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Abstract. We discuss the Noether-Lefschetz locus for Beilinson’s Hodge cycles on the com-
plement of two or three hyperplane sections in a smooth projective surface in P3. The main
theorem gives an explicit description of maximal components of the Noether-Lefschetz locus.

Introduction

In the moduli space M of smooth surfaces of degree d in P3 over C, the locus of those
surfaces that possess curves which are not complete intersections of the given surface with
another surface is called the Noether-Lefschetz locus and denoted by MNL. One can show
that MNL is the union of a countable number of closed algebraic subsets of M . The classical
theorem of Noether-Lefschetz affirms that every component of MNL has positive codimension
in M when d ≥ 4. Note that the theorem is false if d = 3 since a smooth cubic surface has the
Picard number 7. Since the infinitesimal method in Hodge theory was introduced in [CGGH]
as a powerful tool to study MNL, fascinating results have been obtained concerning irreducible
components of MNL. First we recall the following.

Theorem 0.1 ([G1]). For every irreducible component T of MNL, codim(T ) ≥ d− 3.

The basic idea of the proof of the result is to translate the problem in the language of the
infinitesimal variation of Hodge structures on a family of hypersurfaces in a projective space.
Then, by the Poincaré residue representation of the cohomology of a hypersurface, the result
follows from the duality theorem for the Jacobian ring associated to a hypersurface. We note
that the inequality is the best possible since the family of surfaces of degree d ≥ 3 containing
a line has codimension exactly d − 3. M.Green and C.Voisin proved the following striking
theorem.

Theorem 0.2 ([G2], [V]). If d ≥ 5, the only irreducible component of MNL having codimension
d− 3 is the family of surfaces of degree d containing a line.

In this paper we study an analog of the above problem in the context of Beilinson’s Hodge
conjecture. For a quasi-projective smooth variety U over C, the space of Beilinson-Hodge cycles
is defined to be

F qHq(U,Q(q)) := Hq(U,Q(q)) ∩ F qHq
dR(U/C)

where Hq(U,Q(q)) is the singular cohomology with coefficient Q(q) = (2π
√
−1)qQ and F ∗

denotes the Hodge filtration of the mixed Hodge structure on Hq(U,C) ' Hq
dR(U/C) defined

by Deligne [D]. Beilinson’s conjecture claims the surjectivity of the regulator map (cf. [Bl] and
[Sch])

regqU : CHq(U, q)⊗Q −→ F qHq(U,Q(q)),

where CHq(U, q) is Bloch’s higher Chow group [Bl]. Taking a smooth compactification U ⊂ X
with Z = X −U , a simple normal crossing divisor on X, we have the following formula for the
value of regqU on decomposable elements in CHq(U, q);

regqU({g1, . . . , gq}) = dlogg1 ∧ · · · ∧ dloggq ∈ H0(X,Ωq
X(logZ)) = F qHq

dR(U/C),
1
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where {g1, . . . , gq} ∈ CHq(U, q) is the product of gj ∈ CH1(U, 1) = Γ(U,O∗
Zar). Beilinson’s

conjecture is an analog of the Hodge conjecture which claims the surjectivity of cycle class maps
from Chow group to space of Hodge cycles on projective smooth varieties. The conjecture is
known to hold for q = 1 (cf. [J], Th.5.1.3) but open in general for q ≥ 2.

The main subject to study in this paper is the Noether-Lefschetz locus for Beilinson-Hodge
cycles on the complement of the union of a normal crossing divisor in a hypersurface in the
projective space. Let n ≥ 1 be an integer and let X,Y1, . . . , Ys ⊂ Pn+1 be smooth hypersurfaces
intersecting transversally and put

Z = ∪
1≤j≤s

Zj with Zj = X ∩ Yj and U = X − Z. (0.1)

Let Hn(U,Q(n))triv be the image of the natural restriction map

Hn(Pn+1 − ∪
1≤j≤s

Yj,Q(n)) −→ Hn(U,Q(n)).

In case n ≥ 2 one can show ([AS2], Lem.3.3(2))

Hn(U,Q(n))triv = regnU(CHn(U, n)dec), (0.2)

where CHn(U, n)dec ⊂ CHn(U, n)⊗Q is the so-called decomposable part, the subspace gener-
ated by the image of the product map

n times︷ ︸︸ ︷
CH1(U, 1)⊗ · · · ⊗ CH1(U, 1) −→ CHn(U, n).

It implies that

Hn(U,Q(n))triv ⊂ Im(regnU) ⊂ F nHn(U,Q(n)).

We define

F nHn(U,Q(n))prim := F nHn(U,Q(n))/Hn(U,Q(n))triv

called the space of primitive Beilinson-Hodge cycles. Here we note the following:

Fact 0.3. F nHn(U,Q(n)) = 0 for s < n.

This follows from the following facts:

(i) The graded pieces of the weight filtration on Hn(U,Q(n)) are subquotients of pure
Hodge structures Hn−q(Z(q),Q(n− q)) for 0 ≤ q ≤ s, where Z(0) = X and

Z(q) = ∪
1≤j1<···<jq≤s

Zj1 ∩ · · · ∩ Zjq for q ≥ 1.

(ii) The Hodge symmetry implies F pHp(W,Q(p)) = 0 for p ≥ 1 when W is a smooth
projective variety W over C.

Now fix integers d ≥ 1 and ej ≥ 1 with 1 ≤ j ≤ s. Let M be the moduli space of sets of
hypersurfaces (X,Y1, . . . , Ys) of degree (d, e1, . . . , es) in Pn+1 which intersect transversally. Let
(X ,Y1, . . . ,Ys) be the universal family over M and put

Z = X ∩ ( ∪
1≤j≤s

Yj), U = X − Z.

For t ∈M let Ut ⊂ Xt ⊃ Zt be the fibers of U ⊂ X ⊃ Z.

Definition 0.4. The Noether-Lefschetz locus for Beilinson-Hodge cycles on U/M is

MNL = {t ∈M | F nHn(Ut,Q(n))prim 6= 0}
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The analogy with the classical Noether-Lefschetz locus is explained as follows. Take n = 2.
Instead of the map

H2(P3 − ∪
1≤j≤s

Yj,Q(2)) −→ F 2H2(U,Q(2))

we consider
H2(P3,Q(1)) −→ F 1H2(X,Q(1))

By noting that the space on the left hand side is generated by the cohomology class of a plane,
and that that on the right hand side is identified with Pic(X) ⊗ Q, the space defined in the
same way as Definition 0.4 is nothing but the classical Noether-Lefschetz locus.

One can show by the same way as before that MNL is the union of a countable number of
closed analytic subsets. By analogy a series of problems on MNL arise, the problems to show
the counterparts of Theorems 0.1 and 0.2 in the new context. Note that in view of Fact 0.3 the
problems are non-trivial only if s ≥ n. In the previous work [AS2], the authors have shown the
following result.

Theorem 0.5. Assume d ≥ n+ 2. For every irreducible component T of MNL,

codimM(T ) ≥ d+ (n− 1) min{d, e1, . . . , es} − n− 1.

The estimate in Theorem 0.5 will turn out to be far from being optimal in general (see the
main theorems 0.7 and 0.8 below). The basic strategy of the proof of Theorem 0.5 is the same
as that of Theorem 0.1. A new input is the theory of generalized Jacobian rings developed in
[AS1].

It seems a difficult problem to establish a counterpart of Theorem 0.2 in the context of
Beilinson-Hodge cycles. In case n = 1 (case of plane curves in P2), it is shown in [AS2]
Theorem 4.1 that the estimate in Theorem 0.5 is optimal: Every irreducible component of
MNL has codimension ≥ d − 2 and a finite number of components of codimension d − 2 are
explicitly given. It can be also shown that those are the only ones which have the maximal
dimension when s ≤ 2 and ej = 1 for 1 ≤ j ≤ s. It is an open question whether it is still the
case in general.

In this paper we study the problem in case n = 2 (case of surfaces in P3). By Fact 0.3 the
problem is non-trivial only if s ≥ 2. Our main results concern the special case:

s = 2 or 3 and ej = 1 for 1 ≤ j ≤ s, (0.3)

but yet it reveals a new phenomenon surprising to us: There are infinitely many components
of maximal dimension in MNL. We expect that the method can be extended to treat the case
where n is arbitrary and s = n or n + 1 and ej = 1 for 1 ≤ j ≤ s. It is an open problem to
extend our results to more general cases.

