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ABSTRACT. We discuss the Noether-Lefschetz locus for Beilinson’s Hodge cycles on the com-
plement of two or three hyperplane sections in a smooth projective surface in P3. The main
theorem gives an explicit description of maximal components of the Noether-Lefschetz locus.

INTRODUCTION

In the moduli space M of smooth surfaces of degree d in P3 over C, the locus of those
surfaces that possess curves which are not complete intersections of the given surface with
another surface is called the Noether-Lefschetz locus and denoted by Myp. One can show
that My, is the union of a countable number of closed algebraic subsets of M. The classical
theorem of Noether-Lefschetz affirms that every component of My, has positive codimension
in M when d > 4. Note that the theorem is false if d = 3 since a smooth cubic surface has the
Picard number 7. Since the infinitesimal method in Hodge theory was introduced in [CGGH]
as a powerful tool to study My, fascinating results have been obtained concerning irreducible
components of Myy. First we recall the following.

Theorem 0.1 ([G1]). For every irreducible component T of My, codim(T) > d — 3.

The basic idea of the proof of the result is to translate the problem in the language of the
infinitesimal variation of Hodge structures on a family of hypersurfaces in a projective space.
Then, by the Poincaré residue representation of the cohomology of a hypersurface, the result
follows from the duality theorem for the Jacobian ring associated to a hypersurface. We note
that the inequality is the best possible since the family of surfaces of degree d > 3 containing
a line has codimension exactly d — 3. M.Green and C.Voisin proved the following striking
theorem.

Theorem 0.2 ([G2], [V]). If d > 5, the only irreducible component of My, having codimension
d — 3 is the family of surfaces of degree d containing a line.

In this paper we study an analog of the above problem in the context of Beilinson’s Hodge
conjecture. For a quasi-projective smooth variety U over C, the space of Beilinson-Hodge cycles
is defined to be

FIHYU,Q(q)) == H*(U,Q(q)) N F'HiR(U/C)
where H?(U,Q(q)) is the singular cohomology with coefficient Q(q) = (27y/—1)/Q and F*
denotes the Hodge filtration of the mixed Hodge structure on H4(U,C) ~ Hi,(U/C) defined
by Deligne [D]. Beilinson’s conjecture claims the surjectivity of the regulator map (cf. [Bl] and
[Sch])
regl; : CHY(U,q) ® Q — F'H'(U, Q(q)),

where CH?(U, q) is Bloch’s higher Chow group [Bl]. Taking a smooth compactification U C X
with Z = X — U, a simple normal crossing divisor on X, we have the following formula for the
value of reg{, on decomposable elements in CHY(U, q);

regl({g1,...,9,}) = dloggi A --- Adlogg, € H*(X, Q% (log Z)) = FIHI, (U/C),
1
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where {g1,...,9,} € CHY(U,q) is the product of g; € CH'(U,1) = I'(U, 0%,,). Beilinson’s
conjecture is an analog of the Hodge conjecture which claims the surjectivity of cycle class maps
from Chow group to space of Hodge cycles on projective smooth varieties. The conjecture is
known to hold for ¢ =1 (cf. [J], Th.5.1.3) but open in general for ¢ > 2.

The main subject to study in this paper is the Noether-Lefschetz locus for Beilinson-Hodge
cycles on the complement of the union of a normal crossing divisor in a hypersurface in the
projective space. Let n > 1 be an integer and let X, Y3, ..., Y, C P"*! be smooth hypersurfaces
intersecting transversally and put

Z= U Z;withZ;=XNY; and U=X—Z (0.1)

1<5<s
Let H"(U,Q(n))uiv be the image of the natural restriction map
H'(P™ = U Y;,Q(n) — H(U,Q(n)).

1<j<s
In case n > 2 one can show ([AS2], Lem.3.3(2))
Hn<U7 Q(n>)triv = regT[}<CHn<U7 n)dec)a (02)

where CH"(U,n)qec C CH"(U,n) ® Q is the so-called decomposable part, the subspace gener-
ated by the image of the product map

n times

CH'(U1)®---®CH"(U,1) — CH"(U,n).

It implies that
H"(U,Q(n))uiv C Im(regy;) € F"H"(U,Q(n)).
We define
F*H"(U, Q(n))prim := F"H"(U,Q(n))/H" (U, Q(n) ) niv

called the space of primitive Beilinson-Hodge cycles. Here we note the following:
Fact 0.3. F"H™"(U,Q(n)) =0 for s < n.

This follows from the following facts:

(i) The graded pieces of the weight filtration on H"(U,Q(n)) are subquotients of pure
Hodge structures H"9(Z@ Q(n — q)) for 0 < ¢ < s, where Z(® = X and

(@) — U ZyN---nz; forqg>1

1<j1<-<gg<s

(1) The Hodge symmetry implies FPH?(W,Q(p)) = 0 for p > 1 when W is a smooth
projective variety W over C.

Now fix integers d > 1 and e¢; > 1 with 1 < j < s. Let M be the moduli space of sets of
hypersurfaces (X,Y1,...,Y;) of degree (d, ey, ...,e,) in P"™! which intersect transversally. Let
(X, )1,...,Ys) be the universal family over M and put

Z:Xﬂ(lg%syj), Uu=x-2=.
Fort e M let U, C X; D Z,; be the fibersof U C X D Z.

Definition 0.4. The Noether-Lefschetz locus for Beilinson-Hodge cycles on U /M is
Myp ={te M| F"H"(U;,Q(n))prim # 0}
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The analogy with the classical Noether-Lefschetz locus is explained as follows. Take n = 2.
Instead of the map

H*(P*— U Y;,Q(2) — F*H*(U,Q(2))

1gj<s
we consider

H*(P*,Q(1)) — F'H*(X,Q(1))
By noting that the space on the left hand side is generated by the cohomology class of a plane,
and that that on the right hand side is identified with Pic(X) ® Q, the space defined in the
same way as Definition 0.4 is nothing but the classical Noether-Lefschetz locus.

One can show by the same way as before that My, is the union of a countable number of
closed analytic subsets. By analogy a series of problems on My, arise, the problems to show
the counterparts of Theorems 0.1 and 0.2 in the new context. Note that in view of Fact 0.3 the
problems are non-trivial only if s > n. In the previous work [AS2], the authors have shown the
following result.

Theorem 0.5. Assume d > n + 2. For every irreducible component T of Myr,
codimy(T) > d+ (n — 1) min{d, e1,...,es} —n — 1.

The estimate in Theorem 0.5 will turn out to be far from being optimal in general (see the
main theorems 0.7 and 0.8 below). The basic strategy of the proof of Theorem 0.5 is the same
as that of Theorem 0.1. A new input is the theory of generalized Jacobian rings developed in

[AS1].

It seems a difficult problem to establish a counterpart of Theorem 0.2 in the context of
Beilinson-Hodge cycles. In case n = 1 (case of plane curves in P?), it is shown in [AS2]
Theorem 4.1 that the estimate in Theorem 0.5 is optimal: Every irreducible component of
My, has codimension > d — 2 and a finite number of components of codimension d — 2 are
explicitly given. It can be also shown that those are the only ones which have the maximal
dimension when s <2 and e¢; =1 for 1 < j < s. It is an open question whether it is still the
case in general.

