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0 Introduction

The principal aim of this paper is to show the following three theorems on the resolution
of singularities of an arbitrary reduced excellent scheme X of dimension at most two.

Theorem 0.1 (Canonical controlled resolution) There exists a canonical finite sequence
of morphisms

π : X ′ = Xn −−−→ . . . −−−→ X1 −−−→ X0 = X

such that X ′ is regular and, for each i, Xi+1 → Xi is the blow-up of Xi in a permissible
center Di ⊂ Xi which is contained in (Xi)sing, the singular locus of Xi. This sequence
is functorial in the sense that it is compatible with automorphisms of X and (Zariski or
étale) localizations.

We note that this implies that π is an isomorphism over Xreg = X −Xsing, and we recall
that a subscheme D ⊂ X is called permissible, if D is regular and X is normally flat along
D (see 2.1). The compatibility with automorphisms means that every automorphism of X
extends to the sequence in a unique way. The compatibility with the localizations means
that the pull-back via a localization U → X is the canonical resolution sequence for U
after suppressing the morphisms which become isomorphisms over U . It is well-known
that Theorem 0.1 implies:

Theorem 0.2 (Canonical embedded resolution) Let i : X ↪→ Z be a closed immersion,
where Z is a regular excellent scheme. Then there is a canonical commutative diagram

X ′ i′−−−→ Z ′

π

y
yπZ

X
i−−−→ Z

where X ′ and Z ′ are regular, i′ is a closed immersion, and π and πZ are proper and
surjective morphisms inducing isomorphisms π−1(X −Xsing)

∼−→X −Xsing and π−1
Z (Z −

Xsing)
∼−→Z − Xsing. Moreover, the morphisms π and πZ are compatible with automor-

phisms of (X,Z) and (Zariski or étale) localizations in Z.

In fact, starting from Theorem 0.1 one gets a canonical sequence Z ′ = Zn → . . . Z1 →
Z0 = Z and closed immersions Xi ↪→ Zi for all i, such that Zi+1 → Zi is the blow-up
in a regular center Di contained in (Xi)sing and Xi+1 ⊆ Zi+1 is identified with the strict
transform of Xi in the blow-up Zi+1 → Zi. Then Zi+1 → Zi is proper (in fact, projective)
and surjective, and Zi+1 is regular since Zi is.

For several applications the following refinement is useful:

Theorem 0.3 (Canonical embedded resolution with boundary) Let i : X ↪→ Z be a closed
immersion into a regular scheme Z, and let B ⊂ Z be a simple normal crossings divisor
such that no irreducible component of X is contained in B (equivalently, (Z −B) ∩X is
dense in X). Then there is a canonical commutative diagram

X ′ i′−−−→ Z ′ k′←−−− B′

πX

y πZ

y πB

y
X

i−−−→ Z
k←−−− B
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where i′ and k′ are closed immersions, πX , πZ and πB are projective, surjective, and
isomorphisms outside Xsing ∪ (X ∩B), and B′ = π−1

Z (B)∪E, where E is the exceptional
locus of πZ (which is a closed subscheme such that πZ is an isomorphism over Z−πZ(E)).
Moreover, X ′ and Z ′ are regular, B′ is a strict normal crossings divisor on Z ′, and
X ′ intersects B′ transversally on Z ′. Furthermore, πX , πZ and πB are compatible with
automorphisms of (Z,X,B) and with (Zariski or étale) localizations in Z.

More precisely, we prove the existence of a commutative diagram

πB : B′ = Bm −−−→ Bm−1 −−−→ . . . −−−→ B1 −−−→ B0 = By
y

y
y

y
πZ : Z ′ = Zm −−−→ Zm−1 −−−→ . . . −−−→ Z1 −−−→ Z0 = Zx

x
x

x
y

π : X ′ = Xm −−−→ Xm−1 −−−→ . . . −−−→ X1 −−−→ X0 = X

where the vertical morphisms are closed immersions and, for each i, Xi+1 = B`Di
(Xi) →

Xi is the blow-up of Xi in a permissible center Di ⊂ (Xi)sing, Zi+1 = B`Di
(Zi) → Zi

is the blow-up of Zi in Di (so that Zi+1 is regular and Xi+1 is identified with the strict
transform of Xi in Zi+1), and Bi+1 is the complete transform of Bi, i.e., the union of
the strict transform of Bi in Zi+1 and the exceptional divisor of the blow-up Zi+1 → Zi.
Furthermore, Di is Bi-permissible, i.e., Di ⊂ Xi is permissible, and normal crossing with
Bi (see Definition 3.1), which implies that Bi+1 is a simple normal crossings divisor on
Zi+1 if this holds for Bi on Zi.

In fact, the second main theorem of this paper, Theorem 5.9, states a somewhat more
general version, in which B can contain irreducible components of X. Then one can
assume that Di is not contained in the strongly Bi-regular locus XBsreg (see Definition
5.1), and one gets that X ′ is normal crossing with B (Definition 3.1). This implies that
π is an isomorphism above XBsreg ⊆ Xreg, and, in particular, again over Xreg − B. In
addition, this Theorem also treats non-reduced schemes X, in which case (X ′)red is regular
and normal crossing with B and X ′ is normally flat along (X ′)red.

Moreover, we obtain a variant, in which we only consider strict transforms for the normal
crossings divisor, i.e., where Bi+1 is the strict transform of Bi. Then we only get the
normal crossing of X ′ (or X ′

red in the non-reduced case) with the strict transform B̃ of B
in Z ′.

Theorem 0.1, i.e., the case where we do not assume any embedding for X, will also
be proved in a more general version: Our first main theorem, Theorem 5.6, allows a
non-reduced scheme X as well as a so-called boundary on X, a notion which is newly
introduced in this paper (see section 4). Again this theorem comes in two versions, one
with complete transforms and one with strict transforms.

Our approach implies that Theorem 5.6 implies Theorem 5.9. In particular, the canonical
resolution sequence of Theorem 5.9 for B = ∅ and strict transforms (or of Theorem 0.3
for this variant) coincides with the intrinsic sequence for X from Theorem 0.1. Thus, the
readers only interested in Theorems 0.1 and 0.2 can skip sections 3 and 4 and ignore any
mentioning of boundaries/normal crossings divisors (by assuming them to be empty).
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We note the following corollary.

Corollary 0.4 Let Z be a regular excellent scheme (of any dimension), and let X ⊂ Z
be a reduced closed subscheme of dimension at most two. Then there exists a projective
surjective morphism π : Z ′ −→ Z which is an isomorphism over Z−X, such that π−1(X),
with the reduced subscheme structure, is a strict normal crossings divisor on Z ′.

In fact, applying Theorem 0.3 with B = ∅, we get a projective surjective morphism
π1 : Z1 −→ Z with regular Z1, a regular closed subscheme X1 ⊂ Z1 and a strict normal
crossings divisor B1 on Z1 such that π1 is an isomorphism over Z − X (in fact, over
Z − (Xsing)), and π−1

1 (X) = X1 ∪ B1. Moreover, X1 and B1 intersect transversally. In
particular, X1 is normal crossing with B1 in the sense of Definition 3.1. Hence we obtain
the wanted situation by composing π1 with π2 : Z ′ −→ Z1, the blow-up of Z1 in the
B1-permissible (regular) subscheme X1, and letting X ′ = π−1

2 (X1 ∪B1) which is a simple
normal crossings divisor, see Lemma 3.2.

Moreover we mention that Theorem 0.3 is applied in a paper of the second and third
author [JS], to prove a conjecture of Kato and finiteness of certain motivic cohomology
groups for varieties over finite fields. This was a main motivation for these authors to
work on this subject.

To our knowledge, none of the three theorems is known, at least not in the stated gener-
ality. Even for dim(X) = 1 we do not know a reference for these results, although they
may be well-known. For X integral of dimension 1, Theorem 0.1 can be found in [Be]
section 4, and a proof of Theorem 0.3 is written in [Ja].

In 1939 Zariski [Za1] proved Theorem 0.1 (without discussing canonicity or functoriality)
for irreducible surfaces over algebraically closed fields of characteristic zero. Five years
later, in [Za3], he proved Corollary 0.4 (again without canonicity or functoriality) for
surfaces over fields of characteristic zero which are embedded in a non-singular threefold.
In 1966, in his book [Ab3], Abhyankar extended this last result to all algebraically closed
fields of positive characteristic 6= 2, 3, or 5, making heavy use of his papers [Ab2] and
[Ab4]. Around the same time, Hironaka [H6] sketched a shorter proof of the same result,
over all algebraically closed ground fields, based on a different method. Recently a shorter
account of Abhyankar’s results was given by Cutkosky [Cu2]. For all excellent schemes of
characteristic zero, i.e., whose residue fields all have characteristic zero, and of arbitrary
dimension, Theorems 0.1 and 0.3 were proved by Hironaka in his famous 1964 paper
[H1] (Main Theorem 1∗, p. 138, and Corollary 3, p. 146), so Theorem 0.2 holds as well,
except that the approach is not constructive, so it does not give canonicity or functoriality.
These issues were addressed and solved in the later literature, especially in the papers by
Villamayor, see in particular [Vi], and by Bierstone-Millman, see [BM], by related, but
different approaches. In these references, a scheme with a fixed embedding into a regular
scheme is considered, and in [Vi], the process depends on the embedding. The last issue
is remedied by a different approach in [EH]. In positive characteristics, canonicity was
addressed by Abhyankar in [Ab5].

There are further results on a weaker type of resolution for surfaces, replacing the blowups
in regular centers by different techniques. In [Za2] Zariski showed how to resolve a surface
over a not necessarily algebraically closed field of characteristic zero by so-called local
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uniformization which is based on valuation-theoretic methods. Abhyankar [Ab1] extended
this to all algebraically closed fields of positive characteristics, and later extended several
of the results to more general schemes whose closed points have perfect residue fields.
In 1978 Lipman [Li] gave a very simple procedure to obtain resolution of singularities
for arbitrary excellent two-dimensional schemes X in the following way: There is a finite
sequence Xn → Xn → . . . X1 → X of proper surjective morphisms such that Xn is regular.
This sequence is obtained by alternating normalization and blowing up in finitely many
isolated singular points. But the processes of uniformization or normalization are not
controlled in the sense of Theorem 0.1, i.e., not obtained by permissible blow-ups, and
it is not known how to extend them to an ambient regular scheme Z like in Theorem
0.2. Neither is it clear how to get Theorem 0.3 by such a procedure. In particular, these
weaker results were not sufficient for the mentioned applications in [JS]. This is even
more the case for the weak resolution of singularities proved by de Jong [dJ].

It remains to mention that there are some results on weak resolution of singularities for
threefolds over a field k by Zariski [Za3] (char(k) = 0), Abhyankar [Ab3] (k algebraically
closed of characteristic 6= 2, 3, 5) – see also [Cu2], and by Cossart and Piltant [CP1], [CP2]
(k arbitrary), but this is not the topic of the present paper.

Our approach is roughly based on the strategy of Levi-Zariski used in [Za1], but more
precisely follows the approach (still for surfaces) given by Hironaka in the paper [H6]
cited above. The general strategy is very common by now: One develops certain invariants
which measure the singularities and aims at constructing a sequence of blow-ups for which
the invariants are non-increasing, and finally decreasing, so that in the end one concludes
one has reached the regular situation. The choices for the centers of the blow-ups are
made by considering the strata where the invariants are the same. In fact, one blows
up ‘the worst locus’, i.e., the strata where the invariants are maximal, after possibly
desingularising these strata. The main point is to show that the invariants do finally
decrease. In characteristic zero this is done by a technique introduced by Hironaka in
[H1], which is now called the method of maximal contact (see [AHV] and Giraud’s papers
[Gi2] and [Gi3] for some theoretic background), and an induction on dimension.

But it is known that the theory of maximal contact does not work in positive characteristic.
There are some theoretic counterexamples in [Gi3], and some explicit counterexamples for
threefolds in characteristic two by Narasimhan [Na1], see also [Co2] for an interpretation
in our sense. It is not clear if the counterexamples in [Na2], for threefolds in any positive
characteristic, can be used in the same way. But in section 15 of this paper, we show
that maximal contact does not even exists for surfaces, in any characteristic, even if
maximal contact is considered in the weakest sense. Therefore the strategy of proof has
to be different, and we follow the one outlined in [H6], based on certain polyhedra (see
below). That paper only considers the case of a hypersurface, but in another paper [H3]
Hironaka develops the theory of these polyhedra for ideals with several generators, in
terms of certain ‘standard bases’ for them (which also appear in [H1]). The introduction
of [H3] expresses the hope that this theory of polyhedra will be useful for the resolution of
singularities, at least for surfaces. Our paper can be seen as a fulfilment of this program.

In his fundamental paper [H1], Hironaka uses two important invariants for measuring the
singularity at a point x of an arbitrary scheme X. The primary is the ν-invariant ν∗x(X) ∈
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NN, and the secondary one is the dimension ex(X) ∈ N (with 0 ≤ ex(X) ≤ dim(X)) of
the so-called directrix Dirx(X) of X at x. Both only depend on the cone Cx(X) of X
at x. Hironaka proves that for a permissible blow-up X ′ → X and a point x′ ∈ X ′ with
image x ∈ X the ν-invariant is non-increasing: ν∗x′(X

′) ≤ ν∗x(X). If equality holds here
(one says x′ is near to x), then the (suitably normalized) e-invariant is non-decreasing. So
the main problem is to show that there cannot be an infinite sequence of blow-ups with
‘very near’ points x′ 7→ x (which means that they have the same ν- and e-invariants).

To control this, Hironaka in [H3] and [H6] introduces a tertiary, more complex invariant,
the polyhedron associated to the singularity, which lies in Re

≥0. It depends not just on
Cx(X), but on the local ring OX,x of X at x itself, and also on various choices: a regular
local ring R havingOX,x as a quotient, a system of regular parameters y1, . . . , yr, u1, . . . , ue

for R such that u1, . . . , ue are ‘parameters’ for the directrix Dirx(X), and equations
f1, . . . , fm for OX,x as a quotient of R (more precisely, a (u)-standard base of J = ker(R →
OX,x) ). In the situation of Theorem 0.2, R is naturally given as OZ,x, but in any case,
such an R always exists after completion, and the question of ruling out an infinite se-
quence of very near points only depends on the completion of OX,x as well. In the case
considered in section 13, it is not a single strictly decreasing invariant which comes out
of these polyhedra, but rather the behavior of their shape which tells in the end that
an infinite sequence of very near points cannot exits. This is sufficient for our purpose,
but it might be interesting to find a strictly decreasing invariant also in this case. In the
particular situation considered in [H6] (a hypersurface over an algebraically closed field),
this was done by Hironaka; see also [Ha] for a variant.

As a counterpart to this local question, one has to consider a global strategy and the
global behavior of the invariants, to understand the choice of permissible centers and the
global improvement of regularity. Since the ν-invariants are nice for local computations,
but their geometric behavior is not so nice, we use the Hilbert-Samuel invariant HOX,x

∈
NN as an alternative primary invariant here. They were extensively studied by Bennett
[Be], who proved similar non-increasing results for permissible blow-ups, which was then
somewhat improved by Singh [Si1]. Bennett also defined global Hilbert-Samuel functions
HX : X → NN, which, however, only work well and give nice strata in the case of so-called
weakly biequidimensional excellent schemes. We introduce a variant (Definition 1.30)
which works for arbitrary (finite dimensional) excellent schemes. This solves a question
raised by Bennett. The associated Hilbert-Samuel strata

X(ν) = {x ∈ X | HX(x) = ν} for ν ∈ NN ,

are then locally closed, with closures contained in X(≥ ν) = {x ∈ X | HX(x) ≥ ν}. In
particular, X(ν) is closed for maximal ν (here µ ≥ ν if µ(n) ≥ ν(n) for all n).

Although our main results are for two-dimensional schemes, the major part of this paper is
written for schemes of arbitrary dimension, in the hope that this might be useful for further
investigations. Only in part of section 5 and in sections 10 through 14 we have to exploit
some specific features of the low-dimensional situation. According to our understanding,
there are mainly two obstructions against the extension to higher-dimensional schemes:
The fact that in Theorem 2.14 one has to assume char(k(x)) = 0 or char(k(x)) ≥ dim(X),
and the lack of good invariants of the polyhedra for e > 2, or of other suitable tertiary
invariants in this case.
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We have tried to write the paper in such a way that it is well readable for those who are
not experts in resolution of singularities (like two of us) but want to understand some
results and techniques and apply them in arithmetic or algebraic geometry. This is also
a reason why we did not use the notion of idealistic exponents [H7]. This would have
given the extra burden to recall this theory, define characteristic polyhedra of idealistic
exponents, and rephrase the statements in [H5]. Equipped with this theory, the treatment
of the functions defining the scheme and the functions defining the boundary would have
looked more symmetric; on the other hand, the global algorithm clearly distinguishes
these two.

We now briefly discuss the contents of the sections. In the first section we discuss the
primary and secondary invariants (local and global) of singularities mentioned above. In
the second section we discuss permissible blow-ups and the behavior of the introduced
invariants for these, based on the fundamental results of Hironaka and Bennett.

In section 3 we study similar questions in the setting of Theorem 0.3, i.e., in a ‘log-
situation’ X ⊂ Z where one has a ‘boundary’: a normal crossings divisor B on Z. We
define a class of log-Hilbert-Samuel functions HO

X , depending on the choice of a ‘history
function’ O : X → { subdivisors of B} characterizing the ‘old components’ of B at x ∈ X.
Then HO

X(x) = (HX(x), n), where n is the number of old components at x. This gives
associated log-Hilbert-Samuel strata

X(ν̃) = {x ∈ X | HO
X(x) = ν̃} for ν̃ ∈ NN × N .

For a B-permissible blow-up X ′ → X, we relate the two Hilbert-Samuel functions and
strata, and study some transversality properties.

In section 4 we extend this theory to the situation where we have just an excellent scheme
X and no embedding into a regular scheme Z. It turns out that one can also define the
notion of a boundary B on X: it is just a tuple (B1, . . . , Br) (or rather a multiset, by
forgetting the ordering) of locally principal closed subschemes Bi of X. In the embedded
situation X ⊂ Z, with a normal crossings divisor B on Z, the associated boundary
BX on X is just given by the traces of the components of B on X and we show that
they carry all the information which is needed. Moreover, this approach makes evident
that the constructions and strategies defined later are intrinsic and do not depend on
the embedding. All results in section 3 can be carried over to section 4, and there is a
perfect matching (see Lemma 4.21). We could have started with section 4 and derived
the embedded situation in section 3 as a special case, but we felt it more illuminating to
start with the familiar classical setting; moreover, some of the results in section 4 (and
later in the paper) are reduced to the embedded situation, by passing to the local ring
and completing (see Remark 4.20, Lemma 4.21 and the applications thereafter).

In section 5 we state the Main Theorems 5.6 and 5.9, corresponding to somewhat more
general versions of Theorem 0.1 and 0.3, respectively, and we explain the strategy to prove
them. Based on an important theorem by Hironaka (see [H2] Theorem (1,B) and the
following remark), it suffices to find a succession of permissible blowups for which locally
the Hilbert-Samuel invariants decrease. Although this principle seems to be well-known,
and might be obvious for surfaces, we could not find a suitable reference and have taken
some effort to provide a precise statement and (short) proof of this fact in any dimension

7



(see Corollaries 5.22 and 5.28). The problem arising is that the lexicographically ordered
set NN, and even the subset of Hilbert functions, does not have the property that every
strictly decreasing sequence is finite, contrary to some claims in the literature. We resort
to the fact that the corresponding statement holds for the set of Hilbert polynomials.
This is proved in Theorem 1.17; previously this was only known for Hilbert polynomials
of monomial ideals. After these preparations we define a canonical resolution sequence
(proof of Theorem 5.30). The proof of its finiteness is reduced to two key theorems,
Theorem 5.34 and 5.38, which exclude the possibility of certain infinite chains of blow-
ups with near (or O-near) points. The key theorems concern only isolated singularities
and hence only the local ring of X at a closed point x, and they hold for X of arbitrary
dimension, but with the condition that the ‘geometric’ dimension of the directrix is ≤ 2
(which holds for dim(X) = 2). As mentioned above, for this local situation we may
assume that we are in an embedded situation.

As a basic tool for various considerations, we study a situation as mentioned above, where
a local ring O (of arbitrary dimension) is a quotient R/J of a regular local ring R. In
section 6 we discuss suitable systems (y, u) = (y1, . . . , yn, u1, . . . , ue) of regular parameters
for R and suitable families f = (f1, . . . , fm) of generators for J . A good choice for (y, u)
is obtained if u is admissible for J (Definition 6.1) which means that u1, . . . , ue are affine
parameters of the directrix of O (so that e is the e-invariant recalled above). We study
valuations associated to (y, u) and initial forms (with respect to these valuations) of
elements in J and their behavior under change of the system of parameters. As for f , in
the special case that J is generated by one element (case of hypersurface singularities),
any choice of f = (f1) is good. In general, some choices of f = (f1, . . . , fm) are better
than the other. A favorable choice is a standard basis of J (Definition 1.19) as introduced
in [H1]. In [H3] Hironaka introduced the more general notion of a (u)-standard base of J
which is more flexible to work with and plays an important role in our paper.

In section 7 we recall, in a slightly different way, Hironaka’s definition [H3] of the poly-
hedron ∆(f, y, u) associated to a system of parameters (y, u) and a (u)-standard basis
f , and the polyhedron ∆(J, u) which is the intersection of all ∆(f, y, u) for all choices
of y and f as above (with fixed u). We recall Hironaka’s crucial result from [H3] that
∆(f, y, u) = ∆(J, u) if u is admissible and (f, y, u) is what Hironaka calls well-prepared,
namely normalized (Definition 7.12) and not solvable (Definition 7.13) at all vertices.
Also, there is a certain process of making a given (f, y, u) normalized (by changing f)
and not solvable (by changing y) at finitely many vertices, and at all vertices, if R is
complete. One significance of this result is that it provides a natural way of transforming
a (u)-standard base into a standard base under the assumption that u is admissible.

As explained above, it is important to study permissible blow-ups X ′ → X and near
points x′ ∈ X ′ and x ∈ X. In this situation, to a system (f, y, u) at x we associate
certain new systems (f ′, y′, u′) at x′. A key result proved in section 8 is that if f is a
standard base, then f ′ is a (u′)-standard base. The next key result is that the chosen
u′ is admissible. Hence, by Hironaka’s crucial result mentioned above, we can transform
(f ′, y′, u′) into a system (g′, z′, u′), where g′ is a standard base.

The Key Theorems 5.34 and 5.38 concern certain sequences of permissible blowups, which
arise naturally from the canonical resolution sequence. We call them fundamental se-
quences of B-permissible blowups (Definition 5.33) and fundamental units of permissible

8



blowups (Definition 5.36) and use them as a principal tool. These are sequences of B-
permissible blowups

Xm → . . . → X1 → X0 = X ,

where the first blowup is in a closed point x ∈ X (the initial point), and where the later
blowups are in certain maximal B-permissible centers Ci, which map isomorphically onto
each other, lie above x, and consist of points near to x. For a fundamental sequence there
is still a B-permissible center Cm ⊂ Xm with the same properties; for a fundamental unit
there is none, but only a chosen closed point xm ∈ Xm (the terminal point) which is
near to x. In section 9 we study some first properties of these fundamental sequences. In
particular we show a certain bound for the δ-invariant of the associated polyhedra. This
suffices to show the first Key Theorem 5.34 (dealing with the case ex(X) = 1), but is also
used in section 14.

For the second Key Theorem 5.38 (dealing with the case ex(X) = 2), one needs some more
information on the (2-dimensional) polyhedra, in particular, some additional invariants.
These are introduced in section 10. Then Theorem 5.38 is proved in the next three
sections. It states that there is no infinite sequence

. . . → X2 → X1 → X0

of fundamental units of blow-ups such that the closed initial points and terminal points
match and are isolated in their Hilbert-Samuel strata. After some preparations in section
11, section 12 treats the case where the residue field extension k(x′)/k(x) is trivial (or
separable). This is very much inspired by [H6], which however only treats the special
situation of a hypersurface in a regular threefold over an algebraically closed field and
does not contain proofs for all claims. Then section 13 treats the case where there occur
inseparable residue field extensions k(x′)/k(x). This case was basically treated in [Co1]
but we give a more detailed account and fill gaps in the original proof, with the aid of
the results of section 8, and Giraud’s notion of the ridge [Gi1], [Gi3] (fâıte in French) a
notion which generalizes the directrix.

Finally, in section 14, we show that maximal contact does not exist for surfaces in positive
characteristic p. The counterexample depends on p but then works for any field of that
characteristic.

It will be clear from the above how much we owe to all the earlier work on resolution of
singularities, in particular to the work of Hironaka which gave the general strategy but
also the important tools used in this paper.

Convention: All schemes are assumed to be finite dimensional.
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1 Basic invariants for singularities

In this section we introduce some basic invariants for singularities.

1.1 Invariants of graded rings and homogeneous ideals in polynomial rings

Let k be a field and S = k[X1, . . . , Xn] be a polynomial ring with n variables. Let
Sν ⊂ S be the k-subspace of the homogeneous polynomials of degree n (including 0). Fix
a homogeneous ideal I ⊆ S.

Definition 1.1 For integers i ≥ 1 we define ν i(I) ∈ N ∪ {∞} as the supremum of the
ν ∈ N satisfying the condition that there exist homogeneous ϕ1, . . . , ϕi−1 ∈ I such that

Sµ ∩ I = Sµ∩ < ϕ1, . . . , ϕi−1 > for all µ < ν.

By definition we have ν1(I) ≤ ν2(I) ≤ . . . . We write

ν∗(I) = (ν1(I), ν2(I), . . . , νm(I),∞,∞, . . . )

and call it the ν-invariant of I. We have the following result (cf. [H1] Ch. III §1, Lemma
1).

Lemma 1.2 Let I =< ϕ1, . . . , ϕm > with homogeneous elements ϕi of degree νi such
that:

(i) ϕi 6∈< ϕ1, . . . , ϕi−1 > for all i = 1, . . . , m,

(ii) ν1 ≤ ν2 ≤ · · · ≤ νm.

Then we have

ν i(I) =

{
νi , i ≤ m,
∞ , i > m.

Definition 1.3 Let ϕ = (ϕ1, . . . , ϕm) be a system of homogeneous elements in S and
I ⊂ S be the ideal that it generates.

(1) ϕ is weakly normalized if it satisfies the condition (i) of Lemma 1.2.

(2) ϕ is a standard base of I if it satisfies the conditions (i) and (ii) of Lemma 1.2.

We have the following easy consequence of 1.2.

Corollary 1.4 Let I ⊂ S be a homogeneous ideal and let ψ = (ψ1, . . . , ψj) be a system
of homogeneous elements in I which is weakly normalized.

(1) The following conditions are equivalent:

(ii) deg ψi = ν i(I) for i = 1, . . . , j.

(ii′) For all i = 1, . . . , j, ψi has minimal degree in I such that ψi 6∈< ψ1, . . . , ψi−1 >.

(2) If the conditions of (1) are satisfied, then ψ can be extended to a standard base of I.
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By the lemma a standard base of I and ν∗(I) are obtained as follows:
Put ν1 := min{ν | ∃ ϕ ∈ Sν ∩ I \ {0}} and pick ϕ1 ∈ Sν1 ∩ I − {0}.
Put ν2 := min{ν | ∃ ϕ ∈ (Sν ∩ I) \ (Sν∩ < ϕ1 >) and pick ϕ2 ∈ (Sν2 ∩ I) \ (Sν2∩ < ϕ1 >).
Proceed until we get I =< ϕ1, . . . , ϕm >. Then (ϕ1, . . . , ϕm) is a standard base of I and
ν∗(I) = (ν1, . . . , νm,∞,∞, . . . ).

Remark 1.5 Let ψ1, . . . , ψ` ∈ I be homogeneous generators of I such that ν1 ≤ ν2 ≤
· · · ≤ ν`, where νi = deg(ψi). Then the above considerations show that

(ν1, ν2, . . . , ν`,∞, . . .) ≤ ν∗(I) ,

because a standard base of I is obtained by possibly omitting some of the ψi for i ≥ 2.

In what follows, for a k-vector space (or a k-algebra) V and for a field extension K/k we
write VK = V ⊗k K. From Lemma 1.2 the following is clear.

Lemma 1.6 For the ideal IK ⊆ SK we have

ν∗(I) = ν∗(IK) .

A second invariant is the directrix. By [H1] Ch. II §4, Lemma 10, we have:

Lemma 1.7 Let K/k be a field extension. There is a smallest K-subvector space T (I, K) ⊆
(S1)K = ⊕n

i=1KXi such that

(IK ∩K[T (I, K)]) · SK = IK ,

where K[T (I, K)] = SymK(T (I,K)) ⊆ SymK((S1)K) = SK. In other words T (I, K) ⊂
(S1)K is the minimal K-subspace such that IK is generated by elements in K[T (I, K)].
For K = k we simply write T (I) = T (I, k).

Recall that C(S/I) = Spec(S/I) is called the cone of the graded ring S/I.

Definition 1.8 For any field extension K/k, the closed subscheme

DirK(S/I) = Dir(SK/IK) ⊆ C(SK/IK) = C(S/I)×k K

defined by the surjection SK/IK ³ SK/T (I, K)SK is called the directrix of S/I in C(S/I)
over K. By definition

DirK(S/I) ∼= Spec(SymK((S1)K/T (I, K))) .

We define

e(S/I)K = dim(DirK(S/I)) = dim(S)− dimK(T (I, K)) = n− dimK(T (I, K)) ,

so that DirK(S/I) ∼= Ae(S/I)K

K , and simply write e(S/I) for e(S/I)K with K = k.

11



Remark 1.9 (a) By definition DirK(S/I) is determined by the pair SK ⊇ IK, but indeed
it has an intrinsic definition depending on AK for A = S/I only: Let SA = Symk(A1),
which is a polynomial ring over k. Then the surjection SK → AK factors through the
canonical surjection αA,K : SA,K → AK, and the directrix as above is identified with the
directrix defined via SA,K and ker(αA,K). In this way Dir(AK) is defined for any graded
k-algebra A which is generated by elements in degree 1.
(b) Similarly, for any graded k-algebra A which is generated by A1, we may define its
intrinsic ν-invariant by ν∗(A) = ν∗(ker(αA)), where αA : Symk(A1) ³ A is the canonical
epimorphism. In the situation of definition 1.1 we have

ν∗(I) = (1, . . . , 1, ν1(S/I), ν2(S/I), . . .) ,

with n− t entries of 1 before ν1(S/I), where t = dimk(A1), and ν1(S/I) > 1.
(c) If X is a variable, then obviously ν∗(A[X]) = ν∗(A) and ν∗(I[X]) = ν∗(I) in the
situation of 1.1. On the other hand, DirK(A[X]) ∼= DirK(A) ×K A1

K, i.e., eK(A[X]) =
eK(A) + 1.

Lemma 1.10 Let the assumptions be as in 1.8.

(1) e(S/I)K ≤ dim(S/I).

(2) For field extensions k ⊂ K ⊂ L, we have e(S/I)K ≤ e(S/I)L.

(3) The equality holds if one of the following conditions holds:

(i) L/K is separable.

(ii) e(S/I)K = dim(S/I).

Proof The inequality in (1) is trivial, and (2) follows since T (I, K) ⊗ L ⊆ T (I, L),
This in turn implies claim (3) for condition (ii). Claim (3) for condition (i) is reduced
to the case where L/K is finite Galois with Galois group G. Then, by Hilbert’s theorem
90, for any L-vector space V on which G acts in a semi-linear way the canonical map
V G ⊗K L → V is an isomorphism. This implies that T (I, L)G ⊗K L

∼→T (I, L) and the
claim follows. ¤

Finally we recall the Hilbert function (not to be confused with the Hilbert polynomial)
of a graded algebra. Let N be the set of the natural numbers (including 0) and let NN be
the set of the functions ν : N→ N. We endow NN with the order defined by:

ν ≥ µ ⇔ ν(n) ≥ µ(n) for any n ∈ N.

Definition 1.11 For a finitely generated graded k-algebra A its Hilbert function is the
element of NN defined by

H(0)(A)(n) = H(A)(n) = dimk(An) (n ∈ N).

For an integer t ≥ 1 we define H(t)(A) inductively by:

H(t)(A)(n) =
n∑

i=0

H(t−1)(A)(i).

We note
H(t−1)(A)(n) = H(t)(A)(n)−H(t)(A)(n− 1) ≤ H(t)(n).

12



Remark 1.12 (a) Obviously, for any field extension K/k we have

H(0)(AK) = H(0)(A) .

(b) For a variable X we have

H(t)(A[X]) = H(t+1)(A) .

(c) For any ν ∈ NN and any t ∈ N define ν(t) inductively by ν(t)(n) =
∑n

i=0 ν(t−1)(i).

In a certain sense, the Hilbert-Samuel function measures how far A is away from being a
polynomial ring:

Definition 1.13 Define the function Φ = Φ(0) ∈ NN by Φ(0) = 1 and Φ(n) = 0 for n > 0.
Define Φ(t) for t ∈ N inductively as above, i.e., by Φ(t)(n) =

∑n
i=0 Φ(t−1)(i).

Then one has

Φ(t)(n) = H(0)(k[X1, . . . , Yt])(n) =

(
n + t− 1

n

)
for all n ≥ 0.

and:

Lemma 1.14 Let A be a finitely generated graded algebra of dimension d over a field k,
which is generated by elements in degree one.

(a) Then H(0)(A) ≥ Φ(d), and equality holds if and only if A ∼= k[X1, . . . , Xd].

(b) For a suitable integer m ≥ 1 one has mΦ(d) ≥ H(0).

Proof (a): We may take a base change with an extension field K/k, and therefore
may assume that k is infinite. In this case there is a Noether normalization i : S =
k[Y1, . . . , Yd] ↪→ A such that the elements Y1, . . . , Yd are mapped to A1, the degree one
part of A, see [Ku], Chap. II, Theorem 3.1 d). This means that i is a monomorphism of
graded k-algebras. But then H(0)(A) ≥ H(0)(k[X1, . . . , Xd]) = Φ(d), and equality holds if
and only if i is an isomorphism.

(b): Since A is a finitely generated S-module, it also has finitely many homogenous
generators a1, . . . , am of degrees d1, . . . , dm. This gives a surjective map of graded S-
modules

⊕m
i=1S[−di] ³ A,

where S[m] is S with grading S[m]n = Sn+m, and hence

H(A)(n) ≤
m∑

i=1

Φ(d)(n− di) ≤ mΦ(d)(n) .

¤
At a crucial point in section 5 we shall need the Hilbert polynomial P = P (A) of a graded
k-algebra A. Recall that this is the unique polynomial in Q[T ] with

P (n) = H(A)(n) for n À 0 .

It is known that the degree of P (A) is dim(A)− 1. We shall need the following property
proved in [AP] (Corollary 3.2 and following remarks).
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Lemma 1.15 A polynomial P (T ) ∈ Q[T ] is the Hilbert polynomial of a graded k-algebra
A if and only if
(1.1)

P (T ) =

(
T + a1

a1

)
+

(
T + a2 − 1

a2

)
+ . . . +

(
T + ai − i + 1

ai

)
+ . . . +

(
T + as − s + 1

as

)

for certain integers a1 ≥ a2 ≥ . . . ≥ as ≥ 0 with s ≥ 1. Moreover, one has a1 = deg(P ) =
dim(A)− 1, and the family a(P ) := (a1, . . . , as) is uniquely determined by P .

The equality a1 = dim(A)− 1 follows from the fact that

(
T + ai − i + 1

ai

)
=

(T + ai − i + 1)(T + ai − i) · · · (T − i + 2)

ai!

has degree ai. The set HP of all Hilbert polynomials is totally ordered with respect to
the ordering

(1.2) P (T ) ≥ P ′(T ) ⇐⇒ P (n) ≥ P ′(n) for n À 0 .

We shall need the following description of this ordering.

Lemma 1.16 For two Hilbert polynomials P, P ′ ∈ HP one has P ≥ P ′ if and only if
a(P ) ≥ a(P ′) in the lexicographic ordering (where we formally fill up the shorter family
with entries −∞ at the right until it has the same length as the longer family).

Proof Since P = P ′ ⇐⇒ a(P ) = a(P ′), and since both orderings are total orderings,
it suffices to show that P > P ′ implies a(P ) > a(P ′). Let a(P ) = (a1, . . . , as) and
a(P ′) = (b1, . . . , bt), and assume P > P ′. If deg(P ) > deg(P ′), then a1 > b1 and hence
a(P ) > a(P ′). In general we proceed by induction on min(s, t). If min(s, t) = 1 and
a1 = b1, then we must have t = 1, s > 1 and hence a(P ) > a(P ′). If s, t ≥ 2 and a1 = b1,
then for

P1(T ) = P (T )−
(

T + a1

a1

)
, P ′

1(T ) = P ′(T )−
(

T + a1

a1

)

the polynomials Q(T ) = P1(T + 1) and Q′(T ) = P ′
1(T + 1) are again Hilbert polynomials

by Lemma 1.15, with associated invariants a(Q) = (a2, . . . , as) and a(Q′) = (b2, . . . , bt),
respectively, and P > P ′ implies Q > Q′, so that a(Q) > a(Q′) in the lexicographic
ordering by induction. Together with a1 = b1 this implies the claim for P and P ′.

Lemma 1.16 immediately implies:

Theorem 1.17 In the set HP of all Hilbert polynomials, every strictly descending se-
quence P1 > P2 > P3 > . . . is finite.

Remark 1.18 This has previously been shown for certain subsets of HP , see [AP] Corol-
lary 3.6 and [Sit], with different proofs.
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1.2 Invariants for local rings

For any ring R and any prime ideal p ⊂ R we set

grp(R) =
⊕
n≥0

pn/pn+1,

which is a graded algebra over R/p.

In what follows we assume that R is a noetherian regular local ring with maximal ideal
m and residue field k = R/m. Moreover, assume that R/p is regular. Then we have

grp(R) = SymR/p

(
gr1

p(R)
)
, gr1

p(R) = p/p2.

where SymR/p(M) denotes the symmetric algebra of a free R/p-module M . Concretely, let
(y1, . . . , yr, u1, . . . , ue) be a system of regular parameters for R such that p = (y1, . . . , yr).
Then grp(R) is identified with a polynomial ring over R/p:

grp(R) = (R/p)[Y1, . . . , Yr] where Yi = yi mod p2 (1 ≤ i ≤ r).

Fix an ideal J ⊂ R. In case J ⊂ p we set

grp(R/J) =
⊕
n≥0

(p/J)n/(p/J)n+1,

and define an ideal Inp(J) ⊂ grp(R) by the exact sequence

0 → Inp(J) → grp(R) → grp(R/J) → 0.

Note
Inp(J) =

⊕
n≥0

(J ∩ pn + pn+1)/pn+1.

For f ∈ R and a prime ideal p ⊂ R put

(1.3) vp(f) =

{
max{ν | f ∈ pν} , f 6= 0,

∞ , f = 0

called the order of f at p. For prime ideals p ⊂ q ⊂ R, we have the following semi-
continuity result (cf. [H1] Ch.III §3):

(1.4) vp(f) ≤ vq(f) for ∀f ∈ R.

Define the initial form of f at p as

inp(f) := f mod pvp(f)+1 ∈ pvp(f)/pvp(f)+1 ∈ grp(R).

In case J ⊂ p we have
Inp(J) = {inp(f) | f ∈ J}.

Definition 1.19 (1) A system (f1, . . . , fm) of elements in J is a standard base of J , if

(inm(f1), . . . , inm(fm)) is a standard base of Inm(J) in the polynomial ring grm(R).
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(2) We define ν∗(J,R) as the ν∗-invariant (cf. Definition 1.1) for Inm(J) ⊂ grm(R).

(2) The absolute ν∗-invariant ν∗(O) of a noetherian local ring O with maximal ideal n

is defined as the absolute ν∗-invariant (cf. Remark 1.9 (b)) ν∗(grnO).

It is shown in [H3] (2.21.d) that a standard base (f1, . . . , fm) of J generates J .

Next we define the directrix Dir(O) of any noetherian local ring O. First we introduce
some basic notations.

Let n be the maximal ideal of O, let x be the corresponding closed point of Spec(O), and
let k(x) = O/n be the residue field at x. Define

T (O) = Spec(Symk(n/n2)): the Zariski tangent space of Spec(O) at x,

C(O) = Spec(grn(O)) = C(grn(O)): the (tangent) cone of Spec(O) at x.

We note that dim C(O) = dimO and that the map

Symk(n/n2) ³ grn(O)

gives rise to a closed immersion C(O) ↪→ T (O).

Definition 1.20 Let K/k(x) be a field extension. Then the directrix of O over K,

DirK(O) ⊆ C(O)×k(x) K ⊆ T (O)×k(x) K

is defined as the directrix DirK(grn(O)) ⊆ C(grn(O)) of grn(O) over K (cf. Remark 1.9
(a)). We set

e(O)K = dim(DirK(O))

and simply write e(O) for e(O)K with K = k(x).

Remark 1.21 By definition, for R regular as above and an ideal J ⊂ m we have

DirK(R/J) = Spec(grm(R)K/T (J,K)grm(R)K) ⊆ Spec(grm(R)K/Inm(J)K) = C(R/J)K ,

where T (J,K) = T (Inm(J), K) ⊆ gr1
m(R)K is the smallest K-sub vector space such that

(Inm(J)K ∩K[T (J,K)] · grm(R)K = Inm(J)K ,

i.e., such that Inm(J)K is generated by elements in K[T (J,K)]. Moreover

DirK(R/J) ∼= SymK(gr1
m(R)K/T (J,K)) ⊆ T (R)K .

For K = k we simply write T (J) = T (J, k).

Lemma 1.22 Let the assumptions be as above.

(1) e(R/J)K ≤ dim(R/J).

(2) For field extensions k ⊂ K ⊂ L, we have e(R/J)K ≤ e(R/J)L. The equality holds
if one of the following conditions holds:

(i) L/K is separable.

(ii) e(R/J)K = dim(R/J).

Proof This follows from Lemma 1.10, because dim(R/J) = dim C(R/J). ¤
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Definition 1.23 We define e(R/J) = e(R/J)k for an algebraic closure k of k. By Lemma
1.22 we have e(R/J)K ≤ e(R/J) ≤ dim(R/J) for any algebraic extension K/k.

For later use we note the following immediate consequence of the construction of a stan-
dard base below Corollary 1.4.

Lemma 1.24 Let T = T (J) be as in Lemma 1.7 . There exists a standard base (f1, . . . , fm)
of J such that inm(fi) ∈ k[T ] for for all i.

Finally, we define the Hilbert(-Samuel) functions of a noetherian local ring O with maxi-
mal ideal m and residue field F as those of the associated graded ring:

H
(t)
O (n) = H(t)(grm(O)) .

Explicitly, the Hilbert function is the element of NN defined by

H
(0)
O (n) = dimF (mn/mn+1) (n ∈ N).

For an integer t ≥ 1 we define H
(t)
O inductively by:

H
(t)
O (n) =

n∑
i=0

H
(t−1)
O (i).

In particular, H
(1)
O (n) is the length of the O-moduleO/mn+1 and H

(1)
O is called the Hilbert-

Samuel function of O. The Hilbert function measures how far away O is from being a
regular ring:

Lemma 1.25 Let O be a noetherian local ring of dimension d, and define Φ(t) as in
Definition 1.13. Then H

(0)
O ≥ Φ(d), and equality holds if and only if O is regular.

Proof (see also [Be] Theorem (2) and [Si2], property (4) on p. 46) Since dim(O) =
dim(grmO), where m is the maximal ideal of O, and since O is regular if and only if
grmO ∼= k[X1, . . . , Xd] where k = O/m, this follows from Lemma 1.14.

For later purpose, we note the following facts.

Lemma 1.26 Let the assumptions be as above and let O = O/a be a quotient ring of O.

Then H
(t)
O ≥ H

(t)

O and the equality holds if and only if O = O.

Proof Let m be the maximal ideal of O. The inequality holds since the natural maps
mn+1 → mn+1 are surjective. Assume H

(s)
O = H

(s)

O for some s ≥ 0. By Definition 1.11 it

implies H
(t)
O = H

(t)

O for all t ≥ 0, in particular for t = 1. This implies that the natural maps

πn : O/mn+1 → O/mn+1 are isomorphisms for all n ≥ 0. Noting Ker(πn) ' a/a ∩ mn+1,
we get a ⊂ ∩

n≥0
mn+1 = (0) and hence O = O. ¤
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Lemma 1.27 Let O and O′ be noetherian local rings.

(a) For all non-negative integers a and e one has

dimO ≥ e ⇐⇒ H
(a)
O ≥ Φ(e+a) .

(b) For all non-negative integers a and b one has

H
(a)
O ≥ H

(b)
O′ =⇒ dimO + a ≥ dimO′ + b.

Proof Let d = dimO. (a): If d ≥ e, then we get H
(a)
O ≥ Φ(d+a) ≥ Φ(e+a), by Lemma

1.25. Conversely, assume H
(a)
O ≥ Φ(e+a). Then form Lemma 1.14 we get

mΦ(d+a) ≥ H
(a)
O ≥ Φ(e+a)

for some integer m ≥ 1. If d < e this is a contradiction, because of the asymptotic
behavior of Φ(t). Hence d ≥ e.
For (b) let d′ = dimO′. If H

(a)
O ≥ H

(b)
O′ then

H
(a)
O ≥ H

(b)
O′ ≥ Φ(d′+b)

and by (a) we have d ≥ d′ + b − a. (Note: If d′ + b − a < 0, the statement is empty; if
e = d′ + b− a ≥ 0, then we can apply (a).)

1.3 Invariants for excellent schemes

Let X be an excellent scheme.

Definition 1.28 For any point x ∈ X define

ν∗x(X) = ν∗(OX,x) and Dirx(X) = Dir(OX,x)

and

ex(X) = e(OX,x) = dimκ(x)(Dirx(X)), ex(X) = e(OX,x), ex(X)K = e(OX,x)K ,

where K/κ(x) is a field extension. If X ⊆ Z is a closed subscheme of a (fixed) regular
excellent scheme Z, define

ν∗x(X, Z) = ν∗(Jx,OZ,x) ,

where OX,x = OZ,x/Jx. We also define

IDirx(X) ⊂ grmx
(OZ,x)

to be the ideal defining Dirx(X) ⊂ Tx(Z) = Spec(grmx
(OZ,x)), where mx is the maximal

ideal of OZ,x.

We note that always

Dirx(X) ⊆ Cx(X) ⊆ Tx(X) ( ⊆ Tx(Z) for X ⊂ Z as above ),

where Cx(X) = C(OX,x) is called the tangent cone of X at x and Tx(X) = T (OX,x) is
called the Zariski tangent space of X at x (similarly for Z).
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Lemma 1.29 Let X be an excellent scheme.

(1) Let π : X ′ → X be a morphism and let x′ ∈ X ′ be a point lying over x ∈ X. Assume
that π is quasi-étale at x′ in the sense of Bennett [Be] (1.4), i.e., that OX,x → OX′,x′

is flat and mxOX′,x′ = mx′ where mx ⊂ OX,x and mx′ ⊂ OX′,x′ are the respective
maximal ideals. (In particular, this holds if π is étale.) Then there is a canonical
isomorphism

(1.5) Cx′(X
′) ∼= Cx(X)×k(x) k(x′)

so that ν∗x′(X
′) = ν∗x(X). If k(x′)/k(x) is separable, then

Dirx′(X
′) ∼= Dirx(X)×k(x) k(x′), and hence ex′(X

′) = ex(X).

Consider in addition that there is a cartesian diagram

X ′ i−−−→ Z ′

π

y
yπZ

X
i−−−→ Z

where i and i′ are closed immersions, Z and Z ′ are regular excellent schemes and
πZ is quasi-étale at x′. Then

Tx′(Z) ∼= Tx(Z)×k(x) k(x′) and ν∗x′(X
′, Z ′) = ν∗x(X, Z) .

(2) Let f : X ′ → X be a morphism of finite type. Let x ∈ X and

X̂ = Spec(ÔX,x), X̂ ′ = X ′ ×X X̂ ,

where ÔX,x is the completion of OX,x. Then for any y ∈ X ′ and any ŷ ∈ X̂ ′ lying
over y, there are non-canonical isomorphisms

(1.6) Cŷ(X̂
′) ∼= Cy(X

′)×k(y) Cŷ(X̂
′
y)
∼= Cy(X

′)×k(y) Ad
k(y′) ,

where X̂ ′
y = X̂ ′ ×X′ y is the fibre over y for the morphism π : X̂ ′ → X ′ and

d = dim(OX̂′
y ,ŷ) = codimX̂′

y
(ŷ). Hence

Dirŷ(X̂
′) ∼= Diry(X

′)×k(y) Ad
k(ŷ), eŷ(X̂

′) = ey(X
′) + d and ν∗ŷ(X̂

′) = ν∗y(X
′) .

Assume further that there is a commutative diagram

(1.7)

X ′ i′−−−→ Z ′
y

y
X

i−−−→ Z

where Z ′ → Z is a morphism of finite type of regular schemes and i and i′ are closed
immersions. Denote

Ẑ = Spec(ÔZ,x), Ẑ ′ = Z ′ ×Z Ẑ,

where ÔZ,x is the completion of OZ,x, so that X̂ ′ = X ′ ×Z Ẑ = X ′ ×Z′ Ẑ
′ and it is

a closed subscheme of Ẑ ′. Then Ẑ ′ is regular, and

ν∗y(X
′, Z ′) = ν∗ŷ(X̂

′, Ẑ ′) .
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Proof (1): It suffices to show (1.5). Let (A,mA) → (B, mB) be a flat local morphism of
local noetherian rings, with mAB = mB. Then we have isomorphisms

(1.8) mn
A ⊗A B

∼−→mn
B

for all n ≥ 0. In fact, this holds for n = 0, and, by induction and flatness of B over A,
the injection mn

A ↪→ mn−1
A induces an injection

mn
A ⊗A B ↪→ mn−1

A ⊗A B
∼→mn−1

B ,

whose image is mn
AB = mn

B. From (1.8) we now deduce isomorphisms for all n

(mn
A/mn+1

A )⊗kA
kB
∼= (mn

A/mn+1
A )⊗A B

∼−→mn
B/mn+1

B ,

where kA = A/mA and kB = B/mB, and hence the claim (1.5).
(2): As for (1.6), consider the local rings A = OX′,y with maximal ideal m and residue
field k = A/m, and A′ = OX̂′,ŷ, with maximal ideal m′ and residue field k′ = A′/m′. Since

X is excellent, the morphism OX,x → ÔX,x is flat, with regular fibers, and the same is

true for the local morphism A → A′ since A′ is a localization of A⊗OX,x
ÔX,x. Hence, by

[Si2], Lemma (2.2), the closed subscheme Spec(A′/mA′) ↪→ Spec(A′) is permissible, i.e.
it is regular and grmA′(A

′) is flat over A′/mA′. By [H1] Ch. II, p. 184, Proposition 1, we
get a non-canonical isomorphism

grm′(A
′) ∼= (grmA′(A

′)⊗A′ k
′)⊗k′ grm′/mA′(A

′/mA′) .

