 1.6 For the ideal I C Six we have
vi(I) =v*(Ig).

A second invariant is the directrix. By [H1] Ch. II §4, Lemma 10, we have:

Lemma 1.7 Let K/k be a field extension. There is a smallest K -subvector space T (I, K) C
(S1)x = @& KX, such that

(Ix N K[T(I,K)])- Sk = I,
where K[T (I, K)] = Symg (7 (I,K)) C Symg((S1)x) = Sk. In other words T (I, K) C
(S1)K is the minimal K -subspace such that Ik is generated by elements in K|7T (I, K)].
For K =k we simply write T (I) =T (I,k).
Recall that C'(S/I) = Spec(S/I) is called the cone of the graded ring S/I.
Definition 1.8 For any field extension K/k, the closed subscheme
Dirg (S/1) = Dir(Sk/Ix) € C(Sk/Ix) = C(S/I) x) K

defined by the surjection Sk /Ix — Sk /T (I, K)Sk is called the directriz of S/I in C(S/I)
over K. By definition

Dirg (S/I) = Spec(Symg ((S1)k /T (I, K))) .
We define
e(S/I)k = dim(Dirg (S/1)) = dim(S) — dimg (7 (I, K)) = n — dimg (7 (I, K))

so that Dirg (S/1) = A%S/I)K, and simply write e(S/I) for e(S/I)x with K = k.
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Remark 1.9 (a) By definition Dirg (S/I) is determined by the pair Sk 2O Ik, but indeed
it has an intrinsic definition depending on Ak for A = S/I only: Let Sx = Sym,(A;),
which is a polynomial ring over k. Then the surjection Sx — Ax factors through the
canonical surjection ok @ Sax — Ak, and the directriz as above is identified with the
directriz defined via Sy x and ker(aa k). In this way Dir(Ag) is defined for any graded
k-algebra A which is generated by elements in degree 1.

(b) Similarly, for any graded k-algebra A which is generated by Ay, we may define its
intrinsic v-invariant by v*(A) = v*(ker(aa)), where as : Symy(Ay) — A is the canonical
epimorphism. In the situation of definition 1.1 we have

V(1) = (1,....1,08(S/1),v*(S/1),...),

with n — t entries of 1 before v*(S/I), where t = dimy(A;), and v*(S/I) > 1.

(c) If X is a variable, then obviously v*(A[X]) = v*(A) and v*(I[X]) = v*(I) in the
situation of 1.1. On the other hand, Dirgx(A[X]) = Dirg(A) xx Ak, i.e., ex(A[X]) =
€K(A) + 1.

Lemma 1.10 Let the assumptions be as in 1.8.
(1) e(S/1)x < dim(S/I).
(2) For field extensions k C K C L, we have e(S/I)x < e(S/I)y.
(8) The equality holds if one of the following conditions holds:
(i) L/K is separable.
(it) e(S/I)x = dim(S/I).

Proof The inequality in (1) is trivial, and (2) follows since 7(I,K) ® L C T(I,L),
This in turn implies claim (3) for condition (ii). Claim (3) for condition (i) is reduced
to the case where L/K is finite Galois with Galois group G. Then, by Hilbert’s theorem
90, for any L-vector space V on which G acts in a semi-linear way the canonical map
VY ®x L — V is an isomorphism. This implies that 7 (I, L)Y @ L =7 (I, L) and the
claim follows. [J

Finally we recall the Hilbert function (not to be confused with the Hilbert polynomial)
of a graded algebra. Let N be the set of the natural numbers (including 0) and let NY be
the set of the functions v : N — N. We endow NV with the order defined by:

v>u<sv(n)>pn) foranyneN.

Definition 1.11 For a finitely generated graded k-algebra A its Hilbert function is the
element of NN defined by

HO(A4)(n) = H(A)(n) = dimy(4,) (n € N).
For an integer t > 1 we define H®(A) inductively by:

H(A)(n) = Z HD(A)().

We note
HOD(A)(n) = HO(A)(n) — HO(A)(n— 1) < HO ().

12



Remark 1.12 (a) Obviously, for any field extension K/k we have
HY(Ag)=HO(A).
(b) For a variable X we have
HO(AX]) = H"D(4).
(¢) For any v € NN and any t € N define v® inductively by v®(n) = Y1 vV (5).

In a certain sense, the Hilbert-Samuel function measures how far A is away from being a
polynomial ring:

Definition 1.13 Define the function ® = ®© € NN by ®(0) = 1 and ®(n) = 0 forn > 0.
Define ®Y for t € N inductively as above, i.e., by ®®(n) =31 &=V (5).

Then one has
n+t—1
n

dO(n) = HOk[X,,...,Y])(n) = ( ) for all n > 0.

and:

Lemma 1.14 Let A be a finitely generated graded algebra of dimension d over a field k,
which is generated by elements in degree one.

(a) Then HO(A) > &Y and equality holds if and only if A= k[X1,...,X,].
(b) For a suitable integer m > 1 one has m®@ > HO),

Proof (a): We may take a base change with an extension field K/k, and therefore
may assume that £ is infinite. In this case there is a Noether normalization i : S =
k[Y1,...,Yy] < A such that the elements Y;,..., Y, are mapped to A, the degree one
part of A, see [Ku], Chap. II, Theorem 3.1 d). This means that ¢ is a monomorphism of
graded k-algebras. But then H(®(A) > HO(k[X,,..., X,]) = & and equality holds if
and only if ¢ is an isomorphism.

(b): Since A is a finitely generated S-module, it also has finitely many homogenous

generators ag, ..., a, of degrees di,...,d,. This gives a surjective map of graded S-
modules

@ S[—d;] - A,
where S[m] is S with grading S[m],, = Sptm, and hence

H(A)(n) < i D (n —d;) <mdD(n).

i=1
0

At a crucial point in section 5 we shall need the Hilbert polynomial P = P(A) of a graded
k-algebra A. Recall that this is the unique polynomial in Q[7] with

P(n) = H(A)(n) for n>0.

It is known that the degree of P(A) is dim(A) — 1. We shall need the following property
proved in [AP] (Corollary 3.2 and following remarks).
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Lemma 1.15 A polynomial P(T) € Q[T is the Hilbert polynomial of a graded k-algebra
A if and only if
(1.1)

P(T):<T—a|’a1) <T+CL2— ) <T+aia—i—|—1)+H.+(T+asa—s—i—1>
1 7 s
.2

> 0 with s > 1. Moreover, one has a; = deg(P) =

for certain integers a; > ag > . as
(aq,...,as) is uniquely determined by P.

dim(A) — 1, and the family a(P )

The equality a; = dim(A) — 1 follows from the fact that

Clz‘!

(T+ai—i+1>  (T+ai—i+1)(T+a;—1) - (T —i+2)
Q;

has degree a;. The set HP of all Hilbert polynomials is totally ordered with respect to
the ordering

(1.2) P(T)> P(T) <= P(n)>P(n) for n>0.

We shall need the following description of this ordering.

Lemma 1.16 For two Hilbert polynomials P,P' € HP one has P > P’ if and only if
a(P) > a(P') in the lexicographic ordering (where we formally fill up the shorter family
with entries —oo at the right until it has the same length as the longer family).

Proof Since P = P/ <= a(P) = a(P’), and since both orderings are total orderings,
it suffices to show that P > P’ implies a(P) > a(P’). Let a(P) = (ay,...,as) and
a(P") = (b1,...,b), and assume P > P’. If deg(P) > deg(P’), then a; > b; and hence
a(P) > a(P'). In general we proceed by induction on min(s,t). If min(s,f) = 1 and
a; = by, then we must have ¢t = 1,s > 1 and hence a(P) > a(P’). If s,t > 2 and a; = by,

then for T+a T+a
Pl(T)ZP(T)—( a > ’ P{(T):P/(T)_( a )

the polynomials Q(T) = P,(T' + 1) and Q'(T") = P/(T + 1) are again Hilbert polynomials
by Lemma 1.15, with associated invariants a(Q) = (as,...,as) and a(Q’) = (ba, ..., b),
respectively, and P > P’ implies Q > @', so that a(Q) > a(Q’) in the lexicographic
ordering by induction. Together with a; = by this implies the claim for P and P’.

Lemma 1.16 immediately implies:

Theorem 1.17 In the set HP of all Hilbert polynomials, every strictly descending se-
quence Py > Py > P3 > ... is finite.

Remark 1.18 This has previously been shown for certain subsets of HP, see [AP] Corol-
lary 3.6 and [Sit], with different proofs.
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1.2 Invariants for local rings

For any ring R and any prime ideal p C R we set

er,(R) = P p"/p" ",

n>0

which is a graded algebra over R/p.

In what follows we assume that R is a noetherian regular local ring with maximal ideal
m and residue field £ = R/m. Moreover, assume that R/p is regular. Then we have

gry(R) = Symp,, (gry(R)),  gry(R) = p/p”.

where Symp, /p(M ) denotes the symmetric algebra of a free R/p-module M. Concretely, let
(Y1, -+, Y, U1, - . ., Ue) be a system of regular parameters for R such that p = (y1,...,y,).
Then gr,(R) is identified with a polynomial ring over R/p:

gro(R) = (R/p)[Yi,...,Y,] whereY;=y; modp® (1 <i<r).

Fix an ideal J C R. In case J C p we set

gr,(R/J) = B/ J)"/(p)T)"H,

n>0
and define an ideal In,(J) C gr,(R) by the exact sequence
0 — Iny(J) — gr,(R) — gr,(R/J) — 0.

Note
Iny(J) = @ Np" +p+) /p" .

n>0

For f € R and a prime ideal p C R put

13) () = { vl Ferd 220

called the order of f at p. For prime ideals p C g C R, we have the following semi-
continuity result (cf. [H1] Ch.III §3):

(1.4) vp(f) <wg(f) forVfeR.
Define the initial form of f at p as
ing(f) := f mod p DT g p»(F) jpue(N+l ¢ gro(R).

In case J C p we have

Ing(J) = {iny(f) | [ € J}-

Definition 1.19 (1) A system (fi,..., fm) of elements in J is a standard base of J, if
(inm(f1), .- inu(fm)) is a standard base of Iny(J) in the polynomial ring gr,(R).
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(2) We define v*(J, R) as the v*-invariant (cf. Definition 1.1) for Ing(J) C gr,(R).

(2) The absolute v*-invariant v*(O) of a noetherian local ring O with mazimal ideal n
is defined as the absolute v*-invariant (cf. Remark 1.9 (b)) v*(gr,O).

It is shown in [H3] (2.21.d) that a standard base (fi, ..., fin) of J generates J.

Next we define the directrix Dir(O) of any noetherian local ring O. First we introduce
some basic notations.

Let n be the maximal ideal of O, let  be the corresponding closed point of Spec(Q), and
let k(z) = O/n be the residue field at . Define

T(O) = Spec(Sym,,(n/n?)): the Zariski tangent space of Spec(Q) at z,
C(O) = Spec(gr,(0)) = C(gr,(0)): the (tangent) cone of Spec(O) at x.
We note that dim C'(O) = dim O and that the map

Symy (n/n*) — gr,(O)

gives rise to a closed immersion C(O) — T(O).

Definition 1.20 Let K/k(x) be a field extension. Then the directriz of O over K,
DirK((’)) g O(O) Xk(z) K g T(O) Xk(x) K

is defined as the directriz Dirg (gr,(O)) C C(gr,(O)) of gr,(O) over K (cf. Remark 1.9
(a)). We set
e(0) g = dim(Dirg (0))

and simply write e(O) for e(O)k with K = k().
Remark 1.21 By definition, for R reqular as above and an ideal J C m we have
Dirg (R/J) = Spec(grn(R)k /T (J, K)gron(R) k) € Spec(grn(R)i/Inm(J)k) = C(R/J)k ,
where T(J, K) =T (Inw(J), K) C grl (R)k is the smallest K -sub vector space such that
(Inu(J)xk N K[T(J,K)] - gron(R)k = Inn(J)k,
i.e., such that Iny(J)k is generated by elements in K[T (J, K)]. Moreover
Dirg (R/J) 2= Symy (g1(R) /T (J, K)) € T(R)ic -
For K = k we simply write T(J) =T (J, k).
Lemma 1.22 Let the assumptions be as above.
(1) e(R/J)x < dim(R/J).

(2) For field extensions k C K C L, we have e(R/J)x < e(R/J)r. The equality holds
if one of the following conditions holds:

(i) L/K is separable.
(it) e(R/J)k = dim(R/J).

Proof This follows from Lemma 1.10, because dim(R/J) = dim C(R/J). O
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Definition 1.23 We definee(R/J) = e(R/J);; for an algebraic closure k of k. By Lemma
1.22 we have e(R/J)x <e(R/J) < dim(R/J) for any algebraic extension K/k.

For later use we note the following immediate consequence of the construction of a stan-
dard base below Corollary 1.4.

Lemma 1.24 LetT = T (J) be as in Lemma 1.7. There exists a standard base (f1, ..., fm)
of J such that ing(f;) € k[T] for for alli.

Finally, we define the Hilbert(-Samuel) functions of a noetherian local ring O with maxi-
mal ideal m and residue field F' as those of the associated graded ring:

HE (n) = H (gry(0)).
Explicitly, the Hilbert function is the element of NY defined by
HY (n) = dimp(m™/m"*)  (n € N).

For an integer t > 1 we define Hg) inductively by:

n

H (n) =" HG V().

=0

In particular, H ((91 ) (n) is the length of the O-module O /m"*! and H, ((91 ) is called the Hilbert-
Samuel function of @. The Hilbert function measures how far away O is from being a
regular ring:

Lemma 1.25 Let O be a noetherian local ring of dimension d, and define ®® as in
Definition 1.13. Then H((QO) > ®D | and equality holds if and only if O is reqular.

Proof (see also [Be] Theorem (2) and [Si2], property (4) on p. 46) Since dim(Q) =
dim(grmO), where m is the maximal ideal of O, and since O is regular if and only if
grmO = k[ X1, ..., X4) where k = O/m, this follows from Lemma 1.14.

For later purpose, we note the following facts.

Lemma 1.26 Let the assumptions be as above and let O = O/a be a quotient ring of O.
Then Hg) > Hg) and the equality holds if and only if O = O.

Proof Let m be the maximal ideal of O. The inequality holds since the natural maps

m"tt — m"* are surjective. Assume H((;) = Hg) for some s > 0. By Definition 1.11 it

implies H " = Hg) for all t > 0, in particular for ¢ = 1. This implies that the natural maps
T 2 O/m™ — O/m"* ! are isomorphisms for all n > 0. Noting Ker(r,) ~ a/a nm"*!,
we get a C Qom”H = (0) and hence O = 0. O
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Lemma 1.27 Let O and O’ be noetherian local rings.

(a) For all non-negative integers a and e one has

dmO >e <« HY >t

(b) For all non-negative integers a and b one has
HY > HY — dimO+a>dimO +b.
Proof Let d =dimO. (a): If d > e, then we get H((,;l) > Pldta) > Ppleta) by Lemma
1.25. Conversely, assume H((; ) > @9 Then form Lemma 1.14 we get
m(I)(d+a) > H((Qa) > (I)(e—I—a)

for some integer m > 1. If d < e this is a contradiction, because of the asymptotic
behavior of ®®. Hence d > e.
For (b) let &' = dim @' If HY) > HY) then

HY > HY) > o+

and by (a) we have d > d' + b —a. (Note: If d + b — a < 0, the statement is empty; if
e=d +b—a >0, then we can apply (a).)

1.3 Invariants for excellent schemes
Let X be an excellent scheme.
Definition 1.28 For any point x € X define
vy (X)=v"(Ox,) and Diry(X) = Dir(Ox,)

and
ex(X) = e(Ox,) = dimy ) (Dirg (X)), €.(X)=20x.), es(X)x =e(Oxz)k,

where K/k(x) is a field extension. If X C Z is a closed subscheme of a (fixed) reqular
excellent scheme Z, define
vi(X,Z)=v"(J;,O0zz),

where Ox , = Oz, /J.. We also define
IDir,(X) C gry,. (0zz)

to be the ideal defining Dir,(X) C T,(Z) = Spec(gry, (Ozz)), where m, is the mazimal
ideal of Oz .

We note that always
Dir,(X) C C.(X) CT(X) ( CT.(Z) for X C Z as above ),

where C,(X) = C(Ox,) is called the tangent cone of X at x and T,(X) = T(Ox,) is
called the Zariski tangent space of X at x (similarly for 7).
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Lemma 1.29 Let X be an excellent scheme.

(1) Letm: X' — X be a morphism and let ' € X' be a point lying over x € X. Assume

(2)

that 7 is quasi-étale at @' in the sense of Bennett [Be] (1.4), i.e., that Ox , — Ox 4
is flat and m;Ox » = my where m, C Ox, and my C Ox/ v are the respective
maximal ideals. (In particular, this holds if m is étale.) Then there is a canonical
1somorphism

(1.5) C(X') 2 Co(X) Xy k(&)
so that vi(X') = vi(X). If k(2')/k(x) is separable, then

Dir, (X') = Dirg (X) Xg) k(2'), and hence ey (X') = e, (X).
Consider in addition that there is a cartesian diagram

X/—i>Z/

WJ« J/TFZ
i
X — 7
where i and i are closed immersions, Z and Z' are reqular excellent schemes and
Tz 18 quasi-étale at x'. Then

To(Z) 2 To(Z) Xy k(2")  and v (X', Z')=vi(X,Z).
Let f: X' — X be a morphism of finite type. Let x € X and
X =Spec(Ox,), X' =X'xxX,

where @X,r is the completion of Ox . Then for any y € X' and any § € X' lying
over y, there are non-canonical isomorphisms

(1.6) C@)(X/> = Cy(X/) X k(y) Cy(X;> = Cy(X/> X k(y) Ag(y’) )

where X’; = X' xy y is the fibre over y for the morphism = : X' — X' and
d = dim(Oy, ;) = codimy, (7). Hence

Diry(X') 2 Dir, (X') Xi(y) Az(g), es(X')=e, (X' )+d and I/;(X,) = v, (X').

Assume further that there is a commutative diagram

-/

X/Z—>Z/

(1.7) l l

X 4z
where Z' — Z is a morphism of finite type of reqular schemes and i and i are closed
immersions. Denote

A

7 = Spec(@z,x), 7' =7"%x, 7,

where @Z@ is the completion of Oz, so that X' =X'x, 7 =X xu 7 and it is
a closed subscheme of Z'. Then Z' is reqular, and

v (X', Z) = v (X", Z).
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Proof (1): It suffices to show (1.5). Let (A,m4) — (B, mp) be a flat local morphism of
local noetherian rings, with m4 B = mg. Then we have isomorphisms
(1.8) m @4 B-—m}
for all n > 0. In fact, this holds for n = 0, and, by induction and flatness of B over A,
the injection m” — m’; ! induces an injection
m} @4 B—mi ! ®yBSmy

whose image is m’} B = m}%. From (1.8) we now deduce isomorphisms for all n

(mfy/m) @y ki =2 (my/mi) @4 B —mp/my",

where ky = A/my and kg = B/mp, and hence the claim (1.5).
(2): As for (1.6), consider the local rings A = Ox, with maximal ideal m and residue
field k = A/m,and A’ = O %4> With maximal ideal m" and residue field &' = A’ /m’. Since

X is excellent, the morphism Ox, — O x.» 1s flat, with regular fibers, and the same is
true for the local morphism A — A’ since A’ is a localization of A ®o, , Ox,. Hence, by

[Si2], Lemma (2.2), the closed subscheme Spec(A’/mA’) — Spec(A’) is permissible, i.e.
it is regular and gr,. 4 (A’) is flat over A’/mA’. By [H1] Ch. II, p. 184, Proposition 1, we
get a non-canonical isomorphism
8o (A) = (8Tmar(A) @ k') @k 8T gy jmar (A'/mA') .
On the other hand, by flatness of A" over A we get canonical isomorphisms
mnA//mn+1Al o~ (mn/mn—l-l) ®A A/

for all n. Hence we get an isomorphism gr 4 (A) @4 k' = gr.(A) ®4 A" and the above
isomorphism becomes

grm’(A/) = grm(A) Ok grm//mA’(A,/mA/) )
which is exactly the first isomorphism in (1.6). Since A’/mA" = Oy, , is regular of
dimension d, we have an ismorphism gr., 4 (A'/mA’) =2 K'[Ty, ..., Ty], which gives the
second isomorphism in (1.6).

The statements for the directrix and the v*-invariant of X’ at § now follow from Remark
1.9 (¢). Now consider the diagram (1.7). The above, applied to Z’, gives isomorphisms

Ci(2') 22 Cy(Z) X1iy) ColZy) = C(Z') Xy Ay = AN

where N = dim(Oy ), because Z’ is regular and Z; = X; Conversely, this implies

that 7' is regular at y. The final equality in (2) now follows from the isomorphism
Ty(Z") = Cy(Z') and Remark 1.9 (c¢). O

Next we introduce Hilbert-Samuel functions for excellent schemes. Recall that an excellent
scheme X is catenary so that for any irreducible closed subschemes Y C Z of X, all
maximal chains of irreducible closed subschemes

have the same finite length r denoted by codimz(Y'). For any irreducible closed sub-
schemes Y C Z C W of X we have

codimy (YY) = codimy (Z) + codimz(Y).
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Definition 1.30 Let X be an excellent scheme.
(1) For x € X let I(x) be the set of irreducible components Z of X with x € Z.
(2) Define the function ¢x : X — N by ¢x(x) = dim X — ¥x(x), where
Yx(x) = min {codimy(z) | Z € I(z)}.
(3) Define Hy : X — NN as follows. For x € X let

Hy(z) = Hy*™ e NV,

(4) For v € NN we put

X>v)={re X|Hx(z) >v} and X(v):={re X|Hx(z)=r}.

By sending Z to its generic point 7, the set I(z) can be identified with the set of generic
points (and hence the set of irreducible components) of the local ring Ox .. Therefore
¥x(x) depends only on Ox ., and ¢x(z) and Hx(z) depend only on dim X and Ox,. We
shall need the following semi-continuity property of ¢x.

Lemma 1.31 (1) For z,y € X with x € {y} one has I(y) C I(x) and

ox(y) < ox(x) + codimpy(z) .

(2) Fory € X, there is a non-empty open subset U C {y} such that
@) =1(y) and () = dx(z) + codime—(x)
forallz e U.
Proof (1): The inclusion I(y) C I(z) is clear, and for Z € I(y) one has and
(1.9) codimyz(z) = codimz(y) + codimgy(z) .

Thus ¢x(z) < ¥x(y) + codimgy(z), and the result follows.

(2): Let Zy, ..., Z, be the irreducible components of X which do not contain y. Then we
may take U = {y} N (X \ U._, Z;). In fact, if x € U, then I(y) = I(z), and from (1.9)
we get

Ux(x) =vx(y) + codimm(:p) .

Now we study the Hilbert-Samuel function Hy. The analogue of Lemma 1.14 (a) and
Lemma 1.25 is:

Lemma 1.32 Let d = dim X. Then, for x € X one has Hx(z) > ®9, and equality
holds if and only if x is a reqular point.
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Proof We have

Hy(z) = H((Qd)::ﬂx(x)) > P (d—¥x (2)+codimx (z)) > d@D
Here the first inequality follows from Lemma 1.25, and the second inequality holds because
codimy (z) > ¥x(x). If (X, z) = ®@  then all inequalities are equalities, and hence, again
by Lemma 1.25, = is a regular point. Conversely, if = is regular, then there is only one
irreducible component of X on which z lies, and hence codimy(z) = ¥x(x), so that the
second inequality is an equality. Moreover, by Lemma 1.25, the first inequality is an
equality.

Remark 1.33 In particular, X is reqular if and only if X (v) = 0 for all v € NN except
for v =07, where vy’ = Hx(x) for a reqular point x of X which is independent of the

choice of a reqular point, viz., equal to ®I™X)
We have the following important upper semi-continuity of the Hilbert-Samuel function.

Theorem 1.34 Let X be an excellent scheme.
(1) If z € X is a specialization of y € X, i.e., x € {y}, then Hx(z) > Hx(y).

(2) For any y € X, there is a dense open subset U of@ such that Hx(x) = Hx(y)
forallz e U.

(3) The function Hx is upper semi-continuous, i.e., for any v € NN, X (> v) is closed
m X.

Proof (1): We have

x (¢ (x)JrcodimT(x))
HX<37) _ H((/)d’;{i ) > H(’);,y ) > H((f)(b;;y)) _ HX(Z/)
Here the first inequality holds by results of Bennett ([Be|, Theorem (2)), as improved by
Singh ([Sil], see p. 202, remark after Theorem 1), and the second holds by Lemma 1.31
(1).

(2): First of all, there is a non-empty open set U; C {y} such that {y} C X is permissible
(see 2.1) at each x € Uy ([Be] Ch. 0, p. 41, (5.2)). Then

0 (codim7—(z))
H((Q))(,z = HOX,y v

for all z € Uy, see [Be] Ch. 0, p. 33, (2.1.2). On the other hand, by Lemma 1.31 (2) there

is a non-empty open subset Uz C {y} such that ¢x(y) = ¢x(z) + codimgy(z) for z € Us.
Thus, for x € U = U; N Uy we have

(¢x(2)) (¢x (2)+codime ()

Hx(z) = HOX,I = Hox,y - ((od);;y)) = Hx(y).

By the following lemma, (3) is equivalent to the conjunction of (1) and (3).
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Let X be a noetherian topological space which is Zariski, i.e., in which every closed
irreducible subset admits a generic point. (For example, let X be a noetherian scheme.)
Recall that a map H : X — G into an ordered abelian group (G, <) is called upper
semi-continuous if the set

Xs, i =XI ={x e X|H()>v}

is closed for all v € G. We note that this property is compatible with restriction to any
topological subspace. In particular, if X is a scheme, H is also upper semi-continuous
after restricting it to a subscheme or an arbitrary localization.

Lemma 1.35 The map H is upper semi-continuous if and only if the following holds.
(1) If 2,y € X with = € {y}, then H(x) > H(y).

(2) For ally € X there is a dense open subset U C {y} such that H(x) = H(y) for all
reU.

Proof According to [Be|, Ch. III, Lemma (1.1), X5, is closed if and only if the following
conditions hold.

(I') If y € X5, then every z € {y} is in X,.
(2)) If y € X5, then (X — X5,) N {y} is open in {y}.

Obviously, (1) above is equivalent to (1°) for all ». Now assume (1) and (2), and let
v € G. By induction on dim(X) (which is finite by our assumption), we prove that X,
is closed. The case of dim(X) = 0 is trivial. For higher dimension it suffices to show
that the intersection of X-, with every irreducible component is closed. Thus we may
assume that X is irreducible. By (2) there is then a dense open subset U C X such that
H(z) = H(n) for the generic point n of X. If H(n) = v, then X5, = X by (1). Otherwise
we have U C X — X5, ie., X5, C A= X — U, which is a closed subset of X of strictly
smaller dimension. By induction, X, is closed in A, hence in X. Conversely, assume
that X5, is closed for all v. Then (1) follows immediately. Moreover, H only takes finitely
many values vy,...,v, on X. Now let y € X, and let Hx(y) = v. Then

Xy, = X5 — Upsv Xu = X5y — Upsv XZu
is open in X>, which shows property (2).

Definition 1.36 Let Yx = {Hx(z)| x € X} C NY. By noetherian induction Theorem
1.34 (3) implies Xx is finite. We define 3% to be the set of of the mazximal elements in
Yx. The set

(1.10) Xoee = U X(v)

vespar

15 called the Hilbert-Samuel locus of X.
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By definition X (v) # () if and only if v € ¥ x. By Theorem 1.34, X (v) is locally closed in
X and its closure in X is contained in

X(>v)= U X(p).

u2v

In particular X (v) is closed in X if v € ¥ and X4, is closed. Note that the sum in
(1.10) is a disjoint sum.

Lemma 1.37 Let X be an excellent scheme.

(1) Let m : X' — X be a quasi-finite morphism which is quasi-étale in the sense of
Lemma 1.29 (1). Then for any x € X and any x' € X' above x we have

(1.11) 7Y

X/ ,a!

HS)  and  x(z) =y ().

In particular, if dim X' = dim X, then Hx:(z") = Hx(z) for x and 2’ as above, and
hence X'(v) = 7= Y X (v)) for all v € NN,

(2) Let f: X" — X be a morphism of finite type. Let x € X and put
X =Spec(Ox,), 7: X' =X xxX — X',

where @X,x is the completion of Ox .. Then for any y € X' and any § € X’ lying
over y we have

(1.12) aY

X/

Héd; and  Pz/(9) = Yx(y) +d,

9

where R R
d = codimg, (), X, = X" xx1y.

In particular, if diim(X') = dim(X"), then Hy,(§) = Hx/(y), and X'(v) = 7= (X" (v))
for all v € NV,

For the proof we shall use the following two lemmas.

Lemma 1.38 Let f : W — Z be a flat morphism of schemes and let w € W and
z = f(w) € Z. Then we have

codimy (w) = codimy(2) + dim Oy, 4, W, =W X z.

In particular w is a generic point of W if and only if f(w) is a generic point of Z and
codimyy, (w) = 0.

Proof See [EGA 1V], 2, (6.1.2).

Lemma 1.39 f: W — Z be a quasi-finite morphism of excellent schemes and let w € W
and z = f(w) € Z. Assume that W and Z are irreducible. Then we have

codimy (w) = codimg(z).

Proof See [EGA 1V], 2, (5.6.5).
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Proof of Lemma 1.37 (1): It suffices to show (1.11). The other claims follow from
it. The first equality in (1.11) follows from Lemma 1.29 (1.5). We now show the second
equality. By Lemma 1.38 a point of X’ is generic if and only if its image in X is generic.
If 2’ lies on an irreducible component Z' = m of X', then x lies on the irreducible
component Z = {f(n)} of X, and Lemma 1.39 implies codimy (z') = codimy(z). Thus it
suffices to show that if z lies on an irreducible component W of X, there is an irreducible
component of X’ which contains 2’ and dominates W. Let W’ = {n/} be an irreducible
component of 771 (W) which contains 2’ (note 2’ € 7#~(W) by definition). Since X’ x x
W — W is quasi-finite and flat again, Lemma 1.38 implies that g(n’) = n is the generic
point of W, and this implies in turn that n’ is a generic point of X’. This shows the
desired claim. [

(2): The first equality in (1.12) follows from Lemma 1.29 (1.6). We show the second
equality. We may assume that X’ is reduced. Since 7 : X' — X' is flat, Lemma 1.38
implies that if 7/ is a generic point of X’ with ¢ € {1}, then n = 7 (1) is a generic point
of X’ with y € {n}. Moreover, if £ is a generic point of X with y € Z := @, then there
exists a generic point £’ Of_f(’ such that g € {¢’}. Indeed one can take a generic point &’
of 771(Z) such that §j € {¢'}. Then Lemma 1.38 applied to nz : X’ x x» Z — Z, which is
flat, implies that 7(¢') = € and ¢ is of codimension 0 in 7' (§) = 771(£) and hence ¢ is
a generic point of X’. This shows that we may consider the case where X' is irreducible
and are reduced to show the following.

Claim 1.40 Assume X' is integral. Let W be an irreducible component of X/ containing
9. Then
codimy (y) = codimy/(y) +d, d = codimyg, (7).
Yy

Since the question is local at y, we may assume X = Spec(A) and X’ = Spec(B), where
A = Ox, and B is an integral domain of finite type over A. Moreover we may further
assume that f: X’ — X is dominant and A is an integral local ring, by replacing X with
the closure W of f(X) with reduced subscheme structure. In fact, W — X is a closed
immersion, and W X x X identifies with the completion of W = Spec(Ow.). We now
proceed in three steps.

Step 1: Assume that A is normal, and K is algebraically closed in L, the fraction field of
B. In this case we claim that X' is irreducible. Then Lemma 1.38 implies

codimy, (9) = codimyx/(y) +d

which shows Claim 1.40.

To show the above claim, first note that the completion A is integral by [EGA 1V], 2,(7.8.3)
(vii). Consider the cartesian diagram

x L, x

and let nx € X, ng € X and 1y € X’ be the generic points. If 7 is a generic point of X,
then by Lemma 1.38 it maps to nxs and is a generic point of the fiber 7~!(nx). Since
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the latter is the base extension my *(nx) Xk L, it follows that f(n) = 15. But the fibre
f‘l(nX) is the base change f~'(nx) Xx x(ng), which is irreducible, since the K-variety
Xt = f~Ynx) is geometrically irreducible (by the assumption that K is algebraically
closed in its function field L). This implies that X’ has only one generic point, i.e., is
irreducible.

Step 2: Now assume that X’ is normal. In this case we claim that X' = I, X/,

where X{, . ,X; are the irreducible components of X’ and that X{ — X' is flat for all
i =1,...,r. Then there exists the unique ¢ such that y € X! and Lemma 1.38 implies

codimy, (9) = codimy/(y) + codimyg, (9) = codimy/(y) +d,
where Xl’y = X{ X x+y and the second equality holds since the local rings at ¢ of X{y and
X{l are the same. This shows Claim 1.40.

To show the above claim, let K be the algebraic closure of K = Frac(A) in L = Frac(B),
the function field of X', and let A; be the integral closure of A in K7, which is a normal
semi-local ring, finite over A. Then we get a commutative diagram with cartesian squares

A g N h N
X — X7 — X

1 oel el
X 4. x I x

in which X; = Spec(A;) and the lower line factors f. Furthermore
X1 = Spec(A; @4 A) = HXlz

is the completion of A; (with respect to the Jacobson ideal) and decomposes into a product
as indicated. Here X;,; = Spec((Al) .) for the completion (A;)y, of the localization (A )y,
of A; at m;, where my,...,m, are the maX1maIA1deals of Ay (which are the }deals lyipg
over the maximal ideal of A). Thus the scheme X' decomposes accordingly: X' = [[. X!
and we get a commutative diagram

1 r -/ g ' T (> h O
X _Hizl Xi > X1 —H¢:1 Xl,i > X

! l |

HZ:I X - ]_Uzl X1 — X

1

/| I

X/ AN X, M x

where X;; = Spec((A1)m,) and the two left squares are cartesian. By Step 1 X! is

irreducible and X! — X’ is flat since it is the composite of the flat morphisms X/ — X!
and and X — X'

26



Step 3: Now consider the general case (still X’ and X affine and integral, and f dominant).
Let X” be the normalization of X', and consider the diagram with cartesian squares

f

A~ Q A~ A~
X//—>X/—)X

R
X" g X/ f

in which the vertical morphisms are flat. The morphism g is finite and surjective, and so
is its base change §. We claim that a point 7" € X” is generic if and only if /' = §(n")
is a generic point of X’. Indeed, by Lemma 1.38, 1" is generic if and only if it maps to
the generic point nx» of X” and is of codimension zero in the fibre (7/)~*(nx~). Since
the fibres over nx» and nx: are the same, this is the case if and only if 7’ satisfies the
corresponding properties for 7, i.e., if n' is a generic point of X’. Now let W be an
irreducible component of X’ containing ¢j. By the last claim together with the surjectivity
of §, there is an irreducible component W’ of X” dominating W. Since § is finite, it is a
closed map, and so we have even (W) = W. Thus there is a point 2 € W’ with g(2) = g.
If z =7'(2), then ¢g(z) = y and

(1.13) codimyg,(2) = codimy, (y) = d,
where X;’ = X" xxnz=X Xx 2= X; X, 2. We now conclude
codimy () = codimy(2) = codimx»(z) + d = codimx/(y) + d,

where the first (resp. the third) equality follows from Lemma 1.39 applied to the finite
morphism W' — W (resp. X” — X’) and the second equality follows from (1.13) and
Step 2 noting that X” is normal. This shows Claim 1.40 and the proof of Lemma 1.37 is
complete.

Remark 1.41 Bennetl [Be] defined global Hilbert-Samuel functions by Hgg)x = Hg}ti(m)),
where d(x) = dim(m), and showed that these functions have good properties for so-
called weakly biequidimensional excellent schemes. By looking at the generic points and
the closed points one easily sees that this function coincides with our function Hx(x) if

and only if X s biequidimensional.
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2 Permissible blow-ups

Now we review some fundamental results on the behavior of the v*- and e-invariants under
permissible blow-ups.

Let X be an excellent scheme and let D C X be a closed reduced subscheme. Let Ip C Ox
the ideal sheaf of D in X and Op = Ox/Ip. Put

gr,(Ox) = @IE/IE“.

>0
Definition 2.1 Assume that no irreducible component of X is contained in D.

(1) X is normally flat along D at v € D if gr; (Ox) ®o, Ope is a flat Op ,-module.
X is normally flat along D if X is normally flat along D at all points of D.

(2) D C X is permissible at x € D if D is regular at x, and X is normally flat along
D atx. D C X is permissible if D is permissible at all points of D.

(3) The blowup wp : Blp(X) — X in a permissible center D C X, is called a permissible
blowup.

For a closed subscheme D C X, the normal cone of D C X is defined as:
Cp(X) = Spec(gr;, (Ox)) — D.
Theorem 2.2 Let the assumption be as in Definition 2.1.

(1) There is a dense open subset U C D such that X is normally flat along D at all
reU.

(2) The following conditions are equivalent:

(1) X is normally flat along D at x € D.
(73) T,(D) C Diry(X) and the natural map C,(X) — Cp(X) Xp x induces an

isomorphism Co(X)/Ty(D) = Cp(X) xp x, where Ty(D) acts on Cr(X) by
the addition in T,(X).

Assume that in addition that X is a closed subscheme of a reqular excellent scheme
Z. Letx € D and set R = Oy, with the mazimal ideal m and k = R/m. Let J C R
(resp. p C R) be the ideal defining X C Z (resp. D C Z). Then the following
conditions are equivalent to the conditions (i) and (ii) above.

(49i) Let u: gry(R) ®prjpk — gro(R) be the natural map. Then Ing(J) is generated
in gry(R) by u(Iny(J)).

(iv) There exists a standard base f = (fi,..., fm) of J such that va(fi) = ve(fi)
foralli=1,...,m (cf. (1.3)).
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Theorem 2.2(1) follows from [H1] Ch. I Theorem 1 on page 188 and (2) from [Gil], IT §2,
Theorem 2.2 and 2.2.3 on page II-13 to 1I-15.

There is a numerical criterion for normal flatness due to Bennett, which we carry over to
our setting: Let the assumption be as in the beginning of this section. Let Hx(z) be as
in Definition 1.30.

Theorem 2.3 Assume that D is reqular. Let x € D, and let y be the generic point of the
component of D which contains x. Then the following conditions are equivalent.

(1) X is normally flat along D at x.
(2) H((Qo))(m = Hg)ﬁf“(’c”, where Y = {y}, the closure of y in X.
(3) Hx(xz) = Hx(y).

Proof The equivalence of (1) and (2) was proved by Bennett ([Be], Theorem (3)). The
rest is a special case of the following lemma.

Lemma 2.4 Let X be an excellent scheme, and let x,y € X with x € {y}. then the
following are equivalent.

0 (codimT(x))
(1) H((Q))(yz = HOxyy v :
(2) Hx(z) = Hx(y).

If these conditions hold, then I(x) = I(y) and ¢x(z) = x(y) + codimy ().

Proof By the definition of the considered functions, for the equivalence of (1) and (2)
it suffices to show that either of (1) and (2) implies

(2.1) ¢x(y) = ox(x) + codimy (z),
where Y = {y}. Assume (2). By Lemma 1.27 we have
dim Ox, + ¢x () =dim Ox y, + ox(y).
On the other hand,
dim Ox, = codimy (z) > codimy (x) + codimx (y) = codimy (z) + dim Oy, .
Thus we get
¢x(y) =dim Ox, + ¢x(z) — dim Ox, > ¢x(x) + codimy (),
which implies (2.1) by Lemma 1.31.