In this paper we study the problem in case n = 2 (case of surfaces in P3). By Fact 0.3 the
problem is non-trivial only if s > 2. Our main results concern the special case:

s=2or3ande; =1for 1 <j<s, (0.3)

but yet it reveals a new phenomenon surprising to us: There are infinitely many components
of maximal dimension in My;. We expect that the method can be extended to treat the case
where n is arbitrary and s = norn+1and e; = 1 for 1 < j < s. It is an open problem to
extend our results to more general cases.

Let P = Clzg, 21, 29, 23] be the homogeneous coordinate ring of P* and P! C P the subspace
of homogeneous polynomials of degree [ > 0. For the rest of the paper we fix an integer d > 0
and let M C P? — {0}/C* be the moduli space of the smooth surfaces in P?. Let M C M
(resp. M’ C M) denote the Zariski open subset of those surfaces that intersect transversally
with Y := YUY, UY; (resp. Y’ :=Y; UY3) where Y; = {z; = 0} C P. By definition M is a
dense open subset of M’. For t € M let X, be the corresponding surface in P? and put

U=X;—(X;nY) and U =X;,—(X;NnY’).
We define
MNL :{t € M | F2H2(Uta@(2))prim 7é 0}7
My ={t € M | F*H*(U},Q(2))prim # 0}.
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In order to describe the irreducible components of My, and M}, of maximal dimension, we
need introduce some notations.

Definition 0.6.

(1) For ¢ = [e))icv<a = [c1 1 -+ 1 ¢q) € P47H(C), we define T(c) C M’ as the closed subset
consisting of such surfaces X that there exists ¢ € C* and a plane H C IP? defined by a
linear form w € P' — {0} for which

_ . . . 3 _ —
HﬂX—Hﬂlgygd{[zo.zl.zg.zg]eP]czl cyzo = 0}.

By the definition a surface in T'(¢) is defined by an equation:
F=wA+ H (cz1 — ¢,2z) for some w € P!, A € Pt ceCr

1<v<d
(2) We fix the following datum ((p, q), ¢, 0), where
(1) p, ¢ > 0 are integers such that (p,q) = 1 and that (p + ¢) is a divisor of d (in
particular if pg = 0 then (p,q) = (1,0) or (0,1)),

i1) ¢ = [c,)i<p<r = [c1: -+ 1 c,] € P7H(C) where r := ——,
(i) [cohi<vsr = a1 ] (©) P+q
(i1i) 0 € G5, the permutation group on (1,2, 3).
We define 77, (c) C M as the closed subset consisting of such surfaces X that there
exists ¢ € C* and a plane H C P? defined by a linear form w € P! — {0} for which

HNX=HN 1§LVJ§r {[20: 21 : 20 : 23] € P czga‘% — 2y () %ac3) = 0}
By the definition a surface in 77, 9 (¢) is defined by an equation:

F=wA+ ][] (czﬁ(ﬁg — Cu2)(9)%5(3)) for some w € P!, Ac P ceC

1<v<r

We will see the following facts (cf. §1):

(1) T(c) (resp. 1(, ,(c)) is smooth irreducible of codimension <d;2> —5in M’ (resp. M).
(2) T(c) C My, (vesp. T¢, () C Myy) if and only if there are roots of unity ¢, such that
¢ = [(y)1<v<a (resp. ¢ = [(,]i<v<r). Under the condition the two form

p q
Zo(?)zo

3) w

Zo(1) Fo(1)

dlogé A dlogE (resp. dlog
21 21

gives rise to a primitive Beilinson-Hodge cycle, where w € P! is as in Definition 0.6.

The main theorem of this paper is the following.

Theorem 0.7. Assume d > 4. Let T be an irreducible component of My .
(1) codim(T) > (*?) — 5.
(2) codim(7T) = (d;z) —5 if and only if T coincides with T'(c) for some ¢ = [(,]1<v<a where
Cv are roots of unity.

3) Letc be asin (2). If X is a general member of T'(c), reg? is surjective so that Beilinson’s
( g 8t ]
Hodge conjecture holds for U' = X — (X NY").

Theorem 0.8. Assume d > 4. Let T' be an irreducible component of My .
(1) codim(T) > (*4?) — 5.

2
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(2) codim(T) = (d;rz) — 5 if and only if T coincides with T(, ,(c) for some ((p, q),c =
[Coli<v<rs 0) where (, are roots of unity.

3) Let ((p,q),c,0) be asin (2). If X is a general member of T?, (c), reg? is surjective so
(p:2) U

that Beilinson’s Hodge conjecture holds for U = X — (X NY).

The paper is organized as follows. In §1 we study the subsets of the moduli space of surfaces
in P? defined in Definition 0.6. In §2 and §3 our problem is reduced to algebraic problems
on polynomial rings via theories of infinitesimal variation of Hodge structure and Jacobian
rings. The basic idea is the same as that in [G2] and [V]. A key to solving the last problem is
Theorem 3.5 due to Otwinowska ([Ot], Th.2) concerning the Hilbert function of graded algebras
of dimension 0. In §2 the main theorem 0.8 will be deduced from Theorem 0.8 bis, and 0.7
from 0.8. The proof of Theorem 0.8 bis occupies §3, §4 and §5.

In the appendix we will discuss an implication of Theorem 0.8 on the injectivity of the
regulator map:
px 1 CH*(X,1)® Q — Hp(X,Q(2)),
where X be a member of M and CH?*(X, 1) is Bloch’s higher Chow and H3,(X,Q(2)) is the
Deligne cohomology of X.

The authors are grateful to Professor A. Otwinowska for stimulating discussions and her
teaching us on her work [Ot]. They thank the referee for helpful comments to improve the
presentation of the paper.

1. COMPONENTS OF My,

Let the notation be as in Theorem 0.7 and 0.8. In this section we fix 0 € M and let X be
the corresponding surface in P3. Write

U=X-2,Z= U Z;, and U=X-Z7'7'= U Z,
1<5<3
where Z; = X NY;. We put

ay = {2, 2y e OHYU,2), (1.1)
21 21
Wy = dlog? A dlog? e H(X, 0% (log 2)), (1.2)
1 1

where z;/z; is viewed as an element of CH'(U,1) = I'(U, O, ). Note that

wy = regy(aw),
under the natural inclusion F?H3, (U/C) = H°(X, Q% (log Z)) — H2(U/C) ~ H*(U,C).

Lemma 1.1.

(1) CH*(U',2)gec is generated by {c, z2/z1} with ¢ € C*.

(2) CH?*(U,2)qec is generated by oy and {c, z;/z} with c € C* and 1 <1i,5 < 3.