On the other hand, by flatness of A′ over A we get canonical isomorphisms

mnA′/mn+1A′ ∼= (mn/mn+1)⊗A A′

for all n. Hence we get an isomorphism grmA′(A
′) ⊗A′ k

′ ∼= grm(A) ⊗A A′ and the above
isomorphism becomes

grm′(A
′) ∼= grm(A)⊗k grm′/mA′(A

′/mA′) ,

which is exactly the first isomorphism in (1.6). Since A′/mA′ = OX̂′
y ,ŷ is regular of

dimension d, we have an ismorphism grm′/mA′(A
′/mA′) ∼= k′[T1, . . . , Td], which gives the

second isomorphism in (1.6).
The statements for the directrix and the ν∗-invariant of X̂ ′ at ŷ now follow from Remark
1.9 (c). Now consider the diagram (1.7). The above, applied to Z ′, gives isomorphisms

Cŷ(Ẑ
′) ∼= Cy(Z

′)×k(y) Cŷ(Ẑ
′
y)
∼= Cy(Z

′)×k(y) Ad
k(y′)

∼= AN+d
k(y′)

where N = dim(OZ′,y), because Z ′ is regular and Ẑ ′
y
∼= X̂ ′

y. Conversely, this implies

that Ẑ ′ is regular at y. The final equality in (2) now follows from the isomorphism
Tŷ(Ẑ

′) ∼= Cŷ(Ẑ
′) and Remark 1.9 (c). ¤

Next we introduce Hilbert-Samuel functions for excellent schemes. Recall that an excellent
scheme X is catenary so that for any irreducible closed subschemes Y ⊂ Z of X, all
maximal chains of irreducible closed subschemes

Y = Y0 ⊂ Y1 ⊂ · · · ⊂ Yr = Z

have the same finite length r denoted by codimZ(Y ). For any irreducible closed sub-
schemes Y ⊂ Z ⊂ W of X we have

codimW (Y ) = codimW (Z) + codimZ(Y ).
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Definition 1.30 Let X be an excellent scheme.

(1) For x ∈ X let I(x) be the set of irreducible components Z of X with x ∈ Z.

(2) Define the function φX : X → N by φX(x) = dim X − ψX(x), where

ψX(x) = min {codimZ(x) | Z ∈ I(x)} .

(3) Define HX : X → NN as follows. For x ∈ X let

HX(x) = H
(φX(x))
OX,x

∈ NN .

(4) For ν ∈ NN we put

X(≥ ν) := {x ∈ X| HX(x) ≥ ν} and X(ν) := {x ∈ X| HX(x) = ν}.

By sending Z to its generic point η, the set I(x) can be identified with the set of generic
points (and hence the set of irreducible components) of the local ring OX,x. Therefore
ψX(x) depends only on OX,x, and φX(x) and HX(x) depend only on dim X and OX,x. We
shall need the following semi-continuity property of φX .

Lemma 1.31 (1) For x, y ∈ X with x ∈ {y} one has I(y) ⊆ I(x) and

φX(y) ≤ φX(x) + codim{y}(x) .

(2) For y ∈ X, there is a non-empty open subset U ⊆ {y} such that

I(x) = I(y) and φX(y) = φX(x) + codim{y}(x)

for all x ∈ U .

Proof (1): The inclusion I(y) ⊆ I(x) is clear, and for Z ∈ I(y) one has and

(1.9) codimZ(x) = codimZ(y) + codim{y}(x) .

Thus ψX(x) ≤ ψX(y) + codim{y}(x), and the result follows.

(2): Let Z1, . . . , Zr be the irreducible components of X which do not contain y. Then we
may take U = {y} ∩ (X \⋃r

i=1 Zi). In fact, if x ∈ U , then I(y) = I(x), and from (1.9)
we get

ψX(x) = ψX(y) + codim{y}(x) .

Now we study the Hilbert-Samuel function HX . The analogue of Lemma 1.14 (a) and
Lemma 1.25 is:

Lemma 1.32 Let d = dim X. Then, for x ∈ X one has HX(x) ≥ Φ(d), and equality
holds if and only if x is a regular point.
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Proof We have

HX(x) = H
(d−ψX(x))
OX,x

≥ Φ(d−ψX(x)+codimX(x)) ≥ Φ(d) .

Here the first inequality follows from Lemma 1.25, and the second inequality holds because
codimX(x) ≥ ψX(x). If (X, x) = Φ(d), then all inequalities are equalities, and hence, again
by Lemma 1.25, x is a regular point. Conversely, if x is regular, then there is only one
irreducible component of X on which x lies, and hence codimX(x) = ψX(x), so that the
second inequality is an equality. Moreover, by Lemma 1.25, the first inequality is an
equality.

Remark 1.33 In particular, X is regular if and only if X(ν) = ∅ for all ν ∈ NN except
for ν = νreg

X , where νreg
X = HX(x) for a regular point x of X which is independent of the

choice of a regular point, viz., equal to Φ(dim X).

We have the following important upper semi-continuity of the Hilbert-Samuel function.

Theorem 1.34 Let X be an excellent scheme.

(1) If x ∈ X is a specialization of y ∈ X, i.e., x ∈ {y}, then HX(x) ≥ HX(y).

(2) For any y ∈ X, there is a dense open subset U of {y} such that HX(x) = HX(y)
for all x ∈ U .

(3) The function HX is upper semi-continuous, i.e., for any ν ∈ NN, X(≥ ν) is closed
in X.

Proof (1): We have

HX(x) = H
(φX(x))
OX,x

≥ H
(φX(x)+codim{y}(x))

OX,y
≥ H

(φX(y))
OX,y

= HX(y) .

Here the first inequality holds by results of Bennett ([Be], Theorem (2)), as improved by
Singh ([Si1], see p. 202, remark after Theorem 1), and the second holds by Lemma 1.31
(1).

(2): First of all, there is a non-empty open set U1 ⊆ {y} such that {y} ⊆ X is permissible
(see 2.1) at each x ∈ U1 ([Be] Ch. 0, p. 41, (5.2)). Then

H
(0)
OX,x

= H
(codim{y}(x))

OX,y

for all x ∈ U1, see [Be] Ch. 0, p. 33, (2.1.2). On the other hand, by Lemma 1.31 (2) there
is a non-empty open subset U2 ⊆ {y} such that φX(y) = φX(x) + codim{y}(x) for x ∈ U2.
Thus, for x ∈ U = U1 ∩ U2 we have

HX(x) = H
(φX(x))
OX,x

= H
(φX(x)+codim{y}(x))

OX,y
= H

(φX(y))
OX,y

= HX(y) .

By the following lemma, (3) is equivalent to the conjunction of (1) and (3).
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Let X be a noetherian topological space which is Zariski, i.e., in which every closed
irreducible subset admits a generic point. (For example, let X be a noetherian scheme.)
Recall that a map H : X −→ G into an ordered abelian group (G,≤) is called upper
semi-continuous if the set

X≥ν := XH
≥ν := {x ∈ X | H(x) ≥ ν}

is closed for all ν ∈ G. We note that this property is compatible with restriction to any
topological subspace. In particular, if X is a scheme, H is also upper semi-continuous
after restricting it to a subscheme or an arbitrary localization.

Lemma 1.35 The map H is upper semi-continuous if and only if the following holds.

(1) If x, y ∈ X with x ∈ {y}, then H(x) ≥ H(y).

(2) For all y ∈ X there is a dense open subset U ⊂ {y} such that H(x) = H(y) for all
x ∈ U .

Proof According to [Be], Ch. III, Lemma (1.1), X≥ν is closed if and only if the following
conditions hold.

(1’) If y ∈ X≥ν , then every x ∈ {y} is in X≥ν .

(2’) If y ∈ X≥ν , then (X −X≥ν) ∩ {y} is open in {y}.
Obviously, (1) above is equivalent to (1’) for all ν. Now assume (1) and (2), and let
ν ∈ G. By induction on dim(X) (which is finite by our assumption), we prove that X≥ν

is closed. The case of dim(X) = 0 is trivial. For higher dimension it suffices to show
that the intersection of X≥ν with every irreducible component is closed. Thus we may
assume that X is irreducible. By (2) there is then a dense open subset U ⊂ X such that
H(x) = H(η) for the generic point η of X. If H(η) = ν, then X≥ν = X by (1). Otherwise
we have U ⊂ X −X≥ν , i.e., X≥ν ⊂ A = X − U , which is a closed subset of X of strictly
smaller dimension. By induction, X≥ν is closed in A, hence in X. Conversely, assume
that X≥ν is closed for all ν. Then (1) follows immediately. Moreover, H only takes finitely
many values ν1, . . . , νn on X. Now let y ∈ X, and let HX(y) = ν. Then

Xν = X≥ν − ∪µ>ν Xµ = X≥ν − ∪µ>ν X≥µ

is open in X≥ν which shows property (2).

Definition 1.36 Let ΣX := {HX(x)| x ∈ X} ⊂ NN. By noetherian induction Theorem
1.34 (3) implies ΣX is finite. We define Σmax

X to be the set of of the maximal elements in
ΣX . The set

(1.10) Xmax = ∪
ν∈Σmax

X

X(ν)

is called the Hilbert-Samuel locus of X.
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By definition X(ν) 6= ∅ if and only if ν ∈ ΣX . By Theorem 1.34, X(ν) is locally closed in
X and its closure in X is contained in

X(≥ ν) = ∪
µ≥ν

X(µ).

In particular X(ν) is closed in X if ν ∈ Σmax
X , and Xmax is closed. Note that the sum in

(1.10) is a disjoint sum.

Lemma 1.37 Let X be an excellent scheme.

(1) Let π : X ′ → X be a quasi-finite morphism which is quasi-étale in the sense of
Lemma 1.29 (1). Then for any x ∈ X and any x′ ∈ X ′ above x we have

(1.11) H
(0)
OX′,x′

= H
(0)
OX,x

and ψX(x) = ψX′(x′) .

In particular, if dim X ′ = dim X, then HX′(x′) = HX(x) for x and x′ as above, and
hence X ′(ν) = π−1(X(ν)) for all ν ∈ NN.

(2) Let f : X ′ → X be a morphism of finite type. Let x ∈ X and put

X̂ = Spec(ÔX,x), π : X̂ ′ = X ′ ×X X̂ → X ′ ,

where ÔX,x is the completion of OX,x. Then for any y ∈ X ′ and any ŷ ∈ X̂ ′ lying
over y we have

(1.12) H
(0)
OX̂′,ŷ

= H
(d)
OX′,x′

and ψX̂′(ŷ) = ψX′(y) + d ,

where
d = codimX̂′

y
(ŷ), X̂ ′

y = X̂ ′ ×X′ y.

In particular, if dim(X̂ ′) = dim(X ′), then HX̂′(ŷ) = HX′(y), and X̂ ′(ν) = π−1(X ′(ν))
for all ν ∈ NN.

For the proof we shall use the following two lemmas.

Lemma 1.38 Let f : W → Z be a flat morphism of schemes and let w ∈ W and
z = f(w) ∈ Z. Then we have

codimW (w) = codimZ(z) + dimOWz ,w, Wz = W ×Z z.

In particular w is a generic point of W if and only if f(w) is a generic point of Z and
codimWz(w) = 0.

Proof See [EGA IV], 2, (6.1.2).

Lemma 1.39 f : W → Z be a quasi-finite morphism of excellent schemes and let w ∈ W
and z = f(w) ∈ Z. Assume that W and Z are irreducible. Then we have

codimW (w) = codimZ(z).

Proof See [EGA IV], 2, (5.6.5).
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Proof of Lemma 1.37 (1): It suffices to show (1.11). The other claims follow from
it. The first equality in (1.11) follows from Lemma 1.29 (1.5). We now show the second
equality. By Lemma 1.38 a point of X ′ is generic if and only if its image in X is generic.
If x′ lies on an irreducible component Z ′ = {η′} of X ′, then x lies on the irreducible
component Z = {f(η′)} of X, and Lemma 1.39 implies codimZ′(x

′) = codimZ(x). Thus it
suffices to show that if x lies on an irreducible component W of X, there is an irreducible
component of X ′ which contains x′ and dominates W . Let W ′ = {η′} be an irreducible
component of π−1(W ) which contains x′ (note x′ ∈ π−1(W ) by definition). Since X ′ ×X

W → W is quasi-finite and flat again, Lemma 1.38 implies that g(η′) = η is the generic
point of W , and this implies in turn that η′ is a generic point of X ′. This shows the
desired claim. ¤
(2): The first equality in (1.12) follows from Lemma 1.29 (1.6). We show the second
equality. We may assume that X ′ is reduced. Since π : X̂ ′ → X ′ is flat, Lemma 1.38
implies that if η′ is a generic point of X̂ ′ with ŷ ∈ {η′}, then η = π(η′) is a generic point
of X ′ with y ∈ {η}. Moreover, if ξ is a generic point of X with y ∈ Z := {ξ}, then there
exists a generic point ξ′ of X̂ ′ such that ŷ ∈ {ξ′}. Indeed one can take a generic point ξ′

of π−1(Z) such that ŷ ∈ {ξ′}. Then Lemma 1.38 applied to πZ : X̂ ′ ×X′ Z → Z, which is
flat, implies that π(ξ′) = ξ and ξ′ is of codimension 0 in π−1

Z (ξ) = π−1(ξ) and hence ξ′ is

a generic point of X̂ ′. This shows that we may consider the case where X ′ is irreducible
and are reduced to show the following.

Claim 1.40 Assume X ′ is integral. Let W be an irreducible component of X̂ ′ containing
ŷ. Then

codimW (ŷ) = codimX′(y) + d, d = codimX̂′
y
(ŷ).

Since the question is local at y, we may assume X = Spec(A) and X ′ = Spec(B), where
A = OX,x and B is an integral domain of finite type over A. Moreover we may further
assume that f : X ′ → X is dominant and A is an integral local ring, by replacing X with
the closure W of f(X) with reduced subscheme structure. In fact, W ↪→ X is a closed
immersion, and W ×X X̂ identifies with the completion of W = Spec(OW,x). We now
proceed in three steps.

Step 1: Assume that A is normal, and K is algebraically closed in L, the fraction field of
B. In this case we claim that X̂ ′ is irreducible. Then Lemma 1.38 implies

codimX̂′(ŷ) = codimX′(y) + d

which shows Claim 1.40.

To show the above claim, first note that the completion Â is integral by [EGA IV], 2,(7.8.3)
(vii). Consider the cartesian diagram

X̂ ′ f̂−−−→ X̂

π

y π0

y
X ′ f−−−→ X

and let ηX ∈ X, ηX̂ ∈ X̂ and ηX′ ∈ X ′ be the generic points. If η is a generic point of X̂ ′,
then by Lemma 1.38 it maps to ηX′ and is a generic point of the fiber π−1(ηX′). Since
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the latter is the base extension π−1
0 (ηX) ×K L, it follows that f̂(η) = ηX̂ . But the fibre

f̂−1(ηX̂) is the base change f−1(ηX) ×K κ(ηX̂), which is irreducible, since the K-variety
X ′

K = f−1(ηX) is geometrically irreducible (by the assumption that K is algebraically
closed in its function field L). This implies that X̂ ′ has only one generic point, i.e., is
irreducible.

Step 2: Now assume that X ′ is normal. In this case we claim that X̂ ′ =
∐r

i=1 X̂ ′
i,

where X̂ ′
1, . . . , X̂

′
r are the irreducible components of X̂ ′, and that X̂ ′

i → X ′ is flat for all
i = 1, . . . , r. Then there exists the unique i such that ŷ ∈ X̂ ′

i and Lemma 1.38 implies

codimX̂′
i
(ŷ) = codimX′(y) + codimX̂′

i,y
(ŷ) = codimX′(y) + d ,

where X̂ ′
i,y = X̂ ′

i ×X′ y and the second equality holds since the local rings at ŷ of X̂ ′
i,y and

X̂ ′
y are the same. This shows Claim 1.40.

To show the above claim, let K1 be the algebraic closure of K = Frac(A) in L = Frac(B),
the function field of X ′, and let A1 be the integral closure of A in K1, which is a normal
semi-local ring, finite over A. Then we get a commutative diagram with cartesian squares

X̂ ′ ĝ−−−→ X̂1
ĥ−−−→ X̂

π

y π1

y π0

y
X ′ g−−−→ X1

h−−−→ X

in which X1 = Spec(A1) and the lower line factors f . Furthermore

X̂1 = Spec(A1 ⊗A Â) =
r∐

i=1

X̂1,i

is the completion of A1 (with respect to the Jacobson ideal) and decomposes into a product

as indicated. Here X̂1,i = Spec((̂A1)mi
) for the completion (̂A1)mi

of the localization (A1)mi

of A1 at mi, where m1, . . . , mr are the maximal ideals of A1 (which are the ideals lying
over the maximal ideal of A). Thus the scheme X̂ ′ decomposes accordingly: X̂ ′ =

∐
i X̂ ′

i,
and we get a commutative diagram

X̂ ′ =
∐r

i=1 X̂ ′
i

ĝ−−−→ X̂1 =
∐r

i=1 X̂1,i
ĥ−−−→ X̂y

y π0

y
∐r

i=1 X ′
i −−−→ ∐r

i=1 X1,i −−−→ X

ρ′
y ρ

y id

y
X ′ g−−−→ X1

h−−−→ X

where X1,i = Spec((A1)mi
) and the two left squares are cartesian. By Step 1 X̂ ′

i is

irreducible and X̂ ′
i → X ′ is flat since it is the composite of the flat morphisms X̂ ′

i → X ′
i

and and X ′
i → X ′.
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Step 3: Now consider the general case (still X ′ and X affine and integral, and f dominant).
Let X ′′ be the normalization of X ′, and consider the diagram with cartesian squares

X̂ ′′ ĝ−−−→ X̂ ′ f̂−−−→ X̂

π′
y π

y π0

y
X ′′ g−−−→ X ′ f−−−→ X

in which the vertical morphisms are flat. The morphism g is finite and surjective, and so
is its base change ĝ. We claim that a point η′′ ∈ X̂ ′′ is generic if and only if η′ = ĝ(η′′)
is a generic point of X̂ ′. Indeed, by Lemma 1.38, η′′ is generic if and only if it maps to
the generic point ηX′′ of X ′′ and is of codimension zero in the fibre (π′)−1(ηX′′). Since
the fibres over ηX′′ and ηX′ are the same, this is the case if and only if η′ satisfies the
corresponding properties for π, i.e., if η′ is a generic point of X̂ ′. Now let W be an
irreducible component of X̂ ′ containing ŷ. By the last claim together with the surjectivity
of ĝ, there is an irreducible component W ′ of X̂ ′′ dominating W . Since ĝ is finite, it is a
closed map, and so we have even ĝ(W ′) = W . Thus there is a point ẑ ∈ W ′ with ĝ(ẑ) = ŷ.
If z = π′(ẑ), then g(z) = y and

(1.13) codimX̂′′
z
(ẑ) = codimX̂′

y
(ŷ) = d ,

where X̂ ′′
z = X̂ ′′ ×X′′ z = X̂ ×X z = X̂ ′

y ×y z. We now conclude

codimW (ŷ) = codimW ′(ẑ) = codimX′′(z) + d = codimX′(y) + d ,

where the first (resp. the third) equality follows from Lemma 1.39 applied to the finite
morphism W ′ → W (resp. X ′′ → X ′) and the second equality follows from (1.13) and
Step 2 noting that X ′′ is normal. This shows Claim 1.40 and the proof of Lemma 1.37 is
complete.

Remark 1.41 Bennett [Be] defined global Hilbert-Samuel functions by H
(i)
X,x = H

(i+d(x))
OX,x

,

where d(x) = dim({x}), and showed that these functions have good properties for so-
called weakly biequidimensional excellent schemes. By looking at the generic points and
the closed points one easily sees that this function coincides with our function HX(x) if
and only if X is biequidimensional.
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2 Permissible blow-ups

Now we review some fundamental results on the behavior of the ν∗- and e-invariants under
permissible blow-ups.

Let X be an excellent scheme and let D ⊂ X be a closed reduced subscheme. Let ID ⊂ OX

the ideal sheaf of D in X and OD = OX/ID. Put

grID
(OX) =

⊕
t≥0

I t
D/I t+1

D .

Definition 2.1 Assume that no irreducible component of X is contained in D.

(1) X is normally flat along D at x ∈ D if grID
(OX) ⊗OD

OD,x is a flat OD,x-module.
X is normally flat along D if X is normally flat along D at all points of D.

(2) D ⊂ X is permissible at x ∈ D if D is regular at x, and X is normally flat along
D at x. D ⊂ X is permissible if D is permissible at all points of D.

(3) The blowup πD : B`D(X) → X in a permissible center D ⊂ X, is called a permissible
blowup.

For a closed subscheme D ⊂ X, the normal cone of D ⊂ X is defined as:

CD(X) = Spec(grID
(OX)) → D.

Theorem 2.2 Let the assumption be as in Definition 2.1.

(1) There is a dense open subset U ⊂ D such that X is normally flat along D at all
x ∈ U .

(2) The following conditions are equivalent:

(i) X is normally flat along D at x ∈ D.

(ii) Tx(D) ⊂ Dirx(X) and the natural map Cx(X) → CD(X) ×D x induces an
isomorphism Cx(X)/Tx(D)

∼→ CD(X) ×D x, where Tx(D) acts on Cx(X) by
the addition in Tx(X).

Assume that in addition that X is a closed subscheme of a regular excellent scheme
Z. Let x ∈ D and set R = OZ,x with the maximal ideal m and k = R/m. Let J ⊂ R
(resp. p ⊂ R) be the ideal defining X ⊂ Z (resp. D ⊂ Z). Then the following
conditions are equivalent to the conditions (i) and (ii) above.

(iii) Let u : grp(R)⊗R/p k → grm(R) be the natural map. Then Inm(J) is generated
in grm(R) by u(Inp(J)).

(iv) There exists a standard base f = (f1, . . . , fm) of J such that vm(fi) = vp(fi)
for all i = 1, . . . ,m (cf. (1.3)) .
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Theorem 2.2(1) follows from [H1] Ch. I Theorem 1 on page 188 and (2) from [Gi1], II §2,
Theorem 2.2 and 2.2.3 on page II-13 to II-15.

There is a numerical criterion for normal flatness due to Bennett, which we carry over to
our setting: Let the assumption be as in the beginning of this section. Let HX(x) be as
in Definition 1.30.

Theorem 2.3 Assume that D is regular. Let x ∈ D, and let y be the generic point of the
component of D which contains x. Then the following conditions are equivalent.

(1) X is normally flat along D at x.

(2) H
(0)
OX,x

= H
(codimY (x))
OX,y

, where Y = {y}, the closure of y in X.

(3) HX(x) = HX(y).

Proof The equivalence of (1) and (2) was proved by Bennett ([Be], Theorem (3)). The
rest is a special case of the following lemma.

Lemma 2.4 Let X be an excellent scheme, and let x, y ∈ X with x ∈ {y}. then the
following are equivalent.

(1) H
(0)
OX,x

= H
(codim{y}(x))

OX,y
.

(2) HX(x) = HX(y).

If these conditions hold, then I(x) = I(y) and ψX(x) = ψX(y) + codimY (x).

Proof By the definition of the considered functions, for the equivalence of (1) and (2)
it suffices to show that either of (1) and (2) implies

(2.1) φX(y) = φX(x) + codimY (x) ,

where Y = {y}. Assume (2). By Lemma 1.27 we have

dimOX,x + φX(x) = dimOX,y + φX(y).

On the other hand,

dimOX,x = codimX(x) ≥ codimY (x) + codimX(y) = codimY (x) + dimOX,y .

Thus we get

φX(y) = dimOX,x + φX(x)− dimOX,y ≥ φX(x) + codimY (x) ,

which implies (2.1) by Lemma 1.31.

Next assume (1). Let O = OX,x and let p ⊂ O be the prime ideal corresponding to y. It
suffices to show that p contains all minimal prime ideals of O. In fact, this means that
y is contained in all irreducible components of X which contain x, i.e., that I(y) = I(x).
Since, for any irreducible Z ∈ I(y) we have

codimZ(x) = codimZ(y) + codimY (x) ,
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we deduce the equality ψX(x) = ψX(y) + codimY (x) and hence (2.1). At the same time
we have proved the last claims of the lemma. As for the claim on O and p let

(0) = P1 ∩ . . . ∩Pr

be a reduced primary decomposition of the zero ideal of O, and let pi = Rad(Pi) be
the prime ideal associated to Pi. Then the set {p1, . . . , pr} contains all minimal prime
ideals of O, and it suffices to show that p contains all ideals Pi (Note that an ideal a is
contained in p if and only if Rad(a) is contained in p). Assume the contrary. We may
assume P1 * p. Put O′ = O/Q with Q = P2 ∩ · · · ∩ Pr and let Op (resp. O′

p) be the
localization of O (resp. O′) at p (resp. pO′). Then Op = O′

p and O/p = O′/pO′ and

H
(0)
O ≥ H

(0)
O′ ≥ H

(d)

O′p = H
(d)
Op

,

where d = codimY (x) = dimO/p = dimO′/pO′. The first inequality follows from Lemma

1.26 and the second inequality follows from [Be], Theorem (2). Hence (2) implies H
(1)
O =

H
(1)
O′ . By Lemma 1.26 this implies O = O′ so that Q = 0, contradicting the assumption

that the primary decomposition is reduced. ¤
The above criterion is complemented by the following observation.

Lemma 2.5 Let X be a connected excellent scheme. If there is an irreducible component
Z ⊆ X such that HX(x) = HX(y) for all x, y ∈ Z (i.e., Z ⊆ X(ν) for some ν ∈ NN),
then Z = X.

Proof We have to show that X is irreducible. Assume not. Then there exists an x ∈ X
which is contained in two different irreducible components. Let O = OX,x be the local
ring of X at x, let

(2.2) < 0 > = P1 ∩ . . . ∩Pr

be a reduced primary decomposition of the zero ideal of O, and let pi = Rad(Pi) be the
prime ideal associated to Pi. By assumption we have r 6= 1. Then there is an i such that
the trace of Z in O is given by pi. Let ηi ∈ Spec(O/Pi) ⊂ Spec(O) ⊂ X be the generic
point of Z (corresponding to pi). By assumption we have

H
(d)
OX,ηi

= HX(ηi) = HX(x) = H
(d−ψX(x))
O

where d = dim X, because ψX(ηi) = 0. On the other hand, we have

(2.3) H
(d)
(O/Pi)pi

≤ H
(d−c)
O/Pi

≤ H
(d−c)
O ≤ H

(d−ψX(x))
O ,

where c := dim(O/Pi) = dim(O/pi) = codim{ηi}(x) = codimZ(x). Here the first inequal-

ity holds by the results of Bennett/Singh recalled in the proof of Theorem 1.34 (1), the
second inequality follows from Lemma 1.26, and the last inequality holds since ψX(x) ≤ c.
Now, since pi is a minimal prime ideal and (2.2) is reduced, we have an isomorphism

OX,ηi
= Opi

∼= (O/Pi)pi
.

Therefore we have equalities in (2.3). By the other direction of Lemma 1.26 we conclude
that O = O/Pi, i.e., Pi = 0, which is a contradiction if r 6= 1.¤

We now prove a semi-continuity property for ex(X), the dimension of the directrix at x.
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Theorem 2.6 Let X be an excellent scheme, and let x, y ∈ X such that D = {y} is
permissible and x ∈ D. Then

ey(X) ≤ ex(X)− dim(OD,y) .

The question only depends on the local ring OX,x, and by Lemma 1.29 (2) we may
assume that we consider the spectrum of a complete local ring and the closed point x
in it. Moreover, by the structure theory of complete noetherian rings every such ring is
a quotient of a regular complete (hence excellent) local ring. Therefore Theorem 2.6 is
implied by the following result.

Theorem 2.7 Let R be an excellent regular local ring with maximal ideal m. Let J ⊂ R
be an ideal. Let p ⊂ R be a prime ideal such that J ⊂ p and that Spec(R/p) ⊂ Spec(R/J)
is permissible. Let Rp be the localization of R at p and Jp = JRp. Then

e(Rp/Jp) ≤ e(R/J)− dim(R/p).

Proof Set A = R/p and let K be the quotient field of A. Set MK = M ⊗A K for an
A-module M . By definition there exists a K-subspace V = IDir(Rp/Jp) ⊂ gr1

p(R)K of
dimension s such that dimK(V ) = dim(Rp)− e(Rp/Jp) and

(2.4) Inp(J)K = (K[V ] ∩ Inp(J)K) · grp(R)K .

Lemma 2.8 Assume that there exist free A-modules T, S ⊂ gr1
p(R) such that gr1

p(R) =
T ⊕ S and V = TK. Let u : grp(R) ⊗R/p k → grm(R) be the natural map. Then u(T ) ⊃
IDir(R/J) ∩ gr1

m(R).

Note that the assumption of the lemma is satisfied if dim(A) = 1, by the theory of
elementary divisors. Theorem 2.6 is a consequence of the conclusion of Lemma 2.8 by
noting

dimk(u(T )) = dimk(T ⊗A k) = dimK(V ) = dim(Rp)− e(Rp/Jp)

so that the lemma finishes the proof of the theorem in case dim(R/p) = 1.

We show Lemma 2.8. The assumption of the lemma implies

(2.5) grp(R) = SymA(gr1
p(R)) = A[T ]⊗A A[S],

where A[T ] = SymA(T ) (resp. A[S] = SymA(S)) is the sub A-algebra of grp(R) generated
by T (resp. S).

Claim 2.9
Inp(J) = (A[T ] ∩ Inp(J)) · grp(R).

By Theorem 2.2(2)(iii) the claim implies that Inm(J) is generated by u(A[T ]) ∩ Inm(J),
which implies Lemma 2.8. Thus it suffices to show the claim. Note

(2.6) (K[V ] ∩ Inp(J)K) ∩ grp(R) = (A[T ] ∩ Inp(J))K ∩ grp(R) = A[T ] ∩ Inp(J).

Indeed (2.5) implies K[V ]∩ grp(R) = A[T ] and the flatness of grp(R/J) = grp(R)/Inp(J)
implies Inp(J)K ∩ grp(R) = Inp(J).
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Take any φ ∈ Inp(J). By (2.4) and (2.6) there exists c ∈ A such that

cφ =
∑

1≤i≤m

aiψi, ψi ∈ A[T ] ∩ Inp(J), ai ∈ grp(R),

Choosing a basis Z1, . . . , Zr of the A-module S, (2.5) allows us to identify grp(R) with
the polynomial ring A[T ][Z] = A[T ][Z1, . . . , Zr] over A[T ]. Then, expanding

φ =
∑

B∈Zr
≥0

ZBφB, ai =
∑

B∈Zr
≥0

ZBai,B, with φB ∈ A[T ], ai,B ∈ A[T ],

we get

cφB =
∑

1≤i≤m

ai,Bψi for any B ∈ Zr
≥0.

Since
∑

1≤i≤m

ai,Bψi ∈ A[T ] ∩ Inp(J), this implies φB ∈ A[T ] ∩ Inp(J) by (2.6) so that

φ ∈ (A[T ] ∩ Inp(J)) · grp(R). This completes the proof of the claim.

To finish the proof of Theorem 2.6, it suffices to reduce it to the case dim(R/p) = 1 as
remarked below Lemma 2.8. Assume dim(R/p) > 1 and take a prime ideal q ⊃ p such
that R/q is regular of dimension 1. Let Rq be the localization of R at q and Jq = JRq.
Noting

grpRq
(Rq/Jq) ' grp(R/J)⊗R/p Rq/pRq,

the assumption implies that Spec(Rq/pRq) ⊂ Spec(Rq/JRq) is permissible. By the in-
duction on dim(R), we have

e(Rp/Jp) ≤ e(Rq/Jq)− dim(Rq/pRq) = e(Rq/Jq)− (dim(R/p)− 1).

Hence we are reduced to show

e(Rq/Jq) ≤ e(R/J)− dim(R/q) = e(Rq/Jq) ≤ e(R/J)− 1.

This completes the proof of Theorem 2.6.

Bennett and Hironaka proved results about the behavior of Hilbert-Samuel functions in
permissible blow-ups which are fundamental in resolution of singularities. We recall these
results (as well as some improvements by Singh) and carry them over to our setting.

Theorem 2.10 Let D be a permissible closed subscheme of an excellent scheme X, and
let

πX : X ′ = B`D(X) → X and

be the blowup with center D. Take any points x ∈ D and x′ ∈ π−1
X (x) and let δ = δx′/x :=

trdegκ(x)(k(x′)). Then:

(1) H
(δ)
OX′,x′

≤ H
(0)
OX,x

and φX′(x′) ≤ φX(x) + δ and HX′(x′) ≤ HX(x).

(2) HX′(x′) = HX(x) ⇔ H
(δ)
OX′,x′

= H
(0)
OX,x

.
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(3) If the equalities in (2) hold, then φX′(x′) = φX(x)+ δ, the morphism OX,x → OX′,x′

is injective, and I(x′) = {Z ′ | Z ∈ I(x)} where Z ′ denotes the strict transform of
Z ∈ I(x).

(4) If the equalities in (2) hold, then, for any field extension K/κ(x′) one has

ex′(X
′)K ≤ ex(X)K − δx′/x.

Assume in addition that X ↪→ Z is a closed immersion into a regular excellent scheme
Z, and let

πZ : Z ′ = B`D(Z) → Z

be the blowup with center D. Then:

(5) ν∗x′(X
′, Z ′) ≤ ν∗x(X, Z) in the lexicographic order.

(6) H
(δ)
OX′,x′

= H
(0)
OX,x

⇔ ν∗x′(X
′, Z ′) = ν∗x(X, Z).

Proof In a slightly weaker form, viz., H
(1+δ)
OX′,x′

≤ H
(1)
OX,x

, the first inequality in (1) was

proved by Bennett ([Be] Theorem (2)), and Hironaka gave a simplified proof ([H4] Theo-
rem I). In the stronger form above it was proved by Singh ([Si1], Remark after Theorem
1). For the second inequality, since dim(X) = dim(X ′), it suffices to show

(2.7) ψX(x) ≤ ψX′(x′) + δ.

Let Y1, . . . , Yr be the irreducible components of X and let Y ′
i be the strict transform of Yi

under πX . Then Y ′
1 , . . . , Y

′
r are the irreducible components of X ′. If x′ ∈ Y ′

i , then x ∈ Yi

and EGAIV (5.6.1) implies (note that OYi,x is universally catenary since Yi is excellent)

(2.8) codimYi
(x) = codimY ′i (x

′) + δ.

(2.7) follows immediately from this.

The last inequality in (1) now follows:

(2.9) HX′(x′) = H
(φX′ (x

′))
OX′,x′

≤ H
(φX(x)+δ)
OX′,x′

≤ H
(φX(x))
OX,x

= HX(x).

Claims (5) and (6) were proved by Hironaka in [H4] Theorems II and III, hence it remains
to show (2), (3) and (4).
As for (2), assume HX′(x′) = HX(x), i.e., that equality holds everywhere in (2.9). To

show H
(δ)
OX′,x′

= H
(0)
OX,x

, it suffices to show that

(2.10) φX′(x′) = φX(x) + δ .

Let d = dim(OX,x) and d′ = dim(OX′,x′). By Lemma 1.27(b) the assumption implies

(2.11) d′ + φX′(x′) = d + φX(x) .

On the other hand, by Lemma 1.27(b), the inequality H
(δ)
OX′,x′

≤ H
(0)
OX,x

from (1) implies

(2.12) d′ + δ ≤ d .

From (2.11) and (2.12) we deduce φX(x) + δ ≤ φX′(x′) , which implies (2.10), in view of
(1).
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Conversely assume H
(δ)
OX′,x′

= H
(0)
OX,x

. To show HX′(x′) = HX(x), it again suffices to show

(2.10). We have to show

(2.13) ψX(x) = ψX′(x′) + δ .

In view of (2.8) and with the notations there, it suffices to show that x′ ∈ Y ′
i if x ∈ Yi,

i.e., the third claim of (3). For this, by the lemma below, it suffices to show the injectivity
of O = OX,x → OX′,x′ = O′, i.e., the second claim of (3).

Lemma 2.11 Let f : A → B be the homomorphisms of noetherian rings. Assume that
there is a minimal prime ideal of A, which does lies in the image of Spec(B) → Spec(A).
Then f is not injective.

Proof Let (0) = P1 ∩ . . . ∩ Pr be a primary decomposition of the zero ideal in B, and
let pi = Rad(Pi), which is a prime ideal. Assume A → B is injective. Then, with
Qi = Pi∩A, (0) = Q1,∩ . . .∩Qr is a primary decomposition in A. Therefore {q, . . . , qr},
with qi = Rad(Qi) = pi∩A, is the set of all associated prime ideals of A and hence contains
all minimal prime ideals of A, see [Ku] VI Theorems 2.18 and 2.9. This contradicts the
assumption.

Before we go on, we note the following consequence of Lemmas 1.29 and 1.37: For all
claims of Theorem 2.10, we may, via base change, assume that X = Spec(OX,x), and that
the local ring OX,x is complete. This also holds for the injectivity of O → O′, which is
obvious for the first base change, and follows for the second base change, because it is
faithfully flat, and the considered local rings are reduced. Therefore we may assume that
OX,x is a quotient of a regular excellent local ring R, and that X is embedded in a regular
excellent scheme Z. We will assume this in the following.

Now we use the results of Hironaka in [H4]. First consider the case k(x′) = k(x), where δ =
0. Let p ⊂ O = OX,x be the prime ideal corresponding to D, let A = grp(OX,x)⊗O/p k(x),
and let F = π−1

X (x) ⊂ X ′ be the scheme theoretic fibre of πX : X ′ → X over x. Then
F = Proj(A), and by [H4] (4.1) we have inequalities

(2.14) H
(1+δ)
OX′,x′

≤ H
(2+δ+s)
OF,x′

≤ H
(1+s)
CX,D,x

= H
(1)
OX,x

,

where s = dimOD,x and CX,D,x = Spec(A). By our assumption, these are all equalities.
Moreover, if O = R/J for a regular excellent local ring R with maximal ideal m, then
there is a system of regular parameters (x0, . . . , xr, y1, . . . , ys) of R such that the ideal
P of D in R is generated by x0, . . . , xr. If X0, . . . , Xr, Y1, . . . , Ys are the initial forms of
x0, . . . , xr, y1, . . . , ys (with respect to m), then the fiber E over x in the blowup Z ′ of Z =
Spec(R) in the center D is isomorphic to Proj(k[X.]) for k = k(x) and the polynomial ring
k[X.] = k[X0, . . . , Xr], and there is a homogeneous ideal I ⊂ k[X.] such that A = k[X.]/I
and F ⊂ E identifies with the canonical immersion Proj(k[X.]/I) ⊂ Proj(k[X.]). We may
assume that x′ ∈ F ⊂ E lies in the standard open subset D+(X0) ⊂ Proj(k[X.]) = E. If
furthermore k(x′) = k(x) = k as we assume, then δ = 0, and by equality in the middle of
(2.14) and the proof of lemma 8 in [H4] there is a graded k-algebra B and an isomorphism
of graded k[X0]-algebras A ∼= B[X0].

On the other hand, let n be the maximal ideal of O, and let z1, . . . , zs ∈ n be elements
whose images Z1, . . . , Zs ∈ n/n2 form a basis of n/p + n2. Then one has an isomorphism

34



of graded algebras
A[Z1, . . . , Zs] ∼= grn(O)

induced by the canonical map A → grn(O), because p ⊂ O is permissible ([H1] II 1.
Proposition 1). This shows that the image of X0 in n/n2, is not zero and not a zero
divisor in grn(O). Therefore the image of x0 ∈ R in O is not zero and not a zero divisor
in O.

Now we claim that every element in the kernel of O → O′ is annihilated by a power of
x0, which then gives a contradiction if this kernel is non-zero. Let R′ = OZ′,x′ be the
monoidal transform of R with center P corresponding to x′ ∈ Z ′, where p = P/J , and let
J ′ ⊂ R′ be the strict transform of J , so that O′ := OX′,x′ = R′/J ′. Then, since

R′ = R[x1

x0
, . . . , xr

x0
]< x1

x0
,..., xr

x0
> and PR′ = x0R

′ ,

it follows from [H1] III Lemma 6, p. 216 that there are generators f1, . . . , fm of J and
natural numbers n1, . . . , nm such that J ′ is generated by f1/x

n1
0 , . . . , fm/xnm

0 . Evidently
this implies that every element in the kernel of O → O′ is annihilated by a power of x0.

Now consider the case that the residue field extension k(x′)/k(x) is arbitrary. We reduce
to the residually rational case (k(x′) = k(x)) by the same technique as in [H4]. As there,
one may replace X by SpecOX,x, and consider a cartesian diagram

x′ X ′ i′←−−− X̃ ′ x̃′y πX

y
yπX̃

y
x X

i←−−− X̃ x̃ ,

where i is a faithfully flat monogenic map which is either finite or the projection X̃ =
A1

X → X, and f̃ is the blow-up of D̃ = i−1(D), which is again permissible. Moreover,
x̃ ∈ X̃ is the generic point of i−1(x) such that k(x̃) is a monogenic field extension of k(x),
and there is a point x̃′ ∈ X̃ ′ which maps to x′ ∈ X ′ and x̃ ∈ X̃ and satisfies k(x̃′) = k(x′).
Furthermore one has the inequalities

H
(1+δ)
OX′,x′

≤ H
(1+δ̃)
OX̃′,x̃′

≤ H
(1)
OX̃,x̃

= H
(1)
OX,x

,

where δ̃ = tr.deg(k(x̃′)/k(x̃)) (= δ if k(x̃)/k(x) is algebraic, and δ− 1 otherwise). By our
assumption all inequalities become in fact equalities, and by induction on the number of
generators of k(x′) over k(x) (starting with the residually rational case proved above), we
may assume that OX̃,x̃ → OX̃′,x̃′ is injective. Since OX,x → OX̃,x̃ is injective, we obtained
the injectivity of OX,x → OX′,x′ . This completes the proof of (2), and while doing it, we
also proved the claims in (3).

Finally we prove (4). Still under the assumption that X is embedded in a regular excel-
lent scheme Z, Hironaka proved in [H2] Theorem (1,A), that the equality ν∗x′(X

′, Z ′) =
ν∗x(X,Z) implies the inequality in (4). Together with (2) and (6) this implies (4) and
finishes the proof of Theorem 2.10. ¤

Corollary 2.12 For ν ∈ Σmax
X (cf. Definition 1.36), either ν 6∈ ΣX′ or ν ∈ Σmax

X′ . We
have

X ′(ν) ⊂ π−1
X (X(ν)) and π−1

X (X(ν)) ⊂
⋃
µ≤ν

X ′(µ).
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Definition 2.13 Let the assumption be as in Theorem 2.10 and put k′ = κ(x′).

(1) x′ ∈ π−1
X (x) is near to x if HX′(x′) = HX(x).

(2) x′ is very near to x if it is near to x and ex′(X
′) + δx′/x = ex(X)k′ = ex(X).

We recall another result of Hironaka which plays a crucial role in this paper. Let again
D be a permissible closed subscheme of an excellent scheme X, and let

πX : X ′ = B`D(X) → X and

be the blowup with center D. Take any points x ∈ D and x′ ∈ π−1
X (x).

Theorem 2.14 Assume that x′ is near to x. Assume further that char(κ(x)) = 0, or
char(κ(x)) ≥ dim(X), where κ(x) is the residue field of x. Then

x′ ∈ P(Dirx(X)/Tx(D)) ⊂ π−1
X (x) ,

where P(V ) is the projective space associated to a vector space V .

Proof First we note that the inclusion above is induced by the inclusion of cones
(i.e., spectra of graded algebras) Dirx(X)/Tx(D) ⊂ Cx(X)/Tx(D) and the isomorphism
Cx(X)/Tx(D) ∼= CD(X)x of cones from Theorem 2.2 (2)(ii). More precisely, it is induced
by applying the Proj-construction to the surjection of graded k(x)-algebras

AD = grnx(OX,x)/Sym(Tx(D)) ³ Sym(Dirx(X))/Sym(Tx(D)) = BD

where we identify affine spaces with the associated vector spaces and note that Proj(AD) =
π−1

X (x). Since the claim is local, we may pass to the local ringO = OX,x of X at x. Further,

we may consider the base change with the completion Ô = ÔX,x of OX,x with respect

to the maximal ideal nx ⊂ OX,x, because O → Ô is flat. Since every complete excellent
local ring is a quotient of a regular (complete) excellent ring, we then may assume that
X is embedded into a regular excellent scheme Z. If πZ : Z ′ = B`D(Z) → Z denotes the
blowup of Z in D, we have a further inclusion

P(Cx(X)/Tx(D)) = π−1
X (x) ⊂ P(Tx(Z)/Tx(D)) = π−1

Z (x) .

Therefore the claim that x′ ∈ P(Dirx(X)/Tx(D)) follows from [H4], Theorem IV and [H5],
Theorem 2. In fact, by the latter reference there is a certain canonical subgroup scheme
BP,x′ ⊂ V = Tx(Z)/Tx(D) just depending on x′ ∈ P = P(V), which has the following
properties. It is defined by homogeneous equations in the coordinates of V, hence a
subcone of V, and the associated subspace P(BP,x′) contains x′. Moreover, it is a vector
subspace of V if char(κ(x)) = 0, or char(κ(x)) = p > 0 with p ≥ dim(BP,x′). On the other
hand, by the former reference, the action of BP,x′ on V respects Cx(X)/Tx(D) if x′ is near
to x. Since 0 ∈ Cx(X), we conclude that BP,x′ is contained in Cx(X)/Tx(D), and hence has
dimension at most d = dim(X) − dim(D) ≤ dim(X). Therefore, by the assumption p ≥
dim(X), BP,x′ is a vector subspace of Cx(X)/Tx(D) and is thus contained in the biggest
such subspace - which is Dirx(X)/Tx(D). Therefore x′ ∈ P(BP,x′) ⊂ P(Dirx(X)/Tx(D)).

36



Lemma 2.15 Consider X(ν) for ν ∈ Σmax
X . Let π : X ′ = B`D(X) → X be the blowup

with permissible center D contained in X(ν). Let Y ⊂ X(ν) be an irreducible closed
subset which contains D as a proper subset. Then:

(1) Y ′ ⊂ X ′(ν), where Y ′ ⊂ X ′ be the proper transform.

(2) Assume char(κ(x)) = 0, or char(κ(x)) ≥ dim(X). Then we have ex(X) ≥ 1 for any
x ∈ D and ex′(X

′) ≥ 1 for any x′ ∈ π−1(D) ∩ Y ′.

Proof Let η (resp. η′) be the generic point of Y (resp. Y ′). Take points x ∈ D and
x′ ∈ π−1(x) ∩ Y ′. Then we have

HX(x) ≥ HX′(x′) ≥ HX′(η′) = HX(η),

where the first inequality follows from Theorem 2.10(1), the second from theorem 1.34,
and the last equality follow from the fact OX,η

∼= OX′,η′ . Since Y ⊂ X(ν), we have
HX(x) = HX(η) = ν so that the above inequalities are equalities. This implies Y ′ ⊂
X ′(ν), which proves (1). Next we show (2). If ex(X) = 0 for x ∈ D, then there is no point
of B`x(X) which is near to x by Theorem 2.14. Thus (1) implies ex(X) ≥ 1. To show
ex′(X

′) ≥ 1 for x′ ∈ π−1(D) ∩ Y ′, let W ⊂ X ′ be the closure of x′ in X ′. By assumption
W is a proper closed subset of Y ′. Since ex′(X

′) is a local invariant of OX′,x′ , we may
localize X ′ at x′ to assume W is regular. Then, by Theorem 2.3, W ′ ⊂ X ′ is permissible.
Now the assertion follows from the previous assertion applied to B`W (X ′) → X ′. ¤
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3 B-Permissible blow-ups - the embedded case

Let Z be an excellent regular scheme and let B ⊂ Z be a simple normal crossing divisor
on Z. For each x ∈ Z, let B(x) be the subdivisor of B which is the union of the irreducible
components of B containing x.

Definition 3.1 Let D ⊂ Z be a regular subscheme and x ∈ D. We say D is normal
crossing (n.c.) with B at x if there exists z1, . . . , zd, a system of regular parameters of
R := OZ,x satisfying the following conditions:

(1) D ×Z Spec(R) = Spec(R/〈z1, . . . , zr〉) for some 1 ≤ r ≤ d.

(2) B(x)×Z Spec(R) = Spec(R/〈∏
j∈J

zj〉) for some J ⊂ {1, . . . , d}.

We say D is n.c. with B if D is n.c. with B at any point x ∈ D.

Note that D is n.c. with B if and only if D is transversal with the intersection of any set
of irreducible components of B which does not contain D.

Let D ⊂ Z be n.c. with B. Consider Z ′ = B`D(Z)
πZ−→ Z. Let B̃ = B`D×ZB(B) ⊂ Z ′

be the strict transform of B in Z ′, let E := π−1
Z (D) be the exceptional divisor, and let

B′ = B̃ ∪ E be the complete transform of B in Z ′. We easily see the following:

Lemma 3.2 B̃ and B′ are strict normal crossing divisors on Z ′.

For the following, and for the comparison with the next section, it will be more convenient
to consider the set B = C(B) of irreducible components of B.

Definition 3.3 A simple normal crossings boundary on Z is a set B = {B1, . . . , Bn} of
regular divisors on Z such that the associated divisor div(B) = B1 ∪ . . . Bn is a (simple)
normal crossings divisor. For x ∈ Z let B(x) = {B ∈ B | x ∈ B}. Often the elements of
B are also called components of B.

An equivalent condition is that the Bi intersect transversally, i.e., that for each subset
{i1, . . . , ir} ⊂ {1, . . . , n} the intersection Bi1 ×Z . . .×Z Bir is regular of pure codimension
r in Z. The associations

(3.1) B 7→ B = C(B) , B 7→ B = div(B)

give mutual inverse bijections between the set of simple normal crossing (s.n.c.) divisors
on Z and the set of simple normal crossing (s.n.c.) boundaries on Z, and we will now use
the second language. Via (3.1) the above definitions correspond to the following in the
setting of boundaries.

Definition 3.4 (a) A regular subscheme D ⊂ Z is transversal with a s.n.c. boundary B
at x if for B(x) = {B1, . . . , Br} it intersects all multiple intersections Bi1 ×Z . . . ×Z Bir

transversally, and D is normal crossing (n.c.) with B at x if it is transversal with B(x)−
B(x)D, where B(x)D = {B ∈ B(x) | D ⊂ D}.
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(b) If D is n.c. with B, and Z ′ = B`D(Z)
πZ−→ Z is the blow-up of D, then the strict and

complete transform of B are defined as

B̃ := {B̃ | B ∈ B} , B′ := B̃ ∪ {E}

where B̃ = B`D×ZB(B) is the strict transform of B in Z, and E = pi−1
Z (D) is the

exceptional divisor. (Note that B̃ and B′ are s.n.c. boundaries on Z ′ by Lemma 3.2.)