Next assume (1). Let O = Ox, and let p C O be the prime ideal corresponding to y. It
suffices to show that p contains all minimal prime ideals of O. In fact, this means that
y is contained in all irreducible components of X which contain z, i.e., that I(y) = I(z).
Since, for any irreducible Z € I(y) we have

codimy(z) = codimz(y) + codimy (z) ,
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we deduce the equality ¥ x(x) = 1¥x(y) + codimy (x) and hence (2.1). At the same time
we have proved the last claims of the lemma. As for the claim on O and p let

be a reduced primary decomposition of the zero ideal of O, and let p; = Rad(P;) be
the prime ideal associated to ;. Then the set {pi,...,p,} contains all minimal prime

ideals of O, and it suffices to show that p contains all ideals B; (Note that an ideal a is
contained in p if and only if Rad(a) is contained in p). Assume the contrary. We may

assume Py € p. Put O’ = O/Q with Q = PN --- NP, and let O, (resp. Oy) be the
localization of O (resp. O') at p (resp. pO’). Then Op = O, and O/p = O’ /pO" and
HO > g > g9 — g

O{,_ b

where d = codimy (z) = dim O/p = dim O’ /pO’. The first inequality follows from Lemma
1.26 and the second inequality follows from [Be], Theorem (2). Hence (2) implies H((Q1 ) =

Hg,). By Lemma 1.26 this implies O = O’ so that Q = 0, contradicting the assumption
that the primary decomposition is reduced. [J

The above criterion is complemented by the following observation.

Lemma 2.5 Let X be a connected excellent scheme. If there is an irreducible component
Z C X such that Hx(z) = Hx(y) for all z,y € Z (i.e., Z C X(v) for some v € NY),
then Z = X.

Proof We have to show that X is irreducible. Assume not. Then there exists an x € X
which is contained in two different irreducible components. Let O = Ox, be the local
ring of X at z, let

(22) <O>:‘B1ﬂ...ﬂ‘,]3T

be a reduced primary decomposition of the zero ideal of O, and let p; = Rad(]3;) be the
prime ideal associated to 3;. By assumption we have r # 1. Then there is an ¢ such that
the trace of Z in O is given by p;. Let n; € Spec(O/9;) C Spec(O) C X be the generic
point of Z (corresponding to p;). By assumption we have

H((/)d))(m = HX(W) = Hy ([1;) = H((Dd—wx(ﬂﬂ))
where d = dim X, because ©x(n;) = 0. On the other hand, we have

d d—c d—c d— T
2 B, < H) < HEO < B

where ¢ := dim(O/%;) = dim(O/p;) = codimg,~(z) = codimz(z). Here the first inequal-
ity holds by the results of Bennett/Singh recalled in the proof of Theorem 1.34 (1), the
second inequality follows from Lemma 1.26, and the last inequality holds since ¥ x (z) < c.
Now, since p; is a minimal prime ideal and (2.2) is reduced, we have an isomorphism

OXJH = Opi = (O/“BZ)PL :

Therefore we have equalities in (2.3). By the other direction of Lemma 1.26 we conclude
that O = O/9;, i.e., B, = 0, which is a contradiction if r # 1.00

)

We now prove a semi-continuity property for e, (X), the dimension of the directrix at .
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Theorem 2.6 Let X be an excellent scheme, and let x,y € X such that D = {y} is
permissible and x € D. Then

ey(X) < e,(X) —dim(Op,y) -

The question only depends on the local ring Ox,, and by Lemma 1.29 (2) we may
assume that we consider the spectrum of a complete local ring and the closed point x
in it. Moreover, by the structure theory of complete noetherian rings every such ring is
a quotient of a regular complete (hence excellent) local ring. Therefore Theorem 2.6 is
implied by the following result.

Theorem 2.7 Let R be an excellent regular local ring with maximal ideal m. Let J C R
be an ideal. Let p C R be a prime ideal such that J C p and that Spec(R/p) C Spec(R/J)
is permissible. Let R, be the localization of R at p and J, = JR,. Then

e(Rp/Jp) < e(RR)J) — dim(R/p).

Proof Set A = R/p and let K be the quotient field of A. Set My = M ®4 K for an
A-module M. By definition there exists a K-subspace V' = IDir(R,/.J,) C gry(R)x of
dimension s such that dimg (V') = dim(R,) — e(R,/J,) and

(2.4) Ing(J)g = (K[V]NIny(J)k) - gry(R)k-

Lemma 2.8 Assume that there exist free A-modules T,S C gri(R) such that gry(R) =
T®S andV =Tk Let u: gry,(R) ®rjp kb — gru(R) be the natural map. Then u(T) D
IDir(R/J) Ngrl(R).

Note that the assumption of the lemma is satisfied if dim(A) = 1, by the theory of
elementary divisors. Theorem 2.6 is a consequence of the conclusion of Lemma 2.8 by
noting

dimy, (u(T)) = dimg(T ®4 k) = dimg (V) = dim(Ry) — e(Ry/Jp)
so that the lemma finishes the proof of the theorem in case dim(R/p) = 1.

We show Lemma 2.8. The assumption of the lemma implies
(2.5) gry(R) = Symy(gry(R)) = A[T] @4 A[S],

where A[T] = Sym4(T') (resp. A[S] = Sym4(S5)) is the sub A-algebra of gr,(R) generated
by T (resp. S).

Claim 2.9
Iny(J) = (A[T] N Iny(J)) - gry(R).

By Theorem 2.2(2)(7ii) the claim implies that Iny(J) is generated by u(A[T]) N Ing(J),
which implies Lemma 2.8. Thus it suffices to show the claim. Note

(2.6) (K[V]INIny(J)k) Ngry(R) = (A[T] N Iny(J))x Ngry(R) = A[T] N Iny(J).

Indeed (2.5) implies K[V]Ngr,(R) = A[T] and the flatness of gr,(R/J) = gr,(R)/In,(J)
implies In,(J)x Negry(R) = Iny(J).
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Take any ¢ € Iny(J). By (2.4) and (2.6) there exists ¢ € A such that

cop = Z aithi, Y € A[T| N Iny(J), a; € gr,(R),

1<i<m

Choosing a basis 7, ..., Z, of the A-module S, (2.5) allows us to identify gr,(R) with
the polynomial ring A[T|[Z] = A[T|[Z1, ..., Z,] over A[T]. Then, expanding

o= Z ZB¢p, a;= Z ZBa;p, with ¢p € A[T), a;p € A[T),

BezL, Bezz,
we get
cop= Y  aipth for any B € ZL,.
1<i<m
Since Y a;pY; € A[T] N Iny(J), this implies ¢pp € A[T] N Iny(J) by (2.6) so that
1<i<m

¢ € (A[T] N Iny(J)) - gry(R). This completes the proof of the claim.

To finish the proof of Theorem 2.6, it suffices to reduce it to the case dim(R/p) = 1 as
remarked below Lemma 2.8. Assume dim(R/p) > 1 and take a prime ideal ¢ D p such
that R/q is regular of dimension 1. Let Ry be the localization of R at q and J, = JR,.
Noting

8o, (Raf ) = g1,(R) ) @rjp Ro/p Ry

the assumption implies that Spec(R,/pR,) C Spec(Rq/JR,) is permissible. By the in-
duction on dim(R), we have

e(Rp/Jp) < e(Ry/Jq) — dim(Ry/pR,) = e(Rq/Jq) — (dim(R/p) — 1).
Hence we are reduced to show
e(Ry/Jq) < e(RR)J) —dim(R/q) = e(Ry/Jq) < e(R/J) — 1.
This completes the proof of Theorem 2.6.

Bennett and Hironaka proved results about the behavior of Hilbert-Samuel functions in
permissible blow-ups which are fundamental in resolution of singularities. We recall these
results (as well as some improvements by Singh) and carry them over to our setting.

Theorem 2.10 Let D be a permissible closed subscheme of an excellent scheme X, and
let
X:X/:BKD(X)—)X and

be the blowup with center D. Take any points x € D and z’ € 7T;(1<$> and let § = 0y 7 =
trdeg,,(k(z")). Then:

(1) Hgi)(, L < H((Qo))w and ¢x/(x') < ¢x(x) +3d and Hx/(z') < Hx(z).

(2) Hx(a')=Hy(z) < HY

X/ x!

(0)
HOX,I .
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(3) If the equalities in (2) hold, then ¢x/(x') = ¢px(x)+ 6, the morphism Ox , — Oxr
is injective, and I(z') = {Z' | Z € 1(x)} where Z' denotes the strict transform of
Z e I(x).

(4) If the equalities in (2) hold, then, for any field extension K/k(x') one has
ez’(X/)K < eas(X)K - 5:p’/x

Assume in addition that X — Z is a closed immersion into a reqular excellent scheme
Z, and let
g7 = Blp(Z)— Z

be the blowup with center D. Then:
(5) vi(X',Z") < vi(X,Z) in the lexicographic order.
6 0 * *
(5)_Hg;%J:;Hg;@ s (XL Z)=vi(X, 7).

Proof In a slightly weaker form, viz., Hg;a)/ < Hg))(x, the first inequality in (1) was

proved by Bennett ([Be] Theorem (2)), and Hironaka gave a simplified proof ([H4] Theo-
rem I). In the stronger form above it was proved by Singh ([Sil], Remark after Theorem
1). For the second inequality, since dim(X) = dim(X"), it suffices to show

(2.7) Ux(x) < xo(a’) + 0.

Let Y1, ...,Y, be the irreducible components of X and let Y; be the strict transform of Y;
under wx. Then Y/, ..., Y are the irreducible components of X'. If 2’ € Y/, then z € Y]
and EGAIV (5.6.1) implies (note that Oy, , is universally catenary since Y; is excellent)

(2.8) codimy, (z) = codimyy (z') 4 4.
(2.7) follows immediately from this.

The last inequality in (1) now follows:

(2'9) HX/(J:/) _ H(¢’x/($')) < H(¢>X(I)+5) < H<(9¢;,z($)) _ HX(I)

- OX’,I’ OX’,z’

Claims (5) and (6) were proved by Hironaka in [H4] Theorems II and III, hence it remains
to show (2), (3) and (4).

As for (2), assume Hy/(z') = Hx(x), i.e., that equality holds everywhere in (2.9). To
show H((Qi){/ L= H((QO))(’%, it suffices to show that

(2.10) dx(2') = px(x)+9.
Let d = dim(Ox) and d' = dim(Ox /). By Lemma 1.27(b) the assumption implies
(2.11) d + ¢x/(2') =d+ ox(x).

On the other hand, by Lemma 1.27(b), the inequality Hg?{/ < H((Qolz from (1) implies
(2.12) d+6<d.

From (2.11) and (2.12) we deduce ¢x(z) + d < ¢x/(z’), which implies (2.10), in view of
(1).
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Conversely assume H, (5})(/% = H((f)o))(}z. To show Hyx/(z') = Hx(x), it again suffices to show

(2.10). We have to show
(213) Yx () = () + 6.

In view of (2.8) and with the notations there, it suffices to show that 2’ € Y/ if z € ¥},

i.e., the third claim of (3). For this, by the lemma below, it suffices to show the injectivity
of O =0x, — Ox = O, ie., the second claim of (3).

Lemma 2.11 Let f : A — B be the homomorphisms of noetherian rings. Assume that
there is a minimal prime ideal of A, which does lies in the image of Spec(B) — Spec(A).
Then f is not injective.

Proof Let (0) = Py N ... NP, be a primary decomposition of the zero ideal in B, and
let p; = Rad(*B;), which is a prime ideal. Assume A — B is injective. Then, with
Q;, =P;NA, (0) =9;,N...N1Q, is a primary decomposition in A. Therefore {q. ..., q,},
with q; = Rad(£Q;) = p;NA, is the set of all associated prime ideals of A and hence contains
all minimal prime ideals of A, see [Ku| VI Theorems 2.18 and 2.9. This contradicts the
assumption.

Before we go on, we note the following consequence of Lemmas 1.29 and 1.37: For all
claims of Theorem 2.10, we may, via base change, assume that X = Spec(Ox ), and that
the local ring Ox , is complete. This also holds for the injectivity of O — ', which is
obvious for the first base change, and follows for the second base change, because it is
faithfully flat, and the considered local rings are reduced. Therefore we may assume that
Ox . is a quotient of a regular excellent local ring R, and that X is embedded in a regular
excellent scheme Z. We will assume this in the following.

Now we use the results of Hironaka in [H4]. First consider the case k(z") = k(x), where 6 =
0. Let p C O = Ox, be the prime ideal corresponding to D, let A = gr,(Ox ) ®o,p k(z),
and let F' = 73! () C X' be the scheme theoretic fibre of 7x : X’ — X over . Then
F = Proj(A), and by [H4] (4.1) we have inequalities

(2.14) HG < HGP™ < HETY = HE)

where s = dim Op, and Cx p, = Spec(A). By our assumption, these are all equalities.
Moreover, if O = R/J for a regular excellent local ring R with maximal ideal m, then
there is a system of regular parameters (xg,..., %, %1,...,ys) of R such that the ideal
P of D in R is generated by xzq,...,z,. If Xo,..., X, Y],...,Y, are the initial forms of
X0y Ty Y1, - -+, Ys (With respect to m), then the fiber E over x in the blowup Z’ of Z =
Spec(R) in the center D is isomorphic to Proj(k[X.]) for k = k(x) and the polynomial ring
k[X.] = k[ Xy, ..., X,], and there is a homogeneous ideal I C k[X.] such that A = k[X.]/I
and F' C F identifies with the canonical immersion Proj(k[X.]/I) C Proj(k[X.]). We may
assume that 2’ € F' C E lies in the standard open subset D, (X,) C Proj(k[X.]) = E. If
furthermore k(2') = k(z) = k as we assume, then 6 = 0, and by equality in the middle of
(2.14) and the proof of lemma 8 in [H4] there is a graded k-algebra B and an isomorphism
of graded k[X,]-algebras A = B[Xj).

On the other hand, let n be the maximal ideal of O, and let zq,..., 2, € n be elements
whose images Z, ..., Z, € n/n? form a basis of n/p + n?. Then one has an isomorphism
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of graded algebras
AlZy, ..., Zs] = gra(O)

induced by the canonical map A — gr,(O), because p C O is permissible ([H1] II 1.
Proposition 1). This shows that the image of Xj in n/n?  is not zero and not a zero
divisor in gr,(O). Therefore the image of o € R in O is not zero and not a zero divisor
in O.

Now we claim that every element in the kernel of O — (0’ is annihilated by a power of
xg, which then gives a contradiction if this kernel is non-zero. Let R’ = Oy, be the
monoidal transform of R with center P corresponding to 2’ € Z’, where p = P/J, and let
J' C R' be the strict transform of J, so that O’ := Oy, = R'/J’. Then, since

R = R[i—;, e g—g]<% ,,,,, e and PR = xR,

it follows from [H1] IIT Lemma 6, p. 216 that there are generators fi,..., f,, of J and
natural numbers nq, ..., n,, such that J' is generated by fi/zg*, ..., fm/z(™. Evidently
this implies that every element in the kernel of O — (O’ is annihilated by a power of z.

Now consider the case that the residue field extension k(x’)/k(z) is arbitrary. We reduce
to the residually rational case (k(z') = k(z)) by the same technique as in [H4]. As there,
one may replace X by SpecOyx ,, and consider a cartesian diagram

/

2 )l (l_ X/ 7
[ N
T X X T,

where i is a faithfully flat monogenic map which is either finite or the projection X =
Al — X, and f is the blow-up of D = i~'(D), which is again permissible. Moreover,
# € X is the generic point of i~!(z) such that k() is a monogenic field extension of k(z),
and there is a point # € X’ which maps to 2’ € X’ and # € X and satisfies k(') = k().
Furthermore one has the inequalities
Hol < Holl, <Hoy, = Hoy, .

where § = tr.deg(k(i')/k(&)) (= 8 if k(&)/k(x) is algebraic, and § — 1 otherwise). By our
assumption all inequalities become in fact equalities, and by induction on the number of
generators of k(x') over k(x) (starting with the residually rational case proved above), we
may assume that Oz ; — O/ 5 is injective. Since Ox, — Ox ; is injective, we obtained
the injectivity of Ox, — Ox . This completes the proof of (2), and while doing it, we
also proved the claims in (3).

Finally we prove (4). Still under the assumption that X is embedded in a regular excel-
lent scheme Z, Hironaka proved in [H2] Theorem (1,A), that the equality v}, (X', Z') =
vi(X,Z) implies the inequality in (4). Together with (2) and (6) this implies (4) and
finishes the proof of Theorem 2.10. [J

Corollary 2.12 For v € X% (cf. Definition 1.36), either v & Yx or v € L. We
have
X'(0) Cmd (X)) and 7' (X)) © X' ().

p<v
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Definition 2.13 Let the assumption be as in Theorem 2.10 and put k' = r(x').
(1) 2’ € n'(x) is near to x if Hy/(2') = Hx ().
(2) «' is very near to x if it is near to x and ey (X') + 0y /p = €2(X)w = €2(X).

We recall another result of Hironaka which plays a crucial role in this paper. Let again
D be a permissible closed subscheme of an excellent scheme X, and let

mx : X' = Blp(X)— X and
be the blowup with center D. Take any points x € D and 2’ € 73! (7).

Theorem 2.14 Assume that =’ is near to x. Assume further that char(k(z)) = 0, or
char(k(x)) > dim(X), where k(x) is the residue field of x. Then

2’ € P(Dir,(X)/T.(D)) C ny'(z),
where P(V') is the projective space associated to a vector space V.

Proof First we note that the inclusion above is induced by the inclusion of cones
(i.e., spectra of graded algebras) Dir,(X)/T,(D) C Cp(X)/T,(D) and the isomorphism
Co(X)/Tx(D) = Cp(X), of cones from Theorem 2.2 (2)(ii). More precisely, it is induced
by applying the Proj-construction to the surjection of graded k(x)-algebras

Ap = gra,(Ox.)/Sym(T(D)) — Sym(Dire(X))/Sym(T:(D)) = Bp

where we identify affine spaces with the associated vector spaces and note that Proj(Ap) =
7T)_<1 (x). Since the claim is local, we may pass to the local ring O = Ox , of X at . Further,
we may consider the base change with the completion 0 = @X@ of Ox ., with respect
to the maximal ideal n, C Ox,, because O — O is flat. Since every complete excellent
local ring is a quotient of a regular (complete) excellent ring, we then may assume that
X is embedded into a regular excellent scheme Z. If 7 : Z' = Blp(Z) — Z denotes the
blowup of Z in D, we have a further inclusion

P(Co(X)/To(D)) = my' (2) C P(To(2)/To(D)) = 75" ().

Therefore the claim that z’ € P(Dir,(X)/T,(D)) follows from [H4|, Theorem IV and [H5],
Theorem 2. In fact, by the latter reference there is a certain canonical subgroup scheme
Bp . C V =T,(2)/T.(D) just depending on =’ € P = P(V), which has the following
properties. It is defined by homogeneous equations in the coordinates of V, hence a
subcone of V, and the associated subspace P(Bp ,/) contains z’. Moreover, it is a vector
subspace of V if char(k(z)) = 0, or char(k(x)) = p > 0 with p > dim(Bp ,+). On the other
hand, by the former reference, the action of Bp ,» on V respects C,(X)/T,(D) if 2’ is near
to x. Since 0 € C,(X), we conclude that Bp . is contained in C,(X) /T, (D), and hence has
dimension at most d = dim(X) — dim(D) < dim(X). Therefore, by the assumption p >
dim(X), Bp, is a vector subspace of C,(X)/T,(D) and is thus contained in the biggest
such subspace - which is Dir,(X)/T,(D). Therefore 2’ € P(Bp /) C P(Dir,(X)/T,(D)).
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Lemma 2.15 Consider X(v) for v € ¥, Let m : X' = Blp(X) — X be the blowup
with permissible center D contained in X (v). Let Y C X(v) be an irreducible closed
subset which contains D as a proper subset. Then:

(1) Y' C X'(v), where Y C X' be the proper transform.

(2) Assume char(k(z)) =0, or char(k(z)) > dim(X). Then we have e,(X) > 1 for any
v €D and ey (X') > 1 for any 2’ e = {(D)NY".

Proof Let n (resp. 1) be the generic point of Y (resp. Y’). Take points z € D and
' € 77 Y(z) NY’. Then we have

Hx(x) > Hx/(2") > Hx:(n') = Hx(n),

where the first inequality follows from Theorem 2.10(1), the second from theorem 1.34,
and the last equality follow from the fact Ox, = Ox/,. Since Y C X(v), we have
Hx(x) = Hx(n) = v so that the above inequalities are equalities. This implies Y’ C
X'(v), which proves (1). Next we show (2). If e,(X) = 0 for x € D, then there is no point
of B¢,(X) which is near to x by Theorem 2.14. Thus (1) implies e,(X) > 1. To show
e (X') > 1for 2/ € (D) NY’, let W C X’ be the closure of 2’ in X’. By assumption
W is a proper closed subset of Y. Since e,/(X’) is a local invariant of Ox/ ./, we may
localize X' at 2’ to assume W is regular. Then, by Theorem 2.3, W’ C X’ is permissible.
Now the assertion follows from the previous assertion applied to By (X') — X'. O
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3 B-Permissible blow-ups - the embedded case

Let Z be an excellent regular scheme and let B C Z be a simple normal crossing divisor
on Z. For each z € Z, let B(z) be the subdivisor of B which is the union of the irreducible
components of B containing x.

Definition 3.1 Let D C Z be a regular subscheme and x € D. We say D is normal
crossing (n.c.) with B at x if there exists zi,...,zq, a system of reqular parameters of
R := Oy, satisfying the following conditions:

(1) D xz Spec(R) = Spec(R/(z1,...,2)) for some 1 <r <d.
(2) B(x) xz Spec(R) = Spec(R/([1%;)) for some J C {1,...,d}.

jed
We say D is n.c. with B of D is n.c. with B at any point x € D.

Note that D is n.c. with B if and only if D is transversal with the intersection of any set
of irreducible components of B which does not contain D.

Let D C Z be n.c. with B. Consider Z' = Blp(Z) ~2 Z. Let B = Blpy,z(B) C Z'
be the strict transform of B in Z’, let E := 7,'(D) be the exceptional divisor, and let
B’ =B U E be the complete transform of B in Z’. We easily see the following:

Lemma 3.2 B and B’ are strict normal crossing divisors on Z'.

For the following, and for the comparison with the next section, it will be more convenient
to consider the set B = C(B) of irreducible components of B.

Definition 3.3 A simple normal crossings boundary on Z is a set B ={By,...,B,} of
regular divisors on Z such that the associated divisor div(B) = By U ... B, is a (simple)
normal crossings divisor. For x € Z let B(x) = {B € B | x € B}. Often the elements of
B are also called components of B.

An equivalent condition is that the B; intersect transversally, i.e., that for each subset
{i1,...,i,} C{1,...,n} the intersection B;, Xz ... Xz B;_ is regular of pure codimension
r in Z. The associations

(3.1) B+— B =C(B) , B +— B = div(B)

give mutual inverse bijections between the set of simple normal crossing (s.n.c.) divisors
on Z and the set of simple normal crossing (s.n.c.) boundaries on Z, and we will now use
the second language. Via (3.1) the above definitions correspond to the following in the
setting of boundaries.

Definition 3.4 (a) A regular subscheme D C Z is transversal with a s.n.c. boundary B
at x if for B(x) = {By,..., B} it intersects all multiple intersections B;, Xz ... Xz B;,
transversally, and D is normal crossing (n.c.) with B at  if it is transversal with B(z) —

B(x)p, where B(x), ={B € B(z) | D C D}.
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(b) If D is n.c. with B, and Z' = Blp(Z) =% Z is the blow-up of D, then the strict and
complete transform of B are defined as

B:={B|BeB} , B:=BUf{E}

where B = Blpy,5(B) is the strict transform of B in Z, and E = pi;'(D) is the
exceptional divisor. (Note that B and B' are s.n.c. boundaries on Z' by Lemma 3.2.)

In the following, consider a regular excellent scheme Z and a simple normal crossing
boundary B on Z. Moreover let X C Z be a closed subscheme.

Definition 3.5 Let D C X be a regular closed subscheme and v € D. We say D is
B-permissible at x if D C X is permissible at x and D is n.c. with B at x. We say
D C X s B-permissible if D C X s permissible at all x € D.

Definition 3.6 A history function for B on X is a function

(3.2) O : X — {subsets of B} ; x — O(x),

which satisfies the following conditions:

(O1) For any x € X, O(x) C B(x).

(02) For any x,y € X such that x € {y} and Hx(z) = Hx(y), we have O(y) C O(z).

(03) Foranyy € X, there exists a non-empty open subset U C {y} such that O(x) = O(y)
for all x € U such that Hx(z) = Hx(y).

For such a function, we put for x € X,

A component of B is called old (resp. new) for x if it is a component of B(x) (resp. N(z)).
A basic example of a history function for B on X is given by the following:

Lemma 3.7 The function O(x) = B(x) (v € X), is a history function for B on X. In
fact it satisfies 3.6 (02) and (03) without the condition Hx(x) = Hx(y).

Proof Left to the readers.

Define a function:
HY: X - N'xN; z — (Hx(z),| O(z) |),

where | O(z) | is the cardinality of O(z). We endow N x N with the lexicographic order:
(vyp) > (W, y)yesv>vorv=1vand u> .

The conditions in 3.6 and Theorem 1.34 immediately imply the following:

Theorem 3.8 Let the assumption be as above.

(1) If x € X is a specialization of y € X, then H(x) > H(y).
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(2) For any y € X, there is a dense open subset U of {y} such that HQ(y) = HQ(x)
for any x € U.

In other words (see Lemma 1.35), the function HY is upper semi-continuous on X. By
noetherian induction Theorem 3.8 implies

¥Q = {H{(z)| 2 € X} cNY x N
is finite. We define 29" to be the set of of the maximal elements in %9,
Definition 3.9 (1) For v € X$ we define

X() =X°(0) = {z € X | HY(z) =V}

and

X(27) = XO(=7) = {z € X | H(z) > 7},
and we call
(3.3) X0 = U X@).

~ O,mazx
veEY ¢

the O-Hilbert-Samuel locus of X .
(2) We define
Dir? (X) := Dir,(X) N (] Tu(B) CTu(2).
BeO(x)

e (X) = dim,(,) (Dir? (X)).

By Theorem 3.8 and Lemma 1.35, X (7) is locally closed, with closure contained in X (> 7).
In particular, X (7) is closed for 7 € £9™* the union in (3.3) is disjoint, and X2, is a
closed subset of X. Theorems 2.2 and 2.3 imply the following:

Theorem 3.10 Let D C X be a regular closed subscheme and x € D. Then the following
conditions are equivalent:

(1) D C X is permissible at x and there is an open neighborhood U of x in Z such that
DNU C B for every B € O(x).

(2) H¢(x) = H(y) for any y € D such that x is a specialization of y.
Under the above condition, we have
(3.4) T.(D) c Dir(X).

Definition 3.11 Clall a closed subscheme D C X O-permissible at x, if it satisfies the
equivalent conditions in Theorem 5.10.

Remark 3.12 Note that D C X is B-permissible at x if and only if D is O-permissible
at x and n.c with N(x) at z.
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Theorem 3.13 Let the assumption be as in Theorem 3.10 and assume that D 1is irre-
ducible. Assume:

(1) D C X is O-permissible at x.
(2) e,(X) = e,(X) —dim(Op,) (cf. Theorem 2.6),
where 1 is the generic point of D. Then we have

e?(X) < e?(X) — dim(Op.,).

1
Proof First we claim that (1) and (2) hold after replacing = by any point y € D such
that x € {y} and {y} is regular at x. Indeed the claim follows from the inequalities:
HR(n) < HY(y) < HY(x),
en(X) < ey(X) —dim(Op,y)

< (en(X) — dim((’)gw)) —dim(Opy) = €,(X) — dim(Op ,),

which follows from Theorems 3.8 and 2.6. By the claim we are reduced to the case where
dim(Op_,) = 1 by the same argument as in the proof of Theorem 2.6. Let R = O, and
let J C p C R be the ideals defining X C Z and D C Z, respectively. Let R, is the
localization of R at p and J, = JR,. By Lemma 2.8 (2) implies that there exists a part
of a system of regular parameters y = (y1,...,y,) of R such that y C p and that

IDir(R,/Jy) = (ing(y1), - - -, inp(y,)) C grp(RP)7
IDir(R/J) = (inm(v1), - - -y inm(y,)) C gra(R),
We can take 0y, ...,605 € R such that (yi,...,y,,01,...,0s) is a part of a system of regular
parameters of R and that there exists an irreducible component B; of O(z) for each
i=1,...,s such that B; xz Spec(R) = Spec(R/(6;)) and
IDit®(R/J) = (inm(y1), - - -, inm(yy ), inm(61), - . ., inm(6s)),

where IDir?(R/J) C gr,(R) is the ideal defining Dirt?(X) C T,(Z). Now (1) implies
O(z) = O(n) so that D C B; and 0; € p for all i = 1,...,s. Hence (y1,...,yr,01,...,05)
is a part of a system of regular parameters of R, and

IDIt?(R,/J,) D (ing(y1), - - -, inp(yy), inp(01), . . ., ing(0s)),
which implies the conclusion of Theorem 3.13. [

Let D C X be a B-permissible closed subscheme. Consider the diagram

X' = Bip(X) &% X
(3.5) | !
7' = Bip(2) % Z

and let B’ and B be the complete and strict transform of B in Z’, respectively. For a
given history function O(x) (x € X), we define functions O’, O : X’ — {subsets of B’}
as follows: Let ' € X’ and z = mx(2') € X. Then define

5@/) N B/(x/) if HX/(ZL',) = Hx([L’)
B'(z') otherwise,

(3.6) O'(z) =
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where O(x) is the strict transform of O(z) in Z’, and

(3.7) O(x') = { O(x)NB'(«')  if Hx:(2') = Hx()

B(z') otherwise.

—_—~—

Note that O'(z/) = O(a’) = O(x) N B(z') if &' is near to .
Lemma 3.14 The functions ' — O'(z'), 2’ — O(a') are history functions for B' on X.

The proof of Lemma 3.14 will be given later.

Definition 3.15 We call (B',0’) and (B, 0) the complete and strict transform of (B, O)
in Z', respectively.

Theorem 3.16 Take points v € D and 2’ € wy'(x). Then HQ, (z) < HY(2") < HY(2).
In particular we have

T XO@) C UXO[E) for7 e TR,

and the same holds for O in place of O'.

Proof This follows immediately from Theorem 2.10, (3.6) and (3.7).

In the following we mostly use the complete transform (B, 0’) and, for ease of notation,
we often write HQ (2') and X9, instead of HY (2') and ¥¢,, similarly for £ etc.,

because everything just depends on O.

Definition 3.17 We say that @’ € 7' (x) is O-near to x if the following equivalent
conditions hold:

(1) HQ(+') = HY(x) (& HY(x) = HQ(x) & HR(«) = HY(x) )

(2) ' is near to x and contained in the strict transforms of all B € O(x).
Call ' very O-near to x if 2’ is O-near and very near to x and e9(X') = €9 (X) — 64/z.
The following result is an immediate consequence of Theorem 2.14 and definition 3.3 (2).

Theorem 3.18 Assume that ©’ € X' is O-near to x = wz(2') € X. Assume further that
char(k(x)) = 0, or char(k(z)) > dim(X), where k(z) is the residue field of x. Then

+' € P(D?(X)/Tx(D)) C B(T,(2)/T.(D)) = 77 ()

Proof of Lemma 3.14: Take ¢/, 2’ € X’ such that 2’ € {y/} and Hx/(2') = Hx/(y'). We

want to show O'(y) C O'(2'). Put v = nx(2'),y = nx(y') € X. We have z € {y}. By
Theorems 1.34 and 2.10

Hy(y) < Hx(y) < Hx(z) > Hyo(2) = Hy(y).
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First assume Hy(x) > Hy/ ('), which implies Hx/(y") = Hx(y) = Hx(x). By 3.6 (02)
and (3.6) we get
O'(y) = O(y) NB(y) C O(x) N B(z) = O'(').
Next assume Hx(z) > Hy/(z"). Then, by Lemma 3.7 and (3.6), we get
O'(y) c B'(y) C B'(z) = O'(«).
Next we show that for ¢/ € X', there exists a non-empty open subset U’ C {y'} such that
Hy/(z') = Hx/(y') and O'(2") = O'(y') for all 2’ € U’. Put y = mx(y'). By Lemma 3.7
and 3.6 (O3), there exists a non-empty open subset U C {y} such that Hx(x) = Hx(y),
B(x) = B(y) and O(xz) = O(y) for all z € U. By Theorem 1.34(3) and Lemma 3.7,
there exists a non-empty open subset U’ C {y'} N7y (U) such that Hx:(2') = Hx/(y/)
and B'(z') = B'(y') for all 2’ € U’. We now show U’ satisfies the desired property.
Take ' € U’ and put x = wx(z'). By the assumption we have Hx/(z') = Hx/(y') and
Hx(x) = Hx(y).
First assume Hx/(2") = Hx(z), which implies Hx/(y') = Hx(y). By (3.6) we get
O'(y) = 0(y) NB(y) = O(x) N B (a') = O'(x")
Next assume Hy/(z") < Hx(z), which implies Hx/(y') < Hx(y). By (3.6) we get
O'(y) =B(y) = B'(z') = O'(«").
This completes the proof of Lemma 3.14 for (B’,0"). The proof for (g, 5) is similar. [J

For 2’ € X' let N'(z') = B'(2') — O’(2") be the set of the new components of (B’,0’) for
o', If ' is near to x = mx(2') € D, i.e., Hx/(z') = Hx(z), then
(3.8) N'(2') = (N(z) N B(z')) U{E} with E=n,'(D)

P

where N(z) is the strict transform of N(z) in X’. If 2’ is not near to x, then N'(z’) = 0.

Similarly, N(z) = B(z')—O(z) = mﬂg(:v') C N'(2') if 2/ is near to z, and N(z') = 0),
otherwise. We study the transversality of N'(z’) with a certain regular subscheme of E.

Definition 3.19 For a k(z)-linear subspace T C T,(Z), we say that T is transversal with
N(z) (notation: T t N(z)) if

dimy) (TN N Ty(B)) = dimy(T)— | N(x) | .
imy) (70, N To(B)) = dime)(T)— | N() |

Lemma 3.20 Let nz : Z' = Blp(Z) — Z be as in (3.5). Assume D =z and T i N(z).
Then the closed subscheme P(T) C E = P(T,(Z)) is n.c. with N'(z") and N(2') at each
2 € T (z).

Proof Let R = Oy, with the maximal ideal m. For each B € N(z), take hp € R such
that B xz Spec(R) = Spec(R/(hp)). Put Hg = iny(hg) € grl (R). In view of (3.8) the
lemma follows from the following facts: The ideal (Hg) C gr,(R) defines the subschemes

T.(B) C T,(Z) = Spec(gr,(R)) and FE xz BCE= Proj(gr,(R)),

where B is the strict transform of B in Z’. [
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Lemma 3.21 Letny : Z' = Blp(Z) — Z be as (3.5). Assume T th N(x) and T,(D) C T
and dim, ) (T/T,(D)) = 1. Consider

{«'} = P(T/T.(D)) C P(To(2)/To(D)) = 75" (2).

Let D" C E be any closed subscheme such that ' € D' and 7z induces an isomorphism
D'~ D. Then D' is n.c. with N'(x') and N(z') at 2'.

Proof It suffices to consider N'(z’). For B € Bp we have T,(D) C T,(B) so that the
assumptions of the lemma imply 7,.(B) NT = T,(D). By the argument of the last part
of the proof of Lemma 3.20, this implies {2’} = P(T/T,(D)) ¢ B. Thus we are reduce to
show D’ is n.c. with N'(2’) N (B — Bp)'(2), which follows from the following:

Lemma 3.22 Let Z be a reqular scheme and D,W C Z be regular closed subschemes
such that D and W intersect transversally. Let w: Z' = Blp(Z) — Z and let W be the
strict transform of W in Z'. Suppose D' C E := 7w~ Y(D) is a closed subscheme such that
7 induces an isomorphism D' = D. Then D' and W intersect transversally.

Proof By definition, W= Blpaw (W). The transversality of D and W implies Bl pqy (W) ~
B€D(Z) Xz W =2 Xz W. Thus

ExyWeExy (2 x;W)=Ex;W=FExp(Dx;W).
Hence we get
D'xpW =D xp(ExyW)~D xz(Exp(DxzW))=D'xp(Dx;W)~W x;D,

where the last isomorphism follows from the assumption D’ = D. This completes the
proof of the lemma. [J

Theorem 3.23 Let 7y : Z' = Blp(Z) — Z be as (3.5). Take v € X and 2’ € wy' (7).
Assume char(k(z)) = 0, or char(k(x)) > dim(X).
(1) If 2’ is O-near and very near to z, then e9(X') < e (X) — 8u /4.

(2) Assume z' is very O-near and N(z) th Dir?(X). Then N'(z') th Dir%(X").

Proof We first show (1). Assume that 2’ is O-near and very near to x. For the sake of the
later proof of (2), we also assume N () th Dir?(X). By doing this, we do not lose generality
for the proof of (1) since we may take N(x) = (. Put R = Oz, (resp. R' = Oz ,) with
the maximal ideal m (resp. m’) and k = k(z) = R/m (resp. k' = k(2’) = R'/m'). By the
assumption there exists a system of regular parameters of R

(Y1 ooy Yry 01, o O, U, o Uy Uty - - s Uy V1 -« 5 Usy Usigds - - -5 Usiht)
satisfying the following conditions: Fixing the identification:
gro(R) =k[Y,0,U V] =Ek[Y1,....Y.,01,...,0,Uy,....Usis, Vi, ..., Vi,

(Y; = inm(vi), ©; = inn(6;), U; = ing(w;), Vi = ing(v;) € gr}n(R))
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(1) D xzSpec(R) = Spec(R/(Y1s- -y Yry s ULy -y Ugtp))-
(17) IDir,(X) = (Y1,...,Y,) Cgr,(R) (cf. Definition 1.28),

(17i) For 1 < i < g, there exists B € O(x) such that B x; Spec(R) = Béi), where
Bél) := Spec(R/(0;)), and we have

Dir?(X) = Dir,(X) N N T,(B).

1<i<q
(ii1) N(z) xz Spec(R)= U Blati) U B+,
1<i<b 1<j<t

Here By = Spec(R/(u;)), BY) = Spec(R/(v;)). Let By (resp. B." resp. B, be the

strict transform of Béi) (resp. BY, resp. Bl(,i)) in Spec(R'). Let

E={icla+1l,a+b]|2’ € B}
By Theorem 3.16 there exists iy € [1,a + b] — = such that
(yi)"qu/ﬂellw"70;7w7u; (.] S E)avlw'wvs—kt)?

where w = w;,, y; = yi/w, 0; = 0/w, u; = u;/w, is a part of a system of regular parameters
of R so that the polynomial ring:

KIYY, .. Y00 0L WU (€ 2), Vi, ..., Ve,

? T

where Y/ = inw (y;), O] = inw(0;), W = inw(w), U] = iny(u}), is a subring of gr., (R').
It also implies

N@)= |J BY=p0 B0 (B
ieN'(2") iz 1<j<t
where E = 7,'(D) and E xz Spec(R) = Spec(R/{(w)). Note
Ty (E) C Ty(Z') = Spec(gr(R')) is defined by (W) C gr.,(R').

Moreover .
Ty (B, € Ty(Z') is defined by (0;) C gro.(R).
/

Ty (B.") € T (Z') is defined by (U}) C gr,,(R') for i € =.
T, (B9 € T,(Z') is defined by (V;) C gr(R)).

On the other hand, by Theorem 8.3 the assumption that 2’ is very near to x implies that
there exist A1,..., A, € k' such that

IDiry (X') = (Y] + MW, Y/ + A\ W) C gr(R).
so that
(3.9) DTS (X)) D (Y] + MW, ..., Y + A\ W,04,...,0,).