(3) H*(U',Q(2))txiv = 0 and H*(U,Q(2))triv = Q - wy.
Proof. The first assertion follows from [AS2] Lem.3.3.(1). The second assertion follows from
(0.2). O O

Lemma 1.2. T(c) (resp. 1(,,(c)) in Definition 0.6 is smooth irreducible of codimension
(0@2) —5in M’ (resp. M).
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Proof. We show the assertion only for T'(c). The assertion for T} () (¢) is shown by the same
way. By the definition a member X of T'(¢) is defined by an equation

F=wA+ ]] (cz1 —cy22) for some w € Pl Ae Pl cecCr,
1<v<d

and the map
T(c) — € x (P~ {0}) x (P = {0]))/C" 5 X — (e (w, 4)).

is an open immersion, where A € C* acts on (P! —{0}) x (P?1 —{0}) via (w, A) — (Qw, \71A).
The desired assertion follows easily from this. O

Assume 0 € 77, (¢) so that X is defined by an equation:
F=wA+ ][] (czg?'g — 2 %) (¢ #£0). (1.3)
1<v<r

We note that w & 3°1<j<3 C - z; by the assumption that X intersects Y transversally. We put

2P 22
&u = dlog—2278) p dlog " € HO(X, 0% (log Z)), (1.4)
Z5(1) Zo(1)
and
YU):=C-wy@®C-& C HY(X,Q%(log Z2)) = F?H?*(U, C). (1.5)

We note that &y is apparently holomorphic only on U — W with W = U N {w = 0} while it is
easy to see that its residue along any irreducible component of W is zero. Rewriting (1.3) as

wA+ ] (czgzrl% — G 2hy2am) = WA+ H(czga% — 02l 2ty (e, 2 1)
1<v<r nel (1.6)
where ¢, # ¢ if p # p' € I, W is the disjoint sum of the following smooth irreducible
components for p € I;
+
Wy, =UnN{w = cz; )] — cuzy 20z = 0}-
Lemma 1.3. Q - wy C X(U)NH*(U,Q(2)) CQ - wy ® Q- &y.

Proof. The first inclusion is easy. We show the second. Without loss of generality we may
assume that o € &, is the identity. Let ¢ = awy + b&y € HY(X, Q% (log Z)) with a,b € C and
assume ¢ € H*(U,Q(2)). Define

Zij=XN{z=2=0} (1<i#j<3),

1<j#i<3
For 1 <4 # 5 < 3 we consider the composite map of the successive residue maps
Reszi ReSZ-j

0ij - HY(X, Q% (log Z)) — H(Zi,Qy,(logVi)) — H°(Zij, Oz,) = ¥;;®C,
where U;; = H°(Z;;,Q) = & Q. The assumption implies

TEZ;
(%) 3ij(¢) € U,; for any 1, j.
We have 0;;(¢) = —d;;(¢) and an easy residue calculation shows
5ij(wU> - _Qz’j for (la.]) = (172)7 (273)7 (37 ]->a

012(€v) = —p(ury — d - v12), 931(§v) = qug — d - v31), 623(€v) = 0,
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where u;; € W;; has component 1 at any z € Z;; and v;; € ¥;; has component 1 at z €
Zij N {w = 0} and 0 elsewhere. Now it is easy to see that (x) implies a,b € Q. O

Proposition 1.4. The following conditions are equivalent.
(1) & € Im(reg?).
(2) &v € H*(U,Q(2)).
(3) Z(U)NH*(U,Q(2) =Q-wy Q- &
(4) ¢ = [(]i<v<r € PYC) where ¢, are roots of unity.
The following corollary is immediate.

Corollary 1.5. 1, q)( ¢) C My if the equivalent conditions in Proposition 1.4 hold.

In the rest of this section we prove Proposition 1.4. (1) = (2) and (3) = (2) are clear.
(2) = (3) follows from Lemma 1.3. We shall prove (2) <= (4) = (1).

We first prove (2) <= (4). Consider

8=1{a "@p;;(‘“’), Y Y e CHXT,2) (U:=U—W)
zcr(l) o (1)

for a € C*. We have the commutative diagram

CHX(U,2) @ Q —% F2H*(U,Q(2)) ——— F?H3(U/C)

| ! ;

2

CHYT,2) © Q —%s F2HY(U,Q(2)) —— F2HZ(T/C)

and we have reg? (3) = 12(&y) in F2H3,(U/C). Since 1y is injective, (2) <= (4) follows from
the following assertion:

(*) regZ (B) € Im(y) if and only if (4) holds.
To show this we consider the commutative diagram

CHXU,2) ® Q —— CHX(U,2)®Q - CHY(W,1)® Q
reg%qUJr lreg%ﬁ %lregbyw (17)

HA(U,Q(2) —— H3(U,Q(2)) —2- HLH(W,Q(1))

where regj, , denotes the regulator map to Deligne cohomology and dx and dp are the Poincare
residue maps. We have the commutative diagram (cf. [EV])

0— H'(U,Q1))®C/Q(1) — HH(U.Q(2) = FH*U,Q(2))—0

l l l 31
0— H'(U,Q(1) ®C/Q(1) — H}U,Q2) —% F2H*(U,Q(2) — 0
1o 1 Op | 0y (1.8)

0— H(W,Q) ©C/Q(1) — HHW.Q()) =5 FH(W.Q(1) —
where 0; are the Poincare residue maps. The composite of reg}, , with m, coincides with the
regulator map to singular cohomology. The horizontal sequences are exact. The vertical se-
quences are localization sequences and they are exact except the most right one. In view of
(1.6) we have an isomorphism

Coker(0;) 2 C/Q(1) ® &, & := Coker(Q — P Q; 1 — (eu)er)- (1.9)

nel
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To see this we note that H'(U, Q(1)) is Hodge type (0,0) as H'(X,Q) = 0. Therefore we have
the commutative diagram

CHY(U,1) @ Q s @, 0

regéJ{ l’#

H'(U,Q(1) = F'H'(U,Q(1)) —— H(W,Q)

with the surjective reglﬁ. ¢ is given by taking orders of functions along the components of W.
One easily sees that CH'(U, 1) is generated by C*, w/z and z;/z with 1 <4,j < 3 and thus
the isomorphism (1.9) follows. Now (1.8) gives rise to an exact sequence

F2H*(U,Q(2)) % Ker(ds) -2 C/Q(1) ® ®. (1.10)
Now an easy calculation shows

a/\/l(ﬁ) = ((ac/c,u)e“)uel € EB OHI(W;M 1)'
pel

Noting the commutative diagram

0 — C'®Q — CH'(W,,1)®Q

Jlog %lreglp,wu

0 —— C/QU) — HH(W,, Q) — FH'(W,,Q(1)) -0
it implies reg? (3) € Ker(d,) and that for d in (1.10), we have

§(regf (B)) = the class of (e, log(ac/c,))uer in ® ® C/Q(1).

This shows that reg? (4) € Im(¢;) if and only if there is a € C* such that ac/c, are roots of
unity for all g. This completes the proof of (x) and hence we have (2) <= (4).

Finally we see (4) = (1). In this case, 3 has a lift 8/ € CH?*(U,2) ® Q due to the exact
sequence (1.7). Then we have regi(3') = &y € F2H?(U,Q(2)) by the injectivity of 1. Hence
we have & € Im(reg?).

2. INFINITESIMAL INTERPRETATION

In this section we make the first step of the proof of Theorem 0.8. Let the assumption and
the notation be as in §1. Take A C M, a simply connected neighborhood of 0 in M. For
A € H*(U,C) and t € A, let \;, € H*(U;,C) be the flat translation of A\ with respect to the

Gauss-Manin connection
V:HA(U/M) — QL @ HSU/M),

where HY (U /M) is the sheaf of holomorphic sections of the local system HE(U/M) = RP f,C
with f : & — M, the natural morphism. We sometimes consider A a section over A of HZ(U /M)
via H2(U,C) = T(A, H2(U/M)). Putting

Ay ={t € Al )\ € F2H*(U,,C)},

it is a closed analytic subset of A since it is defined by the vanishing of the image of A under
the map

D(A, HEU/M)) — T(A, HoU /M) /F*HE (U /M)
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where FYHD (U/M) C HY(U/M) is the Hodge subbundle. Taking A sufficiently small if neces-
sary, we have by Lemma 1.1 (2)

My N A = UAy (2.1)
as a set where A runs over all A € H*(U,Q(2)) such that A € Q- wy. Let T;(M) be the tangent

space of M at t, and Qyp;, = Hom(T;(M),C) its dual space. By Griffiths transversality, the
Gauss-Manin connection V induces

V : HYX,, 0%, (log Zy)) — Qi @ HH(X,, Qg{tl(log ),
and hence the pairing
(. )+ T(M) ® H(Xy, @, (log Zy)) — HY(X;, Qg(_tl(l()g Zt))

for p,q > 0. Let T — A, be any irreducible component with reduced structure. We denote
the regular locus of T' by T". Since the section A defines a flat section of F2HZ (U /M) along
7% we have

T,(T™%) € {0 € Ty(M)| (9,\) =0} (¢t € T"®). (2.2)

Theorem 0.8 bis. Fizx A € H°(X,0%(logZ)) with A € C - wy. Let T be an irreducible
component of A with reduced structure.