In the following, consider a regular excellent scheme Z and a simple normal crossing
boundary B on Z. Moreover let X ⊂ Z be a closed subscheme.

Definition 3.5 Let D ⊂ X be a regular closed subscheme and x ∈ D. We say D is
B-permissible at x if D ⊂ X is permissible at x and D is n.c. with B at x. We say
D ⊂ X is B-permissible if D ⊂ X is permissible at all x ∈ D.

Definition 3.6 A history function for B on X is a function

(3.2) O : X → {subsets of B} ; x → O(x),

which satisfies the following conditions:

(O1) For any x ∈ X, O(x) ⊂ B(x).

(O2) For any x, y ∈ X such that x ∈ {y} and HX(x) = HX(y), we have O(y) ⊂ O(x).

(O3) For any y ∈ X, there exists a non-empty open subset U ⊂ {y} such that O(x) = O(y)
for all x ∈ U such that HX(x) = HX(y).

For such a function, we put for x ∈ X,

N(x) = B(x)−O(x).

A component of B is called old (resp. new) for x if it is a component of B(x) (resp. N(x)).

A basic example of a history function for B on X is given by the following:

Lemma 3.7 The function O(x) = B(x) (x ∈ X), is a history function for B on X. In
fact it satisfies 3.6 (O2) and (O3) without the condition HX(x) = HX(y).

Proof Left to the readers.

Define a function:
HO

X : X → NN × N ; x → (HX(x), | O(x) |),
where | O(x) | is the cardinality of O(x). We endow NN×N with the lexicographic order:

(ν, µ) ≥ (ν ′, µ′) ⇔ ν > ν ′ or ν = ν ′ and µ ≥ µ′.

The conditions in 3.6 and Theorem 1.34 immediately imply the following:

Theorem 3.8 Let the assumption be as above.

(1) If x ∈ X is a specialization of y ∈ X, then HO
X(x) ≥ HO

X(y).
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(2) For any y ∈ X, there is a dense open subset U of {y} such that HO
X(y) = HO

X(x)
for any x ∈ U .

In other words (see Lemma 1.35), the function HO
X is upper semi-continuous on X. By

noetherian induction Theorem 3.8 implies

ΣO
X := {HO

X(x)| x ∈ X} ⊂ NN × N

is finite. We define ΣO,max
X to be the set of of the maximal elements in ΣO

X .

Definition 3.9 (1) For ν̃ ∈ ΣO
X we define

X(ν̃) = XO(ν̃) = {x ∈ X | HO
X(x) = ν̃}

and
X(≥ ν̃) = XO(≥ ν̃) = {x ∈ X | HO

X(x) ≥ ν̃} ,

and we call

(3.3) XO
max = ∪

ν̃∈ΣO,max
X

X(ν̃) .

the O-Hilbert-Samuel locus of X.

(2) We define

DirO
x (X) := Dirx(X) ∩

⋂

B∈O(x)

Tx(B) ⊂ Tx(Z).

eO
x (X) = dimκ(x)(DirO

x (X)).

By Theorem 3.8 and Lemma 1.35, X(ν̃) is locally closed, with closure contained in X(≥ ν̃).
In particular, X(ν̃) is closed for ν̃ ∈ ΣO,max

X , the union in (3.3) is disjoint, and XO
max is a

closed subset of X. Theorems 2.2 and 2.3 imply the following:

Theorem 3.10 Let D ⊂ X be a regular closed subscheme and x ∈ D. Then the following
conditions are equivalent:

(1) D ⊂ X is permissible at x and there is an open neighborhood U of x in Z such that
D ∩ U ⊂ B for every B ∈ O(x).

(2) HO
X(x) = HO

X(y) for any y ∈ D such that x is a specialization of y.

Under the above condition, we have

(3.4) Tx(D) ⊂ DirO
x (X).

Definition 3.11 Call a closed subscheme D ⊂ X O-permissible at x, if it satisfies the
equivalent conditions in Theorem 3.10.

Remark 3.12 Note that D ⊂ X is B-permissible at x if and only if D is O-permissible
at x and n.c with N(x) at x.
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Theorem 3.13 Let the assumption be as in Theorem 3.10 and assume that D is irre-
ducible. Assume:

(1) D ⊂ X is O-permissible at x.

(2) eη(X) = ex(X)− dim(OD,x) (cf. Theorem 2.6),

where η is the generic point of D. Then we have

eO
η (X) ≤ eO

x (X)− dim(OD,x).

Proof First we claim that (1) and (2) hold after replacing x by any point y ∈ D such
that x ∈ {y} and {y} is regular at x. Indeed the claim follows from the inequalities:

HO
X(η) ≤ HO

X(y) ≤ HO
X(x),

eη(X) ≤ ey(X)− dim(OD,y)

≤ (
ex(X)− dim(O{y},x)

)− dim(OD,y) = ex(X)− dim(OD,x),

which follows from Theorems 3.8 and 2.6. By the claim we are reduced to the case where
dim(OD,x) = 1 by the same argument as in the proof of Theorem 2.6. Let R = OZ,x and
let J ⊂ p ⊂ R be the ideals defining X ⊂ Z and D ⊂ Z, respectively. Let Rp is the
localization of R at p and Jp = JRp. By Lemma 2.8 (2) implies that there exists a part
of a system of regular parameters y = (y1, . . . , yr) of R such that y ⊂ p and that

IDir(Rp/Jp) = 〈inp(y1), . . . , inp(yr)〉 ⊂ grp(Rp),

IDir(R/J) = 〈inm(y1), . . . , inm(yr)〉 ⊂ grm(R),

We can take θ1, . . . , θs ∈ R such that (y1, . . . , yr, θ1, . . . , θs) is a part of a system of regular
parameters of R and that there exists an irreducible component Bi of O(x) for each
i = 1, . . . , s such that Bi ×Z Spec(R) = Spec(R/〈θi〉) and

IDirO(R/J) = 〈inm(y1), . . . , inm(yr), inm(θ1), . . . , inm(θs)〉,
where IDirO(R/J) ⊂ grm(R) is the ideal defining DirO

x (X) ⊂ Tx(Z). Now (1) implies
O(x) = O(η) so that D ⊂ Bi and θi ∈ p for all i = 1, . . . , s. Hence (y1, . . . , yr, θ1, . . . , θs)
is a part of a system of regular parameters of Rp and

IDirO(Rp/Jp) ⊃ 〈inp(y1), . . . , inp(yr), inp(θ1), . . . , inp(θs)〉,
which implies the conclusion of Theorem 3.13. ¤

Let D ⊂ X be a B-permissible closed subscheme. Consider the diagram

(3.5)
X ′ = B`D(X)

πX−→ X
↓ ↓

Z ′ = B`D(Z)
πZ−→ Z

and let B′ and B̃ be the complete and strict transform of B in Z ′, respectively. For a
given history function O(x) (x ∈ X), we define functions O′, Õ : X ′ → {subsets of B′}
as follows: Let x′ ∈ X ′ and x = πX(x′) ∈ X. Then define

(3.6) O′(x′) =

{
Õ(x) ∩ B′(x′)

B′(x′)
if HX′(x′) = HX(x)

otherwise,
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where Õ(x) is the strict transform of O(x) in Z ′, and

(3.7) Õ(x′) =

{
Õ(x) ∩ B′(x′)

B̃(x′)

if HX′(x′) = HX(x)

otherwise.

Note that O′(x′) = Õ(x′) = Õ(x) ∩ B̃(x′) if x′ is near to x.

Lemma 3.14 The functions x′ → O′(x′), x′ → Õ(x′) are history functions for B′ on X.

The proof of Lemma 3.14 will be given later.

Definition 3.15 We call (B′, O′) and (B̃, Õ) the complete and strict transform of (B, O)
in Z ′, respectively.

Theorem 3.16 Take points x ∈ D and x′ ∈ π−1
X (x). Then HÕ

X′(x′) ≤ HO′
X′(x′) ≤ HO

X(x).
In particular we have

π−1
X (XO′(ν̃)) ⊂ ∪

µ̃≤ν̃
X ′O′(µ̃) for ν̃ ∈ Σmax

X ,

and the same holds for Õ in place of O′.

Proof This follows immediately from Theorem 2.10, (3.6) and (3.7).

In the following we mostly use the complete transform (B′, O′) and, for ease of notation,
we often write HO

X′(x′) and ΣO
X′ instead of HO′

X′(x′) and ΣO′
X′ , similarly for ΣO,max

X′ etc.,
because everything just depends on O.

Definition 3.17 We say that x′ ∈ π−1
X (x) is O-near to x if the following equivalent

conditions hold:

(1) HO
X′(x′) = HO

X(x) ( ⇔ HO′
X′(x′) = HO

X(x) ⇔ HÕ
X′(x′) = HO

X(x) ).

(2) x′ is near to x and contained in the strict transforms of all B ∈ O(x).

Call x′ very O-near to x if x′ is O-near and very near to x and eO
x′(X

′) = eO
x (X)− δx′/x.

The following result is an immediate consequence of Theorem 2.14 and definition 3.3 (2).

Theorem 3.18 Assume that x′ ∈ X ′ is O-near to x = πZ(x′) ∈ X. Assume further that
char(κ(x)) = 0, or char(κ(x)) ≥ dim(X), where κ(x) is the residue field of x. Then

x′ ∈ P(DirO
x (X)/Tx(D)) ⊂ P(Tx(Z)/Tx(D)) = π−1

Z (x)

Proof of Lemma 3.14: Take y′, x′ ∈ X ′ such that x′ ∈ {y′} and HX′(x′) = HX′(y′). We
want to show O′(y′) ⊂ O′(x′). Put x = πX(x′), y = πX(y′) ∈ X. We have x ∈ {y}. By
Theorems 1.34 and 2.10

HX′(y′) ≤ HX(y) ≤ HX(x) ≥ HX′(x′) = HX′(y′).
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First assume HX(x) ≥ HX′(x′), which implies HX′(y′) = HX(y) = HX(x). By 3.6 (O2)
and (3.6) we get

O′(y′) = Õ(y) ∩ B′(y′) ⊂ Õ(x) ∩ B′(x′) = O′(x′).

Next assume HX(x) > HX′(x′). Then, by Lemma 3.7 and (3.6), we get

O′(y′) ⊂ B′(y′) ⊂ B′(x′) = O′(x′).

Next we show that for y′ ∈ X ′, there exists a non-empty open subset U ′ ⊂ {y′} such that
HX′(x′) = HX′(y′) and O′(x′) = O′(y′) for all x′ ∈ U ′. Put y = πX(y′). By Lemma 3.7
and 3.6 (O3), there exists a non-empty open subset U ⊂ {y} such that HX(x) = HX(y),
B(x) = B(y) and O(x) = O(y) for all x ∈ U . By Theorem 1.34(3) and Lemma 3.7,
there exists a non-empty open subset U ′ ⊂ {y′} ∩ π−1

X (U) such that HX′(x′) = HX′(y′)
and B′(x′) = B′(y′) for all x′ ∈ U ′. We now show U ′ satisfies the desired property.
Take x′ ∈ U ′ and put x = πX(x′). By the assumption we have HX′(x′) = HX′(y′) and
HX(x) = HX(y).

First assume HX′(x′) = HX(x), which implies HX′(y′) = HX(y). By (3.6) we get

O′(y′) = Õ(y) ∩ B′(y′) = Õ(x) ∩ B′(x′) = O′(x′).

Next assume HX′(x′) < HX(x), which implies HX′(y′) < HX(y). By (3.6) we get

O′(y′) = B′(y′) = B′(x′) = O′(x′).

This completes the proof of Lemma 3.14 for (B′, O′). The proof for (B̃, Õ) is similar. ¤

For x′ ∈ X ′ let N ′(x′) = B′(x′)− O′(x′) be the set of the new components of (B′, O′) for
x′. If x′ is near to x = πX(x′) ∈ D, i.e., HX′(x′) = HX(x), then

(3.8) N ′(x′) = (Ñ(x) ∩ B′(x′)) ∪ {E} with E = π−1
Z (D)

where Ñ(x) is the strict transform of N(x) in X ′. If x′ is not near to x, then N ′(x′) = ∅.
Similarly, Ñ(x′) = B̃(x′)−Õ(x′) = Ñ(x)∩B̃(x′) ⊂ N ′(x′) if x′ is near to x, and Ñ(x′) = ∅,
otherwise. We study the transversality of N ′(x′) with a certain regular subscheme of E.

Definition 3.19 For a κ(x)-linear subspace T ⊂ Tx(Z), we say that T is transversal with
N(x) (notation: T t N(x)) if

dimκ(x)

(
T ∩ ∩

B∈N(x)
Tx(B)

)
= dimκ(x)(T )− | N(x) | .

Lemma 3.20 Let πZ : Z ′ = B`D(Z) → Z be as in (3.5). Assume D = x and T t N(x).

Then the closed subscheme P(T ) ⊂ E = P(Tx(Z)) is n.c. with N ′(x′) and Ñ(x′) at each
x′ ∈ π−1

X (x).

Proof Let R = OZ,x with the maximal ideal m. For each B ∈ N(x), take hB ∈ R such
that B ×Z Spec(R) = Spec(R/〈hB〉). Put HB = inm(hB) ∈ gr1

m(R). In view of (3.8) the
lemma follows from the following facts: The ideal 〈HB〉 ⊂ grm(R) defines the subschemes

Tx(B) ⊂ Tx(Z) = Spec(grm(R)) and E ×Z′ B̃ ⊂ E = Proj(grm(R)),

where B̃ is the strict transform of B in Z ′. ¤
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Lemma 3.21 Let πZ : Z ′ = B`D(Z) → Z be as (3.5). Assume T t N(x) and Tx(D) ⊂ T
and dimκ(x)(T/Tx(D)) = 1. Consider

{x′} = P(T/Tx(D)) ⊂ P(Tx(Z)/Tx(D)) = π−1
Z (x).

Let D′ ⊂ E be any closed subscheme such that x′ ∈ D′ and πZ induces an isomorphism
D′ ' D. Then D′ is n.c. with N ′(x′) and Ñ(x′) at x′.

Proof It suffices to consider N ′(x′). For B ∈ BD we have Tx(D) ⊂ Tx(B) so that the
assumptions of the lemma imply Tx(B) ∩ T = Tx(D). By the argument of the last part
of the proof of Lemma 3.20, this implies {x′} = P(T/Tx(D)) * B̃. Thus we are reduce to
show D′ is n.c. with N ′(x′) ∩ (B − BD)′(x′), which follows from the following:

Lemma 3.22 Let Z be a regular scheme and D, W ⊂ Z be regular closed subschemes
such that D and W intersect transversally. Let π : Z ′ = B`D(Z) → Z and let W̃ be the
strict transform of W in Z ′. Suppose D′ ⊂ E := π−1(D) is a closed subscheme such that

π induces an isomorphism D′ ∼→ D. Then D′ and W̃ intersect transversally.

Proof By definition, W̃ = B`D∩W (W ). The transversality of D and W implies B`D∩W (W ) '
B`D(Z)×Z W = Z ′ ×Z W . Thus

E ×Z′ W̃ ' E ×Z′ (Z
′ ×Z W ) = E ×Z W = E ×D (D ×Z W ).

Hence we get

D′×Z′ W̃ = D′×E (E×Z′ W̃ ) ' D′×E (E×D (D×Z W )) = D′×D (D×Z W ) ' W ×Z D,

where the last isomorphism follows from the assumption D′ ∼→ D. This completes the
proof of the lemma. ¤

Theorem 3.23 Let πZ : Z ′ = B`D(Z) → Z be as (3.5). Take x ∈ X and x′ ∈ π−1
X (x).

Assume char(κ(x)) = 0, or char(κ(x)) ≥ dim(X).

(1) If x′ is O-near and very near to x, then eO
x′(X

′) ≤ eO
x (X)− δx′/x.

(2) Assume x′ is very O-near and N(x) t DirO
x (X). Then N ′(x′) t DirO

x′(X
′).

Proof We first show (1). Assume that x′ is O-near and very near to x. For the sake of the
later proof of (2), we also assume N(x) t DirO

x (X). By doing this, we do not lose generality
for the proof of (1) since we may take N(x) = ∅. Put R = OZ,x (resp. R′ = OZ′,x′) with
the maximal ideal m (resp. m′) and k = κ(x) = R/m (resp. k′ = κ(x′) = R′/m′). By the
assumption there exists a system of regular parameters of R

(y1, . . . , yr, θ1, . . . , θq, u1, . . . , ua, ua+1, . . . , ua+b, v1, . . . , vs, vs+1, . . . , vs+t)

satisfying the following conditions: Fixing the identification:

grm(R) = k[Y, Θ, U, V ] = k[Y1, . . . , Yr, Θ1, . . . , Θq, U1, . . . , Ua+b, V1, . . . , Vs+t],

(Yi = inm(yi), Θi = inm(θi), Ui = inm(ui), Vi = inm(vi) ∈ gr1
m(R))
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(i) D ×Z Spec(R) = Spec(R/〈y1, . . . , yr, , u1, . . . , ua+b〉).
(ii) IDirx(X) = 〈Y1, . . . , Yr〉 ⊂ grm(R) (cf. Definition 1.28),

(iii) For 1 ≤ i ≤ q, there exists B ∈ O(x) such that B ×Z Spec(R) = B
(i)
θ , where

B
(i)
θ := Spec(R/〈θi〉), and we have

DirO
x (X) = Dirx(X) ∩ ∩

1≤i≤q
Tx(B

(i)
θ ).

(iii) N(x)×Z Spec(R) =
⋃

1≤i≤b

B
(a+i)
u ∪ ⋃

1≤j≤t

B
(s+j)
v .

Here B
(i)
u = Spec(R/〈ui〉), B

(j)
v = Spec(R/〈vj〉). Let B′

θ
(i) (resp. B′

u
(i), resp. B′

v
(i)) be the

strict transform of B
(i)
θ (resp. B

(i)
u , resp. B

(i)
v ) in Spec(R′). Let

Ξ = {i ∈ [a + 1, a + b] | x′ ∈ B′
u
(i)}.

By Theorem 3.16 there exists i0 ∈ [1, a + b]− Ξ such that

(y′1, . . . , y
′
r, θ

′
1, . . . , θ

′
q, w, u′j (j ∈ Ξ), v1, . . . , vs+t),

where w = ui0 , y′i = yi/w, θ′i = θ/w, u′j = uj/w, is a part of a system of regular parameters
of R′ so that the polynomial ring:

k′[Y ′
1 , . . . , Y

′
r , Θ

′
1, . . . , Θ

′
q,W, U ′

j (j ∈ Ξ), V1, . . . , Vs+t],

where Y ′
i = inm′(y

′
i), Θ′

i = inm′(θ
′
i), W = inm′(w), U ′

j = inm′(u
′
j), is a subring of grm′(R

′).
It also implies

N ′(x′) :=
⋃

i∈N ′(x′)

B′(i) = E ∪
⋃
i∈Ξ

B′
u
(i) ∪

⋃
1≤j≤t

B′
v
(i+s)

,

where E = π−1
Z (D) and E ×Z Spec(R) = Spec(R/〈w〉). Note

Tx′(E) ⊂ Tx′(Z
′) = Spec(grm′(R

′)) is defined by 〈W 〉 ⊂ grm′(R
′).

Moreover
Tx′(B

′
θ
(j)

) ⊂ Tx′(Z
′) is defined by 〈Θj〉 ⊂ grm′(R

′).

Tx′(B
′
u
(i)

) ⊂ Tx′(Z
′) is defined by 〈U ′

i〉 ⊂ grm′(R
′) for i ∈ Ξ.

Tx′(B
′
v
(j)

) ⊂ Tx′(Z
′) is defined by 〈Vj〉 ⊂ grm′(R

′).

On the other hand, by Theorem 8.3 the assumption that x′ is very near to x implies that
there exist λ1, . . . , λr ∈ k′ such that

IDirx′(X
′) = 〈Y ′

1 + λ1W, . . . , Y ′
r + λrW 〉 ⊂ grm′(R

′).

so that

(3.9) IDirO
x′(X

′) ⊃ 〈Y ′
1 + λ1W, . . . , Y ′

r + λrW, Θ1, . . . , Θq〉.
This clearly implies the assertion of (1). If x′ is very O-near, the inclusion in (3.9) is
equality and then it implies N ′(x′) t DirO

x′(X
′). Thus the proof of Theorem 3.23 is

complete. ¤
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Corollary 3.24 Let πZ : Z ′ = B`D(Z) → Z be as (3.5) and take closed points x ∈ D and
x′ ∈ π−1

X (x) such that x′ is O-near to x. Assume char(κ(x)) = 0, or char(κ(x)) ≥ dim(X).
Assume further that there is an integer e ≥ 0 for which the following hold:

(1) ex(X)κ(x′) ≤ e, and either e ≤ 2 or κ(x′) is separable over k(x).

(3) N(x) t DirO
x (X) or eO

x (X) ≤ e− 1.

Then N ′(x′) t DirO
x′(X

′) or eO
x′(X

′) ≤ e− 1.

Proof We claim

If eO
x′(X

′) ≥ e, then ex(X) = e = ex′(X
′) and eO

x (X) = e = eO
x′(X

′), so that x′ is very
O-near to x.

First we show the first equality which implies x′ is very near to x. Indeed the assumption
implies by Lemma 1.22 and Theorem 2.10

e ≤ eO
x′(X

′) ≤ ex′(X
′) ≤ ex(X)κ(x′) ≤ e.

Hence ex′(X
′) = ex(X)κ(x′) = e. It remains to show ex(X) = e. If κ(x′) is separable

over κ(x), this follows from Lemma 1.22(2). Assume e ≤ 2 and ex(X) < ex(X)κ(x′) = 2.
Then Theorem 2.14 implies that κ(x′) = κ(x) so that ex(X) = ex(X)κ(x′), which is a
contradiction. Since x′ is very near to x, Theorem 3.23 (1) implies

e ≤ eO
x′(X) ≤ eO

x (X) ≤ ex(X) ≤ e,

which shows the second equality and the claim is proved.

By the claim, if eO
x (X) ≤ e − 1, we must have eO

x′(X
′) ≤ e − 1. Hence it suffices to

show N ′(x′) t DirO
x′(X

′) assuming N(x) t DirO
x (X) and eO

x′(X
′) ≥ e. By the claim the

second assumption implies that x′ is very O-near to x. Therefore the assertion follows
from Theorem 3.23 (2). ¤

Definition 3.25 Call (B, O) admissible at x ∈ X, if N(x) t Tx(X), and call (B, O)
admissible if it is admissible at all x ∈ X.

We note that admissibility of (B, O) at x implies BI(x) ⊆ O(x), where BI(x) is defined
as follows.

Definition 3.26 Call B ∈ B inessential at x ∈ X, if it contains all irreducible compo-
nents of X which contain x. Let

BI(x) = {B ∈ B | Z ⊆ B for all Z ∈ I(x)}
be the set of inessential boundary components at x, where I(x) is the set of the irreducible
components of X containing x.

Definition 3.27 Call x ∈ X O-regular (or X O-regular at x), if

(3.10) HO
X(x) = (νreg

X , |BI(x)|) .

Call X O-regular, if it is O-regular at all x ∈ X.
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Lemma 3.28 If (B, O) is admissible at x and X is O-regular at x, then X is regular and
normal crossing with B at x.

Proof The first claim follows from Lemma 1.32. Since x is regular, the assumption
N(x) t Tx(X) means that N(x) is transversal to X at x. On the other hand, for the
(unique) connected component W on which x lies we have W ⊂ B for all B ∈ BI(x) =
O(x) where the last equality holds by assumption. Thus X is n.c. with B at x. ¤

The following result should be compared with Theorem 3.23.

Lemma 3.29 Let πX : X ′ = B`D(X) → X be as in (3.5). If (B, O) admissible at x ∈ X,

then (B′, O′) and (B̃, Õ) are admissible at any x′ ∈ π−1
X (x′).

Proof The proof is somewhat similar to that of Theorem 3.23: If x′ is not near to x,
then N ′(x′) is empty by definition. Therefore we may consider the case where x′ is near
to x. Look at the surjection R = OZ,x → OX,x with kernel J , and let R = OZ,x → OX,x

be the corresponding surjection for the local rings of the blowups at x′, with kernel J ′.
Then there is a system of regular parameters for R

(f1, . . . , fm, u1, . . . , ua+b, v1, . . . , vr+s)

satisfying the following conditions:

(i) J has a standard basis (f1, . . . , fm, fm+1, . . . , fn) with f1, . . . , fm ∈ n − n2 and
fm+1, . . . , fn ∈ n2 for the maximal ideal n ⊂ R, so that the initial forms of f1, . . . , fm

define Tx(X) inside Tx(Z).

(ii) D ×Z Spec(R) = Spec(R/〈f1, . . . , fm, u1, . . . , ua+b〉).
(iii) N(x)×Z Spec(R) is given by div(ua+1), . . . , div(ua+b), div(vs+1), . . . , div(vs+t).

Let
Ξ = {i ∈ [a + 1, a + b] | x′ ∈ div(ui)

′}.
Then there exists i0 ∈ [1, a + b]− Ξ such that

(f ′1, . . . , f
′
m, w, u′j (j ∈ Ξ), v1, . . . , vs+t),

where w = ui0 , f ′i = fi/w, u′j = uj/w, is a part of a system of regular parameters

of R′. Since x′ is near to x, we have H
(δ)
OX′,x′

= H
(0)
OX,x

by Theorem 2.10, where δ =

trdegκ(x)(k(x′))). Evaluating at 1, we get dim Tx′(X
′) + δ = dim Tx(X). Similarly we

get dim Tx′(Z
′) + δ = dim Tx(Z), and hence dim Tx′(Z

′) − dim Tx′(X
′) = dim Tx(Z) −

dim Tx(X). It follows that the initial forms of f ′1, . . . , f
′
m already define Tx′(X

′) inside
Tx′(Z

′). This shows that N ′(x′) t Tx′(X
′), because N ′(x′) is defined by w, u′j (j ∈

Ξ), vs+1, . . . , vs+t. ¤
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4 B-Permissible blow-ups - the non-embedded case

Let X be an excellent scheme. We start with the following definition.

Definition 4.1 A boundary on X is a multiset B = {{B1, . . . , Br}} of locally principal
closed subschemes of X.

Recall that multisets are ‘sets with multiplicities’; more precisely a multiset of r elements
is an r-tuple in which one forgets the ordering. One can also think of sets in which an
element can appear several times. This then makes clear how one can define elements,
cardinalities, inclusions, intersections and unions of multisets. Note also that the locally
principal subschemes need not be divisors; e.g., they could be X itself. Both this and the
use of multisets is convenient for questions of functoriality, see below.

In the following, let X be an excellent scheme and let B = {{B1, . . . , Bn}} be a boundary
on X. Sometimes, we also call the elements of B components of B. For each x ∈ X, let
B(x) ⊂ B be the submultiset given by the components containing x. We note that this
definition is compatible with arbitrary localization in X. For any morphism f : Y → X
we have a pull-back

(4.1) f−1(B) := B ×X Y := {{BY := B ×X Y | B ∈ B}} .

Note that, even if we start with a true set of locally principal divisors on X, the pull-back
will be a multiset if there are Bi 6= Bj in B with (Bi)Y = (Bj)Y , and we could have that
some (Bi)Y is not a divisor. For x ∈ X we let Bx = f−1(B) with f : Spec(OX,x) → X,
which is a boundary on Xx = Spec(OX,x).

Definition 4.2 Let D ⊂ X be a regular subscheme and let x ∈ D. We say D transversal
with B at x if for each submultiset {{Bi1 , . . . , Bir}} ⊆ B(x), the scheme-theoretic inter-
section D ×X Bi1 ×X Bi2 ×X . . . ×X Bir is regular and of codimension r in D at x. (So
this can only hold if B(x) is a true set.) We say D is normal crossing with B at x if D
is transversal with B(x)− B(x)D where

B(x)D = {B ∈ B(x) | D ⊂ B} .

Say that D is transversal (resp. normal crossing) with B, if D is transversal (resp. n.c.)
with B at every x ∈ D.

Definition 4.3 Let D ⊂ X be a regular closed subscheme and x ∈ D. We say D ⊂ X
is B-permissible at x if D ⊂ X is permissible at x and D is n.c. with B at x. We say
D ⊂ X is B-permissible if D ⊂ X is B-permissible at all x ∈ D.

Let D ⊂ X be any closed subscheme and let B be a locally principal (closed) subscheme

of X. We now define a canonical locally principal subscheme B′ on X ′ = B`D(X)
πX−→ X,

the blow-up of X in D. Locally we have X = Spec(A) for a ring A, D is given by an ideal
a, and B is given by a principal ideal fA, f ∈ A. In this situation, B`D(X) = Proj(A(a))
for the graded A-algebra A(a) = ⊕n≥0a

n. Define the homogenous element

(4.2) i(f) =

{
f ∈ A(a)0 = A

f ∈ A(a)1 = a

if f /∈ a

if f ∈ a,
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Then the graded principal ideal A(a)B := i(f)A(a) only depends on B and not on the
equation f , because it does not change if f is multiplied by a unit. Thus

(4.3) B′ := Proj(A(a)/A(a)B) ⊂ Proj(A(a)) = X ′

gives a well-defined locally principal subscheme, which is a divisor if B is. Moreover,
it is now clear that the definition glues on a general X and gives a well-defined locally
principal subscheme B′ on X ′.

Definition 4.4 The locally principal subscheme B′ defined above is called the principal
strict transform of B in X ′.

In the following, we will always use these principal strict transforms and will call them
simply transforms.

Remark 4.5 (a) There is always a commutative diagram of natural proper morphisms

B̃

πB̃ ÂÂ?
??

??
??

i // B′

πB′~~~~
~~

~~
~~

B

where B̃ = B`D×XB(B) is the scheme-theoretic strict transform of B in X ′. All morphisms
are isomorphisms over B\D, and i : B̃ → B′ is a closed immersion. However, it is not in
general an isomorphism, and B̃ need not be a locally principal subscheme. In fact, with
the notations above, B̃ is locally given by the graded ideal

(4.4) Ã(a)B := ⊕n fA ∩ an ⊃ A(a)B =

{
⊕n fan

⊕n fan−1

if f /∈ a

if f ∈ a,

and the indicated inclusion need not be an equality (or give an isomorphism after taking
Proj).

(b) If X and D are regular, and B is a regular divisor, then B̃ = B′. In fact, with the
notations above, we may assume that a = p for a regular prime ideal, and locally we
have fA ∩ pn = fpn−vp(f), because vp(fa) = vp(f) + vp(a). Moreover, vp(f) ∈ {0, 1} by
assumption.

(c) If i : X ↪→ Z is a closed immersion into a regular scheme Z and B is a simple normal
crossings divisor on Z, then the set B = C(B) = {B1, . . . , Br} of irreducible components
is a simple normal crossings boundary on Z. In particular, it is a boundary in the sense
of Definition 4.1, and BX = i−1(B), its pull-back to X, is a boundary on X (which may
be a multiset). This construction connects the present section with the previous one. (See
also Lemma 4.21 below.)

Now let B = {{B1, . . . , Bn}} be a boundary on X. Let B′
i be the (principal strict)

transform of Bi in X ′, i = 1, . . . , n, and let E = D ×X X ′ be the exceptional divisor.

Definition 4.6 Call B̃ = {{B′
1, . . . , B

′
n}} the strict transform and B′ = {{B′

1, . . . , B
′
n, E}}

the complete transform of B in X ′.
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We note that E is always a locally principal divisor, so that B̃ and B′ are boundaries on
X. Moreover, we note the following useful functoriality.

Lemma 4.7 Let Y ↪→ X be a closed immersion, and assume that D ⊂ Y is a nowhere
dense closed subscheme. Then one has

(BY )′ = (B′)Y ′ and B̃Y = (B̃)Y ,

where Y ′ = B`D(Y ) ↪→ B`D(X) = X ′.

Proof The question is local on X, so we may assume that X = Spec(A) is affine, and
take up the notations of (4.2). Then Y = Spec(A/b) for an ideal b ⊂ a ⊂ A, and for
B ∈ B, B ×X Y ∈ BY is given by (fA + b)/b. Thus the case distinction in (4.2) is the
same for f and f = f + b, and the claim follows from the equality f(a/b)n = (fan + b)/b
in the first case and the equality f(a/b)n−1 = (fan−1 + b)/b in the second case. For the
exceptional divisor EX = D×X X ′ on X ′ one has EX×X′ Y ′ = D×X Y ′ = D×Y Y ′ = EY ,
the exceptional divisor on Y ′. ¤

Definition 4.8 (1) A history function for a boundary B on X is a function

(4.5) O : X → {submultisets of B} ; x → O(x),

which satisfies the following conditions:

(O1) For any x ∈ X, O(x) ⊂ B(x).

(O2) For any x, y ∈ X such that x ∈ {y} and HX(x) = HX(y), we have O(y) ⊂ O(x).

(O3) For any y ∈ X, there exists a non-empty open subset U ⊂ {y} such that O(x) = O(y)
for all x ∈ U such that HX(x) = HX(y).

For such a function, we put for x ∈ X,

N(x) = B(x)−O(x).

A divisor B ∈ B is called old (resp. new) for O at x if it is a component of O(x) (resp.
N(x)).

(2) A boundary with history on X is a pair (B, O), where B is a boundary on X and O
is a history function for B.

A basic example of a history function for B on X is given by the following:

Lemma 4.9 The function O(x) = B(x) (x ∈ X), is a history function for B on X. In
fact it satisfies 4.8 (O2) and (O3) without the condition HX(x) = HX(y).

Proof Left to the readers. ¤
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Define a function:
HO

X : X → NN × N ; x → (HX(x), | O(x) |),
where | O(x) | is the cardinality of O(x). We endow NN×N with the lexicographic order:

(ν, µ) ≥ (ν ′, µ′) ⇔ ν > ν ′ or ν = ν ′ and µ ≥ µ′.

The conditions in 4.8 and Theorem 1.34 immediately imply the following:

Theorem 4.10 Let the assumption be as above.

(1) If x ∈ X is a specialization of y ∈ X, then HO
X(x) ≥ HO

X(y).

(2) For any y ∈ X, there is a dense open subset U of {y} such that HO
X(y) = HO

X(x)
for any x ∈ U .

In other words (see Lemma 1.35), the function HO
X is upper semi-continuous on X. By

noetherian induction Theorem 4.10 implies

ΣO
X := {HO

X(x)| x ∈ X} ⊂ NN × N

is finite. We define ΣO,max
X to be the set of of the maximal elements in ΣO

X .

Definition 4.11 (1) For ν̃ ∈ ΣO
X we define

X(ν̃) = XO(ν̃) = {x ∈ X | HO
X(x) = ν̃}

and
X(≥ ν̃) = XO(≥ ν̃) = {x ∈ X | HO

X(x) ≥ ν̃} ,

and we call

(4.6) XO
max = ∪

ν̃∈ΣO,max
X

X(ν̃) .

the O-Hilbert-Samuel locus of X.

(2) We define

DirO
x (X) := Dirx(X) ∩

⋂

B∈O(x)

Tx(B) ⊂ Tx(Z).

eO
x (X) = dimκ(x)(DirO

x (X)).

By Theorem 4.10 and Lemma 1.35, X(ν̃) is locally closed, with closure contained in
X(≥ ν̃). In particular, X(ν̃) is closed for ν̃ ∈ ΣO,max

X , the union in Definition 4.6 is
disjoint and XO

max is a closed subset of X. Theorems 2.2 and 2.3 imply the following:

Theorem 4.12 Let D ⊂ X be a regular closed subscheme and x ∈ D. Then the following
conditions are equivalent:

(1) D ⊂ X is permissible at x and there is an open neighborhood U of x in Z such that
D ∩ U ⊂ O(x).

(2) HO
X(x) = HO

X(y) for any y ∈ D such that x is a specialization of y.
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Under the above condition, we have

(4.7) Tx(D) ⊂ DirO
x (X).

Definition 4.13 Call a closed subscheme D ⊂ X O-permissible at x, if it satisfies the
equivalent conditions in Theorem 4.12.

Remark 4.14 Note that D ⊂ X is B-permissible at x if and only if D is O-permissible
and n.c with N(x) at x.

Let D ⊂ X be a B-permissible closed subscheme. Consider the blow-up

(4.8) X ′ = B`D(X)
πX−→ X

of X in D, and let B′ be the complete transform of B in X ′. For a given history function
O for B on X, we define functions O′, Õ : X ′ → {subsets of B′} as follows: Let x′ ∈ X ′

and x = πX(x′) ∈ X. Then define

(4.9) O′(x′) =

{
Õ(x) ∩ B′(x′)

B′(x′)
if HX′(x′) = HX(x)

otherwise,

where Õ(x) is the strict transform of O(x) in X ′ and

(4.10) Õ(x′) =

{
Õ(x) ∩ B′(x′)

B̃(x′)

if HX′(x′) = HX(x)

otherwise.

Note that O′(x′) = Õ(x′) = Õ(x) ∩ B̃(x′) if x′ is near to x.

The proof of the following lemma is identical with that of Lemma 3.14.

Lemma 4.15 The function X ′ → {subsets of B′} ; x′ → O′(x′) is a history function.

Definition 4.16 We call (B′, O′) and (B̃, Õ) the complete and strict transform of (B, O)
in X ′, respectively.

Results from the previous section (embedded case) have their companions in the non-
embedded situation. We start with the following theorem analogous to Theorem 3.16.

Theorem 4.17 Take points x ∈ D and x′ ∈ π−1
X (x). Then HÕ

X′(x′) ≤ HO′
X′(x′) ≤ HO

X(x).
In particular we have

π−1
X (XO′(ν̃)) ⊂ ∪

µ̃≤ν̃
X ′O′(µ̃) for ν̃ ∈ Σmax

X ,

and the same holds for Õ in place of O′.

Proof This follows immediately from Theorem 2.10, (4.9) and (4.10). ¤

52



In the following we mostly use the complete transform (B′, O′) and, for ease of notation,
we often write HO

X′(x′) and ΣO
X′ instead of HO′

X′(x′) and ΣO′
X′ , similarly for ΣO,max

X′ etc.,
because everything just depends on O.

Definition 4.18 We say that x′ ∈ π−1
X (x) is O-near to x if the following equivalent

conditions hold:

(1) HO
X′(x′) = HO

X(x) ( ⇔ HO′
X′(x′) = HO

X(x) ⇔ HÕ
X′(x′) = HO

X(x) ).

(2) x′ is near to x and contained in the strict transforms of B for all B ∈ O(x).

Call x′ is very O-near to x if x′ is O-near and very near to x and eO
x′(X

′) = eO
x (X)−δx′/x.

The following result, the non-embedded analogue of Theorem 3.18, is an immediate con-
sequence of Theorem 2.14 and Definition 4.11(2).

Theorem 4.19 Assume that x′ ∈ X ′ is O-near to x = π(x′) ∈ X. Assume further that
char(κ(x)) = 0, or char(κ(x)) ≥ dim(X), where κ(x) is the residue field of x. Then

x′ ∈ P(DirO
x (X)/Tx(D)) ⊂ P(Cx(X)/Tx(D)) = π−1

X (x)

Results in the non-embedded case which depend only on the local ring at a point (of the
base scheme) can often be reduced to the embedded case. This relies on the following two
observations.

Remark 4.20 Let X be an excellent scheme, let B be a boundary on X, and let x ∈ X.
Assume a property concerning (X,B, x) can be shown by passing to the local ring O =
OX,x, and its completion Ô. Then the following construction is useful. The ring Ô is the
quotient of a regular excellent ring R. Let B(x) = {{B1, . . . , Br}}, and let f1, . . . , fr be
the local functions defining them in OX,x (so we can have fi = fj for i 6= j). Then we get
a surjection

R[X1, . . . , Xr] ³ OX,x

mapping Xi to fi, and the functions Xi define a simple normal crossings boundary on
Z = Spec(R[X1, . . . , Xr]), such that B(x) is its pull-back under Spec(OX,x) ↪→ Z. We
may thus assume that X can be embedded in a regular excellent scheme Z with simple
normal crossings boundary BZ, and that B is the pull-back of BZ to X.

Next we compare several notions for the non-embedded case in the present section with
the corresponding notions for the embedded situation in the previous section.

Lemma 4.21 Let i : X ↪→ Z be an embedding into a regular excellent scheme Z, let B
be a simple normal crossings boundary on Z, and let BX = i−1(B) be its pull-back to X.

(1) For a closed regular subscheme D ⊂ X and x ∈ D, D is transversal (resp. normal
crossing) with B at x in the sense of Definition 3.1 if and only if it is transversal (resp.
normal crossing) with BX in the sense of Definition 4.2 (which is an intrinsic condition
on (X,BX)).

(2) Let O be a history function for B in the sense of definition 3.6, and define the function

OX : X → {submultisets of BX} , OX(x) = {{BX | B ∈ O(x)}} .
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Then OX is a history function for BX in the sense of definition 4.8, and one has

HOX
X (x) = HO

X(x) and DirOX
x (X) = DirO

x (X)

(and hence eOX
x (X) = eO

x (X)) for all x ∈ X. Also, for a k(x)-linear subspace T ⊂ Tx(X),
the two notions for the transversality T t N(x) (Definition 3.19 for B and Definition
4.23 for BX) are equivalent.

(3) A regular closed subscheme D ⊂ X is BX-permissible in the sense of Definition 4.3
if and only if it is B-permissible in the sense of Definition 3.5. Moreover, it is OX-
permissible in the sense of Definition 4.13 if and only if it is O-permissible in the sense
of Definition 3.11.

(4) Let D ⊂ X be B-permissible, let πX : X ′ = B`D(X) → X and πZ : Z ′ = B`D(Z) → Z
be the respective blowups in D and i′ : X ′ ↪→ Z ′ the closed immersion. Moreover let O a
history function for B. Then we have the equalities

((BX)′, (OX)′) = ((B′)X′ , (O′)X′) and (B̃X , ÕX) = ((B̃)X′ , (Õ)X′)

for the complete transforms and strict transforms, respectively.

Proof The claims in (1), (2) and (3) easily follow from the definitions. For the claim
on the directrix in (2) note that Tx(BX) = Tx(B) ∩ Tx(X) (in Tx(Z)). The claim in (4)
follows from Lemma 4.7. ¤

Now we apply Remark 4.20 and Lemma 4.21.

Theorem 4.22 Let D ⊆ X be an irreducible B-permissible subscheme. Assume:

(1) D ⊂ X is O-permissible at x.

(2) eη(X) = ex(X)− dim(OD,x) (cf. Theorem 2.6),

where η is the generic point of D. Then we have

eO
η (X) ≤ eO

x (X)− dim(OD,x).

Proof The question is local around x, and we may pass to OX,x and then to its comple-
tion, since X is excellent. By 4.20 and 4.21 we may assume that we are in an embedded
situation. Thus the claim follows from the corresponding result in the embedded case
(Theorem 3.13). ¤
Let πX : X ′ = B`D(X) → X be as in (4.8). For x′ ∈ X ′ let N ′(x′) = B′(x′) − O′(x′) be
the set of the new components of (B′, O′) for x′. If x′ is near to x = πX(x′) ∈ D, i.e.,
HX′(x′) = HX(x), then

(4.11) N ′(x′) = (Ñ(x) ∩ B′(x′)) ∪ {E} with E = π−1
Z (D)

where Ñ(x) is the strict transform of N(x) in X ′. If x′ is not near to x, then N ′(x′) = ∅.
Similarly, Ñ(x′) = B̃(x′)−Õ(x′) = Ñ(x)∩B̃(x′) ⊂ N ′(x′) if x′ is near to x, and Ñ(x′) = ∅,
otherwise. We study the transversality of N ′(x′) with a certain regular subscheme of E.
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Definition 4.23 For a κ(x)-linear subspace T ⊂ Tx(X), we say that T is transversal
with N(x) (notation: T t N(x)) if

dimκ(x)

(
T ∩ ∩

B∈N(x)
Tx(B)

)
= dimκ(x)(T )− | N(x) | .

Lemma 4.24 Assume D = x, T ⊂ Dirx(X) and T t N(x). Then the closed subscheme

P(T ) ⊂ Ex = P(Cx(X)) is n.c. with N ′(x′) (and hence also Ñ(x′)) at x′.

Proof In the same way as above, we this claim follows from the corresponding result in
the embedded case (Lemma 3.20). ¤

Lemma 4.25 Let πX : X ′ = B`D(X) → X be as (4.8). Assume T t N(x) and Tx(D) ⊂
T ⊂ Dirx(X) and dimκ(x)(T/Tx(D)) = 1. Consider

x′ = P(T/Tx(D)) ⊂ P(Cx(X)/Tx(D)) = π−1
X (x).

Let D′ ⊂ E = π−1
X (D) be any closed subscheme such that x′ ∈ D′ and πX induces an

isomorphism D′ ' D. Then D′ is n.c. with N ′(x′) at x′.

Proof In the same way as above, this follows from the reduction to the corresponding
result in the embedded case (Lemma 3.21). ¤

Theorem 4.26 Let πX : X ′ = B`D(X) → X be as in (4.8). Take x ∈ X and x′ ∈ π−1
X (x).

Assume char(κ(x)) = 0, or char(κ(x)) ≥ dim(X).

(1) If x′ is O-near and very near to x, then eO
x′(X

′) ≤ eO
x (X)− δx′/x.

(2) Assume x′ is very O-near and N(x) t DirO
x (X). Then N ′(x′) t DirO

x′(X
′).

Proof Reduction to the embedded case (Theorem 3.23). ¤

Corollary 4.27 Let πX : X ′ = B`D(X) → X be as (4.8) and take closed points x ∈ D
and x′ ∈ π−1

X (x) such that x′ is O-near to x. Assume char(κ(x)) = 0, or char(κ(x)) ≥
dim(X). Assume further that there is an integer e ≥ 0 for which the following hold:

(1) ex(X)κ(x′) ≤ e, and either e ≤ 2 or κ(x′) is separable over k(x).

(3) N(x) t DirO
x (X) or eO

x (X) ≤ e− 1.

Then N ′(x′) t DirO
x′(X

′) or eO
x′(X

′) ≤ e− 1.

This follows from Theorem 4.26 like Corollary 3.24 follows from Theorem 3.23.

Definition 4.28 Call (B, O) admissible at x ∈ X, if N(x) t Tx(X), and call (B, O)
admissible if it is admissible at all x ∈ X.

We note that admissibility of (B, O) at x implies BI(x) ⊆ O(x), where BI(x) is defined
as follows.
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Definition 4.29 Call B ∈ B inessential at x ∈ X, if it contains all irreducible compo-
nents of X which contain x. Let

BI(x) = {B ∈ B | Z ⊆ B for all Z ∈ I(x)}
be the set of inessential boundary components at x, where I(x) is the set of the irreducible
components of X containing x.

Definition 4.30 Call x ∈ X O-regular (or X O-regular at x), if

(4.12) HO
X(x) = (νreg

X , |BI(x)|) .

Call X O-regular, if it is O-regular at all x ∈ X.

Lemma 4.31 If (B, O) is admissible at x and X is O-regular at x, then X is regular and
normal crossing with B at x.

Proof The proof is identical with that of Lemma 3.28. ¤

Lemma 4.32 Let π : X ′ = B`D(X) → X be as (4.8). If (B, O) admissible at x ∈ X,

then (B′, O′) and (B̃, Õ) are admissible at any x′ ∈ X ′ with x = π(x′).

Proof In the same way as in the proof of Lemma 4.22, this is reduced to the embedded
case (Theorem 3.29). ¤
Later we shall need the following comparison for a closed immersion.

Lemma 4.33 Let i : Y ↪→ X be a closed immersion of excellent schemes, let B be a
boundary on X, and let BY = i−1(B) be its pull-back to Y .

(1) For a closed regular subscheme D ⊂ Y and x ∈ D, D is transversal (resp. normal
crossing) with B at x if and only if it is transversal (resp. normal crossing) with BY .

(2) Let O be a history function for B, and define the function

OY : Y → {submultisets of BY } , OY (x) = {{BY | B ∈ O(x)}} .

Then OY is a history function for BY . If x ∈ Y and (BY , OY ) is admissible at x, then
(B, O) is admissible at x. (The converse does not always hold.)

(3) Let D ⊂ Y be a regular closed subscheme which is permissible for Y and X. Then D
is BY -permissible if and only if it is B-permissible. Moreover, it is OY -permissible if and
only if it is O-permissible.

(4) Let D ⊂ Y be BY -permissible and BX-permissible, let πY : Y ′ = B`D(Y ) → Y and
πY : Y ′ = B`D(Y ) → Y be the respective blowups in D and i′ : Y ′ ↪→ X ′ the closed
immersion. Moreover let O a history function for B. Then we have the equality

((BY )′, (OY )′) = ((B′)Y ′ , (O
′)Y ′) and (B̃Y , ÕY ) = ((B̃)Y ′ , (Õ)Y ′)

for the complete and strict transforms, respectively.

The proofs are along the same lines as for Lemma 4.21. For (2) note that Tx(Y ) ⊂ Tx(X)
and that for subspaces T1 ⊂ T2 ⊂ Tx(X) one has N(x) t T1 =⇒ N(x) t T2.

Remark 4.34 Since a regular subscheme of a regular scheme is always permissible, Lemma
4.21 can be seen as a special case of Lemma 4.33.
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5 Main theorems and strategy for their proofs

We will treat the following two situations in a parallel way:

(E) (embedded case) X is an excellent scheme, i : X ↪→ Z is a closed immersion into an
excellent regular scheme Z, and B is a simple normal crossings boundary on Z (Definition
3.3).

(NE) (non-embedded case) X is an excellent scheme, and B is a boundary on X (Definition
4.1).

Definition 5.1 (1) A point x ∈ X is called B-regular if X is regular at x (i.e. OX,x

is regular) and normal crossing with B at x (i.e., B(x) is normal crossing with Xx =
Spec(OX,x) on Xx, i.e., defines a normal crossing divisor on Xx). Call X B-regular, if
every x ∈ X is B-regular, i.e., if X is regular and B is normal crossing with X.

(2) Call x strongly B-regular if X is regular at x and for every B ∈ B(x), B con-
tains the (unique) irreducible component on which x lies. (This amounts to the equation
B(x) = BI(x) where BI(x) is the (multi)set of inessential boundary components at x, see
Definitions 3.26 (Case (E)) and 4.29 (Case (NE)).)

Denote by Xreg (resp. XBreg, resp. XBsreg) the set of the regular (resp. B-regular, resp.
strongly B-regular) points of X. These are open subsets of X, and dense in X if X is
reduced. Call XBsing = X −XBreg the B-singular locus of X.

We introduce the following definition for the case of non-reduced schemes.

Definition 5.2 (1) Call x ∈ X quasi-regular, if Xred is regular at x and X is normally
flat along Xred at x. Call X quasi-regular if it is quasi-regular at all x ∈ X, i.e., if Xred is
regular and X is normally flat along Xred. (Compare Definition 2.1, but we have reserved
the name ‘permissible’ for subschemes not containing any irreducible component of X.)