Let P = C[z0, z1, z2, z3] be the homogeneous coordinate ring of P3 and P l ⊂ P the subspace
of homogeneous polynomials of degree l ≥ 0. For the rest of the paper we fix an integer d > 0
and let M ⊂ P d − {0}/C∗ be the moduli space of the smooth surfaces in P3. Let M ⊂ M
(resp. M ′ ⊂ M) denote the Zariski open subset of those surfaces that intersect transversally
with Y := Y1 ∪ Y2 ∪ Y3 (resp. Y ′ := Y1 ∪ Y2) where Yj = {zj = 0} ⊂ P3. By definition M is a
dense open subset of M ′. For t ∈M let Xt be the corresponding surface in P3 and put

Ut = Xt − (Xt ∩ Y ) and U ′
t = Xt − (Xt ∩ Y ′).

We define

MNL :={t ∈M | F 2H2(Ut,Q(2))prim 6= 0},
M ′

NL :={t ∈M ′ | F 2H2(U ′
t ,Q(2))prim 6= 0}.
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In order to describe the irreducible components of MNL and M ′
NL of maximal dimension, we

need introduce some notations.

Definition 0.6.

(1) For c = [cν ]1≤ν≤d = [c1 : · · · : cd] ∈ Pd−1(C), we define T (c) ⊂ M ′ as the closed subset
consisting of such surfaces X that there exists c ∈ C∗ and a plane H ⊂ P3 defined by a
linear form w ∈ P 1 − {0} for which

H ∩X = H ∩ ∪
1≤ν≤d

{[z0 : z1 : z2 : z3] ∈ P3| cz1 − cνz2 = 0}.

By the definition a surface in T (c) is defined by an equation:

F = wA+
∏

1≤ν≤d
(cz1 − cνz2) for some w ∈ P 1, A ∈ P d−1, c ∈ C∗.

(2) We fix the following datum
(
(p, q), c, σ

)
, where

(i) p, q ≥ 0 are integers such that (p, q) = 1 and that (p + q) is a divisor of d (in
particular if pq = 0 then (p, q) = (1, 0) or (0, 1)),

(ii) c = [cν ]1≤ν≤r = [c1 : · · · : cr] ∈ Pr−1(C) where r :=
d

p+ q
,

(iii) σ ∈ S3, the permutation group on (1, 2, 3).

We define T σ(p,q)(c) ⊂ M as the closed subset consisting of such surfaces X that there

exists c ∈ C∗ and a plane H ⊂ P3 defined by a linear form w ∈ P 1 − {0} for which

H ∩X = H ∩ ∪
1≤ν≤r

{[z0 : z1 : z2 : z3] ∈ P3| czp+qσ(1) − cνz
p
σ(2)z

q
σ(3) = 0}.

By the definition a surface in T σ(p,q)(c) is defined by an equation:

F = wA+
∏

1≤ν≤r
(czp+qσ(1) − cνz

p
σ(2)z

q
σ(3)) for some w ∈ P 1, A ∈ P d−1, c ∈ C∗.

We will see the following facts (cf. §1):

(1) T (c) (resp. T σ(p,q)(c)) is smooth irreducible of codimension
(
d+2
2

)
− 5 in M ′ (resp. M).

(2) T (c) ⊂M ′
NL (resp. T σ(p,q)(c) ⊂MNL) if and only if there are roots of unity ζν such that

c = [ζν ]1≤ν≤d (resp. c = [ζν ]1≤ν≤r). Under the condition the two form

dlog
z2

z1

∧ dlog
w

z1

(resp. dlog
zpσ(2)z

q
σ(3)

zp+qσ(1)

∧ dlog
w

zσ(1)

)

gives rise to a primitive Beilinson-Hodge cycle, where w ∈ P 1 is as in Definition 0.6.

The main theorem of this paper is the following.

Theorem 0.7. Assume d ≥ 4. Let T be an irreducible component of M ′
NL.

(1) codim(T ) ≥
(
d+2
2

)
− 5.

(2) codim(T ) =
(
d+2
2

)
− 5 if and only if T coincides with T (c) for some c = [ζν ]1≤ν≤d where

ζν are roots of unity.
(3) Let c be as in (2). If X is a general member of T (c), reg2

U is surjective so that Beilinson’s
Hodge conjecture holds for U ′ = X − (X ∩ Y ′).

Theorem 0.8. Assume d ≥ 4. Let T be an irreducible component of MNL.

(1) codim(T ) ≥
(
d+2
2

)
− 5.
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(2) codim(T ) =
(
d+2
2

)
− 5 if and only if T coincides with T σ(p,q)(c) for some

(
(p, q), c =

[ζν ]1≤ν≤r, σ
)

where ζν are roots of unity.

(3) Let
(
(p, q), c, σ

)
be as in (2). If X is a general member of T σ(p,q)(c), reg2

U is surjective so

that Beilinson’s Hodge conjecture holds for U = X − (X ∩ Y ).

The paper is organized as follows. In §1 we study the subsets of the moduli space of surfaces
in P3 defined in Definition 0.6. In §2 and §3 our problem is reduced to algebraic problems
on polynomial rings via theories of infinitesimal variation of Hodge structure and Jacobian
rings. The basic idea is the same as that in [G2] and [V]. A key to solving the last problem is
Theorem 3.5 due to Otwinowska ([Ot], Th.2) concerning the Hilbert function of graded algebras
of dimension 0. In §2 the main theorem 0.8 will be deduced from Theorem 0.8 bis, and 0.7
from 0.8. The proof of Theorem 0.8 bis occupies §3, §4 and §5.

In the appendix we will discuss an implication of Theorem 0.8 on the injectivity of the
regulator map:

ρX : CH2(X, 1)⊗Q −→ H3
D(X,Q(2)),

where X be a member of M and CH2(X, 1) is Bloch’s higher Chow and H3
D(X,Q(2)) is the

Deligne cohomology of X.

The authors are grateful to Professor A. Otwinowska for stimulating discussions and her
teaching us on her work [Ot]. They thank the referee for helpful comments to improve the
presentation of the paper.

1. Components of MNL

Let the notation be as in Theorem 0.7 and 0.8. In this section we fix 0 ∈ M and let X be
the corresponding surface in P3. Write

U = X − Z, Z = ∪
1≤j≤3

Zj, and U ′ = X − Z ′, Z ′ = ∪
1≤j≤2

Zj,

where Zj = X ∩ Yj. We put

αU := {z2

z1

,
z3

z1

} ∈ CH2(U, 2), (1.1)

ωU := dlog
z2

z1

∧ dlog
z3

z1

∈ H0(X,Ω2
X(logZ)), (1.2)

where zj/zi is viewed as an element of CH1(U, 1) = Γ(U,O∗
UZar

). Note that

ωU = reg2
U(αU),

under the natural inclusion F 2H2
dR(U/C) = H0(X,Ω2

X(logZ)) ↪→ H2
dR(U/C) ' H2(U,C).

Lemma 1.1.

(1) CH2(U ′, 2)dec is generated by {c, z2/z1} with c ∈ C∗.
(2) CH2(U, 2)dec is generated by αU and {c, zj/zi} with c ∈ C∗ and 1 ≤ i, j ≤ 3.
(3) H2(U ′,Q(2))triv = 0 and H2(U,Q(2))triv = Q · ωU .