(i) codima(T) > (*?) = 5.
(ii) Assume d > 4 and codima(7T) = (ng2> —5. If A€ H*(U,Q(2)), then T =T¢, ,(c) N A
for some o, p, q and ¢ = [(,]1<v<r Such that (, are roots of unity (cf. Proposition 1.4).

Hence T is smooth (cf. Lemma 1.2).
(iii) Assume 0 € 13, 4 (¢) for some o,p,q,c. Then we have

Y(U) ={w e H(X, Q% (log 2))| (0,w) = 0 for all O € To(T7, () }-

Theorem 0.8 bis will be shown in the next three sections.

We deduce the main theorem 0.8 from the above. Theorem 0.8 (1) and (2) follow immediately
from (i), (ii) and Corollary 1.5 in view of (2.1). Theorem 0.8 (3) follows from the following:
Claim 2.1. Assume 0 € 7}, ) (c). Then there exists a subset E C Ag =17 1(c) N A which is
the union of a countable number of proper closed analytic subsets of Ar such that

F?H*(U;,Q(2)) ¢ 2(U;) forallt € Ar — E.
Moreover, under the assumption of Proposition 1.4 (4), we have
FPH*(U,Q(2) =Q -wy, ® Q- &y,  forallt € Ap — E,
where wy,, &y, € H*(Uy, Q(2)) are the flat translations of wy, &y € H*(U;, Q(2)) respectively.

Proof. The second assertion follows from the first in view of Proposition 1.4. We show the first
assertion. Write H%(U,Q(2)) = {\; }ier as a set and put

A= {Z S ]| Ar C AM}’ B = {Z € ]| Ar ¢ AM}7 E:ATH(.gBAAi)‘
Note that I is countable and I = AU B and ANB = (0. Fort € Ar — E, we have
F2H*(Uy, Q(2)) = {\i(t) }ica so that H(Uy, C) — T'(Ag, HA(U/M)) induces
F2H?(Uy, Q(2)) < T(Ap, HEU/M) N F2HE(U/M)),
which further implies

F?H*(U;, Q(2)) € Ker(H(X,, 0%, (log Z)) — Q. ® H'(X,, X, (log Z,))).
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Theorem 0.8 bis (iii) implies that the last space is equal to X(U;) and the desired assertion
follows. O]

Next we deduce Theorem 0.7 from Theorem 0.8. First we show the following:
Claim 2.2. M N M]/VL C MNL-

Proof. Take 0 € M and X be the corresponding surface in P* that intersects transversally with
Y =Y1UYoUY; Write U' = X — (Y1 NY,) and U = X — Y. By the residue calculation in the
proof of Lemma 1.3, we see that wyy € H*(U,Q(2)) does not lie in the image of H*(U’, Q(2)) —
H?(U,Q(2)). By Lemma 1.1 it implies that the restriction map

FPHX(U',Q(2))prim — F?H*(U,Q(2))prirm
is injective. Hence, if 0 € M}, then 0 € Myy. O

Let T C M}, be an irreducible component with reduced structure. Take 0 € T" and let X
be the corresponding surface in P2. By the assumption X, Y;, Y5 intersect transversally. Take
a plane L C P? such that X, Y;, Y5, L intersect transversally. By a coordinate transformation
fixing z; and zy, we may suppose L = Y3. Then 0 € TN M and T'N M is a dense open subset
of T'. By the above claim we have T'N M C My, and Theorem 0.8 implies

d+2
codimy (T') = codimy (TN M) > < ;— ) — 5.

This shows Theorem 0.7 (1). Moreover the equality holds only if T'N M = T, (c) for some

((p, q), ¢, O') as in Theorem 0.8 (2). In view of Claim 2.1, the last condition implies that there
exist a,b € Q with (a,b) # (0,0) such that ¢ = awy + béy € H*(U,Q(2)) lies in the image of
H2(U',Q(2)) — H*(U,Q(2)). By the residue calculation as in the proof of Lemma 1.3, this
implies that in the equation (1.3), the exponent of z3 in 1<1_[< (czga% — Cu20 (9 %a(3)) 1s 0. This

implies T, , (c) = T(¢) N M for some ¢’ € P*(C) and Theorem 0.7 (2) is proved. Now Theorem
0.7 (3) is a direct consequence of Theorem 0.8 (3).

3. REDUCTION TO JACOBIAN RINGS

Let the assumption be as in §2. In this section we rephrase the theorems in §2 in terms
of Jacobian rings and prove Theorem 0.8 bis (i) and (ii). Let P = Clzy, 21, 22, 23] be the
homogeneous coordinate ring of P2. For an integer [ > 0 let P! C P be the subspace of

homogeneous polynomials of degree [. Let the assumption be as in §2 and fix F € P? which

defines X C P3. Put the ideal Jr C P (Jacobian ideal) by
oF _oF  oF  OF
aZO A1 821 22 822 = 823 .

The assumption that X transversally intersects Y is equivalent to the condition:

Jp = (

3-1): Jp is complete intersection of degree (d — 1,d,d, d).
J, 1 fd d d,d,d
Write
Rp = P/Jp, Jo=Jpr NP, RL =Im(P' — Rp) = P'/J.

and call Rr the Jacobian ring. We recall the following well-known theorem of Macaulay (cf.

[GH], p.659).
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Theorem 3.1 (Macaulay). There exists a natural isomorphism
™ @ RES 5 C
and the pairing induced by multiplication
RL@ R L R, C, 0<I1<4d-5
is perfect.

The relations between the Jacobian ring and cohomology group are described in the following
way:

(3-2): We have the canonical surjective homomorphism
¢ PP —Ty(M); G — {F +¢G =0} C P,

where Cl[e] is the ring of dual numbers. We have Ker(y) = C - F'.
(3-3): We have the isomorphisms

o1 Pl HO(X, 0% (log Z)), o RED 2 HY(X, Ok (log 2),
such that the diagram

pd ® pd-1 K R%d—l

wml Lﬁ’
Ty(M) @ HO(X, 0% (log 2)) —1» H'(X, Q4 (log Z))

commutes up to non-zero scalar where y is the multiplication. (If we replace the source
of ¢ with RE™, then the target space is replaced with H°(X, Q% (log Z))/(C - wy), cf.
Lemma 3.2 (1) below).

(3-4): We have the following formula

#(G) = Resy Q (GepP™,

Fz2925
where Q = 323 (=1)izidzg A -~ Adz A -+~ Adzs € HO(P3, 03, ® O(4)) and
Resx : H°(P?, Q3:(log X +Y)) — HY(X,Q%(log Z)) (Y = {z12023 = 0} C P?)
is the residue map.