This clearly implies the assertion of (1). If 2’ is very O-near, the inclusion in (3.9) is
equality and then it implies N’(2') M Dir%(X’). Thus the proof of Theorem 3.23 is
complete. [
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Corollary 3.24 Letny : Z' = Blp(Z) — Z be as (3.5) and take closed points v € D and
2" € wy' () such that 2’ is O-near to x. Assume char(x(x)) = 0, or char(x(z)) > dim(X).
Assume further that there is an integer e > 0 for which the following hold:

(1) €x(X)u@) < e, and either e < 2 or k(x') is separable over k(x).
(3) N(z) h Dir9(X) or e?(X) <e—1.
Then N'(z') h DirQ(X') or e9(X') < e — 1.

Proof We claim

If e9(X") > e, then e,(X) = e = ex(X') and e2(X) = e = e9(X’), so that 2’ is very
O-near to x.

First we show the first equality which implies 2’ is very near to x. Indeed the assumption
implies by Lemma 1.22 and Theorem 2.10

e < eg(X) < ew(X') < e X)uar) < e

Hence ey (X') = €;(X)u@) = e. It remains to show e,(X) = e. If x(2’) is separable
over (), this follows from Lemma 1.22(2). Assume e < 2 and e,(X) < ex(X)w@) = 2.
Then Theorem 2.14 implies that x(2') = k(x) so that e,(X) = e;(X)x(@), which is a
contradiction. Since x’ is very near to x, Theorem 3.23 (1) implies

e <ep(X) <ed(X) <en(X) <e,
which shows the second equality and the claim is proved.

By the claim, if ¢2(X) < e — 1, we must have ¢9(X’) < e — 1. Hence it suffices to

show N'(z') th Dir%(X’) assuming N(z) th Dir?(X) and €9 (X’) > e. By the claim the
second assumption implies that z’ is very O-near to x. Therefore the assertion follows
from Theorem 3.23 (2). O

Definition 3.25 Call (B,0) admissible at x € X, if N(z) h T,(X), and call (B,0)
admissible if it is admissible at all x € X.

We note that admissibility of (B,0) at x implies BI(z) C O(x), where BI(z) is defined
as follows.

Definition 3.26 Cuall B € B inessential at x € X, if it contains all vrreducible compo-
nents of X which contain x. Let

Bl(x)={BeB|ZCB foralZ e I(x)}

be the set of inessential boundary components at x, where I(x) is the set of the irreducible
components of X containing x.

Definition 3.27 Call x € X O-regular (or X O-regular at ), if
(3.10) HY(x) = (vy?, |BI(2)]).

Call X O-regular, if it is O-regular at all z € X.
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Lemma 3.28 If (B, 0) is admissible at x and X is O-reqular at x, then X is reqular and
normal crossing with B at x.

Proof The first claim follows from Lemma 1.32. Since x is regular, the assumption
N(z) m T,(X) means that N(x) is transversal to X at x. On the other hand, for the
(unique) connected component W on which x lies we have W C B for all B € Bl(z) =
O(x) where the last equality holds by assumption. Thus X is n.c. with B at z. O

The following result should be compared with Theorem 3.23.

Lemma 3.29 Let nx : X' = Blp(X) — X be as in (3.5). If (B,0) admissible at v € X,
then (B',0") and (B,0) are admissible at any 1’ € 7' (/).

Proof The proof is somewhat similar to that of Theorem 3.23: If 2’ is not near to x,
then N'(z') is empty by definition. Therefore we may consider the case where z’ is near
to . Look at the surjection R = Oz, — Ox, with kernel J, and let R = Oz, — Ox,
be the corresponding surjection for the local rings of the blowups at 2z, with kernel J'.
Then there is a system of regular parameters for R

(fla' . 'afm7u17' <5 Ug+p, V1, - - 7Ur+s)
satisfying the following conditions:

(i) J has a standard basis (f1,..., fi, frs1y---» fn) With fi,..., f, € n —n? and
fmsts -, fn € n? for the maximal ideal n C R, so that the initial forms of fi,..., f,,
define T, (X) inside T,(Z).

(ii) D xz Spec(R) = Spec(R/{f1,. ., fms U1y, Uats))-
(i) N(x) xz Spec(R) is given by div(ugt1), - - ., div(ugys), div(vsi1), - - ., div(vesr).

Let
E={i€fa+1la+b] |2 e€div(y)}.

Then there exists iy € [1,a + b] — = such that

(f{a"‘a rlrmw?u;' (j € E)7U17“'7U5+t)7
where w = u;,, f{ = fi/w, v = u;/w, is a part of a system of regular parameters
of R'. Since 2’ is near to z, we have Hg))(/ .= H((QO))(I by Theorem 2.10, where 6 =

trdeg,,)(k(z"))). Evaluating at 1, we get dim T, (X') + 6 = dimT,(X). Similarly we
get dim7,/(Z') + 6 = dimT,(Z), and hence dim T,/ (Z") — dim T, (X') = dimT,(Z) —
dim 7, (X). It follows that the initial forms of fi,..., f/ already define T, (X’) inside
T (Z'). This shows that N'(z') M T(X’), because N'(z) is defined by w,u} (j €
), U1y v Vspg.
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4 B-Permissible blow-ups - the non-embedded case

Let X be an excellent scheme. We start with the following definition.

Definition 4.1 A boundary on X is a multiset B = {{By,...,B.}} of locally principal
closed subschemes of X.

Recall that multisets are ‘sets with multiplicities’; more precisely a multiset of r elements
is an r-tuple in which one forgets the ordering. One can also think of sets in which an
element can appear several times. This then makes clear how one can define elements,
cardinalities, inclusions, intersections and unions of multisets. Note also that the locally
principal subschemes need not be divisors; e.g., they could be X itself. Both this and the
use of multisets is convenient for questions of functoriality, see below.

In the following, let X be an excellent scheme and let B = {{By, ..., B,}} be a boundary
on X. Sometimes, we also call the elements of B components of B. For each z € X, let
B(x) C B be the submultiset given by the components containing . We note that this
definition is compatible with arbitrary localization in X. For any morphism f:Y — X
we have a pull-back

(4.1) f1(B)=BxxY :={{By =BxxY|BecB}}.

Note that, even if we start with a true set of locally principal divisors on X, the pull-back
will be a multiset if there are B; # B; in B with (B;)y = (B;)y, and we could have that
some (B;)y is not a divisor. For z € X we let B, = f~!(B) with f : Spec(Ox,) — X,
which is a boundary on X, = Spec(Ox ).

Definition 4.2 Let D C X be a reqular subscheme and let x € D. We say D transversal
with B at z if for each submultiset {{B;,,...,B; }} C B(x), the scheme-theoretic inter-
section D Xx By, Xx Bi, Xx ... Xx B;, is reqular and of codimension r in D at x. (So
this can only hold if B(x) is a true set.) We say D is normal crossing with B at x if D
is transversal with B(x) — B(x),, where

B(z), = {B €B(z) | D C B}.

Say that D is transversal (resp. normal crossing) with B, if D is transversal (resp. n.c.)
with B at every x € D.

Definition 4.3 Let D C X be a reqular closed subscheme and x € D. We say D C X
is B-permussible at x if D C X is permissible at x and D is n.c. with B at x. We say
D C X is B-permissible if D C X 1is B-permissible at all x € D.

Let D C X be any closed subscheme and let B be a locally principal (closed) subscheme
of X. We now define a canonical locally principal subscheme B’ on X’ = Blp(X) =5 X,
the blow-up of X in D. Locally we have X = Spec(A) for a ring A, D is given by an ideal
a, and B is given by a principal ideal fA, f € A. In this situation, B{p(X) = Proj(A(a))
for the graded A-algebra A(a) = @,>0a". Define the homogenous element

Z_(f):{feA(a)O:A iffda

(42) feAla),=a if feaq,
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Then the graded principal ideal A(a)p := i(f)A(a) only depends on B and not on the
equation f, because it does not change if f is multiplied by a unit. Thus

(4.3) B’ = Proj(A(a)/A(a)5) C Proj(A(a)) = X’

gives a well-defined locally principal subscheme, which is a divisor if B is. Moreover,
it is now clear that the definition glues on a general X and gives a well-defined locally
principal subscheme B’ on X'.

Definition 4.4 The locally principal subscheme B’ defined above is called the principal
strict transform of B in X'.

In the following, we will always use these principal strict transforms and will call them
simply transforms.

Remark 4.5 (a) There is always a commutative diagram of natural proper morphisms

i B
B

where B = Blp, . p(B) is the scheme-theoretic strict transform of B in X'. All morphisms
are isomorphisms over B\D, and i : B — B’ is a closed immersion. However, it is not in
general an isomorphism, and B need not be a locally principal subscheme. In fact, with
the notations above, B is locally given by the graded ideal

B

a . _ ) @®ufa® ifféda

and the indicated inclusion need not be an equality (or give an isomorphism after taking
Proj).

(b) If X and D are regular, and B is a reqular divisor, then B = B'. In fact, with the
notations above, we may assume that a = p for a regular prime ideal, and locally we
have fAN ™ = fpn= ) because vy(fa) = vp(f) + vy(a). Moreover, vy(f) € {0,1} by
assumption.

(c) If i : X — Z is a closed immersion into a reqular scheme Z and B is a simple normal
crossings divisor on Z, then the set B = C(B) = {By,..., B} of irreducible components
15 a stmple normal crossings boundary on Z. In particular, it is a boundary in the sense
of Definition 4.1, and Bx = i~ Y(B), its pull-back to X, is a boundary on X (which may
be a multiset). This construction connects the present section with the previous one. (See
also Lemma 4.21 below.)

Now let B = {{Bi,...,B,}} be a boundary on X. Let B} be the (principal strict)
transform of B; in X', i =1,...,n, and let E = D x x X’ be the exceptional divisor.

Definition 4.6 Call B = {{B),..., B.}} the strict transform and B' = {{B,,..., B, E}}
the complete transform of B in X'.
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We note that E is always a locally principal divisor, so that B and B’ are boundaries on
X. Moreover, we note the following useful functoriality.

Lemma 4.7 Let Y — X be a closed immersion, and assume that D C 'Y 1is a nowhere
dense closed subscheme. Then one has

(By) = (B)y: and By =(B)y,
where Y = Blp(Y) — Blp(X) = X'.

Proof The question is local on X, so we may assume that X = Spec(A) is affine, and
take up the notations of (4.2). Then Y = Spec(A/b) for an ideal b C a C A, and for
B € B, BxxY € By is given by (fA + b)/b. Thus the case distinction in (4.2) is the
same for f and f = f + b, and the claim follows from the equality f(a/b)" = (fa™+b)/b
in the first case and the equality f(a/b)"! = (fa"~! 4 b)/b in the second case. For the
exceptional divisor Ex = Dxx X' on X' onehas Ex xx/Y' ' = DxxY' ' = DxyY' = Ey,
the exceptional divisor on Y’. [J

Definition 4.8 (1) A history function for a boundary B on X is a function

(4.5) O : X — {submultisets of B} ; © — O(z),

which satisfies the following conditions:

(O1) For any x € X, O(x) C B(x).

(02) For any x,y € X such that x € {y} and Hx(z) = Hx(y), we have O(y) C O(x).

(08) Foranyy € X, there exists a non-empty open subset U C {y_} such that O(x) = O(y)
for all x € U such that Hx(x) = Hx(y).

For such a function, we put for x € X,

A divisor B € B is called old (resp. new) for O at x if it is a component of O(z) (resp.

(2) A boundary with history on X is a pair (B,0), where B is a boundary on X and O
1s a history function for B.

A basic example of a history function for B on X is given by the following:

Lemma 4.9 The function O(x) = B(x) (v € X), is a history function for B on X. In
fact it satisfies 4.8 (02) and (03) without the condition Hx(x) = Hx(y).

Proof Left to the readers. [
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Define a function:
HO: X — N x N; 2 — (Hx(x), | O(2) ).

where | O(z) | is the cardinality of O(z). We endow NY x N with the lexicographic order:
(vyu) > (VW) v>vorv=rand p> .
The conditions in 4.8 and Theorem 1.34 immediately imply the following:

Theorem 4.10 Let the assumption be as above.
(1) If v € X is a specialization of y € X, then HQ(z) > HY(y).

(2) For any y € X, there is a dense open subset U of {y} such that HQ(y) = HQ(x)
for any x € U.

In other words (see Lemma 1.35), the function HY is upper semi-continuous on X. By
noetherian induction Theorem 4.10 implies

¥ = {H{(z)|z € X} cNY xN
is finite. We define 9™ to be the set of of the maximal elements in $9.
Definition 4.11 (1) For v € ¥ we define
X() =X°() = {z € X | HY(x) =V}

and

X(>0)=X=v)={re X |HR(z) >V},
and we call
(4.6) X0 = U X@).

vexQmer

the O-Hilbert-Samuel locus of X .
(2) We define

Dird(X) :=Dir,(X) N ()| T(B) C Tu(2).

BeO(x)

e (X) = dim, () (Dir? (X)).

xT

By Theorem 4.10 and Lemma 1.35, X (V) is locally closed, with closure contained in
X(> 7). In particular, X(?) is closed for 7 € 9™, the union in Definition 4.6 is
disjoint and X9 is a closed subset of X. Theorems 2.2 and 2.3 imply the following:

maxr

Theorem 4.12 Let D C X be a regular closed subscheme and x € D. Then the following
conditions are equivalent:

(1) D C X is permissible at x and there is an open neighborhood U of x in Z such that
DNU C O(x).

(2) H¢(x) = H(y) for any y € D such that x is a specialization of 3.
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Under the above condition, we have
(4.7) T.(D) c Dir?(X).

Definition 4.13 Clall a closed subscheme D C X O-permissible at x, if it satisfies the
equivalent conditions in Theorem 4.12.

Remark 4.14 Note that D C X is B-permissible at x if and only if D is O-permissible
and n.c with N(x) at x.

Let D C X be a B-permissible closed subscheme. Consider the blow-up
(4.8) X'=Blp(X) =5 X

of X in D, and let B’ be the complete transform of B in X’. For a given history function
O for B on X, we define functions O’, O : X' — {subsets of B’} as follows: Let 2/ € X’
and r = mx(2') € X. Then define

(4.9)

B (') otherwise,

O'(z) = { O(x)NB'(a') it Hx(2') = Hx(x)

—~—

where O(z) is the strict transform of O(z) in X’ and

(4.10) O(x') { O(x)NB'(«") if Hxi(2') = Hx(2)

B(a) otherwise.
Note that O'(z/) = O(z') = 6?;) N B(x') if 2/ is near to .
The proof of the following lemma is identical with that of Lemma 3.14.

Lemma 4.15 The function X' — {subsets of B'} ; ' — O'(2') is a history function.

Definition 4.16 We call (B',0") and (B,0) the complete and strict transform of (B,0)
in X', respectively.

Results from the previous section (embedded case) have their companions in the non-
embedded situation. We start with the following theorem analogous to Theorem 3.16.

Theorem 4.17 Take points v € D and 2’ € wy*(x). Then H)O;, (z) < HY(2") < HY(2).
In particular we have

TM(XO@) C UXO () for Ve npe,

p<v
and the same holds for O in place of O'.

Proof This follows immediately from Theorem 2.10, (4.9) and (4.10). O
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In the following we mostly use the complete transform (B’, 0’) and, for ease of notation,
we often write HQ (2') and X9, instead of H (2) and XY, similarly for £ etc.,
because everything just depends on O.

Definition 4.18 We say that @’ € 7' (x) is O-near to x if the following equivalent
conditions hold:

(1) HQ(@') = HQ(x) (& HY(') = HY(z) & HYU(z') = HY(x) ).

(2) x' is near to x and contained in the strict transforms of B for all B € O(x).

Call 2’ is very O-near to z if ¥’ is O-near and very near to x and €9 (X') = €2 (X) =8, /5.

The following result, the non-embedded analogue of Theorem 3.18, is an immediate con-
sequence of Theorem 2.14 and Definition 4.11(2).

Theorem 4.19 Assume that ' € X' is O-near to v = n(2') € X. Assume further that
char(k(z)) = 0, or char(k(z)) > dim(X), where x(x) is the residue field of x. Then

2’ € P(Dir (X)/To(D)) € P(Co(X)/T,(D)) = 7y ()

Results in the non-embedded case which depend only on the local ring at a point (of the
base scheme) can often be reduced to the embedded case. This relies on the following two
observations.

Remark 4.20 Let X be an excellent scheme, let B be a boundary on X, and let x € X.
Assume a property concerning (X, B,x) can be shown by passing to the local ring O =
Ox ., and its completion O. Then the following construction is useful. The ring © is the
quotient of a reqular excellent ring R. Let B(x) = {{B1,...,B.}}, and let fi,..., f, be
the local functions defining them in Ox , (so we can have f; = f; fori # j). Then we get
a surjection
R Xy,...,X,] » Ox,

mapping X; to f;, and the functions X; define a simple normal crossings boundary on
Z = Spec(R[X1,...,X,]), such that B(x) is its pull-back under Spec(Ox,) — Z. We
may thus assume that X can be embedded in a reqular excellent scheme Z with simple
normal crossings boundary Bz, and that B is the pull-back of Bz to X.

Next we compare several notions for the non-embedded case in the present section with
the corresponding notions for the embedded situation in the previous section.

Lemma 4.21 Let i : X — Z be an embedding into a reqular excellent scheme Z, let B
be a simple normal crossings boundary on Z, and let Bx = i~ *(B) be its pull-back to X.

(1) For a closed regular subscheme D C X and x € D, D is transversal (resp. normal
crossing) with B at x in the sense of Definition 3.1 if and only if it is transversal (resp.
normal crossing) with Bx in the sense of Definition 4.2 (which is an intrinsic condition

on (X, Bx)).
(2) Let O be a history function for B in the sense of definition 3.6, and define the function

Ox : X — {submultisets of Bx} , Ox(z)={{Bx|Be€O(z)}}.
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Then Ox 1is a history function for Bx in the sense of definition 4.8, and one has
H (z) = HY(x) and Dir9%(X) = Dir?(X)

(and hence e9%(X) = €9(X)) for all x € X. Also, for a k(x)-linear subspace T C T,(X),
the two notions for the transversality T th N(z) (Definition 3.19 for B and Definition
4.23 for Bx ) are equivalent.

(8) A regular closed subscheme D C X is Bx-permissible in the sense of Definition 4.3
if and only if it is B-permissible in the sense of Definition 3.5. Moreover, it is Ox-
permissible in the sense of Definition 4.13 if and only if it is O-permissible in the sense
of Definition 3.11.

(4) Let D C X be B-permissible, let nx : X' = Blp(X) — X and g : Z' = Blp(Z) — Z
be the respective blowups in D and i’ : X' — Z' the closed immersion. Moreover let O a
history function for B. Then we have the equalities

(Bx),(0x)") = ((B)x,(0)x)) and  (Bx,0x) = ((B)x:, (0)x)
for the complete transforms and strict transforms, respectively.

Proof The claims in (1), (2) and (3) easily follow from the definitions. For the claim
on the directrix in (2) note that 7, (Bx) = T,(B) N T,(X) (in 7,(Z)). The claim in (4)
follows from Lemma 4.7. [J

Now we apply Remark 4.20 and Lemma 4.21.

Theorem 4.22 Let D C X be an irreducible B-permissible subscheme. Assume:
(1) D C X is O-permissible at x.
(2) e,(X) = e,(X) —dim(Op) (cf. Theorem 2.6),
where 1 is the generic point of D. Then we have
0 (X) < e2(X) — dim(Op,,)

Proof The question is local around z, and we may pass to Ox , and then to its comple-
tion, since X is excellent. By 4.20 and 4.21 we may assume that we are in an embedded
situation. Thus the claim follows from the corresponding result in the embedded case
(Theorem 3.13). O

Let mx : X’ = Blp(X) — X be asin (4.8). For 2/ € X' let N'(z') = B'(2') — O'(2’) be
the set of the new components of (B',0’) for a’. If 2’ is near to x = wx(2') € D, i.e.,
HX/(I/) = HX(JJ), then

—_~—

(4.11) N'(z') = (N(z)NnB'(z)) U{E} with FE=m,"(D)

—_~—

where N(z) is the strict transform of N(z) in X’. If 2’ is not near to x, then N'(2’) = 0.
=0

Similarly, N(z/) = B(2')—O(z') = Z%ﬁg(x’) C N'(2') if 2/ is near to x, and N(z/)
otherwise. We study the transversality of N'(z’) with a certain regular subscheme of E.

?
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Definition 4.23 For a k(x)-linear subspace T C T,(X), we say that T is transversal
with N(z) (notation: T th N(x)) if

dimn(x) (Tﬂ N TI(B)) = dimn(x)(T)— | N(.CE) ‘ .

BeN(x)

Lemma 4.24 Assume D =z, T' C Dir,(X) and Tt N(x). Then the closed subscheme
P(T) C E, =P(C,(X)) is n.c. with N'(2") (and hence also N(z')) at z'.

Proof In the same way as above, we this claim follows from the corresponding result in
the embedded case (Lemma 3.20). O

Lemma 4.25 Let mx : X' = Blp(X) — X be as (4.8). Assume T th N(z) and T,(D) C
T C Dir,(X) and dimy,)(T/T,(D)) = 1. Consider

o' = P(T/T,(D)) C P(Co(X)/T:(D)) = mx' (2).

Let D' C E = 7' (D) be any closed subscheme such that ¥’ € D' and 7x induces an
isomorphism D" ~ D. Then D’ is n.c. with N'(z') at «'.

Proof In the same way as above, this follows from the reduction to the corresponding
result in the embedded case (Lemma 3.21). [

Theorem 4.26 Letmy : X' = Blp(X) — X be asin (4.8). Takex € X and ' € 7' (z).
Assume char(k(z)) = 0, or char(k(x)) > dim(X).
(1) If 2’ is O-near and very near to , then e3(X') < e (X) — 8u /5.

(2) Assume z' is very O-near and N (z) th Dir?(X). Then N'(z') th Dir%(X").

Proof Reduction to the embedded case (Theorem 3.23). O

Corollary 4.27 Let mx : X' = Blp(X) — X be as (4.8) and take closed points x € D
and 2’ € 7yt (x) such that x' is O-near to x. Assume char(k(x)) = 0, or char(x(z)) >
dim(X). Assume further that there is an integer e > 0 for which the following hold:

(1) ex(X)uw) < e, and either e < 2 or k(') is separable over k(z).
(8) N(z)hDir?(X) ore(X) <e—1.
Then N'(z') h DirQ(X") or e9(X') < e —1.
This follows from Theorem 4.26 like Corollary 3.24 follows from Theorem 3.23.

Definition 4.28 Call (B,0) admissible at x € X, if N(x) h T,(X), and call (B,0)
admissible if it is admissible at all v € X.

We note that admissibility of (B,0) at x implies BI(z) C O(x), where BI(x) is defined
as follows.
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Definition 4.29 Cuall B € B inessential at x € X, if it contains all irreducible compo-
nents of X which contain x. Let

BI(z)={BeB|ZCB foralZ € I(x)}

be the set of inessential boundary components at x, where I(x) is the set of the irreducible
components of X containing x.

Definition 4.30 Call x € X O-regular (or X O-regular at ), if
(4.12) HY () = (vi?, [BI(x)]).
Call X O-regular, if it is O-regqular at all x € X.

Lemma 4.31 If (B, 0) is admissible at x and X is O-reqular at x, then X is reqular and
normal crossing with B at x.

Proof The proof is identical with that of Lemma 3.28. [J

Lemma 4.32 Let 7 : X' = Blp(X) — X be as (4.8). If (B,0) admissible at v € X,
then (B',0") and (B, 0) are admissible at any x' € X" with x = w(z’).

Proof In the same way as in the proof of Lemma 4.22, this is reduced to the embedded
case (Theorem 3.29). O

Later we shall need the following comparison for a closed immersion.

Lemma 4.33 Let i : Y — X be a closed immersion of excellent schemes, let B be a
boundary on X, and let By = i1 (B) be its pull-back to Y.

(1) For a closed regular subscheme D C'Y and v € D, D is transversal (resp. normal
crossing) with B at x if and only if it is transversal (resp. normal crossing) with By .

(2) Let O be a history function for B, and define the function
Oy : Y — {submultisets of By} , Oy(x)={{By | B € O(x)}}.

Then Oy is a history function for By. If v € Y and (By,Oy) is admissible at x, then
(B, 0) is admissible at x. (The converse does not always hold.)

(3) Let D C'Y be a reqular closed subscheme which is permissible for Y and X. Then D
1s By -permassible if and only if it is B-permissible. Moreover, it is Oy -permissible if and
only if it is O-permissible.

(4) Let D C'Y be By-permissible and Bx-permissible, let my : Y' = Blp(Y) — Y and
my Y = Blp(Y) — Y be the respective blowups in D and i’ : Y' — X' the closed
immersion. Moreover let O a history function for B. Then we have the equality

(By), (Oy)) = ((B)y, (O)y)) and  (By,Oy) = ((B)yr, (O)y/)
for the complete and strict transforms, respectively.

The proofs are along the same lines as for Lemma 4.21. For (2) note that T,.(Y) C T,.(X)
and that for subspaces 17 C Ty C T,(X) one has N(z) h Ty = N(x) h 1.

Remark 4.34 Since a reqular subscheme of a reqular scheme is always permissible, Lemma
4.21 can be seen as a special case of Lemma 4.33.
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5 Main theorems and strategy for their proofs

We will treat the following two situations in a parallel way:

(E) (embedded case) X is an excellent scheme, i : X < Z is a closed immersion into an
excellent regular scheme Z, and B is a simple normal crossings boundary on Z (Definition
3.3).

(NE) (non-embedded case) X is an excellent scheme, and B is a boundary on X (Definition
41).

Definition 5.1 (1) A point ©x € X s called B-reqular if X is reqular at x (i.e. Ox,
is regular) and normal crossing with B at x (i.e., B(x) is normal crossing with X, =
Spec(Ox ) on X, i.e., defines a normal crossing divisor on X, ). Call X B-regular, if
every x € X is B-regular, i.e., if X is reqular and B is normal crossing with X.

(2) Call x strongly B-reqular if X is reqular at x and for every B € B(xz), B con-
tains the (unique) irreducible component on which x lies. (This amounts to the equation
B(x) = BI(x) where BI(x) is the (multi)set of inessential boundary components at x, see
Definitions 3.26 (Case (E)) and 4.29 (Case (NE)).)

Denote by Xeg (resp. Xpreg, resp. Xpseg) the set of the regular (resp. B-regular, resp.
strongly B-regular) points of X. These are open subsets of X, and dense in X if X is
reduced. Call Xpging = X — Xpreg the B-singular locus of X.

We introduce the following definition for the case of non-reduced schemes.

Definition 5.2 (1) Call x € X quasi-reqular, if X,eq is reqular at x and X is normally
flat along X,eq at x. Call X quasi-reqular if it is quasi-reqular at all v € X, i.e., if X,eq 1S
reqular and X is normally flat along X,eq. (Compare Definition 2.1, but we have reserved
the name ‘permissible’ for subschemes not containing any irreducible component of X.)

(2) Call x € X quasi-B-reqular, if X,eq s B-reqular at x and X is normally flat along
Xreq at x. Call X quasi-B-regular, if X is quasi-B-reqular at all x € X, i.e., if Xyeq
is B-regular and X is normally flat along X,eq. (Similar remark on comparison with
B-permissibility.)

(3) Call x € X strongly quasi-B-regular, if X,eq is strongly B-regular at x and X is
normally flat along X,.q at x.

Note that X is regular if and only if X is quasi-regular and reduced. Similarly, X is
B-regular if and only if X is quasi-B-regular and reduced. Finally, x € X is strongly
B-regular if and only if z is strongly quasi-B-regular and Oy, is reduced.

Denote by Xqreg, XBqreg ad Xpsqreg the sets of quasi-regular, quasi-B-regular and strongly
quasi-B-regular points of X, respectively. By Theorem 2.2 these are dense open subsets
of X. Moreover, we have inclusions

ereg D) Xqueg D) XBsqreg ) ereg \ (ereg N B)
U U U U
Xreg D) XBreg D) XBsreg D) Xreg \ (Xreg N B)

where the last inclusions of both rows are equalities if no B € B contains any irreducible
component of X and the vertical inclusions are equalities if X is reduced.
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Lemma 5.3 Let X be a connected excellent scheme.

(a) For v € 3% one has X(v) N Xgeg # 0 if and only if X = X(v). Thus Hx is not
constant on X if and only if X(v) C X — Xqeg for all v € 37",

(b) Let (B,0) be an admissible boundary with history on X. For U € 9™ one has
XO(V) N Xpsqreg 7 0 if and only if X = XO(V). Thus HY is not constant on X if and
only if XO(U) C X — Xpsqreg for all U € Eg’m‘”.

Proof (a): Let 2 € X(v) N Xqeg, let Z be an irreducible component of X containing
x, and let 1 be the generic point of Z. Since Xcg is open and dense in X, and is quasi-
regular, 7 is contained in X, and Hx is constant on Xgeg by Theorem 2.3. Therefore
v = Hx(x) = Hx(n), i.e., n € X(v). Since v € X", X(v) is closed, and we conclude
that Z = {n} C X(v). By Lemma 2.5 we conclude that X = X (v) = Z. This proves the
first claim (the other direction is trivial). The second claim is an obvious consequence.
(b): For the non-trivial direction of the first claim let 7 = (v, m), with v € NN and m > 0.
Then v € X% and X9 (V) C X (v). Consequently, if X (7)N Xpsqreg # 0, then X = X (v)
by (a), and X is irreducible. If 7 is the generic point of X, then we conclude as above
that n € X°(¥), and hence X = X©(7), since the latter set is closed. Again the second
claim follows immediately.

Now we study blow-ups. Lemma 3.2 implies:
Lemma 5.4 Ifn: X' = Blp(X) — X is the blow-up of X in a B-permissible subscheme

D, and B' is the complete transform of B, then 7 (Xgsreg) C Xpraree 014 T (X psqreg) C
X’B/

sreg

sqreg
We first consider the case (NE).

Definition 5.5 (Case (NE)) A sequence of complete (resp. strict) B-permissible blowups
over X 1is a diagram

B = BO Bl 82 anl Bn
(5.1)

X= Xo <~ X; <= Xo —...— X1 <~ X, -
where for any n > 0, B, s a boundary on X,,, and
Xoi1 = Blp,(X,) ™5 X,

is the blow-up in a B,-permissible center D, C X,, and B,.; = B is the complete
transform of B,, (resp. B,i1 = B, is the strict transform of B, ).

Call a sequence as in (5.1) reduced if none of the morphisms m, is an isomorphism.
For a given sequence of B-permissible blowups, define the associated reduced sequence by
suppressing all isomorphisms in the sequence and renumbering as in (5.1) again.

We abbreviate (5.1) as (X, B) = (Xo, By) < (X1,B1) « ..., for short.

We will prove Theorem 0.1 in the following, more general form.
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Theorem 5.6 Let (X, B) be as in (NE), with X dimension at most two.
(a) There is a canonical finite reduced sequence S(X,B) of complete B-permissible blow-
ups over X

(X, B) — (X(],B()) <7r_1 (Xl,Bl) <7r_2 oo & (Xn,Bn)

such that w41 is an isomorphism over (X;)gsqes, 0 < @ < n, and X, is quasi-B-regular.
In particular, the morphism X, — X 1s an isomorphism over Xpsgreg-

Moreover the following functoriality holds:

(F1) (equivariance) The action of the automorphism group of (X,B) extends to the se-
quence in a UNIquUe way.

(F2) (localization) The sequence is compatible with passing to open subschemes U C X,
arbitrary localizations U of X and étale morphisms U — X in the following sense:
If S(X,B) xx U denotes the pullback of S(X,B) to U, then the associated reduced
sequence (S(X,B) Xx U)yeq coincides with S(U, By).

(b) There is also a canonical finite reduced sequence So(X,B) of strict B-permissible
blowups with the same properties (except that now each B, .1 is the strict transform of

B,).

If X is reduced, then every X, is reduced, so that X, is regular and B,, is normal crossing
with X,,; moreover Xpgreg = Xpsreg- In particular, Theorem 0.1 can be obtained as the
case (b) for B = () (where Xpgeg = Xyeg and B, = 0 for all n), i.e., as the sequence
So(X,0). If we apply (a) for reduced X and B = 0, we have Xpgeg = Xyeg as well,
but then, for the sequence S(X,0), B, is not empty for n > 0, and we obtain the extra
information that the collection of the strict transforms of all created exceptional divisors
is a simple normal crossing divisor on X,.

Definition 5.7 Let C be a category of schemes which is closed under localization. Say
that canonical, functorial resolution with boundaries holds for C, if the statements in
Theorem 5.6 (a) hold for all schemes in C and all boundaries on them. Say that canonical,
functorial resolution holds for C, if the statements of Theorem 0.1 (i.e., of Theorem 5.6
(b) with B =10) hold for all schemes in C.

Now we will consider the case (E).

Definition 5.8 (Case (E)) A sequence of complete (resp. strict) B-permissible blowups
over (X, Z) is a sequence of blowups:

B: Bo 81 BQ Bn—l Bn

(5.2) Z= Zy & 7, & Zy — . Z,, < Z,
U U U U U

X= X, & X; & Xy —...« X, & X,

where for any i > 0

K3

@)
Xin = Blp(X;) =5 X,

Ziw = Blp(Z) ™5 Z
U
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are the blow-ups in a center D; C X; which is permissible and n.c. with B;, and where
Bii1 = B. is the complete transform of B; (resp. B;11 = B; is the strict transform of B;).
Call a sequence as in (5.2) reduced if none of the morphisms m, is an isomorphism.
For a given sequence of B-permissible blowups, define the associated reduced sequence by
suppressing all isomorphisms in the sequence and renumbering as in (5.2) again.

We abbreviate (5.2) as (X, Z,B) = (Xo, Zo, Bo) <~ (X1, Z1,B1) < ..., for short.
We will prove Theorem 0.3 in the following form.

Theorem 5.9 Let (X, Z,B) be as in (E), with X of dimension at most two.
(a) There is a canonical finite reduced sequence S(X,Z,B) of complete B-permissible
blow-ups over X

(Xa Za B) - (XOaZ()aBO) L <X17ZI7BI) <7r_2 CRCIS (ﬂ'_’ﬂ (Xn7Zn78n)

such that 7y is an isomorphism over (Z —X)U(X;)B,sqreg; 0 < @ < n and X, is quasi-B,,-
reqular. In particular, the morphism Z,, — Z is an isomorphism over (Z — X) U Xpsqreg-
Moreover the following functoriality holds:

(F1) (equivariance) The action of the automorphism group of (Z, X,B) (those automor-
phisms of Z which respect B and X ) extends to the sequence in a unique way.

(F2) (localization) The sequence is compatible with passing to open subschemes U C Z,
arbitrary localizations U of Z and étale morphisms U — Z in the following sense: If
S(X,Z,B) xzU denotes the pullback of S(X, Z,B) to U, then the associated reduced
sequence (S(X,Z,B) Xz U)yea coincides with S(X xz U, U, By).

(b) There is also a canonical finite reduced sequence So(X, Z,B) of strict B-permissible
blowups over (X, Z) with the same properties (except that now each B,y is the strict
transform of B, ).

Again, for reduced X all X; are reduced, Xpsqres = XBsreg, and X, is regular and normal
crossing with the simple normal crossings divisor B,,.

Definition 5.10 Let C be a category of schemes which is closed under localization. Say
that canonical, functorial embedded resolution with boundaries holds for C, if the state-
ments in Theorem 5.9 (a) hold for all triples (X, Z,B) where Z is a reqular excellent
scheme, B is a simple normal crossing divisor on Z and X s a closed subscheme of X
which s in C.

Remark 5.11 [t follows from Lemma 4.21 that Theorem 5.6 implies Theorem 5.9, in
the following way: If S(X,Bx) is constructed, one obtains S(X,Z,B) by consecutively
blowing up Z; in the same center as X;, and identifying X, 1 with the strict transform of
X; in Ziy1. Conversely, the restriction of S(X, Z,B) to X is S(X,Bx). More generally,
by the same approach, canonical, functorial embedded resolution with boundaries holds
for a category C of schemes as in Definition 5.10 if canonical, functorial resolution with

boundaries holds for C.

We set up the strategy of proof for the above theorems in a more general setting. Let X
be an excellent scheme.
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Definition 5.12 Clall an excellent scheme Y equisingular, if Hy is constant on Y. Call
Y locally equisingular if all connected components are equisingular.

As we will see below, our strategy will be to make X locally equisingular.

Remark 5.13 (a) For U C X open and x € U one has Hy(z) = Hx (z)dmU)-dim(X),
Hence Hy(x) < Hx(x), and U is equisingular if and only if U C X (v) for some v € ¥x.
(b) By Lemma 5.3 (a) there are two possibilities for a connected component U C X:
Fither U is equisingular (and irreducible), or Una, is nowhere dense in U. In the first
case, it follows from Theorem 1.34 (1) and Theorem 2.10 (1) that, for any permissible
blow-up : X' — X, 71 (U) is equisingular as well (viz., 7' (U) C X'(v) if U C X(v)),
because by definition, permissible centers are nowhere dense in X.

(c¢) If X is reduced, then a connected component U C X is equisingular if and only if U
is reqular (cf. Remark 1.38). Hence X is locally equisingular iff it is equisingular iff it is
reqular.

(d) By way of example, the following situation can occur for non-reduced schemes: X
is the disjoint union of three irreducible components Uy, Us and Us, where Xy, = {11},
Yu, = {v1,1n} and Sy, = {3}, such that vy < vs < v3. By just blowing up in X we
cannot make X locally equisingular.

Motivated by the remarks above, we define:

Definition 5.14 Let X be connected and not equisingular. For v € ¥%*" | a v-elimination
for X is a morphism p : X' — X that is the composite of a sequence of morphisms:

X:X0<—X1<—"'<—XRZX,

such that for 0 < i <n, m : X;x1 — X is a blowup in a permissible center D; C X;(v)
and X, (v) = 0.

Let v4,...,v, be the elements of X" and assume given a y;-elimination p; : X; — X
of X for each i € {1,...,r}. Noting that p; is an isomorphism over X — X (1;) and that
X(w)NX(v)=01if 1 <i+# j <r, we can glue the p; over X — which is a composition of
permissible blow-ups again — to get a morphism p : X’ — X which is a X™®*-elimination
where we define:

Definition 5.15 Let X be connected and not equisingular. A morphism p: X' — X 1is
called a ™ -elimination for X if the following conditions hold:

(ME1) p is the composition of permissible blowups and an isomorphism over X — X a4
(ME2) ¥x: N X7 = ().

Note that, by Theorem 2.10 (1), (ME1) and (ME2) imply:
(ME3) For each u € ¥x/ there exists a v € X% with p < v.

Definition 5.16 For any excellent scheme X, a morphism p : X' — X is called a X™**-
elimination, if it is a 2™ -elimination after restriction to each connected component which
18 not equisingular, and an isomorphism on the other connected components.
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Theorem 5.17 Let X be an excellent scheme, and let X = X «— Xy < --- be a sequence
of morphisms such that 7, : X,11 — X, is a X" -elimination for each n. Then there is
an N € N such that Xy is locally equisingular. (So 7, is an isomorphism for n > N.)

For the proof we need some preparations. Let HF C NN be the set of all Hilbert functions
of graded rings, and let HP be the set of all Hilbert polynomials. For v € HF', write P,
for the associated Hilbert polynomial. We recall that H P is totally ordered by

P >P < Pi(n)>Py(n) for n>>0,
and that we trivially have
(5.3) v>1v = P,>P,.