(2) Call x ∈ X quasi-B-regular, if Xred is B-regular at x and X is normally flat along
Xred at x. Call X quasi-B-regular, if X is quasi-B-regular at all x ∈ X, i.e., if Xred

is B-regular and X is normally flat along Xred. (Similar remark on comparison with
B-permissibility.)

(3) Call x ∈ X strongly quasi-B-regular, if Xred is strongly B-regular at x and X is
normally flat along Xred at x.

Note that X is regular if and only if X is quasi-regular and reduced. Similarly, X is
B-regular if and only if X is quasi-B-regular and reduced. Finally, x ∈ X is strongly
B-regular if and only if x is strongly quasi-B-regular and OX,x is reduced.

Denote by Xqreg, XBqreg and XBsqreg the sets of quasi-regular, quasi-B-regular and strongly
quasi-B-regular points of X, respectively. By Theorem 2.2 these are dense open subsets
of X. Moreover, we have inclusions

Xqreg ⊃ XBqreg ⊃ XBsqreg ⊃ Xqreg \ (Xqreg ∩ B)
∪ ∪ ∪ ∪

Xreg ⊃ XBreg ⊃ XBsreg ⊃ Xreg \ (Xreg ∩ B)

where the last inclusions of both rows are equalities if no B ∈ B contains any irreducible
component of X and the vertical inclusions are equalities if X is reduced.
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Lemma 5.3 Let X be a connected excellent scheme.

(a) For ν ∈ Σmax
X one has X(ν) ∩ Xqreg 6= ∅ if and only if X = X(ν). Thus HX is not

constant on X if and only if X(ν) ⊂ X −Xqreg for all ν ∈ Σmax
X .

(b) Let (B, O) be an admissible boundary with history on X. For ν̃ ∈ ΣO,max
X one has

XO(ν̃) ∩ XBsqreg 6= ∅ if and only if X = XO(ν̃). Thus HO
X is not constant on X if and

only if XO(ν̃) ⊆ X −XBsqreg for all ν̃ ∈ ΣO,max
X .

Proof (a): Let x ∈ X(ν) ∩ Xqreg, let Z be an irreducible component of X containing
x, and let η be the generic point of Z. Since Xqreg is open and dense in X, and is quasi-
regular, η is contained in Xqreg and HX is constant on Xqreg by Theorem 2.3. Therefore
ν = HX(x) = HX(η), i.e., η ∈ X(ν). Since ν ∈ Σmax

X , X(ν) is closed, and we conclude
that Z = {η} ⊂ X(ν). By Lemma 2.5 we conclude that X = X(ν) = Z. This proves the
first claim (the other direction is trivial). The second claim is an obvious consequence.
(b): For the non-trivial direction of the first claim let ν̃ = (ν, m), with ν ∈ NN and m ≥ 0.
Then ν ∈ Σmax

X and XO(ν̃) ⊆ X(ν). Consequently, if XO(ν̃)∩XBsqreg 6= ∅, then X = X(ν)
by (a), and X is irreducible. If η is the generic point of X, then we conclude as above
that η ∈ XO(ν̃), and hence X = XO(ν̃), since the latter set is closed. Again the second
claim follows immediately.

Now we study blow-ups. Lemma 3.2 implies:

Lemma 5.4 If π : X ′ = B`D(X) → X is the blow-up of X in a B-permissible subscheme
D, and B′ is the complete transform of B, then π−1(XBsreg) ⊂ X ′

B′sreg and π−1(XBsqreg) ⊂
X ′
B′sqreg.

We first consider the case (NE).

Definition 5.5 (Case (NE)) A sequence of complete (resp. strict) B-permissible blowups
over X is a diagram

(5.1)

B = B0 B1 B2 Bn−1 Bn · · ·

X = X0
π1←− X1

π2←− X2 ← . . . ← Xn−1
πn←− Xn ← · · ·

where for any n ≥ 0, Bn is a boundary on Xn, and

Xn+1 = B`Dn(Xn)
πn+1−→ Xn

is the blow-up in a Bn-permissible center Dn ⊂ Xn, and Bn+1 = B′n is the complete

transform of Bn (resp. Bn+1 = B̃n is the strict transform of Bn).
Call a sequence as in (5.1) reduced if none of the morphisms πn is an isomorphism.
For a given sequence of B-permissible blowups, define the associated reduced sequence by
suppressing all isomorphisms in the sequence and renumbering as in (5.1) again.
We abbreviate (5.1) as (X,B) = (X0,B0)

π1←− (X1,B1) ← . . . , for short.

We will prove Theorem 0.1 in the following, more general form.
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Theorem 5.6 Let (X,B) be as in (NE), with X dimension at most two.
(a) There is a canonical finite reduced sequence S(X,B) of complete B-permissible blow-
ups over X

(X,B) = (X0,B0)
π1←− (X1,B1)

π2←− . . .
πn←− (Xn,Bn)

such that πi+1 is an isomorphism over (Xi)Bisqreg, 0 ≤ i < n, and Xn is quasi-B-regular.
In particular, the morphism Xn → X is an isomorphism over XBsqreg.

Moreover the following functoriality holds:

(F1) (equivariance) The action of the automorphism group of (X,B) extends to the se-
quence in a unique way.

(F2) (localization) The sequence is compatible with passing to open subschemes U ⊆ X,
arbitrary localizations U of X and étale morphisms U → X in the following sense:
If S(X,B) ×X U denotes the pullback of S(X,B) to U , then the associated reduced
sequence (S(X,B)×X U)red coincides with S(U,BU).

(b) There is also a canonical finite reduced sequence S0(X,B) of strict B-permissible
blowups with the same properties (except that now each Bn+1 is the strict transform of
Bn).

If X is reduced, then every Xi is reduced, so that Xn is regular and Bn is normal crossing
with Xn; moreover XBsqreg = XBsreg. In particular, Theorem 0.1 can be obtained as the
case (b) for B = ∅ (where XBsreg = Xreg and Bn = ∅ for all n), i.e., as the sequence
S0(X, ∅). If we apply (a) for reduced X and B = ∅, we have XBsreg = Xreg as well,
but then, for the sequence S(X, ∅), Bn is not empty for n > 0, and we obtain the extra
information that the collection of the strict transforms of all created exceptional divisors
is a simple normal crossing divisor on Xn.

Definition 5.7 Let C be a category of schemes which is closed under localization. Say
that canonical, functorial resolution with boundaries holds for C, if the statements in
Theorem 5.6 (a) hold for all schemes in C and all boundaries on them. Say that canonical,
functorial resolution holds for C, if the statements of Theorem 0.1 (i.e., of Theorem 5.6
(b) with B = ∅) hold for all schemes in C.

Now we will consider the case (E).

Definition 5.8 (Case (E)) A sequence of complete (resp. strict) B-permissible blowups
over (X, Z) is a sequence of blowups:

(5.2)

B = B0 B1 B2 Bn−1 Bn . . .

Z = Z0
π1←− Z1

π2←− Z2 ← . . . ← Zn−1
πn←− Zn . . .

∪ ∪ ∪ ∪ ∪
X = X0

π1←− X1
π2←− X2 ← . . . ← Xn−1

πn←− Xn . . .

where for any i ≥ 0

Zi+1 = B`Di
(Zi)

πi+1−→ Zi

∪ ∪
Xi+1 = B`Di

(Xi)
πi+1−→ Xi
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are the blow-ups in a center Di ⊂ Xi which is permissible and n.c. with Bi, and where
Bi+1 = B′i is the complete transform of Bi (resp. Bi+1 = B̃i is the strict transform of Bi).
Call a sequence as in (5.2) reduced if none of the morphisms πn is an isomorphism.
For a given sequence of B-permissible blowups, define the associated reduced sequence by
suppressing all isomorphisms in the sequence and renumbering as in (5.2) again.
We abbreviate (5.2) as (X,Z,B) = (X0, Z0,B0)

π1←− (X1, Z1,B1) ← . . . , for short.

We will prove Theorem 0.3 in the following form.

Theorem 5.9 Let (X, Z,B) be as in (E), with X of dimension at most two.
(a) There is a canonical finite reduced sequence S(X,Z,B) of complete B-permissible
blow-ups over X

(X,Z,B) = (X0, Z0,B0)
π1←− (X1, Z1,B1)

π2←− . . .
πn←− (Xn, Zn,Bn)

such that πi+1 is an isomorphism over (Z−X)∪(Xi)Bisqreg, 0 ≤ i < n and Xn is quasi-Bn-
regular. In particular, the morphism Zn → Z is an isomorphism over (Z −X) ∪XBsqreg.
Moreover the following functoriality holds:

(F1) (equivariance) The action of the automorphism group of (Z, X,B) (those automor-
phisms of Z which respect B and X) extends to the sequence in a unique way.

(F2) (localization) The sequence is compatible with passing to open subschemes U ⊆ Z,
arbitrary localizations U of Z and étale morphisms U → Z in the following sense: If
S(X,Z,B)×Z U denotes the pullback of S(X, Z,B) to U , then the associated reduced
sequence (S(X,Z,B)×Z U)red coincides with S(X ×Z U,U,BU).

(b) There is also a canonical finite reduced sequence S0(X, Z,B) of strict B-permissible
blowups over (X, Z) with the same properties (except that now each Bn+1 is the strict
transform of Bn).

Again, for reduced X all Xi are reduced, XBsqreg = XBsreg, and Xn is regular and normal
crossing with the simple normal crossings divisor Bn.

Definition 5.10 Let C be a category of schemes which is closed under localization. Say
that canonical, functorial embedded resolution with boundaries holds for C, if the state-
ments in Theorem 5.9 (a) hold for all triples (X, Z,B) where Z is a regular excellent
scheme, B is a simple normal crossing divisor on Z and X is a closed subscheme of X
which is in C.

Remark 5.11 It follows from Lemma 4.21 that Theorem 5.6 implies Theorem 5.9, in
the following way: If S(X,BX) is constructed, one obtains S(X,Z,B) by consecutively
blowing up Zi in the same center as Xi, and identifying Xi+1 with the strict transform of
Xi in Zi+1. Conversely, the restriction of S(X, Z,B) to X is S(X,BX). More generally,
by the same approach, canonical, functorial embedded resolution with boundaries holds
for a category C of schemes as in Definition 5.10 if canonical, functorial resolution with
boundaries holds for C.

We set up the strategy of proof for the above theorems in a more general setting. Let X
be an excellent scheme.
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Definition 5.12 Call an excellent scheme Y equisingular, if HY is constant on Y . Call
Y locally equisingular if all connected components are equisingular.

As we will see below, our strategy will be to make X locally equisingular.

Remark 5.13 (a) For U ⊆ X open and x ∈ U one has HU(x) = HX(x)(dim(U)−dim(X)).
Hence HU(x) ≤ HX(x), and U is equisingular if and only if U ⊆ X(ν) for some ν ∈ ΣX .

(b) By Lemma 5.3 (a) there are two possibilities for a connected component U ⊆ X:
Either U is equisingular (and irreducible), or Umax is nowhere dense in U . In the first
case, it follows from Theorem 1.34 (1) and Theorem 2.10 (1) that, for any permissible
blow-up π : X ′ → X, π−1(U) is equisingular as well (viz., π−1(U) ⊂ X ′(ν) if U ⊂ X(ν)),
because by definition, permissible centers are nowhere dense in X.

(c) If X is reduced, then a connected component U ⊂ X is equisingular if and only if U
is regular (cf. Remark 1.33). Hence X is locally equisingular iff it is equisingular iff it is
regular.

(d) By way of example, the following situation can occur for non-reduced schemes: X
is the disjoint union of three irreducible components U1, U2 and U2, where ΣU1 = {ν1},
ΣU2 = {ν1, ν2} and ΣU3 = {ν3}, such that ν1 < ν2 < ν3. By just blowing up in Xmax we
cannot make X locally equisingular.

Motivated by the remarks above, we define:

Definition 5.14 Let X be connected and not equisingular. For ν ∈ Σmax
X , a ν-elimination

for X is a morphism ρ : X ′ → X that is the composite of a sequence of morphisms:

X = X0 ← X1 ← · · · ← Xn = X ′

such that for 0 ≤ i ≤ n, πi : Xi+1 → Xi is a blowup in a permissible center Di ⊆ Xi(ν)
and Xn(ν) = ∅.

Let ν1, . . . , νr be the elements of Σmax
X and assume given a νi-elimination ρi : Xi → X

of X for each i ∈ {1, . . . , r}. Noting that ρi is an isomorphism over X −X(νi) and that
X(νi)∩X(νj) = ∅ if 1 ≤ i 6= j ≤ r, we can glue the ρi over X – which is a composition of
permissible blow-ups again – to get a morphism ρ : X ′ → X which is a Σmax-elimination
where we define:

Definition 5.15 Let X be connected and not equisingular. A morphism ρ : X ′ −→ X is
called a Σmax-elimination for X if the following conditions hold:

(ME1) ρ is the composition of permissible blowups and an isomorphism over X −Xmax.

(ME2) ΣX′ ∩ Σmax
X = ∅.

Note that, by Theorem 2.10 (1), (ME1) and (ME2) imply:

(ME3) For each µ ∈ ΣX′ there exists a ν ∈ Σmax
X with µ < ν.

Definition 5.16 For any excellent scheme X, a morphism ρ : X ′ → X is called a Σmax-
elimination, if it is a Σmax-elimination after restriction to each connected component which
is not equisingular, and an isomorphism on the other connected components.
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Theorem 5.17 Let X be an excellent scheme, and let X = X0 ← X1 ← · · · be a sequence
of morphisms such that πn : Xn+1 → Xn is a Σmax-elimination for each n. Then there is
an N ∈ N such that XN is locally equisingular. (So πn is an isomorphism for n ≥ N .)

For the proof we need some preparations. Let HF ⊂ NN be the set of all Hilbert functions
of graded rings, and let HP be the set of all Hilbert polynomials. For ν ∈ HF , write Pν

for the associated Hilbert polynomial. We recall that HP is totally ordered by

P1 ≥ P2 ⇔ P1(n) ≥ P2(n) for n >> 0 ,

and that we trivially have

(5.3) ν ≥ ν ′ =⇒ Pν ≥ Pν′ .

Let X be an excellent scheme. For x ∈ X, let PX(x) be the Hilbert polynomial of HX(x)
and let

ΣP -max
X = {ν ∈ ΣX | Pν = Pmax

X } and XP -max = ∪
ν∈ΣP-max

X

X(ν),

where Pmax
X = max{PX(x) | x ∈ X}. Theorem 1.34 implies:

Lemma 5.18 XP-max is closed in X.

In fact, if ν ∈ ΣP -max
X and µ ≥ ν, then µ ∈ ΣP -max

X by (5.3), so that XP -max is the union
of the finitely many closed sets X(≥ ν) for ν ∈ ΣP -max

X . Theorem 2.10 (1) and (5.3) imply

Lemma 5.19 If π : X ′ −→ X is a permissible blow-up, then Pmax
X′ ≤ Pmax

X .

Proof of Theorem 5.17 Suppose there exists an infinite sequence X = X0 ← X1 ← . . .
of Σmax-eliminations such that no Xn is locally equisingular. For each n ≥ 0 let X0

n ⊆ Xn

be the union of those connected components of Xn which are not equisingular, and let
Yn = (X0

n)P -max. Then X0
n+1 ⊆ π−1

n (X0
n), so by Remark 5.13 (a) and Lemma 5.19 we

have Pmax
X0

n+1
≤ Pmax

X0
n

. By Theorem 1.17 we may assume that Pmax
X0

n
= Pmax

X0
n+1

for all n ≥ 0.

By Theorem 2.10 this implies πn(Yn+1) ⊂ Yn, and we get an infinite sequence of proper
morphisms Y = Y0 ← Y1 ← · · · . By Lemma 5.21 below one can choose a sequence of
points xn ∈ Yn for n = 0, 1, . . . such that xn = πn(xn+1). By [H2] Theorem (1.B) and
Theorem 2.10 (3) we may assume HXn(xn) = HXn+1(xn+1) for all n ≥ 0, so that there
exists a ν0 ∈ HF such that ν0 ∈ ΣP

X0
n

for all n ≥ 0. We claim that ν0 ∈ Σmax
X0

n
for some n.

Then (ME2) contradicts ν0 ∈ ΣX0
n+1

. Let Sn = {ν ∈ Σm
X0

n
ax | ν > ν0}. We want to show

Sn = ∅ for some n. Let ν1, . . . , νr be the elements of S0 and put

Λ = {µ ∈ HF | ν0 ≤ µ < νi for some i ∈ [1, r]}.
Thus the claim follows from the following:

Lemma 5.20 Λ is finite, Sn ⊂ Λ, and Sn ∩ Sm = ∅ if n 6= m ≥ 0.

Proof The first claim follows from the assumption that Pνi
= Pν so that there exists

N > 0 such that ν0(n) = νi(n) for all n ≥ N and all i = 1, . . . , r. The second and third
claim follow from (ME3) and (ME2), respectively. ¤
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Lemma 5.21 Let Z0
π0←− Z1

π1←− Z2
π2←− · · · be an infinite sequence of proper morphisms

of non-empty noetherian schemes. Then there exists a sequence of points xn ∈ Zn (n =
0, 1, 2, . . . ) such that xn = πn(xn+1).

Proof For m > n ≥ 0, let πn,m : Zm → Zn be the composite of πi for i = n, . . . ,m−1 and
put Zn,m = πn,m(Zm). By the properness, Zn,m is non-empty and closed in Zn. Clearly
we have Zn ⊃ Zn,n+1 ⊃ Zn,n+2 ⊃ · · · and

(5.4) Zn,l = πn,m(Zm,l) for l > m > n.

Put Zn,∞ = ∩
m>n

Zn,m. By the Noetherian condition, there exists N(n) > n such that

Zn,∞ = Zn,N(n) so that Zn,∞ 6= ∅. Then (5.4) implies Zn,∞ = πn,m(Zm,∞) for m > n. Thus
we get an infinite sequence of proper surjective morphisms Z0,∞ ← Z1,∞ ← Z2,∞ ← · · · .
Now the desired claim follows by the axiom of choice. ¤

Corollary 5.22 To prove (canonical, functorial) resolution of singularities for all ex-
cellent reduced schemes of dimension ≤ d, it suffices to prove that for every connected
non-regular excellent reduced scheme X of dimension ≤ d there exists a (canonical func-
torial) Σmax-elimination X ′ → X. Equivalently, it suffices to show that for every such
scheme and every ν ∈ Σmax

X , there is a (canonical functorial) ν-elimination for X. Here
functoriality means that the analogues of the properties (F1) and (F2) in Theorem 5.6
hold for the Σmax- and ν-eliminations, respectively, where the analogue of property (F2)
for a ν-elimination is the following: If µ := ν(dim X−dim U) (notation as in Remark 1.12
(c)), then either U(µ) = ∅, or µ ∈ Σmax

U and the pullback of the sequence to U is the
canonical µ-elimination on U , after passing to the associated reduced sequence.

In fact, under these assumptions one gets a (canonical, functorial) sequence X ← X1 ← . . .
of Σmax-eliminations, and by Theorem 5.17 some Xn is locally equisingular, which means
that Xn is regular (Remark 5.13 (c)).

Now we consider the non-reduced case.

Corollary 5.23 To prove (canonical, functorial) resolution of singularities for all excel-
lent schemes of dimension ≤ d, it suffices to prove that there exists a (canonical, func-
torial) Σmax-elimination X ′ → X for every connected excellent scheme X of dimension
≤ d on which the Hilbert-Samuel function HX is non-constant. Equivalently, it suffices
to show that for every such scheme and every ν ∈ Σmax

X , there is a (canonical, functorial)
ν-elimination for X. Here functoriality is defined as in Corollary 5.22.

In fact, here we first get a (canonical, functorial) sequence X ← X1 ← . . . ← Xm of Σmax-
eliminations such that Xm is locally equisingular. By Corollary 5.22 we get a similar
sequence (Xm)red ← X ′

m+1 ← . . . ← X ′
n such that X ′

n is regular. Blowing up in the same
centers we get a sequence of blow-ups Xm ← Xm+1 ← . . . ← Xn, where X ′

i is identified
with (Xi)red, and X ′

i+1 with the strict transform of X ′
i in Xi+1. For each i ≥ m, Xi

is again equisingular (see remark 5.13), and by Theorem 2.3 the blow-up Xi+1 → Xi is
permissible. It follows that (Xn)red is regular and Xn is normally flat along (Xn)red. Now
assume that the first sequence and the sequence (Xm)red ← . . . are functorial. Then it
is immediate that the sequence X ← . . . ← Xn is functorial for localizations as well. As
for automorphisms, it follows inductively via localization that the automorphisms of Xi
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(i ≥ m) respect the center of the blow-up Xi+1 → Xi and therefore extend to Xi+1 in a
unique way.

We now consider a variant of the above for schemes with boundary. Let X be an excellent
scheme, and let B be a boundary for X, i.e., a boundary on X (case (NE)) or on Z
(case (E)). In the following we only consider complete transforms for the boundaries, i.e.,
sequences of complete B-permissible blow-ups, and we will simply speak of sequences of
B-permissible blow-ups. It is easy to see that the analogous results also hold for the case
of strict transforms, i.e., sequences of strict B-permissible blow-ups.

Definition 5.24 Call X O-equisingular if HO
X is constant on X, and locally O-equisingular,

if every connected component is O-equisingular.

Remark 5.25 (a) It follows from Lemma 5.3 (b) that a connected component U ⊆ X is
either O-equisingular, or UO

max is nowhere dense in U . In the first case U ⊆ XO(ν̃) for
some ν̃ ∈ ΣO

X , and for every B-permissible blow-up π : X ′ → X one has π−1(U) ⊆ X ′(ν̃).

(b) If X is reduced, then X is locally O-equisingular if and only if X is O-regular.

(c) Even for a regular scheme X it can obviously happen that X is the union of three irre-
ducible components U1, U2 and U3 such that ΣO

U1
= {(νreg

X , 1)}, ΣO
U2

= {(νreg
X , 1), (νreg

X , 2)}
and ΣO

U3
= {(νreg

X , 3)}, so that X cannot be made O-equisingular by blowing up in XO
max.

Definition 5.26 Let O be a history function for B such that (B, O) is admissible, and let

(5.5) X = X0
π1←− X1 ← . . . ← Xn−1

πn←− Xn

be a sequence of B-permissible blow-ups (where we have not written the boundaries Bi,
and neither the regular schemes Zi in case (E)). For each i = 0, . . . , n− 1 let (Bi+1, Oi+1)
be the complete transform of (Bi, Oi) (where (B0, O0) = (B, O)). Let Di be the center of

the blow-up Xi
πi+1←− Xi+1, and ρ = πn ◦ . . . ◦ π0 : Xn → X.

(1) If X is connected and not O-equisingular, and ν̃ ∈ ΣO,max
X , then (5.5) or ρ is called a

ν̃-elimination, if Di ⊆ Xi(ν̃) for i = 1, . . . , n− 1 and Xn(ν̃) = ∅.
(2) If X is connected and not O-equisingular, then (5.5) or ρ is called a ΣO,max-elimination
for (X,B, O), if Di ⊆ (Xi)

O
max for i = 0, . . . , n− 1 and ΣO

Xn
∩ ΣO,max

X = ∅.
(3) If X is arbitrary, then (5.5) or ρ is called a ΣO,max-elimination for (X,B, O), if it
is a ΣO,max-elimination after restriction to each connected component of X which is not
O-equisingular, and an isomorphism after restriction to the other connected components.
(4) Call the sequence (5.5) reduced, if none of the morphisms is an isomorphism, and in
general define the associated reduced sequence by omitting the isomorphisms and renum-
bering (so the final index n may decrease).

By glueing, one gets a (canonical, functorial) ΣO,max-elimination for a connected, not O-
equisingular X, if one has canonical, functorial ν̃-eliminations for all ν̃ ∈ ΣO,max

X , and a
(canonical, functorial) ΣO,max-elimination for a non-connected X, if one has this for all
connected components. Here functoriality is defined as in Corollary 5.22. Moreover, in a
similar way as above one proves:

Theorem 5.27 For any infinite sequence X = X0 ← X1 ← X2 ← . . . of ΣO,max-
eliminations there is an n such that (Xn,Bn, On) is O-equisingular.
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The following result is now obtained both in the embedded and the non-embedded case.

Corollary 5.28 Case (NE): To show (canonical, functorial) resolution of singularities
with boundaries for all reduced excellent schemes of dimension ≤ d it suffices to show the
existence of (canonical, functorial) ΣO,max-eliminations for all connected reduced excellent
schemes X of dimension ≤ d and all admissible boundaries with history (B, O) for X,
for which X is not O-regular. (Here ‘functorial’ in the last statement means that the
obvious analogues of the conditions (F1) and (F2) in Theorem 5.6 hold for the sequences
considered here.)
Case (E): The obvious analogous statement holds.

In fact, if (X,B) is given, we start with the history function O(x) = B(x). Then X
is O-regular if and only if X is strongly B-regular at all x ∈ X. If this holds, we are
done. If not, then by assumption there is a (canonical, functorial) ΣO,max-elimination
X1 → X, and we let (B1, O1) be the strict transform of (B, O) in X1 (which is obtained
by successive transforms for the sequence of B-permissible blowups whose composition is
X1 → X). Then (B1, O1) is admissible by Lemma 4.32. If X1 is O1-regular, we are done
by Lemma 3.28. If not we repeat the process, this time with (X1,B1, O1), and iterate if
necessary. By Theorem 5.27, after finitely many steps this process obtains an Xn which is
On-regular and hence achieves the resolution of X by Lemma 3.28 (case (E)) and Lemma
4.31 (case (NE)).

In the non-reduced case we obtain:

Corollary 5.29 Case (NE): To show (canonical, functorial) resolution of singularities
with boundaries for all excellent schemes of dimension ≤ d it suffices to show the existence
of (canonical, functorial) ΣO,max-eliminations for all connected excellent schemes X of
dimension ≤ d and all admissible boundaries with history (B, O) for X, for which HO

X is
not constant. (Here ‘functorial’ in the last statement means that the obvious analogues of
the conditions (F1) and (F2) in Theorem 5.6 hold for the sequences considered here.)
Case (E): The obvious analogous statement holds.

This follows from Corollary 5.28 in a similar way as Corollary 5.23 follows from 5.22: First
we get a (canonical, functorial) sequence of B-permissible blow-ups X ← X1 ← . . . ← Xm

such that HO
Xm

is constant on each connected component of Xm. Then we look at the
(canonical, functorial) resolution sequence (Xm)red ← X ′

m+1 ← . . . ← X ′
n from Corollary

5.28 such that X ′
n is B′n-regular, where B′n comes from B via complete transforms. By

blowing up in the same centers we obtain a sequence of B-permissible blow-ups Xm ←
Xm+1 ← . . . ← Xn such that (Xn)red identifies with X ′

n and thus is B′n-regular; moreover,
Xn is normally flat along (Xn)red, because HO

Xn
is constant on all connected components.

We now prove Theorem 5.6. Then, by Remark 5.11, Theorem 5.9 follows as well.

By Corollary 5.29, it suffices to produce canonical, functorial ΣO,max-eliminations for all
connected excellent schemes X of dimension at most two and all admissible boundaries
with history (B, O) on X such that HO

X is not constant on X.

By the remarks after Definition 5.26 it suffices to produce canonical functorial ν̃-eliminations
for all ν̃ ∈ ΣO,max

X . These are in turn obtained by the following, slightly more general
result.
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Theorem 5.30 (Case (NE)) Let X be an excellent connected scheme, let (B, O) be an
admissible boundary with history on X such that HO

X is not constant on X, and let ν̃ ∈
ΣO,max

X . Assume the following:

(1) char(κ(x)) = 0, or char(κ(x)) ≥ dim(X) for any x ∈ X(ν̃),

(2) dim(X(ν̃)) ≤ 1,

and there is an integer e with 0 ≤ e ≤ 2 such that for any closed point x ∈ X(ν̃),

(3e) ex(X) ≤ e,

(4e) either N(x) t DirO
x (X) or eO

x (X) ≤ e− 1.

Then there exists a canonical reduced ν̃-elimination S(X, ν̃)

(X,B) = (X0,B0) ← (X1,B1) ← . . . ← (Xn,Bn)

for X. It satisfies the analogues of properties (F1) and (F2) from Theorem 5.6, where the
analogue of (F2) is the following: If ν̃ = (ν, m) and µ := ν(dim X−dim U) (notation as in
Remark 1.12 (c)), then either U(ν̃) = ∅, or µ̃ = (µ,m) ∈ ΣO,max

U and the reduced sequence
associated to the pullback of the sequence to U is the canonical µ̃-elimination for U .

In fact, if X is of dimension d ≤ 2, then condition (1) holds, and condition (3e) holds
with e = d. If moreover X is connected and HO

X is not constant on X, then condition (2)
holds by Lemma 5.3. On the other hand, in the presence of condition (1) it suffices to
consider admissible boundaries with history (B, O) which satisfy condition (4e). In fact,
in the procedure outlined in the proof of Corollary 5.29, property (4e) is trivially fulfilled
in the beginning where O(x) = B(x), i.e., N(x) = ∅, and by Corollary 4.27 it is fulfilled
for X ′ as well, if X ′ → X is a blowup in a permissible center D ⊆ XO

max.

Proof of Theorem 5.30 We will first study what happens if we blow up a point or a
regular irreducible curve of X.

Step 1 Let x be a closed point in X(ν̃) and consider π : X ′ := B`x(X) → X. Note
that x ↪→ X is B-permissible for trivial reasons. By Theorem 2.10 and Corollary 4.27,
conditions (3e) and (4e) are satisfied for X ′ and the complete transform B′ of B. By
Theorem 4.19 we have

(5.6) D := X ′(ν̃) ∩ π−1(x) ⊂ P(DirO
x (X)) ' Pt

κ(x),

where t = eO
x (X)− 1 ≤ ex(X)− 1 ≤ e− 1 ≤ 1 (by convention Pt

κ(x) = ∅ if t < 0). Hence

condition (2) is also satisfied for X ′. Moreover, if dim(D) ≥ 1, then D = P(DirO
x (X)), so

that D is O′-permissible, and condition (3e) implies e = 2 and N(x) t DirO
x (X), so that

D is n.c. with N ′ by Lemma 4.24. Hence D is a union of closed points or a projective
line over k(x), and in both cases it is B′-permissible.

Step 2 Now let D ⊂ X(ν̃) be regular irreducible of dimension 1 and n.c. with B. By
Theorem 4.12, D ⊂ X is B-permissible. Let η be the generic point of D. Consider
π : X ′ := B`D(X) → X. By Theorem 2.10 and Corollary 4.27, conditions (3e) and (4e)
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are satisfied for X ′ and the complete transform B′ of B. Let x ∈ D be a closed point. By
Theorem 4.19, we have

X ′(ν̃) ∩ π−1(x) ⊂ P(DirO
x (X)/Tx(D)) ' Ps

κ(x),

where s = eO
x (X)− 2 ≤ ex(X)− 2 ≤ e− 2 ≤ 0 by (3e) for X. Hence there is at most one

point in X ′(ν̃) ∩ π−1(x) so that dim(X ′(ν̃) ∩ π−1(D)) ≤ 1 and condition (2) is satisfied
for X ′. Similarly we have

X ′(ν̃) ∩ π−1(η) ⊂ P(DirO
η (X)) ' Pr

κ(η),

where r = eO
η (X)−1 ≤ eη(X)−1 ≤ ex(X)−2 ≤ 0 by Theorem 2.6. Hence, if X ′(ν)∩π−1(η)

is not empty, then it consists of a unique point η′, and one has κ(η) ' κ(η′). This implies
that π induces an isomorphism D′ ∼→ D where D′ = X ′(ν̃)∩ π−1(D). Thus D′ is regular,
and O′-permissible by Theorem 4.12. Moreover, ex(X) = 2 in this case so that condition
(3e) for X implies e = 2 and N(x) t Dirx(X). By Lemma 4.25, D′ is n.c. with N ′, hence
with B′. Hence D′ is a collection of closed points or a regular irreducible curve, and in
both cases it is B′-permissible.

Step 3 Consider the special case where dim(X) = 1. Here dim X(ν̃) = 0, so every
point x ∈ X(ν̃) is isolated in X(ν̃), and moreover we have ex(X) ≤ dim(X) = 1. The
canonical ν̃-elimination sequence consists of blowing up all points in X(ν̃) and repeating
this process as long as X(ν̃) 6= ∅. By Theorem 5.34 below this process stops after finitely
many steps. So Theorem 5.30 holds. As noticed above, this shows that there exists
a canonical, functorial resolution sequence for (X,B), i.e., that Theorem 5.6 holds for
dim(X) = 1.

Step 4 Now we consider the general case and construct a canonical reduced sequence
S(X, ν̃)

(5.7) X = X0
π1←− X1 ← . . . ← Xn−1

πn←− Xn . . .

of B-permissible blowups over X as follows. Let Y0 = X0(ν̃). If Xn has been constructed,
then let Yn = Xn(ν̃). Give labels to the irreducible components of Yn in an inductive way
as follows. The irreducible components of Y0 all have label 0. If an irreducible component
of Yn dominates an irreducible component of Yn−1, it inherits its label. Otherwise it gets
the label n. Then we can write

Yn = Y (0)
n ∪ Y (1)

n ∪ . . . ∪ Y (n−1)
n ∪ Y (n)

n ,

where Y
(i)
n is the union of irreducible components of Yn with label i.

Step 5 By assumption, dim(Y0) ≤ 1. Let BYo = B ×X Y0 be the pull-back, and let

Y0 = Y0,0 ← Y0,1 ← . . . Y0,m−1 ← Y0,m

be the canonical resolution sequence of Theorem 5.6 for (Y0,BY0) (which exists and is
finite by Step 3), so that Y0,m is regular and normal crossing with B0,m, where we write
B0,i for the boundary obtained on Y0,i. Let

X = X0
π1←− X1 ← . . . ← Xm−1

πm←− Xm
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be the sequence of B-permissible blowups obtained inductively by blowing up Xi in the
center Di of the blowup Y0,i+1 → Y0,i. This is a collection of closed points and hence
Bi-permissible, where we write Bi for the boundary obtained on Xi. Moreover, Y0,i+1 is
identified with the strict transform of Y0,i in Xi+1. By Lemma 4.33 (4) we have B0,i =
(Bi)Y0,i

. Since each Di is a nowhere dense subscheme of Y0,i, each Y0,j is contained in

Xj(ν̃) = Yj, and is in fact equal to the label 0 part Y
(0)
j of Yj as defined above. This is

the first stage of (5.7)

Claim 1 For m as above, and all i ≥ 0, the subschemes Y
(i)
m are regular, of dimension at

most 1, and Bm-permissible.

In fact, for Y
(0)
m this holds by construction. Moreover, from the statements in Step 1 we

conclude that, for 0 < i ≤ m, all schemes Y
(i)
i are disjoint unions of closed points and

projective lines and hence regular, moreover they are Bi-permissible. Let [Yj]0 be the union
of the 0-dimensional components of Yj. Since Xj+1 → Xj is a blowup in closed points

not contained in [Yj]0, the morphism Y
(i)
j → Y

(i)
i is an isomorphism for j = i, . . . , m, and

hence Y
(i)
j is normal crossing with Bj (direct check, or application of Lemma 3.2). Since

Y
(i)
j is regular and contained in Xj(ν̃), we conclude it is Bj-permissible.

Step 6 Next we blow up the subscheme Y
(0)
m , which is regular and Bm-permissible, and

obtain Xm+1.

Claim 2 For all i ≥ 0, the subschemes Y
(i)
m+1 are regular, of dimension at most 1, and

Bm+1-permissible. Moreover, the intersection of Y
(m+1)
m+1 with Y

(i)
m+1 is empty for all i ∈

{0, . . . , m}.
The first part follows by similar arguments as above. In fact, for Y

(0)
m+1 the arguments

are exactly the same as above. For Y
(i)
m+1 with i > 0 we have to be careful, since Y

(i)
m+1

consists of irreducible components of the strict transform of Y
(i)
m , i.e., the blowup of

Y
(i)
m in Y

(i)
m ×Xm Y

(0)
m , which is a zero-dimensional scheme with a possibly non-reduced

structure. But since Y
(i)
m is regular of dimension at most 1 and Y

(0)
m ∩ [Y

(i)
m ]0 = ∅ for i > 0,

Y
(i)
m+1 → Y

(i)
m is an isomorphism . As for the second part, Y

(m+1)
m+1 consists of finitely many

closed points which, by definition, are not contained in the other sets.

Step 7 Next we blow up Xm+1 in Y
(0)
m+1 if this is non-empty, and in Y

(1)
m+1, otherwise, and

obtain Xm+2. We proceed in this way for n > m, blowing up Xn in Y
(j)
n where j ≥ 0

is the smallest number with Y
(j)
n 6= ∅, to obtain Xn+1. This is well-defined, because we

always have:

Claim 3 For all n ≥ m and i ≥ 0, the subschemes Y
(i)
n are regular, of dimension at most

1, and Bn-permissible. For i ≥ m+1, the intersection of Y
(i)
n with Y

(j)
n is empty for j 6= i.

The first part follows as for n = m+1. For i = n the second part follows as in claim 2. For
m + 1 ≤ i < n, we may assume by induction that Y

(i)
n−1 ∩ Y

(j)
n−1 = ∅ for all j = 0, . . . , n− 1

with j 6= i. By definition, for all j = 0, . . . , n− 1, π(Y
(j)
n ) ⊂ Y

(j)
n−1 where π : Xn → Xn−1.

This implies Y
(i)
n ∩ Y

(j)
n = ∅ for all i ∈ {m + 1, . . . , n − 1} and all j = 0, . . . , n − 1 with

j 6= i, which proves the desired assertion.

Step 8 Thus we have defined the wanted canonical sequence S(X, ν̃), which is reduced
by construction. Now we show the finiteness of this sequence. We have
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Lemma 5.31 Let X = X0 be a scheme satisfying the assumptions of Theorem 5.30. Let
C = C0 be an irreducible regular curve in X(ν̃). Let π1 : X1 = B`C(X0) → X0, and let
C1 = X1(ν̃) ∩ π−1

0 (C0). By Step 2, dim C1 ≤ 1 and if dim C1 = 1, then C1 is regular,
C1 ⊂ X1 is B-permissible and C1 ' C0. In this case we put X2 = B`C1(X1). Repeat this
procedure to get a sequence

(5.8)
X = X0

π1←− X1
π2←− X2 ← . . . ← Xm−1

πm←− Xm . . .
∪ ∪ ∪ ∪

C = C0 ← C1 ← C2 ← . . . ← Cm−1 ← Cm . . .

such that πi : Xi = B`Ci−1
(Xi−1) and Ci = Xi(ν̃) ∩ π−1

i (Ci−1).

Then the process stops after finitely many steps, i.e., there is an m ≥ 0 with C0
∼← C1

∼←
. . .

∼← Cm and dim(Cm+1) ≤ 0.

Proof Let η be the generic point of C. As remarked in Step 2, we have eO
η (X) ≤ 1.

If eO
η (X) = 0, then C1 = ∅ so that r = 1. If eO

η (X) = 1, we get a longer sequence,
which however must be finite by Theorem 5.34 below, applied to the localization Xη =

Spec(OX,η) of X at η, and the point η in it, for which (Xη)
O
max = {η}. Note that

eO
η (Xη) = eO

η (X) by definition.

By this result, there is an N ≥ 0 such that Y
(i)
n ∩ Y

(j)
n = ∅ for all i, j ∈ {0, . . . , m} with

i 6= j, for all n ≥ N , because [Y
(i)
m ]0 ∩ Y

(j)
m = ∅ for all i 6= j, where [Y

(i)
m ]0 is the set of

zero-dimensional components in Y
(i)
n . Note that all schemes Xn satisfy the conditions in

Theorem 5.30. Therefore we have shown:

Claim 4 There is an N > 0 such that Yn = Xn(ν̃) is regular for all n ≥ N .

It is clear that the resolution sequence at each step Xn has the following property, because
the centers of the blowups always lie in the subscheme Yn: Let Yn,1, . . . , Yn,s be the
connected components of Yn, and for each i ∈ {1, . . . , s}, let Vn,i ⊂ Xn be an open
subscheme containing Yn,i but not meeting Yn,j for j 6= i. Then the resolution sequence for
X is obtained by glueing the resolution sequences for the subsets Vn,i. To show finiteness of
the resolution sequence we may thus assume that Yn is regular and irreducible. Applying
Lemma 5.31 again, we may assume that Yn is a collection of finitely many closed points
which are isolated in their O-Hilbert-Samuel stratum. Moreover, it is clear that in this
case the remaining part of the resolution sequence Xn ← Xn+1 ← . . . is just the canonical
resolution sequence S(Xn, ν̃) for Xn.

Step 9 Thus we have reduced to the case of an isolated point x ∈ X(ν̃); in fact, we
may assume that X(ν̃) just consists of x. The first step of the canonical sequence then
is to form the blowup X1 = B`x(X) → X. If eO

x (X) = 0, then X1(ν̃) = ∅ and we
are done. If eO

x (X) = 1, then X1(ν̃) is empty or consists of a unique point x1 lying
above x. In the latter case we have k(x1) = k(x), and therefore ex1(X1) ≤ ex(X) by
Theorem 2.10 (4). If ex1(X1) = 1, then eO

x1
(X1) ≤ ex1(X1) ≤ 1. Otherwise we must have

ex1(X1) = ex(X) = 2 by assumption (3e). Then eO
x1

(X1) ≤ eO
x (X) = 1 by Theorem 4.26

(1). Thus we obtain a sequence of blow-ups X = X0 ← X1 ← . . . in points xi ∈ Xi(ν̃)
such that either exn(Xn) = 0 for some n so that Xn+1(ν̃) = ∅ and the sequence stops,
or we have a sequence where exi

(Xi) = 1 for all i. But this sequence must be finite by
Theorem 5.34 below. It remains the case where eO

x (X) = ex(X) = ex(X) = 2. This
follows from Theorem 5.38 below.
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Step 10 Finally we show the functoriality, i.e., the properties (F1) and (F2) in Theorem
5.6. Property (F1) follows, because all automorphisms of (X,B) respect Y = Y0, hence
the center D0 of the first blowup, and therefore uniquely extend to the blowup (X1,B1) of
(X0,B0) in D0. Inductively, they extend to all Xn and respect Yn and its decomposition

into the union of the Y
(i)
n . Analogous statements hold for open immersions U ⊆ X or

localizations or étale morphisms, up to replacing ν̃ by the maximal element µ̃ for U
indicated in Theorem 5.30. ¤

We now prove the two results used in the proof above. Let X be an excellent scheme,
and let (B, O) be a boundary with history on X. Let x ∈ X and assume that

(F1) char(κ(x)) = 0 or char(κ(x)) ≥ dim(X).

(F2) N(x) t DirO
x (X).

(F3) eO
x (X) ≤ 1 or ex(X) = ex(X).

Consider
π1 : π : X1 = B`x(X) → X,

C1 := P(DirO
x (X)) ⊂ P(Dirx(X)) ⊂ X1.

Let η1 be the generic point of C. We note C1 ' Pt−1
k , where t = eO

x (X). By Theorem
4.19, any point of X1 which is O-near to x, lies in C.

Lemma 5.32 (1) If η1 is O-near to x, then so is any point of C1.

(2) If η1 is very O-near to x, then so is any point of C1.

Proof Take any point y ∈ C1. By Theorems 4.10 and 4.17, we have

HO
X′(η1) ≤ HO

X′(y) ≤ HO
X(x).

(1) follows from this. By Theorems 2.6 and 2.10, we have

eη1(X
′) ≤ ey(X

′)− dim(OC1,y) ≤ ex(X)− δy/x − dim(OC1,y) = ex(X)− δη1/x,

where we used (F3) for the second inequality. In fact, if eO
x (X) ≤ 1 then k(y) = k(x), so

in both cases of (F3) we can apply 2.10 (4). Hence the assumption of (2) implies that y
is very near to x. Then, by Theorems 4.22 and 4.17, we get

eO
η1

(X ′) ≤ eO
y (X ′)− dim(OC1,y) ≤ eO

x (X)− δy/x − dim(OC1,y) = eO
x (X)− δη1/x,

which implies the conclusion of (2). ¤

We now assume that t ≥ 1 and η1 is very O-near to x. This implies

(5.9) eO
η1

(X1) = eO
x (X)− dim(C1) = 1.

By (F2), Lemma 4.24 and Remark 4.14, C1 is B-permissible with respect to the complete
transform (B1, O1) of (B, O) for X1. Consider the blow-up

π2 : X2 = B`C1(X1) → X1
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and the complete transform (B2, O2) of (B1, O1) for X2. By (5.9) and Theorem 4.19, there
is a unique point η2 ∈ X2 which is O-near to η1. Let C2 be the closure of η2 in X2.
Note κ(η1) = κ(η2) and C2 ' C1, and that C2 is O2-permissible. By Lemma 5.32 and
Theorem 4.26, (F2) implies N(y) t Diry(X1) for any point y ∈ C1. By Lemma 4.25, C2

is n.c. with NB2(y
′) = B2(y

′)−O2(y
′) at the unique point y′ ∈ C2 above y, so that C2 is

B2-permissible. If η2 is very O-near to η1, we consider

π3 : X3 = B`C2(X2) → X2

and define η3, C3 and (B3, O3) in the same way as before. This construction (which
occurred in the proof of Theorem 5.30 for t = 1, 2) leads us to the following:

Definition 5.33 Assume eO
x (X) ≥ 1 and let m be a non-negative integer or ∞. The fun-

damental sequence of B-permissible blowups over x of length m is the canonical (possibly
infinite) sequence of permissible blowups:

(5.10)

B = B0 B1 B2 Bn−1 Bn

X = X0
π1←− X1

π2←− X2 ← . . . ← Xn−1
πn←− Xn ← . . .

↑ ∪ ∪ ∪ ∪
x ← C1

∼← C2
∼← . . .

∼← Cn−1
∼← Cn ← . . .

which satisfies the following conditions:

(i) X1 = B`x(X) and

C1 = P(DirO
x (X)) ∼= Pt−1

κ(x) (t = eO
x (X)) .

(ii) For 1 ≤ q ≤ m− 1, Xq+1 = B`Cq(Xq) and πq+1 : Cq+1
∼→ Cq.

(iii) For 1 ≤ q ≤ m, let ηq be the generic point of Cq and put η0 = x. For 1 ≤ q ≤ m−1,
ηq is very O-near to ηq−1. This implies eO

ηq
(Xq) = 1 for 1 ≤ q ≤ m− 1.

(iv) If m < ∞, ηm is not very O-near to ηm−1. If m = ∞ the sequence is infinite.

Here HO
Xq

are considered for the successive complete transforms (Bq, Oq) of (B, O) for Xq.
We note that for q = 1, . . . , m, we have

Cq = {ξ ∈ φ−1
q (x)| HO

Xq
(ξ) = HO

X(x)} with φq : Xq → X

The proof of the following theorem will be given in §9.

Theorem 5.34 Assume that there is no regular closed subscheme

D ⊆ {ξ ∈ Spec(OX,x) | HO
X(ξ) ≥ HO

X(x)}

of dimension eO
x (X). Then, for the sequence (5.10), we have m < ∞, i.e., it stops in

finitely many steps.
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Remark 5.35 (a) We note that the assumption of the theorem holds in particular, if

(5.11) dim
({ξ ∈ Spec(OX,x) | HO

X(ξ) ≥ HO
X(x)}) < eO

x (X).

(b) Thus a special case of Theorem 5.34 is when x is isolated in the O-Hilbert-Samuel
locus of X and eO

x (X) = 1. Here the fundamental sequence (5.10) consists of a sequence
of blowups in closed points and coincides with the canonical sequence constructed in the
proof of Theorem 5.30. We obtain its finiteness as needed in that proof.

Now we consider the fundamental sequence of B-permissible blowups over x as in Defi-
nition 5.33 for the second case needed in the proof of Theorem 5.30, namely where x is
isolated in X(ν̃) and

eO
x (X) = ex(X) = ex(X) = 2.

Again by Theorem 5.34 we deduce that the fundamental sequence (5.10) is finite, i.e.,
there exists an m < ∞ such that ηm is not very O-near to ηm−1. This situation is divided
in two cases.

Case 1: ηm is not O-near to ηm−1.
In this case there are only finitely many closed points y on Cm such that HO

Xm
(y) = HO

X(x).
Choose such a point y. Theorems 2.10 and 4.17 imply that one of the following conditions
holds:

• eO
y (Xm) = ey(Xm) = ey(Xm) = 2,

• eO
y (Xm) ≤ 1 and ey(Xm) ≤ ey(Xm) ≤ 2.

By Remark 5.35 (b), it suffices to consider the former case for the proof of Theorem 5.30.

Case 2: ηm is O-near to ηm−1.
In this case we consider

Xm+1 = B`Cm(Xm)
πm+1−→ Xm

By definition ηm is not very O-near, which means that eO
ηm

(Xm) = 0 so that there is no

point of π−1
m+1(ηm) which is O-near to ηm. Hence there are only finitely many closed points

y ∈ π−1
m+1(Cm) ∩ Xm+1 such that HO

Xm+1
(y) = HO

X(x). Choose such a point y. For the

same reason as in Case 1, we may assume eO
y (Xm+1) = ey(Xm+1) = ey(Xm+1) = 2.

The above consideration leads us to the following definition (in Case 2, we shift the index
m by −1):

Definition 5.36 A sequence of B-permissible blowups:

B = B0 B1 B2 Bm−1 Bm

X = X0
π1←− X1

π2←− X2 ← . . . ← Xm−1
πm←− Xm

↑ ∪ ∪ ∪ ↑
x ← C1

∼← C2
∼← . . .

∼← Cm−1 ← xm

is called a fundamental unit of B-permissible blowups of length m and denoted by (X ,B)
if the following conditions are satisfied:
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(i) x is a closed point of X such that eO
x (X) = ex(X) = ex(X) = 2.

(ii) X1 = B`x(X) and
C1 = P(DirO

x (X)) ∼= P1
κ(x) .

(iii) For 1 ≤ q ≤ m− 1, Xq+1 = B`Cq(Xq) and πq+1 : Cq+1
∼→ Cq.

(iii) For 1 ≤ q ≤ m − 1, let ηq be the generic point of Cq and put η0 = x. For 1 ≤
q ≤ m − 2, ηq is very O-near to ηq−1. This implies eO

ηq
(Xq) = eηq(Xq) = 1 for

1 ≤ q ≤ m− 2.

(iv) ηm−1 is O-near to ηm−2 and there exists no point in Xm which is O-near to ηm−1.

(v) xm is a closed point of Xm such that

HO
Xm

(xm) = HO
X(x) and eO

xm
(Xm) = exm(Xm) = exm(Xm) = 2.