Lemma 3.2.

(1) Putting wp = g—i, we have ¢(wr) = wy (see (1.2) for the definition of wy ).
(2) Assume 0 € T(, (c) and that X is defined by an equation (cf. The proof of Lemma

1.2):
F=wA+ ][] (czﬁ?’l‘% — CuZy(9)%a(3))- (3.1)
1<v<r
Put
ow 0A 0A 0A ow
= (a2 — Pty m—) — 2 (0% — pz, € pi-!
& =5 (4200 Do 0 azg(g)) 92, (1200) Do 0 820(3))

Then we have ¢({r) = &y (see (1.4) for the definition of &y ).



12 MASANORI ASAKURA AND SHUJI SAITO

Proof. We only give a proof of (2) ((1) is easier). We may suppose o = 1. It is enough to check
the equation on {z; # 0}. Write z] = z;/z; and put F' = F(2{, 1, 2}, z}) etc. Then

FZ§§2239|21¢0 = };féi{)’dzg Ndzy N\ dzy = Cig/dlog(zgngq) A ng/.
This yields ¢(&r) = &y by (3-4). OJ
For A € P41 consider the linear map
A PR C o me( D). (3.2)

For an integer [ > 0 define
I = {z € P'| \(zy) = 0 for all y € P31}
={r e P x=0¢e R

where the second equality follows from Theorem 3.1. Put I = I, N P'. Then I{ is the inverse
image under ¢ of {0 € To(M)| (0, A) = 0} so that (2.2) implies:

(3-5): = Y(Ty(T™#)) C I{ for any irreducible component 7' C Ay with reduced structure

such that 0 € 77,

Proposition 3.3. Assume A & J&' = C-wp. Then dim(P?/I{) > (d;z) — 5 and the equality
holds if and only if I{ is complete intersection of degree (1,d —1,d,d).

Let T be as in Theorem 0.8 bis and assume 0 € 7", (3-5) implies
codima (T) > codimp,(a) (To(T7%)) > dim(P?/1Y),

and hence Theorem 0.8 bis (i) follows from Proposition 3.3. Theorem 0.8 bis (ii) will be proved
in the next section and Theorem 0.8 bis (iii) follows from the following:

Proposition 3.4. Let the assumption be as in Lemma 3.2 (2).
(1) ¢~ HTH(TG, ) (c)) = wP™t + .
(2) I§ = wP¥t + J& if X\ = awp + bép with b # 0.
(3) C-wr@®@C-(p={yc P yz=0¢c R¥" for all z € wP™' + Ji}.

In the rest of this section we prove Propositions 3.3 and 3.4. We need the following theorem
due to Otwinowska (it is shown by the same method as the proof of [Ot], Th.2).

Theorem 3.5 (Otwinowska). Let I C P be a homogeneous ideal satisfying the conditions:

(1) There exist an integer N > 0 and a non-zero linear map p : PY — C such that
I'={z € PY u(zy) =0 for ally € PN~}

(2) I contains a homogeneous ideal J which is complete intersection of degree (e, €1, €2, €3)
with eg < e1 < ey < e3.

(3) There is an integer b such that eg < b <e; —1 and N +3 = ey +e3+b.

Forl > 1 we have
dim(P'/1") > dim(P'/ (20, 2%, 252, 253) N P").

Moreover, if | < N — b, the equality holds if and only if I is complete intersection of degree
(17 ba €2, 63)'
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We first prove Proposition 3.3. Since A ¢ J& ! the map \* is not zero. By definition
(Ix, \*) satisfies the condition (1) with N = 3d — 4. I, contains the Jacobian ideal Jr which
is complete intersection of degree (d — 1,d,d,d). We apply Theorem 3.5 for (eg, ey, ez, €3,b) =
(d—1,d,d,d,d—1), I =1, and J = Jr. Then the assertion is straightforward by noting

2
dim(P?/ (29, 2471, 24, 24) N P?) = (d—;— ) — 5.

Next we show Proposition 3.4. Let PGL,4 be the group of projective transformations on P3
and let G C PGLy be the subgroup of such ¢ € PGLy4 that g(Y;) = Y; for all j = 1,2,3.
It is evident that G naturally acts on M and T(, ,,(c) C M is stable under the action. Let
TO'

o (©) (i) © T, (c) be the closed subset of those surfaces defined by equations of the form

wB+ ][] (czsz% CuZg)Za(z)) for some B € Pt
1<v<r

It is easy to see that the natural map G x T, , (c) (

that @Zfl(TO(TG;’q) (g)(w C))) = wP4 !, The map

0 T, () is smooth and surjective and

To(M) *= PijC. F = RY,

identifies R% with the quotient of Ty(M) by the infinitesimal action of the tangent space at the
identity of G. It implies

VN TNTG o (0)) = 7 (T (T (@), ) = WP + I
(w,e)
This completes the proof of Proposition 3.4 (1).

Let A = awp + bép with b # 0. Then A € J& ! so that we have (d;&) — 5 < dim(P?/I¢) b
Proposition 3.3. An easy calculation shows \w € J& so that I¢ D wP? ! + J¢. We have

d+2
( ‘g ) _ 5 < dim(PY/1¢) < dim(P*/wP' 4 )

| ) ' U d+2
(:_) codimyy,ar) (To(17, 4 (c))) < codima (T, ,(c)) (S) ( 5 ) -5,

where (x) from Proposition 3.4 (1), and (**) from Lemma 1.2. Thus the above inequalities are
all equalities so that I¢ = wP9"! 4 J&. This completes the proof of Proposition 3.4 (2).

Finally we show Proposition 3.4 (3). Obviously
Cwr®C-(pC{yc P yz=0¢ R¥ ! forall x € wP™' + J&}
C{ye P yw e Ji}
= wPin Jg

where the last isomorphism is given by multiplication by w. Hence it suffices to show dim wP%'N
J& < 2. Note that w is in complete intersection with g—F and

OF OF (‘)F>
921 202y 2 Oz

as wP%! has base point locus of codimension one and <2137F, zzg—i P 53 I)d has base point locus

dim (de_l Nz ) <1

of codimension three. Therefore some linearly independent hy, hy € (29 gg 29 ngg 23 033> defines

a complete intersection ideal (w hy, ha) of degree (1,d —1,d,d). This implies dimwP4 ' N

78z7
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(oL 5200 11 hy)? = 1 and hence we have dimwP?% ! N J& < 2. This proves the desired assertion
and the proof of Proposition 3.4 is complete.

4. PROOF OF THEOREM 0.8 BIS (II)

In this and next sections we prove Theorem 0.8 bis (ii) to complete the proof of Theorem
0.8. Let the assumption be as in Theorem 0.8 bis (ii). Without loss of generality we assume
t = 0 € T"&. Choose equations F, € P? that define X, C P? and move holomorphically for
t € A. Let Rp, be the corresponding Jacobian ring. For ¢t € T let I, C P be defined in the
same manner as [, with A replaced by A\, € H°(X;, 0%, (log Z;)), the flat translation of A. For
any t € 1" we have

d+2
codima (T') > codimy, ) (T3(T7°)) > dim(P?/1{,) > ( ; ) — 5,

where T} (%) denotes the tangent space at t. The second inequality follows from (3-5) and the
last from Proposition 3.3. Hence the assumption implies that the above inequalities are all
equalities. Therefore ¢~ (T(1™¢)) = I{.. Proposition 3.3 then implies that I, is complete
intersection of degree (1,d — 1,d,d) so that }\t = C - wy for some w; € P! determined up to
non-zero scalar. We easily see

dim(Jg) =7, dim(I§ /w,P*") = dim(P'/C - w;) + 1+ 1= 5. (4.1)
Lemma 4.1. There exists t € T™® such that w; & Z?:l C- 2.