Let X be an excellent scheme. For z € X, let Px(z) be the Hilbert polynomial of Hx(z)
and let

SEm = {v € S| B= PP} and Xpw = U X(v),

I/EE)P}_mH‘I
where PP® = max{Px(x) | x € X}. Theorem 1.34 implies:
Lemma 5.18 Xp_,,.. is closed in X.

In fact, if v € X579 and p > v, then p € L™ by (5.3), so that Xp_,4 is the union
of the finitely many closed sets X (> v) for v € 5% Theorem 2.10 (1) and (5.3) imply

Lemma 5.19 If 7 : X' — X is a permissible blow-up, then P < PR,

Proof of Theorem 5.17 Suppose there exists an infinite sequence X = Xy «— X7 «+ ...
of ™ eliminations such that no X, is locally equisingular. For each n > 0 let X2 C X,
be the union of those connected components of X,, which are not equisingular, and let
Yo = (X)) popae- Then X2 C 1 1(X?), so by Remark 5.13 (a) and Lemma 5.19 we

have P < PYe™. By Theorem 1.17 we may assume that Pge™ = P for all n > 0.
n+1 n n n+1

By Theorem 2.10 this implies 7,(Y,11) C Y, and we get an infinite sequence of proper
morphisms Y = Yy <« Y]} « --- . By Lemma 5.21 below one can choose a sequence of
points x, € Y, for n = 0,1,... such that z, = m,(z,+1). By [H2] Theorem (1.B) and
Theorem 2.10 (3) we may assume Hy, (z,) = Hx,, (Zn41) for all n > 0, so that there
exists a vy € HF such that vy € E;}g for all n > 0. We claim that vy € Zg’ggx for some n.
Then (ME2) contradicts vy € EXQLH: Let S, = {v € ¥%ax | v > 1p}. We want to show

n

» = () for some n. Let vy, ..., v, be the elements of Sy and put
A={pe HF | vy < u <, for some i € [1,7]}.
Thus the claim follows from the following:
Lemma 5.20 A is finite, S, C A, and S, NS, =0 if n # m > 0.

Proof The first claim follows from the assumption that P, = P, so that there exists
N > 0 such that vg(n) = v4(n) for allm > N and all i = 1,...,r. The second and third
claim follow from (ME3) and (ME2), respectively. [
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Lemma 5.21 Let Zy <> 7, <~ Zy <= ... be an infinite sequence of proper morphisms
of non-empty noetherian schemes. Then there exists a sequence of points x, € Z, (n =
0,1,2,...) such that x,, = Tp(Tp41).

Proof Form >n >0, let m,,, : Z,, — Z, be the composite of 7; for i =n,...,m—1 and
put Znm = Tnm(Zm). By the properness, Z, ,, is non-empty and closed in Z,. Clearly
we have Z, D Z, py1 D Zppy2 D -+ - and

(5.4) Zni = Tpm(Zmy) forl>m>n.

Put Z, « = anvam. By the Noetherian condition, there exists N(n) > n such that

Znoo = Zn,N(n) 0 that Z, o # 0. Then (5.4) implies Z,, « = Ty m(Zm ) for m > n. Thus
we get an infinite sequence of proper surjective morphisms Zj o = Z1,00 < Z2,00 < * -
Now the desired claim follows by the axiom of choice. [

Corollary 5.22 To prove (canonical, functorial) resolution of singularities for all ex-
cellent reduced schemes of dimension < d, it suffices to prove that for every connected
non-reqular excellent reduced scheme X of dimension < d there exists a (canonical func-
torial) ¥™**-elimination X' — X. Fquivalently, it suffices to show that for every such
scheme and every v € X% there is a (canonical functorial) v-elimination for X. Here
functoriality means that the analogues of the properties (F1) and (F2) in Theorem 5.6
hold for the ¥™**- and v-eliminations, respectively, where the analogue of property (F2)
for a v-elimination is the following: If p := v@™X=dmU) ‘motation as in Remark 1.12
(c)), then either U(u) = 0, or u € X7 and the pullback of the sequence to U is the
canonical p-elimination on U, after passing to the associated reduced sequence.

In fact, under these assumptions one gets a (canonical, functorial) sequence X «— X «— ...
of X™**_eliminations, and by Theorem 5.17 some X, is locally equisingular, which means
that X, is regular (Remark 5.13 (c)).

Now we consider the non-reduced case.

Corollary 5.23 To prove (canonical, functorial) resolution of singularities for all excel-
lent schemes of dimension < d, it suffices to prove that there exists a (canonical, func-
torial) X™**-elimination X' — X for every connected excellent scheme X of dimension
< d on which the Hilbert-Samuel function Hx is non-constant. FEquivalently, it suffices
to show that for every such scheme and every v € L% there is a (canonical, functorial)
v-elimination for X. Here functoriality is defined as in Corollary 5.22.

In fact, here we first get a (canonical, functorial) sequence X « X « ...« X, of ¥™*-
eliminations such that X, is locally equisingular. By Corollary 5.22 we get a similar
sequence (X, )red < X1 < ... < X, such that X/ is regular. Blowing up in the same
centers we get a sequence of blow-ups X,, < X,,11 < ... < X,,, where X/ is identified
with (X;)req, and X7, with the strict transform of X in X;,;. For each i > m, X;
is again equisingular (see remark 5.13), and by Theorem 2.3 the blow-up X;;1 — X is
permissible. It follows that (X,,),eq is regular and X, is normally flat along (X},),eq. Now
assume that the first sequence and the sequence (X,,)eq < ... are functorial. Then it
is immediate that the sequence X « ... « X, is functorial for localizations as well. As
for automorphisms, it follows inductively via localization that the automorphisms of X;
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(1 > m) respect the center of the blow-up X;;; — X; and therefore extend to X;.; in a
unique way.

We now consider a variant of the above for schemes with boundary. Let X be an excellent
scheme, and let B be a boundary for X, ie., a boundary on X (case (NE)) or on Z
(case (E)). In the following we only consider complete transforms for the boundaries, i.e.,
sequences of complete B-permissible blow-ups, and we will simply speak of sequences of
B-permissible blow-ups. It is easy to see that the analogous results also hold for the case
of strict transforms, i.e., sequences of strict B-permissible blow-ups.

Definition 5.24 Call X O-equisingular if H is constant on X, and locally O-equisingular,
if every connected component is O-equisingular.

Remark 5.25 (a) It follows from Lemma 5.3 (b) that a connected component U C X is
either O-equisingular, or US,  is nowhere dense in U. In the first case U C X (D) for
some v € X%, and for every B-permissible blow-up 7 : X' — X one has 7~ 1(U) C X'(D).
(b) If X is reduced, then X is locally O-equisingular if and only if X is O-reqular.

(c) Even for a reqular scheme X it can obviously happen that X is the union of three irre-
ducible components Uy, Uy and Us such that £9 = {(vi?,1)}, B9 = {(v¥?,1), (v¥?,2)}
and 283 = {(v¥?,3)}, so that X cannot be made O-equisingular by blowing up in XS,

Definition 5.26 Let O be a history function for B such that (B,0O) is admissible, and let
(5.5) X=Xo Xy .. = X & X,

be a sequence of B-permissible blow-ups (where we have not written the boundaries B;,
and neither the reqular schemes Z; in case (E)). For eachi=0,...,n—1 let (B;11,0;11)
be the complete transform of (B;, O;) (where (By, Oy) = (B,0)). Let D; be the center of

the blow-upXi@XHl, and p=mpo...omy: X, — X.

(1) If X is connected and not O-equisingular, and U € S9™, then (5.5) or p is called a
v-elimination, if D; C X;(v) fori=1,...,n—1 and X, (v) = 0.

(2) If X is connected and not O-equisingular, then (5.5) or p is called a ©.9™* -elimination
for (X,B,0), if D; C (X;)8,, fori=0,....,n—1 and £ N R = ¢,

(3) If X is arbitrary, then (5.5) or p is called a 9™ -elimination for (X,B,0), if it
is a Lo _climination after restriction to each connected component of X which is not
O-equisingular, and an isomorphism after restriction to the other connected components.
(4) Call the sequence (5.5) reduced, if none of the morphisms is an isomorphism, and in
general define the associated reduced sequence by omitting the isomorphisms and renum-
bering (so the final index n may decrease).

By glueing, one gets a (canonical, functorial) X9™%_elimination for a connected, not O-
equisingular X, if one has canonical, functorial v-eliminations for all v € Zg’max, and a
(canonical, functorial) 9™ elimination for a non-connected X, if one has this for all
connected components. Here functoriality is defined as in Corollary 5.22. Moreover, in a
similar way as above one proves:

Theorem 5.27 For any infinite sequence X = Xg «— X; «— Xy «— ... of XOmaz_
eliminations there is an n such that (X, B,, O,) is O-equisingular.
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The following result is now obtained both in the embedded and the non-embedded case.

Corollary 5.28 Case (NE): To show (canonical, functorial) resolution of singularities
with boundaries for all reduced excellent schemes of dimension < d it suffices to show the
existence of (canonical, functorial) X.°™% -eliminations for all connected reduced excellent
schemes X of dimension < d and all admissible boundaries with history (B,O) for X,
for which X is not O-regular. (Here ‘functorial’ in the last statement means that the
obvious analogues of the conditions (F1) and (F2) in Theorem 5.6 hold for the sequences
considered here.)

Case (E): The obvious analogous statement holds.

In fact, if (X, B) is given, we start with the history function O(z) = B(z). Then X
is O-regular if and only if X is strongly B-regular at all x € X. If this holds, we are
done. If not, then by assumption there is a (canonical, functorial) 3™ _elimination
X; — X, and we let (B, 0;) be the strict transform of (B,0) in X; (which is obtained
by successive transforms for the sequence of B-permissible blowups whose composition is
X7 — X). Then (B, 0;) is admissible by Lemma 4.32. If X is O;-regular, we are done
by Lemma 3.28. If not we repeat the process, this time with (X1, By, 0O1), and iterate if
necessary. By Theorem 5.27, after finitely many steps this process obtains an X,, which is
O,-regular and hence achieves the resolution of X by Lemma 3.28 (case (E)) and Lemma
4.31 (case (NE)).

In the non-reduced case we obtain:

Corollary 5.29 Case (NE): To show (canonical, functorial) resolution of singularities
with boundaries for all excellent schemes of dimension < d it suffices to show the existence
of (canonical, functorial) X% eliminations for all connected excellent schemes X of
dimension < d and all admissible boundaries with history (B,0) for X, for which HY is
not constant. (Here ‘functorial’ in the last statement means that the obvious analogues of
the conditions (F1) and (F2) in Theorem 5.6 hold for the sequences considered here.)
Case (E): The obvious analogous statement holds.

This follows from Corollary 5.28 in a similar way as Corollary 5.23 follows from 5.22: First
we get a (canonical, functorial) sequence of B-permissible blow-ups X «— X; «— ... «— X,
such that HY is constant on each connected component of X,,. Then we look at the
(canonical, functorial) resolution sequence (X,,)rea «— X,, .1 < ... < X, from Corollary
5.28 such that X, is B/ -regular, where B] comes from B via complete transforms. By
blowing up in the same centers we obtain a sequence of B-permissible blow-ups X,, <
X1 < ... < X, such that (X,,),eq identifies with X and thus is B/ -regular; moreover,
X, is normally flat along (X,,)eq, because H)%L is constant on all connected components.

We now prove Theorem 5.6. Then, by Remark 5.11, Theorem 5.9 follows as well.

By Corollary 5.29, it suffices to produce canonical, functorial 9™ eliminations for all
connected excellent schemes X of dimension at most two and all admissible boundaries
with history (B,0) on X such that H is not constant on X.

By the remarks after Definition 5.26 it suffices to produce canonical functorial v-eliminations
for all 7 € ©9™**. These are in turn obtained by the following, slightly more general
result.
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Theorem 5.30 (Case (NE)) Let X be an excellent connected scheme, let (B,0) be an
admissible boundary with history on X such that HY is not constant on X, and let v €
Q™ Assume the following:

(1) char(k(z)) =0, or char(k(x)) > dim(X) for any x € X(v),
(2) dim(X(¥)) <1,
and there is an integer e with 0 < e < 2 such that for any closed point x € X (v),
(3e) €(X) <e,
(4e) either N(z) h Dir?(X) or e2(X) < e —1.
Then there ezists a canonical reduced v-elimination S(X,7)
(X, B) = (Xo,By) « (X1,B1) «— ... — (X,,, B,)

for X. It satisfies the analogues of properties (F1) and (F2) from Theorem 5.6, where the
analogue of (F2) is the following: If U = (v,m) and p = v @mX=dmU) inotation as in
Remark 1.12 (c)), then either U(D) = 0, or i = (u,m) € X9 and the reduced sequence
associated to the pullback of the sequence to U is the canonical i-elimination for U.

In fact, if X is of dimension d < 2, then condition (1) holds, and condition (3e) holds
with e = d. If moreover X is connected and H¢ is not constant on X, then condition (2)
holds by Lemma 5.3. On the other hand, in the presence of condition (1) it suffices to
consider admissible boundaries with history (B,O) which satisfy condition (4e). In fact,
in the procedure outlined in the proof of Corollary 5.29, property (4e) is trivially fulfilled
in the beginning where O(x) = B(z), i.e., N(z) = 0, and by Corollary 4.27 it is fulfilled
for X’ as well, if X’ — X is a blowup in a permissible center D C X9

max*

Proof of Theorem 5.30 We will first study what happens if we blow up a point or a
regular irreducible curve of X.

Step 1 Let x be a closed point in X (v) and consider 7 : X' := Bl,(X) — X. Note
that ©+ — X is B-permissible for trivial reasons. By Theorem 2.10 and Corollary 4.27,
conditions (3e) and (4e) are satisfied for X’ and the complete transform B’ of B. By
Theorem 4.19 we have

(5.6) D:=X'(r)nz"'(z) C P(Dird (X)) ~ P,

where t = €2(X) —1 < e,(X)—1<e—1<1 (by convention Py = 0if t <0). Hence
condition (2) is also satisfied for X’. Moreover, if dim(D) > 1, then D = P(Dir? (X)), so
that D is O’-permissible, and condition (3e) implies e = 2 and N (z) h Dir?(X), so that
D is n.c. with N’ by Lemma 4.24. Hence D is a union of closed points or a projective
line over k(x), and in both cases it is B’-permissible.

Step 2 Now let D C X (v) be regular irreducible of dimension 1 and n.c. with B. By
Theorem 4.12, D C X is B-permissible. Let n be the generic point of D. Consider
m: X' := Blp(X) — X. By Theorem 2.10 and Corollary 4.27, conditions (3e) and (4e)
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are satisfied for X’ and the complete transform B’ of B. Let x € D be a closed point. By
Theorem 4.19, we have

X' ()N~ (z) € P(Dy (X)/To(D)) = Pryy,

where s = e9(X) —2 < e,(X) —2<e—2<0by (3e) for X. Hence there is at most one

point in X'(7) N7~ (z) so that dim(X'(7) N 7~'(D)) < 1 and condition (2) is satisfied
for X’. Similarly we have

X'(@)na(n) C P(Dir (X)) =~ Py,

where r = e (X)—1 < ¢,(X)—1 < e,(X)—2 < 0 by Theorem 2.6. Hence, if X'(v)N7~!(n)
is not empty, then it consists of a unique point 7, and one has k(1) ~ k(). This implies
that 7 induces an isomorphism D’ = D where D' = X'(v) N7~ !(D). Thus D’ is regular,
and O'-permissible by Theorem 4.12. Moreover, e, (X) = 2 in this case so that condition
(3e) for X implies e = 2 and N(x) h Dir,(X). By Lemma 4.25, D’ is n.c. with N’, hence
with B’. Hence D’ is a collection of closed points or a regular irreducible curve, and in

both cases it is B’-permissible.

Step 3 Consider the special case where dim(X) = 1. Here dim X(7) = 0, so every
point x € X (V) is isolated in X (7), and moreover we have e,(X) < dim(X) = 1. The
canonical -elimination sequence consists of blowing up all points in X (7) and repeating
this process as long as X () # (). By Theorem 5.34 below this process stops after finitely
many steps. So Theorem 5.30 holds. As noticed above, this shows that there exists
a canonical, functorial resolution sequence for (X, B), i.e., that Theorem 5.6 holds for

dim(X) = 1.

Step 4 Now we consider the general case and construct a canonical reduced sequence
S(X,v)

of B-permissible blowups over X as follows. Let Yy = Xo(7). If X, has been constructed,
then let Y,, = X,,(7). Give labels to the irreducible components of Y,, in an inductive way
as follows. The irreducible components of Y; all have label 0. If an irreducible component
of Y,, dominates an irreducible component of Y,,_1, it inherits its label. Otherwise it gets
the label n. Then we can write

YV, =YOuyWu.. . uyrbHuym,

where Yn(i) is the union of irreducible components of Y,, with label i.

Step 5 By assumption, dim(Yy) < 1. Let By, = B x x Y be the pull-back, and let
Yo :Yo,o <—Yo,l — ---Y'(-),mfl <—Yo,m

be the canonical resolution sequence of Theorem 5.6 for (Yy, By,) (which exists and is
finite by Step 3), so that Yp,, is regular and normal crossing with By ,,, where we write
By, for the boundary obtained on Yy ;. Let

T Iis
X=Xg— Xy — ... X1 =X
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be the sequence of B-permissible blowups obtained inductively by blowing up X; in the
center D; of the blowup Yy;41 — Yo,;. This is a collection of closed points and hence
B;-permissible, where we write B; for the boundary obtained on X;. Moreover, Y, is
identified with the strict transform of Yy, in X;;. By Lemma 4.33 (4) we have By; =
(Bi>Y0,i’ Since each D; is a nowhere dense subscheme of Yo,i, each Yp ; is contained in

X;(v) =Yj, and is in fact equal to the label 0 part Y ) of Y; as defined above. This is
the first stage of (5.7)

Claim 1 For m as above, and all ¢ > 0, the subschemes Yn(f ) are regular, of dimension at

most 1, and B —permissible

In fact, for Y, this holds by construction. Moreover, from the statements in Step 1 we
conclude that, for 0 < ¢ < m, all schemes YZ() are disjoint unions of closed points and
projective lines and hence regular, moreover they are B;-permissible. Let [Y}]y be the union
of the 0-dimensional components of Y. Since X;;; — X; is a blowup in closed points
(i) '

— Y% is an isomorphism for j =1,...,m, and

not contained in [Yj]o, the morphism Y f

hence Yj(i) is normal crossing with B; (direct check, or application of Lemma 3.2). Since

Y;@ is regular and contained in X;(7), we conclude it is B;-permissible.

Step 6 Next we blow up the subscheme Y,,SO), which is regular and B,,-permissible, and
obtain X, 1.

Claim 2 For all ¢ > 0, the subschemes VAY a1 are regular, of dimension at most 1, and

B, +1-permissible. Moreover, the intersection of Ym”ffl) with Y, J)rl is empty for all 7 €

{0,...,m}.

The first part follows by similar arguments as above. In fact, for Y 1 the arguments

are exactly the same as above. For Y(J)rl with ¢ > 0 we have to be careful, since Y()

consists of irreducible components of the strict transform of Ym), i.e., the blowup of

Y, in Y, x X, Yn(lo), which is a zero-dimensional scheme with a possibly non-reduced
structure. But since Y, is regular of dimension at most 1 and v\ [YTSZ )]0 = fori>0,
YTSJ)A V% is an isomorphism . As for the second part, Yn(I +1 Y consists of finitely many

closed points which, by definition, are not contained in the other sets.

Step 7 Next we blow up X, in v mt1 if this is non-empty, and in lel, otherwise, and
obtain X,,,5. We proceed in this way for n > m, blowing up X,, in Yn(]) where 7 > 0
is the smallest number with Y, # (), to obtain X, ;. This is well-defined, because we

always have:

Claim 3 For all n > m and ¢ > 0, the subschemes v, are regular of dimension at most
1, and B,-permissible. For ¢ > m + 1, the intersection of Y, with Y, is empty for j # i.

The first part follows as for n = m+1. For ¢ = n the second part follows as in claim 2. For
m+ 1 < i <n, we may assume by induction that Y( )1 N Y(J ,=0forall j=0,....,n—1
with j # i. By definition, for all j = 0, . -1, 7T(Yn( ) ¢ VY, where 7 : Xn — Xn_l.

This implies Yy, DY) = forall i € {m+1 ,n—1}and all 7 =0,...,n — 1 with
j # i, which proves the desired assertion.

Step 8 Thus we have defined the wanted canonical sequence S(X,7), which is reduced
by construction. Now we show the finiteness of this sequence. We have
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Lemma 5.31 Let X = X be a scheme satisfying the assumptions of Theorem 5.30. Let
C = CO be an irreducible reqular curve in X(v). Let m : X; = Blo(Xo) — Xo, and let
C, = X1(v) Nmy'(Cy). By Step 2, dimC, < 1 and if dimCy = 1, then Cy is regular,
Cy C X is B-permissible and Cy ~ Cy. In this case we put Xo = Blc, (X1). Repeat this
procedure to get a sequence

X= X, & X, & Xy —... .« X, & X,
(5.8) U U U U
C= C() — 01 — CQ — .. m—1 — Cm

such that VIV XZ = BgC’,‘,1 (Xi,1> and C,L = XZ(I;) N 7T51<Ci71)'
Then the process stops after finitely many steps, i.e., there is an m > 0 with Cy & C) &
. Cyy and dim(C,,41) < 0.

Proof Let 7 be the generic point of C'. As remarked in Step 2, we have eZ(X) < 1.
If ¢7(X) = 0, then Cy = 0 so that r = 1. If eJ(X) = 1, we get a longer sequence,
Wthh however must be finite by Theorem 5.34 below applied to the localization X, =
Spec(Ox,,) of X at 7, and the point 7 in it, for which (X,)° = {n}. Note that

e (X,)) = e?(X) by definition.

max

By this result, there is an N > 0 such that ¥, N Y;") = ¢ for all i, € {0,...,m} with
i # j, for all n > N, because [YTEL)]U NY,Y =0 for all 4 =+ j, where [Yn(nf)]o is the set of

zero-dimensional components in V). Note that all schemes X, satisfy the conditions in
Theorem 5.30. Therefore we have shown:

Claim 4 There is an N > 0 such that Y,, = X,,(¥) is regular for all n > N.

It is clear that the resolution sequence at each step X,, has the following property, because
the centers of the blowups always lie in the subscheme Y,: Let Y, ;,...,Y, s be the
connected components of Y, and for each i € {1,...,s}, let V,,; C X,, be an open
subscheme containing Y, ; but not meeting Y, ; for j # ¢. Then the resolution sequence for
X is obtained by glueing the resolution sequences for the subsets V,, ;. To show finiteness of
the resolution sequence we may thus assume that Y,, is regular and irreducible. Applying
Lemma 5.31 again, we may assume that Y, is a collection of finitely many closed points
which are isolated in their O-Hilbert-Samuel stratum. Moreover, it is clear that in this
case the remaining part of the resolution sequence X,, «— X,, 11 « ... is just the canonical
resolution sequence S(X,,v) for X,.

Step 9 Thus we have reduced to the case of an isolated point x € X (7); in fact, we
may assume that X (7) just consists of x. The first step of the canonical sequence then
is to form the blowup X; = Bl (X) — X. If eZ(X) = 0, then X;(7) = () and we
are done. If e9(X) = 1, then X,(¥) is empty or consists of a unique point z; lying
above z. In the latter case we have k(azl) = k(x), and therefore e,, (X1) < e (X) by
Theorem 2.10 (4). If e,, (X1) = 1, then €2 (X;) < eml (X1) < 1. Otherwise we must have
e, (X1) = €,(X) = 2 by assumption (36) Then € (X;) < €9 (X) = 1 by Theorem 4.26
(1). Thus we obtain a sequence of blow-ups X = XO — Xl — ... in points z; € X;(V)
such that either e, (X,) = 0 for some n so that X, 11(7) = 0 and the sequence stops,
or we have a sequence where e, (X;) = 1 for all 7. But this sequence must be finite by
Theorem 5.34 below. It remains the case where e?(X) = e,(X) = €,(X) = 2. This
follows from Theorem 5.38 below.
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Step 10 Finally we show the functoriality, i.e., the properties (F1) and (F2) in Theorem
5.6. Property (F1) follows, because all automorphisms of (X, B) respect Y = Y{, hence
the center Dy of the first blowup, and therefore uniquely extend to the blowup (X7, By) of
(Xo, Bo) in Dy. Inductively, they extend to all X,, and respect Y,, and its decomposition

into the union of the Yn(i). Analogous statements hold for open immersions U C X or
localizations or étale morphisms, up to replacing v by the maximal element p for U
indicated in Theorem 5.30. OJ

We now prove the two results used in the proof above. Let X be an excellent scheme,
and let (B,0) be a boundary with history on X. Let x € X and assume that

(F1) char(k(z)) = 0 or char(k(z)) > dim(X).
(F2) N(x) h Dir?(X).
(F3) €2(X) <1ore,(X)=7e.(X).

Consider
m o Xy = Bl(X) = X,

Oy == P(Dir?(X)) c P(Dir,(X)) C X;.

Let n; be the generic point of C. We note C; ~ PL ! where t = ¢2(X). By Theorem
4.19, any point of X; which is O-near to z, lies in C.

Lemma 5.32 (1) If ny is O-near to x, then so is any point of C;.
(2) If m is very O-near to x, then so is any point of Cy.
Proof Take any point y € ;. By Theorems 4.10 and 4.17, we have
HR,(m) < HY(y) < HY ().
(1) follows from this. By Theorems 2.6 and 2.10, we have
en (X') < ey(X') = dim(Oc, ) < €2(X) = b0 — dim(Ocy ) = €2(X) = by, /o

where we used (F'3) for the second inequality. In fact, if e9(X) < 1 then k(y) = k(x), so
in both cases of (F'3) we can apply 2.10 (4). Hence the assumption of (2) implies that y
is very near to x. Then, by Theorems 4.22 and 4.17, we get

e (X') < €)(X') = dim(Oc, ) < €7 (X) = 8,7 — dim(Oc, ) = €7 (X) = 8y,
which implies the conclusion of (2). O
We now assume that ¢ > 1 and 7, is very O-near to x. This implies

(5.9) el (X1) = ed(X) — dim(Cy) = 1.

By (F2), Lemma 4.24 and Remark 4.14, C} is B-permissible with respect to the complete
transform (B, O;) of (B,0) for X;. Consider the blow-up

o @ X2 = Bgcl(Xl) — X1
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and the complete transform (Ba, O2) of (B, O;) for X5. By (5.9) and Theorem 4.19, there
is a unique point 7, € X, which is O-near to 7. Let Cy be the closure of 7, in Xo.
Note k(m) = k(n2) and Cy ~ C1, and that Cy is Oy-permissible. By Lemma 5.32 and
Theorem 4.26, (£2) implies N(y) th Dir,(X;) for any point y € Cy. By Lemma 4.25, Cy
is n.c. with NBy(y') = Ba(y') — O(y') at the unique point 3’ € Cy above y, so that Cy is
By-permissible. If ny is very O-near to 1y, we consider

3 . X3 = BECQ(XQ) - XQ

and define n3, C3 and (B3, O3) in the same way as before. This construction (which
occurred in the proof of Theorem 5.30 for ¢t = 1,2) leads us to the following:

Definition 5.33 Assume €9 (X) > 1 and let m be a non-negative integer or co. The fun-
damental sequence of B-permissible blowups over x of length m is the canonical (possibly
infinite) sequence of permissible blowups:

B: BO Bl BQ Bn,1 Bn

(5.10) X=Xy & X7 & Xy ..« X & X, —.
1 U u U u

i — Cl & CQ <1<: Cn—l & On — .

which satisfies the following conditions:
(1) X1 = Bl (X) and

1 =PDO(X) =P (= (X))

(i) For1<gq<m—1, Xg41 = Blc,(X,) and wgi1 : Cyy1 — Ci.

(i13) For1l < q < m, letn, be the generic point of C, and put ny = x. For1 < q¢<m-—1,
g s very O-near to ng_1. This implies e% (Xy)=1for1<g<m-—1.
(1v) If m < 00, 1y, is not very O-near to n,_1. If m = oo the sequence is infinite.

Here Hggq are considered for the successive complete transforms (B, O,) of (B,0) for X,.
We note that for ¢ =1,...,m, we have

Co={¢ € ¢ (x)] HY,(§) = HY(2)}  with ¢y Xg — X

The proof of the following theorem will be given in §9.
Theorem 5.34 Assume that there is no regqular closed subscheme
D € {€ € Spec(Ox.) | HY(€) = HY(x)}

of dimension €9(X). Then, for the sequence (5.10), we have m < oo, i.e., it stops in

finitely many steps.
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Remark 5.35 (a) We note that the assumption of the theorem holds in particular, if
(5.11) dim ({¢ € Spec(Ox.,) | H(€) > H)O((x)}) < e9(X).

(b) Thus a special case of Theorem 5.34 is when x is isolated in the O-Hilbert-Samuel
locus of X and e (X) = 1. Here the fundamental sequence (5.10) consists of a sequence
of blowups in closed points and coincides with the canonical sequence constructed in the
proof of Theorem 5.30. We obtain its finiteness as needed in that proof.

Now we consider the fundamental sequence of B-permissible blowups over z as in Defi-
nition 5.33 for the second case needed in the proof of Theorem 5.30, namely where z is
isolated in X (v) and

e (X) = e, (X) = 2,(X) = 2.

xT

Again by Theorem 5.34 we deduce that the fundamental sequence (5.10) is finite, i.e.,
there exists an m < oo such that 7, is not very O-near to 7,,_;. This situation is divided
in two cases.

Case 1: 1, is not O-near to 7,,_1.

In this case there are only finitely many closed points y on Cy, such that HY (y) = HY(x).
Choose such a point y. Theorems 2.10 and 4.17 imply that one of the following conditions
holds:

b eg(Xm) = ey(Xm) = Ey(Xm) = 2,
o (X)) <1and ey (X,,) <E(X,,) <2

By Remark 5.35 (b), it suffices to consider the former case for the proof of Theorem 5.30.

Case 2: mn,, is O-near to 1, 1.
In this case we consider
X1 = Ble,, (Xn) ™5 X,

By definition 7, is not very O-near, which means that e,?m(Xm) = 0 so that there is no
point of 7L ; (,,) which is O-near to 7,,. Hence there are only finitely many closed points
y € m,81(Cr) N Xpp1 such that HY  (y) = HY(z). Choose such a point y. For the
same reason as in Case 1, we may assume eyO(XmH) = ey(Ximt1) = €y (Xpmt1) = 2.

The above consideration leads us to the following definition (in Case 2, we shift the index
m by —1):

Definition 5.36 A sequence of B-permissible blowups:

B= B By B Bn—1 B,
X= X & X, & Xy —..— X1 & 0X,
1 U U U 1
i — Cl & CQ ;& m—1 — T

is called a fundamental unit of B-permissible blowups of length m and denoted by (X, B)
if the following conditions are satisfied:
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(i) x is a closed point of X such that e2(X) = e,(X) = €,(X) = 2.
(1i) X; = Bl,(X) and
Cy = P(Dir (X)) = P, .
(Z“) For1<q<m-—1, Xq+1 = chq(Xq) and Tg4+1 - Cq+1 = Cq,

(it3) For 1 < q¢ < m — 1, let n, be the generic point of C; and put ny = x. For 1 <
qg < m—2, n, is very O-near to ng_1. This implies ean(Xq) = ey, (Xy) =1 for
1<g<m-—2.

(10) N1 is O-near to N,_o and there exists no point in X,, which is O-near to My,_1.
(v) z, s a closed point of X, such that

HY (z) = HY(z)  and  €f (X)) = €, (Xin) = €, (X)) = 2.

x

Here H)O<q is considered for the successive complete transform (B,, O,) of (B,0O) for X,.
We note that for q=1,...,m — 1, we have

C,={¢€ ¢q_1(x)| H)O(q(é) = H)O((x)} with ¢g : Xy — X

By convention, a fundamental unit of B-permissible blowups of length 1 is a sequence of
B-permissible blowups such as

B = BO Bl
X = Xo & X, = Bl(X)
T T T
r = Xy < I

where © € X is as in (i) and z1 is as in (i) with m = 1. We call (z,X,B) (resp.
(Timy Xy Bim)) the initial (resp. terminal) part of (X, B).

We remark that, in this definition, we have not assumed that = (resp. z,,) is isolated in
X0, (1e5p. (XO)umas).

max

Definition 5.37 A chain of fundamental units of B-permissible blowups is a sequence of
B-permissible blowups:

X1<—X2<—X3<—...
where X; = (X, B;) is a fundamental unit of B-permissible blowups such that the terminal
part of X; coincides with initial part of X; 1 for Vi > 1.

The finiteness of the canonical v-elimination S(X,7) for the case where X(v) = {z}
and e?(X) = e,(X) = €,(X) = 2, as needed in the proof of Theorem 5.30, is now a
consequence of the following result whose proof will be given in §12 and §13.

Theorem 5.38 Let X1 «— Xy «— X3 «— ... be a chain of fundamental units of B-
permissible blowups. Let (z9, X® BWY) be the initial part of (X;) for i > 0. Assume
that, for each i, there is no reqular closed subscheme C C (X)C of dimension 1 with
x® € D (which holds if 29 is isolated in (X®)9, ). Then the chain must stop after
finitely many steps.
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In fact, to show the finiteness of S(X,7) in the considered case, we have to show that
there is no infinite sequence of closed points z, € X,,(7) such that 2o = x and x,,, lies
above z,. This can only happen if €9 (X,,) = 2(= e,,(Xn) = €,,(X,)) for all n, and by
construction, the canonical sequence S(X,7) would then give rise to an infinite chain of
fundamental units.

We remark that the claims on the fundamental sequences, fundamental units and chains of
fundamental units depend only on the localization X, = Spec(Ox ;) of X at . Moreover,
by the results in Lemma 1.29 and Lemma 1.37 we may assume that X = Spec(O) for a
complete local ring. Thus we assume that there is an embedding X — Z into a regular
excellent scheme Z, and moreover, by Lemma 4.21, that there is a strict normal crossings
boundary Bz on Z whose pull-back to X is B. Thus we may consider an embedded
version of the constructions above, where each blowup X, .1 = Bl¢, (X,) — X, (where
Co = {z}) can be embedded into a diagram

Zmi1 = Ble,(Zw) ™5 Z,
U U
Xmp1 = Ble, (X,) ™5 X,.

In the proofs of Theorems 5.34 and 5.38, this situation will be assumed.
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6 (u)-standard bases

Let R be a regular noetherian local ring with maximal ideal m and residue field £k = R/m,
and let J C m be an ideal. It turns out that the directrix Dir(R/J) is an important
invariant of the singularity of X = Spec(R/J), and that it is useful to consider a system
(Y1, Yy U1, - . ., ue) Of regular parameters for R such that:

(6.1) IDir(R/J) = (Y1,...,Y,) Cgr,(R), where Y; := ing(y;) € gri(R).

Then (Uy, ..., U.) with U; := iny(u;) form coordinates of the affine space Dir(R/.J) = Af.
Consequently, it will be useful to distinguish the Y- and U-coordinates in gr.(R) =
k[Y,U]. This observation leads us to the following:

Definition 6.1 (1) A system (y,u) = (y1, ..., Yr,U1,-..,Ue) of reqular parameters for
R is called strictly admissible for J if it satisfies the above condition (6.1).

(2) A sequence u = (uy,...,u.) of elements in m C R is called admissible (for J ), if it
can be extended to a strictly admissible system (y,u) for J.

(8) Let (y,u) be strictly admissible for J. A system of elements f = (f1,..., fm) C J
is called admissible for (y,u) if ing(fi) € k[Y] for alli=1,...,m.

Let T, ..., T. be a tuple of new variables over k. Note that (u) = (uy, ..., ue) is admissible
if and only if we have an isomorphism of k-algebras

k[Ty,...,T,) = gro(R)/IDir(R/J) ; T; — ing(u;) mod IDir(R/J).
The map induces the following isomorphism which we will use later.
(6.2) Y : P(Dir(R/J)) 5 Proj(k[Th, ..., T.]) = P!

The admissibility will play an essential role in the next section. For the moment we shall
work in the following general setup:

Setup A: Let J C m C R be as above. Let (u) = (uq,...,u.) be a system of elements
in m such that (u) can be extended to a system of regular parameters (y,u) for some
y = (Y1,---,¥). In what follows we fix u and work with various choices of y as above.
Such a choice induces an identification

gr(R) = k[Y, U] = k[Yy...,Y,, Uy, ..., U).  (Yi = inm(ys), U; = ing(u;)).
Let R = R/(u) and i = m/(u) where (u) = (us,...,u.) C R. For f € R—{0} put
naw(f) =va(f) with f=f mod (u) €R.
Note 1y (f) > vm(f) and ne(f) = oo if and only if f € (u). Let f € R — {0} and write

an expansion in the m-adic completion R of R:

(6.3) f=> Cupy®u* with Cape R*U{0}

(A,B)
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where for A = (ay,...,a.) € Z$; and B = (by,...,b,) € Z%,,

yP =yt oyt and wt =l u

Qe
e *

If ngy (f) < oo, then we define the O-initial form of f by:

(6.4) ino(f) = ino(f)yw = Z Cop Y" € klY],

|Bl=n(u)(f)

where Cyp = Cap mod m € k= R/m. If n,)(f) = oo, we define ing(f)y.u) = 0. It is
easy to see that ing(f) depends only on (y,u), not on the presentation (6.3).

We will need to make the expansion (6.3) uniquely determined by f. By EGAIV Ch. 0
Th. (19.8.8), we can choose a ring S of coefficients of R: Sisa subring of R which is a
complete local ring with the maximal ideal pS where p = char(k) such that mN S = pS
and S/pS = R/m. We choose a set I' C S of representatives of k. Note that S ~ k
and I' = k if char(k) = char(K) where K is the quotient field of R. Back in the general
situation each f € R is expanded in R in a unique way as:

(6.5) f=)Y_ Capyu* with Cypel.
(4.B)

We will use the following map of sets

(6.6) w=wyur) : k[Y,U]] = R; Z cap YBUA — Z Cap yPu?,
(4,B) (4,B)

where Cy g € I is the representative of cq4 g € k. For F,G € k[[Y, U]] we have

(6.7) WF+G)—w(F)—w(@) epR and w(F-G)—w(F)- w(G) € pR.

We now introduce the notion of a (u)-standard base (see Definition 6.7), which generalizes
that of a standard base (cf. Definition 1.19). The following facts are crucial: Under a
permissible blowup a standard base is not necessarily transformed into a standard base
but into a (u)-standard base (see Theorem 8.1), on the other hand there is a standard
procedure to transform a (u)-standard base into a standard base (see Theorem 7.26).

A linear form L : R® — R given by

L(A) =) ca; with; € R (A = (a;) € R?)

i=1
is called positive (resp. semi-positive) if ¢; > 0 (resp. ¢; > 0) for 1 <Vi <e.

Definition 6.2 Let (y,u) be as in Setup A and let L be a non-zero semi-positive linear
form L on R°.
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(1) For f € R — {0} define the L-valuation of f with respect to (y,u) as:

UL(f) = UL(f)(y,u) = mln{|B’ + L(A) | C’A,B 7é 0}7

where the Cap come from a presentation (6.5) and |B| = by + ---b, for B =
(by,...,b.). Wesetv,(f)=o00if f=0.

(2) Fiz a representative T of k in R as in (6.5). The initial form of f € R — {0} with
respect to L, (y,u) and I" is defined as:

inp(f) = inL(f)ur) == Z Cap YU
AB

where A, B range over 7S, X 7% satisfying |B|+ L(A) = vp(f). We set inp(f) =0
if f=0. It is easy to see the following:

(1) inp(f) is an element of k[[U]][Y], the polynomial ring of Y with coefficients in
the formal power series ring k[[U]],

(ii) If L is positive, ing(f) € k[U,Y| = gr,,(R) and independent of the choice of T.
(3) For an ideal J C R, we define
Ing(J) = Ing(J)gar) = (i (f)| f € J) C KUY,

In case L is positive we define

Ing () = Inu(J)guur) = (inc(F)] £ € J) C K[U,Y] = gro(R).