Proof. The first assertion follows from [AS2] Lem.3.3.(1). The second assertion follows from
(0.2). � �

Lemma 1.2. T (c) (resp. T σ(p,q)(c)) in Definition 0.6 is smooth irreducible of codimension(
d+2
2

)
− 5 in M ′ (resp. M).
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Proof. We show the assertion only for T (c). The assertion for T σ(p,q)(c) is shown by the same

way. By the definition a member X of T (c) is defined by an equation

F = wA+
∏

1≤ν≤d
(cz1 − cνz2) for some w ∈ P 1, A ∈ P d−1, c ∈ C∗,

and the map

T (c) → C∗ ×
(
(P 1 − {0})× (P d−1 − {0})

)
/C∗ ; X →

(
c, (w,A)

)
,

is an open immersion, where λ ∈ C∗ acts on (P 1−{0})×(P d−1−{0}) via (w,A) → (λw, λ−1A).
The desired assertion follows easily from this. �

Assume 0 ∈ T σ(p,q)(c) so that X is defined by an equation:

F = wA+
∏

1≤ν≤r
(czp+qσ(1) − cνz

p
σ(2)z

q
σ(3)) (c 6= 0). (1.3)

We note that w 6∈ ∑1≤j≤3 C · zj by the assumption that X intersects Y transversally. We put

ξU := dlog
zpσ(2)z

q
σ(3)

zp+qσ(1)

∧ dlog
w

zσ(1)

∈ H0(X,Ω2
X(logZ)), (1.4)

and

Σ(U) := C · ωU ⊕ C · ξU ⊂ H0(X,Ω2
X(logZ)) = F 2H2(U,C). (1.5)

We note that ξU is apparently holomorphic only on U −W with W = U ∩ {w = 0} while it is
easy to see that its residue along any irreducible component of W is zero. Rewriting (1.3) as

wA+
∏

1≤ν≤r
(czp+qσ(1) − cνz

p
σ(2)z

q
σ(3)) = wA+

∏
µ∈I

(czp+qσ(1) − cµz
p
σ(2)z

q
σ(3))

eµ , (eµ ≥ 1)
(1.6)

where cµ 6= cµ′ if µ 6= µ′ ∈ I, W is the disjoint sum of the following smooth irreducible
components for µ ∈ I;

Wµ = U ∩ {w = czp+qσ(1) − cµz
p
σ(2)z

q
σ(3) = 0}.

Lemma 1.3. Q · ωU ⊂ Σ(U) ∩H2(U,Q(2)) ⊂ Q · ωU ⊕Q · ξU .

Proof. The first inclusion is easy. We show the second. Without loss of generality we may
assume that σ ∈ S3 is the identity. Let φ = aωU + bξU ∈ H0(X,Ω2

X(logZ)) with a, b ∈ C and
assume φ ∈ H2(U,Q(2)). Define

Zij = X ∩ {zi = zj = 0} (1 ≤ i 6= j ≤ 3),

Zi = X ∩ {zi = 0}, Vi = Zi ∩ ( ∪
1≤j 6=i≤3

Zj).

For 1 ≤ i 6= j ≤ 3 we consider the composite map of the successive residue maps

δij : H0(X,Ω2
X(logZ))

ResZi−→ H0(Zi,Ω
1
Zi

(log Vi))
ResZij−→ H0(Zij,OZij

) ∼= Ψij ⊗ C,

where Ψij = H0(Zij,Q) =
⊕
x∈Zij

Q. The assumption implies

(∗) δij(φ) ∈ Ψij for any i, j.

We have δji(φ) = −δij(φ) and an easy residue calculation shows

δij(ωU) = −uij for (i, j) = (1, 2), (2, 3), (3, 1),

δ12(ξU) = −p(u12 − d · v12), δ31(ξU) = q(u31 − d · v31), δ23(ξU) = 0,
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where uij ∈ Ψij has component 1 at any x ∈ Zij and vij ∈ Ψij has component 1 at x ∈
Zij ∩ {w = 0} and 0 elsewhere. Now it is easy to see that (∗) implies a, b ∈ Q. �

Proposition 1.4. The following conditions are equivalent.

(1) ξU ∈ Im(reg2
U).

(2) ξU ∈ H2(U,Q(2)).
(3) Σ(U) ∩H2(U,Q(2)) = Q · ωU ⊕Q · ξU .
(4) c = [ζν ]1≤ν≤r ∈ Pr−1(C) where ζν are roots of unity.

The following corollary is immediate.

Corollary 1.5. T σ(p,q)(c) ⊂MNL if the equivalent conditions in Proposition 1.4 hold.

In the rest of this section we prove Proposition 1.4. (1) =⇒ (2) and (3) =⇒ (2) are clear.
(2) =⇒ (3) follows from Lemma 1.3. We shall prove (2) ⇐⇒ (4) =⇒ (1).

We first prove (2) ⇐⇒ (4). Consider

β = {a
zpσ(2)z

q
σ(3)

zp+qσ(1)

,
w

zσ(1)

} ∈ CH2(Ũ , 2) (Ũ := U −W )

for a ∈ C∗. We have the commutative diagram

CH2(U, 2)⊗Q
reg2

U−−−→ F 2H2(U,Q(2))
↪→−−−→ F 2H2

dR(U/C)y yι1 yι2
CH2(Ũ , 2)⊗Q

reg2
Ũ−−−→ F 2H2(Ũ ,Q(2))

↪→−−−→ F 2H2
dR(Ũ/C)

and we have reg2
Ũ
(β) = ι2(ξU) in F 2H2

dR(Ũ/C). Since ι2 is injective, (2) ⇐⇒ (4) follows from
the following assertion:

(∗) reg2
Ũ
(β) ∈ Im(ι1) if and only if (4) holds.

To show this we consider the commutative diagram

CH2(U, 2)⊗Q −−−→ CH2(Ũ , 2)⊗Q ∂M−−−→ CH1(W, 1)⊗Q

reg2
D,U

y yreg2
D,Ũ

∼=

yreg1
D,W

H2
D(U,Q(2)) −−−→ H2

D(Ũ ,Q(2))
∂D−−−→ H1

D(W,Q(1))

(1.7)

where reg∗D,∗ denotes the regulator map to Deligne cohomology and ∂M and ∂D are the Poincare
residue maps. We have the commutative diagram (cf. [EV])

0 → H1(U,Q(1))⊗ C/Q(1) −→ H2
D(U,Q(2))

πU−→ F 2H2(U,Q(2)) → 0
↓ ↓ ↓ ι1

0 → H1(Ũ ,Q(1))⊗ C/Q(1) −→ H2
D(Ũ ,Q(2))

πŨ−→ F 2H2(Ũ ,Q(2)) → 0
↓ ∂1 ↓ ∂D ↓ ∂2

0 → H0(W,Q)⊗ C/Q(1) −→ H1
D(W,Q(1))

πW−→ F 1H1(W,Q(1)) → 0

(1.8)

where ∂i are the Poincare residue maps. The composite of reg∗D,∗ with π∗ coincides with the
regulator map to singular cohomology. The horizontal sequences are exact. The vertical se-
quences are localization sequences and they are exact except the most right one. In view of
(1.6) we have an isomorphism

Coker(∂1) ∼= C/Q(1)⊗ Φ, Φ := Coker(Q →
⊕
µ∈I

Q; 1 → (eµ)µ∈I). (1.9)
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To see this we note that H1(Ũ ,Q(1)) is Hodge type (0, 0) as H1(X,Q) = 0. Therefore we have
the commutative diagram

CH1(Ũ , 1)⊗Q φ−−−→ ⊕
µ∈I Q

reg1
Ũ

y y∼=
H1(Ũ ,Q(1)) = F 1H1(Ũ ,Q(1)) −−−→ H0(W,Q)

with the surjective reg1
Ũ
. φ is given by taking orders of functions along the components of W .

One easily sees that CH1(Ũ , 1) is generated by C∗, w/z1 and zj/zi with 1 ≤ i, j ≤ 3 and thus
the isomorphism (1.9) follows. Now (1.8) gives rise to an exact sequence

F 2H2(U,Q(2))
ι1−→ Ker(∂2)

δ−→ C/Q(1)⊗ Φ. (1.10)

Now an easy calculation shows

∂M(β) = ((ac/cµ)
eµ)µ∈I ∈

⊕
µ∈I

CH1(Wµ, 1).

Noting the commutative diagram

0 −−−→ C∗ ⊗Q −−−→ CH1(Wµ, 1)⊗Qylog ∼=

yreg1
D,Wµ

0 −−−→ C/Q(1) −−−→ H1
D(Wµ,Q(1))

πWµ−−−→ F 1H1(Wµ,Q(1)) → 0

it implies reg2
Ũ
(β) ∈ Ker(∂2) and that for δ in (1.10), we have

δ(reg2
Ũ
(β)) = the class of (eµ log(ac/cµ))µ∈I in Φ⊗ C/Q(1).