We will prove Lemma 4.1 in the next section. Admitting Lemma 4.1, we finish the proof of
Theorem 0.8 bis (ii). Let

3
T°={teT™|w &> C-z}
i=1

which is a non-empty open subset of T by the above lemma. Without loss of generality we
assume t = 0 € T°. Since I{, D w,P™ + Ji, (4.1) implies
dim(w, P N JL) > 7 —5=2. (4.2)

V

Put E,, = C*@® (P'/C-wy;). (4.2) implies that there is Ty = [y14 : Yot : V3. : Li] € P(Ey,) = P°
such that
oF;

Z% tzz + Lta % € wtpdi1 (4.3)

for each t € T™. We may choose I'; € P(Ew) such that it moves holomorphically for ¢ € T°.
Put w =wy and I' =Ty = [y1 : 72 : y3 : L]. We now consider the morphisms
V
h:T° — P(P) =P t+—— [w]:=C-w (4.4)

and
Vv

s:h H(w) = P(E,) =P t—T,. (4.5)

We put
IO = s ()
By the construction we have

codimy, (pres) (Ti(Ty ) < 3+5=8for t € Ty 1. (4.6)
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Due to (3-2), (4.3) implies that for t € Tj 1,

) ] 5. 9G . 0G )
VIT) C1G € 1 Yo, + Dy € wP'™) (47)

Write wV = wP* ' Ny~ (T (TYy)) for a subspace V. C P*~'. Noting ¢~ (T;(T™#)) = I{ >
wP* ! for t € TY 1, (4.6) implies codimpa-1 (V) < 8. (4.7) implies

I(w@) O(w@)
L
Z vz T L

37 izige + L% ¢ C-w, it implies G € wP* for all G € V. Since codimpu- (wP*?) =
(dH) this is a contradlctlon if <d+1> > 8 which holds when d > 4. Thus we get the condition:

cwP¥ ' forall GeV.

0
Z%Zl Ou —i— L2 eC w. (4.8)
97
We claim that (4.7) and (4.8) imply that for each ¢t € T} -
F, =wB, + 1<1_[< (ctzgzrlg — cl,7tz§(2)zg(3)) (4.9)

for some By, o and (ct,¢,4). Since w ¢ 3% Cz;, we may suppose w = 2z by transforming by
an element of G (cf. the proof of Proposition 3.3). (4.8) then reads L € C- 2y = C-w. It
implies that 1, y2,73 are not all zero. (4.3) now reads

Z’yzzz E ZOPd ! (t € TzOO,F)‘

Z

Writing F; = zoB; + C; with C}, a homogeneous polynomial of degree d in C[zy, 29, 23], the
above condition is equivalent to
i—1 T 0z

Write

Cr= Y caz®  (2%=20125225%, ¢, € C)

a=(a1,a2,03)

and take o with ¢, # 0. The above condition implies that « is an integral point lying on the
sectional line ¢ in ;ﬂgxg—space defined by

3 3
i=1 i=1

Furthermore the condition (3-1) implies that C' is divisible by neither of zj, 25, z3. Letting
m; » ¢; = 0 be a plane, it implies that ¢ and 7; intersect at an integral point for all 7 = 1,2, 3.
This implies that ¢ passes through one of the points (d,0,0), (0,d,0), (0,0,d). Assuming
that ¢ passes through the first point, we get 4 = 0 and hence ay : a3 = —7v3 : 2 =p : ¢q
for some coprime non-negative integer p,q. Writing ay = pj, as = qj with j € Z, we get
oy =d— (p+q)j since Y7, a; = d. The condition that £ and 7, intersect at an integral point
implies that r := d/(p + q) is an integer and hence oy = (p + ¢q)(r — 7). Thus we can write

T
C, = Zbﬂ(zfﬂ)r_j(zgzg)j = H (4 — ¢, 12523)  for some bj,c,4, ¢ € C.
) 1<v<r

Hence we have (4.9).
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Apply the same argument to any ¢t € T° and let T} 1, be defined in the same way as T} .
Varying t € T°, T, -, sweep a non-empty open set 7°° C T and we get

F=wB+ [] (ctzgzrl% — CuiZya)Zam) (L ET™). (4.10)
1<v<r
Since w; moves holomorphically, By, ¢; and ¢, ; also move holomorphically for ¢ € T°°. Since
If > w, P + Ji | we have

Me{ye P yz=0forall z € w, P + Ji} =C wp, ®C - & = S(U;)

where the last equality follows from Proposition 3.4 (3). Since A\; & C-wp, by the assumption A ¢
Cwr , we get C-wp,®C-\, = X(Uy). It N, € H*(Uy, Q(2)) then dim X(U,)NH? (U, Q(2)) = 2. By
Lemma 1.3 it implies the condition Proposition 1.4 (3), hence (4). Thus there is a holomorphic

function a; such that a;c;/c,; are roots of unity and hence ¢, = [c14 ¢ -+ @ ¢4) € P77H(C) is
constant. Therefore 7% C T¢, ,(c) N A and hence T' C T, () N A by taking the closure in A.

Finally, comparing the codimensions in A, we conclude that the last inclusion is the equality
and the proof of Proposition 3.4 is complete.

5. PROOF OF LEMMA 4.1
In this section we prove Lemma 4.1. Assume:
3
wy € ZC -z; for all t € T".
i=1

We may write
3 3
wy = Zai(t)zi and w=wy= Zaizi,
i=1 i=1

where a;(t) is a holomorphic function on 77 with a; = a;(0). Since I, D w,P* '+ Jf, and (4.1),

Vv
we have dim(w; Pt N Jfﬁt) > 7 —5 =2 and hence there is I'y = [y14 : Va1 : V31 1 Li] € P(E,,)
satisfies (4.3). Put FF'= Fyand I' =T'g = [y1 : 72 : 73 : L]. Then (4.3) reads

3
OF oF
Z%zZa— + L— ¢ 'lUPdil. (51)
=1

Zi 820

Similarly to (4.8) we get

3 3
Z%aizi eC. Z a;zi,
i=1 i=1
and hence
V1a7 : Yolg Y303 = A7 : A3 : A3. (5.2)
If L ¢g>? C-z, (51) implies g—i =0at [1:0:0:0] € P3 which contradicts (3-1). Hence
we have
3
Led> C-z. (5.3)
i=1
The proof is now divided into some cases. First we suppose that we are in:
Case (1): There exists t € 7" such that a;(¢) # 0 for all 1 = 1,2, 3.
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Without loss of generality we may suppose that ¢ = 0 satisfies the above condition. (5.2) implies
M =7 =29 lfy =9 =9 =0, then L € C-w and (5.1) implies g—i € wP%* ! so that
a—F =0at [1:0:0:0], which contradicts (3-1). Thus we may assume 7; = 1 for all i = 1,2, 3.
By noting d - F' = 322 Ozla , (5.1) now reads:

d-F+(L—ZO)8—FEde ! (5.4)
820
Claim 5.1. LZC - w.