Here HO
Xq

is considered for the successive complete transform (Bq, Oq) of (B, O) for Xq.
We note that for q = 1, . . . , m− 1, we have

Cq = {ξ ∈ φ−1
q (x)| HO

Xq
(ξ) = HO

X(x)} with φq : Xq → X

By convention, a fundamental unit of B-permissible blowups of length 1 is a sequence of
B-permissible blowups such as

B = B0 B1

X = X0
π1← X1 = B`x(X)

↑ ↑ ↑
x = x0 ← x1

where x ∈ X is as in (i) and x1 is as in (iv) with m = 1. We call (x,X,B) (resp.
(xm, Xm,Bm)) the initial (resp. terminal) part of (X ,B).

We remark that, in this definition, we have not assumed that x (resp. xm) is isolated in
XO

max (resp. (XO
m)max).

Definition 5.37 A chain of fundamental units of B-permissible blowups is a sequence of
B-permissible blowups:

X1 ← X2 ← X3 ← . . .

where Xi = (Xi,Bi) is a fundamental unit of B-permissible blowups such that the terminal
part of Xi coincides with initial part of Xi+1 for ∀ i ≥ 1.

The finiteness of the canonical ν̃-elimination S(X, ν̃) for the case where X(ν̃) = {x}
and eO

x (X) = ex(X) = ex(X) = 2, as needed in the proof of Theorem 5.30, is now a
consequence of the following result whose proof will be given in §12 and §13.

Theorem 5.38 Let X1 ← X2 ← X3 ← . . . be a chain of fundamental units of B-
permissible blowups. Let (x(i), X(i), B(i)) be the initial part of (Xi) for i ≥ 0. Assume
that, for each i, there is no regular closed subscheme C ⊆ (X(i))O

max of dimension 1 with
x(i) ∈ D (which holds if x(i) is isolated in (X(i))O

max). Then the chain must stop after
finitely many steps.
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In fact, to show the finiteness of S(X, ν̃) in the considered case, we have to show that
there is no infinite sequence of closed points xn ∈ Xn(ν̃) such that x0 = x and xn+1 lies
above xn. This can only happen if eO

xn
(Xn) = 2(= exn(Xn) = exn(Xn)) for all n, and by

construction, the canonical sequence S(X, ν̃) would then give rise to an infinite chain of
fundamental units.

We remark that the claims on the fundamental sequences, fundamental units and chains of
fundamental units depend only on the localization Xx = Spec(OX,x) of X at x. Moreover,
by the results in Lemma 1.29 and Lemma 1.37 we may assume that X = Spec(O) for a
complete local ring. Thus we assume that there is an embedding X ↪→ Z into a regular
excellent scheme Z, and moreover, by Lemma 4.21, that there is a strict normal crossings
boundary BZ on Z whose pull-back to X is B. Thus we may consider an embedded
version of the constructions above, where each blowup Xn+1 = B`Cn(Xn) → Xn (where
C0 = {x}) can be embedded into a diagram

Zm+1 = B`Cm(Zm)
πm+1−→ Zm

∪ ∪
Xm+1 = B`Cm(Xm)

πm+1−→ Xm .

In the proofs of Theorems 5.34 and 5.38, this situation will be assumed.
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6 (u)-standard bases

Let R be a regular noetherian local ring with maximal ideal m and residue field k = R/m,
and let J ⊆ m be an ideal. It turns out that the directrix Dir(R/J) is an important
invariant of the singularity of X = Spec(R/J), and that it is useful to consider a system
(y1, . . . , yr, u1, . . . , ue) of regular parameters for R such that:

(6.1) IDir(R/J) = 〈Y1, . . . , Yr〉 ⊂ grm(R), where Yi := inm(yi) ∈ gr1
m(R).

Then (U1, . . . , Ue) with Uj := inm(uj) form coordinates of the affine space Dir(R/J) ∼= Ae
k.

Consequently, it will be useful to distinguish the Y - and U -coordinates in grm(R) =
k[Y, U ]. This observation leads us to the following:

Definition 6.1 (1) A system (y, u) = (y1, . . . , yr, u1, . . . , ue) of regular parameters for
R is called strictly admissible for J if it satisfies the above condition (6.1).

(2) A sequence u = (u1, . . . , ue) of elements in m ⊆ R is called admissible (for J), if it
can be extended to a strictly admissible system (y, u) for J .

(3) Let (y, u) be strictly admissible for J . A system of elements f = (f1, . . . , fm) ⊂ J
is called admissible for (y, u) if inm(fi) ∈ k[Y ] for all i = 1, . . . , m.

Let T1, . . . , Te be a tuple of new variables over k. Note that (u) = (u1, . . . , ue) is admissible
if and only if we have an isomorphism of k-algebras

k[T1, . . . , Te]
∼→ grm(R)/IDir(R/J) ; Ti → inm(ui) mod IDir(R/J).

The map induces the following isomorphism which we will use later.

(6.2) ψ(u) : P(Dir(R/J))
∼→ Proj(k[T1, . . . , Te]) = Pe−1

k

The admissibility will play an essential role in the next section. For the moment we shall
work in the following general setup:

Setup A: Let J ⊂ m ⊂ R be as above. Let (u) = (u1, . . . , ue) be a system of elements
in m such that (u) can be extended to a system of regular parameters (y, u) for some
y = (y1, . . . , yr). In what follows we fix u and work with various choices of y as above.
Such a choice induces an identification

grm(R) = k[Y, U ] = k[Y1 . . . , Yr, U1, . . . , Ue]. (Yi = inm(yi), Uj = inm(uj)).

Let R̃ = R/〈u〉 and m̃ = m/〈u〉 where 〈u〉 = 〈u1, . . . , ue〉 ⊂ R. For f ∈ R− {0} put

n(u)(f) = vm̃(f̃) with f̃ = f mod 〈u〉 ∈ R̃.

Note n(u)(f) ≥ vm(f) and n(u)(f) = ∞ if and only if f ∈ 〈u〉. Let f ∈ R− {0} and write

an expansion in the m-adic completion R̂ of R:

(6.3) f =
∑

(A,B)

CA,B yBuA with CA,B ∈ R× ∪ {0}
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where for A = (a1, . . . , ae) ∈ Ze
≥0 and B = (b1, . . . , br) ∈ Zr

≥0,

yB = yb1
1 . . . ybr

r and uA = ua1
1 . . . uae

e .

If n(u)(f) < ∞, then we define the 0-initial form of f by:

(6.4) in0(f) = in0(f)(y,u) =
∑

B

|B|=n(u)(f)

C0,B Y B ∈ k[Y ],

where CA,B = CA,B mod m ∈ k = R/m. If n(u)(f) = ∞, we define in0(f)(y,u) = 0. It is
easy to see that in0(f) depends only on (y, u), not on the presentation (6.3).

We will need to make the expansion (6.3) uniquely determined by f . By EGAIV Ch. 0
Th. (19.8.8), we can choose a ring S of coefficients of R̂: S is a subring of R̂ which is a
complete local ring with the maximal ideal pS where p = char(k) such that m ∩ S = pS
and S/pS = R/m. We choose a set Γ ⊂ S of representatives of k. Note that S ' k
and Γ = k if char(k) = char(K) where K is the quotient field of R. Back in the general
situation each f ∈ R is expanded in R̂ in a unique way as:

(6.5) f =
∑

(A,B)

CA,B yBuA with CA,B ∈ Γ.

We will use the following map of sets

(6.6) ω = ω(y,u,Γ) : k[[Y, U ]] → R̂ ;
∑

(A,B)

cA,B Y BUA →
∑

(A,B)

CA,B yBuA,

where CA,B ∈ Γ is the representative of cA,B ∈ k. For F, G ∈ k[[Y, U ]] we have

(6.7) ω(F + G)− ω(F )− ω(G) ∈ pR̂ and ω(F ·G)− ω(F ) · ω(G) ∈ pR̂.

We now introduce the notion of a (u)-standard base (see Definition 6.7), which generalizes
that of a standard base (cf. Definition 1.19). The following facts are crucial: Under a
permissible blowup a standard base is not necessarily transformed into a standard base
but into a (u)-standard base (see Theorem 8.1), on the other hand there is a standard
procedure to transform a (u)-standard base into a standard base (see Theorem 7.26).

A linear form L : Re −→ R given by

L(A) =
e∑

i=1

ciai with ci ∈ R (A = (ai) ∈ Re)

is called positive (resp. semi-positive) if ci > 0 (resp. ci ≥ 0) for 1 ≤ ∀i ≤ e.

Definition 6.2 Let (y, u) be as in Setup A and let L be a non-zero semi-positive linear
form L on Re.
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(1) For f ∈ R̂− {0} define the L-valuation of f with respect to (y, u) as:

vL(f) = vL(f)(y,u) := min{|B|+ L(A) | CA,B 6= 0},

where the CA,B come from a presentation (6.5) and |B| = b1 + · · · br for B =
(b1, . . . , br). We set vL(f) = ∞ if f = 0.

(2) Fix a representative Γ of k in R̂ as in (6.5). The initial form of f ∈ R̂ − {0} with
respect to L, (y, u) and Γ is defined as:

inL(f) = inL(f)(y,u,Γ) :=
∑
A,B

CA,B Y BUA

where A,B range over Ze
≥0×Zr

≥0 satisfying |B|+L(A) = vL(f). We set inL(f) = 0
if f = 0. It is easy to see the following:

(i) inL(f) is an element of k[[U ]][Y ], the polynomial ring of Y with coefficients in
the formal power series ring k[[U ]],

(ii) If L is positive, inL(f) ∈ k[U, Y ] = grm(R) and independent of the choice of Γ.

(3) For an ideal J ⊂ R, we define

ÎnL(J) = ÎnL(J)(y,u,Γ) = 〈inL(f)| f ∈ J〉 ⊂ k[[U ]][Y ].

In case L is positive we define

InL(J) = InL(J)(y,u,Γ) = 〈inL(f)| f ∈ J〉 ⊂ k[U, Y ] = grm(R).

Remark 6.3 Note that vm(f) = vL0(f) and inm(f) = inL0(f), where

L0(A) = |A| = a1 + · · ·+ ae for A = (a1, . . . , ae).

The proofs of the following lemmas 6.4 and 6.6 are easy and left to the readers.

Lemma 6.4 Let the assumptions be as in Definition 6.2.

(1) vL(f) is independent of the choice of Γ. We have

vL(fg) = vL(f) + vL(g) and vL(f + g) ≥ min{vL(f), vL(g)}.

(2) Assume vL(char(k)) > 0 (which is automatic if L is positive). If f =
m∑

i=1

fi and

vL(fi) ≥ vL(f) for all i = 1, . . . , m, then inL(f) =
∑

1≤i≤m

inL(fi), where the sum

ranges over such i that vL(fi) = vL(f).

(3) Let z = (z1, . . . , zr) ⊂ R be another system of parameters such that (z, u) is a system
of regular parameters of R. Assume vL(zi − yi)(z,u) ≥ 1 for all i = 1, . . . , r. Then,
for any f ∈ R, we have vL(f)(z,u) ≥ vL(f)(y,u).
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Definition 6.5 Let the assumption be as Definition 6.2. Let f = (f1, . . . .fm) be a system
of elements in R − {0}. A non-zero semi-positive linear form L on Re is called effective
for (f, y, u) if inL(fi) ∈ k[Y ] for all i = 1, . . . , m.

Lemma 6.6 Let the assumption be as in Definition 6.5.

(1) The following conditions are equivalent:

(i) L is effective for (f, y, u).

(ii) vL(fi) = n(u)(fi) < ∞ and inL(fi) = in0(fi) for all i = 1, . . . , m.

(iii) For 1 ≤ i ≤ m write as (6.3)

fi =
∑

(A,B)

Ci,A,B yBuA with Ci,A,B ∈ R× ∪ {0} .

Then, for 1 ≤ i ≤ m and A ∈ Ze
≥0 and B ∈ Zr

≥0, we have

|B|+ L(A) > n(u)(fi) if |B| < n(u)(fi) and Ci,A,B 6= 0.

(2) There exist a positive linear form L on Re effective for (f, y, u) if and only if fi is
not contained in 〈u〉 ⊂ R for any 1 ≤ i ≤ m.

(3) If L is effective for (f, y, u) and Λ is a linear form such that Λ ≥ L, then Λ is
effective for (f, y, u). More precisely one has

vΛ(fi) = vL(fi) = n(u)(fi) and inΛ(f) = inL(f) = in0(fi) (1 ≤ ∀i ≤ m).

Definition 6.7 Let u be as in Setup A. Let f = (f1, . . . , fm) ⊂ J be a system of elements
in R− {0}.
(1) f is called a (u)-effective base of J , if there is a tuple y = (y1, . . . , yr) as in Setup

A and a positive form L on Re such that L is effective for (f, y, u) and

InL(J) = 〈in0(f1), . . . , in0(fm)〉 ⊂ grm(R).

(2) f is called a (u)-standard base, if in addition (in0(f1), . . . , in0(fm)) is a standard
base of InL(J).

In both cases (1) and (2), (y, L) is called a reference datum for the (u)-effective (or
(u)-standard) base (f1, . . . , fm).

Lemma 6.8 Let u be as in Setup A.

(1) Let f = (f1, . . . , fm) be a standard base of J such that inm(fi) ∈ k[Y ] for i =
1, . . . , m. Then f is a (u)-standard base of J with reference datum (y, L0), where
L0 is as in Remark 6.3.

(2) Assume that (u) be admissible for J (cf. Definition 6.1). A standard base f =
(f1, . . . , fm) of J is a (u)-standard base of J .
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Proof (1) is an immediate consequence of Definition 6.1(3) and Remark 6.3. We show
(2). First we note that

ν∗(J) = (n1, . . . , nm,∞, . . . ) with ni = vm(fi).

and that (inm(f1), . . . , inm(fm)) is a standard base of Inm(J). Choose y = (y1, . . . , yr)
such that (y, u) is strictly admissible for J ⊂ R and identify grm(R) = k[Y, U ]. Then
there exist ψ1, . . . , ψm ∈ k[Y ] which form a standard base of Inm(J). Note that ψi is
homogeneous of degree ni for i = 1, . . . , m. We have

〈inm(f1), . . . , inm(fm)〉 = Inm(J) = 〈ψ1, . . . , ψm〉.
Writing

inm(fi) = φi +
∑

A∈Ze
≥0−{0}

UAPi,A, with φi, Pi,A ∈ k[Y ] (i = 1, . . . , m),

this implies that (φ1, . . . , φm) is a standard base of Inm(J). Hence it suffices to show that
there exists a positive linear form L : Re → R such that inL(fi) = φi for all i = 1, . . . , m.
We may write

Pi,A =
∑

B∈Zr
≥0

ci,A,BY B, (ci,A,B ∈ k),

where the sum ranges over B ∈ Zr
≥0 such that |B| + |A| = ni := vm(fi). It is easy to see

that there exists a positive linear form L satisfying the following for all A ∈ Ze
≥0 − {0}:

L(A) > |A| and L(
A

ni − |B|) > 1 if ci,A,B 6= 0.

Then inL(fi) = φi and the proof of Lemma 6.8 is complete. ¤

A crucial fact on (u)-standard bases is the following:

Theorem 6.9 Let f = (f1, . . . , fm) be a (u)-effective (resp. standard) base of J . Then,
for any y = (y1 . . . , yr) as in Setup A and for any positive linear form L on Re effective
for (f, y, u), (y, L) is a reference datum for f .

Before going to the proof of Theorem 6.9, we deduce the following:

Corollary 6.10 Let f = (f1, . . . , fm) be a (u)-effective (resp. standard) base of J . Let
g = (g1, . . . , gm) ⊂ J be such that in0(gi) = in0(fi) for all i = 1, . . . ,m. Then g is a
(u)-effective (resp. standard) base of J .

Proof The assumption implies that no fi or gi is contained in 〈u〉 ⊂ R. By Lemma
6.6 (2) and (3) there exists a positive linear form L on Re effective for both (f, y, u) and
(g, y, u). By the assumption on f , Theorem 6.9 implies that inL(f1), . . . , inL(fm) generate
(resp. form a standard base of) inL(J). By Lemma 6.6 (1)(ii), we get

inL(gi) = in0(gi) = in0(fi) = inL(fi) for i = 1, . . . ,m,

which implies Corollary 6.10. ¤
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Proof of Theorem 6.9 Let (z, Λ) be a reference datum for f which exists by the
assumption. By definition (z, u) is a system of regular parameters of R and Λ is a positive
linear form on Re such that inΛ(f1)(z,u), . . . , inΛ(fm)(z,u) generate (resp. form a standard
base of) inΛ(J)(z,u). First we assume y = z. Then the theorem follows from Proposition
6.11 below in view of Lemma 6.6 (Note that condition (4) of Proposition 6.11 is always
satisfied if L and Λ are both positive). We consider the general case. Since (y, u) and
(z, u) are both systems of regular parameters of R, there exists M = (αij) ∈ GLr(R) such
that

yi = li(z) + di, where li(z) =
r∑

j=1

αijzj and di ∈ 〈u〉.

Take any positive linear form L′ on Re such that L′(A) > |A| for ∀A ∈ Re
≥0 − {0}. An

easy computation shows that for A ∈ Ze
≥0 and B = (b1, . . . , br) ∈ Zr

≥0 we have

yBuA = uA · l1(z)b1 · · · l1(z)b1 + w with vL′(w) > vL′(y
BuA) = |B|+ L′(A).

This implies inL′(g)(z,u) = φ(inL′(g)(y,u)) for g ∈ R− {0}, where

φ : k[Y ] ' k[Z] ; Yi →
r∑

j=1

αijZj. (Zj = inm(zj), αij = αij mod m ∈ k)

In view of Lemma 6.6, the proof of Theorem 6.9 is now reduced to the case y = z. ¤

Proposition 6.11 Let (y, u) be as in Setup A, and let f = (f1, . . . , fm) ⊂ J . Let Λ and
L be semi-positive linear forms on Re. Assume vΛ(char(k)) > 0 (cf. Lemma 6.4) Assume
further the following conditions:

(1) vΛ(fi) = vL(fi) = n(u)(fi) < ∞ for i = 1, . . . , m.

(2) inΛ(fi) = in0(fi) := Fi(Y ) ∈ k[Y ] for i = 1, . . . , m.

(3) ÎnΛ(J) = 〈F1(Y ), . . . , Fm(Y )〉 ⊂ k[[U ]][Y ].

Then for any g ∈ J and any M ≥ 0, there exist λ1, . . . , λm ∈ R̂ such that

vL(λifi) ≥ vL(g), vΛ(λifi) ≥ vΛ(g), vΛ

(
g −

m∑
i=1

λifi

)
> M.

If Λ is positive, one can take λi ∈ R for i = 1, . . . ,m. Assume further:

(4) there exist c > 0 such that L ≥ cΛ.

Then we have
ÎnL(J) = 〈inL(f1), . . . , inL(fm)〉 ⊂ k[[U ]][Y ].

If L is positive, then

InL(J) = 〈inL(f1), . . . , inL(fm)〉 ⊂ k[U, Y ].
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Proof Let g ∈ J and expand as in (6.5):

g =
∑
A,B

CA,ByBuA in R̂, CA,B ∈ Γ.

Then we have
inΛ(g) =

∑
A,B

|B|+Λ(A)=vΛ(g)

CA,B Y BUA.

Put

Bmax = Bmax(g, Λ) = max{B | CA,B 6= 0, |B|+ Λ(A) = vΛ(g) for some A ∈ Ze
≥0}

where the maximum is taken with respect to the lexicographic order.

Lemma 6.12 Under the assumption (1) and (2) of Proposition 6.11, there exist λ1, . . . , λm ∈
R̂ such that:

(1) vΛ(λifi) = vΛ(g) if λi 6= 0, and vL(λifi) ≥ vL(g).

(2) vL(g1) ≥ vL(g) where g1 = g −
m∑

i=1

λifi.

(3) vΛ(g1) ≥ vΛ(g) and Bmax(g1, Λ) < Bmax(g, Λ) if vΛ(g1) = vΛ(g).

If Λ is positive, one can take λi ∈ R for i = 1, . . . ,m.

Proof By the assumptions of Proposition 6.11, we can write

inΛ(g) =
∑
A,B

|B|+Λ(A)=vΛ(g)

CA,B Y BUA =
∑

1≤i≤m

HiFi(Y )

for some H1, . . . , Hm ∈ k[[U ]][Y ], where Fi(Y ) ∈ k[Y ] is homogeneous of degree ni :=
vΛ(fi) = vL(fi) for i = 1, . . . , m. Writing Hi =

∑
A∈Ze

≥0

hi,A(Y )UA with hi,A(Y ) ∈ k[Y ], this

implies

(6.8)
∑

B

|B|+Λ(A)=vΛ(g)

CA,B Y B =
∑

1≤i≤m

hi,A(Y )Fi(Y ) for each A ∈ Ze
≥0.

Take any A0 with |Bmax|+Λ(A0) = vΛ(g) and CA0,Bmax 6= 0. Looking at the homogeneous
part of degree |Bmax| in (6.8) with A = A0, we get

∑
B

|B|=|Bmax|

CA0,B Y B =
∑

1≤i≤m

Si(Y )Fi(Y )

where Si(Y ) ∈ k[Y ] is the homogenous part of degree |Bmax| − ni of hi,A0(Y ). Therefore

(6.9) Y Bmax −
m∑

i=1

Pi(Y )Fi(Y ) =
∑

|B|=|Bmax|
B 6=Bmax

aBY B,
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where Pi(Y ) =
(
CA0,Bmax

)−1
Si(Y ) ∈ k[Y ] and aB = −(CA0,Bmax)

−1CA0B ∈ k. Now put

g1 = g −
m∑

i=1

λifi with λi =

{
P̃i(y)Q̃(u) if Pi(Y ) 6= 0,

0 if Pi(Y ) = 0,

where P̃i(Y ) ∈ R[Y ] is a lift of Pi(Y ) ∈ k[Y ] and

Q̃(u) =
∑

A

|Bmax|+Λ(A)=vΛ(g)

CA,Bmaxu
A ∈ R̂.

Note that if Λ is positive, then the sum is finite and Q̃(u) ∈ R and λi ∈ R. For 1 ≤ i ≤ m
with Pi(Y ) 6= 0, we have

vΛ(λi) = (|Bmax| − ni) + (vΛ(g)− |Bmax|) = vΛ(g)− ni,

vL(λi) =(|Bmax| − ni) + vL(Q̃(u))

≥(|Bmax| − ni) + vL(g)− |Bmax| = vL(g)− ni ,

which shows Lemma 6.12 (1) in view of Proposition 6.11 (1). Here the last inequality
holds because

vL(g) = min{|B|+ L(A) | CA,B 6= 0},
vL(Q̃(u)) + |Bmax| = min{|B|+ L(A) | CA,B 6= 0, B = Bmax, |Bmax|+ Λ(A) = vΛ(g)}.

Therefore, by Lemma 6.4 (1) we get

vΛ(g1) ≥ min{vΛ(g), vΛ(λifi) (1 ≤ i ≤ m)} ≥ vΛ(g).

If vΛ(g1) = vΛ(g), then Lemma 6.4 (2) implies

inΛ(g1) = inΛ(g) + inΛ

(
m∑

i=1

λifi

)

= inΛ(g) +
∑

1≤i≤m

λi 6=0

inΛ(λi)inΛ(fi)

= inΛ(g)−Q(U)
m∑

i=1

Pi(Y )Fi(Y ),

where
Q(U) =

∑
A

|Bmax|+Λ(A)=vΛ(g)

CA,BmaxU
A ∈ k[[U ]].

Hence, by (6.9), we get Bmax(g1, Λ) < Bmax(g, Λ), which proves Lemma 6.12 (3). Finally,

vL(g1) ≥ min{vL(g), vL(λifi) (1 ≤ i ≤ m)} ≥ vL(g),

because vL(λifi) ≥ vL(g). This proves Lemma 6.12 (2) and the proof of the lemma is
complete. ¤
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We now proceed with the proof of Proposition 6.11. From g = g0 we construct g1 as in
Lemma 6.12, and by applying Lemma 6.12 repeatedly, we get a sequence g0, g1, g2, . . . , g`, . . .
in J such that for all ` ≥ 1 we have

g` = g`−1 −
m∑

i=1

λ`,ifi with λ`,i ∈ R,

vΛ(λ`,ifi) ≥ vΛ(g`−1) ≥ vΛ(g) and vL(λ`,ifi) ≥ vL(g`−1) ≥ vL(g),

vL(g`) ≥ vL(g`−1) and vΛ(g`) ≥ vΛ(g`−1),

Bmax(g`, Λ) < Bmax(g`−1, Λ) if vΛ(g`) = vΛ(g`−1).

Then we have

g` = g −
m∑

i=1

µ`,ifi with µ`,i =
∑̀
q=1

λq,i,

(6.10)

vΛ(µ`,ifi) ≥ min
1≤q≤`

{vΛ(λqifi)} ≥ vΛ(g),

vL(µ`,ifi) ≥ min
1≤q≤`

{vL(λqifi)} ≥ vL(g).

Note that Bmax(g`, Λ) cannot drop forever in the lexicographic order so that we must
have vΛ(g`) 6= vΛ(g`−1) for infinitely many `. Noting vΛ(R) is a discrete subset of R, this
implies that for given M ≥ 0, taking ` sufficiently large,

vΛ(g`) = vΛ(g −
m∑

i=1

µ`,ifi) > M.

This shows the first assertion of Proposition 6.11 in view of (6.10). It implies by (4) that
for any g ∈ J , there exist λ1, . . . , λm ∈ R̂ such that

vL(λifi) ≥ vL(g), vL(g −
m∑

i=1

λifi) > vL(g),

which implies, by Lemma 6.4 (2), that inL(g) =
m∑

i=1

inL(λi)inL(fi), where the sum ranges

over all i for which vL(λifi) = vL(g). This shows ÎnL(J) = 〈inL(f1), . . . , inL(fm)〉, which
also implies the last assertion of Proposition 6.11 by the faithful flatness of k[[U ]][Y ] over
k[U, Y ]. This completes the proof of Proposition 6.11 ¤

Lemma 6.13 Let u be as in Setup A and assume that (u) is admissible for J (cf. Defi-
nition 6.1).

(1) If f = (f1, . . . , fm) is a (u)-effective base of J , then

Inm(J) = 〈in0(f1), . . . , in0(fm)〉 and J = (f1, . . . , fm).

(2) If f = (f1, . . . , fm) is a (u)-standard base, then (in0(f1), . . . , in0(fm)) is a standard
base of Inm(J) and ν∗(J) = (n(u)(f1), . . . , n(u)(fm),∞,∞, . . . ).
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Proof (2) follows at once from (1). The second assertion of (1) follows from the first
in view of [H3], (2.21.d). We now show the first assertion of (1). Choose y = (y1, . . . , yr)
such that (y, u) is strictly admissible for J . By Theorem 6.9, there exists a positive linear
form Λ such that (y, Λ) is a reference datum for f . By Definition 6.7 and Lemma 6.6 (1)
this implies vΛ(fi) = n(u)(fi) < ∞ for i = 1, . . . ,m and

InΛ(J) = 〈F1(Y ), . . . , Fm(Y )〉 with Fi(Y ) = inΛ(fi) = in0(fi) ∈ k[Y ].

It suffices to show InΛ(J) = Inm(J). By the strict admissibility of (y, u), Lemma 1.24
implies that there exists a standard base g = (g1, . . . , gs) which is admissible for (y, u)
(cf. Definition 6.1). By Lemma 6.8 (2) this implies vm(gi) = vL0(gi) = n(u)(gi) < ∞ for
i = 1, . . . , s and

Inm(J) = InL0(J) = 〈G1(Y ), . . . , Gs(Y )〉 with Gi(Y ) = inL0(gi) ∈ k[Y ].

Take a positive linear form L such that L ≥ Λ and L ≥ L0. Then Proposition 6.11 and
Lemma 6.6 (3) imply InΛ(J) = InL(J) = InL0(J) = Inm(J). This completes the proof.
¤
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7 Characteristic polyhedra of J ⊂ R

In this section we are always in Setup A (beginning of §6). We introduce a polyhedron
∆(J, u) which plays a crucial role in this paper. It will provide us with useful invariants
of singularities of Spec(R/J) (see §10). It also give us a natural way to transform a
(u)-standard base of J into a standard base of J (see Corollary 7.26).

Definition 7.1 (1) An F -subset ∆ ⊆ Re
≥0 is a closed convex subset of Re

≥0 such that
v ∈ ∆ implies v + Re

≥0 ⊆ ∆. The essential boundary ∂∆ of an F -subset ∆ is the
subset of ∆ consisting of those v ∈ ∆ such that v 6∈ v′ + Re

≥0 with v′ ∈ ∆ unless
v = v′. We write ∆+ = ∆− ∂∆.

(2) For a semi-positive positive linear form L : Re → R, put

δL(∆) = min{L(v) | v ∈ ∆}.
Then EL = ∆ ∩ {v ∈ Re| L(v) = δL(∆)} is called a face of ∆ with slope L. One
easily sees that EL is bounded if and only if L is positive. If EL consists of a unique
point v, we call v a vertex of ∆.

(3) When L = L0 as in Remark 6.3, we call δ(∆) = δL0(∆) = min{a1 + . . . + ae |
(a1, . . . , ae) ∈ ∆} the δ-invariant of ∆ and EL0 the δ-face of ∆.

Definition 7.2 Let (y, u) be as in Setup A in §6. Let f ∈ m be not contained in 〈u〉 ⊂ R.
Write as in (6.3):

f =
∑

(A,B)

CA,B yBuA with CA,B ∈ R× ∪ {0}.

(1) The polyhedron
∆(f, y, u) ⊆ Re

≥0

is defined as the smallest F -subset containing all points of
{

v =
A

n(u)(f)− |B|
∣∣ CA,B 6= 0, |B| < n(u)(f)

}
.

This is in fact a polyhedron in Re
≥0, which depends only on f, y, u, and does not

depend on the presentation (6.3).

(2) For v ∈ Re −∆(f, y, u)+, the v-initial of f is defined as

inv(f) = inv(f)(y,u) = in0(f) + inv(f)+ ∈ k[Y, U ],

where writing as (6.3),

inv(f)+ = inv(f)+
(y,u) =

∑

(A,B)

CA,B Y BUA ∈ k[Y, U ]

where the sum ranges over such (A,B) that |B| < n(u)(f) and
A

n(u)(f)− |B| = v.
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(3) For a semi-positive linear form L : Re → R, we write δL(f, y, u) = δL(∆(f, y, u)).
By definition

δL(f, y, u) = min

{
L(A)

n(u)(f)− |B|
∣∣ CA,B 6= 0, |B| < n(u)(f)

}
.

and EL = ∆(f, y, u) ∩ {A ∈ Re| L(A) = δL(f, y, u)} is a face of ∆(f, y, u) of slope
L. When EL is the δ-face of ∆(f, y, u) (namely L = L0 as in Definition 7.1 (3)),
we write simply δ(f, y, u) = δL(f, y, u).

(4) Let EL be be as in (3). We define the EL-initial of f by

inEL
(f) = inEL

(f)(y,u) = in0(f) +
∑

(A,B)

CA,B Y BUA ∈ k[[U ]][Y ]

where the sum ranges over such (A,B) that

|B| < n(u)(f) and L(A) = δL(f, y, u)(n(u)(f)− |B|).
We note that inEL

(f) is different from inL(f) in Definition 6.2 (2). When EL is
the δ-face of ∆(f, y, u), we write inδ(f) for inEL

(f).

One easily sees the following:

Lemma 7.3 Let the notation be as in Definition 7.2.

(1) inv(f)(y,u) is independent of the presentation (6.3).

(2) If EL is bounded, inEL
(f) ∈ k[U, Y ] and it is independent of the presentation (6.3).

Otherwise it may depend on (6.3) (so there is an abuse of notation).

(3) If EL is bounded,

inEL
(f) = in0(f) +

∑
v∈EL

inv(f)+.

(4) inv(f) = in0(f) if v 6∈ ∆(f, y, u) and inv(f) 6= in0(f) if v is a vertex of ∆(f, y, u).

Lemma 7.4 (1) δ(f, y, u) ≥ 1 if and only if n(u)(f) = vm(f).

(2) δ(f, y, u) = 1 if and only if inm(f) = inδ(f).

(3) δ(f, y, u) > 1 if and only if inm(f) = in0(f) ∈ k[Y ].

Proof By definition δ(f, y, u) ≥ 1 is equivalent to the condition:

CA,B 6= 0 and |B| < n(u)(f) ⇒ |A|+ |B| ≥ n(u)(f),

which is equivalent to

|A|+ |B| < n(u)(f) ⇒ CA,B = 0 or |B| = n(u)(f).

Lemma 7.4 (1) follows easily from this. (2) and (3) follow by a similar argument and the
details are omitted. ¤
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Definition 7.5 Let f = (f1, . . . , fm) ⊂ m be a system of elements such that fi 6∈ 〈u〉.
(1) Define the polyhedron

∆((f1, . . . , fm), y, u) = ∆(f, y, u) ⊆ Re
≥0

as the smallest F -subset containing ∪
1≤i≤m

∆(fi, y, u).

(2) For v ∈ Re −∆(f, y, u)+, the v-initial of f is defined as

inv(f) = (inv(f1), . . . , inv(fm))

by noting
∆(f, y, u)+ ⊃ ∪

1≤i≤m
∆(fi, y, u)+,

The EL-initial inEL
(f) of f for a face EL of ∆(f, y, u) is defined similarly.

(3) For a semi-positive linear form L : Re → R, we put

δL(f, y, u) = min{δL(fi, y, u)| 1 ≤ i ≤ m}.

(4) We let V (f, y, u) denote the set of vertices of ∆(f, y, u). We put

Ṽ (f, y, u) = {v ∈ Re −∆(f, y, u)+| inv(fi) 6= in0(fi) for some 1 ≤ i ≤ m}.
We call it the set of the essential points of ∆(f, y, u). By definition ∆(f, y, u) is the

smallest F -subset of Re which contains Ṽ (f, y, u). By Lemma 7.3 we have

V (f, y, u) ⊂ Ṽ (f, y, u) ⊂ ∂∆(f, y, u).

The following fact is easily seen:

Lemma 7.6 We have

Ṽ (f, y, u) ⊂ 1

d!
Ze
≥0 ⊆ Re with d = max{n(u)(fi)| 1 ≤ i ≤ m}.

In particular Ṽ (f, y, u) is a finite set.

Theorem 7.7 Let the assumption be as in Definition 7.5. The following conditions are
equivalent:

(1) f is a (u)-standard base of J and δ(f, y, u) > 1.

(2) f is a standard base of J and inm(fi) ∈ k[Y ] for ∀i.
If (u) is admissible for J , the conditions imply that (y, u) is strictly admissible for J .

Proof The implication (2)⇒(1) follows from Lemma 7.4 in view of Remark 6.3. We
show (1)⇒(2). When δ(f, y, u) > 1, L = L0 is effective for (f, y, u) by Lemma 7.4, where
L0(A) = |A| (cf. Remark 6.3). Thus the desired assertion follows from Theorem 6.9.
Assume that (u) is admissible for J . By Lemma 6.13, the conditions imply that Inm(J)
is generated by polynomials in k[Y ]. Thus we must have IDir(R/J) = 〈Y1, . . . , Yr〉 by the
assumption that (u) is admissible for J . This proves the last assertion. ¤
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Definition 7.8 Let the assumption be as in Setup A in §6. The polyhedron ∆(J, u) is the
intersection of all ∆(f, y, u) where f = (f1, . . . , fm) is a (u)-standard basis with reference
datum (y, L) for some y and L.

Remark 7.9 (1) This is not the original definition given in [H3], (1.12) (which is
formulated more intrinsically), but it follows from loc. cit. (4.8) that the definitions
are equivalent.

(2) As a polyhedron, ∆(f, y, u) and ∆(J, u) are defined by equations

L1(A) ≥ d1, . . . , Lt(A) ≥ dt

for different non-zero semi-positive linear forms Li on Re.

Another important result of Hironaka provides a certain condition under which we have
∆(J, u) = ∆(f, y, u) (see Theorem 7.16). First we introduce the notion of normalizedness.

Definition 7.10 Let S = k[X1, . . . , Xn] be a polynomial ring over a field k and I ⊂ S be
a homogeneous ideal. We define:

E(I) = {LE(ϕ) ∈ Zn
≥0 | ϕ ∈ I homogeneous} ,

where for a homogeneous polynomial ϕ ∈ S, LE(ϕ) is its leading exponent, i.e., the biggest
exponent (in the lexicographic order on Zn

≥0) occurring in ϕ: For ϕ =
∑

cAXA we have
LE(ϕ) = max{A | cA 6= 0}. If I is generated by homogeneous elements ϕ1, . . . , ϕm, we
also write E(I) = E(ϕ1, . . . , ϕm). We note E(I) + Zn

≥0 ⊂ E(I).

Definition 7.11 Assume given G1, . . . , Gm ∈ k[[U ]][Y ] = k[[U1, . . . , Ue]][Y ]:

Gi = Fi(Y ) +
∑

|B|<ni

Y BPi,B(U), (Pi,B(U) ∈ k[U ])

where Fi(Y ) ∈ k[Y ] is homogeneous of degree ni and Pi,B(U) 6∈ k − {0}.
(1) (F1, . . . , Fm) is normalized if writing

Fi(Y ) =
∑
B

Ci,BY B with Ci,B ∈ k,

Ci,B = 0 if B ∈ E(F1, . . . , Fi−1) for i = 1, . . . ,m .

(2) (G1, . . . , Gm) is normalized if (F1, . . . , Fm) is normalized and Pi,B(U) ≡ 0 if B ∈
E(F1, . . . , Fi−1) for i = 1, . . . , m .

It is easy to see that if (F1, . . . , Fm) is normalized, then it is weakly normalized in the
sense of Definition 1.3. There is a way to transform a weakly normalized standard base
of a homogeneous ideal I ⊂ k[Y ] into a normalized standard base of I (cf. [H3], Lemma
3.14 and Theorem 7.19 below).

Definition 7.12 Let the assumption be as in Definition 7.5.
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(1) (f, y, u) is weakly normalized if (in0(f1), . . . , in0(fm)) is weakly normalized.

(2) (f, y, u) is 0-normalized if (in0(f1), . . . , in0(fm)) is normalized in the sense of Defi-
nition 7.11 (1).

(3) (f, y, u) is normalized at v ∈ Re −∆(f, y, u)+ if so is (inv(f1), . . . , inv(fm)) in the
sense of Definition 7.11 (2).

(4) (f, y, u) is normalized along a face EL of ∆(f, y, u) if so is (inEL
(f1), . . . , inEL

(fm))
in the sense of Definition 7.11 (2).

Now we introduce the notions of (non-) solvability and preparedness.

Definition 7.13 Let the assumption be as Definition 7.5. For v ∈ V (f, y, u), (f, y, u) is
called solvable at v if there are λ1, . . . , λr ∈ k[U ] such that

inv(fi)(y,u) = Fi(Y + λ) with Fi(Y ) = in0(fi)(y,u) (i = 1, . . . , m) ,

where Y + λ = (Y1 + λ1, . . . , Yr + λr). In this case the tuple λ = (λ1, . . . , λr) is called a
solution for (f, y, u) at v.

Remark 7.14 For v ∈ V (f, y, u), it is not possible that inv(fi) ∈ k[Y ] for all i = 1, . . . , m
(cf. Definition 7.5 (4)); hence λ 6= 0 if v is solvable.

Definition 7.15 Let the assumption be as Definition 7.5.

(1) Call (f, y, u) prepared at v ∈ V (f, y, u) if (f, y, u) is normalized at v and not solvable
at v.

(2) Call (f, y, u) prepared along a face EL of ∆(f, y, u) if (f, y, u) is normalized along
EL and not solvable at any v ∈ V (f, y, u) ∩ EL.

(3) Call (f, y, u) δ-prepared if it is prepared along the δ-face of ∆(f, y, u).

(4) Call (f, y, u) well prepared if it is prepared at any v ∈ V (f, y, u).

(5) Call (f, y, u) totally prepared if it is well prepared and normalized along all bounded
faces of ∆(f, y, u).

We can now state Hironaka’s crucial result (cf. [H3], (4.8)).

Theorem 7.16 Let the assumption be as in Definition 7.5. Assume that f is a (u)-
standard base of J and the following condition holds, where R̃ = R/〈u〉, m̃ = m/〈u〉,
J̃ = JR̃:

(*) There is no proper k-subspace T ( gr1
m̃(R̃) such that

(Inm̃(J̃) ∩ k[T ]) · grm̃(R̃) = Inm̃(J̃).

Let v be a vertex of ∆(f, y, u) such that (f, y, u) is prepared at v. Then v is a vertex of
∆(J, u). In particular, if (f, y, u) is well-prepared, then ∆(J, u) = ∆(f, y, u).

We note that condition (∗) is satisfied if (u) is admissible (Definition 6.1).
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Corollary 7.17 Let the assumption be as Theorem 7.16. Assume further that (u) is
admissible for J . Then the following conditions are equivalent:

(1) (f, y, u) is prepared at any v ∈ V (f, y, u) lying in {A ∈ Re| |A| ≤ 1}.
(2) δ(f, y, u) > 1.

(3) (y, u) is strictly admissible for J and f is a standard base of J admissible for (y, u).

The above conditions hold if (f, y, u) is δ-prepared.

Proof Clearly (2) implies (1). The equivalence of (2) and (3) follows from Theorem
7.7. It remains to show that (1) implies (2). By Lemma 1.24 we can find a strictly
admissible (z, u) and a standard base g of J admissible for (z, u). By Lemma 7.4 we have
δ(g, z, u) > 1 and hence

∆(J, u) ⊂ ∆(g, z, u) ⊂ {A ∈ Re| |A| > 1}.
By Theorem 7.16 this implies δ(f, y, u) > 1 since (f, y, u) is well-prepared at any vertex v
with |v| ≤ 1. Finally, if (f, y, u) is δ-prepared, Theorem 7.16 implies δ(f, y, u) = δ(∆(J, u))
and the same argument as above shows δ(f, y, u) > 1. This completes the proof. ¤

We have the following refinement of Theorem 2.2 (2)(iv).

Theorem 7.18 Let the assumption be as Definition 7.5. Assume that (u) is admissible
for J and that (f) is a (u)-standard base of J . Let X = Spec(R/J) and D = Spec(R/p)
for p = (y, u1, . . . , us) ⊂ m = (y, u1, . . . , ue). Assume that D ⊂ X is permissible and that
there exists a vertex v on the face EL such that (f, y, u) is prepared at v, where

L : Re → R; (a1, . . . , ae) →
∑

1≤i≤s

ai,

Then vp(fi) = vm(fi) = n(u)(fi) for i = 1, . . . , m. In particular we have δ(f, y, u) ≥ 1.

Proof of Theorem 7.18 By Theorem 7.16, the last assumption implies

(7.1) δL(f, y, u) = δL(∆(J, u)).

Let ni = n(u)(fi) = ν(i)(J) for i = 1, . . . , m. By Lemma 6.13 (2) and (1.4) we have

vp(fi) ≤ vm(fi) ≤ n(u)(fi) = ni for i = 1, . . . , m.

Thus it suffices to show that (7.1) implies vp(fi) ≥ ni. Let g = (g1, . . . , gm) be a (u)-
standard base of J . As usual write

gi =
∑
i,A,B

Ci,A,B yBuA with Ci,A,B ∈ R× ∪ {0}, A ∈ Ze
≥0, B ∈ Zr

≥0.

Note that n(u)(gi) = n(u)(fi) = ni by Lemma 6.13 (2). We have

(7.2)

vp(gi) ≥ ni ⇔|B|+ L(A) ≥ ni if Ci,A,B 6= 0 and |B| < ni

⇔L(
A

ni − |B|) ≥ 1 if Ci,A,B 6= 0 and |B| < ni .
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Hence we get the following equivalences for a (u)-standard base g of J :

(7.3)
δL(g, y, u) ≥ 1 ⇔ vp(gi) ≥ ν(i)(J) for i = 1, . . . , m

⇔ vp(gi) = vm(gi) = n(u)(gi) = ν(i)(J) for i = 1, . . . , m

Noting that any standard base is a (u)-standard base by Lemma 6.8 (2) (here we used the
assumption (1)), Theorem 2.2 (2)(iv) implies that there exists a (u)-standard base g which
satisfies the conditions of (7.3). Since ∆(g, y, u) ⊃ ∆(J, u), this implies δL(f, y, u) ≥
δL(g, y, u) ≥ 1, which implies the desired assertion by (7.3). Finally the last assertion
follows from Lemma 7.4. ¤

We can not expect to get the desirable situation of Theorem 7.16 right away. So we need
procedures to attain this situation. This is given by the following results (cf. [H3], (3.10),
(3.14) and (3.15)). First we discuss normalizations.

Theorem 7.19 Let the assumption be as in Definition 7.5. Assume that (f, y, u) is weakly
normalized. For v ∈ V (f, y, u), there exist xij ∈ 〈u〉 ⊂ R (1 ≤ j < i ≤ m) such that the
following hold for

h = (h1, . . . , hm), where hi = fi −
i−1∑
j=1

xijfj.

(i) ∆(h, y, u) ⊆ ∆(f, y, u).

(ii) If v ∈ ∆(h, y, u), then v ∈ V (h, y, u) and (h, u, y) is normalized at v.

(iii) V (f, y, u)− {v} ⊂ V (h, y, u).

(iv) For v′ ∈ V (f, y, u)− {v}, we have inv′(f)(y,u) = inv′(h)(y,u).

Remark 7.20 In the above situation, the passage from (f, y, u) to (h, y, u) is called a
normalization at v. It is easy to see that in0(hi) = in0(fi) for all i, 1 ≤ i ≤ m.

We will need the following slight generalization of Theorem 7.19:

Theorem 7.21 Let the assumption be as in Definition 7.5. Let E be a bounded face of
∆(f, y, u). Assume that (f, y, u) is normalized at any v ∈ E ∩V (f, y, u). Then there exist
xij ∈ (u)R (1 ≤ j < i ≤ m) such that putting

hi = fi −
i−1∑
j=1

xijfj for 1 ≤ i ≤ m,

∆(h, y, u) = ∆(f, y, u) and (h, y, u) is normalized along E.

Proof Write E = ∆(f, y, u)∩{A ∈ Re| L(A) = 1} for a positive linear form L : Re → R.
For i = 1, . . . , m, we can write

inE(fi) = Fi(Y ) +
∑

|B|<ni

Y BPi,B(U) ∈ k[Y, U ], Pi,B(U) =
∑

|B|+L(A)=ni

ci,A,BUA ∈ k[U ],
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where ni = n(u)(fi) = vL(fi) and Fi(Y ) = in0(fi) ∈ k[Y ] which is homogeneous of degree
ni. For each i ≥ 1 put

Σ(f1, . . . , fi) = {B| Pi,B(U) 6≡ 0, B ∈ E(F1, . . . , Fi−1)}.
If Σ(f1, . . . , fi) = ∅ for all i ≥ 1, there is nothing to be done. Assume the contrary and
let j = min{i| Σ(f1, . . . , fi) 6= ∅} and Bmax be the maximal element of Σ(f1, . . . , fj) with
respect to the lexicographic order. Note that

(7.4) { A

nj − |Bmax| | cj,A,Bmax 6= 0} ⊂ EL\V (f, y, u)

by the assumption that (f, y, u) is normalized at any v ∈ EL ∩ V (f, y, u). By the con-
struction there exist Gi(Y ) ∈ k[Y ], homogeneous of degree |Bmax| − ni, for 1 ≤ i ≤ j − 1
such that

H(Y ) := Y Bmax −
∑

1≤i≤j−1

Gi(Y )Fi(Y )

has exponents smaller than Bmax. Note that H(Y ) is homogeneous of degree |Bmax|. For
i = 1, . . . , j − 1, take gi ∈ R such that inm(gi) = Gi(Y ) and take

P̃j,Bmax =
∑

|Bmax|+L(A)=ni

c̃j,A,Bmaxu
A ∈ R with cj,A,Bmax = c̃j,A,Bmax mod m.

Put
hj = fj − P̃j,Bmax

∑
1≤i≤j−1

gifi and hi = fi for 1 ≤ i 6= j ≤ m.

By (7.4), we have

inE(hj) = inE(fj)− Pj,Bmax(U)(Y Bmax −H(Y )),

inv(hj) = inv(fj) for ∀v ∈ V (f, y, u).

Hence Σ(h1, . . . , hi) = Σ(f1, . . . , fi) for all i = 1, . . . , j−1 and all elements of Σ(h1, . . . , hj)
are smaller than Bmax in the lexicographical order. This proves Theorem 7.21 by induction.
¤
Now we discuss dissolutions.

Theorem 7.22 Let the assumption be as in Definition 7.5 and let v ∈ V (f, y, u).

(a) Any solution for (f, y, u) at v is of the form λ with λi = ciU
v, where ci ∈ k×. In

particular, if it exists, a solution is always non-trivial and v ∈ Ze.

(b) Let d = (d1, . . . , dr) ⊂ R with di ∈ 〈uv〉 be such that the image of di in gr
|v|
m (R) is

λi. Let z = y − d = (y1 − d1, . . . , yr − dr). Then

(i) ∆(f, z, u) ⊆ ∆(f, y, u).

(ii) v 6∈ ∆(f, z, u) and V (f, y, u)− {v} ⊂ V (f, z, u).

(iii) For v′ ∈ V (f, y, u)− {v}, we have

inv′(f)(z,u) = inv′(f)(y,u)|Y =Z
∈ k[Z, U ]. (Z = inm(z) ∈ gr1

m(R))
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Remark 7.23 In the above situation, the passage from (f, y, u) to (f, z, u) is called the
dissolution at v. It is easy to see in0(fi)(z,u) = in0(fi)(y,u)|Y =Z

for 1 ≤ ∀i ≤ m.

We now come to the preparation of (f, y, u): Let the assumption be as in Definition
7.5. We apply to (f, y, u) alternately and repeatedly normalizations and dissolutions at
vertices of polyhedra. To be precise we endow Re

≥0 with an order defined by

v > w ⇔ |v| > |w| or |v| = |w| and v > w in the lexicographical order.

Let v ∈ V (f, y, u) be the smallest point and apply the normalization at v from Theorem
7.19 and then the dissolution at v from Theorem 7.22 if v is solvable, to get (g, z, u). Then
(g, z, u) is prepared at v. Repeating the process, we arrive at the following conclusion (cf.
[H2], (3.17)).

Theorem 7.24 Let the assumption be as in Definition 7.5. Assume that (f, y, u) is weakly
normalized. For any integer M > 0, there exist

xij ∈ 〈u〉 (1 ≤ j < i ≤ m), dν ∈ 〈u〉 (ν = 1, . . . , r),

such that putting

z = (z1, . . . , zr) with zν = yν − dν ,

g = (g1, . . . , gm) with gi = fi −
i−1∑
j=1

xijfj ,

we have ∆(g, z, u) ⊆ ∆(f, y, u), and (g, z, u) is prepared along all bounded faces contained
in {A ∈ Re| |A| ≤ M}. If R is complete, we can obtain the stronger conclusion that
(g, z, u) is well-prepared.

Remark 7.25 By Theorem 7.21 we can make (g, z, u) in Theorem 7.24 satisfy the addi-
tional condition that it is normalized along all bounded faces of the polyhedron contained
in {A ∈ Re| |A| ≤ N}. If R is complete, we can make (g, z, u) totally prepared.