This shows that reg2
Ũ
(β) ∈ Im(ι1) if and only if there is a ∈ C∗ such that ac/cµ are roots of

unity for all µ. This completes the proof of (∗) and hence we have (2) ⇐⇒ (4).

Finally we see (4) =⇒ (1). In this case, β has a lift β′ ∈ CH2(U, 2) ⊗ Q due to the exact
sequence (1.7). Then we have reg2

U(β′) = ξU ∈ F 2H2(U,Q(2)) by the injectivity of ι2. Hence
we have ξU ∈ Im(reg2

U).

2. Infinitesimal interpretation

In this section we make the first step of the proof of Theorem 0.8. Let the assumption and
the notation be as in §1. Take ∆ ⊂ M , a simply connected neighborhood of 0 in M . For
λ ∈ H2(U,C) and t ∈ ∆, let λt ∈ H2(Ut,C) be the flat translation of λ with respect to the
Gauss-Manin connection

∇ : H2
O(U/M) −→ Ω1

M ⊗H2
O(U/M),

where Hp
O(U/M) is the sheaf of holomorphic sections of the local system Hp

C(U/M) := Rpf∗C
with f : U →M , the natural morphism. We sometimes consider λ a section over ∆ ofH2

C(U/M)
via H2(U,C) ∼= Γ(∆, H2

C(U/M)). Putting

∆λ = {t ∈ ∆| λt ∈ F 2H2(Ut,C)},

it is a closed analytic subset of ∆ since it is defined by the vanishing of the image of λ under
the map

Γ(∆, H2
C(U/M)) −→ Γ(∆, H2

O(U/M)/F 2H2
O(U/M))
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where F qHp
O(U/M) ⊂ Hp

O(U/M) is the Hodge subbundle. Taking ∆ sufficiently small if neces-
sary, we have by Lemma 1.1 (2)

MNL ∩∆ = ∪
λ
∆λ (2.1)

as a set where λ runs over all λ ∈ H2(U,Q(2)) such that λ 6∈ Q ·ωU . Let Tt(M) be the tangent
space of M at t, and Ω1

M,t = Hom(Tt(M),C) its dual space. By Griffiths transversality, the
Gauss-Manin connection ∇ induces

∇ : Hq(Xt,Ω
p
Xt

(logZt)) −→ Ω1
M,t ⊗Hq+1(Xt,Ω

p−1
Xt

(logZt)),

and hence the pairing

〈 , 〉 : Tt(M)⊗Hq(Xt,Ω
p
Xt

(logZt)) −→ Hq+1(Xt,Ω
p−1
Xt

(logZt))

for p, q ≥ 0. Let T ↪→ ∆λ be any irreducible component with reduced structure. We denote
the regular locus of T by T reg. Since the section λ defines a flat section of F 2H2

O(U/M) along
T reg we have

Tt(T
reg) ⊂ {∂ ∈ Tt(M)| 〈∂, λt〉 = 0} (t ∈ T reg). (2.2)

Theorem 0.8 bis. Fix λ ∈ H0(X,Ω2
X(logZ)) with λ 6∈ C · ωU . Let T be an irreducible

component of ∆λ with reduced structure.

(i) codim∆(T ) ≥
(
d+2
2

)
− 5.

(ii) Assume d ≥ 4 and codim∆(T ) =
(
d+2
2

)
− 5. If λ ∈ H2(U,Q(2)), then T = T σ(p,q)(c) ∩∆

for some σ, p, q and c = [ζν ]1≤ν≤r such that ζν are roots of unity (cf. Proposition 1.4).
Hence T is smooth (cf. Lemma 1.2).

(iii) Assume 0 ∈ T σ(p,q)(c) for some σ, p, q, c. Then we have

Σ(U) = {ω ∈ H0(X,Ω2
X(logZ))| 〈∂, ω〉 = 0 for all ∂ ∈ T0(T

σ
(p,q)(c))}.

Theorem 0.8 bis will be shown in the next three sections.

We deduce the main theorem 0.8 from the above. Theorem 0.8 (1) and (2) follow immediately
from (i), (ii) and Corollary 1.5 in view of (2.1). Theorem 0.8 (3) follows from the following:

Claim 2.1. Assume 0 ∈ T σ(p,q)(c). Then there exists a subset E ⊂ ∆T := T σ(p,q)(c) ∩∆ which is
the union of a countable number of proper closed analytic subsets of ∆T such that

F 2H2(Ut,Q(2)) ⊂ Σ(Ut) for all t ∈ ∆T − E.

Moreover, under the assumption of Proposition 1.4 (4), we have

F 2H2(Ut,Q(2)) = Q · ωUt ⊕Q · ξUt for all t ∈ ∆T − E,

where ωUt , ξUt ∈ H2(Ut,Q(2)) are the flat translations of ωU , ξU ∈ H2(Ut,Q(2)) respectively.

Proof. The second assertion follows from the first in view of Proposition 1.4. We show the first
assertion. Write H2(U,Q(2)) = {λi}i∈I as a set and put

A = {i ∈ I| ∆T ⊂ ∆λi
}, B = {i ∈ I| ∆T 6⊂ ∆λi

}, E = ∆T ∩ ( ∪
i∈B

∆λi
).

Note that I is countable and I = A ∪ B and A ∩ B = ∅. For t ∈ ∆T − E, we have
F 2H2(Ut,Q(2)) = {λi(t)}i∈A so that H2(Ut,C)

∼−→ Γ(∆T , H
2
C(U/M)) induces

F 2H2(Ut,Q(2)) ↪→ Γ(∆T , H
2
C(U/M) ∩ F 2H2

O(U/M)),

which further implies

F 2H2(Ut,Q(2)) ⊂ Ker
(
H0(Xt,Ω

2
Xt

(logZt)) −→ Ω1
∆T ,t

⊗H1(Xt,Ω
1
Xt

(logZt))
)
.
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Theorem 0.8 bis (iii) implies that the last space is equal to Σ(Ut) and the desired assertion
follows. �

Next we deduce Theorem 0.7 from Theorem 0.8. First we show the following:

Claim 2.2. M ∩M ′
NL ⊂MNL.

Proof. Take 0 ∈M and X be the corresponding surface in P3 that intersects transversally with
Y = Y1 ∪ Y2 ∪ Y3. Write U ′ = X − (Y1 ∩ Y2) and U = X − Y . By the residue calculation in the
proof of Lemma 1.3, we see that ωU ∈ H2(U,Q(2)) does not lie in the image of H2(U ′,Q(2)) →
H2(U,Q(2)). By Lemma 1.1 it implies that the restriction map

F 2H2(U ′,Q(2))prim → F 2H2(U,Q(2))prim

is injective. Hence, if 0 ∈M ′
NL, then 0 ∈MNL. �

Let T ⊂ M ′
NL be an irreducible component with reduced structure. Take 0 ∈ T and let X

be the corresponding surface in P3. By the assumption X, Y1, Y2 intersect transversally. Take
a plane L ⊂ P3 such that X, Y1, Y2, L intersect transversally. By a coordinate transformation
fixing z1 and z2, we may suppose L = Y3. Then 0 ∈ T ∩M and T ∩M is a dense open subset
of T . By the above claim we have T ∩M ⊂MNL and Theorem 0.8 implies

codimM ′(T ) = codimM(T ∩M) ≥
(
d+ 2

2

)
− 5.

This shows Theorem 0.7 (1). Moreover the equality holds only if T ∩M = T σ(p,q)(c) for some(
(p, q), c, σ

)
as in Theorem 0.8 (2). In view of Claim 2.1, the last condition implies that there

exist a, b ∈ Q with (a, b) 6= (0, 0) such that φ = aωU + bξU ∈ H2(U,Q(2)) lies in the image of
H2(U ′,Q(2)) → H2(U,Q(2)). By the residue calculation as in the proof of Lemma 1.3, this
implies that in the equation (1.3), the exponent of z3 in

∏
1≤ν≤r

(czp+qσ(1) − cνz
p
σ(2)z

q
σ(3)) is 0. This

implies T σ(p,q)(c) = T (c′)∩M for some c′ ∈ Pd(C) and Theorem 0.7 (2) is proved. Now Theorem

0.7 (3) is a direct consequence of Theorem 0.8 (3).