Proof. Assume L € C-w. (5.4) implies dF — 206 € wP9 !, By the assumption a; # 0 we can
write

= wA + ZOB + C with B € (C{Zo, 22,23] N Pdil C e C[ZQ, 23] N Pd
Then 2 7 = waz - ZOaZ + B and hence d(zyB + C) — 20(2032 + B) = 0 by noting wP?1 N
Clzo, 22, 23] = 0. It implies C'= 0 and (d—1)B = z BB From the last equation we immediately

deduce B = czd~! with some ¢ € C. Hence F = wA + cz, which is singular on {w = A = 2, =
0}. It contradicts (3-1) and completes the proof of Claim 5.1. O

Now choose u € 3°2_, Cz; such that w, L, u are linearly independent and write

d
F=wA+ > L'B,, with B, € Clz,u] N P".

v=0
In view of (5.3), (5.4) implies
d
aBV aBV_l d—1
d( L"B,)+ (L — L” =Y L"(dB, P
(I;) )+ A Z 320 Z azo + Dz ) Ew

v=0

where B_; = 0 by convention. Hence we get dB, — z 85“ + aB” t=0forallv=0,1,...,d. We

easily solve the equations to get B, = c(—l)”(l‘f) 4= for some ¢ € C independent of v. Hence

d

d

F=wA+ cZ(—l)”L”( )zg” = wA+ c(z — L)~
v=0 v

The equation is singular on {w = A = zy — L = 0} C P3, which contradicts (3-1). This

completes the proof in Case (1).

By Case (1) we may suppose T' C Uj<;<3{t € Al a;(t) = 0}. Since T is irreducible, we may
suppose a3(t) =0 for all t € T. Now we assume that we are in:

Case (2): There exists t € T8 such that a,(t)as(t) # 0.

Without loss of generality we may suppose that t = 0 satisfies the above condition. Thus
az = 0 and ajas # 0. By replacing a smaller neighborhood of 0, we may further assume
ai(t)az(t) # 0 for t € T*&. (5.2) implies 73 = 5. Assuming 73 # 0, (5 1) implies z3 gF =0on
{1 =2 = g—i = 0}, which contradicts (3-1). Thus v3 = 0. If 73 = 79 = 0, the same argument
as in the beginning of Case (1) induces a contradiction. Thus we may assume 7, = vy, = 1.
Hence (5.1) now reads:

i OF OF
L— ¢ wP* . .
Zzlazﬁ 9 €U (5.5)

Claim 5.2. L€ >? ,C-2z and L ¢ C-w.
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Proof. Assume L ¢ Y7, C - z. By (5.3) we may suppose L = z3 + l121 + loz,. Then (5.5)
implies 3712 € (21, z2), which contradicts (3-1). The proof of the second assertion is similar to
that of Claim 5.1 and omitted. O

Noting Clzo, 21, 29, 23] = Clz0, w, L, 23], we may write
d
F=wA+) G, with Ae P! G, € Clz, L] N P
n=0

Noting 2, Zla = w, (5.5) implies
d 2 0G, oG,

n=0 i=1
Noting (d — p)G, = 33 2 %C: and aaf: =0, we get
2 0G, 6G oG
= ~ d— L—2z)—L forallu=0,1,....d.
0 ;zz 7%, + L B = ( )G+ ( 20) 9 orall u=0,1,...,

We solve the last equation in the same manner as Case (1) to get G, = b,(L — z)** with
b, € C and hence

d
F=wA+Y b2{(L— z)"" (5.6)
n=0
2 94  _09A
Claim 5.3. PutnF—A+Zzla La—z0
(1) 6(nr) = 2a(2=) p diog™:
nr) = w P gz2-

(2) C-wpdC-np = {y € P yr =0¢€ RE™ for allx € wP* 4+ J&} (cf Lemma 3.2).

Proof. Noting wnp = 2 2£ o F | 2, 2F 525 E LaF Claim 5.3 (1) is proven by the same argument as the
proof of Lemma 3.2. Claim 5.3 (2) is proven by the same argument as the proof of Proposition
3.4 (3). We omit the details. O

By Claim 5.3, \; € H(Xy, Q%gt(log Z1)), the flat translation of A for ¢ € 7", is written as
A= fit)n(t) + fa(t)w(t) (¢ € T™5).

Here fi(t) and f»(t) are holomorphic functions on 7" and

.y
w(t) = dlog 2 Adlog=2, n(t) = 2d(2 "2 A dlog L,
21 21 Wy Z3 Z2

where w; is as in the beginning of this section and
d
Ft = ’LUtAt + Z b%tzg([/t - ZQ)d_u, Lt = ll (t)Zl + lg(t)Zg
n=0

is the equation defining X, such as (5.6), which varies holomorphically with ¢ € T"¢. Recalling
Y = U1§j§3y} with Y; = {Zj = 0} C ]Pg, write

Zt:XthDZm:Xtm}/},D‘/t:ZStm(}/lU}/z)DSt:Z;gthYQ

We consider the composite of the residue maps

0« HO(X,, 0% (log Z1)) = HY(X,, 0% (log Z1)) —2' H(Zy, QL (log Vi) —% €% . ¢,



MAXIMAL COMPONENTS OF NOETHER-LEFSCHETZ LOCUS FOR BEILINSON-HODGE CYCLES 19

where the last isomorphism is obtained by choosing ¢; : {1,2,...,d} — S;, an isomorphism of
local systems of sets over A. Since ); is flat, we get the condition:
0,(\) € C* is constant for t € T™®. (5.7)

We shall show that the condition (5.7) induces a contradiction, which completes the proof of
Lemma 4.1 in Case (2). S; consists of distinct d-points P,; which do not lie on Y;. Write

P,;=[s,(t):1:0:0] € P(C).

A direct residue calculation shows

Ou(w(t)) = (1,...,1), 6:(n(t)) = (——~——

and hence
BN = ((0)5,(0)+ a0 with pl6) = =200, a(t) = R + o)

Since \; € C - wy, we have p(t) # 0. Therefore (5.7) implies that for all 1 < v < d we have
s,(t) = Cop(t) ™ —q(t)p(t)™"  (t € T™¥) (5.8)
where (', are constant. Letting
Y={(s1,..-,84)] s, €C, s, # s, for 1 <v#p<d},

we define a holomorphic map

T:A— 2; t— (Su(t))lﬁuﬁd-

Then (5.8) implies dim(m,(7p(7"¢))) < 2. Therefore we get a contradiction if we show the
following.

Claim 5.4. dim(m,(Ty(T"™%))) > d.

Proof. Let Q = Clzg, 21] and Q' = P' N Q for an integer [. Write G = G mod (zy, 23) € Q for
G € P. Consider the morphism

p:X—N:= %’(Qd); s = (sy)1<v<a — [Fs] with Fy = ] (20 — s021).
1<v<d
It is finite etale and induces an isomorphism on the tangent spaces. Hence it suffices to show
Claim 5.4 by replacing m with @ := p o w. We then have 7(t) = [F;] and the commutative
diagram
mod(z2,23)

Pd Qd

wl Jw’
To(A) ——  Trg(N)

where 1/ is defined in the same way as ¢ in (3-2) and Ker(lp) F We have shown
D

( !+ C- F). Noting

that v~ (To(T7¢)) = I D wP*™' + J§. Hence 7, (Tp(T™#))
F & (21, 2, z3) s0 that F' & 2Q%!, this implies
dim (7, (Ty(T7%®)) > dim Q" = d.
This completes the proof of Claim 5.4. |

By Case (2) we may assume now that we are in:
Case (3): as(t) = as(t) =0 for all t € T,
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In this case we may assume w = z;. We have

OF OF OF
D1 := Jrp = R, A3
A D <Z1> + F <zla 02072:2022723623)
so that I is complete intersection of degree (1,d —1,d, d). Hence I = I and I{ = 2z, P41 + J&.
As before we can show the following.