Remark 6.3 Note that vn(f) = v, (f) and inu(f) = ing,(f), where
Lo(A)=|Al=a1+---+a. for A=(ay,...,a.).

The proofs of the following lemmas 6.4 and 6.6 are easy and left to the readers.

Lemma 6.4 Let the assumptions be as in Definition 6.2.

(1) vi(f) is independent of the choice of I'. We have

v(fg) =ve(f) +vlg) and vr(f+g) = min{vr(f),ve(g)}-

(2) Assume v (char(k)) > 0 (which is automatic if L is positive). If f = > f; and
i=1
vr(f;) > vp(f) for alli = 1,...,m, then iny(f) = > inp(f;), where the sum

1<i<m
ranges over such i that vi(f;) = vp(f).

(3) Let z = (z1,...,2.) C R be another system of parameters such that (z,u) is a system
of regular parameters of R. Assume vi(2z — Yi)(z) > 1 for all i =1,...,7. Then,
fOT any f € R7 we have UL(f)(Z,u) Z UL(f)(y,u)-
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Definition 6.5 Let the assumption be as Definition 6.2. Let f = (f1,....fm) be a system
of elements in R — {0}. A non-zero semi-positive linear form L on R® is called effective

for (f,y,u) if inp(f;) € k[Y] foralli=1,...,m.
Lemma 6.6 Let the assumption be as in Definition 6.5.

(1) The following conditions are equivalent:

(i) L is effective for (f,y,u).
(ii) vp(fi) = nw (fi) < oo and iny(f;) = ino(fi) for alli=1,... ,m.
(i11) For 1 <1i <m write as (6.3)

fi= Z Ci,A,B yBuA with C@A’B cR*U {0} .
(A,B)

Then, for 1 <i <m and A € Z%, and B € Z%, we have

(2) There exist a positive linear form L on R® effective for (f,y,u) if and only if f; is
not contained in (u) C R for any 1 <i < m.

(3) If L is effective for (f,y,u) and A is a linear form such that A > L, then A is
effective for (f,y,u). More precisely one has

ua(fi) = ve(fi) = nw(fi)  and iny(f) =inL(f) = ino(fi) (1 < Vi <m).

Definition 6.7 Let u be as in Setup A. Let f = (f1,..., fm) C J be a system of elements
in R —{0}.

(1) f is called a (u)-effective base of J, if there is a tuple y = (y1,...,y,) as in Setup
A and a positive form L on R® such that L is effective for (f,y,u) and

Ing(J) = (ing(f1),...,ino(fm)) C gru(R).

(2) [ is called a (u)-standard base, if in addition (ing(f1),...,ino(fm)) is a standard
base of Inp(J).

In both cases (1) and (2), (y, L) is called a reference datum for the (u)-effective (or
(u)-standard) base (fi,..., fm)-

Lemma 6.8 Let u be as in Setup A.

(1) Let f = (fi1,..., fm) be a standard base of J such that iny(f;) € k[Y] for i =
1,...,m. Then f is a (u)-standard base of J with reference datum (y, Ly), where
Ly is as in Remark 6.35.

(2) Assume that (u) be admissible for J (cf. Definition 6.1). A standard base f =
(fi,--, fm) of J is a (u)-standard base of J.
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Proof (1) is an immediate consequence of Definition 6.1(3) and Remark 6.3. We show
(2). First we note that

v'(J) = (n1,...,npm,00,...) with n; = vy(fi).

and that (ing(f1),...,inm(fn)) is a standard base of Ingy(J). Choose y = (y1,...,¥r)
such that (y,w) is strictly admissible for J C R and identify gr,(R) = k[Y,U]. Then
there exist v1,...,%,, € k[Y] which form a standard base of Iny,(J). Note that v; is
homogeneous of degree n; for ¢+ =1,..., m. We have

(inm(f1)s -y ina(fm)) = Inn(J) = (U1, ..., ).
Writing

inm(fi) =¢i+ Y, U*Pia, witho;, Pa€klY] (i=1,...,m),

Aezg ,—{0}

this implies that (¢1, ..., ¢,,) is a standard base of Iny(J). Hence it suffices to show that
there exists a positive linear form L : R® — R such that in,(f;) = ¢; foralli =1,... ,m.
We may write

P4 = Z ciapY?, (ciap€k),

Bezz,

where the sum ranges over B € Z% such that |B| + |A] = n; := vn(f;). It is easy to see
that there exists a positive linear form L satisfying the following for all A € Z$, — {0}:

L(A) > |A| and L( )>1ifc;ap #0.

n; — | Bl
Then ing(f;) = ¢; and the proof of Lemma 6.8 is complete. [

A crucial fact on (u)-standard bases is the following:

Theorem 6.9 Let f = (fi,..., fm) be a (u)-effective (resp. standard) base of J. Then,
for any y = (y1...,yr) as in Setup A and for any positive linear form L on R® effective
for (f,y,u), (y,L) is a reference datum for f.

Before going to the proof of Theorem 6.9, we deduce the following:

Corollary 6.10 Let f = (fi,..., fm) be a
g = (g1,---,9m) C J be such that ing(g;)
(u)-effective (resp. standard) base of J.

(u)-effective (resp. standard) base of J. Let
= ing(fi) for alli = 1,...,m. Then g is a

Proof The assumption implies that no f; or g; is contained in (u) C R. By Lemma
6.6 (2) and (3) there exists a positive linear form L on R€ effective for both (f,y,u) and
(g9,y,u). By the assumption on f, Theorem 6.9 implies that in(f1),...,in.(fn,) generate
(resp. form a standard base of) iny(J). By Lemma 6.6 (1)(i7), we get

ing(g:) = ino(g:) = ino(fi) = inp(fs) fori=1,...,m,

which implies Corollary 6.10. [
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Proof of Theorem 6.9 Let (z,A) be a reference datum for f which exists by the
assumption. By definition (z,u) is a system of regular parameters of R and A is a positive
linear form on R® such that ina(f1)w),-- -, na(fm) () generate (resp. form a standard
base of) ina(J) (). First we assume y = 2. Then the theorem follows from Proposition
6.11 below in view of Lemma 6.6 (Note that condition (4) of Proposition 6.11 is always
satisfied if L and A are both positive). We consider the general case. Since (y,u) and
(z,u) are both systems of regular parameters of R, there exists M = (a;;) € GL,(R) such
that

yi = l;(2) +d;,  where [;(2) = Z a;;z; and d; € (u).

j=1

Take any positive linear form L' on R such that L'(A) > |A] for VA € RS, — {0}. An
easy computation shows that for A € Z$, and B = (by,...,b,;) € Z%, we have

yPut =ut () ()" Fw with vp(w) > v (yPu?) = |B| + L/ (A).

This implies inp(9)zu) = O(inr (9) ) for g € R — {0}, where
gb . k’[Y] >~ k’[Z] ) }/z — Zaiij. (ZJ = inm(Zj), Eij = Qyj mod m € ]{3)
j=1

In view of Lemma 6.6, the proof of Theorem 6.9 is now reduced to the case y = z. [J

Proposition 6.11 Let (y,u) be as in Setup A, and let f = (f1,..., fm) C J. Let A and
L be semi-positive linear forms on R®. Assume va(char(k)) > 0 (c¢f. Lemma 6.4) Assume
further the following conditions:

(1) va(fi) = vi(fi) = nw(fi) < oo fori=1,...,m.
(2) ina(f;) = ino(f;) == E(Y) € k[Y] fori=1,...,m.
(8) Ina(J) = (FA(Y), .., Fn(Y)) C K[[U][Y].

Then for any g € J and any M > 0, there exist Ai,..., Ay € R such that

v(Aifi) 2 ve(g),  va(Aifi) 2 valg),  va (9 - Z&fi) > M.
=1

If A s positive, one can take \; € R fori=1,...,m. Assume further:
(4) there exist ¢ > 0 such that L > cA.

Then we have

Ini(J) = (inc(f1), - inc(fn)) © KUNY).
If L is positive, then

[nL(J) = <inL(f1), e ,ZTLL(fm)> C k’[U, Y]
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Proof Let g € J and expand as in (6.5):

g= ZC’AByBuA in 1:2, Capel.
AB

Then we have
'inA(g) = Z CA,B YBUA.
A,B
| BI+A(A)=va(g)

Put
Bmax = Bmax<97 A) = HlaX{B ’ CA,B 7é 07 |B’ + A(A) = UA(Q) for some A € Z;O}

where the maximum is taken with respect to the lexicographic order.

Lemma 6.12 Under the assumption (1) and (2) of Proposition 6.11, there exist A1, ..., Ay €
R such that:

(1) va(Aifi) = valg) if \i # 0, and vr(Aifi) > vi(g).
(2) vi(g) 2 vu(g) where gy = g — -\

(3) va(g1) > va(g) and Bmax(g1,A) < Bmax(9, A) if va(g1) = va(g).

If A s positive, one can take \; € R fori=1,...,m.
Proof By the assumptions of Proposition 6.11, we can write

ina(g) = > Cup YPU = )" HFE(Y)
A,B 1<i<m
|BI+A(A)=va(9)

for some Hy,..., H,, € k[[U]][Y], where F;(Y) € k[Y] is homogeneous of degree n; :=
oa(fi) = vp(fi) for i =1,...,m. Writing H; = > h; 4(Y)U* with h; 4(Y) € k[Y], this

AGZCEO
implies
(6.8) Y Cup YP= D ha(Y)F(Y) foreach A € ZS,.
B 1<i<m
|BI+A(A)=0a(9) o

Take any Ay with |Bpax| +A(Ao) = va(g) and Cy, p,,.. # 0. Looking at the homogeneous
part of degree | Buax| in (6.8) with A = Ay, we get

Y CasY?= > Si(Y)E(Y)
B 1<i<m
| Bl=[Bunax]

where S;(Y') € k[Y] is the homogenous part of degree |Byax| — i of h; a,(Y). Therefore

(69) o SRRV = Y apy®,

| B|=|Bmax|

max
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where P(Y) = (CagBun)  Si(Y) € k[Y] and ap = —(Cay,Bon) ' Caop € k. Now put

g1=9-— Z)\ifi with \; =

i=1

P(y)Qu) if B(Y) #0,
0 if P(Y)=0,

where P,(Y) € R[Y] is a lift of P,(Y) € k[Y] and

Q(U) = Z CA,Bmaqu S R.
| Bunax +A(A) =01 (9)

Note that if A is positive, then the sum is finite and Q(u) € Rand \; € R. For 1 <i <m
with P;(Y") # 0, we have

uA(Ai) = ([Bmax| = 1) + (va(9) = [Bumax|) = valg) — ni,

UL()\i) :(|Bmax| - nz) + UL(Q(U))
Z(|BmaX| - nz) + UL(Q) - |Bma><| = UL(Q) — N,

which shows Lemma 6.12 (1) in view of Proposition 6.11 (1). Here the last inequality
holds because

vr(g) =min{|B| + L(A) | Cap # 0},
v(Q(u)) + | Bunax| =min{| B| + L(A) | Cap # 0, B = Bunax, |Bunax| + A(A) = val9)}-

Therefore, by Lemma 6.4 (1) we get
va(g1) = min{oa(g), va(Aifi) (1 <7< m)} = va(g).

If vA(g1) = va(g), then Lemma 6.4 (2) implies

ina(g1) = ina(g) +ina (Z Az‘fz)
=ina(g) + Z ina(Ai)ina(fi)

where

QU)= Y CapU" kU]
|Bmax|+A?A):”A(g)

Hence, by (6.9), we get Bunax(g1,A) < Bmax(g, A), which proves Lemma 6.12 (3). Finally,

vr(g1) = minf{or(g), ve(Aifi) (1 <@ <m)} > vr(g),

because vr(A;fi;) > vr(g). This proves Lemma 6.12 (2) and the proof of the lemma is
complete. [
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We now proceed with the proof of Proposition 6.11. From g = gy we construct g; as in
Lemma 6.12, and by applying Lemma 6.12 repeatedly, we get a sequence gg, g1, g2, - - -, Ge, - - -
in J such that for all £ > 1 we have

9o =Gge-1— Z Aeifi with A\, € R,
=1
vaA(Aeifi) = va(ge—1) > valg) and vp(Aeifi) > v(ge—1) > vi(g),
vr(ge) > vr(ge—1) and va(ge) > va(ge—1),

Bmax(gfa A) < Bmax(gf—la A) if 'UA(QE) = UA(gﬁ—l)'

Then we have

m L
9 =9 — Z peifi  with pe; = Z Agiis
=1 q=1

oA (i fi) > 121;2[{?1/\()\(11']0@‘)} > va(g),

6.10
(6.10) vr(peifi) > lrélqigé{vL()‘qifi)} > vr(g).

Note that Bpax(ge, A) cannot drop forever in the lexicographic order so that we must
have va(gr) # va(ge—1) for infinitely many ¢. Noting vy (R) is a discrete subset of R, this
implies that for given M > 0, taking ¢ sufficiently large,

vA(ge) = valg — Z peifi) > M.

This shows the first assertion of Proposition 6.11 in view of (6.10). It implies by (4) that
for any g € J, there exist A\q,..., A\, € R such that

vp(Nifi) > ve(g), wve(g — Z)‘ifi) > vr(9),

which implies, by Lemma 6.4 (2), that ing(g) = > ing(\i)ing(fi), where the sum ranges
i=1

over all ¢ for which vy, (A f;) = vr(g). This shows IAnL(J) = (inr(f1),...,ing(fm)), which
also implies the last assertion of Proposition 6.11 by the faithful flatness of k[[U]]|[Y] over
k[U,Y]. This completes the proof of Proposition 6.11 [J

Lemma 6.13 Let u be as in Setup A and assume that (u) is admissible for J (cf. Defi-
nition 6.1).

(1) If f = (f1,---, fm) is a (u)-effective base of J, then
Ing(J) = (ing(f1),...,ino(fm)) and J=(f1,..., fm)-

(2) If f = (fi,-.., fm) is a (u)-standard base, then (ing(f1),...,ino(fm)) is a standard
base of Inn(J) and v*(J) = (nw)(f1), - - 7w (fim), 00,00,...).
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Proof (2) follows at once from (1). The second assertion of (1) follows from the first
in view of [H3], (2.21.d). We now show the first assertion of (1). Choose y = (y1,...,¥:)
such that (y,u) is strictly admissible for J. By Theorem 6.9, there exists a positive linear
form A such that (y, A) is a reference datum for f. By Definition 6.7 and Lemma 6.6 (1)
this implies v (f;) = nw)(fi) < oo fori=1,...,m and

Ina(J) = (F(Y), ..., En(Y))  with B(Y) = ina(fi) = ino(fi) € k[Y].

It suffices to show Ina(J) = Iny(J). By the strict admissibility of (y,u), Lemma 1.24
implies that there exists a standard base ¢ = (g1, ..,9s) which is admissible for (y,u)
(cf. Definition 6.1). By Lemma 6.8 (2) this implies vm(g:) = vr,(9:) = nw)(g:) < oo for
1=1,...,s and

Ing(J)=1Ing,(J) =(G1(Y),...,Gs(Y)) with G;(Y) = ing,(g:) € k[Y].
Take a positive linear form L such that L > A and L > Ly. Then Proposition 6.11 and

Lemma 6.6 (3) imply Ina(J) = Ing(J) = Ing,(J) = Ing(J). This completes the proof.
0J
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7 Characteristic polyhedra of J C R

In this section we are always in Setup A (beginning of §6). We introduce a polyhedron
A(J,u) which plays a crucial role in this paper. It will provide us with useful invariants
of singularities of Spec(R/J) (see §10). It also give us a natural way to transform a
(u)-standard base of J into a standard base of J (see Corollary 7.26).

Definition 7.1 (1) An F-subset A C RS, is a closed conver subset of RS, such that
v € A implies v+ RSy, € A. The essential boundary OA of an F-subset A is the
subset of A consisting of those v € A such that v & v/ + RS, with v € A unless
v="1v". Wewrite AT = A — 0A. -

(2) For a semi-positive positive linear form L : R — R, put
dp(A) =min{L(v) | v € A}.

Then E;, = AN{v € R¢| L(v) = 0,(A)} is called a face of A with slope L. One
easily sees that Ey, is bounded if and only if L is positive. If Ey, consists of a unique
point v, we call v a verter of A.

(3) When L = Lg as in Remark 6.3, we call §(A) = §5,(A) = min{a; + ... + a. |
(ay,...,a.) € A} the d-invariant of A and Ep, the 0-face of A.

Definition 7.2 Let (y,u) be as in Setup A in §6. Let f € m be not contained in (u) C R.
Write as in (6.3):

f:ZOAByBUA with C’ABERXU{O}.

(4,B)

(1) The polyhedron
A(f,y,u) SRS,

1s defined as the smallest F-subset containing all points of

f)— 1B

This 1is in fact a polyhedron in RS,, which depends only on f,y,u, and does not
depend on the presentation (6.3).

A
{U = n(u)(— | CA7B ?é 0, |B| < n(u)(f)} .

(2) Forv € R® — A(f,y,u)", the v-initial of f is defined as

iny(f) = inv(f)(y,u) = ingo(f) + mv(f)+ € kY, U],

where writing as (6.3),

ing(f)* = ing(f) = Y Can YPU* € K[V, U]
(A.B)
A

nw () —1B] "

where the sum ranges over such (A, B) that |B| < nw(f) and
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(3) For a semi-positive linear form L : R® — R, we write d1(f,y,u) = o(A(f,y,u)).
By definition
L(A)
and Ep, = A(f,y,u) N{A € R¢| L(A) = 6.(f,y,u)} is a face of A(f,y,u) of slope
L. When Ey, is the d-face of A(f,y,u) (namely L = Ly as in Definition 7.1 (3)),
we write simply §(f,y,u) = L(f,y,u).

(4) Let Er, be be as in (3). We define the Er-initial of f by

ing, (f) = ing, (g = ino(f) + > _ Cap YPU* € K[[U]|[Y]

(4,B)

5L(f>yau) = mm{ ‘ CA,B 7é 07 ‘B’ < n(u)(f)} .

where the sum ranges over such (A, B) that

Bl <nw(f) and  L(A) = 0L(f,y,u)(nw(f) — |B]).

We note that ing, (f) is different from iny(f) in Definition 6.2 (2). When Ey is
the 0-face of A(f,y,u), we write ing(f) for ing, (f).

One easily sees the following:
Lemma 7.3 Let the notation be as in Definition 7.2.
(1) iny(f)@,u) s independent of the presentation (6.3).

(2) If Ey, is bounded, ing, (f) € k[U,Y] and it is independent of the presentation (6.3).
Otherwise it may depend on (6.3) (so there is an abuse of notation).

(3) If £y, is bounded,
ing, () = ino(f) + > _inu(f)".

ocBy
(4) inu(f) = ino(f) if v & Alf,yow) and iny(f) # ino(f) if v is a vertex of A(f.y, u).
Lemma 7.4 (1) 6(f,y,u) > 1 if and only if niw(f) = va(f).
(2) 5(f,y,u) = 1 if and only if inw(f) = ins(f).
(3) 8(f.y,u) > 1 if and only if inm(f) = ine(f) € k[Y].
Proof By definition 8(f,y,u) > 1 is equivalent to the condition:
Cap # 0 and |B| < ngy(f) = A+ |B| = ng(f),
which is equivalent to
Al +1B] < ne(f) = Cas = 0 or |B] = ngy(f).

Lemma 7.4 (1) follows easily from this. (2) and (3) follow by a similar argument and the
details are omitted. [J
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Definition 7.5 Let f = (f1,..., fm) C m be a system of elements such that f; & (u).
(1) Define the polyhedron
A((fry -5 fm) Yy, u) = A(f y,u) SRS,

as the smallest F'-subset containing 1<LJ< A(fi,y,u).
(2) Forv € R® — A(f,y,u)", the v-initial of f is defined as

iny(f) = (inu(f1), - -, inu(fm))

by noting

The Ep-initial ing, (f) of f for a face Ep of A(f,y,u) is defined similarly.
(8) For a semi-positive linear form L : R — R, we put
51(f,y,) = min{ay (g, )| 1 <7 < m}.
(4) We let V(f,y,u) denote the set of vertices of A(f,y,u). We put
V(f,y,u) ={veR —A(f,y,u)| ing(f;) # ino(f;) for some 1 <i < m}.

We call it the set of the essential points of A(f,y,u). By definition A(f,y,u) is the
smallest F-subset of R which contains V(f,y,u). By Lemma 7.3 we have

V(f,y,u) CV(f,y,u) CIA(f,y,u).

The following fact is easily seen:

Lemma 7.6 We have

~ 1
V(fryu) € 525 CR® with d = max{nw(f;)| 1 <i <m}.

In particular ‘7(]”, y,u) is a finite set.

Theorem 7.7 Let the assumption be as in Definition 7.5. The following conditions are
equivalent:

(1) f is a (u)-standard base of J and d(f,y,u) > 1.
(2) fis a standard base of J and in(f;) € k[Y] for Vi.
If (u) is admissible for J, the conditions imply that (y,u) is strictly admissible for J.

Proof The implication (2)=-(1) follows from Lemma 7.4 in view of Remark 6.3. We
show (1)=(2). When 6(f,y,u) > 1, L = Ly is effective for (f,y,u) by Lemma 7.4, where
Lo(A) = |A| (cf. Remark 6.3). Thus the desired assertion follows from Theorem 6.9.
Assume that (u) is admissible for J. By Lemma 6.13, the conditions imply that Ing(J)
is generated by polynomials in k[Y]. Thus we must have IDir(R/J) = (Y1,...,Y,) by the
assumption that (u) is admissible for J. This proves the last assertion. [J
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Definition 7.8 Let the assumption be as in Setup A in §6. The polyhedron A(J,w) is the
intersection of all A(f,y,u) where f = (f1,..., fm) is a (u)-standard basis with reference
datum (y, L) for some y and L.

Remark 7.9 (1) This is not the original definition given in [H3], (1.12) (which is
formulated more intrinsically), but it follows from loc. cit. (4.8) that the definitions
are equivalent.

(2) As a polyhedron, A(f,y,u) and A(J,u) are defined by equations
Li(A) > dy, ..., Li(A) > d,

for different non-zero semi-positive linear forms L; on R€.

Another important result of Hironaka provides a certain condition under which we have
A(J,u) = A(f,y,u) (see Theorem 7.16). First we introduce the notion of normalizedness.

Definition 7.10 Let S = k[X}, ..., X,] be a polynomial ring over a field k and I C S be
a homogeneous ideal. We define:

E(I) ={LE(¢) € Z%, | v € I homogeneous} ,

where for a homogeneous polynomial p € S, LE(p) is its leading exponent, i.e., the biggest
exponent (in the lexicographic order on Z%,) occurring in p: For ¢ = > ca X we have
LE(p) = max{A | ca # 0}. If I is generated by homogeneous elements oy, ..., om, we
also write E(I) = E(p1,...,¢m). We note E(I) + 7%, C E(I).

Definition 7.11 Assume given Gy,...,G,, € k[[U]][Y] = k[[U1, ..., UJ][Y]:

Gi=F(Y)+ Y. YPP(U), (Pus(U) € k[U))

|B|<TLZ'
where F;(Y') € k[Y] is homogeneous of degree n; and P, g(U) & k — {0}.

(1) (Fi,..., Fy) is normalized if writing

FZ<Y) = ZC@BYB with C@B €k,
B

Cig=04ifBeE(F,....,Fy) fori=1,....,m.

(2) (Gi,...,Gn) is normalized if (Fy,...,F,) is normalized and P, p(U) = 0 if B €
E(Fla---aFifl) forizl,...,m .

It is easy to see that if (Fi,..., F),) is normalized, then it is weakly normalized in the
sense of Definition 1.3. There is a way to transform a weakly normalized standard base
of a homogeneous ideal I C k[Y] into a normalized standard base of I (cf. [H3|, Lemma
3.14 and Theorem 7.19 below).

Definition 7.12 Let the assumption be as in Definition 7.5.
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(1) (f,y,u) is weakly normalized if (ing(f1), ..., ino(fm)) is weakly normalized.

(2) (f,y,u) is 0-normalized if (ing(f1),...,ino(fm)) is normalized in the sense of Defi-
nition 7.11 (1).

(3) (f,y,u) is normalized at v € R® — A(f,y,u)t if so is (in,(f1),...,in,(fm)) in the
sense of Definition 7.11 (2).

(4) (f,y,u) is normalized along a face Er, of A(f,y,u) if sois (ing, (f1),- -, e, (fm))
in the sense of Definition 7.11 (2).

Now we introduce the notions of (non-) solvability and preparedness.

Definition 7.13 Let the assumption be as Definition 7.5. For v € V(f,y,u), (f,y,u) is
called solvable at v if there are Ay, ..., N\, € k[U] such that

where Y + X = (Y1 + A\, ..., Y. + \.). In this case the tuple A\ = (A,...,\.) is called a
solution for (f,y,u) at v.

Remark 7.14 Forv € V(f,y,u), it is not possible that in,(f;) € k[Y] foralli =1,...,m
(cf. Definition 7.5 (4)); hence X # 0 if v is solvable.

Definition 7.15 Let the assumption be as Definition 7.5.

(1) Call (f,y,u) prepared atv € V(f,y,u) if (f,y,u) is normalized at v and not solvable
at v.

(2) Call (f,y,u) prepared along a face Er of A(f,y,u) if (f,y,u) is normalized along
Ep and not solvable at any v € V(f,y,u) N EL.

(8) Call (f,y,u) d-prepared if it is prepared along the d-face of A(f,y,u).
(4) Call (f,y,u) well prepared if it is prepared at any v € V(f,y,u).

(5) Call (f,y,u) totally prepared if it is well prepared and normalized along all bounded
faces of A(f,y, u).

We can now state Hironaka’s crucial result (cf. [H3|, (4.8)).

Theorem 7.16 Let the assumption be as in Definition 7.5. Assume that f is a (u)-
standard base of J and the following condition holds, where R = R/(u), m = m/(u),
J=JR:

(*) There is no proper k-subspace T C gr}a(}?) such that

(Ina(J) NE[T)) - gra(R) = Ina(J).

Let v be a vertex of A(f,y,u) such that (f,y,u) is prepared at v. Then v is a vertex of
A(J,u). In particular, if (f,y,u) is well-prepared, then A(J,u) = A(f,y,u).

We note that condition (x) is satisfied if (u) is admissible (Definition 6.1).
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Corollary 7.17 Let the assumption be as Theorem 7.16. Assume further that (u) is
admissible for J. Then the following conditions are equivalent:

(1) (f,y,u) is prepared at any v € V(f,y,u) lying in {A € R¢| |A| < 1}.
(2) 6(f,y,u) > 1.
(3) (y,u) is strictly admissible for J and f is a standard base of J admissible for (y,u).

The above conditions hold if (f,y,u) is d-prepared.

Proof Clearly (2) implies (1). The equivalence of (2) and (3) follows from Theorem
7.7. It remains to show that (1) implies (2). By Lemma 1.24 we can find a strictly
admissible (z,u) and a standard base g of J admissible for (z,u). By Lemma 7.4 we have
d(g, z,u) > 1 and hence

A(J,u) C A(g, z,u) C {A e R |A| >1}.

By Theorem 7.16 this implies §(f,y,u) > 1 since (f,y,u) is well-prepared at any vertex v
with |v| < 1. Finally, if (f, y, u) is 6-prepared, Theorem 7.16 implies 6( f, y, u) = 6(A(J, u))
and the same argument as above shows 0(f,y,u) > 1. This completes the proof. [J

We have the following refinement of Theorem 2.2 (2)(iv).

Theorem 7.18 Let the assumption be as Definition 7.5. Assume that (u) is admissible
for J and that (f) is a (u)-standard base of J. Let X = Spec(R/J) and D = Spec(R/p)
forp = (y,uy,...,us) Cm=(y,ug,...,u). Assume that D C X is permissible and that
there exists a vertex v on the face Er, such that (f,y,u) is prepared at v, where

L:R*—=R; (a,...,a.) — Zai,

1<i<s

Then vy(fi) = vm(fi) = n(fi) fori=1,...,m. In particular we have 6(f,y,u) > 1.

Proof of Theorem 7.18 By Theorem 7.16, the last assumption implies

(7.1) or(f,y,u) = 0r(A(J, u)).

Let n; = ngy(fi) = v (J) for i = 1,...,m. By Lemma 6.13 (2) and (1.4) we have
Vp(fi) S vm(fi) S nw(fi) =n; fori=1,...,m.

Thus it suffices to show that (7.1) implies vy(f;) > n;. Let g = (¢1,...,9m) be a (u)-
standard base of J. As usual write

gi = Z Ciapy u® with Ciap € R*U{0}, A€ ZSy, BeEZL,
i,A,B

Note that n,(g;) = nw)(fi) = n; by Lemma 6.13 (2). We have

vp(gi) > ni <|B|+ L(A) >n; if C;ap #0and |B| <ny

i @L(n- :413‘

)>1it Ciap #0and |B| <n,;.
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Hence we get the following equivalences for a (u)-standard base g of J:

(7.3) (g, y,u) > 1 & vp(g) > V() fori=1,...,m
| & vy(gi) = vm(g:1) = Ny (9:) = vO(J) fori=1,...,m

Noting that any standard base is a (u)-standard base by Lemma 6.8 (2) (here we used the
assumption (1)), Theorem 2.2 (2)(iv) implies that there exists a (u)-standard base g which
satisfies the conditions of (7.3). Since A(g,y,u) D A(J,u), this implies 6.(f,y,u) >
0r(g,y,u) > 1, which implies the desired assertion by (7.3). Finally the last assertion
follows from Lemma 7.4. [J

We can not expect to get the desirable situation of Theorem 7.16 right away. So we need
procedures to attain this situation. This is given by the following results (cf. [H3], (3.10),
(3.14) and (3.15)). First we discuss normalizations.

Theorem 7.19 Let the assumption be as in Definition 7.5. Assume that (f,y,u) is weakly
normalized. For v € V(f,y,u), there exist x;; € (u) C R (1 <j <i<m) such that the
following hold for

1—1
h=(h1,. .. hm), where by = f; = i f;.
j=1

(1) A(h,y,u) C A(f,y,u).
(17) If v € A(h,y,u), then v € V(h,y,u) and (h,u,y) is normalized at v.
(iv) Forv' € V(f,y,u) —{v}, we have iny (f)yu) = i (h) -

Remark 7.20 In the above situation, the passage from (f,y,u) to (h,y,u) is called a
normalization at v. It is easy to see that ing(h;) = ing(f;) for alli, 1 <i < m.

We will need the following slight generalization of Theorem 7.19:

Theorem 7.21 Let the assumption be as in Definition 7.5. Let E be a bounded face of
A(f,y,u). Assume that (f,y,u) is normalized at any v € ENV(f,y,u). Then there exist
zi; € (WR (1 <j <i<m) such that putting

i—1
h; Zfz'—zl‘z‘jfj for1 <i<m,
=1

A(h,y,u) = A(f,y,u) and (h,y,u) is normalized along E.

Proof Write £ = A(f,y,u)N{A € R°| L(A) = 1} for a positive linear form L : R® — R.
Fori=1,...,m, we can write

inp(f)=FY)+ > YPPsU) € klY,U], PpU)= >  casU"€klU],

| B|<n; |B|+L(A)=n;
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where n; = ne)(f;) = v (fi) and Fi(Y) = ino(f;) € k[Y] which is homogeneous of degree
n;. For each ¢ > 1 put

E(fl?"'vfi) = {B‘ Pz,B(U) 7_é07 BEE(Fla---aE—l)}-

If X(f1,...,f;) =0 for all i« > 1, there is nothing to be done. Assume the contrary and
let j = min{i| X(f1,..., f;) # 0} and Bpax be the maximal element of X(fi,. .., f;) with
respect to the lexicographic order. Note that

A
nj — |BmaX|

(74) { | Cj,A, Bmax 7£ O} - EL\V(f7 Y, u)

by the assumption that (f,y,u) is normalized at any v € E; NV (f,y,u). By the con-
struction there exist G;(Y) € k[Y], homogeneous of degree |Bpax| — ny, for 1 <i <j—1
such that

H(Y) =Y — N G(Y)F(Y)

1<i<j—1

has exponents smaller than By,.x. Note that H(Y') is homogeneous of degree | Byax|. For
i=1,...,7—1, take g; € R such that in,(g;) = G;(Y") and take

~ ~ A . ~
PiBoa = E Ci A Bmax W™ € R With ¢j A4 B = Cj A Bunae mod M.
‘Bmdx|+L(A):nz

Put
hj = fj — Pj7Bmax Z ngz and hl = fz fOI‘ 1 S Z 7£ j S m.

1<i<j—1
By (7.4), we have
ing(h;) = np(f;) = BB (O) (Y P — H(Y)),
iny(hj) =in,(f;) for Vv € V(f,y,u).

Hence X(hq,...,h)) = 3(f1,..., fi) foralli =1,...,j—1 and all elements of X(hy, ..., h;)
are smaller than B, in the lexicographical order. This proves Theorem 7.21 by induction.
O

Now we discuss dissolutions.
Theorem 7.22 Let the assumption be as in Definition 7.5 and let v € V(f,y,u).

(a) Any solution for (f,y,u) at v is of the form \ with N\; = ¢;U", where ¢; € k™. In
particular, if it exists, a solution is always non-trivial and v € Z°.

(b) Let d = (dy,...,d,) C R with d; € (u®) be such that the image of d; in gr (R) is
Ni- Let z=y—d=(y1 —dy,...,y, —d;). Then

(1) A(f,z,u) CA(f,y,u).
(15) v & A(f,z,u) and V(f,y,u) — {v} CV(f, z,u).
(iii) Forv' € V(f,y,u) —{v}, we have

Ny () (z0) = mv/<f)(y,u)|yzz € k[Z,U). (Z =inu(z) € grL(R))
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Remark 7.23 In the above situation, the passage from (f,y,u) to (f,z,u) is called the

dissolution at v. It is easy to see ing(f;)(zu) = ino(fi)(y,u)‘yzz for 1 <Vi<m.

We now come to the preparation of (f,y,u): Let the assumption be as in Definition
7.5. We apply to (f,y,u) alternately and repeatedly normalizations and dissolutions at
vertices of polyhedra. To be precise we endow RS, with an order defined by

v>w << v > |w|or |v| = |w| and v > w in the lexicographical order.

Let v € V(f,y,u) be the smallest point and apply the normalization at v from Theorem
7.19 and then the dissolution at v from Theorem 7.22 if v is solvable, to get (g, z, u). Then
(g,z,u) is prepared at v. Repeating the process, we arrive at the following conclusion (cf.
[H2], (3.17)).

Theorem 7.24 Let the assumption be as in Definition 7.5. Assume that (f,y,u) is weakly
normalized. For any integer M > 0, there exist

ri;€(u)y (1<j<i<m), d,eu) (v=1,...,r),
such that putting

z2=(21,...,29) with z, =y, — d,,

i—1
9="_91,--,9m) with g; = fi — Ziﬂz’jfj ,
j=1

we have A(g, z,u) € A(f,y,u), and (g, z,u) is prepared along all bounded faces contained
in {A € R®| |A] < M}. If R is complete, we can obtain the stronger conclusion that
(g, z,u) is well-prepared.

Remark 7.25 By Theorem 7.21 we can make (g, z,u) in Theorem 7.24 satisfy the addi-
tional condition that it is normalized along all bounded faces of the polyhedron contained
in {A € R°| |A| < N}. If R is complete, we can make (g,z,u) totally prepared.

Corollary 7.26 Let the assumption and notation be as in Theorem 7.24.
(1) If f is a (u)-standard base of J, then so is g.

(2) If f is a (u)-standard base of J and (u) is admissible (cf. 6.1), then §(g,z,u) > 1
and (z,u) is strictly admissible and g is a standard base admissible for (z,u).

Proof (1) follows from Corollary 6.10. (2) follows from (1) and Theorem 7.17. [J

At the end of this section we prepare a key result which relates certain localizations of
our ring to certain projections for the polyhedra. Let (f,y,u) be as in Definition 7.5. For
s=1,...,e, we let

ps = (Y, u<s) = (Y1, oy Yr, UL, - o ., Us).
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Let R be the localization of R at ps, let J; = JRs, and mg = psR, (the maximal ideal of
Rs). We want to relate A(f,y,u) C R®to A(f,y,u<s) C R®, the characteristic polyhedron
for J, C R,. Assume given a presentation as in (6.3):

(7.5) fi=)Y_ Papy®u® with PapeR*U{0} (i=1,....m).

(7.5) can be rewritten as:

(76) Z f)z<C€B u<s7

(C,B)
where for C' = (ay, ..., as) € Z%y, uS, = uf" -+ - ul and
(77) D D R s

A=(a1,0,05,05415--,0¢)

We now introduce some conditions which are naturally verified in the case where Spec(R/(u1))
is the exceptional divisor of a blowup at a closed point (see Lemma 9.4 below). Assume

(P0) J C py and there is a subfield kg C R/p; such that P, 4 5 mod p; € ko.
By (P0) we get the following for C' = (a1, ..., a,) € Z%:
Prop=P%, modp, = > Poapllyi -1 € kol[Uags, ..., )] C R/ps,
A=(a1,0 5105 11 y00mre)

Picp:=Piap modyp, €ky— R/ps, u; =u; mod ps € R/ps.
Hence we have the following equivalences for C' € Z%,
(1) i,SCﬁB €ps e Piap=0 forall AeZS, such that 7,(A) = C

= Pz cp =0

where 7g : R® — R¥; (aq,...,a.) — (ai,...,as). We further assume

(P2) For fixed B and a € Z>g, there are only finitely many A such that P, 4 g # 0 and
m(A) = a.

This condition implies P=5 on € R

Theorem 7.27 Let L :R* — R be a semi-positive linear form and Ly = L o 7.

(1) If (PO) holds, then
Afy,u<e) = ms(A(f,y,u))  and 00(f,y,u<s) = 00, (f 9, u).

(2) If (PO) and (P2) hold and L(1,0,...,0) # 0, then the initial form along the face
Ep of A(f,y,u<s) (with respect to the presentation (7.6), cf. Definition 7.2) lies in
the polynomial ring R/ps[Y,U<s] and we have

inEL(f)(yvugs) - inELs (f>(y’“)|U¢=m (s+1<i<e) ’

considered as an equation in ko[Usi1, . .., U][Y,U<s] C R/pslY,U<s| (cf. (P2)).
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(3) Assume (PO) and (P2) and L(1,0,...,0) # 0. Assume further:
(i) There is no proper k-subspace T C @ k-Y; (k= R/m) such that

1<i<r

F,(Y) :=ino(f;) € k[T] Ck[Y] forallj=1,...,m.
(i) (f,y,u) is prepared along the face Er. of A(f,y,u).

Then (f,y,u<s) is prepared along the face Ep of A(f,y,u<s).

Proof By (P1) we get

. L(C .
Sulf. ) = min{ U |B] <, Py #0)
. LA
= mln{n' _( |;| | |B| < ng, Pi,A,B 7é 0} = 5Ls(f7y7u)

and (1) follows from this. To show (2), we use (7.6) to compute

. —=<s
mEL(f)(y,ugs) = F(Y) + Zpi,C,BYBUgs

(7 8) B.C
= F(Y)+ Y Paputyy ---u - YPULW
B, A

where the first (resp. second) sum ranges over those B, C' (resp. B, A) for which |B| < n;
and L(C) = 0r(f,y,u<s)(n; — [Bl) (vesp. |B < n; and Ly(A) = or,(f,y,u)(n: — [Bl)).
(2) follows easily from this.