3. Reduction to Jacobian rings

Let the assumption be as in §2. In this section we rephrase the theorems in §2 in terms
of Jacobian rings and prove Theorem 0.8 bis (i) and (ii). Let P = C[z0, z1, z2, z3] be the
homogeneous coordinate ring of P3. For an integer l > 0 let P l ⊂ P be the subspace of
homogeneous polynomials of degree l. Let the assumption be as in §2 and fix F ∈ P d which
defines X ⊂ P3. Put the ideal JF ⊂ P (Jacobian ideal) by

JF = 〈∂F
∂z0

, z1
∂F

∂z1

, z2
∂F

∂z2

, z3
∂F

∂z3

〉.

The assumption that X transversally intersects Y is equivalent to the condition:

(3-1): JF is complete intersection of degree (d− 1, d, d, d).

Write

RF = P/JF , J
l
F = JF ∩ P l, Rl

F = Im(P l → RF ) = P l/J lF

and call RF the Jacobian ring. We recall the following well-known theorem of Macaulay (cf.
[GH], p.659).
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Theorem 3.1 (Macaulay). There exists a natural isomorphism

τF : R4d−5
F

∼−→ C

and the pairing induced by multiplication

Rl
F ⊗R4d−5−l

F −→ R4d−5
F

τF−→ C, 0 ≤ l ≤ 4d− 5

is perfect.

The relations between the Jacobian ring and cohomology group are described in the following
way:

(3-2): We have the canonical surjective homomorphism

ψ : P d −→ T0(M) ; G→ {F + εG = 0} ⊂ P3
C[ε],

where C[ε] is the ring of dual numbers. We have Ker(ψ) = C · F .
(3-3): We have the isomorphisms

φ : P d−1 ∼−→ H0(X,Ω2
X(logZ)), φ′ : R2d−1

F
∼−→ H1(X,Ω1

X(logZ)),

such that the diagram

P d ⊗ P d−1 µ−−−→ R2d−1
F

ψ⊗φ

y yφ′
T0(M)⊗H0(X,Ω2

X(logZ))
〈 , 〉−−−→ H1(X,Ω1

X(logZ))

commutes up to non-zero scalar where µ is the multiplication. (If we replace the source
of φ with Rd−1

F , then the target space is replaced with H0(X,Ω2
X(logZ))/(C · ωU), cf.

Lemma 3.2 (1) below).
(3-4): We have the following formula

φ(G) = ResX
G

Fz1z2z3

Ω (G ∈ P d−1),

where Ω =
∑3
i=0(−1)izidz0 ∧ · · · ∧ d̂zi ∧ · · · ∧ dz3 ∈ H0(P3,Ω3

P3 ⊗O(4)) and

ResX : H0(P3,Ω3
P3(logX + Y )) → H0(X,Ω2

X(logZ)) (Y = {z1z2z3 = 0} ⊂ P3)

is the residue map.

Lemma 3.2.

(1) Putting ωF = ∂F
∂z0

, we have φ(ωF ) = ωU (see (1.2) for the definition of ωU).

(2) Assume 0 ∈ T σ(p,q)(c) and that X is defined by an equation (cf. The proof of Lemma

1.2):

F = wA+
∏

1≤ν≤r
(czp+qσ(1) − cνz

p
σ(2)z

q
σ(3)). (3.1)

Put

ξF =
∂w

∂z0

(qzσ(2)
∂A

∂zσ(2)

− pzσ(3)
∂A

∂zσ(3)

)− ∂A

∂z0

(qzσ(2)
∂w

∂zσ(2)

− pzσ(3)
∂w

∂zσ(3)

) ∈ P d−1.

Then we have φ(ξF ) = ξU (see (1.4) for the definition of ξU).
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Proof. We only give a proof of (2) ((1) is easier). We may suppose σ = 1. It is enough to check
the equation on {z1 6= 0}. Write z′i = zi/z1 and put F ′ = F (z′0, 1, z

′
2, z

′
3) etc. Then

ξF
Fz1z2z3

Ω|z1 6=0 =
−ξ′F
F ′z′2z

′
3

dz′0 ∧ dz′2 ∧ dz′3 =
dF ′

F ′ dlog(z′p2 z
′q
3 ) ∧ dw′

w′
.

This yields φ(ξF ) = ξU by (3-4). �

For λ ∈ P d−1 consider the linear map

λ∗ : P 3d−4 −→ C ; x 7−→ τF (λx). (3.2)

For an integer l ≥ 0 define

Iλ = {x ∈ P l| λ∗(xy) = 0 for all y ∈ P 3d−4−l}
= {x ∈ P l| λx = 0 ∈ Rd−1+l

F }

where the second equality follows from Theorem 3.1. Put I lλ = Iλ ∩ P l. Then Idλ is the inverse
image under ψ of {∂ ∈ T0(M)| 〈∂, λ〉 = 0} so that (2.2) implies:

(3-5): ψ−1(T0(T
reg)) ⊂ Idλ for any irreducible component T ⊂ ∆λ with reduced structure

such that 0 ∈ T reg.

Proposition 3.3. Assume λ 6∈ Jd−1
F = C · ωF . Then dim(P d/Idλ) ≥

(
d+2
2

)
− 5 and the equality

holds if and only if Idλ is complete intersection of degree (1, d− 1, d, d).

Let T be as in Theorem 0.8 bis and assume 0 ∈ T reg. (3-5) implies

codim∆(T ) ≥ codimT0(∆)(T0(T
reg)) ≥ dim(P d/Idλ),

and hence Theorem 0.8 bis (i) follows from Proposition 3.3. Theorem 0.8 bis (ii) will be proved
in the next section and Theorem 0.8 bis (iii) follows from the following:

Proposition 3.4. Let the assumption be as in Lemma 3.2 (2).

(1) ψ−1(T0(T
σ
(p,q)(c))) = wP d−1 + JdF .

(2) Idλ = wP d−1 + JdF if λ = aωF + bξF with b 6= 0.
(3) C · ωF ⊕ C · ξF = {y ∈ P d−1| yx = 0 ∈ R2d−1

F for all x ∈ wP d−1 + JdF}.

In the rest of this section we prove Propositions 3.3 and 3.4. We need the following theorem
due to Otwinowska (it is shown by the same method as the proof of [Ot], Th.2).

Theorem 3.5 (Otwinowska). Let I ⊂ P be a homogeneous ideal satisfying the conditions:

(1) There exist an integer N > 0 and a non-zero linear map µ : PN → C such that
I l = {x ∈ P l| µ(xy) = 0 for all y ∈ PN−l}.

(2) I contains a homogeneous ideal J which is complete intersection of degree (e0, e1, e2, e3)
with e0 ≤ e1 ≤ e2 ≤ e3.

(3) There is an integer b such that e0 ≤ b ≤ e1 − 1 and N + 3 = e2 + e3 + b.

For l ≥ 1 we have

dim(P l/I l) ≥ dim(P l/〈z0, z
b
1, z

e2
2 , z

e3
3 〉 ∩ P l).

Moreover, if l ≤ N − b, the equality holds if and only if I is complete intersection of degree
(1, b, e2, e3).
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We first prove Proposition 3.3. Since λ 6∈ Jd−1
F the map λ∗ is not zero. By definition

(Iλ, λ
∗) satisfies the condition (1) with N = 3d − 4. Iλ contains the Jacobian ideal JF which

is complete intersection of degree (d − 1, d, d, d). We apply Theorem 3.5 for (e0, e1, e2, e3, b) =
(d− 1, d, d, d, d− 1), I = Iλ and J = JF . Then the assertion is straightforward by noting

dim(P d/〈z0, z
d−1
1 , zd2 , z

d
3〉 ∩ P d) =

(
d+ 2

2

)
− 5.

Next we show Proposition 3.4. Let PGL4 be the group of projective transformations on P3

and let G ⊂ PGL4 be the subgroup of such g ∈ PGL4 that g(Yj) = Yj for all j = 1, 2, 3.
It is evident that G naturally acts on M and T σ(p,q)(c) ⊂ M is stable under the action. Let

T σ(p,q)(c)(w,c)
⊂ T σ(p,q)(c) be the closed subset of those surfaces defined by equations of the form

wB +
∏

1≤ν≤r
(czp+qσ(1) − cνz

p
σ(2)z

q
σ(3)) for some B ∈ P d−1.