Corollary 7.26 Let the assumption and notation be as in Theorem 7.24.

(1) If f is a (u)-standard base of J , then so is g.

(2) If f is a (u)-standard base of J and (u) is admissible (cf. 6.1), then δ(g, z, u) > 1
and (z, u) is strictly admissible and g is a standard base admissible for (z, u).

Proof (1) follows from Corollary 6.10. (2) follows from (1) and Theorem 7.17. ¤

At the end of this section we prepare a key result which relates certain localizations of
our ring to certain projections for the polyhedra. Let (f, y, u) be as in Definition 7.5. For
s = 1, . . . , e, we let

ps = 〈y, u≤s〉 = 〈y1, . . . , yr, u1, . . . , us〉.
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Let Rs be the localization of R at ps, let Js = JRs, and ms = psRs (the maximal ideal of
Rs). We want to relate ∆(f, y, u) ⊂ Re to ∆(f, y, u≤s) ⊂ Rs, the characteristic polyhedron
for Js ⊂ Rs. Assume given a presentation as in (6.3):

(7.5) fi =
∑

(A,B)

Pi,A,B yBuA with Pi,A,B ∈ R× ∪ {0} (i = 1, . . . , m).

(7.5) can be rewritten as:

(7.6) fi =
∑

(C,B)

P≤s
i,C,B yBuC

≤s,

where for C = (a1, . . . , as) ∈ Zs
≥0, uC

≤s = ua1
1 · · ·uas

s and

(7.7) P≤s
i,C,B =

∑

A=(a1,...,as,as+1,...,ae)

Pi,A,Bu
as+1

s+1 · · · uae
e ∈ R̂.

We now introduce some conditions which are naturally verified in the case where Spec(R/〈u1〉)
is the exceptional divisor of a blowup at a closed point (see Lemma 9.4 below). Assume

(P0) J ⊂ p1 and there is a subfield k0 ⊂ R/p1 such that Pi,A,B mod p1 ∈ k0.

By (P0) we get the following for C = (a1, . . . , as) ∈ Zs
≥0:

P
≤s

i,C,B := P≤s
i,C,B mod ps =

∑

A=(a1,...,as,as+1,...,ae)

P i,A,Bu
as+1

s+1 · · · uae
e ∈ k0[[us+1, . . . , ue]] ⊂ R̂/ps,

P i,C,B := Pi,A,B mod ps ∈ k0 ↪→ R/ps, uj = uj mod ps ∈ R/ps.

Hence we have the following equivalences for C ∈ Zs
≥0

(P1)
P≤s

i,C,B ∈ ps ⇔ Pi,A,B = 0 for all A ∈ Ze
≥0 such that πs(A) = C

⇔ P≤s
i,C,B = 0

where πs : Re → Rs ; (a1, . . . , ae) → (a1, . . . , as). We further assume

(P2) For fixed B and a ∈ Z≥0, there are only finitely many A such that Pi,A,B 6= 0 and
π1(A) = a.

This condition implies P≤s
i,C,B ∈ R.

Theorem 7.27 Let L : Rs → R be a semi-positive linear form and Ls = L ◦ πs.

(1) If (P0) holds, then

∆(f, y, u≤s) = πs(∆(f, y, u)) and δL(f, y, u≤s) = δLs(f, y, u).

(2) If (P0) and (P2) hold and L(1, 0, . . . , 0) 6= 0, then the initial form along the face
EL of ∆(f, y, u≤s) (with respect to the presentation (7.6), cf. Definition 7.2) lies in
the polynomial ring R/ps[Y, U≤s] and we have

inEL
(f)(y,u≤s) = inELs

(f)(y,u)|Ui=ui (s+1≤i≤e)
,

considered as an equation in k0[us+1, . . . , ue][Y, U≤s] ⊂ R/ps[Y, U≤s] (cf. (P2)).
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(3) Assume (P0) and (P2) and L(1, 0, . . . , 0) 6= 0. Assume further:

(i) There is no proper k-subspace T ⊂ ⊕
1≤i≤r

k · Yi (k = R/m) such that

Fi(Y ) := in0(fi) ∈ k[T ] ⊂ k[Y ] for all j = 1, . . . , m.

(ii) (f, y, u) is prepared along the face ELs of ∆(f, y, u).

Then (f, y, u≤s) is prepared along the face EL of ∆(f, y, u≤s).

Proof By (P1) we get

δL(f, y, u≤s) = min{ L(C)

ni − |B| | |B| < ni, P≤s
i,C,B 6= 0}

= min{ Ls(A)

ni − |B| | |B| < ni, Pi,A,B 6= 0} = δLs(f, y, u)

and (1) follows from this. To show (2), we use (7.6) to compute

(7.8)

inEL
(f)(y,u≤s) = Fi(Y ) +

∑
B,C

P
≤s

i,C,BY BUC
≤s

= Fi(Y ) +
∑
B,A

P i,A,Bu
as+1

s+1 · · · uae
e · Y BU

πs(A)
≤s ,

where the first (resp. second) sum ranges over those B,C (resp. B, A) for which |B| < ni

and L(C) = δL(f, y, u≤s)(ni − |B|) (resp. |B| < ni and Ls(A) = δLs(f, y, u)(ni − |B|)).
(2) follows easily from this.
We now show (3). By (2) the assumption (ii) implies that inEL

(f)(y,u≤s) is normalized.
It suffices to show the following:

Claim 7.28 Let v be a vertex on EL. Then (f, y, u≤s) is not solvable at v.

We prove the claim by descending induction on s (the case s = e is obvious). From (1) we
easily see that there exists a vertex w ∈ ∆(f, y, u) such that πs(w) = v and vt := πt(w) is
a vertex of ∆(f, y, , u≤t) for all s ≤ t ≤ e. By induction hypothesis, we may assume

(∗) (f, y, u≤s+1) is not solvable at vs+1.

Assume (f, y, u≤s) solvable at v. Then v ∈ Zs
≥0 and there exist elements λ1, . . . , λr of the

fraction field K of R/ps such that

(7.9) inv(f)(y,u≤s) = Fi(Y1 + λ1U
v
≤s, . . . , Yr + λrU

v
≤s) for all i = 1, . . . , m.

Claim 7.29 λj lies in the localization S of R/ps at ps+1/ps for all j = 1, . . . , r.

Admit the claim for the moment. By the claim we can lift λj ∈ S to λ̃j ∈ Rs+1, the

localization of R at ps+1. Set zj = yj + λ̃ju
v
≤s ∈ Rs+1 ⊂ Rs. Take a positive linear form

Lv : Rs → R such that ELv = {v} and hence Lv(v) = δLv(f, y, u≤s). By Theorem 7.22,
∆(f, z, u≤s) ⊂ ∆(f, y, u≤s)− {v} so that

(7.10) δLv(f, z, u≤s) > δLv(f, y, u≤s).
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Now we apply (1) to Js+1 ⊂ Rs+1 and (f, z, u≤s+1) instead of J ⊂ R and (f, y, u). Note
that in the proof of (1) we have used only (P0) which carries over to the replacement.
We get

∆(f, z, u≤s) = π
(
∆(f, z, u≤s+1)

)
and δLv◦π(f, z, u≤s+1) = δLv(f, z, u≤s),

where π : Rs+1 → Rs ; (a1, . . . , as+1) → (a1, . . . , as). By the assumption, v = π(vs+1) and

Lv ◦ π(vs+1) = Lv(v) = δLv(f, y, u≤s).

By Theorem 7.16, (∗) implies

(7.11) vs+1 ∈ ∆(Js+1, u≤s+1) ⊂ ∆(f, z, u≤s+1)).

Thus we get

δLv(f, z, u≤s) = δLv◦π(f, z, u≤s+1) ≤ δLv◦π(∆(Js+1, u≤s+1)) ≤ Lv ◦ π(vs+1) = δLv(f, y, u≤s),

where the inequalities follow from (7.11). This contradicts (7.10) and the proof of (3) is
complete.

Now we show Claim 7.29. Note that S is a discrete valuation ring with a prime element
π := us+1 mod ps. Thus it suffices to show vπ(λj) ≥ 0 for j = 1, . . . , r. Assume the
contrary. We may assume

vπ(λ1) = −ε < 0, vπ(λ1) ≤ vπ(λj) for j = 1, . . . , r.

Set
Zj = Yj + µjV where V = U v

≤s and µj = λjπ
ε ∈ S,

and recall that Fi(Y ) = in0(fi) ∈ k0[Y ] and k0 ⊂ S by (P0) . Consider

Fi(Z) = Fi(Y1 + µ1V, . . . , Yr + µrV ) ∈ κ[Y, V ], κ := S/〈π〉 = κ(ps+1),

where µi = µj mod π ∈ κ. We claim that there is some i for which Fi(Z) 6∈ κ[Y ]. Indeed,

by the structure theorem of complete local rings, (P0) implies R̂/ps+1 ' k[[us+2, . . . , ue]]
so that κ is contained in k((us+2, . . . , ue)) which is a separable extension of k. By (3)(i)
and Lemma 1.22 (2),

T =
⊕

1≤j≤r

κ · (Y1 + µjV ) ⊂
⊕

1≤j≤r

κ · Yj ⊕ κ · V

is the smallest κ-subspace such that Fi(Z) ∈ κ[T ] for all i = 1, . . . , m. Thus the claim
follows from the fact that µ1 6= 0. For the above i, we expand

Fi(Y1 + λ1V, . . . , Yr + λrV ) =
∑
B

γBY BV ni−|B| (γB ∈ K),

and we get

Fi(Z) = Fi(Y1 + µiV, . . . , Yr + µiV ) =
∑
B

γBπε(ni−|B|) · Y BV ni−|B| ∈ S[Y, V ].

Since Fi(Z) 6∈ κ[Y ], there is some B such that |B| < ni and γBπε(ni−|B|) is a unit of S.
Noting ε > 0, this implies γB 6∈ S. On the other hand, (7.8) and (7.9) imply γB ∈ S,
which is absurd. This completes the proof of Claim 7.29. ¤

96



8 Transformation of standard bases under blow-ups

In this section we will study the transformation of a standard base under permissible
blow-ups, in particular with respect to near points in the blow-up. We begin by setting
up a local description of the situation in Theorem 2.14 in §2.

Setup B

Let Z be an excellent regular scheme and X ⊂ Z be a closed subscheme and take a closed
point x ∈ X. Put R = OZ,x with the maximal ideal m and put k = R/m = κ(x). Write
X ×Z Spec(R) = Spec(R/J) for an ideal J ⊂ m. Define the integers n1 ≤ n2 ≤ · · · ≤ nm

by
ν∗x(X, Z) = ν∗(J) = (n1, . . . , nm,∞,∞, . . . ).

Let D ⊂ X be a closed subscheme permissible at x ∈ D and let J ⊂ p be the prime ideal
defining D ⊂ Z. By Theorem 2.2 (2) we have Tx(D) ⊂ Dirx(X) so that we can find a
system of regular parameters for R,

(y, u, v) = (y1, . . . , yr, u1, . . . , us, v1, . . . , vt)

such that p = (y, u) and (y, (u, v)) is strictly admissible for J (cf. Definition 6.1). This
gives us an identification

grm(R) = k[Y, U, V ] = k[Y1, . . . , Yr, U1, . . . , Us, V1, . . . , Vt] (k = R/m)

where Yi = inm(yi), Ui = inm(ui), Vi = inm(vi) ∈ grm(R). Consider the diagram:

B`D(X) = X ′ ⊂ Z ′ = B`D(Z) ←↩ π−1
Z (x) = Ex

↓ πX ↓ πZ

X ⊂ Z

and note that

Ex := π−1
Z (x) = P(Tx(Z)/Tx(D)) = Proj(k[Y, U ]) ∼= Pr+s−1

k .

We fix a point
x′ ∈ Proj(k[U ]) ⊂ Proj(k[Y, U ]) = Ex.

(By Theorem 2.14, if char(κ(x)) = 0 or char(κ(x)) ≥ dim(X), any point of X ′ near to x
lies in Proj(k[U ]). Moreover, if x′ is near to x, Theorem 2.10 implies

ν∗x′(X
′, Z ′) = ν∗x(X, Z).

Without loss of generality we assume further that x′ lies in the chart {U1 6= 0} ⊂ Ex. Let
R′ = OZ′,x′ with the maximal ideal m′ and let J ′ ⊂ m′ be the ideal defining X ′ ⊂ Z ′ at
x′. Put k′ = κ(x′) = R′/m′. Then mR′ = (u1, v) = (u1, v1, . . . , vt), and

(y′, u1, v), with y′ = (y′1, . . . , y
′
r), y′i = yi/u1, v = (v1, . . . , vt)

is a part of a system of regular parameters for R′. Choose any φ2, . . . , φs′ ∈ m′ such
that (y′, u1, φ, v), with φ = (φ2, . . . , φs′), is a system of regular parameters for R′ (note
s− s′ = trdegk(κ(x′))). Then

grm′(R
′) = k′[Y ′, U1, Φ, V ] = k′[Y ′

1 , . . . , Y
′
r , U1, Φ1, . . . , Φs′ , V1, . . . , Vt],
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where Y ′
i = inm′(y

′
i), Φi = inm′(φi), Vi = inm′(vi) ∈ grm′(R

′). Assume now given

a standard base f = (f1, . . . , fm) of J which is admissible for (y, (u, v)).

By definition

(8.1) Fi(Y ) := inm(fi) ∈ k[Y ] (i = 1, . . . , m) and Inm(J) = 〈F1(Y ), . . . , Fm(Y )〉.

By Lemma 6.13 (2) we have

(8.2) vm(fi) = n(u,v)(fi) = ni for i = 1, . . . , m.

Finally we assume

(8.3) vm(fi) = vp(fi) for i = 1, . . . , m.

This assumption is satisfied if D = x (for trivial reasons) or under the condition (∗) of
Theorem 7.18 (for example if (f, y, (u, v)) is well-prepared). The assumptions imply

(8.4) fi =
∑
A,B

Ci,A,B yBuAuvAv , CA,B ∈ Γ, A = (Au, Av), Au ∈ Zs
≥0, Av ∈ Zt

≥0,

where the sum ranges over Au, Av, B such that

(8.5) |B|+ |Au| ≥ ni.

By [H1] Ch. III.2 p. 216 Lemma 6 we have J ′ = 〈f ′1, . . . , f ′m〉 with

(8.6) f ′i = fi/u
ni
1 =

∑
A,B

(
CA,B u′Au

)
y′

B

u
|Au|+|B|−ni

1 vAv ,

u′Au = u′a2
2 . . . u′as

s for Au = (a1, . . . , as) (u′i = ui/u1).

This implies

(8.7) f ′i = F̃ ′
i mod 〈u1, v〉 = 〈u1, v1, ..., vt〉 for i = 1, . . . , m, where

F̃ ′
i =

∑

|B|=ni

C0,By′
B

and ni = vm′(F̃i) = n(u1,φ,v)(f
′
i)

so that

(8.8) in0(f
′)(y′,(u1,φ,v)) = F (Y ′) for i = 1, . . . , m

For later use, we choose S (resp. S ′), a ring of coefficients of R̂ (resp. R̂′) (cf. (6.5)). We
also choose a set Γ ⊂ S of representatives of k (resp. a set Γ′ ⊂ S ′ of representatives of
k′). We note that the choices for R and R′ are independent: We do not demand S ⊂ S ′

nor Γ ⊂ Γ′.

(end of Setup B).
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We want to compare the properties of (f, y, (u, v)) (downstairs) and (f ′, y′, (u1, φ, v))
(upstairs), especially some properties of the polyhedra and initial forms.

Let e = s + t and e′ = s′ + t. For a semi-positive linear form L on Re (downstairs)
(resp. on Re′ (upstairs)), vL and inL(∗) denote the L-valuation of R (resp. R′) and the
corresponding initial form of ∗ ∈ R (resp. ∗ ∈ R′) with respect to (y, (u, v), Γ) (resp.
(y′, (u1, φ, v), Γ′)).

Theorem 8.1 In Setup B, f ′ = (f ′1, . . . , f
′
m) is a (u1, φ, v)-effective basis of J ′. If

(f1, . . . , fm) is a standard base of J , then (f ′1, . . . , f
′
m) is a (u1, φ, v)-standard basis of

J ′. More precisely there exists a positive linear form L′ on Re (upstairs) such that:

inL′(f
′
i) = Fi(Y

′) (1 ≤ i ≤ m) and inL′(J
′) = 〈F1(Y

′), . . . , Fm(Y ′)〉.

First we need to show the following:

Lemma 8.2 Let the assumption be as in Setup B. Choose d > 1 and consider the linear
forms on Re and Re′:

L(A) =
1

d

( ∑
1≤i≤s

ai +
t∑

1≤j≤t

a′j
)

(downstairs)

Λ′(A) =
1

d− 1

(
a1 +

∑
1≤j≤t

a′j
)

(upstairs)

respectively, where A = (a1, . . . , a∗, a′1, . . . , a
′
t) with ∗ = s (downstairs) and ∗ = s′ (up-

stairs). Then the following holds for g ∈ R.

(1) vΛ′(g) = d
d−1

vL(g).

(2) Assuming that g′ := g/un
1 ∈ R′ with vL(g) = n, we have vΛ′(g

′) = n. Assuming
further inL(g) = G(Y ) ∈ k[Y ], we have inΛ′(g

′) = G(Y ′).

Proof Let g ∈ R̂ and write

g =
∑
A,B

CA,B yBuAuvAv

as in (8.4). Then, in R̂′ we have

(8.9) g =
∑
A,B

(
CA,B u′Au

)
y′

B

u
|Au|+|B|
1 vAv ,

where the notation is as in (8.6). Note that

CA,B u′Au = 0 in R̂′/(y′, u1, v) ⇐⇒ CA,B = 0
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because CA,B 6= 0 implies CA,B ∈ R× so that CA,B ∈ (R′)×. Hence

vΛ′(g) = min

{
|B|+ |B|+ |A|

d− 1

∣∣ CA,B 6= 0

}

=
d

d− 1
min

{
|B|+ |A|

d

∣∣ CA,B 6= 0

}
=

d

d− 1
vL(g) ,

which proves (1) of Lemma 8.2. Next assume vL(g) = n and g′ = g/un
1 ∈ R′. Then

vΛ′(g
′) = vΛ′(g)− vΛ′(u

n
1 ) =

d

d− 1
vL(g)− n

d− 1
= n.

Note that
g′ =

∑
A,B

(
CA,B u′Au

)
y′

B

u
|Au|+|B|−n
1 vAv ,

|B|+ |A|
d

= n ⇐⇒ |B|+ |A|+ |B| − n

d− 1
= n.

Therefore, with (8.9) we see

inL(g) ∈ k[Y ] ⇐⇒ CA,B = 0 if |B|+ |A|
d

= n and |B| < n

⇐⇒ u′Au CA,B = 0 if |B|+ |A|+ |B| − n

d− 1
= n and |B| < n

=⇒ inΛ′(g
′) ∈ k′[Y ′].

(Note that the last implication is independent of the choice of a representative Γ′ of k′.)
Moreover, if these conditions hold, we have

inL(g) =
∑

B

|B|=vL(g)

C0,B Y B and inΛ′(g
′) =

∑
B

|B|=vL(g)

C0,B Y ′B.

This completes the proof of Lemma 8.2. ¤

Proof of Theorem 8.1 By (8.1) and Lemma 7.4 we have δ := δ(f, y, (u, v)) > 1.
Choose d with 1 < d < δ, and consider the linear forms L on Re (downstairs) and Λ′ on
Re′ (upstairs) on R as in Lemma 8.2. As for the desired positive linear form in Theorem
8.1, we take

L′(A) =

∑
ai +

∑
a′j

d− 1
(upstairs) (A = ((ai)1≤i≤s′ , (a

′
j)1≤i≤t).

By Lemma 6.6(3) and Proposition 6.11, we have vL(fi) = vm(fi) = ni and

(8.10) inL(fi) = inm(fi) = Fi(Y ), InL(J) = 〈F1(Y ), . . . , Fm(Y )〉.
Clearly L′ ≥ Λ′, so that by Proposition 6.11 it suffices to show

(8.11) inΛ′(f
′
i) = Fi(Y

′) and ÎnΛ′(J) = 〈F1(Y
′), . . . , Fm(Y ′)〉.

100



(Λ′ satisfies the condition vΛ′(char(k′)) > 0 in the proposition since char(k′) = char(k) ∈
mR′ = 〈u1, v〉). The first part follows from (8.10) and Lemma 8.2 (2) To show the second
part, choose any g′ ∈ J ′. Take an integer N > 0 such that g := uN

1 g′ ∈ J . By (8.10),
Proposition 6.11 implies that there exist λ1, . . . , λm ∈ R such that,

(8.12) vp(λifi) ≥ vp(g)

(8.13) vL(λifi) ≥ vL(g),

(8.14) vL(g −
∑

i

λifi) À N.

where p = (y, u) = (y1, . . . , yr, u1, . . . , us). Here we used the fact that vp = vLp with

Lp(A) =
∑

1≤i≤s

ai (downstairs) (A = ((ai)1≤i≤s, (a
′
j)1≤i≤t).

Let vu1 be the discrete valuation of R′ with respect to the ideal 〈u1〉 ⊂ R′. Because
pR′ = 〈u1〉, (8.12) implies

vu1(λi) = vp(λi) ≥ vp(g)− ni = vu1(g)− ni ≥ N − ni,

where ni = vp(fi) = vm(fi) (cf. (8.3)). Therefore

λ′i := λi/u
N−ni
1 ∈ R′.

We calculate

(8.15)

vΛ′(λ
′
if
′
i) = vΛ′(λifi/u

N
1 )

=
d

d− 1
vL(λifi)− N

d− 1
(by Lemma 8.2(1))

≥ d

d− 1
vL(g)− N

d− 1
(by (8.13))

= vΛ′(g/uN
1 ) = vΛ′(g

′) (by Lemma 8.2(1)).

(8.14) implies

vΛ′

(
g′ −

∑
1≤i≤m

λ′if
′
i

)
=vΛ′

((
g −

∑
1≤i≤m

λifi

)
/uN

1

)

=
d

d− 1
vL

(
g −

∑
1≤i≤m

λifi

)
− N

d− 1
À 0 .

Therefore we may assume

(8.16) vΛ′

(
g′ −

∑
i

λ′if
′
i

)
> vΛ′(g

′).
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By Lemma 6.4 (2), (8.15) and (8.16) imply

inΛ′(g
′) = inΛ′

( ∑
1≤i≤m

λ′if
′
i

)
=

∑
i

inΛ′(λ
′
i)inΛ′(f

′
i),

where the last sum ranges over all i such that vΛ′(λ
′
if
′
i) = vΛ′(g

′). This proves the second
part of (8.11) and the proof of Theorem 8.1 is complete.

We keep the assumptions and notations of Setup B and assume that (f1, . . . , fm) is a
standard base of J . So by Theorem 8.1 f ′ = (f ′1, . . . , f

′
m) is a (u1, φ, v)-standard base of

J ′ = JR′. Then Corollary 7.26 assures that we can form a standard base of J ′ from f ′ by
preparation if (u1, φ, v) is admissible for J ′. Hence the following result is important.

Theorem 8.3 Let k′ = κ(x′). If x′ is very near to x (cf. Definition 2.13), there exist
linear forms L1(U1, V ), . . . , Lr(U1, V ) ∈ k′[U1, V ] such that

IDir(R′/J ′) = 〈Y ′
1 + L1(U1, V ), . . . , Y ′

r + Lr(U1, V )〉 ⊂ grm′(R
′) = k′[Y, U1, Φ, V ].

In particular (u1, φ, v) is admissible for J ′.

Let K/k′ be a field extension. Consider the following map

ψ : K[Y ]
∼→ K[Y ′] ↪→ K[Y ′, Φ] = grm′(R

′)K/〈U1, V 〉,
where the first isomorphism maps Yi to Y ′

i for i = 1, . . . , r. Recall that

IDir(R/J) = 〈Y1, . . . , Yr〉 ⊂ grm(R) = k[Y, U, V ],

so that
IDir(R/J)

(1)
/K := IDir(R/J)/K ∩ gr1

m(R)K ⊂
⊕

1≤i≤r

K · Yi ⊂ K[Y ].

Theorem 8.3 is an immediate consequence of the following more general result.

Theorem 8.4 Assume that x′ is near to x. Then we have

ψ(IDir(R/J)
(1)
/K) ⊂ IDir(R′/J ′)/K mod 〈U1, V 〉 in grm′(R

′)K/〈U1, V 〉.
If e(R/J) = e(R/J)K, we have

IDir(R′/J ′)/K ⊃ 〈Y ′
1 + L1(U1, V ), . . . , Y ′

r + Lr(U1, V )〉
for some linear forms L1(U1, V ), . . . , Lr(U1, V ) ∈ K[U1, V ].

For the proof, we need the following.

Proposition 8.5 If x′ is near to x, there exist hij ∈ R′ for 1 ≤ j < i ≤ m such that
setting

gi = f ′i −
i−1∑
j=1

hijf
′
j,

we have the following for i = 1, . . . ,m:

(8.17) vm′(gi) = ni, and inm′(gi) ≡ Fi(Y
′) mod 〈U1, V 〉 in grm′(R

′).

In particular, (g1, . . . , gm) is a standard base of J ′.
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Proof First we note that since x′ is near to x, we have

(8.18) ν∗(J ′) = ν∗(J) = (n1, n2, . . . , nm,∞,∞, . . .) (n1 ≤ n2 ≤ . . . ≤ nm)

The last assertion of the proposition follows from (8.17) and (8.18) in view of [H1], Ch.
III Lemma 3. Put

F̃ ′
i,Γ′ := ω(y′,u1,φ,v,Γ′)(Fi(Y

′)) , where ω(y′,u1,φ,v,Γ′) : k′[[Y ′, U1, Φ, V ]] → R̂′

is the map (6.6) for (y′, u1, φ, v) and Γ′ (notations as in Setup B). (8.7) implies

(8.19) f ′i ≡ F̃ ′
i,Γ′ + λi mod (m′)ni+1 with λi ∈ 〈u1, v〉 for i = 1, . . . , m.

To prove (8.17), it suffices to show that there are hij ∈ R̂′ for 1 ≤ j < i,≤ m such that
letting gi be as in the proposition, we have

(8.20) vm′(gi) = ni, and gi − F̃ ′
i,Γ′ ∈ 〈u1, v〉+ (m′)ni+1 ⊂ R̂′.

Indeed (8.17) follows from (8.20) by replacing the hij with elements of R′ sufficiently close
to them. (8.19) implies

vm′(f
′
i) ≤ ni = vm′(F̃

′
i,Γ′) for i = 1, . . . , m.

(8.18) and Corollary 1.4 imply vm′(f
′
1) = n1 so that one can take g1 = f ′1 for (8.20). Let

` be the maximal t ∈ {1, . . . , m} for which the following holds.

(∗t) There exist hij ∈ R̂′ for 1 ≤ j < i ≤ t, such that (8.20) holds for

gi = f ′i −
i−1∑
j=1

hijf
′
j with i = 1, . . . , t.

We want to show ` = m. Suppose ` < m. Then vm′(f
′
`+1) < n`+1 since otherwise (8.20)

holds for g`+1 = f ′`+1, which contradicts the maximality of `. This implies

(8.21) inm′(f
′
`+1) = inm′(λ`+1) ∈ 〈U1, V 〉 ⊂ k′[Y ′, U1, Φ, V ].

By the assumption we have

Gi := inm′(gi) ≡ Fi(Y
′) mod 〈U1, V 〉 for i = 1, . . . , `.

Since (F1, . . . , Fm) ⊂ k[Y ] is normalized (cf. Definition 1.3), (G1, . . . , G`) is normalized
in grm′(R

′). Therefore (8.18) and Corollary 1.4 imply that there exist Hi ∈ grm′(R
′)

homogeneous of degree vm′(f
′
`+1)− ni for i = 1, . . . , `, such that

(8.22) inm′(f
′
`+1) =

∑

1≤i≤`

HiGi.

Setting

g
(1)
`+1 = f ′`+1 −

∑

1≤i≤`

H̃igi with H̃i = ω(y′,u1,φ,v,Γ′)(Hi),

we have vm′(g
(1)
`+1) > vm′(f

′
`+1). We claim

(8.23) g
(1)
`+1 − F̃ ′

n`+1,Γ′ ∈ 〈u1, v〉+ (m′)n`+1+1,
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which completes the proof. Indeed (8.23) implies

vm′(g
(1)
`+1) ≤ vm′(F̃

′
n`+1,Γ′) = n`+1.

If vm′(g
(1)
`+1) = n`+1, (8.20) holds for g

(1)
`+1, which contradicts the maximality of `. If

vm′(g
(1)
`+1) < n`+1, we apply the same argument to g

(1)
`+1 instead of f ′`+1 and find h1, . . . , h` ∈

R′ such that setting

g
(2)
`+1 = g

(1)
`+1 −

∑

1≤i≤`

higi, we have

vm′(g
(1)
`+1) < vm′(g

(2)
`+1) ≤ n`+1 and g

(2)
`+1 − F̃ ′

n`+1,Γ′ ∈ 〈u1, v〉+ (m′)n`+1+1.

Repeating the process, we get g`+1 for which (8.20) holds, which contradicts the maxi-
mality of `. We now show claim (8.23). Noting

f ′`+1 − F̃ ′
n`+1,Γ′ , gi − F̃ ′

i,Γ′ ∈ 〈u1, v〉+ (m′)ni+1 (i = 1, . . . , `),

it suffices to show ∑

1≤i≤`

H̃iF̃
′
i,Γ′ ∈ 〈u1, v〉.

For i = 1, . . . , `, write Hi = H−
i + H+

i , where H−
i ∈ k′[Y ′, Φ] and H+

i ∈ 〈U1, V 〉 and both
are homogeneous of degree vm′(f

′
`+1) − ni. Similarly we write Gi = Fi(Y

′) + G+
i with

G+
i ∈ 〈U1, V 〉. Then (8.21) and (8.22) imply

∑

1≤i≤`

H−
i Fi(Y

′) = 0.

Let H̃±
i = ω(y′,u1,φ,v,Γ′)(H

±
i ). Noting char(k) ∈ mR′ = 〈u1, v〉, property (6.7) implies

∑

1≤i≤`

H̃−
i F̃ ′

i,Γ′ , H̃+
i , H̃i − (H̃+

i + H̃−
i ) ∈ 〈u1, v〉,

which shows the desired assertion. ¤

Proof of Theorem 8.4 The second assertion follows at once from the first one, and we
show the first. By Proposition 8.5 there exist homogeneous G1, . . . , Gm ∈ grm′(R

′) such
that

(8.24)
Gj ≡ F ′

j := Fj(Y
′) mod 〈U1, V 〉 for all j = 1, . . . , m,

Inm′(J
′)K = 〈G1, . . . , Gm〉 ⊂ grm′(R

′) = K[Y ′, U1, Φ, V ].

Let W ′ = IDir(R′/J ′)/K∩gr1
m′(R

′), then there exist H1, . . . , Hn ∈ K[W ′]∩Inm′(J
′)K such

that
Gi =

∑
1≤j≤n

hi,jHj for some homogeneous hi,j ∈ grm′(R
′).

On the other hand, (8.24) implies

Hi =
∑

1≤j≤m

gi,jGj for some homogeneous gi,j ∈ grm′(R
′).
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Regarding everything mod 〈U1, V 〉, we get

F ′
i =

∑
1≤j≤n

hi,jHj and H i =
∑

1≤j≤m

gi,jF
′
j in K[Y ′, Φ] = grm′(R

′)/〈U1, V 〉.

The second equality implies

H i ∈ K[W ′] ∩ 〈F ′
1, . . . , F

′
m〉 ⊂ K[Y ′, Φ] where W ′ = W ′ mod 〈U1, V 〉,

so that the first equality implies

(8.25)
(
K[W ′] ∩ 〈F ′

1, . . . , F
′
m〉

) ·K[Y ′, Φ] = 〈F ′
1, . . . , F

′
m〉.

Since W = IDir(R/J)/K ∩ gr1
m(R) is the minimal subspace of

⊕
1≤i≤r

K · Yi such that

(
K[W ] ∩ 〈F1(Y ), . . . , Fm(Y )〉) ·K[Y ] = 〈F1(Y ), . . . , Fm(Y )〉,

(8.25) implies ψ(W ) ⊂ W ′, which is the desired assertion. ¤

We conclude this section with the following useful criteria for the nearness and the very
nearness of x′ and x. We keep the assumptions and notations of Setup B.

Theorem 8.6 (1) If δ(f ′, y′, (u1, φ, v)) ≥ 1, x′ is near to x. The converse holds if
(f ′, y′, (u1, φ, v)) is prepared at any vertex lying in {A ∈ Rs′+t| |A| ≤ 1}.

(2) Assume ex(X) = ex(X)κ(x′). If δ(f ′, y′, (u1, φ, v)) > 1, x′ is very near to x. The
converse holds under the same assumption as in (1).

Proof Write k′ = κ(x′). Assume δ(f ′, y′, (u1, φ, v)) ≥ 1. By Lemma 7.4 (1) and (8.8),
vm′(f

′
i) = ni and we can write

inm′(f
′
i) = F (Y ′) +

∑

|B|<ni

Y ′BPB(U1, Φ, V ), PB(U1, Φ, V ) ∈ k′[U1, Φ, V ].

Put I = 〈inm′(f
′
1), . . . , inm′(f

′
m)〉 ⊂ grm′(R

′). We have

ν∗(J) ≥ ν∗(J ′) = ν∗(Inm′(J
′)) ≥ ν∗(I),

where the first inequality follows from Theorem 2.10 and the last from [H1] Lemma Ch.II
Lemma 3. By the assumption (F1(Y ), . . . , Fm(Y )) is weakly normalized (cf. Definition
1.3), which implies that (inm′(f

′
1), . . . , inm′(f

′
m)) is weakly normalized so that ν∗(I) =

ν∗(J). Therefore we get ν∗(J) = ν∗(J ′) and x′ is near to x. We also get ν∗(Inm′(J
′)) =

ν∗(I), which implies Inm′(J
′) = I by loc.cit.. Now assume x′ is near to x. Let g =

(g1, . . . , gm) be as in Proposition 8.5. By (8.17) we have δ(g, y′, (u1, φ, v)) ≥ 1. We claim
that g is a (u1, φ, v)-standard basis of J ′. Indeed f ′ is a (u1, φ, v)-standard basis of J ′ by
Theorem 8.1, so the claim follows from the fact that in0(f

′) = in0(g) by using Corollary
6.10. By the claim ∆(J ′, (u1, φ, v)) ⊂ ∆(g, y′, (u1, φ, v)) so that there exists no vertex w
of ∆(J ′, (u1, φ, v)) such that |w| < 1. If ∆(f ′, y′, (u1, φ, v)) is prepared at any vertex w
with |w| ≤ 1, we obtain δ(f ′, y′, (u1, φ, v)) ≥ 1 from Theorem 7.16.
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Assume δ(f ′, y′, (u1, φ, v)) > 1. By Lemma 7.4 (1) and (8.8), inm′(f
′
i) = F (Y ′) so that

(8.26) inm′(J
′) = I = 〈F1(Y

′), . . . , Fm(Y ′)〉.

By the assumed equality ex(X) = ex(X)k′ , we have IDirk′(R/J) = 〈Y1, . . . , Yr〉 (cf. Re-
mark 1.21). Since Inm(J) = 〈F1(Y ), . . . , Fm(Y )〉, this implies IDir(R′/J ′) = 〈Y ′

1 , . . . , Y
′
r 〉

by (8.26) so that x′ is very near to x. Finally assume x′ very near to x. By Theorem 8.1,
f ′ is (u1, φ, v)-standard basis of J ′. By Theorem 8.3, (u1, φ, v) is admissible for J ′. Thus
Corollary 7.17 implies δ(f ′, y′, (u1, φ, v)) > 1. This completes the proof of Theorem 8.6.
¤

Remark 8.7 By the above theorem it is important to compute δ(f ′, y′, (u1, φ, v)) from
∆(f, y, (u, v)). It is also important to see if the well-preparedness of ∆(f, y, (u, v)) im-
plies that of ∆(f ′, y′, (u1, φ, v)). These issues are discussed later in this paper in various
situations (e.g., see Lemma 9.3).
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9 Fundamental sequences of B-permissible blowups

and ex(X) = 1

In this section we prove the Key Theorem 5.34 in §5, by deducing it from a stronger
result, Theorem 9.2 below. First we introduce a basic setup.

Setup C: Let Z be an excellent regular scheme, let X ⊂ Z be a closed subscheme and
take a point x ∈ X. Let R = OZ,x with maximal ideal m and residue field k = R/m =
κ(x), and write X ×Z Spec(R) = Spec(R/J) with an ideal J ⊂ m. Define the integers
n1 ≤ n2 ≤ · · · ≤ nN by

ν∗x(X, Z) = ν∗(J) = (n1, . . . , nN ,∞,∞, . . . ).

We also assume given a simple normal crossing boundary B on Z and a history function
O : X → {subsets of B} for B on X (Definition 3.6). Note that B may be empty.

We introduce some notations.

Definition 9.1 (1) A prelabel of (X,Z) at x is

(f, y, u) = (f1 . . . , fN , y1, . . . , yr, u1, . . . , ue),

where (y, u) is a system of regular parameters of R such that (u) is admissible for
J (cf. Definition 6.1) and f is a (u)-standard base of J . By Lemma 6.13 we have
n(u)(fi) = ni for i = 1, . . . , N and

Inm(J) = 〈F1(Y ), . . . , FN(Y )〉 with Fi(Y ) = in0(fi) ∈ k[Y ]

where k[Y ] = k[Y1 . . . , Yr] ⊂ grm(R) with Yi = inm(yi) ∈ grm(R).

(2) A prelabel (f, y, u) is a label of (X,Z) at x if δ(f, y, u) > 1. By Corollary 7.17, this
means that (y, u) is strictly admissible for J and f is a standard base of J which is
admissible for (y, u). In this case we have

vm(fi) = ni and inm(fi) = in0(fi) for i = 1, . . . , N,

〈Y1, . . . , Yr〉 = IDir(R/J) ⊂ grm(R),

(3) A label (f, (y, u)) is well-prepared (resp. totally prepared) if so is (f, y, u) in the
sense of Definition 7.15 (resp. Remark 7.25). By Theorem 7.16, for a well-prepared
label (f, y, u), we have ∆(J, u) = ∆(f, y, u).

For each B ∈ B choose an element lB ∈ R such that B ×Z Spec(R) = Spec(R/〈lB〉). For
a positive linear form L : Re → R let δL(lB, y, u) be as in Definition 7.2 (3). Writing

(9.1) lB =
∑

1≤i≤r

aiyi +
∑

A∈Ze
≥0

bAuA + g (ai, bA ∈ R× ∪ {0}),

where g ∈ 〈y1, . . . , yr〉2, we have

δL(lB, y, u) = min{L(A) | bA 6∈ m}.
It is easy to see that δL(lB, y, u) depends only on B and not on the choice of lB. We define

δO
L (y, u) = min{δL(lB, y, u) | B irreducible component of O(x)}.
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Theorem 9.2 Assume char(κ(x)) = 0 or char(κ(x)) ≥ dim(X), and assume there is
a fundamental sequence of length ≥ m starting with (X,BX , O) and x as in (5.10) of
Definition 5.33, where m ≥ 1. Let (f, y, u) be a label of (X, Z) at x. In case ex(X) >
eO

x (X), assume that u = (u1, . . . , ue) (e = ex(X)) satisfies the following condition:

There exist Bj ∈ O(x) for 2 ≤ j ≤ s := ex(X)− eO
x (X) + 1 such that

Bj ×Z Spec(R) = Spec(R/〈uj〉) and DirO
x (X) = Dirx(X) ∩ ∩

2≤j≤s
Tx(Bj).

Assume further (f, y, u) is prepared along the faces ELq for all q = 0, 1, . . . , m− 1, where

Lq : Re → R ; A = (a1, . . . , ae) → |A|+ q ·
s∑

j=2

aj.

Then we have

(9.2) δLq(f, y, u) > q + 1 and δO
Lq

(y, u) ≥ q + 1 for q = 1, . . . , m− 1.

First we show how to deduce Theorem 5.34 from Theorem 9.2. It suffices to show that
under the assumption of 5.34, there is no infinite fundamental sequence of BX-permissible
blowups over x. Assume the contrary. As in (6.3) write

(9.3) fi =
∑

(A,B)

Ci,A,B yBuA with Ci,A,B ∈ R× ∪ {0} .

Write |A|1 =
∑s

j=2 aj for A = (a1, . . . , ae). By Definition 7.2 (3), we have

δLq(f, y, u) > q + 1 ⇔ |A|+ q|A|1 ≥ (q + 1)(ni − |B|) if |B| < ni, Ci,A,B 6= 0

⇔ |B|+ |A|1 ≥ ni − |A| − |A|1
q + 1

if |B| < ni, Ci,A,B 6= 0 .

Hence by (9.2) and the assumption we have the last statement for all q ∈ N, which
implies |B| + |A|1 ≥ ni for all A and B such that Ci,A,B 6= 0 in (9.3). Setting q =
〈y1, . . . , yr, u2, . . . , us〉 ∈ Spec(R), this implies J ⊂ q and vq(fi) = ni = vm(fi) for all i.
By Theorems 2.2 (iv) and 2.3 we conclude HX(ω) = HX(x), where ω ∈ X is the image
of q ∈ Spec(R). By a similar argument, the second part of (9.2) implies ω ∈ B for all
B ∈ O(x) so that HO

X(ω) = HO
X(x). This contradicts the assumption of Theorem 5.34

since dim(R/q) = e− s + 1 = eO
x (X). This completes the proof of Theorem 5.34. ¤

Now we prepare for the proof of Theorem 9.2. Consider

π : Z ′ = B`x(Z) → Z and π : X ′ = B`x(X) → X.

By Theorem 2.14, any point of X ′ near to x is contained in P(Dirx(X)) ⊂ X ′. We now take
a label (f, y, u) of (X, Z) at x as in Definition 9.1 (2). By (6.2) we have the identification
determined by (u):

(9.4) ψ(u) : P(Dirx(X)) = Proj(k[T ]) = Pe−1
k (k[T ] = k[T1, . . . , Te])
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Let x′ = (1 : 0 : · · · : 0) ∈ P(Dirx(X)). If x′ is near to x, Theorems 2.10 and 2.13 imply

ν∗x′(X
′, Z ′) = ν∗x(X, Z) and ex′(X

′) ≤ e.

Let R′ = OZ′,x′ with maximal ideal m′, and let J ′ ⊂ R′ be the ideal defining X ′ ⊂ Z ′.
Note that

P(Dirx(X))×Z′ Spec(R′) = Spec(R′/〈u1〉),
and denote

y′ = (y′1, . . . , y
′
r), u′ = (u′2, . . . , u

′
e), f ′ = (f ′1, . . . , f

′
N) ,

where y′i = yi/u1, u′i = ui/u1, f ′i = fi/u
ni
1 . As is seen in Setup B in §8, (y′, u1, u

′) is
a system of regular parameters of R′ and J ′ = 〈f ′1, . . . , f ′N〉 and R′ is the localization of
R[y′1, . . . , y

′
r, u

′
2, . . . , u

′
e] at (y′, u1, u

′). We will use the usual identifications

grm′(R
′) = k[Y ′, U1, U

′
2, . . . , U

′
e], Y ′

i = inm′(y
′
i), U ′

j = inm′(u
′
j).

Moreover we will consider the maps:

Ψ : Re → Re ; (a1, a2, . . . , ae) 7→ (
e∑

i=1

ai − 1, a2, . . . , ae),

Φ : Re → Re ; (a1, a2, . . . , ae) 7→ (
e∑

i=1

ai, a2, . . . , ae).

A semi-positive linear from L : Re → R is called monic if L(1, 0, . . . , 0) = 1.

Lemma 9.3 (1) ∆(f ′, y′, (u1, u
′)) is the minimal F -subset containing Ψ(∆(f, y, u)).

(2) For any monic semi-positive linear form L : Re → R and L̃ = L ◦ Φ, we have

δL(f ′, y′, (u1, u
′)) = δL◦Φ(f, y, u)− 1,

Uni
1 · inEL

(f ′i)(y′,(u1,u′)) = inE
L̃
(fi)(y,u)|Y =U1Y ′,Ui=U1U ′i (2≤i≤e)

,

inE
L̃
(fi)(y,u) = Uni

1 · inEL
(fi)(y′,(u1,u′))|Y ′=Y/U1,U ′i=Ui/U1 (2≤i≤e)

.

If (f, y, u) is prepared along EL̃, then (f ′, y′, (u1, u
′)) is prepared along EL.

(3) Assume (f, y, u) prepared along EL̃0
with L̃0 = L0 ◦ Φ. Then (f ′, y′, (u1, u

′)) is
δ-prepared and x′ is near (resp. very near) if and only if δL̃0

(f, y, u) ≥ 2 (resp.
δL̃0

(f, y, u) > 2). If (f, y, u) is totally prepared, so is (f ′, y′, (u1, u
′)).

(4) Assume x′ very near to x. Then (f ′, y′, (u1, u
′)) is a prelabel of (X ′, Z ′) at x′. As-

sume further (f, y, u) prepared along EL̃0
(resp. totally prepared), then (f ′, y′, (u1, u

′))
is a δ-prepared (resp. totally prepared) label of (X ′, Z ′) at x′.

Proof From (9.3) we compute

(9.5) f ′i = fi/u
ni
1 =

∑

(A,B)

Ci,A,B (y′)Bu′Au
|A|+(|B|−ni)
1 ,
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u′A = u′2
a2 · · · u′eae for A = (a1, a2, . . . , ae).

(1) follows at once from this. For a semi-positive linear form L : Re → R, we have

δL(f ′, y′, (u1, u
′)) = min{L(|A|+ |B| − ni, a2, . . . , ae)

ni − |B| | |B| < ni, Ci,A,B 6= 0}

= min{L ◦ Φ(A)

ni − |B| − 1 | |B| < ni, Ci,A,B 6= 0}
= δL◦Φ(f, y, u)− 1.

From (9.5), we compute

inEL
(f ′)(y′,(u1,u′)) = Fi(Y ) +

∑
B,A

Ci,A,BY ′BU ′AU
|A|+|B|−ni

1 ,

where the sum ranges over such A < B that |B| < ni and L ◦Φ(A) = δL◦Φ(ni − |B|). (2)
follows easily from this. (3) follows from (2) and Theorem 8.6. The first assertion of (4)
follows from Theorem 8.1 and Theorem 8.3. The other assertion of (4) follows from (3)
and Corollary 7.17. ¤

We now consider

C ′ := P(DirO
x (X)) ⊂ P(Dirx(X)) = Proj(k[T1, . . . , Te]) ⊆ X ′.

Let η′ be the generic point of C ′, and let

t := eO
x (X) and s = e− t + 1.

We assume t ≥ 1 so that 1 ≤ s ≤ e. By making a suitable choice of the coordinate
(u) = (u1, . . . , ue), we may assume:

(9.6) there exists Bj ∈ O(x) for 2 ≤ j ≤ s such that

Bj ×Z Spec(R) = Spec(R/〈uj〉) and DirO
x (X) = Dirx(X) ∩ ∩

2≤j≤s
Tx(Bj).

Then
C ′ ×Z Spec(R) = Spec(R′/p′) with p′ = 〈y′, u1, u

′
2, . . . , u

′
s〉.

Note δκ(η′)/k := trdegk(κ(η′)) = t− 1. By Theorems 2.13 and 2.6, if η′ is near x, we have
eη′(X

′) ≤ e − δκ(η′)/k = s. It also implies that C ⊂ X ′ is permissible by Theorems 1.34
and 2.3. By Theorem 3.17, if η′ is very near x, we have eO

η′(X
′) ≤ eO

x (X)− δκ(η′)/k = 1.

Write R′
η′ = OX′,η and let m′

η′ be its maximal ideal and J ′η′ = J ′R′
η′ . Note that R′

η′ is the
localization of R′ at p′ and (y′, u1, u

′
2, . . . , u

′
s) is a system of regular parameters of R′

η′ .

Lemma 9.4 Let ∆(f ′, y′, (u1, u
′
2, . . . , u

′
s)) be the characteristic polyhedron for J ′η′ ⊂ R′

η′.

(1) ∆(f ′, y′, (u1, u
′
2, . . . , u

′
s)) is the minimal F -subset containing π ·Ψ(∆(f, y, u)), where

Ψ is as in Lemma 9.3 and

π : Re → Rs ; A = (a1, a2, . . . , ae) 7→ (a1, a2, . . . , as).
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For any monic semi-positive linear form L : Rs → R, we have

δL(f ′, y′, (u1, u
′
2, . . . , u

′
s)) = δL◦π◦Φ(f, y, u)− 1.

In particular,
δ(f ′, y′, (u1, u

′
2, . . . , u

′
s)) = δL1(f, y, u)− 1,

L1 : Re → R ; A 7→ |A|+
∑

2≤i≤s

ai.

(2) If (f, y, u) is prepared along the face EL1 of ∆(f, y, u), then (f ′, y′, (u1, u
′
2, . . . , u

′
s))

is δ-prepared. If (f, y, u) is totally prepared, so is (f ′, y′, (u1, u
′
2, . . . , u

′
s)).

(3) Assume (f, y, u) is prepared along the face EL1 of ∆(f, y, u). Then η is near x if and
only if δL1(f, y, u) ≥ 2. if this holds, we have vm′η(f

′
i) = vm(fi) = ni for i = 1, . . . , N .

(4) Assume (f, y, u) is prepared along the face EL1 of ∆(f, y, u). Then η is very near
x if and only if δL1(f, y, u) > 2. if this holds, then (f ′, (y′, (u1, u

′
2, . . . , u

′
s))) is a

δ-prepared label of (X ′, Z ′) at η.

Proof (1) and (2) follows from Lemma 9.3 and Theorem 7.27 applied to (f ′, y′, (u1, u
′))

and p′ = (u1, u
′
2, . . . , u

′
s) and (9.5) in place of (f, y, u) and ps = (u1, u2 . . . , us) and (7.5).

We need to check the conditions (P0) and (P2) as well as Theorem 7.27 (3)(i) and (ii) for
the replacement. (P0) holds since k = R/m ↪→ R′/〈u1〉. In view of the presentation (9.5),
(P2) holds by the fact that for fixed B and a ∈ Z, there are only finitely many A ∈ Ze

≥0

such that |A|+ |B|−ni = a. Theorem 7.27 (3)(i) is a consequence of the assumption that
(f, y, u) is a label of (X, Z) at x (cf. Definition 9.1 (2)). Finally Theorem 7.27 (3)(ii)
follows from Lemma (9.3)(2). (3) and (4) are consequences of (2) and Theorems 8.6 and
8.1 and 8.3 and Lemma 7.4. This completes the proof of Lemma 9.4. ¤

Proof of Theorem 9.2. Write Z1 = Z ′, X1 = X ′, C1 = C ′ and assume π : Z ′ → Z
extends to a sequence (5.10). Let (f, y, u) be a label of (X, Z) at x. For 1 ≤ q ≤ m, write
Rηq = OZq ,ηq with the maximal ideal mηq , and let Jηq ⊂ Rηq be the ideal defining Xq ⊂ Zq

at ηq. Write

f
(q)
i = fi/u

qni
1 , y

(q)
i = yi/u

q
1, u

(q)
i = ui/u

q
1 (2 ≤ i ≤ s), u′i = ui/u1 (s + 1 ≤ i ≤ e).