We now show (3). By (2) the assumption (i) implies that ing, (f)y,u.,) is normalized.
It suffices to show the following:

Claim 7.28 Let v be a vertex on Er. Then (f,y,u<s) is not solvable at v.

We prove the claim by descending induction on s (the case s = e is obvious). From (1) we
easily see that there exists a vertex w € A(f,y, u) such that m4(w) = v and v; := 7 (w) is
a vertex of A(f,y,,u<) for all s <t <e. By induction hypothesis, we may assume

(%) (f,y,u<sr1) is not solvable at vg.

Assume (f,y,u<,) solvable at v. Then v € Z%, and there exist elements Ay, ..., A, of the

fraction field K of R/ps such that
(7.9) iy (fyuey = V1 +MUZ,, .Y + AUL)  foralli=1,...,m.
Claim 7.29 \; lies in the localization S of R/ps al psi1/ps for all j =1,...,7.

Admit the claim for the moment. By the claim we can lift A\; € S to Xj € Rsyq, the

localization of R at psy1. Set z; = y; + Xjugs € Ry C R,. Take a positive linear form
L, : R* — R such that E, = {v} and hence L,(v) = 0r,(f,y,u<s). By Theorem 7.22,
A(f,z,u<cs) C A(f,y,u<s) — {v} so that

(7.10) oL, (f, 2,u<s) > 0, (f, 4, uss)-
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Now we apply (1) to Jg41 C Rsyq and (f, 2, u<s41) instead of J C R and (f,y,u). Note
that in the proof of (1) we have used only (P0) which carries over to the replacement.
We get

A(f, z,u<s) = W(A(f,z,ugerl)) and  p,on(f, 2, u<s1) = 01, ([ 2, uss),

where 7 : R™t — R®: (ay,...,as41) — (ay,...,as). By the assumption, v = 7(vs;;) and

Ly om(vsr1) = Lo(v) = 01, (f, ¥, uss).
By Theorem 7.16, (*) implies

(711) Vs+1 S A(JS+1,U§5+1) C A(f, Z,U§s+1>>.
Thus we get

5Lv (fa Z, Ugs) = 5Lvo7r<f7 Z, u§s+1> S 5Lvo7r(A(Js+17 u§s+1)) S Lv o 7T(Uerl) - 6Lv (fv Y, U/SS)a

where the inequalities follow from (7.11). This contradicts (7.10) and the proof of (3) is
complete.

Now we show Claim 7.29. Note that S is a discrete valuation ring with a prime element
7 1= ugy; mod p,. Thus it suffices to show v.(A;) > 0 for j = 1,...,r. Assume the
contrary. We may assume

Ue(M) =—€<0, v (\) <we(N;) forj=1,...,m
Set
Zi =Y;+puV where V. =UZ and pu; = \;7° € S,
and recall that F;(Y) = ing(f;) € ko[Y] and ky C S by (P0) . Consider
FZ) = E(Y 4TV, Yo+ V) €V V], 5= S/{m) = lpen),

where 7i; = ; mod m € k. We claim that there is some ¢ for which F;(Z) ¢ s[Y]. Indeed,
by the structure theorem of complete local rings, (P0) implies R/psi1 =~ kf[usi2, - - -, Ue)]

so that x is contained in k((usy2,...,u.)) which is a separable extension of k. By (3)(7)
and Lemma 1.22 (2),

T = @/@-(Yl—kﬁj‘/) - @/«:-Y}@/{-V
1<j<r 1<j<r

is the smallest k-subspace such that F;(Z) € s[T] for all i = 1,...,m. Thus the claim
follows from the fact that 7i; # 0. For the above ¢, we expand

F(Yi+ MV, Y+ AV) =) Y PVmlBl (y € K),
B

and we get

F(2) = FEVi 4wV, Yo+ V) =Y ypr B0y By lBl e gy v,
B

Since Fi(Z) ¢ k[Y], there is some B such that |B| < n; and yp7<™~1B) is a unit of S.
Noting € > 0, this implies vy € S. On the other hand, (7.8) and (7.9) imply v5 € S5,
which is absurd. This completes the proof of Claim 7.29. [J
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8 Transformation of standard bases under blow-ups

In this section we will study the transformation of a standard base under permissible
blow-ups, in particular with respect to near points in the blow-up. We begin by setting
up a local description of the situation in Theorem 2.14 in §2.

Setup B

Let Z be an excellent regular scheme and X C Z be a closed subscheme and take a closed
point x € X. Put R = Oy, with the maximal ideal m and put k£ = R/m = x(z). Write
X Xz Spec(R) = Spec(R/J) for an ideal J C m. Define the integers ny <ng < --- < n,,
by

vi(X,Z)=v"(J)=(n1,...,Nm,00,00,...).

Let D C X be a closed subscheme permissible at x € D and let J C p be the prime ideal
defining D C Z. By Theorem 2.2 (2) we have T,(D) C Dir,(X) so that we can find a

system of regular parameters for R,

(Y, 0) = (Y1, ooy Yy ULy v o vy Usy U1y e, Vp)

such that p = (y,u) and (y, (u,v)) is strictly admissible for J (cf. Definition 6.1). This
gives us an identification

gro(R)=k[Y,U V] =k[Y,...,Y,,Uy,...,Us, Vi, ..., Vi] (k= R/m)
where Y; = inn(vi), U; = inm(w;), Vi = inm(v;) € gr(R). Consider the diagram:
Bip(X)= X' C Z' = Blp(Z) 7, (z)=E,

lmx |7z
X Cc 7

and note that
E, =1 (z) = P(T4(Z)/T+(D)) = Proj(k[Y,U]) = Py,

We fix a point
x' € Proj(k[U]) C Proj(k[Y,U]) = E,.

(By Theorem 2.14, if char(x(z)) = 0 or char(k(x)) > dim(X), any point of X’ near to x
lies in Proj(k[U]). Moreover, if 2’ is near to z, Theorem 2.10 implies

v (X' 2" =vi(X, 2).

Without loss of generality we assume further that 2’ lies in the chart {U; # 0} C E,. Let
R' = Oy, with the maximal ideal m’ and let J' C m’ be the ideal defining X’ C Z’ at
. Put k' = k(2') = R'/m’. Then mR' = (u1,v) = (ug,v1,...,v;), and

(v up,v),  withy' = (W4, ...,u.), ¥ = yi/ur, v=(vi,...,0)

is a part of a system of regular parameters for R’. Choose any ¢s,..., ¢y € m’ such
that (y',u1,¢,v), with ¢ = (¢9,...,¢s), is a system of regular parameters for R’ (note
s — s’ = trdeg(k(2'))). Then

gr (R) = K[Y' U, ® V] =K, . . Y U,&,... 0 W,... Vi

I T
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where Y/ = ingw (y)), ©; = ingw(¢i), Vi = inw(v;) € gry(R’). Assume now given
a standard base f = (f1,..., f) of J which is admissible for (y, (u,v)).
By definition
(8.1) Fi(Y):=inn(fi)€k[Y](i=1,....,m) and Ing(J)= (Fi(Y),...,Fn(Y)).
By Lemma 6.13 (2) we have
(8.2) Valfi) = nw)(fi) =n;  fori=1,...,m.
Finally we assume
(8.3) vm(fi) = ve(fi) fori=1,...,m.

This assumption is satisfied if D = x (for trivial reasons) or under the condition (x) of
Theorem 7.18 (for example if (f,y, (u,v)) is well-prepared). The assumptions imply

(84)  fi=) CiapyPutv™ Capel, A=(A,A), A, €L, A, € ZL,,
A,B

where the sum ranges over A,, A,, B such that
(8.5) |B| + |Au| > n;.

By [H1] Ch. III.2 p. 216 Lemma 6 we have J' = (fi,..., f},) with

) B |A, iy
(8.6) = fifuit =" (Cap u)y ulHEy A
AB
U’Au :ugl?..,u;as for Au = (ala-"aa's) (U;; :ul/u1>

This implies

(8.7) fl=F mod (uy,v) = (uy,vy,...,v) fori=1,...,m, where

F;‘/ - Z CQB?//B and n; = Um’(ﬁ;‘) - n(ul,zﬁ,v)(fi/)
|B|=n;

so that
(88) Z'n0<f/)(y/7(ul7¢7v)) = F(Y/) for 1 = 1, ...,

For later use, we choose S (resp. S'), a ring of coefficients of R (resp. R') (cf. (6.5)). We
also choose a set I' C S of representatives of k (resp. a set IV C S’ of representatives of
k"). We note that the choices for R and R’ are independent: We do not demand S C S’
nor I' C I".

(end of Setup B).
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We want to compare the properties of (f,y, (u,v)) (downstairs) and (f’,v', (u1, o, v))
(upstairs), especially some properties of the polyhedra and initial forms.

Let e = s+t and ¢ = ¢ + . For a semi-positive linear form L on R® (downstairs)
(resp. on R® (upstairs)), vy and ing (%) denote the L-valuation of R (resp. R') and the
corresponding initial form of x € R (resp. x € R’) with respect to (y, (u,v),I") (resp.

(y/7 (ulv ¢7 U)v F/))

Theorem 8.1 In Setup B, f" = (fi,...,f,) is a (u1,¢,v)-effective basis of J'. If
(fi,--., fm) is a standard base of J, then (fi,...,fl) is a (u1,¢,v)-standard basis of
J'. More precisely there ezists a positive linear form L' on R® (upstairs) such that:

ing(fH)=F ") (1<i<m) and iny(J)=(FY"),...,F.(Y").
First we need to show the following:

Lemma 8.2 Let the assumption be as in Setup B. Choose d > 1 and consider the linear
forms on R¢ and R¢ :

t
1

L(A) = E( Z a; + Z a’) (downstairs)

1<i<s 1<5<¢

1
N(A) = -1 (a1 + Z a;) (upstairs)

1<5<t
respectively, where A = (ay,...,a a},...,a,) with x = s (downstairs) and x = s' (up-

stairs). Then the following holds for g € R.

(1) va(9) = 7%5vL(9).

(2) Assuming that ¢ == g/u} € R with vp(g) = n, we have vy (g') = n. Assuming
further ing(g) = G(Y) € k[Y], we have inn (¢') = G(Y”).

Proof Let g€ R and write

B A Ay
g= E Capy u™v
A,B

as in (8.4). Then, in R’ we have

A,B

where the notation is as in (8.6). Note that

Can M =0 in R\’/(y',ul,v) < Cap=0
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because Cy g # 0 implies Cy g € R* so that C4 p € (R')*. Hence

: Bl + A
var(9) :mln{|B| + % | Cap # 0}

d A
- min{\B| —|—’T‘l| ‘ Ca,n 7&0}

d—1

which proves (1) of Lemma 8.2. Next assume vy (g) =n and ¢’ = g/u} € R’. Then

d
oa(g') = var(g) — var(uy) = p— vr(g) — dﬁ 1= n.
Note that S
/ 1A / ul+|B|l-n A
g :Z(CA,BU )y g v,
A,B
Al |A|+ |B] —n
Bl 4 — = B+
|B| + y n <= |B| + i n

Therefore, with (8.9) we see

A
iny(g) Ek[Y] <= Cap=0 if |B|+%—n and |B| <n

Al +[Bl—n

=yt Cyup=0 if |B|l+ p—

=n and |B|<n

— inn(g') € K'Y

(Note that the last implication is independent of the choice of a representative I' of £'.)
Moreover, if these conditions hold, we have

mL(g) = Z CO,B YB and z'nA/(g’) = Z 0073 Y/B.
|BI=vL(a) [B=vL(9)

This completes the proof of Lemma 8.2. [

Proof of Theorem 8.1 By (8.1) and Lemma 7.4 we have 6 := 0(f,y, (u,v)) > 1.
Choose d with 1 < d < §, and consider the linear forms L on R® (downstairs) and A’ on
R¢ (upstairs) on R as in Lemma 8.2. As for the desired positive linear form in Theorem
8.1, we take

_ doai+ . d;

L'(4) T (upstairs) (A = ((a;)1<i<s, (@))1<i<t).
By Lemma 6.6(3) and Proposition 6.11, we have vy (f;) = vn(f;) = n; and
(8.10) ing(f) = inm(f;) = Fy(Y), Inp(J) = (F\(Y),..., Fn(Y)).

Clearly L' > A’, so that by Proposition 6.11 it suffices to show

(8.11) iny(f) = F(Y)  and  Inn(J) = (FL(Y'), ..., Fu(Y").
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(A’ satisfies the condition vps(char(k’)) > 0 in the proposition since char(k’) = char(k) €
mR = (uy,v)). The first part follows from (8.10) and Lemma 8.2 (2) To show the second
part, choose any ¢’ € J'. Take an integer N > 0 such that g := ul¥¢’ € J. By (8.10),
Proposition 6.11 implies that there exist A{,..., \,, € R such that,

(8.12) vp(Aifi) > vp(9)
(8.13) vr(Nifi) = ve(g),
(8.14) vr(g — Z Aifi) > N.

where p = (y,u) = (Y1, ., Y, U1, ..., us). Here we used the fact that v, = vy, with

L&@:}jm(mmmw@ (A = ((a:)1i<s (@))1i<0).

1<i<s

Let v,, be the discrete valuation of R’ with respect to the ideal (u;) C R'. Because
pR = (uy1), (8.12) implies

bur () = 050 = 0y(9) = 15 = vy (9) — i = N =
where n; = vu(f;) = vm(fi) (cf. (8.3)). Therefore
o= NJjuY M e R
We calculate
on AL = var(Nififuy)
1UL()‘ fi) = d—1

zdilm@%—gg— (by (8.13))

1
= va(g/ul) = vp(g) (by Lemma 8.2(1)).

(by Lemma 8.2(1))

(8.15) d

(8.14) implies

v (g’— > A;f,f) —uy ((g— > m) /u?)
1<i<m 1<i<m

UL<g— Z )\fl>——>>()

1<i<m

Therefore we may assume

(8.16) G—ZX>>W)
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By Lemma 6.4 (2), (8.15) and (8.16) imply

iny(g') = iny ( > /\sz") = inn(Nina(f)),

1<i<m i

where the last sum ranges over all i such that v (A, f/) = var(¢'). This proves the second
part of (8.11) and the proof of Theorem 8.1 is complete.

We keep the assumptions and notations of Setup B and assume that (fi,..., f) is a
standard base of J. So by Theorem 8.1 f' = (f{,..., f},) is a (uy, ¢, v)-standard base of
J" = JR'. Then Corollary 7.26 assures that we can form a standard base of J’ from f’ by
preparation if (uy, ¢, v) is admissible for J'. Hence the following result is important.

Theorem 8.3 Let k' = r(x'). If 2’ is very near to x (cf. Definition 2.13), there exist
linear forms Ly(Uy,V),...,L.(Uy, V) € K'[Uy, V] such that

IDix(R')J") = (Y] + Li(U1,V),....Y) + L.(U1,V)) Cgrn(R)=FK[Y,U,®, V]
In particular (uy, ¢,v) is admissible for J'.
Let K/K' be a field extension. Consider the following map
U K[Y] = K[Y'] < K[Y', @] = gr, (R)k/(U1, V),
where the first isomorphism maps Y; to Y/ for i = 1,...,r. Recall that
IDir(R/J) = (Y1,....Y:) Cgra(R)=k[Y,U,V],

so that
IDir(R/.J)Y. == IDie(R/J)x Ngra(R)x € P K -Y; C K[Y].
1<i<r

Theorem 8.3 is an immediate consequence of the following more general result.
Theorem 8.4 Assume that ©’ is near to x. Then we have
Y(IDix(R/J)\) C IDix(R'/J') i mod (Uy, V) in gty (R) i/ (U1, V).
Ife(R/J) =e(R/J)k, we have
IDir(R')J") kD (Y] + Ly(U, V), ..., Y! + L.(U, V)
for some linear forms Ly(Uy,V),..., L. (U, V) € K[Uy, V].
For the proof, we need the following.

Proposition 8.5 If 2’ is near to x, there exist h;; € R for 1 < j < i < m such that

setting
i—1
9i = fz‘/_zhij j/w
j=1
we have the following fort=1,...,m:
(8.17) vw(g:) =mni,  and  ing(g;) = F(Y') mod (U, V) in gr(R').
In particular, (g1, ..., 9m) is a standard base of J'.
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Proof First we note that since 2’ is near to x, we have
(8.18) vi(J) =v(J) = (n1,ng, ..oy Ny, 00,00,...) (N <ng < ... < ny,)

The last assertion of the proposition follows from (8.17) and (8.18) in view of [H1], Ch.
ITI Lemma 3. Put

E’yr, = Wy e (Fi(Y')),  where  wiy oo K'Y, Ur, ®,V]] — R
is the map (6.6) for (v/,u1, ¢, v) and I (notations as in Setup B). (8.7) implies
(8.19) fl=Fp+XA mod (m)™ ™ with \; € (w,v) fori=1,...,m.

To prove (8.17), it suffices to show that there are h;; € R for 1< J < i,< m such that
letting g; be as in the proposition, we have

(8.20) vw(gi) =n;, and g — F/p € (ug,v) + (m')"* C R

Indeed (8.17) follows from (8.20) by replacing the h;; with elements of R’ sufficiently close
to them. (8.19) implies

Um’(f':) Sni:Um’<F¥7F/) for 1 = 17...,m_

(8.18) and Corollary 1.4 imply v.y(f]) = n1 so that one can take g; = f{ for (8.20). Let
¢ be the maximal ¢t € {1,...,m} for which the following holds.

(*;) There exist hy; € R for 1 < j < i <t, such that (8.20) holds for
i—1
gi = fi — > hijfj with i =1,...t.
j=1

We want to show £ = m. Suppose £ < m. Then v (f; ;) < nes1 since otherwise (8.20)
holds for gey1 = f;,4, which contradicts the maximality of /. This implies

(821) inm’(fé—i—l) = Z.nm’()\é—i-l) € <U17 V) C k/[Yla U17 (I)> V]
By the assumption we have
Gi = 1inw(g) = F;(Y') mod (U;,V) fori=1,...,[

Since (Fi,..., F,) C k[Y] is normalized (cf. Definition 1.3), (Gy,...,Gy) is normalized
in gr.,(R'). Therefore (8.18) and Corollary 1.4 imply that there exist H; € gr(R')

homogeneous of degree vny(fy,,) —n; for i =1,... ¢, such that
(8.22) inw(fi) = Y HiG:.

1<i<t
Setting

1 N . ad
gl&)l = fé-l—l — Z ngl Wlth Hz = w(y’,ul,qb,v,F’) (Hz)7

1<i<e

we have vy (gé_lgl) > Uny (fr41)- We claim

(8.23) g, - El, o € (ug,v) + (m)men sl

n
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which completes the proof. Indeed (8.23) implies

1
U (91) < Ve (B, 1) = 1.
If vm/(géi)l) = ng41, (8.20) holds for géi)l, which contradicts the maximality of ¢. If
Uy (géfl) < ngs1, we apply the same argument to 9&)1 instead of f;,, and find hy,... ke €
R’ such that setting

(2) (1)
£+1_ 9ot — E h;g;,  we have
1<i<t

v (002)) < v (982)) S mepr and g2 — FL 1€ (ug,v) + (m)metL

ng+1
Repeating the process, we get g1 for which (8.20) holds, which contradicts the maxi-
mality of /. We now show claim (8.23). Noting

f2+1 nz+1 s 9i — E,,F’ S <u17 U> + (m/)nﬁ-l (Z = 17 HE 76)7

ZH I"E U1,>

1<i<¢

Fori=1,... 0, write H; = H; + H;", where H; € K'[Y',®] and H;} € (U;,V) and both
are homogeneous of degree vu/(fy ;) — n;. Similarly we write G; = F;(Y') + G; with
G € (U1, V). Then (8.21) and (8.22) imply

> HE(Y')=0.

1<4<8

it suffices to show

Let HE = Wy o0 (HE). Noting char(k) € mR' = (uy,v), property (6.7) implies

Z F[;Fil,ru o, H,— (H +H) € {(u,v),

1<i<t
which shows the desired assertion. [

Proof of Theorem 8.4 The second assertion follows at once from the first one, and we
show the first. By Proposition 8.5 there exist homogeneous Gy, ...,G,, € gr,(R') such
that

Gj=F:=F;(Y') mod (U;,V) forallj=1,...,m,

(8.24) , , :
Ing(J)k =(G1,...,Gpn) Cgrn(R)=K[Y' U,®, V]

Let W' = IDir(R'/.J') /i Ngri, (R'), then there exist Hy, ..., H, € K[W'|NIngw(J)k such
that
G, = Z h;;H;  for some homogeneous h; ; € gr., (R').

1<j<n

On the other hand, (8.24) implies

H; = Z gi;G;  for some homogeneous g; ; € gr. (R').

1<j<m
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Regarding everything mod (U, V), we get
F{= Y hi;H; and H;= Y g ;F in K[V ® =gr,(R)/(U1,V).
1<j<n 1<j<m
The second equality implies
H; € KW' n(F|,...,F') C K[Y',® where W =W’ mod (U;,V),
so that the first equality implies
(8.25) (KW'l N(F,...,F,)) - K[Y',®] = (F|,...,F,).

Since W = IDir(R/J);x N gry,(R) is the minimal subspace of @ K -Y; such that

1<i<r
(8.25) implies (W) C W', which is the desired assertion. [J

We conclude this section with the following useful criteria for the nearness and the very
nearness of 2’ and . We keep the assumptions and notations of Setup B.

Theorem 8.6 (1) If 6(f', v/, (u1,0,v)) > 1, 2’ is near to x. The converse holds if
(f', ', (u1, ¢, v)) is prepared at any vertex lying in {A € R¥*| |A| < 1}.

(2) Assume ex(X) = €x(X)u@). If (¢, (u1,0,v)) > 1, 2’ is very near to x. The
converse holds under the same assumption as in (1).

Proof Write ¥’ = k(z’). Assume 6(f’, v/, (u1,¢,v)) > 1. By Lemma 7.4 (1) and (8.8),
v (f]) = n; and we can write

inw (f)) = F(Y')+ Y Y'"Ps(U1,@,V), Py(Uy,2,V) € K[U;,2,V].

|B|<n;
Put I = (inw(f]),...,inw(f})) C gry(R'). We have
vi(J) 2 v (J) = v (Inw(J) 2 v*(1),

where the first inequality follows from Theorem 2.10 and the last from [H1] Lemma Ch.II
Lemma 3. By the assumption (Fi(Y),..., F,(Y)) is weakly normalized (cf. Definition
1.3), which implies that (inw(f]),...,inw(f,,)) is weakly normalized so that v*(I) =
v*(J). Therefore we get v*(J) = v*(J') and 2’ is near to x. We also get v*(Iny(J')) =
v*(I), which implies Inw(J) = I by loc.cit.. Now assume z’ is near to z. Let g =
(g1,---,9m) be as in Proposition 8.5. By (8.17) we have (g, V', (u1,¢,v)) > 1. We claim
that ¢ is a (ug, ¢, v)-standard basis of J'. Indeed f’is a (uq, ¢, v)-standard basis of J' by
Theorem 8.1, so the claim follows from the fact that ing(f’) = ing(g) by using Corollary
6.10. By the claim A(J, (u1,¢,v)) C A(g,y’, (u1,¢,v)) so that there exists no vertex w
of A(J', (uy,¢,v)) such that |w| < 1. If A(f",y/, (u1,¢,v)) is prepared at any vertex w
with |w| < 1, we obtain §(f',y/, (u1,¢,v)) > 1 from Theorem 7.16.

105



Assume 6(f',/, (u1,¢,v)) > 1. By Lemma 7.4 (1) and (8.8), iny (f!) = F(Y’) so that
(8.26) ing(J)=1=(F(Y"),..., F.(Y").

By the assumed equality e,(X) = e,(X)w, we have IDiry (R/J) = (Y1,...,Y,) (cf. Re-
mark 1.21). Since Ing(J) = (F1(Y),..., F,(Y)), this implies IDir(R'/J") = (Y{,...,Y))
by (8.26) so that 2’ is very near to z. Finally assume 2’ very near to . By Theorem 8.1,
f"is (uq, ¢, v)-standard basis of J’. By Theorem 8.3, (uq, ¢,v) is admissible for J'. Thus

Corollary 7.17 implies §(f’, v/, (u1,¢,v)) > 1. This completes the proof of Theorem 8.6.
[

Remark 8.7 By the above theorem it is important to compute 0(f',y, (u1, ¢, v)) from
A(f,y, (u,v)). It is also important to see if the well-preparedness of A(f,y, (u,v)) im-
plies that of A(f",y, (u1,¢,v)). These issues are discussed later in this paper in various
situations (e.g., see Lemma 9.3).
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9 Fundamental sequences of B-permissible blowups
and e, (X) =1

In this section we prove the Key Theorem 5.34 in §5, by deducing it from a stronger
result, Theorem 9.2 below. First we introduce a basic setup.

Setup C: Let Z be an excellent regular scheme, let X C Z be a closed subscheme and
take a point € X. Let R = Oy, with maximal ideal m and residue field £k = R/m =
k(z), and write X Xz Spec(R) = Spec(R/J) with an ideal J C m. Define the integers
ny <ng <--- < ny by

v (X, Z)=v"(J)=(n,...,nn,00,00,...).

We also assume given a simple normal crossing boundary B on Z and a history function
O : X — {subsets of B} for B on X (Definition 3.6). Note that B may be empty.

We introduce some notations.
Definition 9.1 (1) A prelabel of (X, Z) at x is
(f7y7u) - (fl"'afNa yla"‘vyraulv"'7ue)7

where (y,u) is a system of reqular parameters of R such that (u) is admissible for
J (cf. Definition 6.1) and f is a (u)-standard base of J. By Lemma 6.13 we have
nw(fi) =n; fori=1,...,N and

Ina(d) = (Fi(Y),... Fn(Y))  with F(Y) = ino(f,) € k(Y]
where k[Y] = k[Y1...,Y,] C grpn(R) with Y; = inn(y;) € gra(R).
(2) A prelabel (f,y,u) is a label of (X, Z) at x if §(f,y,u) > 1. By Corollary 7.17, this

means that (y,u) is strictly admissible for J and f is a standard base of J which is
admissible for (y,u). In this case we have

vm(fi) =n;  and ing(f;) =ine(f;)  fori=1,... N,
(Vir...Y,) = IDiR(RLJ) C gro(R).

(3) A label (f,(y,u)) is well-prepared (resp. totally prepared) if so is (f,y,u) in the
sense of Definition 7.15 (resp. Remark 7.25). By Theorem 7.16, for a well-prepared
label (f,y,u), we have A(J,u) = A(f,y,u).

For each B € B choose an element Ig € R such that B x; Spec(R) = Spec(R/(lg)). For
a positive linear form L : R® — R let §.(Ip,y,u) be as in Definition 7.2 (3). Writing

(9.1) =Y awi+ > baut+g (a, ba€ R*U{0}),

1<i<r A€zs,

where g € (y1,...,y,)°, we have
dr(lg,y,u) = min{L(A) | by & m}.
It is easy to see that d.,(Ip,y,u) depends only on B and not on the choice of [5. We define
69 (y,u) = min{d.(Ip,y,u) | B irreducible component of O(z)}.
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Theorem 9.2 Assume char(k(xz)) = 0 or char(k(z)) > dim(X), and assume there is
a fundamental sequence of length > m starting with (X,Bx,0) and x as in (5.10) of

Definition 5.33, where m > 1. Let (f,y,u) be a label of (X,Z) at x. In case e, (X) >

e9(X), assume that u = (uy,...,u.) (e = e,(X)) satisfies the following condition:

xT

There exist B; € O(z) for 2 < j < s:=e,(X) —e9(X) + 1 such that

B; xz Spec(R) = Spec(R/(u;)) and Dir?(X) =Dir,(X)N N Tu(B;).

2<j<s

Assume further (f,y,u) is prepared along the faces Eyr, for all ¢ =0,1,...,m — 1, where
L,:R*—=R; A= (ay,...,a)— ]A|—|—q-2aj.
=2

Then we have

(9.2) o, (f,y,u) >q+1 and 5€q(y,u)2q—l—1 forq=1,...,m—1.

First we show how to deduce Theorem 5.34 from Theorem 9.2. It suffices to show that
under the assumption of 5.34, there is no infinite fundamental sequence of Bx-permissible
blowups over x. Assume the contrary. As in (6.3) write

(9.3) fi=)Y_ CiapyPut with Cjape R U{0}.
(4,B)

Write [Al; = 375, a; for A= (ay,...,a.). By Definition 7.2 (3), we have

oL (f;y,u) > g+ 1 [Al +q[Al = (¢ + 1)(ni — [B]) if [B] < ni, Ciap # 0
Al = Ak

< |B Aly > n; —
B+ 1Al 2 ny ==

if |B] <n;, Ciap#0.

Hence by (9.2) and the assumption we have the last statement for all ¢ € N, which
implies |B| + |A]; > n; for all A and B such that C; 45 # 0 in (9.3). Setting q =
(Y1, YryUa, ..., us) € Spec(R), this implies J C q and vq(f;) = n; = va(fi) for all 7.
By Theorems 2.2 (iv) and 2.3 we conclude Hx(w) = Hx(z), where w € X is the image
of q € Spec(R). By a similar argument, the second part of (9.2) implies w € B for all
B € O(z) so that H{(w) = H{(x). This contradicts the assumption of Theorem 5.34
since dim(R/q) = e — s + 1 = €9(X). This completes the proof of Theorem 5.34. [J

Now we prepare for the proof of Theorem 9.2. Consider
7:7' =Bl,(Z)—Z and 7:X =Bl,(X)— X.

By Theorem 2.14, any point of X’ near to z is contained in P(Dir, (X)) C X’. We now take
a label (f,y,u) of (X, Z) at z as in Definition 9.1 (2). By (6.2) we have the identification
determined by (u):

(9.4) Y P(Dir,(X)) = Proj(k{T)) = B{™ (k[T] = K{T..... T.]
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Let ' =(1:0:---:0) € P(Dir,(X)). If 2/ is near to &, Theorems 2.10 and 2.13 imply
v (X' Z)=vi(X,Z) and en(X') <e.

Let R = Oy, with maximal ideal m’, and let J' C R’ be the ideal defining X’ C Z'.
Note that
P(Dir, (X)) x z Spec(R') = Spec(R'/{u1)),

and denote
y/:(y/17"'7y;‘)7 ul:(“é?"'7 e) f_(f17"'7fjlv)7

where v, = y;/u1, u, = w;/uy, fl = fi/ul’. As is seen in Setup B in §8, (y/,us,u’) is
a system of regular parameters of R’ and J' = (f{,..., fy) and R’ is the localization of
Rlyy, ... oyl uy, .. ul] at (v, ug,u'). We will use the usual identifications

to(R) = k[Y' U, U, ... . Ul, Y/ =inw(y;), Uj = ing (u)).

e

Moreover we will consider the maps:

U:R®— R®; (ar,ag,...,a) — (Zai—l,ag,...,ae),

e

d:R°— R®; (a1,a9,...,a.) — (Zai,ag,...,ae).

=1

A semi-positive linear from L : R® — R is called monic if L(1,0,...,0) = 1.
Lemma 9.3 (1) A(f",y/, (u1,v)) is the minimal F-subset containing W(A(f,y,u)).

(2) For any monic semi-positive linear form L : R® — R and L=Lo®, we have

5L(f/7y/ (uh )) _5LO<I>(f Yy, u ) ]-7

U - ing, () ) = 0 () @)y oy v o<ice)
gy (i) = U1 - i, (F) )y 2y o o=, 0, 2ie)

If (f,y,u) is prepared along E5, then (f',y, (w1, ")) is prepared along E,.

(3) Assume (f,y,u) prepared along Ey = with Lo = Loo ®. Then (f ,y’,(u1 ") s
d-prepared and x' is near (resp. wery near) if and only zf 6z, (fry,u) > 2 (resp.
5Z0(f,y,u) > 2). If (f,y,u) is totally prepared, so is (f',y (ul,u ).

(4) Assume x' very near to x. Then (f',y, (ui,u)) is a prelabel of (X', Z') at 2'. As-
sume further (f,y,u) prepared along E  (resp. totally prepared), then (f',y', (u1,u’))
is a 6-prepared (resp. totally prepared) label of (X', Z") at x'.

Proof From (9.3) we compute

(9.5) fl=f;/ul Z Ciap () Bu OB

(A,B)
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1A /a2 ! Ge

u =y e, for A = (ay,aq,...,a.).

(1) follows at once from this. For a semi-positive linear form L : R® — R, we have

. LA+ |B| —n;, as,...,a.
3ol () = min LTt o)

. Lo®(A)
= mm{m

= 5Lo<1>(f7yau) - L

|B| < ni, Ciap#0}

—1[[B] <ni, Ciap#0}

From (9.5), we compute

ing, (o an = BHY) +Y_Coany U A,
B,A

where the sum ranges over such A < B that |B| < n; and L o ®(A) = dpea(n; — |B|). (2)
follows easily from this. (3) follows from (2) and Theorem 8.6. The first assertion of (4)
follows from Theorem 8.1 and Theorem 8.3. The other assertion of (4) follows from (3)
and Corollary 7.17. [

We now consider
"= P(Dir? (X))  P(Dir (X)) = Proj(k[T,...,T.]) € X'
Let ' be the generic point of C’, and let
t:=e9(X) and s=e—t+1.

We assume ¢ > 1 so that 1 < s < e. By making a suitable choice of the coordinate
(u) = (uq,...,ue), we may assume:

(9.6) there exists B; € O(z) for 2 < j < s such that
B; xz Spec(R) = Spec(R/(u;)) and Dir?(X) = Dir,(X) N A T,(B;).
<j<s

Then
C" x 7 Spec(R) = Spec(R'/p")  with p' = (¢, uy, ub, ..., ul).

? s

Note () /k = trdeg,(k(n')) =t — 1. By Theorems 2.13 and 2.6, if 1’ is near x, we have
e (X') < e —=0uuyye = 5. It also implies that C' C X' is permissible by Theorems 1.34
and 2.3. By Theorem 3.17, if 7' is very near x, we have 3 (X') < €2(X) = bxpy/n = 1.

Write R%, = Oy, and let m;?, be its maximal ideal and J7’7, =J R;,,. Note that R;Y, is the

localization of R’ at p" and (y', w1, uy, . .., uj) is a system of regular parameters of R, ,.

Lemma 9.4 Let A(f', v/, (ur,uj, ..., uy)) be the characteristic polyhedron for J), C R,,.

» s

(1) A,y (ur,ub, ..., ul)) is the minimal F-subset containing m- V(A(f,y,u)), where
VU is as in Lemma 9.3 and

T:R* = R*; A= (ay,a9,...,a.) — (a1,as,...,as).
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For any monic semi-positive linear form L : R® — R, we have

5L(fluyl7(u17u/27"'7 5)) (5LO7TO<I><f Y, u ) L.

In particular,
6(f/>y,> (ulv UIQ’ s >u;)) = 5L1(f7y, u) -1,
Li:R°—>TR; A |A| + Za
2<i<s
(2) ]f (f7 Y, U) is prepared CLZOTLg the face ELl Of A(f) Y, U), then (fla y/7 (uh u/27 s ,U;))
/

is 0-prepared. If (f,y,u) is totally prepared, so is (f',y', (uy,uy, ... ul)).

» s

(8) Assume (f,y,u) is prepared along the face Er, of A(f,y,u). Thenn is near x if and
only if 6r, (f,y,w) > 2. if this holds, we have vy (f]) = vw(fi) = ni fori=1,...,N.

) =
(4) Assume (f,y,u) is prepared along the face Er, of A(f,y,u). Then n is very near
x if and only if 0r,(f,y,u) > 2. if this holds, then (f', (v, (uy,ul, ..., u}))) is a
d-prepared label of (X', Z") at n.

Proof (1) and (2) follows from Lemma 9.3 and Theorem 7.27 applied to (f’, ¢/, (u1,u))
and p’ = (uy,uh,...,u,) and (9.5) in place of (f,y,u) and ps = (u1,usz...,us) and (7.5).
We need to check the conditions (P0) and (P2) as well as Theorem 7.27 (3)(7) and (1) for
the replacement. (P0) holds since k = R/m — R'/(u;). In view of the presentation (9.5),
(P2) holds by the fact that for fixed B and a € Z, there are only finitely many A € Z¢,

such that |A|+ |B| —n; = a. Theorem 7.27 (3)(i) is a consequence of the assumption that
(f,y,u) is a label of (X,Z) at « (cf. Definition 9.1 (2)). Finally Theorem 7.27 (3)(i7)
follows from Lemma (9.3)(2). (3) and (4) are consequences of (2) and Theorems 8.6 and

8.1 and 8.3 and Lemma 7.4. This completes the proof of Lemma 9.4. [

Proof of Theorem 9.2. Write 7, = 7/, X; = X', ¢, = (' and assume 7 : 7' — Z
extends to a sequence (5.10). Let (f,y,u) be a label of (X, Z) at . For 1 < ¢ < m, write
R,, = Oz, , with the maximal ideal m,,_, and let .J,, C R, be the ideal defining X, C Z,
at nq. Write

= fi/ui™", yz =y, /ui, ul@ =u;/uf (2<i<s), u,=u;/u; (s+1<i<e).

Claim 9.5 Let (f,y,u) be a label of (X, Z) at x prepared along the faces Ey, for all
q=1,...,m—1. Then, forq=1,...,m, R, is the localization of

R[y(q)v .. 7y7("q)7 e )7‘ .- 7ugq)auls+17' .. 7u,e] at <y£Q)’ .- 7y7("q)7u17u§q)’ S 7qu)>7
and J,, = { 1q), . ](\?)), and (f(@, 4@, (ul,ugq), . gq))) is 0-prepared and

S(fDy D, (ur,us”, ) = 8, (f,y,u) —
Forq<m—1, (f@, 4@ (ul,ug”, e ,ugq))) is a 0-prepared label of (X4, Z,) at n,.

Proof For ¢ = 1 the claim follows from Lemma 9.4. For ¢ > 1, by induction it follows
from loc.cit. applied to

Spec(oxqflﬂ'qul) — Xq Xqul SpeC(Oqulyanl)

and (@D y@=D (yy ) ulT)) in place of X — X and (f,y, u) (note that the
condition (9.6) is satisfied for Spec(Ox ) by Lemma 9.4 (5)). O

q—1:Tlq—1

111



Recalling that 7, is very near to n,_; for 1 < ¢ < m —1 (1) = = by convention), we get
or,(f,y,u) —q > 1 by Theorem 8.6 and Claim 9.5. It remains to show (581 (y,u) > q+1.
For this we rewrite (9.1) in R,, as follows:

07)  lp=uld ay®+ Y Poouf(us)? (u®)® +ully

1<i<r C=(c,a2,..., as)EZSZO

2
where ¢’ = g/u? (y%q), . ,yﬁq)> and
= > ba-ultyul™,
QA)=C

for the map Q@ : R* - R*; A= (ai,...,a.) — (Ly—1(A), aq,...,as). We easily see

Poem,, = (49 u,u?, ... u@) < by emforall Asuch that Q(A) = C,

s

by noting that R — R, /m, factors through R — k = R/m and k[u_,,...,u,] — k(1)
The strict transform B, of B in Spec(R,,) is defined by

Iy =lg/u] with vy =vu,(lp),
where v,y is the valuation of R, defined by the ideal (u;) C R, . From (9.7), we see

Iy € m,, < Po ¢ m, and ¢ < ¢ for some C' = (c,0,...,0) € Z3,
& by ¢ mand [A] < g for some A= (c,0,...,0) € Z3,

For A € 7, — {0}, we have

LyA)=]A[+ ) a;>q+1 (ap...,a,) #(0,...,0) or [A| > g+1.
2<5<s
Hence we get

I € m,, < L(A) < g+ 1 for some A € Z%, — {0}. & 0,(lp,y,u) < q+1.

It implies 07 (y,u) = min{d(lp,y,u) | B € O(x)} > ¢+ 1 since 7, € B, forg<m—1
by the assumption. This shows the desired assertion and the proof of Theorem 9.2 is
complete.