It is easy to see that the natural map G× T σ(p,q)(c)(w,c)
→ T σ(p,q)(c) is smooth and surjective and

that ψ−1(T0(T
σ
(p,q)(c)(w,c)

)) = wP d−1. The map

T0(M)
ψ−1

−→ P d/C · F π−→ Rd
F

identifies Rd
F with the quotient of T0(M) by the infinitesimal action of the tangent space at the

identity of G. It implies

ψ−1(T0(T
σ
(p,q)(c))) = π−1πψ−1(T0(T

σ
(p,q)(c))(w,c)

)) = wP d−1 + JdF .

This completes the proof of Proposition 3.4 (1).

Let λ = aωF + bξF with b 6= 0. Then λ 6∈ Jd−1
F so that we have

(
d+2
2

)
− 5 ≤ dim(P d/Idλ) by

Proposition 3.3. An easy calculation shows λw ∈ JdF so that Idλ ⊃ wP d−1 + JdF . We have(
d+ 2

2

)
− 5 ≤ dim(P d/Idλ) ≤ dim(P d/wP d−1 + JdF )

=
(∗)

codimT0(M)(T0(T
σ
(p,q)(c))) ≤ codimM(T σ(p,q)(c)) ≤

(∗∗)

(
d+ 2

2

)
− 5,

where (∗) from Proposition 3.4 (1), and (∗∗) from Lemma 1.2. Thus the above inequalities are
all equalities so that Idλ = wP d−1 + JdF . This completes the proof of Proposition 3.4 (2).

Finally we show Proposition 3.4 (3). Obviously

C · ωF ⊕ C · ξF ⊂ {y ∈ P d−1| yx = 0 ∈ R2d−1
F for all x ∈ wP d−1 + JdF}

⊂ {y ∈ P d−1| yw ∈ JdF}
∼=→ wP d−1 ∩ JdF

where the last isomorphism is given by multiplication by w. Hence it suffices to show dimwP d−1∩
JdF ≤ 2. Note that w is in complete intersection with ∂F

∂z0
, and

dim
(
wP d−1 ∩ 〈z1

∂F

∂z1

, z2
∂F

∂z2

, z3
∂F

∂z3

〉d
)
≤ 1

as wP d−1 has base point locus of codimension one and 〈z1
∂F
∂z1
, z2

∂F
∂z2
, z3

∂F
∂z3
〉d has base point locus

of codimension three. Therefore some linearly independent h1, h2 ∈ 〈z1
∂F
∂z1
, z2

∂F
∂z2
, z3

∂F
∂z3
〉d defines

a complete intersection ideal 〈w, ∂F
∂z0
, h1, h2〉 of degree (1, d− 1, d, d). This implies dimwP d−1 ∩
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〈 ∂F
∂z0
, h1, h2〉d = 1 and hence we have dimwP d−1 ∩ JdF ≤ 2. This proves the desired assertion

and the proof of Proposition 3.4 is complete.

4. Proof of Theorem 0.8 bis (ii)

In this and next sections we prove Theorem 0.8 bis (ii) to complete the proof of Theorem
0.8. Let the assumption be as in Theorem 0.8 bis (ii). Without loss of generality we assume
t = 0 ∈ T reg. Choose equations Ft ∈ P d that define Xt ⊂ P3 and move holomorphically for
t ∈ ∆. Let RFt be the corresponding Jacobian ring. For t ∈ T reg let Iλt ⊂ P be defined in the
same manner as Iλ with λ replaced by λt ∈ H0(Xt,Ω

2
Xt

(logZt)), the flat translation of λ. For
any t ∈ T reg we have

codim∆(T ) ≥ codimTt(∆)(Tt(T
reg)) ≥ dim(P d/Idλt

) ≥
(
d+ 2

2

)
− 5,

where Tt(∗) denotes the tangent space at t. The second inequality follows from (3-5) and the
last from Proposition 3.3. Hence the assumption implies that the above inequalities are all
equalities. Therefore ψ−1(Tt(T

reg)) = Idλt
. Proposition 3.3 then implies that Iλt is complete

intersection of degree (1, d − 1, d, d) so that I1
λt

= C · wt for some wt ∈ P 1 determined up to
non-zero scalar. We easily see

dim(JdFt
) = 7, dim(Idλt

/wtP
d−1) = dim(P 1/C · wt) + 1 + 1 = 5. (4.1)

Lemma 4.1. There exists t ∈ T reg such that wt 6∈
∑3
i=1 C · zi.

We will prove Lemma 4.1 in the next section. Admitting Lemma 4.1, we finish the proof of
Theorem 0.8 bis (ii). Let

T o = {t ∈ T reg| wt 6∈
3∑
i=1

C · zi}

which is a non-empty open subset of T by the above lemma. Without loss of generality we
assume t = 0 ∈ T o. Since Idλt

⊃ wtP
d−1 + JdFt

, (4.1) implies

dim(wtP
d−1 ∩ JdFt

) ≥ 7− 5 = 2. (4.2)

Put Ewt = C3⊕ (P 1/C ·wt). (4.2) implies that there is Γt = [γ1,t : γ2,t : γ3,t : Lt] ∈
∨
P(Ewt) = P5

such that
3∑
i=1

γi,tzi
∂Ft
∂zi

+ Lt
∂Ft
∂z0

∈ wtP d−1 (4.3)

for each t ∈ T reg. We may choose Γt ∈
∨
P(Ew) such that it moves holomorphically for t ∈ T o.

Put w = w0 and Γ = Γ0 = [γ1 : γ2 : γ3 : L]. We now consider the morphisms

h : T o −→
∨
P(P 1) = P3; t 7−→ [wt] := C · wt (4.4)

and

s : h−1(w) →
∨
P(Ew) = P5; t 7→ Γt. (4.5)

We put

T ow,Γ = s−1(Γ)reg.

By the construction we have

codimTt(T reg)(Tt(T
o
w,Γ)) ≤ 3 + 5 = 8 for t ∈ T ow,Γ. (4.6)
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Due to (3-2), (4.3) implies that for t ∈ T ow,Γ,

ψ−1(Tt(T
o
w,Γ)) ⊂ {G ∈ Idλ|

3∑
i=1

γizi
∂G

∂zi
+ L

∂G

∂z0

∈ wP d−1}. (4.7)

Write wV = wP d−1 ∩ ψ−1(Tt(T
o
w,Γ)) for a subspace V ⊂ P d−1. Noting ψ−1(Tt(T

reg)) = Idλt
⊃

wP d−1 for t ∈ T ow,Γ, (4.6) implies codimP d−1(V ) ≤ 8. (4.7) implies

3∑
i=1

γizi
∂(wG)

∂zi
+ L

∂(wG)

∂z0

∈ wP d−1 for all G ∈ V.

If
∑3
i=1 γizi

∂w
∂zi

+ L ∂w
∂z0

6∈ C · w, it implies G ∈ wP d−2 for all G ∈ V . Since codimP d−1(wP d−2) =(
d+1
2

)
, this is a contradiction if

(
d+1
2

)
> 8 which holds when d ≥ 4. Thus we get the condition:

3∑
i=1

γizi
∂w

∂zi
+ L

∂w

∂z0

∈ C · w. (4.8)

We claim that (4.7) and (4.8) imply that for each t ∈ T ow,Γ
Ft = wBt +

∏
1≤ν≤r

(ctz
p+q
σ(1) − cν,tz

p
σ(2)z

q
σ(3)) (4.9)

for some Bt, σ and (ct, cν,t). Since w 6∈ ∑3
i=1 Czi, we may suppose w = z0 by transforming by

an element of G (cf. the proof of Proposition 3.3). (4.8) then reads L ∈ C · z0 = C · w. It
implies that γ1, γ2, γ3 are not all zero. (4.3) now reads

3∑
i=1

γizi
∂Ft
∂zi

∈ z0P
d−1 (t ∈ T oz0,Γ).

Writing Ft = z0Bt + Ct with Ct, a homogeneous polynomial of degree d in C[z1, z2, z3], the
above condition is equivalent to

3∑
i=1

γizi
∂Ct
∂zi

= 0.