Claim 9.5 Let (f, y, u) be a label of (X,Z) at x prepared along the faces ELq for all
q = 1, . . . , m− 1. Then, for q = 1, . . . , m, Rηq is the localization of

R[y
(q)
1 , . . . , y(q)

r , u
(q)
2 , . . . , u(q)

s , u′s+1, . . . , u
′
e] at 〈y(q)

1 , . . . , y(q)
r , u1, u

(q)
2 , . . . , u(q)

s 〉,
and Jηq = 〈f (q)

1 , . . . , f
(q)
N 〉, and (f (q), y(q), (u1, u

(q)
2 , . . . , u

(q)
s )) is δ-prepared and

δ(f (q), y(q), (u1, u
(q)
2 , . . . , u(q)

s )) = δLq(f, y, u)− q.

For q ≤ m− 1, (f (q), y(q), (u1, u
(q)
2 , . . . , u

(q)
s )) is a δ-prepared label of (Xq, Zq) at ηq.

Proof For q = 1 the claim follows from Lemma 9.4. For q > 1, by induction it follows
from loc.cit. applied to

Spec(OXq−1,ηq−1) ← Xq ×Xq−1 Spec(OXq−1,ηq−1)

and (f (q−1), y(q−1), (u1, u
(q−1)
2 , . . . , u

(q−1)
s )) in place of X ← X1 and (f, y, u) (note that the

condition (9.6) is satisfied for Spec(OXq−1,ηq−1) by Lemma 9.4 (5)). ¤
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Recalling that ηq is very near to ηq−1 for 1 ≤ q ≤ m − 1 (η0 = x by convention), we get
δLq(f, y, u)− q > 1 by Theorem 8.6 and Claim 9.5. It remains to show δO

Lq
(y, u) ≥ q + 1.

For this we rewrite (9.1) in Rηq as follows:

(9.7) lB = uq
1

∑
1≤i≤r

aiy
(q)
i +

∑

C=(c,a2,...,as)∈Zs
≥0

PC · uc
1(u

(q)
2 )a2 · · · (u(q)

s )as + u2q
1 g′,

where g′ = g/u2q
1 ∈ 〈y(q)

1 , . . . , y
(q)
r 〉2 and

PC =
∑

Ω(A)=C

bA · u′as+1

s+1 · · ·u′eae ,

for the map Ω : Re → Rs ; A = (a1, . . . , ae) → (Lq−1(A), a2, . . . , as). We easily see

PC ∈ mηq = 〈y(q), u1, u
(q)
2 , . . . , u(q)

s 〉 ⇔ bA ∈ m for all A such that Ω(A) = C ,

by noting that R → Rηq/mηq factors through R → k = R/m and k[u′s+1, . . . , u
′
e] ↪→ κ(ηq).

The strict transform B̃q of B in Spec(Rηq) is defined by

l′B = lB/uγ
1 with γ = v〈u1〉(lB),

where v〈u1〉 is the valuation of Rηq defined by the ideal 〈u1〉 ⊂ Rηq . From (9.7), we see

l′B 6∈ mηq ⇔ PC 6∈ mηq and c ≤ q for some C = (c, 0, . . . , 0) ∈ Zs
≥0

⇔ bA 6∈ m and |A| ≤ q for some A = (c′, 0, . . . , 0) ∈ Zs
≥0.

For A ∈ Ze
≥0 − {0}, we have

Lq(A) = |A|+
∑

2≤j≤s

aj ≥ q + 1 ⇔ (a2, . . . , as) 6= (0, . . . , 0) or |A| ≥ q + 1.

Hence we get

l′B 6∈ mηq ⇔ L(A) < q + 1 for some A ∈ Zs
≥0 − {0}. ⇔ δLq(lB, y, u) < q + 1.

It implies δO
Lq

(y, u) = min{δ(lB, y, u) | B ∈ O(x)} ≥ q + 1 since ηq ∈ B̃q for q ≤ m − 1
by the assumption. This shows the desired assertion and the proof of Theorem 9.2 is
complete.

Corollary 9.6 Let (f, y, u) be a δ-prepared label of (X, Z) at x. Assume ex(X) = eO
x (X)

(for example B = ∅).
(1) For the sequence in Definition 5.33 we have m < δ(f, y, u) ≤ m + 1.

(2) For the sequence in Definition 5.36 we have m ≤ δ(f, y, u) < m + 1.

Proof First we show (1). By Claim 9.5 in case s = 1 and Lq = L0 together with Theorem
8.6 and by the assumption that ηm−1 is very near to ηm−2 and ηm is not very near to ηm−1,
we have

δ(f (m−1), y(m−1), u1) = δ(f, y, u)− (m− 1) > 1, δ(f (m), y(m), u1) = δ(f, y, u)−m ≤ 1

(2) is shown by similar arguments and the details are left to the readers. ¤
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10 Additional invariants in the case ex(X) = 2

In order to show key Theorem 5.38 in §5, we introduce new invariants for singularities,
which were defined by Hironaka ([H6]). The definition works for any dimension, as long
as the directrix is 2-dimensional.

Definition 10.1 For a polyhedron ∆ ⊂ R2
≥0 we define

α(∆) := inf {v1 | (v1, v2) ∈ ∆}
β(∆) := inf {v2 | (α(∆), v2) ∈ ∆}
δ(∆) := inf {v1 + v2 | (v1, v2) ∈ ∆}

γ+(∆) := sup {v2 | (δ(∆)− v2, v2) ∈ ∆}
γ−(∆) := inf {v2 | (δ(∆)− v2, v2) ∈ ∆}

ε(∆) := inf {v2 | (v1, v2) ∈ ∆}
ζ(∆) := inf {v1 | (v1, ε(∆)) ∈ ∆}

The picture is as follows:

ε

v

w+

slope −1

w−

∂∆

a1

a2

δ

β

γ−

γ+

α δ − γ− δ ζ

∆ = ∆(f, y, u)

There are three vertices of ∆(f, y, u) which play crucial roles:

v := v(∆) :=(α(∆), β(∆)),

w+ := w+(∆) :=(δ(∆)− γ+(∆), γ+(∆)),

w− := w−(∆) :=(δ(∆)− γ−(∆), γ−(∆)).

We have

(10.1) β(∆) ≥ γ+(∆) ≥ γ−(∆) .
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Now let us consider the situation of Setup C in §9 and assume ex(X) = 2.
Let (f, y, u) = (f1, . . . , fN , y1, . . . , yr, u1, u2) be a prelabel of (X, Z) at x. Recall n(u)(fi) =
ni for i = 1, . . . , N . Write as (6.3):

fi =
∑
A,B

Ci,A,B yBuA , with A = (a1, a2), B = (b1, . . . , br), Ci,A,B ∈ R× ∪ {0}.

For ∗ = α, β, δ, γ±, v, w±, we write ∗(f, y, u) for ∗(∆(f, y, u)). Then we see

α(f, y, u) = inf

{
a1

ni − |B| | 1 ≤ i ≤ m, Ci,A,B 6= 0

}

β(f, y, u) = inf

{
a2

ni − |B| | 1 ≤ i ≤ m,
a1

ni − |B| = α(f, y, u), Ci,A,B 6= 0

}

δ(f, y, u) = inf

{ |A|
ni − |B| | 1 ≤ i ≤ m, Ci,A,B 6= 0

}

γ+(f, y, u) = sup

{
a2

ni − |B| | 1 ≤ i ≤ m,
|A|

ni − |B| = δ, Ci,A,B 6= 0

}

γ−(f, y, u) = inf

{
a2

ni − |B| | 1 ≤ i ≤ m,
|A|

ni − |B| = δ, Ci,A,B 6= 0

}

ε(f, y, u) = inf

{
a2

ni − |B| | 1 ≤ i ≤ m, Ci,A,B 6= 0

}

v := v(f, y, u) =(α(f, y, u), β(f, y, u)),

w+ := w+(f, y, u) =(δ(f, y, u)− γ+(f, y, u), γ+(f, y, u)),

w− := w−(f, y, u) =(δ(f, y, u)− γ−(f, y, u), γ−(f, y, u)) .

Definition 10.2 (1) A prelabel (f, y, u) (cf. Definition 9.1) is v-prepared if (f, y, u) is
prepared at v(f, y, u).

(2) We say that (X,Z) is v-admissible at x if there exists a v-prepared prelabel (f, y, u)
of (X, Z) at x. By Theorem 7.24, (X,Z) is v-admissible at x if R = OZ,x is
complete.

We now extend the above definition to the situation where the old components of B at x
are taken into account. We assume

(10.2) Spec(R/〈u〉) 6⊂ B for any B ∈ OB(x).

Definition 10.3 Let (y, u) be a system of regular parameters of R such that (u) is ad-
missible for J .

(1) For each B ∈ O(x), choose lB ∈ R such that B = Spec(R/〈lB〉) ⊂ Z = Spec(R).
(10.2) implies lB 6∈ 〈u〉 so that ∆(lB, y, u) is well-defined (cf. Definition 7.2). We
define

∆O(y, u) = the minimal F -subset containg ∪
B∈O(x)

∆(lB, y, u).

It is easy to see that ∆O(y, u) is independent of the choice of lB. For a prelabel
(f, y, u) of (X, Z) at x, let

∆O(f, y, u) = the minimal F -subset containg ∆(f, y, u) ∪∆O(y, u),
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∗O(f, y, u) = ∗(∆O(f, y, u)) for ∗ = v, α, β, γ±, . . . .

Note that

(10.3) ∆O(f, y, u) = ∆(fO, y, u) where fO = (f, lB (B ∈ O(x))).

(2) Assume that (X,Z) is v-admissible at x. Then we define

βO
x (X,Z) = βO(J) := min

(f,y,u)
{βO(f, y, u)| (f, y, u) is v-prepared}.

(3) A prelabel (f, y, u) of (X, Z) at x is called O-admissible if (f, y, u) is v-prepared and
βO

x (X, Z) = βO(f, y, u). Such a prelabel exists if and only if (X, Z) is v-admissible.

By Lemma 7.6 and Lemma 6.13 (2), for v-prepared (f, y, u) we have

(10.4) βO(f, y, u) ∈ 1

nN !
Z≥0 ⊆ R ,

Lemma 10.4 (1) Let (f, y, u) be a v-prepared prelable of (X, Z) at x. Then, for a
preparation (f, y, u) → (g, z, u) at a vertex v ∈ ∆(f, y, u), we have βO(f, y, u) =
βO(g, z, u).

(2) Assume that (X, Z) is v-admissible at x. For any integer m ≥ 1, there exists an δ-
prepared and O-admissible label (f, y, u) of (X, Z) at x. Moreover, if R is complete,
one can make (f, y, u) totally prepared.

Proof (2) is a consequence of (1) in view of Corollary 7.17. We prove (1). Setting

vO(y, u) = v(∆O(y, u)) = (αO(y, u), βO(y, u)),

we have

(10.5) vO(f, y, u) = (αO(f, y, u), βO(f, y, u)) =

{
vO(y, u)

v(f, y, u)

if αO(y, u) ≤ α(f, y, u)

if αO(y, u) > α(f, y, u).

By the v-preparedness of (f, y, u), any vertex v ∈ ∆(f, y, u) which is not prepared lies in
the range {(a1, a2) ∈ R2| a1 > α(f, y, u)}. Theorem 7.19 implies vO(f, y, u) = vO(g, y, u)
for the normalization (f, y, u) → (g, y, u) at such v. Thus it suffices to show vO(f, y, u) =
vO(f, z, u) for the dissolution (f, y, u) → (f, z, u) at v. Write v = (a, b). By the above
remark, we have a > α(f, y, u). The dissolution is given by a coordinate transformation:

y = (y1, . . . , , yr) → z = (z1, . . . , zr) with zi = yi + λiu
a
1u

b
2 (λi ∈ R)

Write α = αO(y, u) for simplicity. For each B ∈ O(x) choose lB ∈ R such that B =
Spec(R/〈lB〉). We may write

lB = ΛB(y) + uα
1 φB with ΛB(y) =

∑
1≤i≤r

cB,i · yi (cB,i, φB ∈ R)

and φB 6= 0 for some B ∈ O(x). Then we get

(10.6) lB = ΛB(z) + uα
1φB + ua

1ψB for some ψB ∈ R
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In case α = αO(y, u) ≤ α(f, y, u), (10.5) implies

vO(f, y, u) = vO(y, u) = vO(z, u) = vO(f, z, u),

where the second equality follows from (10.6) because a > α(f, y, u) ≥ α, and the
third follows from v(f, y, u) = v(f, z, u) by the v-preparedness of (f, y, u). In case
α = αO(y, u) > α(f, y, u), (10.5) implies

vO(f, y, u) = v(f, y, u) = v(f, z, u) = vO(f, z, u),

where the second equality follows from the v-preparedness of (f, y, u). The third equality
holds since by (10.6), we have αO(z, u) ≥ a > α(f, y, u) if ψB 6= 0 for some B ∈ O(x),
and αO(z, u) = α > α(f, y, u) if ψB = 0 for all B ∈ O(x). This completes the proof of
Lemma 10.4. ¤

Lemma 10.5 Let (f, y, u) be a prelabel of (X,Z) at x. Assume that there is no regular
closed subscheme D ⊆ {ξ ∈ X| HO

X(ξ) ≥ HO
X(x)} of dimension 1 with x ∈ D. (In

particular this holds if x is isolated in {ξ ∈ X| HO
X(ξ) ≥ HO

X(x)}.) Then αO(f, y, u) < 1
and εO(f, y, u) < 1.

Proof By corollary 7.17, we prepare (f, y, u) at the vertices in {A ∈ R2| |A| ≤ 1} to
get a label (g, z, u) of (X, Z) at x. Then αO(g, z, u) ≥ αO(f, y, u) since ∆O(g, z, u) ⊂
∆O(f, y, u). Thus we may replace (f, y, u) with (g, z, u) to assume that f is a standard
base of J .

Assume αO(f, y, u) ≥ 1. Then, letting p = (y1, . . . , yr, u1) ⊂ R, we have vp(fj) ≥ nj

for j = 1, . . . , N (cf. (7.2)). Since nj = n(u)(fj) ≥ vm(fj) ≥ vp(fj), this implies
vp(fj) = vm(fj) for j = 1, . . . , N . This implies by Theorems 2.2 (iv) and 2.3 that η ∈ X
and HX(η) = HX(x), where η ∈ Z is the point corresponding to p. By the same ar-
gument we prove vp(lB) = 1 = vm(lB) for B ∈ O(x) so that HO

X(η) = HO
X(x). Thus

{η} = Spec(R/p) is O-permissible, which contradicts the assumption of the lemma. The
assertion εO(f, y, u) < 1 is shown in the same way. ¤

Lemma 10.6 Let (y, u) be a system of regular parameters of R which is strictly admissible
for J . Assume

(∗) eO
x (X) = dimk

(
Dirx(X) ∩ ∩

B∈O(x)
Tx(B)

)
= 2.

Then we have δO(y, u) > 1. Assume in addition that δ(f, y, u) > 1 (so that (f, y, u) is a
label). Then we have δO(f, y, u) > 1.

Proof By the assumption on (y, u), we have IDirx(X) = 〈inm(y1), . . . , inm(yr)〉. Hence
(∗) implies

lB ∈ 〈y1, . . . , yr〉+ m2 for B ∈ O(x).

We then easily deduce the first assertion of the lemma. The second assertion is an obvious
consequence of the first. ¤
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11 Proof in the case ex(X) = ex(X) = 2, I: some key

lemmas

In this section we prepare some key lemmas for the proof of Theorem 5.38.

Let the assumption be those of Setup C in §9. We assume

• char(κ(x)) = 0 or char(κ(x)) ≥ dim(X).

• eO
x (X) = ex(X) = ex(X) = 2.

We fix a label (f, y, u) of (X, Z) at x and adopt the notations of Definition 9.1 (1) and
(2). We recall

Fi(Y ) = inm(fi) ∈ k[Y ] = k[Y1, . . . , Yr] ⊂ grm(R). (Yj = inm(yj))

By Lemma 10.6, the assumption eO
x (X) = ex(X) = 2 implies:

(11.1) δO(f, y, u) > 1.

It also implies that (10.2) is always satisfied so that ∆O(f, y, u) is well-defined.

For each B ∈ O(x), we choose lB ∈ R such that B×Z Spec(R) = Spec(R/〈lB〉). We study
two cases.

Case 1 (point blowup): Consider

π : Z ′ = B`x(Z) → Z and π : X ′ = B`x(X) → X.

Note that x ↪→ X is B-permissible for trivial reasons. Let (B′, O′) be the complete
transform of (B, O) in Z ′ (cf. Definition 3.15). In this case we have B′ = B̃ ∪ {π−1(x)},
where B̃ = {B̃| B ∈ B} with B̃, the strict transform of B in Z ′.

By Theorem 2.14, any point of X ′ near to x is contained in

C ′ := P(Dirx(X)) ⊂ P(Tx(Z)) = π−1
Z (x) ⊂ Z ′ .

Let T1, T2 be a pair of new variables over k and let

(11.2) ψ(u) : C ′ = P(Dir(R/J))
∼→ Proj(k[T1, T2]) = P1

k

be the isomorphism (6.2) which is determined by (u).

Take a closed point x′ ∈ C ′ near to x. By Theorems 2.10 and 2.13, we have

ν∗x′(X
′, Z ′) = ν∗x(X,Z) and ex′(X

′) ≤ 2.

Put R′ = OZ′,x′ with the maximal ideal m′. Let J ′ and p′ be the ideals of R′ such that

(11.3) X ′ ×Z′ Spec(R′) = Spec(R′/J ′) and C ′ ×Z′ Spec(R′) = Spec(R′/p′).

Lemma 11.1 Assume ψ(u)(x
′) = (1 : 0) ∈ Proj(k[T1, T2]). Let

y′ = (y′1, . . . , y
′
r) with y′i = yi/u1, u′2 = u2/u1, f ′ = (f ′1, . . . , f

′
N) with f ′i = fi/u

ni
1 .
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(1) (y′, u1, u
′
2) is a system of regular parameters of R′ such that p′ = (y′, u1), and J ′ =

〈f ′1, . . . , f ′N〉.
(2) If x′ is very near to x, then (f ′, y′, (u1, u

′
2)) is a prelabel of (X ′, Z ′) at x′.

(3) ∆(f ′, y′, (u1, u
′
2)) is the minimal F -subset containg Ψ(∆(f, y, u)), where

Ψ : R2 → R2, (a1, a2) 7→ (a1 + a2 − 1, a2)

β

γ+   

γ−

∆ (f,y,u) ∆ (f’,y’,u  ,u’ )

α δ −1

21

for which all vertices move horizontally. We have

β(f ′, y′, (u1, u
′
2)) = γ−(f, y, u) ≤ β(f, y, u).

α(f ′, y′, (u1, u
′
2)) = δ(f, y, u)− 1.

(4) If (f, y, u) is prepared at w−(f, y, u), then (f ′, y′, (u1, u
′
2)) is v-prepared. If (f, y, u)

is prepared along the face EL, then (f ′, y′, (u1, u
′
2)) is δ-prepared, where

L : R2 → R ; (a1, a2) → a1 + 2a2.

If (f, y, u) is totally prepared, so is (f ′, y′, (u1, u
′
2)).

(5) Assume that x′ is B-near to x. Putting l′B = lB/u1 ∈ R′ for B ∈ O(x), we have

∆O(f ′, y′, (u1, u
′
2)) = ∆(f ′O, y, (u1, u

′
2)) with f ′O = (f ′, l′B (B ∈ O(x))).

The same assertions as (3) hold replacing ∆ by ∆O and ∗ by ∗OB for ∗ = α, β, γ−, δ.

Proof By Definition 9.1, (y, u) is strictly admissible for J and f is a standard base of
J which is admissible for (y, u). Hence (1) has been seen in Setup B in §8. (2) follows
from Theorem 8.1 and Theorem 8.3. (3) and (4) follow from Lemma 9.3. As for (5), the
assumption implies O′(x′) = {B′ | B ∈ O(x)} with B′, the strict transform of B in Z ′

and we have
B′ ×Z′ Spec(R′) = Spec(R′/〈l′B〉) ⊂ Spec(R′).

This implies the first assertion of (5) by (10.3). The second assertion of (5) then follows
from the first. ¤
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The following lemma is shown in the same way as the previous lemma except that the
last assertion of (5) follows from Lemma 10.5.

Lemma 11.2 Assume ψ(u)(x
′) = (0 : 1) ∈ Proj(k[T1, T2]) and put

z′ = (z′1, . . . , z
′
r) with z′i = yi/u2, u′1 = u1/u2, g′ = (g′1, . . . , g

′
N) with f ′i = fi/u

ni
2 .

(1) (z′, u′1, u2) is a system of regular parameters of R′ such that p = (z′, u2), and J ′ =
〈g′1, . . . , g′N〉.

(2) If x′ is very near to x, then (g′, z′, (u′1, u2)) is a prelabel of (X ′, Z ′) at x′.

(3) ∆(g′, z′, (u′1, u2)) is the minimal F -subset containg Ψ(∆(f, y, u)), where

Ψ : R2 → R2, (a1, a2) 7→ (a1, a1 + a2 − 1)

We have
α(g′, z′, (u′1, u2)) = α(f, y, u).

β(g′, z′, (u′1, u2)) ≤ β(f, y, u) + α(f, y, u)− 1.

(4) If (f, y, u) is prepared at w+(f, y, u), then (g′, z′, (u′1, u2)) is v-prepared. If (f, y, u)
is prepared along the face EL′, then (f ′, y′, (u1, u

′
2)) is δ-prepared, where

L′ : R2 → R ; (a1, a2) → 2a1 + a2.

If (f, y, u) is totally prepared, so is (g′, z′, (u′1, u2)).

(5) Assume that x′ is B-near to x. Then

βO(g′, z′, (u′1, u2)) ≤ βO(f, y, u) + αO(f, y, u)− 1.

If there is no regular closed subscheme D ⊆ {ξ ∈ X| HO
X(ξ) ≥ HO

X(x)} of dimension
1 with x ∈ D, then αO(f, y, u) < 1 so that

βO(g′, z′, (u1, u
′
2)) < βO(f, y, u).

Now let η′ be the generic point of C ′. By Theorem 2.13 and Theorem 2.6, if η′ is near
to x, we have eη′(X

′) ≤ 1. Write R′
η′ = OX′,η′ with the maximal ideal m′

η′ . Note
(y′, u1) = (y′1, . . . , y

′
r, u1) is a system of regular parameters of R′

η′ .

Lemma 11.3 Let ∆(f ′, y′, u1) be the characteristic polyhedron for (R′
η′ , JR′

η′).

(1) ∆(f ′, y′, u1) = [δ(f, y, u)− 1,∞) ⊂ R≥0.

Assume (f, y, u) is δ-prepared.

(2) ∆(f ′, y′, u1) is well prepared.

(3) η′ is near to x if and only if δ(f, y, u) ≥ 2. If η′ is near to x, we have

vm′
η′
(f ′i) = vm(fi) = ni for i = 1, . . . , N.
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(4) η′ is very near to x if and only if δ(f, y, u) > 2. If η′ is very near to x, then
(f ′, (y′, u1)) is a well-prepared label of (X ′, Z ′) at η′.

Proof The lemma is a special case of Lemma 9.4. ¤

Case 2 (curve blowup): Let the assumption be as in the beginning of this section.
Assume given a regular curve C ⊂ X containing x which is B-permissible (cf. Definition
3.5) and such that

C ×Z Spec(R) = Spec(R/p) with p = (y, u1) = (y1, . . . , yr, u1).

By Theorem 2.6, the assumption ex(X) = 2 implies

eη(X) ≤ 1 where η is the generic point of C.

Consider
π : Z ′ = B`C(Z) → Z and π : X ′ = B`C(X) → X.

Let (B′, O′) be the complete transform of (B, OI) in Z ′ (cf. Definition 3.15). In this case
we have B′ = B̃ ∪ {π−1(C)}, where B̃ = {B̃| B ∈ B} with B̃, the strict transform of B in
Z ′. By Theorem 2.14, there is the unique point x′ ∈ π−1(x) possibly near to x, given by

x′ := P(Dirx(X)/Tx(C)) ⊂ Proj(Tx(Z)/Tx(C))) = π−1
Z (x) ⊂ Z ′ .

In what follows we assume x′ near to x. By Theorems 2.10 and 2.13, we have

ν∗x′(X
′, Z ′) = ν∗x(X,Z) and ex′(X

′) ≤ 2.

Let R′ = OZ′,x′ with the maximal ideal m′, and let J ′ ⊂ R′ be the ideal such that

X ′ ×Z′ Spec(R′) = Spec(R′/J ′).

As is seen in Setup B in §8,

(y′, u) = (y′1, . . . , y
′
r, u1, u2) = (y1/u1, . . . , yr/u1, u1, u2)

is a system of regular parameters of R′.

Lemma 11.4 (1) If (f, y, u) is v-prepared, then vp(fi) = vm(fi) = n(u)(fi) and

J ′ = 〈f ′1, . . . , f ′N〉 with f ′i := fi/u
ni
1 ∈ R′.

(2) If x′ is very near to x, then (f ′, y′, u) is a prelabel of (X ′, Z ′) at x′.

(3) If (f, y, u) is v-prepared (resp. δ-prepared, resp. totally prepared), so is (f ′, y′, u).

(4) We have

∆(f ′, y′, u) = Ψ(∆(f, y, u)) with Ψ : R2 → R2, (a1, a2) 7→ (a1 − 1, a2),

β(f ′, y′, u) = β(f, y, u) and α(f ′, y′, u) = α(f, y, u)− 1.

If x′ is B-near to x, the same assertions hold replacing ∆ by ∆O and ∗ by ∗OB for
∗ = α, β.
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Proof The first assertion of (1) follows from Theorem 7.18 and the second from the first
(cf. Setup B in §8). (2) follows from Theorems 8.1 and 8.3. To show (3) and (4), write,
as in (6.3):

(11.4) fi =
∑

(A,B)

Ci,A,B yBuA with Ci,A,B ∈ R× ∪ {0}

We compute

(11.5) f ′i = fi/u
ni
1 =

∑

(A,B)

Ci,A,B (y′)Bu2
a2u

a1+(|B|−ni)
1 with A = (a1, a2).

This immediately implies the first assertion of (4). Then (3) is shown in the same way as
Lemma 9.3 (2). Finally the last assertion of (4) is shown in the same way as Lemma 11.1
(5). This completes the proof of Lemma 11.4. ¤

Lemma 11.5 Assume that (f, (y, u1)) is a well-prepared label of (X, Z) at η (note that
this implies eη(X) = 1). Let C ′ = Spec(R′/p′) with p′ = (y′, u1) ⊂ R′ and let η′ be the
generic point of C ′. Then C ′ ⊂ X ′ and η′ is the unique point of X ′ possibly near to η. If
η′ is very near to η, then (f ′, (y′, u1)) is a well-prepared label of (X ′, Z ′) at η′.

Proof The first assertion is a direct consequence of Theorem 2.14. The second assertion
follows from Lemma 9.3 applied to the base change via η → C of the diagram

C ′ ↪→ X ′ ↪→ Z ′

↓ ↓ π ↓ π
C ↪→ X ↪→ Z

¤
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12 Proof in the case ex(X) = ex(X) = 2, II: the residu-

ally rational case

In this section we prove Theorem 12.6 below, which implies Key Theorem 5.38 under the
assumption that the residue fields of the initial points of Xn are separably algebraic over
that of X1. The proof is divided into two steps.

Step 1 (one fundamental unit): Let the assumptions and notations be as in the
beginning of the previous section. Assume given a fundamental unit of B-permissible
blowups as in Definition 5.33:

(12.1)

B = B0 B1 B2 Bm−1 Bm

Z = Z0
π1←− Z1

π2←− Z2 ← . . . ← Zm−1
πm←− Zm

∪ ∪ ∪ ∪ ∪
X = X0

π1←− X1
π2←− X2 ← . . . ← Xm−1

πm←− Xm

↑ ∪ ∪ ∪ ↑
x = x0 ← C1

∼← C2
∼← . . .

∼← Cm−1 ← xm

We denoted it by (X ,B). For 2 ≤ q ≤ m − 1, let ηq be the generic point of Cq and let
xq ∈ Cq be the image of xm. By definition the following conditions hold:

• For 1 ≤ q ≤ m, xq is near to xq−1 and κ(xq−1) ' κ(xq).

• For 1 ≤ q ≤ m− 1, Cq = {ξ ∈ φ−1
q (x)| HO

Xq
(ξ) = HO

X(x)} with φq : Xq → X.

• For 1 ≤ q ≤ m, HO
Xq

(xq) = HO
X(x) and eO

xq
(Xq) = exq(Xq) = 2.

• For 1 ≤ q ≤ m− 1, HO
Xq

(ηq) = HO
X(x).

• For 1 ≤ q ≤ m− 2, eO
ηq

(Xq) = eηq(Xq) = 1.

Let Rq = OZq ,xq with the maximal ideal mq, and let Jq and pq be the ideals of Rq such
that

(12.2) Xq ×Zq Spec(Rq) = Spec(Rq/Jq) and Cq ×Zq Spec(Rq) = Spec(Rq/pq).

Let Rpq be the localization of Rq at pq and Jpq = JqRpq . Let T1, T2 be a pair of new
variables over k and consider the isomorphism (11.2):

(12.3) ψ(u) : C1 = P(Dirx(X))
∼→ Proj(k[T1, T2]) = P1

k

Definition 12.1 (1) A prelabel (resp. label) Λ of (X ,B) is a prelabel (resp. label)
Λ = (f, y, u) of (X,Z) at x. When x1 is a k-rational point of C1, the homogeneous
coordinate of ψ(u)(x1) ∈ Proj(k[T1, T2]) is called the coordinate of (X , Λ).

(2) We say that (X ,B) is v-admissible if (X, Z) is v-admissible in the sense of Defini-
tion 10.2 (2). A prelabel (f, y, u) of (X ,B) is O-admissible if it is O-admissible as
a prelabel of (X, Z) at x (cf. Definition 10.3 (3)).

We remark that the coordinate of (X ,B; Λ) depends only on (u), not on (f, y).
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Lemma 12.2 Let Λ = (f, y, u) be a label of (X ,B) which is v-prepared and δ-prepared
and prepared along the face EL, where L : R2 → R ; (a1, a2) → a1 + 2a2. Assume the
coordinate of (X ,B; Λ) is (1 : 0). Let

u′2 = u2/u1, y(q) = (y
(q)
1 , . . . , y(q)

r ) (y
(q)
i = yi/u

q
1), f (q) = (f

(q)
1 , . . . , f (q)

p ) (f
(q)
i = fi/u

qni
1 ).

For 1 ≤ q ≤ m, the following holds:

(1) (f (q), (y(q), (u1, u
′
2))) is a v-prepared and δ-prepared label of (Xq, Zq) at xq.

(2) ∆O(f (q), y(q), (u1, u
′
2)) is the minimal F -subset containg Ψq(∆

O(f, y, u)), where

Ψq : R2 → R2 , (a1, a2) 7→ (a1 + a2 − q, a2)

We have
βO(f (q), y(q), (u1, u

′
2)) = γ−O(f, y, u) ≤ βO(f, y, u).

αO(f (q), y(q), (u1, u
′
2)) = δO(f, y, u)− q.

(3) For q ≤ m − 1, pq = (y(q), u1) = (y
(q)
1 , . . . , y

(q)
r , u1) and vpq(f

(q)
i ) = ni for i =

1, . . . , N . For q ≤ m− 2, (f (q), y(q), u1) is a well prepared label of (Xq, Zq) at ηq.

Proof By Lemma 11.1, (f (1), (y(1), (u1, u
′
2))) is a label of (X1, Z1) at x1 which is v-

prepared and δ-prepared. By Lemma 11.3, (f (1), (y(1), (u1, u
′
2))) is a well prepared label

of (X1, Z1) at η1 if η1 is very near to x1. Then the lemma follows from Lemmas 11.4 and
11.5, applied to Xq ← Xq+1 in place of X ← X ′. ¤

Lemma 12.3 Let Λ = (f, (y, u)) be a label of (X ,B) which is v-prepared and δ-prepared
and prepared along the face EL′, where L′ : R2 → R ; (a1, a2) → 2a1 + a2. Assume the
coordinate of (X ,B; Λ) is (0 : 1). Set

u′1 = u1/u2, z(q) = (z
(q)
1 , . . . , z(q)

r ) (z
(q)
i = yi/u

q
2), g(q) = (g

(q)
1 , . . . , g

(q)
N ) (g

(q)
i = fi/u

qni
2 ).

For 1 ≤ q ≤ m, the following hold:

(1) (g(q), (z(q), (u′1, u2))) is a v-prepared and δ-prepared label of (Xq, Zq) at xq.

(2) ∆O(g(q), z(q), (u′1, u2)) is the minimal F -subset containg Φq(∆
O(f, y, u)), where

Φq : R2 → R2, (a1, a2) 7→ (a1, a1 + a2 − q)

and we have
αO(g(q), z(q), (u′1, u2)) = αO(f, y, u),

βO(g(q), z(q), (u′1, u2)) ≤ βO(f, y, u) + αO(f, y, u)− q.

If there is no regular closed subscheme D ⊆ {ξ ∈ X| HO
X(ξ) ≥ HO

X(x)} of dimension
1 with x ∈ D, then αO(f, y, u) < 1 so that

βO(g(q), z(q), (u′1, u2)) < βO(f, y, u).

Proof This is shown in the same way as Lemma 12.2 using Lemma 11.2 instead of 11.1.
¤
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Proposition 12.4 Assume that (X ,B) is v-admissible and κ(x) = κ(x1). Then, for all
q = 1, . . . , m, (Xq, Zq) is v-admissible at xq and

βO
xq

(Xq, Zq) ≤ βO
x (X, Z).

Proof By the assumption we can take an O-admissible prelabel Λ = (f, y, u) of (X, Z),
and the coordinate of (X , Λ) is either (1 : 0) or (0 : 1) or (1 : −λ) for some λ ∈ k.
Assume we are in the first case. By Lemma 10.4, after preparation we may assume
that (f, y, u) is prepared along the δ-face and the face EL in Lemma 12.2. By Lemmas
12.2 and 12.3, applied to Xq ← Xq+1 for q = 1, . . . , m in place of X ← X ′, we get a
label Λq := (f (q), (y(q), (u1, u

′
2))) of (Xq, Zq) at xq which is v-prepared and δ-prepared and

deduce

βO
xq

(Xq, Zq) ≤ βO(f (q), y(q), (u1, u
′
2)) = βO(f (1), y(1), (u1, u

′
2))

= γ−O(f, y, u) ≤ βO(f, y, u) = βO
x (X,Z).

where the first inequality comes from v-preparedness of Λq. The case that the coordinate
of (X , Λ) is (0 : 1) is shown in the same way by using Lemma 12.3 instead of Lemma 12.2.

Now assume that the coordinate of (X , Λ) is (1 : −λ). Let ũ2 := u2 + φu1 for some
φ ∈ R = OZ,x such that φ mod m = λ. Then (f, y, (u1, ũ2)) is a prelabel of (X, Z) at
x and ψ(u1,ũ2)(x1) = (1 : 0) ∈ Proj(k[T1, T2]) so that the coordinate of (f, y, (u1, ũ2)) is
(1 : 0). Hence the proof is reduced to the first case in view of the following lemma.

Lemma 12.5 Let ũ2 = u2 + φu1 for φ ∈ R = OZ,x. Then v(f, y, u) = v(f, y, (u1, ũ2)).
For v = v(f, y, u) we have

inv(f)(y,(u1,ũ2)) = inv(f)(y,u)|U2=Ũ2
∈ k[Y, U1, Ũ2] = grm(R),

where Ũ2 = inm(ũ2) ∈ grm(R). Hence, if (f, y, u) is v-prepared, then so is (f, y, (u1, ũ2)).
We also have vO(f, y, u) = vO(f, y, (u1, ũ2)) and hence if (f, y, u) is O-admissible, then
so is (f, y, (u1, ũ2)). .

Proof We compute

ua1
1 ua2

2 = ua1
1 (ũ2 + u1φ)a2

= ua1
1

a2∑
m=0

(
a2

m

)
um

1 ũa2−m
2 φm

= ua1
1 ũa2

2 +
a2∑

m=1

(
a2

m

)
ua1+m

1 ũa2−m
2 φm.

This implies that the vertices on the line {(a1, a2)| a1 = α(f, y, u)} together with the
initial forms at it, are not affected by the transformation (f, y, u) → (f, y, (u1, ũ2)). Thus
the first assertion follows. The last assertion is shown by the same argument applied to
fO instead of f (cf. (10.3)) . ¤

Step 2 (a chain of fundamental units): In this step we consider the following situa-
tion: Assume given a chain of fundamental units of B-permissible blowups (cf. Definition
5.37):

(12.4) (X0,B0) ← (X1,B1) ← (X2,B2) ← . . .
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where each (Xq,Bq) is as (12.1). For q ≥ 0, let (x(q), X(q), Z(q),B(q)) be the initial part of
(Xq,Bq) and mq be the length of Xq. Let Rq = OZ(q),x(q) with the maximal ideal mq and

X(q) ×Z(q) Spec(Rq) = Spec(Rq/Jq) for an ideal Jq ⊂ Rq.

Theorem 12.6 Assume that for all q ≥ 0, κ(x(q)) is separably algebraic over κ(x(0)) and
the following condition holds:

(a) There is no regular closed subscheme

D ⊆ {ξ ∈ X(q)| HO
X(q)(ξ) ≥ HO

X(q)(x
(q))}

of dimension 1 with x(q) ∈ D.

(Note that this holds if x(q) is isolated in {ξ ∈ X(q)| HO
X(q)(ξ) ≥ HO

X(q)(x
(q))}.) Then the

sequence (12.4) stops after finitely many steps.

Proof By Lemmas 1.29 and 1.37, it suffices to show the claim after replacing each
Xq by its base changes via Spec(R̂ur) → Z(0), where R̂ur is the maximal unramified
extension of the completion of R = R0 (here we use that Z is excellent). Thus we
may assume that κ(x(q)) = κ(x) and that R0 is complete and hence that (X0,B0) is v-
admissible. Proposition 12.4 implies that for all q ≥ 0, (Xq,Bq) is v-admissible so that
βq := βO

x(q)(X
(q), Z(q)) is well-defined and

(12.5) βq+1 ≤ βq for all q ≥ 0.

Note βq ∈ 1/nN ! ·Z2 ⊂ R2, where ν∗(J0) = ν∗(Jq) = (n1, . . . , nN ,∞, . . . ) (cf. Lemma 7.6,
Lemma 6.13 and Theorem 2.10 (3)). Hence the strict inequality may occur in (12.5) only
for finitely many q. Hence we may assume βq = β0 for all q ≥ 0.

In what follows, for a prelabel (g, (z, u)) of X0 with g = (g1, . . . , gN) and z = (z1, . . . , zr))
and for q ≥ 0, we write

g(q) = (g
(q)
1 , . . . , g

(q)
N ) with g

(q)
i =

{
gi/u

ni(m1+···+mq)
1 , q ≥ 1,

gi , q = 0.

z(q) = (z
(q)
1 , . . . , z(q)

r ) with z
(q)
i =

{
zi/u

m0+···+mq−1

1 , q ≥ 1,
zi , q = 0.

By the completeness of R0, we can choose a totally prepared and O-admissible label
Λ0 = (f, y, u)) of (X0,B0). By the assumption (a), β0 = β1 implies by Lemma 12.3 (2)
that the coordinate of (X0, Λ0) must be (1 : −λ0) for some λ0 ∈ k. Put v1 = u2 + φ0u1

for a lift φ0 ∈ R of λ0 and prepare (f, y, (u1, v1)) to get a totally prepared label Λ′0 =
(g, z, (u1, v1)) of (X0,B0). By Lemma 12.5, Λ′0 is O-admissible and the coordinate of
(X0, Λ

′
0) is (1 : 0). Lemma 12.2 (1) implies that Λ1 = (g(1), z(1), (u1, v1/u1)) is a totally

prepared label of X1. By the assumption (a), β0 = β1 = β2 implies by Lemma 12.3 (2)
that the coordinate of (X1, Λ1) is (1 : −λ1) for some λ1 ∈ k. Put v2 = v1 + φ1u

2
1 =

u2 + φ0u1 + φ1u
2
1 for a lift φ1 ∈ R of λ1. Prepare (f, y, (u1, v2)) to get a totally prepared

label Λ′′0 = (h,w, (u1, v2)) of (X0, Λ
′
0). Then Λ′′0 is O-admissible by Lemma 12.5 and Λ′1 =

(h(1), (w(1), (u1, v2/u1))) is a totally prepared label of X1 by Lemma 12.2 (1). Moreover,
the coordinate of (X0, Λ

′′
0) and that of (X1, Λ

′
1) are both (1 : 0). Lemma 12.2 (1) then

implies that Λ2 = (h(2), w(2), (u1, v2/u
2
1)) is a totally prepared label of X2. The same

argument repeats itself to imply the following:
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Claim 12.7 Assume that the sequence (12.4) proceeds in infinitely many steps and that
βq = β0 for all q ≥ 0. Then there exists a sequence φ0, φ1, φ2, . . . of elements in R for
which the following holds: Recalling that R is complete, set

v = lim
q→∞

(
u2 + φ0u1 + φ1u

2
1 + . . . + φq−1u

q
1

) ∈ R .

Prepare (f, y, (u1, v))) to get a totally prepared label (f̂ , ŷ, (u1, v)) of (X0,B0). Then
(f̂ , ŷ, (u1, v)) is O-admissible and Λ̂q = (f̂ (q), ŷ(q), (u1, v

(q))) is a totally prepared label

of (Xq,Bq) and the coordinate of (Xq, Λ̂q) is (1 : 0) for all q ≥ 0. Here v(q) = v/uq
1.

We now write (f, y, (u1, u2)) for (f̂ , ŷ, (u1, v)). Lemma 12.2 implies that for all q ≥ 0,

(f (q), y(q), (u1, u
(q)
2 )) is a totally prepared label of (Xq,Bq). Moreover ∆O(f (q), y(q), (u1, u

(q)
2 ))

is the minimal F -subset of R2 containing

Tq(∆
O(f (q−1), y(q−1), (u1, u

(q−1))
2 ))), Tq : R2 → R2 ; (a1, a2) → (a1 + a2 −mq−1, a2),

where mq−1 is the length of Xq−1. This implies that εO(f (q), y(q), (u1, u
(q)
2 )) = εO(f, y, u) =:

εO for all q ≥ 0 (see Definition 10.1), and that

ζO(f (q), y(q), (u1, u
(q)
2 )) = ζO(f (q−1), y(q−1), (u1, u

(q−1)
2 )) + εO −mq−1

< ζO(f (q−1), y(q−1), (u1, u
(q−1)
2 )) ,

for all q ≥ 1, because mq−1 ≥ 1, and εO < 1 by Lemma 10.5 and the assumption (a)
of Theorem 12.6. This implies that the sequence must stop after finitely many steps as
claimed.
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13 Proof in the case ex(X) = ex(X) = 2, III: non-trivial

residue extensions

In this section we complete the proof of key Theorem 5.38 (see Theorem 13.4 below).

Let the assumptions and notations be as in the beginning of Case 1 of §11. Let Φ(T1, T2) ∈
k[T1, T2] be an irreducible homogeneous polynomial corresponding to x′ ∈ C = Proj(k[T1, T2])
(cf. (11.2)). We set

Φ = Φ(U1, U2) ∈ k[U1, U2] ⊂ k[Y, U1, U2] = grm(R).

We assume x′ 6= (1 : 0) so that U1 does not divide Φ. Let

d = deg Φ = [κ(x′) : κ(x)].

Choosing a lift Φ̃(U1, U2) ∈ R[U1, U2] of Φ ∈ k[U1, U2], set

φ = Φ̃(u1, u2) ∈ R and φ′ = φ/udegΦ
1 ∈ R′ .

The following two lemmas are shown in the same way as Lemma 11.1 (1), (2) and (5).

Lemma 13.1 Let

y′ = (y′1, . . . , y
′
r) with y′i = yi/u1, f ′ = (f ′1, . . . , f

′
N) with f ′i = fi/u

ni
1 .

(1) (y′, (u1, φ
′)) is a system of regular parameters of R′ such that p = (y′, u1) (cf. (11.3)),

and J ′ = 〈f ′1, . . . , f ′N〉.
(2) If x′ is very near to x, then (f ′, y′, (u1, φ

′)) is a prelabel of (X ′, Z ′) at x′.

Lemma 13.2 Assume x′ is O-near to x. Setting l′B = lB/u1 ∈ R′ for B ∈ O(x), we have

∆O(f ′, y′, (u1, φ
′)) = ∆(f ′O, y, (u1, φ

′)) with f ′O = (f ′, l′B (B ∈ O(x))).

Now we state the main result of this section.

Proposition 13.3 Let δ = δ(f, y, u). Assume the following conditions:

(a) d ≥ 2 and there is no regular closed subscheme D ⊆ XO
max of dimension 1 with

x ∈ D,

(b) (f, y, u) is v-prepared and prepared at w+(f, y, u),

(c) inδ(f)(y,u) is normalized.

Then there exists a part of a system of regular parameters z′ = (z′1, . . . , z
′
r) ⊂ m′ such that

the following holds:

(1) (f ′, z′, (u1, φ
′)) is a v-prepared prelabel of (X ′, Z ′) at x′,

(2) βO(f ′, z′, (u1, φ
′)) < βO(f, y, u), α(f ′, z′, (u1, φ

′)) = α(f ′, y′, (u1, φ
′)) = δ − 1,
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(3) z′ = y′ unless δ ∈ Z and δ ≥ 2. In the latter case we have z′i − y′i ∈ 〈uδ−1
1 〉 for

i = 1, . . . , r. In particular 〈y′, u1〉 = 〈z′, u1〉.

Before proving Proposition 13.3, we now complete the proof of Theorem 5.38. In view of
Proposition 12.4 and Theorem 12.6 (and its proof), Theorem 5.38 is an obvious conse-
quence of the following.

Theorem 13.4 Assume given a fundamental unit of B-permissible blowups (12.1). As-
sume that κ(x1) 6= κ(x) and that there is no regular closed subscheme D ⊆ XO

max of
dimension 1 with x ∈ D. (E.g., this holds if x is isolated in XO

max). Assume that (X, Z)
is v-admissible at x (cf. Definition 10.3 (3)). Then, for q = 1, . . . , m, (Xq, Zq) is v-
admissible at xq and

βO
xq

(Xq, Zq) < βO
x (X, Z).

Proof By the assumption we can take an O-admissible prelabel Λ = (f, y, u). By Lemma
10.4, after preparation we may assume that (f, y, u) is v-prepared and δ-prepared. Let
(f ′, y′, (u1, φ

′)) and (f ′, z′, (u1, φ
′)) be as in Lemma 13.1 and Proposition 13.3, applied to

X ← X1 in place of X ← X ′. By Claim 9.5, we have (cf. (12.2))

pq = 〈y′1/uq−1
1 , . . . , y′r/u

q−1
1 , u1〉 for q = 1, . . . , m− 1.

By Proposition 13.3 (3) and since δ(f, y, u) ≥ m by Corollary 9.6, this implies

(13.1) pq = 〈z′1/uq−1
1 , . . . , z′r/u

q−1
1 , u1〉 for q = 1, . . . , m− 1.

We prepare (f ′, z′, (u1, φ
′)) at all vertices and the faces lying in

{A ∈ R2 | |A| ≤ |v(f ′, z′, (u1, φ
′))|}

to get a v-prepared and δ-prepared label (g, w, (u1, φ
′)) of (X1, Z1) at x1. Note that

(13.2) wi − z′i ∈ 〈uγ
1〉 (1 ≤ i ≤ r) for γ ∈ Z≥0, γ > α(f ′, z′, (u1, φ

′)) = δ − 1.

By Lemma 10.4, we have

βO(g, w, (u1, φ
′)) = βO(f ′, z′, (u1, φ

′)).

For q = 1, . . . , m, let

g(q) = (g
(q)
1 , . . . , g

(q)
N ) (g

(q)
i = g/u

ni(q−1)
1 ), w(q) = (w

(q)
1 , . . . , w

(q)
N ) (w

(q)
i = w/u

(q−1)
1 ).

Then (13.1) and (13.2) imply pq = 〈w(q)
1 , . . . , w

(q)
r , u1〉 for q = 1, . . . ,m − 1. For q ≥ 1,

Lemma 11.4, applied to Xq ← Xq+1 in place of X ← X ′, implies that Λq := (g(q), w(q), (u1, φ
′))

is a label of (Xq, Zq) at xq which is v-prepared and δ-prepared. Then we get

βO
xq

(Xq, Zq) ≤ βO(g(q), w(q), (u1, φ
′)) = βO(g, w, (u1, φ

′)) = βO(f ′, z′, (u1, φ
′))

< βO(f, y, u) = βO
x (X,Z),

where the first inequality (resp. equality) comes from v-preparedness of Λq (resp. Lemma
11.4 (4)). This completes the proof of the theorem. ¤
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Now we start the proof of Proposition 13.3. We may write

(13.3) inδ(fi)(y,u) = Fi(Y ) +
∑

|B|<ni

Pi,B(U) · Y B ∈ k[Y, U1, U2],

where Pi,B(U) ∈ k[U1, U2], for B ∈ Zr
≥0 with |B| < ni, is either 0 or homogeneous of

degree δ(ni − |B|). Write

(13.4) Pi,B(U) = Φei(B) ·Qi,B(U),

where ei(B) ∈ Z≥0 and Qi,B(U) ∈ k[U1, U2] is either 0, or homogeneous of degree (δ − d ·
ei(B))(ni − |B|) and not divisible by Φ. Then we get

(13.5) inδ(fi)(y,u) = Fi(Y ) +
∑

Qi,B(U)Y BΦei(B) ∈ k[Y, U1, U2],

From this we compute

(13.6)

γ+(f, y, u) = sup

{
degU2

Pi,B(1, U2)

ni − |B| | 1 ≤ i ≤ N, Pi,B(U) 6≡ 0

}
.

= sup

{
d · ei(B) + degU2

Qi,B(1, U2)

ni − |B| | 1 ≤ i ≤ N, Qi,B(U) 6≡ 0

}
.