Corollary 9.6 Let (f,y,u) be a d-prepared label of (X, Z) at x. Assume e,(X) = e2(X)
(for example B =10).

(1) For the sequence in Definition 5.33 we have m < 6(f,y,u) < m+ 1.
(2) For the sequence in Definition 5.36 we have m < §(f,y,u) < m+ 1.

Proof First we show (1). By Claim 9.5 in case s = 1 and L, = Ly together with Theorem
8.6 and by the assumption that 7,,_1 is very near to 7,,—2 and 7,, is not very near to 7,,_1,
we have

5(f(m—1),y(m—1)7u1) = 5(f7yuu) - (m - 1) > 1) 5(f(m)7y(m)7u1) = 5(f7yuu) —m S 1

(2) is shown by similar arguments and the details are left to the readers. [J
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10 Additional invariants in the case e,(X) = 2

In order to show key Theorem 5.38 in §5, we introduce new invariants for singularities,
which were defined by Hironaka ([H6]). The definition works for any dimension, as long
as the directrix is 2-dimensional.

Definition 10.1 For a polyhedron A C Réo we define

a(A) :=inf {v; | (v1,v9) € A}

B(A) :=1inf {vs | (a(A),vq) € A}

O(A) :=inf {v; + vy | (v1,v9) € A}
(A = sup {us | (5(A) — v, 5) € A}
v (A) :=1inf {vy | (6(A) — vq,v9) € A}

€(A) :=inf {vy | (v1,v2) € A}

C(A) :==inf {v; | (v1,€(A)) € A}

The picture is as follows:

a2

ai

There are three vertices of A(f,y,u) which play crucial roles:

B =(6(A) —yH(A), v (A)),
w = w (A) ==(6(A) — 7 (A),7(A))

We have

(10.1) BA) = 77(A) = 77 ().



Now let us consider the situation of Setup C in §9 and assume e, (X) = 2.

Let (f,y,u) = (fi,.-. v, Y1, - -5 Yr, U1, u2) be a prelabel of (X, Z) at x. Recall n,(fi) =
n; for i =1,..., N. Write as (6.3):

fi=> Ciapy®u®, with A= (ay,a3), B=(by,....b), Ciap € R*U{0}.

For x = «, 3, §, v, v, w*, we write *(f,y,u) for *(A(f,y,u)). Then we see

alf,y,u) —1nf{n |1<z<m C,LAB%O}
. aq
B(f) =int {1 i < m, = a(f), Gan 0]
|A]
O(f,y,u) =inf |1<i<m, Ciap#0
n; — \B!
: Al
= < = .
fy> =sup n; — ’B‘ Z_m7 nz—]B\ 57 OZ,A,B#O
|A]
=inf 1< < =90, C; 0
f’y’ =in {nz B|| v m, —‘B| ; ,A,B#
e(f,y,u —mf{ |1 <i<m, C’zAB#O}
n; — | B]

<

(f.y.u) =(alf,y,u), B(f, y, u)),
=w'(f,y,u) =0(f,y,u) =7 (f,y, ), 7" (f.y,0),
“(froysu) =(0(f,y,u) =y (fryu), v (fy,0)) -
Definition 10.2 (1) A prelabel (f,y,u) (cf. Definition 9.1) is v-prepared if (f,y,u) is
prepared at v(f,y,u).

+

(2) We say that (X, Z) is v-admissible at x if there exists a v-prepared prelabel (f,y,u)
of (X,Z) at x. By Theorem 7.24, (X,Z) is v-admissible at x if R = Oy, is
complete.

We now extend the above definition to the situation where the old components of B at x
are taken into account. We assume

(10.2) Spec(R/(u)) ¢ B for any B € OB(x).

Definition 10.3 Let (y,u) be a system of reqular parameters of R such that (u) is ad-
massible for J.

(1) For each B € O(x), choose lg € R such that B = Spec(R/(lg)) C Z = Spec(R).
(10.2) implies lp & (u) so that A(lg,y,u) is well-defined (cf. Definition 7.2). We
define

A°(y,u) = the minimal F-subset containg U A(lg,y,u).

BeO(x)

It is easy to see that A°(y,u) is independent of the choice of lg. For a prelabel
(fvy)u) Of (X, Z) at x, let

AO(f,y,u) = the minimal F-subset containg A(f,y,u) U A°(y,u),
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*O(f7y’u):*(AO(f’y7u)> for*:V’ a’ /6’ ,Y:t7""
Note that

(103) AO(fy,u) = A(O,y ) where fO = (f, I (B € O)).
(2) Assume that (X, Z) is v-admissible at x. Then we define

09X, Z) = 6°(J) = &nin){ﬂo(f, y,w)| (f,y,u) is v-prepared}.
YU

(3) A prelabel (f,y,u) of (X, Z) at x is called O-admissible if (f,y,u) is v-prepared and
BO(X,Z) = B°(f,y,u). Such a prelabel exists if and only if (X, Z) is v-admissible.

By Lemma 7.6 and Lemma 6.13 (2), for v-prepared (f,y,u) we have
1
(104) 6O(f7y7 'LL) € _'ZZO CR,
nn-

Lemma 10.4 (1) Let (f,y,u) be a v-prepared prelable of (X,Z) at x. Then, for a
preparation (f,y,u) — (g,z,u) at a verter v € A(f,y,u), we have B°(f,y,u) =

3°(g, z,u).

(2) Assume that (X, Z) is v-admissible at x. For any integer m > 1, there exists an -
prepared and O-admissible label (f,y,u) of (X, Z) at x. Moreover, if R is complete,
one can make (f,y,u) totally prepared.

Proof (2) is a consequence of (1) in view of Corollary 7.17. We prove (1). Setting

vO(y, u) = v(A%(y,u)) = (a°(y, u), B°(y,u)),
we have
vO(y,u) if a®(y,u) <

vO u) = (a? u), 3° u)) = )
(105) (f7y7 ) ( (fay7 )7ﬁ (f7y7 )) {V(f,y;u) ifao(y,u)>04(fa?/au)-

By the v-preparedness of (f,y,u), any vertex v € A(f,y,u) which is not prepared lies in
the range {(a;,as2) € R? a; > a(f,y,u)}. Theorem 7.19 implies vO(f,y,u) = v°(g,y,u)
for the normalization (f,y,u) — (g, y,u) at such v. Thus it suffices to show vO(f,y,u) =
vO(f, z,u) for the dissolution (f,y,u) — (f,z,u) at v. Write v = (a,b). By the above
remark, we have a > a(f,y,u). The dissolution is given by a coordinate transformation:

y:(yla"‘wyr)_>ZZ<ZIJ"‘7ZT) Wlthzz:yz—i_/\zu(llug ()\1€R>

Write @ = a“(y,u) for simplicity. For each B € O(x) choose lg € R such that B =
Spec(R/(lp)). We may write

Ip = Ap(y) + ufop with Ap(y) = Z cpiYi (ci, 9B € R)

1<i<r
and ¢p # 0 for some B € O(x). Then we get

(10.6) Ip = Ap(2) +uidp +uiyp for some ¢p € R
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In case @ = a®(y,u) < a(f,y,u), (10.5) implies

vo(f,y,u) = Vo(y,u) = Vo(z,u) = Vo(f, Z,1U),

where the second equality follows from (10.6) because a > af(f,y,u) > @, and the
third follows from v(f,y,u) = v(f,z,u) by the v-preparedness of (f,y,u). In case
a = a%(y,u) > a(f,y,u), (10.5) implies

vO(fyu) = v(foy.uw) = v(f, 2,u) = vO(f, 2,u),

where the second equality follows from the v-preparedness of (f,y,w). The third equality
holds since by (10.6), we have a©(z,u) > a > a(f,y,u) if 15 # 0 for some B € O(x),
and a9(z,u) = @ > a(f,y,u) if g = 0 for all B € O(x). This completes the proof of
Lemma 10.4. [J

Lemma 10.5 Let (f,y,u) be a prelabel of (X,Z) at x. Assume that there is no reqular
closed subscheme D C {& € X| HQ(E) > HQ(x)} of dimension 1 with x € D. (In
particular this holds if x is isolated in {& € X| HQ(&) > HY(x)}.) Then o©(f,y,u) < 1
and €©(f,y,u) < 1.

Proof By corollary 7.17, we prepare (f,y,u) at the vertices in {A € R?| |A| < 1} to
get a label (g,z,u) of (X,Z) at x. Then a“(g, z,u) > a®(f,y,u) since A°(g,z,u) C
A°(f,y,u). Thus we may replace (f,y,u) with (g, z,u) to assume that f is a standard
base of J.

Assume a©(f,y,u) > 1. Then, letting p = (y1,...,¥yr,u1) C R, we have vy(f;) > n;
for j = 1,...,N (cf. (7.2)). Since n; = nwu(f;) > va(fj) > vo(f;), this implies
vp(f;) = vm(f;) for j = 1,..., N. This implies by Theorems 2.2 (iv) and 2.3 that n € X
and Hx(n) = Hx(z), where n € Z is the point corresponding to p. By the same ar-
gument we prove vy(lg) = 1 = vy(lp) for B € O(x) so that HY(n) = HY(z). Thus
{n} = Spec(R/p) is O-permissible, which contradicts the assumption of the lemma. The
assertion €?(f,y,u) < 1 is shown in the same way. 0]

Lemma 10.6 Let (y,u) be a system of reqular parameters of R which is strictly admissible
for J. Assume

(%) e (X) = dimy, (Dir,(X) N Ber;(x)Tx(B)) =2.

Then we have 6°(y,u) > 1. Assume in addition that §(f,y,u) > 1 (so that (f,y,u) is a
label). Then we have 6°(f,y,u) > 1.

Proof By the assumption on (y,u), we have IDir,(X) = (inn(y1), ..., inm(y,)). Hence
(*) implies
I € (y1,...,y,) +m* for B € O(x).

We then easily deduce the first assertion of the lemma. The second assertion is an obvious
consequence of the first. [
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11 Proof in the case ¢,(X) = €,(X) = 2, I: some key
lemmas

In this section we prepare some key lemmas for the proof of Theorem 5.38.

Let the assumption be those of Setup C in §9. We assume
e char(k(z)) = 0 or char(k(z)) > dim(X).
o O(X) =, (X)=¢,(X)=2.

We fix a label (f,y,u) of (X, Z) at  and adopt the notations of Definition 9.1 (1) and
(2). We recall

E(Y) = inm(fi) € kY] = k[Y1, ..., Vo] Cgrn(R). (Y = inm(y;))
By Lemma 10.6, the assumption ¢?(X) = e,(X) = 2 implies:

(11.1) 6O (f,y,u) > 1.

It also implies that (10.2) is always satisfied so that A(f,y,u) is well-defined.

For each B € O(x), we choose Ip € R such that B x z Spec(R) = Spec(R/(lg)). We study
two cases.

Case 1 (point blowup): Consider
7:7'=Bl,(Z7)— 7 and 7w:X =Bl(X)— X.

Note that z — X is B-permissible for trivial reasons. Let (B’,0’) be the complete
transform of (B,0) in Z' (cf. Definition 3.15). In this case we have B' = BU {7~ *(z)},
where B = {B| B € B} with B, the strict transform of B in Z’.

By Theorem 2.14, any point of X’ near to x is contained in

C' :=P(Dir (X)) C P(T,(2)) =, (x) C Z".
Let 17,75 be a pair of new variables over k and let
(11.2) Y : O =P(Dir(R/J)) = Proj(k[T1, T»)) = P}

be the isomorphism (6.2) which is determined by (u).
Take a closed point 2’ € C' near to x. By Theorems 2.10 and 2.13, we have

v (X' Z)=vi(X,Z) and eq(X') <2
Put R' = Oy, with the maximal ideal m’. Let J' and p’ be the ideals of R’ such that
(11.3) X' %z Spec(R') = Spec(R'/J") and (' xz Spec(R') = Spec(R'/p’).
Lemma 11.1 Assume ,)(2') = (1:0) € Proj(k[T},T3]). Let

v =y}, yL) with y, = yiJuy, uy = ug/uy, f'="(f1,...,fn) with fi = f;/ul".
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(1) (', uy,uy) is a system of reqular parameters of R' such that ' = (y',u1), and J' =
(fio- s fa).

(2) If x’ is very near to x, then (f',y, (ui,u})) is a prelabel of (X', Z") at a'.

(3) A(f',y, (u1,uly)) is the minimal F-subset containg V(A(f,y,u)), where
U RQ — RQ, (CLl,CI,Q) = (Cll “+ a9 — 1,@2)

A (fy,u) AEy o)

for which all vertices move horizontally. We have
ﬁ(f/7 y’? (ulﬂ u;)) = 7_(](.’ y7 u) S 5(f7 y7 u)'
a(fla yla (uh U/Q)) = 6(.]07 Y, U) — 1.

(4) ]f (f? Y, U) is prepared at w— (fv Y, U), then (fla y/a (ub U/Q)) is V_prep(ITEd' ]f (fa Y, U)
is prepared along the face Er, then (f',y, (ui,ul)) is d-prepared, where

L:R* = R; (ar,ay) — a; + 2as.

If (f,y,u) is totally prepared, so is (f',y', (uy,ub)).
(5) Assume that ©' is B-near to x. Putting l'y = lg/u; € R’ for B € O(x), we have

AC(Ff, (ur,uh)) = Ay, (ur,uh))  with f€ = (f, Iy (B € O(x))).
The same assertions as (3) hold replacing A by AC and * by x°F forx = a, B, v~, 4.

Proof By Definition 9.1, (y,u) is strictly admissible for J and f is a standard base of
J which is admissible for (y,u). Hence (1) has been seen in Setup B in §8. (2) follows
from Theorem 8.1 and Theorem 8.3. (3) and (4) follow from Lemma 9.3. As for (5), the
assumption implies O'(2') = {B’ | B € O(x)} with B’, the strict transform of B in Z’
and we have

B' x 7 Spec(R') = Spec(R'/(l's)) C Spec(R').

This implies the first assertion of (5) by (10.3). The second assertion of (5) then follows
from the first. [J
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The following lemma is shown in the same way as the previous lemma except that the
last assertion of (5) follows from Lemma 10.5.

Lemma 11.2 Assume ¢,)(2") = (0 : 1) € Proj(k[T',T3]) and put
2= (2], ..., 2) with 2. = y; Jus, uy = uy/us, ¢ = (g1, ...,9y) with fI = f;/uy’.

(1) (#',ul,u2) is a system of regular parameters of R' such that p = (2, uz), and J' =
(g1, gN)-

(2) If 2’ is very near to x, then (¢, 2, (u},uz)) is a prelabel of (X', Z") at x'.

(3) A(q, 2, (u},us)) is the minimal F-subset containg V(A(f,y,u)), where
U :R* - R? (a1,as) — (a1,a1 +as — 1)

We have
a(glv 2/7 (u/b u?)) = Oé(f? Y, U)

By, 2, (uy,ug)) < B(f oy, u) + ol fy,u) — 1.

(4) If (f,y,u) is prepared at w*(f,y,u), then (¢, 2, (v}, u2)) is v-prepared. If (f,y,u)
is prepared along the face Ers, then (f',y, (u1,ub)) is 0-prepared, where

L' R* = R; (a1, as) — 2a; + as.
If (f,y,u) is totally prepared, so is (¢', 7', (u], uz)).
(5) Assume that x’ is B-near to x. Then
B9(d, 2, (uhua)) < BO(f,y,u) +a©(f,y,u) — 1.

If there is no regular closed subscheme D C {¢€ € X| HQ(&) > H(x)} of dimension
1 with x € D, then oa®(f,y,u) < 1 so that

B2 2, (ur,uy)) < BO(f.y.w).

Now let " be the generic point of C’. By Theorem 2.13 and Theorem 2.6, if 1’ is near
to x, we have ey (X') < 1. Write ), = Oxv,y with the maximal ideal m;,. Note
(y'su1) = (Y1, .-, Y, w1) is a system of regular parameters of ;.

Lemma 11.3 Let A(f',y',u1) be the characteristic polyhedron for (R, JR,,).
(1) A(f", 9" w) = [6(f, y,u) —1,00) C Rxg.

Assume (f,y,u) is 0-prepared.
(2) A(f',y',uq) is well prepared.

(3) 0 is near to x if and only if §(f,y,u) > 2. If ' is near to x, we have

vm;],(fi/):vm(fi):ni fOTé:la"wN'
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(4) 1 is very near to x if and only if (f,y,u) > 2. If 0’ is very near to x, then
(f', (v, u1)) is a well-prepared label of (X', Z") at 7.

Proof The lemma is a special case of Lemma 9.4. [

Case 2 (curve blowup): Let the assumption be as in the beginning of this section.
Assume given a regular curve C' C X containing x which is B-permissible (cf. Definition
3.5) and such that

C' xz Spec(R) = Spec(R/p)  with p = (y,u1) = (y1,- -, Yr, ua),
By Theorem 2.6, the assumption e,(X) = 2 implies
e (X) <1 where 7 is the generic point of C'.

Consider
7:72' =Blc(Z)—Z and w:X' =Bl:(X)— X.

Let (B',0’) be the complete transform of (B,OI) in Z' (cf. Definition 3.15). In this case
we have B = BU {7~'(C)}, where B = {B| B € B} with B, the strict transform of B in
Z'. By Theorem 2.14, there is the unique point 2’ € 7~(x) possibly near to z, given by

z":= P(Dir,(X)/T,(C)) C Proj(T,(2)/T.(C))) = ;' (x) C Z'.
In what follows we assume z’ near to x. By Theorems 2.10 and 2.13, we have
vi (X', Z)=vi(X,Z) and ey(X') <2
Let R’ = Oy, with the maximal ideal m’, and let J' C R’ be the ideal such that
X' x 2 Spec(R") = Spec(R'/J").
As is seen in Setup B in §8,
W' w) = (Wi Y un,u2) = (Y1 /u, - YU, w, up)
is a system of regular parameters of R'.
Lemma 11.4 (1) If (f,y,u) is v-prepared, then vy(f;) = vm(fi) = nw (fi) and
F = f o f) with fo= [ € R
(2) If 2’ is very near to x, then (f',y',u) is a prelabel of (X', Z') at .
(3) If (f,y,u) is v-prepared (resp. d-prepared, resp. totally prepared), so is (f',y',u).
(4) We have
A,y uw) = U(A(f,y,u))  with ¥ : R? — R? (a1, as) — (a; — 1,a),
BUf Y w) =B(fyu)  and  affy,u) =a(f,y,u) - 1.

If ' is B-near to x, the same assertions hold replacing A by A® and * by x°B for

* =a, .
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Proof The first assertion of (1) follows from Theorem 7.18 and the second from the first
(cf. Setup B in §8). (2) follows from Theorems 8.1 and 8.3. To show (3) and (4), write,
as in (6.3):

(11.4) fi=)_ Ciapy®ut with Ciape R*U{0}
(A,B)

We compute

(11.5) fl=F/ut =" Ciap () Puruf P with A = (a1, a).

(4,B)

This immediately implies the first assertion of (4). Then (3) is shown in the same way as
Lemma 9.3 (2). Finally the last assertion of (4) is shown in the same way as Lemma 11.1
(5). This completes the proof of Lemma 11.4. OJ

Lemma 11.5 Assume that (f, (y,u1)) is a well-prepared label of (X,Z) at n (note that
this implies e,(X) = 1). Let C' = Spec(R'/p") with p' = (y',u1) C R and let 1 be the
generic point of C'. Then C' C X' and n' is the unique point of X' possibly near to n. If
n' is very near to n, then (f',(y',u1)) is a well-prepared label of (X', Z") at 1.

Proof The first assertion is a direct consequence of Theorem 2.14. The second assertion
follows from Lemma 9.3 applied to the base change via n — C' of the diagram
Cl SN X/ SN Z/

! iy L
C — X — 7
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12 Proof in the case e¢,(X) =¢€,(X) = 2, II: the residu-
ally rational case

In this section we prove Theorem 12.6 below, which implies Key Theorem 5.38 under the
assumption that the residue fields of the initial points of A, are separably algebraic over
that of X;. The proof is divided into two steps.

Step 1 (one fundamental unit): Let the assumptions and notations be as in the
beginning of the previous section. Assume given a fundamental unit of B-permissible
blowups as in Definition 5.33:

B = B(] Bl Bz Bm—l Bm

= 2y <& 7, & Zy —...— Zpog4 & 20

(12.1) U U U U U
X= X, & X, & X, « — Xpo1 & X,

1 U U U 1

r= xy — O & Oy &...& Culy — T

We denoted it by (X, B). For 2 < ¢ < m — 1, let 5, be the generic point of C, and let
x4, € C, be the image of z,,. By definition the following conditions hold:

e For 1 < g <m, x, is near to z,1 and k(z,-1) =~ K(x,).

e For1<qg<m—1,C,={¢ €, (z) Hggq({) = H(z)} with ¢, : X, — X.
e For 1 < g <m, H)O(q(xq) = HQ(z) and egq(Xq) = e,,(Xg) = 2.

e For1<g<m-—1, H)O(q(nq) = H(x).

e For 1 <g<m-—2 effq(Xq) =e,,(Xy) = 1.

Let Ry = Oz, ., with the maximal ideal m,, and let J, and p, be the ideals of R, such
that

(12.2) X, xz, Spec(R,) = Spec(R,/J,) and C, xz, Spec(R,) = Spec(R,/p,)-

Let R, be the localization of R, at p, and J, = J,R, . Let T1,T; be a pair of new
variables over k and consider the isomorphism (11.2):

(12.3) Y : C1 = P(Dir, (X)) = Proj(k[Th, Tb]) = By,

Definition 12.1 (1) A prelabel (resp. label) A of (X,B) is a prelabel (resp. label)
A= (f,y,u) of (X,Z) at x. When x1 is a k-rational point of C, the homogeneous
coordinate of Yy (x1) € Proj(k[T1,T5]) is called the coordinate of (X, A).

(2) We say that (X, B) is v-admissible if (X, Z) is v-admissible in the sense of Defini-
tion 10.2 (2). A prelabel (f,y,u) of (X,B) is O-admissible if it is O-admissible as
a prelabel of (X, Z) at x (cf. Definition 10.53 (3)).

We remark that the coordinate of (X, B; A) depends only on (u), not on (f,y).
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Lemma 12.2 Let A = (f,y,u) be a label of (X,B) which is v-prepared and 0-prepared
and prepared along the face Er, where L : R? — R ; (a1,a3) — a; + 2ay. Assume the
coordinate of (X,B;A) is (1:0). Let

uy = ua/ur, y' = (") @ =), O = (17 B0) (R = fiful™).
For 1 < q <m, the following holds:
(1) (f9, (y'9, (uy,ub))) is a v-prepared and -prepared label of (X,, Z,) at x,.

(2) AC(fD,y D (uy,ub)) is the minimal F-subset containg W,(A°(f,y,u)), where
U, R* = R*,  (a1,az) — (a3 +ay — q,as)
We have
BOUD YD, (ur,up)) = 7O (f,y,0) < B2(fy.w).
a(f Dy, (ur,up)) = 6°(f,y,u) —

(3) For g < m—1, p, = 49 w) = (1”,...,5" w) and v, (f*) = n; fori =
W N. Forq<m—2, (f9,49 ;) is a well prepared label of (X, Z,) at n,.

Proof By Lemma 11.1, (fO, (y® (ug,u}))) is a label of (X1,71) at z; which is v-
prepared and J-prepared. By Lemma 11.3, (f1, (yW, (ug,uh))) is a well prepared label
of (X1, Zy) at my if ny is very near to z7. Then the 1emma follows from Lemmas 11.4 and
11.5, applied to X, < X4; in place of X «— X'. [

Lemma 12.3 Let A = (f, (y,u)) be a label of (X, B) which is v-prepared and d-prepared
and prepared along the face Er, where L' : R? — R ; (a1,as) — 2a1 + ag. Assume the
coordinate of (X,B;A) is (0:1). Set
iy = fus, 2@ = (29, Z9) (29 = yjud), 4O = (g0 g®) (69 = fifud™).
For 1 < g <m, the following hold:
(1) (g9, (29D (v}, uz))) is a v-prepared and S-prepared label of (X,, Z,) at x,.
(2) A(gD 2D (u),uy)) is the minimal F-subset containg ®,(A°(f,y,u)), where
d,: R* = R? (a1, as) — (a1, a; + az — q)
and we have
ao(g(q) 2D, (ul,us)) = a®(f,y,w),
ﬁo( (q (u17u2)) Sﬂo(f,y,u)—l—ao(f,y,u)—
If there is no reqular closed subscheme D C {€ € X| HQ(&) > H(x)} of dimension
1 with x € D, then a°(f,y,u) < 1 so that
60<g(q)7 z(q)a (u/17 Ug)) < /Bo(fa Y, U)

Proof This is shown in the same way as Lemma 12.2 using Lemma 11.2 instead of 11.1.
OJ
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Proposition 12.4 Assume that (X, B) is v-admissible and x(x) = k(x1). Then, for all
q=1,....m, (X, Z,) is v-admissible at x, and

Ben(Xq, Zy) < B2(X, Z).

Proof By the assumption we can take an O-admissible prelabel A = (f,y,u) of (X, Z),
and the coordinate of (X', A) is either (1:0) or (0: 1) or (1: —\) for some A € k.
Assume we are in the first case. By Lemma 10.4, after preparation we may assume
that (f,y,u) is prepared along the d-face and the face Ej in Lemma 12.2. By Lemmas
12.2 and 12.3, applied to X, « X4 for ¢ = 1,...,m in place of X «— X', we get a
label A, := (£, (y 9, (uy,u}))) of (X,, Z,) at x, which is v-prepared and é-prepared and
deduce

B9 (X, Z,) < BOUFD 42, (g, up)) = BO(FM, ™, (ur, )
=L,y u) < B(f y,u) = 57 (X, 2).
where the first inequality comes from v-preparedness of A,. The case that the coordinate
of (X,A)is (0: 1) is shown in the same way by using Lemma 12.3 instead of Lemma 12.2.

Now assume that the coordinate of (X, A) is (1 : —A). Let @y := ug + ¢uy for some
¢ € R = Oy, such that ¢ mod m = X. Then (f,y, (u1,q2)) is a prelabel of (X, Z) at
x and Y, a,)(21) = (1 : 0) € Proj(k[T1,T5]) so that the coordinate of (f, v, (u1,us)) is
(1:0). Hence the proof is reduced to the first case in view of the following lemma.

Lemma 12.5 Let Gy = us + ¢pug for ¢ € R = Oz,. Then v(f,y,u) = v(f,y, (u1,2)).
Forv=v(f,y,u) we have

N (), (ur,2)) = Z>711}<JL1)(1/,7L)|U2202 € kY, Uy, 02] = grm(R),

where Uy = ing(iis) € gro(R). Hence, if (f,y,u) is v-prepared, then so is (f,y, (u1,s)).
We also have vO(f,y,u) = vO(f,y, (u1,2)) and hence if (f,y,u) is O-admissible, then
50 1S (faya (u17a2))' :

Proof We compute
w = (i + ug)”
as
= uf" Y (®)upuagmem
m=0
as
= ufrag? + Y ()uPragTmem.
m=1
This implies that the vertices on the line {(a1,a2)| a1 = a(f,y,u)} together with the
initial forms at it, are not affected by the transformation (f,y,u) — (f,y, (u1,as)). Thus

the first assertion follows. The last assertion is shown by the same argument applied to

f© instead of f (cf. (10.3)) . O

Step 2 (a chain of fundamental units): In this step we consider the following situa-
tion: Assume given a chain of fundamental units of B-permissible blowups (cf. Definition
5.37):

(124) (X(),Bo) — (Xl,Bl) — (XQ,BQ) — ...
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where each (X, B,) is as (12.1). For ¢ > 0, let (2@, X@ 7@ B@) be the initial part of
(X, By) and mq be the length of A;. Let Ry = Oz 4« with the maximal ideal m, and

X9 x ., Spec(R,) = Spec(R,/J,) for an ideal J, C R,.

Theorem 12.6 Assume that for all ¢ > 0, k(2'9) is separably algebraic over k() and
the following condition holds:

(a) There is no reqular closed subscheme
D g {5 € X(q)| H)O(@)(g) > H (Q)( (@ ))}
of dimension 1 with 9 € D.

(Note that this holds if 29 is isolated in {¢ € X@| H
sequence (12.4) stops after finitely many steps.

Q&) = H((2)}.) Then the

Proof By Lemmas 1.29 and 1.37, it suffices to show the claim after replacing each
X, by its base changes via Spec(R*") — Z© where R* is the maximal unramified
extension of the completion of R = Ry (here we use that Z is excellent). Thus we
may assume that x(2?) = k() and that Ry is complete and hence that (Xp, By) is v-
admissible. Proposition 12.4 implies that for all ¢ > 0, (&, B,) is v-admissible so that
By =9, (X (@) 7(9) is well-defined and

(12.5) Byg+1 < B, forall g >0.

Note 3, € 1/ny!-Z? C R?, where v*(Jy) = v*(J,) = (n1,...,ny,00,...) (cf. Lemma 7.6,
Lemma 6.13 and Theorem 2.10 (3)). Hence the strict inequality may occur in (12.5) only
for finitely many ¢. Hence we may assume 3, = (3 for all ¢ > 0.

In what follows, for a prelabel (g, (z,u)) of Xy with g = (g1,...,9n) and z = (21,...,2,))
and for ¢ > 0, we write

nz(m1+ +mq)
@ — (4@ () : @ _ | gi/u; >,
g7 =G1"--9 with g; _{
( 1 N ) o L 0
mo+-- +mq 1
20 = (9, 20)  with 20 = { 2/ ESt
Zi , g=0.

By the completeness of Ry, we can choose a totally prepared and O-admissible label
Ao = (f,y,u)) of (Xo,By). By the assumption (a), fy = 1 implies by Lemma 12.3 (2)
that the coordinate of (X, Ag) must be (1 : —Xg) for some \g € k. Put vy = us + ¢ouy
for a lift ¢9 € R of Ay and prepare (f,y, (u1,v1)) to get a totally prepared label Aj =
(9,2, (u1,v1)) of (Xy,By). By Lemma 12.5, Af is O-admissible and the coordinate of
(X, A}) is (1 :0). Lemma 12.2 (1) implies that A; = (¢, 20, (uy, vy /uy)) is a totally
prepared label of X;. By the assumption (a), 8y = 1 = (2 implies by Lemma 12.3 (2)
that the coordinate of (X, A1) is (1 : —A;) for some \; € k. Put vy = vy + ¢u} =
us + Gouy + ¢ru? for a lift ¢; € R of A\;. Prepare (f,vy, (u1,vs)) to get a totally prepared
label A” = (h w, (ug,vy)) of (Xo, Ay). Then Af is O-admissible by Lemma 12.5 and A} =
(RO, (wD (uy, vg/ul))) is a totally prepared label of X; by Lemma 12.2 (1). Moreover,
the coordinate of (Xj, Aj) and that of (X, A}) are both (1 : 0). Lemma 12.2 (1) then
implies that Ay = (b, w® (u;,vy/u?)) is a totally prepared label of X;. The same
argument repeats itself to imply the following:
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Claim 12.7 Assume that the sequence (12.4) proceeds in infinitely many steps and that
By = Bo for all ¢ > 0. Then there exists a sequence ¢o, ¢1,¢2,... of elements in R for
which the following holds: Recalling that R is complete, set

v = lim (u2 + ¢ou1 + ¢1U% + .o+ ¢q*1ul{) € R.
q—00

Prepare (f,y, (u1,v))) to get a totally prepared label (f,g), (ur,v)) of (Xo,Bo). Then

A

(f, 9, (u1,v)) is O-admissible and A, = (f@,99, (u,v?)) is a totally prepared label
of (X,,B,) and the coordinate of (X,, A,) is (1:0) for all ¢ > 0. Here v = v/ul,

We now write (f,y, (ur,uz)) for (f, 4, (uy,v)). Lemma 12.2 implies that for all ¢ > 0,
(f @,y @ (uy,ul)) is a totally prepared label of (X,, B,). Moreover AC(f@ 4@ (u;, u{?))
is the minimal F-subset of R? containing

T,(AC(f@ D,y (g, ul™))), T, R2 = R?; (a1,a0) — (a1 + as — my_1,as),

where m,_; is the length of X, ;. This implies that ¢°(f@ y(@ (uy, uéC’))) =O(f,y,u) =
€? for all ¢ > 0 (see Definition 10.1), and that

COU Dy, () = OOy () + € =gy
< Oy, ugY)),

for all ¢ > 1, because m, ; > 1, and €2 < 1 by Lemma 10.5 and the assumption (a)

of Theorem 12.6. This implies that the sequence must stop after finitely many steps as
claimed.
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13 Proof in the case e¢,(X) = €,(X) = 2, III: non-trivial
residue extensions

In this section we complete the proof of key Theorem 5.38 (see Theorem 13.4 below).

Let the assumptions and notations be as in the beginning of Case 1 of §11. Let ®(73,T5) €
k[T, Ts] be an irreducible homogeneous polynomial corresponding to 2’ € C' = Proj(k[T7, Ts])
(cf. (11.2)). We set

O = O(U,,Us) € k[U1, Us) C k[Y, Uy, Us] = gr (R).

We assume z’ # (1 : 0) so that U; does not divide ®. Let

d=deg® = [k(2) : k()]
Choosing a lift (U, Uy) € R[Uy, Uy) of ® € k[Uy, Uy, set

¢ = (f(u17u2) €R and ¢ = ¢/u§leg¢ eER.
The following two lemmas are shown in the same way as Lemma 11.1 (1), (2) and (5).
Lemma 13.1 Let
Y = Whooyy) withy; = yifur, f=(f1,..., fy) with f] = fi/uy".

(1) (¢, (u1, ")) is a system of reqular parameters of R such thatp = (y',u1) (cf. (11.3)),
and J' = (f{,..., fN)-

(2) If x’ is very near to x, then (f',y, (u1,¢")) is a prelabel of (X', Z") at «'.
Lemma 13.2 Assume 2’ is O-near to x. Setting l'y = lg/u; € R' for B € O(x), we have

AC(f o/, (ur, @) = Ay, (un, ¢)  with /7 = (f, Uy (B € O(a))).
Now we state the main result of this section.

Proposition 13.3 Let § = §(f,y,u). Assume the following conditions:

(a) d > 2 and there is no reqular closed subscheme D C XO  of dimension 1 with
r €D,

(b) (f,y,u) is v-prepared and prepared at w*(f,y,u),
(c) ins(f)yu is normalized.

Then there exists a part of a system of reqular parameters z' = (21, ..., z.) C m’' such that
the following holds:

(1) (f',2,(u1,d)) is a v-prepared prelabel of (X', Z") at 2/,
(2) ﬁo(f,vzlv (ula gb,)) < ﬁo(f,y,u), a(f,vzlv (ula ¢,)) = Oé(f,,y,, (u17¢/)) =0 - 17
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(8) 2 =9 unless § € 7 and 6 > 2. In the latter case we have z, — yi € (uS™') for
i=1,...,r. In particular (y',u1) = (', uy).

Before proving Proposition 13.3, we now complete the proof of Theorem 5.38. In view of
Proposition 12.4 and Theorem 12.6 (and its proof), Theorem 5.38 is an obvious conse-
quence of the following.

Theorem 13.4 Assume given a fundamental unit of B-permissible blowups (12.1). As-
sume that k(1) # k(z) and that there is no reqular closed subscheme D C XO,  of

max

dimension 1 with v € D. (E.g., this holds if x is isolated in X2, ). Assume that (X, Z)
is v-admissible at x (cf. Definition 10.3 (3)). Then, for ¢ = 1,....,m, (X,, Z,) is v-
admissible at x, and

B (X Zg) < 57 (X, Z).

Proof By the assumption we can take an O-admissible prelabel A = (f,y,u). By Lemma
10.4, after preparation we may assume that (f,y,u) is v-prepared and §-prepared. Let
(f', ', (u1,¢')) and (f',2', (u1,¢")) be as in Lemma 13.1 and Proposition 13.3, applied to
X « X in place of X «+ X'. By Claim 9.5, we have (cf. (12.2))

py = Wi/ud oyl ) forg=1,...,m—1.
By Proposition 13.3 (3) and since §(f,y,u) > m by Corollary 9.6, this implies
(13.1) po= (2 a2 T ) forg=1,...,m—1.
We prepare (f', 2/, (u1,¢’)) at all vertices and the faces lying in

{AeR*[ Al < [v(f, 2, (ur, ¢))]}
to get a v-prepared and J-prepared label (g, w, (u1,¢’)) of (X1, Z;) at z;. Note that
(13.2) w;—zi € (u]) (1<i<r) fory€Zsy, v>alf,z,(u,¢)) =061
By Lemma 10.4, we have
8%(g, w, (ur,¢) = BO(f, 2, (ur, &)
Forq=1,...,m, let
99 = (9", W) (6" = 9/uiTY), 0 = (L wl) () = wfuy).

Then (13.1) and (13.2) imply p, = <w§q), o ,wﬁq),uﬁ forq=1,...,m —1. For ¢ > 1,
Lemma 11.4, applied to X, « X, in place of X + X', implies that A, := (¢'?, w@ (uy, ¢'))
is a label of (X, Z,) at x, which is v-prepared and d-prepared. Then we get

B (Xg, Zg) < 8°(99, 0@, (w1, ¢')) = 8%(g,w, (w1, ¢")) = BO(f', 2, (wa, &)

where the first inequality (resp. equality) comes from v-preparedness of A, (resp. Lemma
11.4 (4)). This completes the proof of the theorem. [J
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Now we start the proof of Proposition 13.3. We may write

(13.3) ins(f:) gy = + Y Pp(U)-Y? €klY,U, Uy,

|Bl<n;

where P p(U) € k[Uy,Us], for B € Z%, with |B| < n;, is either 0 or homogeneous of
degree d(n; — |B|). Write

(13.4) Pp(U) = @4 . Q; p(U),

where ¢;(B) € Z>o and Q; 5(U) € k[Uy, Us] is either 0, or homogeneous of degree (6 — d -
ei(B))(n; — |B|) and not divisible by ®. Then we get

(13.5) ins(f:) ) = Fi(Y) + > _Qip(U)YP4H) € kY, Uy, Uy,

From this we compute

d P, 5(1,U. .
o) =sup { SEETELE) |1 i<, Ry 0}

—|B|
(13.6) —sup { LAV B LI ) << v, Qua(t) 20}
> d.sup{nfiﬁ;’ 11<i<N, Qp(U) # o} .

where degy, denotes the degree of a polynomial in k[Us]. Set

Qi7B = inB(UMUQ) S R and q; qz B/udeng B c R/ :

where Qi,B(Uh Ug) € R[Ul, UQ] is a lift of Qz,B(U) < k[Ul, UQ] Lettlng F(Y) S R[Y} be a
lift of F(Y') € k[Y], (13.3) and (13.4) imply

(13.7)  fi= + Y P (0) Pais+g  with v(9) g > vo(fi) g = i
|Bl<n;

By Lemma 8.2(2) this implies

(13.8)
fi=fifu = E) + D0yt @) D g with oa() e > i
|Bl<n;
where A : R* - R ; (a1, a) — 6a_11 and ¢’ = g/u}". Noting that
(13.9) Gip € (R) & Qip(U)#0 € kU, U,
we get
o =a(f,y,u1,¢) =86 —1 where § :=(f,y,u),
(13.10)

(B
B =B(f v w,¢) = inf {nef |33,

129

1<i<N, @i,Bw)%o}.