Write
Ct =

∑
α=(α1,α2,α3)

cαz
α, (zα = zα1

1 zα2
2 zα3

3 , cα ∈ C)

and take α with cα 6= 0. The above condition implies that α is an integral point lying on the
sectional line ` in x1x2x3-space defined by

` :
3∑
i=1

xi − d =
3∑
i=1

γixi = 0, xi ≥ 0 (i = 1, 2, 3).

Furthermore the condition (3-1) implies that C is divisible by neither of z1, z2, z3. Letting
πi : xi = 0 be a plane, it implies that ` and πi intersect at an integral point for all i = 1, 2, 3.
This implies that ` passes through one of the points (d, 0, 0), (0, d, 0), (0, 0, d). Assuming
that ` passes through the first point, we get γ1 = 0 and hence α2 : α3 = −γ3 : γ2 = p : q
for some coprime non-negative integer p, q. Writing α2 = pj, α3 = qj with j ∈ Z, we get
α1 = d− (p+ q)j since

∑3
i=1 αi = d. The condition that ` and π1 intersect at an integral point

implies that r := d/(p+ q) is an integer and hence α1 = (p+ q)(r − j). Thus we can write

Ct =
r∑
j=0

bj,t(z
p+q
1 )r−j(zp2z

q
3)
j =

∏
1≤ν≤r

(ctz
p+q
1 − cν,tz

p
2z

q
3) for some bj, cν,t, ct ∈ C.

Hence we have (4.9).
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Apply the same argument to any t ∈ T o and let T owt,Γt
be defined in the same way as T ow,Γ.

Varying t ∈ T o, T owt,Γt
sweep a non-empty open set T oo ⊂ T o and we get

Ft = wtBt +
∏

1≤ν≤r
(ctz

p+q
σ(1) − cν,tz

p
σ(2)z

q
σ(3)) (t ∈ T oo). (4.10)

Since wt moves holomorphically, Bt, ct and cµ,t also move holomorphically for t ∈ T oo. Since
Idλt

⊃ wtP
d−1 + JdFt

, we have

λt ∈ {y ∈ P d−1|yx = 0 for all x ∈ wtP d−1 + JdFt
} = C · ωFt ⊕ C · ξFt := Σ(Ut)

where the last equality follows from Proposition 3.4 (3). Since λt 6∈ C·ωFt by the assumption λ 6∈
C·ωF , we get C·ωFt⊕C·λt = Σ(Ut). If λt ∈ H2(Ut,Q(2)) then dim Σ(Ut)∩H2(Ut,Q(2)) = 2. By
Lemma 1.3 it implies the condition Proposition 1.4 (3), hence (4). Thus there is a holomorphic
function at such that atct/cµ,t are roots of unity and hence ct = [c1,t : · · · : cr,t] ∈ Pr−1(C) is
constant. Therefore T oo ⊂ T σ(p,q)(c)∩∆ and hence T ⊂ T σ(p,q)(c)∩∆ by taking the closure in ∆.
Finally, comparing the codimensions in ∆, we conclude that the last inclusion is the equality
and the proof of Proposition 3.4 is complete.

5. Proof of Lemma 4.1

In this section we prove Lemma 4.1. Assume:

wt ∈
3∑
i=1

C · zi for all t ∈ T reg.

We may write

wt =
3∑
i=1

ai(t)zi and w = w0 =
3∑
i=1

aizi,

where ai(t) is a holomorphic function on T reg with ai = ai(0). Since Idλt
⊃ wtP

d−1+JdFt
and (4.1),

we have dim(wtP
d−1 ∩ JdFt

) ≥ 7− 5 = 2 and hence there is Γt = [γ1,t : γ2,t : γ3,t : Lt] ∈
∨
P(Ewt)

satisfies (4.3). Put F = F0 and Γ = Γ0 = [γ1 : γ2 : γ3 : L]. Then (4.3) reads

3∑
i=1

γizi
∂F

∂zi
+ L

∂F

∂z0

∈ wP d−1. (5.1)

Similarly to (4.8) we get
3∑
i=1

γiaizi ∈ C ·
3∑
i=1

aizi,

and hence

γ1a1 : γ2a2 : γ3a3 = a1 : a2 : a3. (5.2)

If L 6∈ ∑3
i=1 C · zi, (5.1) implies ∂F

∂z0
= 0 at [1 : 0 : 0 : 0] ∈ P3, which contradicts (3-1). Hence

we have

L ∈
3∑
i=1

C · zi. (5.3)

The proof is now divided into some cases. First we suppose that we are in:

Case (1): There exists t ∈ T reg such that ai(t) 6= 0 for all i = 1, 2, 3.
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Without loss of generality we may suppose that t = 0 satisfies the above condition. (5.2) implies
γ1 = γ2 = γ3. If γ1 = γ2 = γ3 = 0, then L 6∈ C · w and (5.1) implies ∂F

∂z0
∈ wP d−1 so that

∂F
∂z0

= 0 at [1 : 0 : 0 : 0], which contradicts (3-1). Thus we may assume γi = 1 for all i = 1, 2, 3.

By noting d · F =
∑3
i=0 zi

∂F
∂zi

, (5.1) now reads:

d · F + (L− z0)
∂F

∂z0

∈ wP d−1. (5.4)

Claim 5.1. L 6∈ C · w.

Proof. Assume L ∈ C ·w. (5.4) implies dF − z0
∂F
∂z0

∈ wP d−1. By the assumption a1 6= 0 we can
write

F = wA+ z0B + C with B ∈ C[z0, z2, z3] ∩ P d−1, C ∈ C[z2, z3] ∩ P d.

Then ∂F
∂z0

= w ∂A
∂z0

+ z0
∂B
∂z0

+ B and hence d(z0B + C) − z0(z0
∂B
∂z0

+ B) = 0 by noting wP d−1 ∩
C[z0, z2, z3] = 0. It implies C = 0 and (d−1)B = z0

∂B
∂z0

. From the last equation we immediately

deduce B = czd−1
0 with some c ∈ C. Hence F = wA+ czd0 , which is singular on {w = A = z0 =

0}. It contradicts (3-1) and completes the proof of Claim 5.1. �

Now choose u ∈ ∑3
i=1 Czi such that w,L, u are linearly independent and write

F = wA+
d∑

ν=0

LνBν , with Bν ∈ C[z0, u] ∩ P d−ν .

In view of (5.3), (5.4) implies

d(
d∑

ν=0

LνBν) + (L− z0)
d∑

ν=0

Lν
∂Bν

∂z0

=
d∑

ν=0

Lν(dBν − z0
∂Bν

∂z0

+
∂Bν−1

∂z0

) ∈ wP d−1

where B−1 = 0 by convention. Hence we get dBν−z0
∂Bν

∂z0
+ ∂Bν−1

∂z0
= 0 for all ν = 0, 1, . . . , d. We

easily solve the equations to get Bν = c(−1)ν
(
d
ν

)
zd−ν0 for some c ∈ C independent of ν. Hence

F = wA+ c
d∑

ν=0

(−1)νLν
(
d

ν

)
zd−ν0 = wA+ c(z0 − L)d.

The equation is singular on {w = A = z0 − L = 0} ⊂ P3, which contradicts (3-1). This
completes the proof in Case (1).

By Case (1) we may suppose T ⊂ ∪1≤i≤3{t ∈ ∆| ai(t) = 0}. Since T is irreducible, we may
suppose a3(t) = 0 for all t ∈ T . Now we assume that we are in:

Case (2): There exists t ∈ T reg such that a1(t)a2(t) 6= 0.