≥ d · sup

{
ei(B)

ni − |B| | 1 ≤ i ≤ N, Qi,B(U) 6≡ 0

}
.

where degU2
denotes the degree of a polynomial in k[U2]. Set

qi,B = Q̃i,B(u1, u2) ∈ R and q′i,B = qi,B/u
deg Qi,B

1 ∈ R′ ,

where Q̃i,B(U1, U2) ∈ R[U1, U2] is a lift of Qi,B(U) ∈ k[U1, U2]. Letting F̃ (Y ) ∈ R[Y ] be a
lift of F (Y ) ∈ k[Y ], (13.3) and (13.4) imply

(13.7) fi = F̃i(y) +
∑

|B|<ni

yBua1
1 (φ)ei(B)qi,B + g with vL(g)(y,u) > vL(fi)(y,u) = ni ,

By Lemma 8.2(2) this implies
(13.8)

f ′i = fi/u
ni
1 = F̃i(y

′) +
∑

|B|<ni

y′Bu
(δ−1)(ni−|B|)
1 (φ′)ei(B)q′i,B + g′ with vΛ(g′)(y′,(u1,φ′)) > ni ,

where Λ : R2 → R ; (a1, a2) → a1

δ − 1
and g′ = g/uni

1 . Noting that

(13.9) q′i,B ∈ (R′)× ⇔ Qi,B(U) 6≡ 0 ∈ k[U1, U2],

we get

(13.10)

α′ :=α(f ′, y′, u1, φ
′) = δ − 1 where δ := δ(f, y, u),

β′ :=β(f ′, y′, u1, φ
′) = inf

{
ei(B)

ni − |B| | 1 ≤ i ≤ N, Qi,B(U) 6≡ 0

}
.
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The same argument, applied to lB with B ∈ O(x), shows

(13.11) αO(f ′, y′, u1, φ
′) = δO(f, y, u)− 1.

Let v′ = v(f ′, y′, (u1, φ
′)). Under the identification

grm′(R
′) = k′[Y ′, U1, Φ

′]
(
Y ′

i = inm′(y
′
i), U1 = inm′(u1), Φ′ = inm′(φ

′)
)
,

we get

(13.12) inv′(f
′
i) = Fi(Y

′) +
∑

ei(B)=β′(ni−|B|)
q′i,B · Y ′B(Uα′

1 Φ′β′)ni−|B| ∈ k′[Y ′, U1, Φ
′]

where q′i,B ∈ k′ := κ(x′) is the residue class of q′i,B ∈ R′.

Lemma 13.5 We have

β(f, y, u) ≥ γ+(f, y, u) ≥ d · β(f ′, y′, (u1, φ
′)),

βO(f, y, u) ≥ γ+O(f, y, u) ≥ d · βO(f ′, y′, (u1, φ
′)).

Proof The first inequality holds in general (cf. the picture below definition 10.1) and
the second follows from (13.10) and (13.6). This proves the first assertion. The second
assertion follows by applying the same argument to lB for B ∈ O(x) in view of Lemma
13.2. This completes the proof. ¤

Corollary 13.6 If (f ′, y′, (u1, φ
′)) is not solvable at v′, Proposition 13.3 holds.

Proof Indeed, it suffices to take z′ = y′ in this case. Proposition 13.3 (3) follows from
Lemma 11.1 (1). As for (1), Proposition 13.3 (c) implies, in view of (13.5), (13.12), and
(13.9), that (f ′, y′, (u1, φ

′)) is normalized at v′. Hence the assumption implies (f ′, y′, (u1, φ
′))

is prepared at v′. It remains to show (2). By Lemma 13.5 it suffices to show βO(f, y, u) 6=
0. By (11.1) we have

βO(f, y, u) + αO(f, y, u) ≥ δO(f, y, u) > 1.

By the assumption (a) and Lemma 10.5, αO(f, y, u) < 1 and hence βO(f, y, u) > 0. ¤

So for the proof of Proposition 13.3, it remains to treat the case where (f ′, y′, (u1, φ
′)) is

solvable at v′. Assume that we are now in this case. This implies

(13.13) β′ := β(f ′, y′, (u1, φ
′)) ∈ Z≥0, δ := δ(f, y, u) ∈ Z, δ ≥ 2.

Indeed δ ∈ Z since α′ = δ − 1 ∈ Z by (13.10) and δ > 1 by the assumption (d). It also
implies that there exist λ1, . . . , λr ∈ k′ such that

(13.14) inv′(f
′
i) = Fi(Y

′ + λ · Φβ′U δ−1
1 ) for i = 1, . . . , N,

where λ = (λ1, . . . , λr). For 1 ≤ j ≤ r, let Aj(U) = Aj(U1, U2) ∈ k[U1, U2] be homoge-
neous polynomials such that:

(C1) αj := deg Aj < d = deg Φ,
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(C2) Aj is not divisible by U1 (which implies αj = degU2
Aj(1, U2))),

(C3) λj ≡ Aj(1, U2) mod Φ(1, U2) in k′ = κ(x′) ∼= k[U2]/〈Φ(1, U2)〉.
Choose a lift of Ãj(U1, U2) ∈ R[U1, U2] of Aj(U) ∈ k[U1, U2] and set

aj = Ãj(u1, u2) ∈ R and a′j = aj/u
αj

1 ∈ R′.

Then λj ≡ a′j mod m′. Define

(13.15) zj := yj + φβ′ · uδ−(dβ′+αj)
1 · aj ∈ R[1/u1],

(13.16) z′j := zj/u1 = y′j + φ′β
′ · uδ−1

1 · a′j ∈ R′.

Note that z′i − y′i ∈ 〈u1〉 for i = 1, . . . , r since δ ≥ 2 as noted in (13.13). Consider the
following condition

(13.17) γ+ := γ+(f, y, u) ≥ d(β′ + 1) (β′ := β(f ′, y′, (u1, φ
′))).

Lemma 13.7 Assume (13.17) holds. Then the following is true.

(1) We have zj ∈ R for j = 1, . . . , r and (z, u) is a system of regular parameters of R
which is strictly admissible for J . The conditions (b) and (c) of Proposition 13.3
are satisfied for (z, u) in place of (y, u).

(2) w+(f, z, u) = w+(f, y, u), v(f, z, u) = v(f, y, u),

vO(f, z, u) = vO(f, y, u), δ(f, z, u) = δ(f, y, u).

(3) α(f ′, y′, (u1, φ
′)) = α(f ′, z′, (u1, φ

′)),

β(f ′, y′, u1, φ
′) < β(f ′, z′, u1, φ

′) ≤ γ+(f, y, u) = γ+(f, z, u).

By Lemma 13.7, if (13.17) holds for (f, y, u), we may replace (f, y, u) by (f, z, u) to show
Proposition 13.3. If (f, z, u) is not solvable at v(f, z, u), then we are done by Corollary
13.6. If (f, z, u) is solvable at v(f, z, u) and (13.17) holds for (f, z, u), then we apply the
same procedure to (z, u) to get a new system of regular parameters of R. This process
must stop after finitely many steps, by the last inequality in Lemma 13.7 (3). Thus
Proposition 13.3 follows from Corollary 13.6, Lemma 13.7 and the following Lemma 13.8.

Lemma 13.8 Assume that (13.17) does not hold for (f, y, u) and that (f ′, y′, (u1, φ
′)) is

solvable at v′ = v(f ′, y′, (u1, φ
′)). Dissolve v′ as in (13.14) and let z′j be as in (13.16).

Then (f ′, z′, (u1, φ
′)) is v-prepared and we have

βO(f ′, z′, (u1, φ
′)) < βO(f, y, u), α(f ′, z′, (u1, φ

′)) = α(f ′, y′, (u1, φ
′)) = δ − 1.

Proof of Lemma 13.7. Conditions (13.17) and (C1) imply

(13.18) δ − (dβ′ + αj) > δ − d(β′ + 1) ≥ δ − γ+ ≥ 0 for j = 1, . . . , r,

where the last inequality holds in general (cf. the picture below Definition 10.1). This
implies zj ∈ R, and the second assertion of (1) is obvious from (13.15). Let vu2 be the
valuation on R with respect to 〈u2〉. By (13.17) and (C1) we have

vu2(φ
β′aj) = dβ′ + αj < dβ′ + d ≤ γ+ .

This together with (13.18) implies that the coordinate transformation (13.15) affects only
those vertices of ∆(f, y, u) lying in {(a1, a2) ∈ R2| a1 > δ − γ+, a2 < γ+}. This shows
(2), and that condition (b) of Proposition 13.3 holds for (f, z, u).
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The first assertion of (3) follows from (13.10) and the equality δ(f, y, u) = δ(f, z, u) implied
by (2). The first inequality in the second assertion of (3) is a consequence of the first
assertion since v(f ′, y′, (u1, φ

′)) 6∈ ∆(f ′, z′, (u1, φ
′)). Lemma 13.5 implies γ+(f, z, u) ≥

β(f ′, z′, (u1, φ
′)) and (2) implies γ+(f, z, u) = γ+(f, y, u), which completes the proof of

(3).

It remains to show that condition (c) of Proposition 13.3 holds for (f, z, u). Introduce
ρ = (ρ1, . . . , ρr), a tuple of independent variables over k. For i = 1, . . . , N , write

inδ(fi)(y,u) =
∑
B

Y BTi,B(U) with Ti,B(U) ∈ k[U ]

and substitute Yi = Zi − ρi in inδ(fi)(y,u) ∈ k[Y, U ] to get

Gi(Z,U, ρ) =
∑
B

(Z − ρ)BTi,B(U) ∈ k[Z,U, ρ].

By (13.3) and (13.15) we have inδ(fi)(z,u) = Gi(Z,U, ρ)|ρ=s, where

s = (s1, . . . , sr) with si = U
δ−(dβ′+αj)
1 Φβ′Aj(U1, U2) ∈ k[U1, U2] .

Write
Gi(Z, U, ρ) =

∑
C

ZCSi,C(U, ρ) (Si,C(U, ρ) ∈ k[U, ρ]) .

By condition 13.3 (c) for (f, y, u), i.e., the normalizedness of inδ(fi)(y,u), we have Ti,B(U) ≡
0 if B ∈ Er(F1(Y ), . . . , Fi−1(Y )). By Lemma 13.9 below, this implies Si,C(U, ρ) ≡ 0 for
C ∈ Er(F1(Z), . . . , Fi−1(Z)), which is the normalizedness of inδ(f)(z,u), i.e., 13.3 (c) for
(f, z, u). ¤

Lemma 13.9 Assume given

G(Y ) =
∑

A

CA · Y A ∈ k[Y ] = k[Y1, . . . , Yr],

and a subset E ⊂ Zr
≥0 such that E + Zr

≥0 ⊂ E and that CA = 0 if A ∈ E. Let ρ =
(ρ1, . . . , ρr) be a tuple of independent variables over k and write

G(Y + ρ) =
∑
K

SK · Y K with SK ∈ k[ρ] .

Then SK ≡ 0 if K ∈ E.

Proof We have

G(Y + ρ) =
∑
A

CA

[
r∏

i=1

(Yi + ρi)
Ai

]

=
∑
A

CA

r∏
i=1

Ai∏
ki

(
Ai

ki

)
ρAi−ki

i · Y ki

=
∑

K=(k1,...,kr)

[
∑

A∈K+Z≥0

(
CA

m∏
i=1

(
Ai

ki

))
ρA−K

]
Y K .
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Thus

SK =
∑

A∈K+Z≤0

(
CA

m∏
i=1

(
Ai

ki

))
· ρA−K .

Now, if SK 6≡ 0 for K ∈ E, then there is an A ∈ K + Zr
≥0 ⊂ E with CA 6= 0. This

completes the proof of the lemma. ¤

Proof of Lemma 13.8. Let F̃i(Y ) ∈ R[Y ] be a lift of Fi(Y ) ∈ k[Y ]. For a tuple of
independent variables ρ = (ρ1, . . . , ρr) over R, write

(13.19) F̃i(Y + ρ) = F̃i(Y ) +
∑

|B|<ni
|B+D|=ni

Ki,B,D · Y BρD with Ki,B,D ∈ R,

By (13.16) we have z′ = y′ + µ, where

(13.20) µ = (µ1, . . . , µr) with µi = uδ−1
1 (φ′)β′ · a′i.

Hence (13.19) implies:

F̃i(z
′) = F̃i(y

′) +
∑

|B|<ni
|B+D|=ni

Ki,B,D · y′BµD with Ki,B,D ∈ R,

By (13.8) this implies

(13.21) f ′i = F̃i(z
′) +

∑

|B|<ni

(z′ − µ)Bθi,B + g′ with vΛ(g′)(y′,(u1,φ′)) > ni,

where
θi,B = (φ′)ei(B)q′i,Bu

(δ−1)(ni−|B|)
1 − ∑

|D|=ni−|B|
Ki,B,D · µD

= (φ′β
′
uδ−1

1 )ni−|B|ωi,B .

Here we set

(13.22) ωi,B = (φ′)bi(B)q′i,B −
∑

|D|=ni−|B|
Ki,B,D · a′D (a′ = (a′1, . . . , a

′
r)),

bi(B) = ei(B)− (ni − |B|)β′.
By (13.10) we have bi(B) ≥ 0. For each B write (in k[U2])

(13.23) Φ(1, U2)
bi(B)Qi,B(1, U2)−

∑

|D|=ni−|B|
Ki,B,DA(1, U2)

D = Φ(1, U2)
ci(B) ·Ri,B(1, U2),

with A(1, U2) =
(
A1(1, U2), . . . , Ar(1, U2)

)
, K i,B,D = Ki,B,D mod m ∈ k,

where ci(B) ∈ Z≥0 and Ri,B(U1, U2) ∈ k[U1, U2] is either 0 or homogeneous and not
divisible by Φ nor by U1. Choose a lift R̃i,B(U1, U2) ∈ R[U1, U2] of Ri,B(U1, U2)) ∈ k[U1, U2]
and set

ri,B = R̃i,B(u1, u2) ∈ R, r′i,B = ri,B/u
deg Ri,B

1 ∈ R′.
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Then (13.22) implies
ωi,B − (φ′)ci(B)r′i,B ∈ mR′ = 〈u1〉 ⊂ R′

so that (13.21) gives

(13.24) f ′i = F̃i(z
′) +

∑

|B|<ni

(z′ − µ)B(φ′)(ni−|B|)β′+ci(B)u
(ni−|B|)(δ−1)
1 · r′i,B + h′,

where vΛ(h′)(y′,(u1,φ′)) > ni. By Lemma 6.4(3) this implies vΛ(h′)(z′,(u1,φ′)) > ni by noting
z′i − y′i ∈ 〈uδ−1

1 〉 by (13.16). Now we need the following lemma:

Lemma 13.10 There exist i ∈ {1, . . . , N} and B with |B| < ni such that Ri,B(U) 6≡ 0 in
k[U1, U2] (which is equivalent to r′i,B 6∈ m′).

The proof of Lemma 13.10 will be given later. Using the lemma, we see from (13.24)
that there is a vertex of ∆(f ′, z′, (u1, φ

′)) on the line {(a1, a2) ∈ R2| a1 = δ − 1}. Since
∆(f ′, z′, (u1, φ

′)) ⊂ ∆(f ′, y′, (u1, φ
′)) and v(f ′, y′, (u1, φ

′)) /∈ ∆(f ′, z′, (u1, φ
′)), this implies

(13.25)
α(f ′, z′, (u1, φ

′)) = α(f ′, y′, (u1, φ
′)) = δ − 1,

β′ := β(f ′, y′, (u1, φ
′)) < β(f ′, z′, (u1, φ

′)).

Moreover there exist 1 ≤ i ≤ N and B such that

(13.26) β(f ′, z′, (u1, φ
′)) = β′ +

ci(B)

ni − |B| ,

where ci(B) is defined by equation (13.23).

Lemma 13.11 If condition (13.17) does not hold, ci(B) < ni − |B| for all i = 1, . . . , N .

Proof By the assumption we have γ+(f, y, u) < d(β′ + 1). Then we claim that for all
(i, B) such that Qi,B 6≡ 0,

d · bi(B) + degU2
Qi,B(1, U2) < d · (ni − |B|) .

Indeed, recalling bi(B) = ei(B)− (ni − |B|)β′, the assertion is equivalent to

d · ei(B) + degU2
Qi,B(1, U2)

ni − |B| < d(β′ + 1)

and this follows from (13.6). On the other hand, in (13.23) we have

degU2
A(1, U2)

D ≤ |D|max{degU2
Aj(1, U2) | 1 ≤ j ≤ r} < d · (ni − |B|) ,

because |D| = ni − |B| and degU2
Aj(1, U2) = αj < d by (C1). By (13.23), this implies

degU2

(
Φ(1, U2)

ci(B)Ri,B(1, U2)
)

< d · (ni − |B|),

which implies ci(B) < ni − |B| since d = degU2
Φ(1, U2). ¤
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By Lemma 13.11, (13.26) and (13.25) imply

(13.27) β′ < β(f ′, z′, (u1, φ
′)) < β′ + 1 .

By (13.13) we have β′ ∈ Z so that β(f ′, z′, (u1, φ
′)) /∈ Z. Hence (f ′, z′, (u1, φ

′)) is not
solvable at v(f ′, z′, (u1, φ

′)).

We now show (f ′, z′, (u1, φ
′)) is normalized at v(f ′, z′, (u1, φ

′)). Let

v′′ = v(f ′, z′, (u1, φ
′)) and β′′ = β(f ′, z′, (u1, φ

′)).

Setting Z ′ = (Z ′
1, . . . , Z

′
r) with Z ′

i = inm′(z
′
i), (13.24) implies

(13.28)

inv′′(f
′
i)(z′,(u1,φ′)) = Fi(Z

′) +
∑
B

(Z ′ − µ)B
(
Φ′β′′U δ−1

1

)ni−|B| · r′i,B,

= Fi(Z
′) +

∑
C

Z ′CSi,C with Si,C ∈ k′[U1, Φ
′],

where the first sum ranges over such B that |B| < ni and β′ +
ci(B)

ni − |B| = β′′ and

µ = (µ1, . . . , µr) with µi = U δ−1
1 Φβ′ · a′i,

r′i,B = r′i,B mod m′ = Ri,B(1, U2) mod Φ(1, U2) ∈ k′ ' k[U2]/〈Φ(1, U2)〉.
Let B ∈ Er(F1, . . . , Fi−1). Proposition 13.3 (c) implies Qi,B(U) ≡ 0 (cf. (13.3) and
(13.4)). This implies that (F1, . . . , FN) is normalized in the sense of Definition 7.11 (1),
and Lemma 13.9 implies that Ki,B,D ∈ m for all D in (13.19). Hence Ri,B(1, U2) ≡ 0
in (13.23) so that r′i,B = 0 in (13.28). By Lemma 13.9 this implies that Si,C ≡ 0 if
C ∈ E(F1, . . . , Fi−1), which proves the desired assertion.

Finally it remains to show

(13.29) βO(f ′, z′, (u1, φ
′)) < βO(f, y, u).

The proof is divided into the following two cases:

Case (1) δO(f, y, u) = δ(f, y, u),

Case (2) δO(f, y, u) < δ(f, y, u).

Note that we always have δO(f, y, u) ≤ δ(f, y, u) since ∆(f, y, u) ⊂ ∆O(f, y, u).

Assume we are in Case (1). We have

(13.30) γ+(f, y, u) ≤ γ+O(f, y, u) ≤ βO(f, y, u),

where the first inequality holds by the assumption and the second holds in general. By
(13.11) and (13.10), the assumption implies

αO(f ′, y′, (u1, φ
′)) = α(f ′, y′, (u1, φ

′)) = δ − 1.

Since the coordinate transformation y′ → z′ in (13.16) affects only those vertices lying in
{(a1, a2) ∈ R2| a1 ≥ δ − 1}, we have

(13.31) αO(f ′, z′, (u1, φ
′)) ≥ αO(f ′, y′, (u1, φ

′)) = α(f ′, y′, (u1, φ
′)) = δ − 1.

135



By (13.25) we have

α(f ′, y′, (u1, φ
′)) = α(f ′, z′, (u1, φ

′)) ≥ αO(f ′, z′, (u1, φ
′)),

where the inequality holds since ∆(f ′, z′, (u1, φ
′)) ⊂ ∆O(f ′, z′, (u1, φ

′)). Thus we get

(13.32)
α(f ′, z′, (u1, φ

′)) = αO(f ′, z′, (u1, φ
′)),

βO(f ′, z′, (u1, φ
′)) ≤ β(f ′, z′, (u1, φ

′)).

On the other hand, from Lemma 13.5 and (13.27), we get

β′′ := β(f ′, z′, (u1, φ
′)) <

γ+(f, y, u)

d
+ 1 ≤ γ+(f, y, u)

2
+ 1.

If γ+ := γ+(f, y, u) ≥ 2, then β′′ < γ+, which shows the desired inequality (13.29) thanks
to (13.30) and (13.32). If γ+ < 2, then Lemma 13.5 implies β′ := β(f ′, y′, (u1, φ

′)) ≤
γ+/2 < 1 so that β′ = 0 since β′ ∈ Z as noted in (13.13). Hence (13.32) and (13.27)
implies

βO(f ′, z′, (u1, φ
′)) ≤ β(f ′, z′, (u1, φ

′)) < β′ + 1 = 1.

On the other hand we have

(13.33) βO(f, y, u) ≥ δO(f, y, u)− αO(f, y, u) > δO(f, y, u)− 1 = δ(f, y, u)− 1 ≥ 1.

Here the first inequality holds in general, the second inequality holds since αO(f, y, u) < 1
by Lemma 10.5 and the assumption (a), and the last inequality follows from (13.13). This
proves the desired inequality (13.29) in Case (1).

Assume we are in Case (2). Write δO = δO(f, y, u). The assumption implies

γ+O := γ+O(f, y, u) = γ+O(y, u). (cf. Definition 10.3)

By (13.10) and (13.11) it also implies

αO(f ′, y′, (u1, φ
′)) = δO − 1 < α(f ′, y′, (u1, φ

′)) = δ − 1.

Since the coordinate transformation y′ → z′ in (13.16) affects only those vertices lying in
{(a1, a2) ∈ R2| a1 ≥ δ − 1} and δO < δ, this implies

αO(f ′, z′, (u1, φ
′)) = δO − 1 < α(f ′, z′, (u1, φ

′)).

and hence

(13.34) βO(f ′, z′, (u1, φ
′)) = βO(z′, (u1, φ

′)).

Recall that the δ-face of ∆O(f, y, u) is

∆O(f, y, u) ∩ {A ∈ R2| ΛO(A) = 1} with ΛO : R2 → R; (a1, a2) → a1 + a2

δO
.

For B ∈ O(x), the initial form of lB along this face is written as:

(13.35) inδ(lB) = LB(Y ) + Φ(U)sBΓB(U),
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where LB(Y ) ∈ k[Y ] is a linear form, sB ∈ Z≥0, and ΓB(U) ∈ k[U ] is either 0 or ho-
mogeneous of degree δO − d · sB and not divisible by Φ. Note that ΓB(U) 6≡ 0 for some
B ∈ O(x). From this we compute

(13.36)
γ+O = γ+O(y, u) = sup

{
degU2

(Φ(1, U2)
sBΓB(1, U2)) | B ∈ O(x), ΓB(U) 6≡ 0

}

≥ d · {sB | B ∈ O(x), ΓB(U) 6≡ 0} .

Choose lifts L̃B(Y ) ∈ R[Y ] and Γ̃B(U) ∈ R[U ] of LB(Y ) ∈ k[Y ] and ΓB(U) ∈ k[U ],
respectively, and set

γB = ΓB(u1, u2) ∈ R, and γ′B = γB/udeg ΓB
1 .

Note γ′B ∈ m′ if and only if ΓB(U) ≡ 0. (13.35) implies

lB = L̃B(y) + φsBγB + ε with vΛO(ε)(y,u) > vΛO(lB)(y,u) = 1.

By Lemma 8.2 (1), this implies

l′B = lB/u1 = L̃B(y′) + uδO−1
1 φ′sBγ′B + ε′ with vΛ′O(ε′)(y′,(u1,φ′)) > 1,

Λ′O : R2 → R ; (a1, a2) → a1

δO − 1
.

Substituting y′ = z′ − uδ−1
1 φ′β

′ · a′ (cf. (13.16)), we get

l′B = L̃B(z′) + uδO−1
1 φ′sBγ′B + uδ−1

1 · h + ε′ (h ∈ R′).

By Lemma 6.4 (3), vΛ′O(ε′)(y′,(u1,φ′)) > 1 implies vΛ′O(ε′)(z′,(u1,φ′)) > 1 since we have

vΛ′O(z′i − y′i)(z′,(u1,φ′)) =
δ − 1

δO − 1
> 1 for i = 1, . . . , r

by (13.16). Hence we get

βO(f ′, z′, (u1, φ
′)) = βO(z′, (u1, φ

′)) = inf {sB | B ∈ O(x), ΓB(U) 6≡ 0}
By (13.36) this implies

β′′ := βO(f ′, z′, (u1, φ
′)) ≤ γ+O

d
≤ γ+O

2
.

If γ+O 6= 0, this implies β′′ < γ+O ≤ βO(f, y, u) as desired. If γ+O = 0, then β′′ = 0. On
the other hand, as is seen in (13.33), we have

βO(f, y, u) ≥ δO(f, y, u)− αO(f, y, u) > δO(f, y, u)− 1 > 0,

where the last inequality was noted in (11.1). This proves the desired assertion (13.29)
and the proof of Lemma 13.8 is complete, up to the proof of Lemma 13.10. ¤

Proof of Lemma 13.10 Assume the contrary, i.e., that we have Ri,B(U) ≡ 0 in k[U ] for
all (i, B) with |B| < ni. Then, for all (i, B) we have

(13.37) Φ(1, U2)
bi(B)Qi,B(1, U2) =

∑

|D|=ni−|B|
Ki,B,DA(1, U2)

D ∈ k[U2]
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Write
Γj(U1, U2) = U

δ−(dβ′+αj)
1 Aj(U1, U2) ∈ k[U1, U2][U

−1
1 ]

(δ − (dβ′ + αj) may be negative). Multiplying (13.37) by U
(ni−|B|)(δ−dβ′)
1 , we get

(13.38) Pi,B(U1, U2) =
∑

|D|=ni−|B|
Ki,B,DΓ(U1, U2)

D

where Γ(U)D =
r∏

j=1

Γj(U)Dj . In fact, for the left hand side we note that bi(B) = ei(B)−
(ni−|B|)β′ and that Qi,B(U1, U2)Φ(U1, U2)

ei(B) = Pi,B(U1, U2) is either 0 or homogeneous
of degree δ(ni − |B|). For the right hand side recall that Aj(U1, U2) = U

αj

1 Aj(1, U2) and
that

U
|D|(δ−dβ′)
1 =

r∏
j=1

U
Dj(δ−dβ′−αj)
1 · UDj ·αj

1 .

In view of (13.19), equations (13.38) and (13.3) imply

(13.39)

Fi(Y + Γ(U)) =Fi(Y ) +
∑

|B+D|=ni

(−1)|D|Ki,B,DY BΓ(U)D

=Fi(Y ) +
∑

|B|<ni

Pi,B(U) = inδ(fi)

Now we claim:

(13.40) δ ≥ dβ′ + αj for j = 1, . . . , r, i.e., Γj(U) ∈ k[U ] ⊂ k[U ][U−1
1 ].

Admitting this claim, (13.39) implies that one can dissolve all the vertices of ∆(f, y, u)
on the line {A ∈ R2| L(A) = 1}, which contradicts assumption (b). This completes the
proof of Lemma 13.10.

It remains to show claim (13.40). We show that Γj(U) ∈ k[U1.U2] ⊂ k[U1, U2, U
−1
1 ]. Recall

from (13.39) that in any case

(13.41) Fi(Y + Γ(U)) = inδ(fi) ∈ k[Y, U ] .

Denote the variables Y1, . . . , Yr, U1, U2 by X1, . . . , Xn (so that n = r + 2), and define
derivations DA : k[X] → k for A ∈ Zn

≥0 by

G(X + ρ) =
∑

A

DAG · ρA (G(X) ∈ k[X]),

where ρ = (ρ1, . . . , ρn) are new variables. We now apply [H5] (1.2) and [Gi3] Lemmas 1.7
and 3.3.4 (the assumptions of the lemmas are satisfied by Lemma 13.9 and the normal-
izedness of (F1, . . . , FN) implied by Proposition 13.3(c)). According to these results, after
possibly changing the ordering of X1, . . . , Xn, we can find:

• f , an integer with 0 ≤ f ≤ n,

• Pj for 1 ≤ j ≤ f , homogeneous polynomials in the variables XA,i indexed by A ∈ Zn
≥0

and 1 ≤ i ≤ N , with coefficients in k,
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• q1 ≤ q2 ≤ . . . qf , numbers which are powers of the exponential characteristic of k
(so that qj = 1 for j = 1, . . . , f if char(k) = 0),

• ψj = cj,j+1X
qj

j+1 + . . . cj,rX
qj
n (cj,ν ∈ k, 1 ≤ j ≤ f, j ≤ ν ≤ n), additive polynomials

homogeneous of degree qj,

such that for i = 1, . . . , N , we have

P1(DAFi) = Xq1

1 + ψ1(X2, . . . , Xn)
P2(DAFi) = Xq2

2 + ψ2(X3, . . . , Xn)
·
·

Pf (DAFi) = X
qf

f + ψf (Xf+1, . . . , Xn) .

Moreover the equations on the right hand side define the so-called ridge (fâıte in French)
F (Cx(X)) = F (C(R/J)) of the tangent cone Cx(X) = C(R/J) = Spec(grm(R/J)), i.e.,
the biggest group subscheme of Tx(Z) = Spec(grm(R)) = Spec(k[X1, . . . , Xn]) which
respects C(R/J) with respect to the additive structure of Tx(Z). Since Dir(R/J) ⊆
F (C(R/J)) and e(R/J) = e(R/J) = 2 (cf. Definition 1.23) by the assumption, all these
schemes have dimension 2. Hence we must have f ≥ n− 2 = r. Since Fi(Y ) ∈ k[Y ], the
variables U1 and U2 do not occur in the above equations so that f ≤ r = n− 2. Thus we
get f = r. Hence, after a permutation of the variables Y1, . . . , Yr, the equations become

P1(DAFi(Y )) = Y q1

1 + ψ1(Y2, . . . , Yr)
P2(DAFi(Y )) = Y q2

2 + ψ2(Y3, . . . , Yr)
...

Pr−1(DAFi(Y )) = Y
qr−1

r−1 + ψr−1(Yr)
Pr(DAFi(Y )) = Y qr

r ,

This implies
Pr(DAFi(Y + Γ(U))) = Y qr

r + Γr(U)qr .

By (13.41) this gives Γr(U)qr ∈ k[U ] and hence Γr(U) ∈ k[U ]. Noting ψj = cj,j+1Y
qj

j+1 +

. . . + cj,rY
qj
r , we easily conclude inductively from (13.41) that Γr−1(U), . . . , Γ1(U) ∈ k[U ].

This completes the proof of claim (13.40). ¤
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14 Non-existence of maximal contact in dimension 2

Let Z be an excellent regular scheme and let X ⊂ Z be a closed subscheme.

Definition 14.1 A closed subscheme W ⊂ Z is said to have maximal contact with X at
x ∈ X if the following conditions are satisfied:

(1) x ∈ W .

(2) Take any sequence of permissible blowups (cf. (5.1)):

Z = Z0
π1←− Z1

π2←− Z2 ← . . . ← Zn−1
πn←− Zn ← · · ·

∪ ∪ ∪ ∪ ∪
X = X0

π1←− X1
π2←− X2 ← . . . ← Xn−1

πn←− Xn ← · · ·
where for any n ≥ 0

Zn+1 = B`Dn(Zn)
πn+1−→ Zn

∪ ∪
Xn+1 = B`Dn(Xn)

πn+1−→ Xn

and Dn ⊂ Xn is permissible. Assume that there exists a sequence of points xn ∈ Dn

(n = 0, 1, . . . ) such that x0 = x and xn is near to xn−1 for all n ≥ 1. Then Dn ⊂ Wn

for all n ≥ 0, where Wn is strict transform W in Zn.

Remark 14.2 The above definition is much weaker than Hironaka’s original definition
(see [AHV]).

In this section we prove the following:

Theorem 14.3 Let k be a field of characteristic p > 0 and let y, u1, u2 be three variables
over k. Consider Z = A3

k = Spec(k[y, u1, u2]) and let X ⊂ Z be the hypersurface defined
by the equation:

(14.1) f = yp + yuN
1 uN

2 + ua
1u

b
2(u1 + u2)

pA

where A, a, b,N are integers satisfying the condition:

(14.2) 0 < a, b < p, a + b = p, A > p, p 6 |A, N ≥ p2A.

Let x be the origin of Z = A3
k and let U ⊂ Z be an open neighborhood of x. Then there

is no smooth hypersurface W ⊂ U which has maximal contact with X ×Z U at x.

We observe the following consequence of maximal contact, from which we will derive a
contradiction. Let x ∈ X ⊂ Z be as in Definition 14.1. Let R = OZ,x with maximal ideal
m and residue field k = R/m, and let J ⊂ R be the ideal defining X ×Z Spec(R).

Lemma 14.4 Assume Z = Spec(R). Set e = ex(X) and r = dim(R) − e, and assume
that e ≥ 1. Let t1, . . . , tr be a part of a system of regular parameters of R and assume
W := Spec(R/〈t1, . . . , tr〉) has maximal contact with X at x. Let (f, y, u) be a δ-prepared
label of (X, Z) at x (see Definition 9.1). Assume δ(f, y, u) > 2, and let m ≥ 2 be the
integer such that

(14.3) m < δ(f, y, u) ≤ m + 1.

Then the following holds.
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(1) 〈t1 . . . , tr〉 = 〈y1 . . . , yr〉 in R/m2. In particular (t, u) = (t1, . . . , tr, u1, . . . , ue) is a
system of regular parameters of R.

(2) m ≤ δ(f, t, u) ≤ m + 1 so that |δ(f, y, u)− δ(f, t, u)| ≤ 1.

Proof Consider the fundamental sequence of permissible blowups as in Definition 5.33
with B = ∅:

Z = Z0
π1←− Z1

π2←− Z2 ← . . . ← Zm−1
πm←− Zm

∪ ∪ ∪ ∪ ∪
X = X0

π1←− X1
π2←− X2 ← . . . ← Xm−1

πm←− Xm

↑ ∪ ∪ ∪ ∪
x ← C1

∼← C2
∼← . . .

∼← Cm−1
∼← Cm

By Corollary 9.6 the integer m in (14.3) coincides with the length of the above sequence.
Let Wq is the strict transform of W in Zq. By Definition 14.1 we have

(14.4) Cq ⊂ Wq so that Wq+1 ' B`Cq(Wq) for all q = 1, . . . ,m− 1.

For 1 ≤ q ≤ m, let ηq be the generic point of Cq and let Rηq = OZq ,ηq with maximal ideal
mηq . Let Jηq ⊂ Rηq be the ideal defining Xq ×Zq Spec(Rηq). Write

f
(q)
i = fi/u

qni
1 , y

(q)
i = yi/u

q
1, u′i = ui/u1 (2 ≤ i ≤ e), t

(q)
i = ti/u

q
1, .

By Claim 9.5, we know

(14.5) (f (q), y(q), u1) is a δ-prepared label of of (Xq, Zq) at ηq for q ≤ m− 1.

Claim 14.5 (t(q), u1) = (t
(q)
1 , . . . , t

(q)
r , u1) is a system of regular parameters of Rηq .

Proof Condition (14.4) implies (by induction on q) that the strict transform of W in

Spec(Rηq) is defined by 〈t(q)1 , . . . , t
(q)
r 〉. It also implies that Wq is transversal with the

exception divisor of Zq → Zq−1 which is defined by 〈u1〉 in Spec(Rηq). Thus the claim
follows. ¤

By claim (14.5) we have 〈y(q), u1〉 = mηq = 〈t(q), u1〉 ⊂ Rηq . Lemma 14.4 (1) follows easily
using this fact for q = 1. By Definition 9.1 (2), (14.5) implies δ(f (q), y(q), u1) > 1 so that

f
(q)
j ∈ mnj

ηq
= 〈t(q), u1〉nj ⊂ Rηq (j = 1, . . . , N)

By Definition 7.2 (3) this implies

(14.6) δ(f (q), t(q), u1) ≥ 1 if 1 ≤ q ≤ m− 1.

On the other hand, we have

(14.7) δ(f (q), t(q), u1) = δ(f, t, u)− q.

Indeed, noting that (t, u) is a system of regular parameters of R by Lemma 14.4 (1), we
can write, as in (6.3):

fi =
∑

(A,B)

Ci,A,B tBuA with Ci,A,B ∈ R× ∪ {0}
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We compute

f
(q)
i = fi/u

nj

1 =
∑

(A,B)

(
Ci,A,Bu′A

)
(t(q))Bu

|A|+q(|B|−ni)
1 ,

u′A = u′2
a2 · · · u′eae for A = (a1, a2, . . . , ae).

Noting that κ(ηq) = Rηq/mηq ' k(u′) = k(u′1, . . . , u
′
e) and that R → Rηq → κ(ηq) factors

through R → k (see Claim 9.5), we see

δ(f (q), t(q), u1) = min{|A|+ q(|B| − ni)

ni − |B| | |B| < ni, Ci,A,B 6= 0}
= δ(f, y, u)− q.

Now (14.6) and (14.7) give us δ(f, t, u) ≥ m. As (f, y, u) is δ-prepared, Theorem 7.16
implies δ(f, y, u) ≥ δ(f, t, u). Thus we get m ≤ δ(f, t, u) ≤ δ(f, y, u) ≤ m+1 and Lemma
14.4 (2) is shown. ¤

Now we start the proof of Theorem 14.3. Let x be the origin of Z = A3
k and let R = OZ,x

with the maximal ideal m. Write u = (u1, u2).

Claim 14.6 (f, y, u) is a δ-prepared label of (X, Z) at x and δ(f, y, u) = A + 1.

Proof From (14.1) and (14.2) one easily checks that IDirx(X) = 〈Y 〉 with Y = inm(y)
and that ∆(f, y, u) ⊂ R2 is the polyhedron with the two vertices

(A +
a

p
,
b

p
), (

a

p
,A +

b

p
)

Since these vertices are not integral points, the polyhedron is δ-prepared. We have
δ(f, y, u) = A + 1 > 1 as a + b = p and the claim follows from Definition 9.1 (2).
¤
We will use three sequences of permissible blowups:

Sequence I: First consider π : Z ′ = Blx(Z) → Z and the strict transform X ′ ⊂ Z ′ of X.
Look at the point x′ ∈ Z ′ of parameters

(y′, u1, v) = (
y

u1

, u1, 1 +
u2

u1

).

Let R′ = OZ′,x′ . Then X ′ ×Z′ Spec(R′) is defined by the equation:

f ′ :=
f

up
1

= y′p + y′u2N−p+1
1 (v − 1)N + upA

1 vpA(v − 1)b.

Using (14.2), one can check that ∆(f ′, y′, (u1, v)) has the unique vertex (A,A) so that
δ(f ′, y′, (u1, v)) = 2A > 1. Hence x′ is very near to x by Theorem 8.6. By Theorems
8.1 and 8.3, f is a (u1, v)-standard base and (u1, v) is admissible for J = 〈f〉 ⊂ R. On
the other hand, (f ′, y′, (u1, v)) is not prepared at the vertex and we dissolve it by the
coordinate change

z := y′ + εuA
1 vA. (εp = (−1)b)
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Setting λ = (v − 1)N ∈ R′× and µ = v−1
(
(v − 1)b − εp

) ∈ R′×, we compute

(14.8) f ′ = zp + λzu2N−p+1
1 + µupA

1 vpA+1 − λεu2N−p+1+A
1 vA.

Using (14.2), we see that ∆(f ′, z, (u1, v)) is the polyhedron with three vertices

(A,A +
1

p
), (

2N − p + 1 + A

p
,
A

p
), (

2N

p− 1
− 1, 0) ,

and that the δ-face of ∆(f ′, z, (u1, v)) is the first vertex. In fact, we have

2N − p + 1 + A

p
+

A

p
> A + A +

1

p
and

2N

p− 1
− 1 > A + A +

1

p
.

Since this first vertex is not an integral point, the polyhedron is δ-prepared. We have
δ(f ′, z, (u1, v)) = 2A + 1

p
> 1. Hence (f ′, z, (u1, v)) is a δ-prepared label of (X ′, Z ′) at x′

by Definition 9.1 (2).

We now extend π : Z ′ → Z to the following sequence of permissible blowups:

Z
π←− Z ′ π1←− Z1

π2←− Z2 ← . . .
πp←− Zp

∪ ∪ ∪ ∪ ∪
X

π←− X ′ π1←− X1
π2←− X2 ← . . .

πp←− Xp

↑ ↑ ↑ ↑ ↑
x ← x′ ← x1 ← x2 ← . . . ← xp

Here Z1 = B`x′(Z
′) and Zq+1 = B`xq(Zq) (q = 1, . . . , p− 1) where xq ∈ Zq is the unique

point lying on the strict transform of {z = v = 0} ⊂ Spec(R′), and Xq ⊂ Zq is the strict
transform of X. For q = 1, . . . , p, write Rq = OZq ,xq and

f (q) = f ′/upq
1 = f/u

p(q+1)
1 , z(q) = z/uq

1, v
(q)
i = v/uq

1.

By convention we write x0 = x′.

Claim 14.7 For q = 1, . . . , p, xq is very near to xq−1, (f (q), z(q), (u1, v
(q))) is a δ-prepared

label of (Xq, Zq) at xq, and the δ-face of ∆(f (q), z(q), (u1, v
(q))) is the vertex

(A + q(A− 1 +
1

p
), A +

1

p
).

Proof By induction on q, one easily shows that (z(q), u1, v
(q)) is a system of regular

parameters of Rq. From (14.8), one computes

(14.9) f (q) = (z(q))p + λz(q)u
2N−p+1+q(1−p)
1 + µu

pA+q(pA+1−p)
1 (v(q))pA+1

− λεu
2N−p+1+A+q(A−p)
1 (v(q))A.

This implies f (q) ∈ Rq and Xq ×Zq Spec(Rq) = Spec(Rq/〈f (q)〉). It also implies the last
assertion of the claim by noting (14.2). In fact, for the vertex coming from the second
term we have

2N

p− 1
− 1− q > A + q(A− 1 +

1

p
) + A +

1

p
for 0 ≤ q ≤ p
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(see the worst case q = p), and the case of the last term is even simpler. Since the vertex
in the claim is not an integral point, (f (q), z(q), (u1, v

(q))) is δ-prepared. Noting A > p, we
get

δ(f (q), y(q), (u
(q)
1 , u2)) = 1 + A + q(

a

p
− 1) > 1 + a.

Now the claim follows from Theorems 8.6, 8.1, 8.3 and Corollary 7.17 as before. ¤
Sequence II: We consider the following sequence of permissible blowups:

Z = Z0
π1←− Z1

π2←− Z2 ← . . .
πp←− Zp

∪ ∪ ∪ ∪
X = X0

π←− X1
π2←− X2 ← . . .

πp←− Xp

↑ ↑ ↑ ↑
x = x0 ← x1 ← x2 ← . . . ← xp

Here Zq+1 = B`xq(Zq) (q = 0, . . . , p − 1) where xq ∈ Zq is the unique point lying on the
strict transform of {y = u2 = 0} ⊂ Spec(R), and Xq ⊂ Zq is the strict transform of X.
For q = 0, . . . , p, write Rq = OZq ,xq and

f (q) = f/upq
2 , y(q) = y/uq

2, u
(q)
1 = u1/u

q
2.

Claim 14.8 For q = 1, . . . , p, xq is very near to xq−1, and (f (q), y(q), (u
(q)
1 , u2)) is a δ-

prepared label of (Xq, Zq) at xq, and ∆(f (q), y(q), (u
(q)
1 , u2)) is the polyhedron with the unique

vertex

(
a

p
,
b

p
+ A + q(

a

p
− 1)).

Proof By induction on q, one easily shows that (y(q), (u
(q)
1 , u2)) is a system of regular

parameters of Rq. From (14.1), one computes

f (q) = (y(q))p + y(q)(u
(q)
1 )Nu

N+q(N+1−p)
2 + (u

(q)
1 )au

b+pA+q(a−p)
2

(
u

(q)
1 uq−1

2 + 1)pA.

This shows f (q) ∈ Rq and it is an equation for Xq ×Zq Spec(Rq). The last assertion easily
follows by noting (14.2). As p 6 |a, the polyhedron is δ-prepared. Then we get

δ(f (q), y(q), (u
(q)
1 , u2)) = 1 + A + q(

a

p
− 1) > 1 + a.

by noting A > p ≥ q and p = a + b. Now the claim follows from Theorems 8.6, 8.1, 8.3
and Corollary 7.17 as before. ¤
Sequence III: This is the sequence of permissible blowups, which looks the same as the
sequence II, except that now xq ∈ Zq is the unique point lying on the strict transform of
{y = u1 = 0} ⊂ Spec(R).

Now assume that there exists s ∈ m−m2 such that

(∗) W := Spec(R/〈s〉) ⊂ Spec(R) has maximal contact with X ×Z Spec(R) at x.

Then we want to deduce a contradiction. Let R̂ = k[[y, u1, u2]] be the completion of R.
It is easy to see that the assumption (∗) and Claims 14.6, 14.7 and 14.8 hold even after
replacing R with R̂. Thus we may work with X̂ := Spec(R̂/〈f〉) and Ŵ = Spec(R̂/〈s〉) ⊂
Ẑ = Spec(R̂) which has maximal contact with X̂ at the closed point x ∈ Spec(R̂).
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Claim 14.9 There exists t ∈ R̂ such that 〈s〉 = 〈t〉 ⊂ R̂ and

t = y + γ ∈ R̂ where γ ∈ nA+1.

Here n = 〈u1, u2〉 ⊂ k[[u]] = k[[u1, u2]] ⊂ R̂.

Proof By Lemma 14.4 (1) and Claim 14.6, we can write εs = y + a with ε ∈ k× and
a ∈ m2. Noting R̂ = k[[y, u1, u2]] = k[[t, u1, u2]], we can write

a = γ + b with γ ∈ n2, b ∈ sR̂ ∩m2R̂.

Setting t = εs− b, this implies y = t + γ and 〈s〉 = 〈t〉 ∈ R̂. From (14.1) we get

(14.10) f = tp + tuN
1 uN

2 + ua
1u

b
2(u1 + u2)

pA − γp − γuN
1 uN

2 .

From Definition 7.2 (3), this implies

δ(f, t, u) ≤ c = max{i| γ ∈ ni}.

Since δ(f, y, u) = A + 1 by Claim 14.6, Lemma 14.4 (2) implies A < δ(f, t, u) and hence
c ≥ A + 1. This completes the proof of the claim. ¤

To ease the notation, we write R, X,Z for R̂, X̂, Ẑ in what follows. Write

γ = Γ + θ with θ ∈ nA+2 and Γ = 0 or Γ ∈ k[u1, u2] homogeneous of degree A + 1,

and let C = max{m ∈ N ∪ {∞} | (u1 + u2)
m|Γ}. There are two cases:

Case C 6= A: In this case (14.10) implies

f = tp + tuN
1 uN

2 + (u1 + u2)
pBH(u1, u2) + φ,

where B = min{C, A}, and H(u1, u2) ∈ k[u1, u2] is homogeneous of degree p(A + 1− B)
which is not divisible by u1 + u2, and φ ∈ np(A+2).

Now we consider the sequence I. Let t′ = t/u1 and t(q) = t′/uq
1. By the same argument as

in the proof of Claim 14.5, we can show that (t′, u1, v) (resp. (t(q), u1, v
(q))) is a system of

regular parameters for R′ = OZ′,x′ (resp. Rq = OZq ,xq). We compute

f ′ = t′p + λt′u2N−p+1
1 + µ′upA

1 vpB + u
p(A+1)
1 φ′,

where λ = (v − 1)N ∈ R′×, and µ′ = H(1, u2/u1) ∈ k[v] ⊂ R′, and φ′ = φ/u
p(A+2)
1 ∈

k[[u1, u2]][v] ⊂ R̂′. Note µ′ ∈ R′× since H(u1, u2) is not divisible by u1 + u2. From this
we compute

f (q) = (t(q))p + λt(q)u
2N−p+1+q(1−p)
1 + µ′up(A+q(B−1))

1 (v(q))pB + u
p(A+1−q)
1 φ′.

By Definition 7.2 (3), this implies

δ(f (q), t(q), (u1, v
(q))) ≤ A + q(B − 1) + B.
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“phantom polyhedron”∆(f, t, (u1, v))

B

A + 1
p

A

slower

faster under blow-ups
true polyhedron ∆(f, z, (u1, v))

Setting σq = δ(f (q), z(q), (u1, v
(q)))− δ(f (q), t(q), (u1, v

(q))), and noting A ≥ B, we get

σq ≥
(
A + q(A− 1 +

1

p
) + A +

1

p

)− (
A + q(B − 1) + B

) ≥ q + 1

p
,

from Claim 14.7. Hence σq > 1 for q = p, which contradicts Lemma 14.4(2) since
(f (q), z(q), (u1, v

(q))) is a δ-prepared label of (Xq, Zq) at xq and the strict transform Wq ⊂
Spec(Rq) of W has maximal contact with Xq ×Zq Spec(Rq) at xq by Definition 14.1.

Case C = A: There exist c1, c2 ∈ k with c1 6= c2 and (c1, c2) 6= (0, 0) such that

γ = (u1 + u2)
A(c1u1 + c1u2) + θ with θ ∈ nA+2 ⊂ k[[u1, u2]].

From (14.10) we get

f = tp + tuN
1 uN

2 + (u1 + u2)
pA

(
ua

1u
b
2 − (c1u1 + c2u2)

p
)

+ φ,

where φ = −θp − γuN
1 uN

2 ∈ np(A+2).

Assume c2 6= 0 and consider the sequence II. Let t(q) = t/uq
2. By the same argument as in

the proof of Claim 14.5, we can show that (t(q), u
(q)
1 , u2) is a system of regular parameters

of Rq = OZq ,xq . We compute

f (q) = (t(q))p + t(q)(u
(q)
1 )Nu

N+q(N+1−p)
2 + ξu

p(A+1−q)
2 + u

p(A+2−q)
1 φ′,

where φ′ = φ/u
p(A+2)
2 ∈ Rq and

ξ = (u
(q)
1 uq−1

2 + 1)pA
(
(u

(q)
1 )au

a(q−1)
2 − (c1u

(q)
1 uq−1

2 + c2)
p
) ∈ R×

q .

Here we have used a + b = p. By Definition 7.2 (3), this implies

δ(f (q), t(q), (u
(q)
1 , u2)) ≤ A + 1− q.
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Set σq = δ(f (q), z(q), (u1, v
(q)))− δ(f (q), t(q), (u1, v

(q))). Then Claim 14.8 implies

σq ≥
(
1 + A + q(

a

p
− 1)

)− (
A + 1− q

) ≥ qa

p
.

Hence σq > 1 for q = p, which contradicts Lemma 14.4 (2) by the same reason as in the
previous case.

It remains to treat the case c1 6= 0. By symmetry, the proof is given by the same argument
using the sequence III instead of II. This completes the proof of Theorem 14.3.
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