The same argument, applied to Ip with B € O(x), shows
(13.11) a®(f'y s u, ¢') = 6°(f.y,u) — 1.
Let o' =v(f",y/, (u1,¢')). Under the identification
gt (R) = K'Y, UL @] (Y] = inw(y;), U1 = inw(w), @ = inw()),
we get

(1312) Z?’va(le) _ E(Y/) + Z @ . Y/B(U{X,(I),B/)m_|3| c k’[Y’, Ula (I)/]
ei(B)=p'(ni—|BJ)

where @ € k' := k(2') is the residue class of ¢; 5 € R'.
Lemma 13.5 We have

6(f7y’u) ny+(f7y7u) ﬁ(f,7y,7 (u17¢/>)a
BO(foy.w) 27 O (fyu) = d-BO(f, s (w, &)

Proof The first inequality holds in general (cf. the picture below definition 10.1) and
the second follows from (13.10) and (13.6). This proves the first assertion. The second
assertion follows by applying the same argument to Ip for B € O(z) in view of Lemma
13.2. This completes the proof. [

>d-
>d-

Corollary 13.6 If (f',y/, (u1,¢’)) is not solvable at v', Proposition 13.3 holds.

Proof Indeed, it suffices to take 2/ = ¢/ in this case. Proposition 13.3 (3) follows from
Lemma 11.1 (1). As for (1), Proposition 13.3 (c) implies, in view of (13.5), (13.12), and
(13.9), that (f', v/, (u1, ¢")) is normalized at v’. Hence the assumption implies (f’, v/, (u1, ¢'))
is prepared at v’. It remains to show (2). By Lemma 13.5 it suffices to show 3°(f,y, u) #
0. By (11.1) we have

BO(f,y,u) + O (f,y,u) > 6°(f.y,u) > 1.

By the assumption (a) and Lemma 10.5, a®(f,y,u) < 1 and hence 8°(f,y,u) > 0. O

So for the proof of Proposition 13.3, it remains to treat the case where (f’, 9/, (u1, ¢')) is
solvable at v'. Assume that we are now in this case. This implies

(13.13) B =01y, (u1,¢") € Lo, 0:=06(f,y,u) €Z, §>2.

Indeed ¢ € Z since o/ = § — 1 € Z by (13.10) and 6 > 1 by the assumption (d). It also
implies that there exist Ai,..., A, € k&’ such that

13.14 ing(f) = E(Y' +X-@%U Y fori=1,...,N,
7 1

where A = (A1,...,A). For 1 < j <r let A;(U) = A;(Uy,Us) € k[Uy,Us] be homoge-
neous polynomials such that:

(Cl) aj :=degA; < d=deg®,
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(C2) A, is not divisible by U; (which implies a; = degy;, A;(1,Us))),
(C3) \; = A;(1,U3) mod ®(1,U,) in k' = k(2’) = k[Us] /(P (1, Us)).
Choose a lift of A;(Uy,U,) € R[Uy,Us) of A;(U) € k[Uy, Uy] and set

a; = Aj(uy,uy) € R and a =a;/uy’ € R.
Then \; = a}; mod m’. Define

(13.15) zj =y + ¢ uff(dﬁ es) a; € R[1/u4],

(13.16) Zj = zifuy =y + T a; € R.
Note that z — ¢ € (uy) for i = 1,...,r since 0 > 2 as noted in (13.13). Consider the
following condition
(13.17) o= (fyw) Zd(B 1) (8= By (. ).
Lemma 13.7 Assume (13.17) holds. Then the following is true.
(1) We have z; € R for j =1,....1 and (z,u) is a system of reqular parameters of R
which is strictly admissible for J. The conditions (b) and (c) of Proposition 13.3
are satisfied for (z,u) in place of (y,u).
(2) W+(f7z7u):W+(f7y7u)7 V(f727u) :V<f7y7u>7
V0<f7 27 u) = VO(f7 y? u)) 6(.]07 Z7 u) = 6(.]07 y7 u)'

(3) Oé(f/7 yla (uh ¢/>> = Oé(f/, 2,7 (uh ¢/>>7
B Y w, ¢) < B 2w, @) <97 (fy,u) =97 (f, 2,0).
By Lemma 13.7, if (13.17) holds for (f,y,u), we may replace (f,y,u) by (f, z,u) to show
Proposition 13.3. If (f, z,u) is not solvable at v(f, z,u), then we are done by Corollary
13.6. If (f, z,u) is solvable at v(f, z,u) and (13.17) holds for (f, z,u), then we apply the
same procedure to (z,u) to get a new system of regular parameters of R. This process
must stop after finitely many steps, by the last inequality in Lemma 13.7 (3). Thus
Proposition 13.3 follows from Corollary 13.6, Lemma 13.7 and the following Lemma 13.8.

Lemma 13.8 Assume that (13.17) does not hold for (f,y,u) and that (f',y/, (u1, ")) is
solvable at v' = v(f",y, (u1,¢")). Dissolve v' as in (13.14) and let 2 be as in (13.16).
Then (f',2', (u1,¢")) is v-prepared and we have

ﬂo(fla 2,7 (ub ¢/)) < ﬁo<f7y7u>7 C((fl7 Zl; (ula (b/)) = Oé(flvyl7 (ulv ¢/)) =0—1L

Proof of Lemma 13.7. Conditions (13.17) and (C1) imply
(13.18) b—df +a;)>0—d(f+1)>6—7">0 forj=1,...,r
where the last inequality holds in general (cf. the picture below Definition 10.1). This
implies z; € R, and the second assertion of (1) is obvious from (13.15). Let v,, be the
valuation on R with respect to (us). By (13.17) and (C1) we have

Uiy (07 a;) = dB' +a; < dB +d < T,

This together with (13.18) implies that the coordinate transformation (13.15) affects only
those vertices of A(f,y,u) lying in {(a1,a2) € R?| a1 > 6 — 4", ay < v*}. This shows
(2), and that condition (b) of Proposition 13.3 holds for (f, z,u).
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The first assertion of (3) follows from (13.10) and the equality 0(f,y,u) = 0(f, z, u) implied
by (2). The first inequality in the second assertion of (3) is a consequence of the first
assertion since v(f', v/, (u1,¢d")) & A(f', 7, (u1,¢')). Lemma 13.5 implies v*(f, z,u) >
B(f', 2, (u,¢)) and (2) implies v+ (f, z,u) = v"(f,y,u), which completes the proof of
(3).

It remains to show that condition (c) of Proposition 13.3 holds for (f,z,u). Introduce
p=(p1,-..,pr), a tuple of independent variables over k. For i =1,..., N, write

ins(f)w = DY Tip(U)  with T, p(U) € kU]
B

and substitute Y; = Z; — p; in ins(f;)y,0) € kY, U] to get

Gz(Zv U? p) = Z(Z - IO)BE,B(U) < k[Za Uv p]

By (13.3) and (13.15) we have in;(f;)zu) = Gi(Z, U, p)|p=s, Where
s=(s1,...,8) withs; = U, Y98 A, (U, U,) € kUL, Uy .

Write
GZ(Z7 Uv p) - ZZCSi,C’(UJ p) (Si,C’(U7 p) < k[U7 p]) :
C

By condition 13.3 (c) for (f,y,u), i.e., the normalizedness of ins( f;)(y,u), we have T; g(U) =
0if Be E"(F1(Y),...,F,_1(Y)). By Lemma 13.9 below, this implies S; (U, p) = 0 for
C e E"(Fi(Z),...,F;-1(2)), which is the normalizedness of ins(f)..), i-e., 13.3 (c) for
(f,z,u). O

Lemma 13.9 Assume given

GY)=> Ca-Y*€klY]=k1,.... Y],
A

and a subset E C Z%, such that E + 7%, C E and that Cy = 0 if A € E. Let p =
(p1,- .-, pr) be a tuple of independent variables over k and write

GY +p) =) Sk-Y™ with Sk €klp].
K

Then S =0 if K € E.

Proof We have

GY +p =




Thus
T (A A-K
Sk = Z (CAH<ki)>'P .
AEK+7Z.< i=1
Now, if Sx # 0 for K € E, then there is an A € K + Z%, C E with C4 # 0. This

completes the proof of the lemma. [

Proof of Lemma 13.8. Let F;(Y) € R[Y] be a lift of F,(Y) € k[Y]. For a tuple of

independent variables p = (p1, ..., p,) over R, write
(13.19) E(Y + p) - FZ(Y) + Z Ki,B,D . YBpD with Ki,B,D € R,
|B‘f‘l;‘2ni

By (13.16) we have 2’ =y’ + u, where

(13.20) = (p1,. .. pr)  with g, = uS"1 (¢ - dl.

Hence (13.19) implies:

E(Z,) = ﬁz(y/) + Z Ki,B,D . y'B,uD with Ki,B,D € R,

|B|<n;

By (13.8) this implies
(13.21) f=FE+ ) (F=wPois+g  with oalg) ey > i

‘B‘<'I‘Li
where (5

Hi,B _ (¢')e"(B)qZ",BU§ -D(ni—|Bl) _ Z Kipop - ,LLD
/ |D|=n;—|B|
_ ((blﬁ uz{fl)ni—|B\wiB )

Here we set
(13.22) = ()P~ Y Kipp-d® (@ = (), 0)),

|D|=ni—|B|
bi(B) = ei(B) — (ni — | B])§".
By (13.10) we have b;(B) > 0. For each B write (in k[Us])
(13.23) ®(1L,Uy)"PQip(1,Us) = > KippA(lUz)” = ®(1,Uy)" ") - R; 5(1,Un),
|Dl=ni—|B|
with A(l,Ug) = (Al(l,Ug),...,Ar(l,Ug)), Fi,B,D :Ki,B,D mod m € k,

where ¢;(B) € Zso and R; g(Uy,Us) € k[Uy,Us] is either 0 or homogeneous and not
divisible by ® nor by U;. Choose a lift RZ’,B(Ul, Us) € R[Uy,Us) of R; 5(Uy,Us)) € k[Uy, Us]
and set

Ti7B:RZ‘7B(U1,U2) ER, Tz,‘,B :Ti7B/U(116gRi’B GR/.
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Then (13.22) implies
wip — (¢)Prl y €mR = (uy) C R

so that (13.21) gives
(13‘24) fZ’ = E(Z,) + Z (Z/ _ IU)B(¢/)(ni—|B|)B/+Ci(B)u§ni—|B|)(5—l) 'T;,B + h/7
|B|<ni

where UA(h/) '/ (ur,¢)) > M- By Lemma 6.4(3) this implies va (') (2 (u1,6)) > 7 by noting
20—yt € (ud™h) by (13.16). Now we need the following lemma:

Lemma 13.10 There existi € {1,..., N} and B with |B| < n; such that R; g(U) # 0 in
k[Uy, Us] (which is equivalent to r; p & m').

The proof of Lemma 13.10 will be given later. Using the lemma, we see from (13.24)
that there is a vertex of A(f’, 2, (u1,¢’)) on the line {(ai,as) € R?| a; = § — 1}. Since

A(fla 2/7 (u17 ¢/)> C A(fla yla (ula ¢,)) and V(fla yla (ub Qb,)) ¢ A(fla Zla (uh (z)/))a this 1mphes

a(f', 2" (ur,¢)) = a(f',y/, (w1, ¢)) =6 — 1,
8= By (w, @) < B2 (u, ¢)).

Moreover there exist 1 <7 < N and B such that

(13.25)

¢i(B)
13.2 =5 4 27
where ¢;(B) is defined by equation (13.23).

Lemma 13.11 If condition (13.17) does not hold, ¢;(B) < n; — |B| for alli=1,..., N.

Proof By the assumption we have v*(f,y,u) < d(# + 1). Then we claim that for all
(i, B) such that Q; p # 0,

d - bZ(B) + degU2 Qi,B(lu UQ) <d- (le — ‘BD .
Indeed, recalling b;(B) = e;(B) — (n; — |B|)#', the assertion is equivalent to

d - e;(B) + degy, Qi 5(1,Us)

d(8 +1
Y (B +1)

and this follows from (13.6). On the other hand, in (13.23) we have
degy, A(L, U2)” < |D|max{degy, A;(1,Us) [ 1 < j <7} <d-(n; —|B]),
because |D| = n; — |B| and degy;, A;(1,Uz) = a; < d by (C1). By (13.23), this implies
degyy, (2(1,U2)*" Ri 5(1,U)) < d - (n; — |B]),

which implies ¢;(B) < n; — |B| since d = degy;, ®(1,U). O
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By Lemma 13.11, (13.26) and (13.25) imply

(13.27) B < B(f, 2 (u,¢)) <3 +1.

By (13.13) we have ' € Z so that B(f', 2, (u1,¢')) ¢ Z. Hence (f', 2/, (u1,¢')) is not
solvable at v(f’, 2/, (uy, ¢")).

We now show (f', 2/, (u1,¢')) is normalized at v(f’, 2, (u1, ¢')). Let
UH = V(f/,Z/,(U1,¢/>) and ﬂ// = ﬁ(f/72/7(u17¢/>>'
Setting Z' = (Z1,...,Z!) with Z! = inuy(2]), (13.24) implies

. R ! — n;— B —
i () gy = Fi(Z) + 3 (2 = )P (@7 0p=t) P
B

(13.28) .
=F(Z)+) ZSic with S;c € K'[Uy, @,
C

(B
where the first sum ranges over such B that |B| < n; and ' + i |23| = (" and
n; —

= (f,...,A,) withg =U"e% . a,
Tig="rip modm' = R;p(1,Us) mod &(1,U,) €k ~ k[Us]/(P(1,U2)).

Let B € E"(Fy,...,F;_1). Proposition 13.3 (c) implies Q; 5(U) = 0 (cf. (13.3) and
(13.4)). This implies that (F,..., Fy) is normalized in the sense of Definition 7.11 (1),
and Lemma 13.9 implies that K; pp € m for all D in (13.19). Hence R; p(1,U;) =
in (13.23) so that 7 5 = 0 in (13.28). By Lemma 13.9 this implies that S;c = 0
C € E(Fy,...,F;_1), which proves the desired assertion.

0
if

Finally it remains to show

(13.29) BOf 2w, @) < B(f,y. ).

The proof is divided into the following two cases:

Case (1) 0°(f,y,u) = (f,y,u),

Case (2) §°(f,y,u) < 0(f,y,u).

Note that we always have d°(f,y,u) < 6(f,y,u) since A(f,y,u) C A°(f,y,u).

Assume we are in Case (1). We have

(13.30) Y (foyou) <ATO(foy u) < BO(Fysu),

where the first inequality holds by the assumption and the second holds in general. By
(13.11) and (13.10), the assumption implies

ao(flv ylv (ula gb,)) = a/(f/)y/’ (Ula Qb/)) =0-1

Since the coordinate transformation y' — 2’ in (13.16) affects only those vertices lying in
{(ay,as) € R?* a; > — 1}, we have

(1331) ao(f/a 2/7 (ula qb,)) > ao(f,7 y,7 (ulv ¢/>> = a(f/a y/7 (Uh ¢,)) =0—1.
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By (13.25) we have

alfy (u, ¢) = af', 2, (ur,¢)) > a®(f', 7', (ur,¢')),
where the inequality holds since A(f', 2/, (u1, &) C AC(f', 2/, (u1, &)). Thus we get
a(f', 2, (w, @) = a®(f', 2, (w1, ¢")),
B(f, 2 (ur, ) < B(f, 2, (ua, ¢)).
On the other hand, from Lemma 13.5 and (13.27), we get

§ = B o) < LBy (T

(13.32)

If vt :=~%(f,y,u) > 2, then 5" < 4+, which shows the desired inequality (13.29) thanks
to (13.30) and (13.32). If 4t < 2, then Lemma 13.5 implies 3 := B(f', v/, (u1,¢")) <
yt/2 < 1 so that 3 = 0 since ' € Z as noted in (13.13). Hence (13.32) and (13.27)

implies
BO(f 2 (u, ¢) < B(f, 2, (w1, ¢)) < B/ +1=1.
On the other hand we have

(1333) ﬁo(fay7u) > 5O(f7y7u) - ozo(f,y7u) > 5O(f7y’u) -1= 5(f7yau) —-1>1

Here the first inequality holds in general, the second inequality holds since a©(f,y,u) < 1
by Lemma 10.5 and the assumption (a), and the last inequality follows from (13.13). This

proves the desired inequality (13.29) in Case (1).

Assume we are in Case (2). Write §° = 6°(f,y,u). The assumption implies
VO = 4TO(f,y,u) = v (y,u). (cf. Definition 10.3)
By (13.10) and (13.11) it also implies

aC(f o, (ur, ¢) =60 =1 < alf,y, (ur,¢') =6 — 1.

Since the coordinate transformation 3y’ — 2" in (13.16) affects only those vertices lying in

{(a1,a2) € R?| a; > 6 — 1} and 69 < §, this implies

QP(f, 2, (u,¢)) =6 =1 < alf, 7, (u1,¢)).

and hence
(13.34) BO(f, 2 (w,¢)) = BO(Z, (u1, 4)).
Recall that the d-face of AC(f,y,u) is
AO(f y,u) N {A € R AO(A) =1}  with A : R? = R; (a1, a) — %

For B € O(z), the initial form of /5 along this face is written as:

(13.35) ing(lB) = LB(Y) + (I)(U)SBFB(U),
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where Lp(Y) € k[Y] is a linear form, sp € Zso, and I'g(U) € k[U] is either 0 or ho-
mogeneous of degree 6° — d - sp and not divisible by ®. Note that I'z(U) # 0 for some
B € O(x). From this we compute

7O =4Oy, u) = sup {degy, (®(1,05)*T5(1,U)) | B€ O(x), T'p(U) # 0}
>d-{sp| B€O(x), T'g(U) £0}.

Choose lifts Lp(Y) € R[Y] and T3(U) € R[U] of Lp(Y) € k[Y] and Tp(U) € k[U],

respectively, and set

(13.36)

vg =Tplu,u) € R, and ~% =~g/ui®'?.

Note v € m’ if and only if I'5(U) = 0. (13.35) implies
lp = iB(y) + ¢*Byg + € with vpo (6)(y7u) > vpo (ZB)(y,u) =1.
By Lemma 8.2 (1), this implies

Uy =lp/ur = Lp(y) +uf” ¢ "7 + € with vyo() ey > 1,

ai
0 -1
Substituting i = 2/ —ud ¢/ - a’ (cf. (13.16)), we get

NC R — R (a1,az) —

ly=Lp(Z)+ud ¢y +ud™" h+é (heR).
By Lemma 6.4 (3), vy0(€)(y (u,¢)) > 1 implies vy,0(€') (7 (ur,4)) > 1 since we have

0—1 ,
Vps0 (ZZ/ — y;)(z’,(ul,q&’)) = 60——1 > 1 for ¢ = 1, e, T

by (13.16). Hence we get
BO(f, 2 (w1, ¢)) = (2, (w1, @) = inf {5 | B € O(x), Tp(U) # 0}
By (13.36) this implies

- (O O
8" = B(f 2 (ur, ¢ Ns— <5

If 4O £ 0, this implies ” < 479 < B9(f,y,u) as desired. If v*° = 0, then ” = 0. On
the other hand, as is seen in (13.33), we have

B(f.y.u) = 0°(f,y,u) — a®(f,y,u) > 69(f,y,u) —1 >0,

where the last inequality was noted in (11.1). This proves the desired assertion (13.29)
and the proof of Lemma 13.8 is complete, up to the proof of Lemma 13.10. [

Proof of Lemma 13.10 Assume the contrary, i.e., that we have R; 5(U) = 0 in k[U] for
all (¢, B) with |B| < n;. Then, for all (i, B) we have

(1337) q)(l, UQ)bi(B)QZ‘VB(l, Ug) = Z KZBDA 1 Ug) € k[UQ]

|D|=n;—|B|
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Write p
I'; (Ul, Ug) U ~(dBreg) Aj(Ula U2) € k[Ula UQ][Ul_l]

(0 — (dB' + a;) may be negative). Multiplying (13.37) by Ul(m_IBI)((S_‘W)7 we get
(13.38) P p(Uy, Uz) = Z K ppl'(Uy,Uz)"
|D]=n;—|B|
where I'(U)? = J] [';(U)%:. In fact, for the left hand side we note that b;(B) = e;(B) —
=1

(n; — |B|)3 and that Q; g(Uy, Uz)®(Uy, Up)%B) = P, (Uy, Uy) is either 0 or homogeneous
of degree d(n; — | B|). For the right hand side recall that A;(Uy,Us,) = U;? A;(1,Uy) and
that

D|(6—dp’ . D;(6—dB' —a; Dj-oy
piPla=an) _ TTuP ) P
j=1
In view of (13.19), equations (13.38) and (13.3) imply

F(Y+T(U) =FEY)+ > (-)PEppY"T(U)"
|B4+Dl|=n;
(13.39)
+ Y Pp(U) =ins(f;)
\B\<ni
Now we claim:
(13.40) §>df +ajfor j=1,...,r, ie, T;(U)e€k[U]CKU[U]

Admitting this claim, (13.39) implies that one can dissolve all the vertices of A(f,y,u)
on the line {A € R?| L(A) = 1}, which contradicts assumption (b). This completes the
proof of Lemma 13.10.

It remains to show claim (13.40). We show that I';(U) € k[U,.Us] C k[Uy, Uz, Uy ']. Recall
from (13.39) that in any case

(13.41) FAY +T(U)) = ins(f;) € K[V, U]

Denote the variables Yi,...,Y,, U;,Us by Xi,..., X, (so that n = r + 2), and define
derivations Dy : k[X] — k for A € Z%, by

G(X +p) = ZDAG pt(G(X) € K[X]),

where p = (p1, ..., pn) are new variables. We now apply [H5] (1.2) and [Gi3] Lemmas 1.7
and 3.3.4 (the assumptions of the lemmas are satisfied by Lemma 13.9 and the normal-
izedness of (F, ..., Fy) implied by Proposition 13.3(c)). According to these results, after
possibly changing the ordering of X,..., X,,, we can find:

e f, an integer with 0 < f <mn,

e Pjfor1l <j < f, homogeneous polynomials in the variables X 4 ; indexed by A € Z%,
and 1 <17 < N, with coefficients in k,
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e ¢1 < g2 < ...q¢, numbers which are powers of the exponential characteristic of &
(so that ¢; =1 for j =1,..., f if char(k) = 0),

.y = Cj,j-&—lX](']j-l 1 'ijngj (cjv €k, 1 <j<f j<v<n), additive polynomials
homogeneous of degree g;,

such that for : =1,..., N, we have

PI(DAE> = Xih + wl(XQJ"'7XTL)
Py(DaF) = X3 + (X5, X))

Pf(DAE) = X;{f —+ wf(Xf+177Xn)

Moreover the equations on the right hand side define the so-called ridge (faite in French)
F(Cy(X)) = F(C(R/J)) of the tangent cone C,(X) = C(R/J) = Spec(gr,(R/J)), i.e.,
the biggest group subscheme of T,(Z) = Spec(gr,(R)) = Spec(k[Xy,...,X,]) which
respects C'(R/J) with respect to the additive structure of T,(Z). Since Dir(R/J) C
F(C(R/J)) and e(R/J) =e(R/J) = 2 (cf. Definition 1.23) by the assumption, all these
schemes have dimension 2. Hence we must have f > n — 2 =r. Since F;(Y) € k[Y], the
variables U; and U, do not occur in the above equations so that f < r =n — 2. Thus we

get f = r. Hence, after a permutation of the variables Y7, ..., Y, the equations become
PDAR(Y) = Y& + ti(Va....Y))

PADAR(Y) = Y + (Y.,

Poa(DaF(Y)) = Y7+ (%)
PADAR(Y)) = Yo,

This implies
F(DaF(Y +T(U))) =Y, + T (U)".

By (13.41) this gives [',(U)* € k[U] and hence T',(U) € k[U]. Noting ¢; = ¢;; 1Y}, +
..+ ¢, Y:" we easily conclude inductively from (13.41) that I',_1(U),...,T1(U) € k[U].
This completes the proof of claim (13.40). O
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14 Non-existence of maximal contact in dimension 2

Let Z be an excellent regular scheme and let X C Z be a closed subscheme.

Definition 14.1 A closed subscheme W C Z is said to have maximal contact with X at
x € X if the following conditions are satisfied:

(1) x e W.
(2) Take any sequence of permissible blowups (cf. (5.1)):
Z= Ty <= Zy <= Zy ... Ly = Zy o e
U U U U U
X=X, & X3 & Xy —.i— X & X, —---

where for any n > 0
Zwin = Bip (Z,) ™5 Z,
@) U
X1 = Blp,(X,) ™5 X,
and D, C X,, is permissible. Assume that there exists a sequence of points x,, € D,
(n=0,1,...) such that zog = x and x,, is near to x,_1 for alln > 1. Then D, C W,
for all n > 0, where W,, is strict transform W in Z,.

Remark 14.2 The above definition is much weaker than Hironaka’s original definition

(see [AHV]).
In this section we prove the following:

Theorem 14.3 Let k be a field of characteristic p > 0 and let y,uy,uy be three variables
over k. Consider Z = A} = Spec(ky, u1,us]) and let X C Z be the hypersurface defined
by the equation:

(14.1) f=9y" 4+ yuNud +u§ub(ug + ug)P?
where A,a,b, N are integers satisfying the condition:
(14.2) 0<ab<p at+tb=p, A>p p A N >p?A.

Let x be the origin of Z = A} and let U C Z be an open neighborhood of x. Then there
s no smooth hypersurface W C U which has mazximal contact with X Xz U at x.

We observe the following consequence of maximal contact, from which we will derive a
contradiction. Let x € X C Z be as in Definition 14.1. Let R = O, with maximal ideal
m and residue field k = R/m, and let J C R be the ideal defining X Xz Spec(R).

Lemma 14.4 Assume Z = Spec(R). Set e = e,(X) and r = dim(R) — e, and assume
that e > 1. Let ty,...,t, be a part of a system of reqular parameters of R and assume
W := Spec(R/(t1,...,t.)) has mazimal contact with X at x. Let (f,y,u) be a §-prepared
label of (X,Z) at x (see Definition 9.1). Assume §(f,y,u) > 2, and let m > 2 be the
integer such that

(14.3) m<d(f,y,u) <m+ 1.
Then the following holds.

140



(1) {ty...,t,) = (y1...,yr) in R/m?. In particular (t,u) = (t1,...,tr U1, .., U) 1S @
system of reqular parameters of R.

(2) m < 6(f,t,u) <m+1 so that |6(f,y,u) — 6(f, t,u)| <1.

Proof Consider the fundamental sequence of permissible blowups as in Definition 5.33

with B = 0:
Z= Zy & 7, & Zy — ... — Z,.q4 <& 70
U U U U U
X= X, & X, & Xy ...« X1 & X,
0 U U U U
— 01 <: Cz <:<: m—1 <: Cm

By Corollary 9.6 the integer m in (14.3) coincides with the length of the above sequence.
Let W, is the strict transform of W in Z,. By Definition 14.1 we have

(14.4) C, C W, so that Wy ~ Blg,(W,) forallg=1,...,m —1.

For 1 < ¢ < m, let 1, be the generic point of C, and let R,, = Og,_, with maximal ideal
m,, . Let an C an be the ideal defining X, Xz, Spec(R,,). Write

= fi/ul™, y® = yiful, uf = wifus (2 <i <o), 7 =t/ .
By Claim 9.5, we know
(14.5) (f9,4@ u,) is a d-prepared label of of (X,, Z,) at 1, for ¢ < m — 1.
Claim 14.5 (t@ u;) = (tg‘Z), Lt uy) is a system of reqular parameters of R, .

Proof Condition (14.4) implies (by induction on ¢) that the strict transform of W in

Spec(R,,) is defined by 9 #9). It also implies that W, is transversal with the
exception divisor of Z, — Z,_; which is defined by (u;) in Spec(R,,). Thus the claim
follows. [J

By claim (14.5) we have (y'?, u;) =m,, = (9 u;) C R, . Lemma 14. 4 (1) follows easily
using this fact for ¢ = 1. By Definition 9.1 (2), (14.5) 1mphes §(f@,y@ u) > 1 so that

A2 eml = (@ u) C R, (j=1,...,N)
By Definition 7.2 (3) this implies
(14.6) S(f9¢9D u)>1 if1<g<m—1.
On the other hand, we have
(14.7) S(fD D uy) = 6(f,t,u) — q.

Indeed, noting that (¢, u) is a system of regular parameters of R by Lemma 14.4 (1), we
can write, as in (6.3):

= Z Ci,A,B tBuA with Ci,A,B cR*U {0}
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We compute

Q) _ fi/u?j — Z (Ci,A,BU/A> (t(q))BullAHq(lBl—ni)’

(4,B)
W=l for A= (ar,as,. .., a.).
Noting that x(n,) = R, /m,, ~ k(u') = k(u},...,u,) and that R — R, — r(1,) factors

through R — k (see Claim 9.5), we see

§(f@, ¢ 4;) = min{ Al + Q(|BT|B| n;)

:5<f7y7 )_

Now (14.6) and (14.7) give us 6(f,t,u) > m. As (f,y,u) is é-prepared, Theorem 7.16
implies d(f,y,u) > §(f,t,u). Thus we get m < (f,t,u) < I(f,y,u) < m+1 and Lemma
14.4 (2) is shown. O

’ ‘B| <n;, Ciap# 0}

Now we start the proof of Theorem 14.3. Let  be the origin of Z = A} and let R = Oz,
with the maximal ideal m. Write u = (uq, us).

Claim 14.6 (f,y,u) is a d-prepared label of (X, Z) at x and §(f,y,u) = A+ 1.

Proof From (14.1) and (14.2) one easily checks that IDir,(X) = (V) with Y = iny(y)
and that A(f,y,u) C R? is the polyhedron with the two vertices

a b a b
+

Since these vertices are not integral points, the polyhedron is d-prepared. We have
f,y,u) = A+1 > 1as a+b = p and the claim follows from Definition 9.1 (2).
O

We will use three sequences of permissible blowups:

Sequence I: First consider 7 : 2’ = Bl,(Z) — Z and the strict transform X’ C Z’ of X.
Look at the point 2’ € Z’ of parameters

/ Y Ug
— (L o141,
(y,U1,U) (u17u17 + ul)

Let R' = Oy 4. Then X' x4 Spec(R’) is defined by the equation:

= 1{ =y + NP (0 — DN 4P (0 — 1)
1

Using (14.2), one can check that A(f’, v/, (u1,v)) has the unique vertex (A, A) so that

0(f' vy, (up,v)) = 24 > 1. Hence z’ is very near to x by Theorem 8.6. By Theorems
8.1 and 8.3, fis a (ul, v)-standard base and (uy,v) is admissible for J = (f) C R. On
the other hand, (f’,v/, (u1,v)) is not prepared at the vertex and we dissolve it by the
coordinate change

2=y teuft (@ = (-1))

142



Setting A = (v — 1)¥ € R and p=v""((v — 1)’ — ¢’) € R'™, we compute
(14.8) fr= 22 Xz P B ApAT N2V TP AA
Using (14.2), we see that A(f’, z, (u1,v)) is the polyhedron with three vertices

1. 2N—p+1+A A 9N
A7A+_7 y )y —_1707
Ay, LSS (1)

and that the d-face of A(f’, z, (uq,v)) is the first vertex. In fact, we have

ON — 1+A A 1 2N 1
Pt A A avast oaa A 1o apasl
D P D p—1 j%

Since this first vertex is not an integral point, the polyhedron is J-prepared. We have
6(f', 2, (u1,v)) = 2A + i > 1. Hence (f’, 2, (u1,v)) is a d-prepared label of (X', Z’) at 2’
by Definition 9.1 (2).

We now extend 7 : Z/ — Z to the following sequence of permissible blowups:

z &z oz oz, 7,
U U U U U
X & X X & Xy, . X,
T T T 1 T
r — X = T — Xy — . I,

Here Z), = Bly(Z') and Zyy, = Bl, (Z,) (¢ =1,...,p — 1) where 2, € Z, is the unique
point lying on the strict transform of {z = v = 0} C Spec(R’), and X, C Z, is the strict
transform of X. For ¢ =1,...,p, write R, = Oy_,, and

f(q) _ f//u;zqu — f/ull)(lH-l)’ Z(q) — Z/U(f, U(Q) — ’U/U(ll

)

By convention we write xzy = 2.

Claim 14.7 Forq=1,...,p, z, is very near to x,_1, (9,29 (uy,v?)) is a 6-prepared
label of (X,, Z,) at x4, and the S-face of A(f\9, 2D (uy,vD)) is the vertex
1 1

(A+q(A—1+1—?),A+5).

Proof By induction on ¢, one easily shows that (@, u;,v@) is a system of regular
parameters of R,. From (14.8), one computes

(14.9) f9 = (@) 4 Az(q)u?NﬂHlH](lfp) + uuzl)A+tI(PA+1*p)(U(q))pA+1

o )\€u§N*P+1+A+q(A*P)(U(q))A.

This implies @ € R, and X, Xz, Spec(R,;) = Spec(R,/(f?)). It also implies the last
assertion of the claim by noting (14.2). In fact, for the vertex coming from the second
term we have
2N 1 1
—— —1—-g¢>A+qA-14+-)4+A+- for 0<qg<p
p—1 p p
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(see the worst case ¢ = p), and the case of the last term is even simpler. Since the vertex
in the claim is not an integral point, (f@, 2@, (uy,v@)) is d-prepared. Noting A > p, we
get

a
S(f 9 4@ (ul? uy)) =1+ A+ q(]—? —1)>1+a.

Now the claim follows from Theorems 8.6, 8.1, 8.3 and Corollary 7.17 as before. [J

Sequence II: We consider the following sequence of permissible blowups:

Z =Zy & 70 &z, ... 7z
U U U U
X =X, & X3 & X, ... & X,
T T T T
T =Xy < Tl Xy T

Here Zgy1 = Bl (Z;) (¢ =0,...,p — 1) where z, € Z, is the unique point lying on the
strict transform of {y = uy = 0} C Spec(R), and X, C Z, is the strict transform of X.
For ¢ =0,...,p, write Ry = Oz_,, and

1O = FJu O =y, i =
(q)

Claim 14.8 For q = 1,...,p, x, is very near to x,_1, and (f9,y D (u;? uy)) is a §-

prepared label of (X,, Z,) at z,, and A(f9,y(@, (u@, ug)) is the polyhedron with the unique
vertex

a b a
- -+ A+q(=-1)).
(pp (p )

Proof By induction on g, one easily shows that (y9, (ugq),ug)) is a system of regular
parameters of R,. From (14.1), one computes

f(q) — (y(q))p + y(q)(ugq))Nu;VJrq(Npr) + (ugq))aungpAw(afp) (ugq)ug—l + 1)pA_
This shows f(@ € R, and it is an equation for X, x 7 Spec(R,;). The last assertion easily
follows by noting (14.2). As p fa, the polyhedron is d-prepared. Then we get

S/ g, () = 1+ At q(C 1) > 1+
p
by noting A > p > q and p = a + b. Now the claim follows from Theorems 8.6, 8.1, 8.3
and Corollary 7.17 as before. [J

Sequence III: This is the sequence of permissible blowups, which looks the same as the
sequence II, except that now z, € Z, is the unique point lying on the strict transform of
{y = uy =0} C Spec(R).

Now assume that there exists s € m — m? such that
(%) W := Spec(R/(s)) C Spec(R) has maximal contact with X Xz Spec(R) at .

Then we want to deduce a contradiction. Let R = k[[y, uy, us]] be the completion of R.
It is easy to see that the assumption (*) and Claims 14.6, 14.7 and 14.8 hold even after
replacing R with R. Thus we may work with X := Spec(R/(f)) and W = Spec(R/(s)) C

A

Z = Spec(R) which has maximal contact with X at the closed point = € Spec(R).
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Claim 14.9 There exists t € R such that (s) = (t) C R and
t=y+~ €R wherey € ntL,
Here n = (uy,up) C k[[u]] = k[[uy, us)] C R.

Proof By Lemma 14.4 (1) and Claim 14.6, we can write es = y + a with ¢ € k* and
a € m?. Noting R = k|[y, u1, us]] = kl[[t, u1, us]], we can write

a=v+b withyen? besRNm?R.
Setting ¢ = es — b, this implies y = t + v and (s) = (t) € R. From (14.1) we get
(14.10) =t +tulVud +ulul(uy + ug)P — AP — yulNul .
From Definition 7.2 (3), this implies
§(f,t,u) < ¢ = max{i| v € n'}.

Since 0(f,y,u) = A+ 1 by Claim 14.6, Lemma 14.4 (2) implies A < §(f, ¢, u) and hence
¢ > A+ 1. This completes the proof of the claim. [J

To ease the notation, we write R, X, Z for R, X, Z in what follows. Write
y=T+6 withfcn®?and T =0 or I € k[uy, us] homogeneous of degree A + 1,

and let C'= max{m € NU {oco} | (u; + u2)™|I'}. There are two cases:
Case C # A: In this case (14.10) implies

f =7 + tuivuév + (U1 + uQ)pBH(ul, Ug) + Qb,

where B = min{C, A}, and H (u1,us) € kluy, us] is homogeneous of degree p(A + 1 — B)
which is not divisible by u; + uo, and ¢ € nP(A+2),

Now we consider the sequence I. Let ' = ¢/u; and 9 = #'/ul. By the same argument as
in the proof of Claim 14.5, we can show that (¢/,uy,v) (resp. (t9,u;,v@)) is a system of
regular parameters for R' = Oy . (vesp. Ry = Oz, ). We compute

Fr=1" 4+ XufN P A g
where A\ = (v— 1)V € R, and p' = H(1,uz/w) € k[v] C R, and ¢/ = ¢/uf""? €

k[[u1, us)[v] € R'. Note i/ € R since H(uy,us) is not divisible by u; + ug. From this
we compute

f(q) — (t(q))p + )\t(q)qu—PHJFQ(l—p) + M/uzlo(AJrq(B—l))(U(q))pB + u’f(AH_Q)gb’.
By Definition 7.2 (3), this implies

O(f, 4D, (7)) < A+ (B — 1)+ B.
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fast der blow-
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B + ——= slower

~
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~
~
~
~
~
~ -

“phantom polyhedron” A(f,t, (ui,v))

|
T

A

Setting o, = 0(f 9, 2@ (uy, v D)) — §(f D D (u;,v@)), and noting A > B, we get

g+1

1 1
oy > (A+q(A—1+];)+A+I—))—(A—l—q(B—l)—l—B) > .

from Claim 14.7. Hence o, > 1 for ¢ = p, which contradicts Lemma 14.4(2) since
(f@, 29 (uy,v@)) is a §-prepared label of (X,, Z,) at z, and the strict transform W, C
Spec(R,) of W has maximal contact with X, x z, Spec(R,) at x, by Definition 14.1.

Case C' = A: There exist ¢, ¢y € k with ¢; # ¢ and (c1, ¢2) # (0,0) such that

v = (u1 + ug)A(clul + ciup) + 60 with § € n*?

C k[[uy, us]].
From (14.10) we get

f=1 4+ tudud + (ug + uy)P? (u‘fug — (crug + coua)?) + &,
where ¢ = —07 — yuNul) € nPA+2),

Assume ¢y # 0 and consider the sequence II. Let ¢ = ¢ /ul. By the same argument as in
the proof of Claim 14.5, we can show that (¢(9), ugq), ug) is a system of regular parameters
of Ry = Oz, ,. We compute

JO = (H)P o #0 (u)Mup T o T
where ¢/ = ¢/ ug(A+2) € R, and

¢ = (Pl + 1)pA((ugq))“u;(q71) — (g 4 o)) € RS
Here we have used a + b = p. By Definition 7.2 (3), this implies

S(F@D 4@ (D uy)) < A+1—q.

146



Set o, = §(f@, 29D (uy,v@)) = §(f@,+D (uy,v?)). Then Claim 14.8 implies

oy > (1+A+q(%—1))—(A+1—q) z%“.

Hence o, > 1 for ¢ = p, which contradicts Lemma 14.4 (2) by the same reason as in the
previous case.

It remains to treat the case ¢; # 0. By symmetry, the proof is given by the same argument
using the sequence III instead of II. This completes the proof of Theorem 14.3.
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