Claim 5.5. Put kg = %-
(1) ¢(kp) = 2dlogZ A dlog2:.
2) C-wp@C-kp={yc P yzr=0¢cR¥" forall v € 2, P*" 4 J¢}.
As before Claim 5.5 implies
A = fi(t)k(t) + fo(t)w(t) for t € T,
where fi(t), f2(t) and w(t) are as before and

k() = 2d10g2 A dlog: € H°(X,, 0%, (log Zy)).

An easy residue calculation shows 6,(\;) = (f1(¢)s,(t) + fa(t))1<v<a and the same argument as
Case (2) induces a contradiction. This completes the proof of Lemma 4.1.

6. APPENDIX: INJECTIVITY OF REGULATOR MAP

In this section we discuss an implication of Theorem 0.8 on the injectivity of the regulator
map. Let X be a member of M. We are interested in the regulator map to Deligne cohomology

pPx - CH2(X7 1) ® Q - H?)(Xa@(Q))7
where C'H?(X, 1) is Bloch’s higher Chow group defined to be the cohomology of the complex
1 (C(X)) %2 @ C(C) = P 2,
ccx reX

where the sum on the middle term ranges over all irreducible curves on X and that on the right
hand side over all closed points of X. The map Oiame is the so-called tame symbol and Og;, is
the sum of divisors of rational functions on curves. We have the localization exact sequence

CH*(U,2) — CH'(Z,1) — CH?*(X, 1),

where
CH'(Z,1) = Ker( @ C(Z)" 2% @Pz) with Z = X NY;,
1<i<3 zeZ

By [AS2] Th.7.1 we get the following.
Theorem 6.1. Fort € M — Myy, px, s injective on the subspace
Y :=Im(CH (Z;,1) — CH*(X;,1)) ® Q C CH?*(X;,1) ® Q.

In this section we show there exists t € M — My, such that 3, # 0 so that Theorem 6.1
has a non-trivial implication on the injectivity of px,. For this we need introduce some special
locus in the moduli space M.

Definition 6.2. Let 715 C M be the locus of those X defined by an equation
F = wA+ 21298 + clz‘f + 0223 for some w € P, Ae P! Be P¥2% ¢, ¢y € C".
We define T3 (resp. T31) similarly by replacing (21, z2) by (22, 23) (resp. (zs,21)).



MAXIMAL COMPONENTS OF NOETHER-LEFSCHETZ LOCUS FOR BEILINSON-HODGE CYCLES 21

We note that T(‘;’q) (¢) C Ty with o, the identity, and p = 1,¢ = 0. For X in T}s defined by
such an equation as above we consider the following element
< w * * *
c1a(X) = ((i)\zp( )izo: 1) € C(Z1)" & C(Z:)" & C(Zs)".
It is easy to check ¢12(X) € CHY(Z,1). For X in Tys (resp. Ts;) we define an element co3(X)
(resp. ¢31(X)) in CH(Z,1) by the same say. Let [¢;;(X)] € CH?*(X,1) be the image of
ci;(X) e CHY(Z,1) for (i,7) = (1,2) or (2,3) or (3,1).

Theorem 6.3. (1) If d >4, Tyo & Myy, and px,([c12(Xy)]) # 0 for allt € Tho — M.
(2) If d > 6, TioNToy & My and px,([c12(X1)]), px,([cas(Xe)]) are linearly independent
for allt € (T12 N ng) — Mpr..
(3) If d 210, Tia NTos N'T51 & My, and px,([c12(Xe)]), px, ([e2s(Xe)]), px,([c23(X3)]) are
linearly independent for all t € (Tho NTo3 N T31) — Myr.

21

Proof. Fix 0 € M and let X be the corresponding surface in P3. By Lemma 1.1, if 0 € M — My,
we have I
F2H*(U,Q(2)) = Q- reg? (ay) with apy = {2, 22} € CH(U,2).

21 Rl
By [AS2], Th.7.1, it implies that the kernel of the composite map

CH'(Z,1)®Q — CH*(X,1) ® Q 5 Hp(X,Q(2))

is generated by

z3 Z1 Z9

)\227 (7>|Z2> € OH1<Za 1)7

zZ3 21

8U(aU) =0 := ((
where 0y : CH*(U,2) — CHY(Z,1).

(1) Assume 0 € Tyo and that X is defined by an equation as Definition 6.2:

F=wA+ 21298 + clzf + 0225.

)lZu(

zZ2

Then the following elements are linearly independent in A @ Q;

9, ((22)|Z1> (Z)lzzﬁ 1).

(2) Assume 0 € Tio NIy and that X is defined by an equation as Definition 6.2:
F=wA+ z12oB + clzf + czzg

w

= A + 2z B + ch28 + cy2s
Then the following elements are linearly independent in A @ Q;

5, ()20, (& Y s () 20)-

>|Z17( )|Z271)7 (17< )\Zza(

(3) Assume 0 € Tio NTos and that X is defined by an equation as Definition 6.2:

w 1 v z9

F=wA+ z129B + clzf + 022‘21

= vA 4 22 B + cy28 + cy28

= uA" 4+ 232:B" + cgzg + ¢

Then the following elements are linearly independent in A @ Q;
29 w 23 v u <1
5, ((

E)\Zla (;1>|227 1), (1, (;)|Z27 (;2)\23)7 ((;3)|Z17 L, (E)|Z3)'
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Proof. We only show Claim 6.4 (3). The others are easier and left to the readers. Assume the
contrary. Then there are integers e, [, m,n not all zero such that
22y g%
Ny
W3 \m*1
(")
(% Z1 z9

()" ()" (=

Z9 u 21

)¢ =1 mod z,
¢ =1mod 2o,
)¢ =1 mod zs.

We note u, v, w & >1<;<3 C- z; since otherwise it would contradict (3-1). Hence the condition
implies | = m = n = e and u, v, w coincides up to non-zero constant. Thus we get

— d d / /. d /d — " /.d /" .d
F = 21298 4 c12] 4 225 = 20238 4 325 + 325 = 2321 B + 325 + ¢4 27 mod w,

which is absurd. This completes the proof of Claim 6.4. 0

By Claim 6.4, the proof of Theorem 6.3 is complete if we show that T2 ¢ My (resp.
TioNTog & My, resp. TioNTosNTy ¢ Myyp) if d > 4 (resp. d > 6, resp. d > 10). Indeed we

have
i = (1)~ (5) (1) +2) 2.

One note that T1o NTh3 N T3; # () since the Fermat surface zg + 28+ 28+ zg = 0 belongs to it.
Hence, for any irreducible component 7" of T15NTa3 (resp. T1aNTo3N T3 ), codimy (7)) < 2(2d—1)

(resp. codimy/(7T") < 3(2d — 1)). By Theorem 0.8 (1) it suffices to check (df) — 5 is greater
than 2d — 1 (resp. 2(2d — 1), resp. 3(2d — 1)) if d > 4 (resp. d > 6, resp. d > 10). This

completes the proof of Theorem 6.3. O
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