Without loss of generality we may suppose that t = 0 satisfies the above condition. Thus
a3 = 0 and a1a2 6= 0. By replacing a smaller neighborhood of 0, we may further assume
a1(t)a2(t) 6= 0 for t ∈ T reg. (5.2) implies γ1 = γ2. Assuming γ3 6= 0, (5.1) implies z3

∂F
∂z3

= 0 on

{z1 = z2 = ∂F
∂z0

= 0}, which contradicts (3-1). Thus γ3 = 0. If γ1 = γ2 = 0, the same argument

as in the beginning of Case (1) induces a contradiction. Thus we may assume γ1 = γ2 = 1.
Hence (5.1) now reads:

2∑
i=1

zi
∂F

∂zi
+ L

∂F

∂z0

∈ wP d−1. (5.5)

Claim 5.2. L ∈ ∑2
i=1 C · zi and L 6∈ C · w.
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Proof. Assume L 6∈ ∑2
i=1 C · zi. By (5.3) we may suppose L = z3 + l1z1 + l2z2. Then (5.5)

implies ∂F
∂z0

∈ 〈z1, z2〉, which contradicts (3-1). The proof of the second assertion is similar to
that of Claim 5.1 and omitted. �

Noting C[z0, z1, z2, z3] = C[z0, w, L, z3], we may write

F = wA+
d∑

µ=0

zµ3Gµ with A ∈ P d−1, Gµ ∈ C[z0, L] ∩ P d−µ.

Noting
∑2
i=1 zi

∂w
∂zi

= w, (5.5) implies

d∑
µ=0

zµ3 (
2∑
i=1

zi
∂Gµ

∂zi
+ L

∂Gµ

∂z0

) ∈ wP d−1.

Noting (d− µ)Gµ =
∑3
i=0 zi

∂Gµ

∂zi
and ∂Gµ

∂z3
= 0, we get

0 =
2∑
i=1

zi
∂Gµ

∂zi
+ L

∂Gµ

∂z0

= (d− µ)Gµ + (L− z0)
∂Gµ

∂z0

for all µ = 0, 1, . . . , d.

We solve the last equation in the same manner as Case (1) to get Gµ = bµ(L − z0)
d−µ with

bµ ∈ C and hence

F = wA+
d∑

µ=0

bµz
µ
3 (L− z0)

d−µ. (5.6)

Claim 5.3. Put ηF = A+
2∑
i=1

zi
∂A

∂zi
+ L

∂A

∂z0

.

(1) φ(ηF ) =
z3

w
d(
z0 − L

z3

) ∧ dlog
z1

z2

.

(2) C ·ωF ⊕C · ηF = {y ∈ P d−1| yx = 0 ∈ R2d−1
F for all x ∈ wP d−1 + JdF} (cf. Lemma 3.2).

Proof. Noting wηF = z1
∂F
∂z1

+z2
∂F
∂z2

+L ∂F
∂z0

, Claim 5.3 (1) is proven by the same argument as the

proof of Lemma 3.2. Claim 5.3 (2) is proven by the same argument as the proof of Proposition
3.4 (3). We omit the details. �

By Claim 5.3, λt ∈ H0(Xt,Ω
2
Xt

(logZt)), the flat translation of λ for t ∈ T reg, is written as

λt = f1(t)η(t) + f2(t)ω(t) (t ∈ T reg).

Here f1(t) and f2(t) are holomorphic functions on T reg and

ω(t) = dlog
z2

z1

∧ dlog
z3

z1

, η(t) =
z3

wt
d(
z0 − Lt
z3

) ∧ dlog
z1

z2

,

where wt is as in the beginning of this section and

Ft = wtAt +
d∑

µ=0

bµ,tz
µ
3 (Lt − z0)

d−µ, Lt = l1(t)z1 + l2(t)z2

is the equation defining Xt such as (5.6), which varies holomorphically with t ∈ T reg. Recalling
Y = ∪1≤j≤3Yj with Yj = {zj = 0} ⊂ P3, write

Zt = Xt ∩ Y ⊃ Z3t = Xt ∩ Y3 ⊃ Vt = Z3t ∩ (Y1 ∪ Y2) ⊃ St = Z3t ∩ Y2.

We consider the composite of the residue maps

θt : H0(Xt,Ω
2
Xt

(logZt)) = H0(Xt,Ω
2
Xt

(logZt))
ResZ3t−→ H0(Z3t,Ω

1
Z3t

(log Vt))
ResSt−→ CSt ∼−→ Cd,
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where the last isomorphism is obtained by choosing εt : {1, 2, . . . , d} ∼−→ St, an isomorphism of
local systems of sets over ∆. Since λt is flat, we get the condition:

θt(λt) ∈ Cd is constant for t ∈ T reg. (5.7)

We shall show that the condition (5.7) induces a contradiction, which completes the proof of
Lemma 4.1 in Case (2). St consists of distinct d-points Pν,t which do not lie on Y1. Write

Pν,t = [sν(t) : 1 : 0 : 0] ∈ P3(C).

A direct residue calculation shows

θt(ω(t)) = (1, . . . , 1), θt(η(t)) = (
l1(t)− sν(t)

a1(t)
)1≤ν≤d

and hence

θt(λt) = (p(t)sν(t) + q(t))1≤ν≤d with p(t) = −f1(t)

a1(t)
, q(t) = f1(t)

l1(t)

a1(t)
+ f2(t).

Since λt 6∈ C · ωt, we have p(t) 6= 0. Therefore (5.7) implies that for all 1 ≤ ν ≤ d we have

sν(t) = Cνp(t)
−1 − q(t)p(t)−1 (t ∈ T reg) (5.8)

where Cν are constant. Letting

Σ = {(s1, . . . , sd)| sν ∈ C, sν 6= sµ for 1 ≤ ν 6= µ ≤ d},
we define a holomorphic map

π : ∆ −→ Σ; t 7−→ (sν(t))1≤ν≤d.

Then (5.8) implies dim(π∗(T0(T
reg))) ≤ 2. Therefore we get a contradiction if we show the

following.

Claim 5.4. dim(π∗(T0(T
reg))) ≥ d.

Proof. Let Q = C[z0, z1] and Ql = P l ∩ Q for an integer l. Write G = G mod 〈z2, z3〉 ∈ Q for
G ∈ P . Consider the morphism

ρ : Σ → N :=
∨
P(Qd); s = (sν)1≤ν≤d → [Fs] with Fs =

∏
1≤ν≤d

(z0 − sνz1).

It is finite etale and induces an isomorphism on the tangent spaces. Hence it suffices to show
Claim 5.4 by replacing π with π̃ := ρ ◦ π. We then have π̃(t) = [F t] and the commutative
diagram

P d mod〈z2,z3〉−−−−−−→ Qd

ψ

y yψ′
T0(∆)

π̃∗−−−→ Tπ̃(0)(N)

where ψ′ is defined in the same way as ψ in (3-2) and Ker(ψ′) = C · F . We have shown
that ψ−1(T0(T

reg)) = Idλ ⊃ wP d−1 + JdF . Hence π̃∗(T0(T
reg)) ⊃ ψ′(z1Q

d−1 + C · F ). Noting
F 6∈ 〈z1, z2, z3〉 so that F 6∈ z1Q

d−1, this implies

dim(π̃∗(T0(T
reg)) ≥ dim z1Q

d−1 = d.

This completes the proof of Claim 5.4. �

By Case (2) we may assume now that we are in:

Case (3): a2(t) = a3(t) = 0 for all t ∈ T reg.
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In this case we may assume w = z1. We have

Iλ ⊃ I := 〈z1〉+ JF = 〈z1,
∂F

∂z0

, z2
∂F

∂z2

, z3
∂F

∂z3

〉

so that I is complete intersection of degree (1, d− 1, d, d). Hence I = Iλ and Idλ = z1P
d−1 + JdF .

As before we can show the following.

Claim 5.5. Put κF = ∂F
∂z1

.

(1) φ(κF ) = z0
z1

dlog z2
z0
∧ dlog z3

z0
.

(2) C · ωF ⊕ C · κF = {y ∈ P d−1| yx = 0 ∈ R2d−1
F for all x ∈ z1P

d−1 + JdF}.

As before Claim 5.5 implies

λt = f1(t)κ(t) + f2(t)ω(t) for t ∈ T reg,

where f1(t), f2(t) and ω(t) are as before and

κ(t) =
z0

z1

dlog
z2

z0

∧ dlog
z3

z0

∈ H0(Xt,Ω
2
Xt

(logZt)).

An easy residue calculation shows θt(λt) = (f1(t)sν(t) + f2(t))1≤ν≤d and the same argument as
Case (2) induces a contradiction. This completes the proof of Lemma 4.1.

6. Appendix: Injectivity of regulator map

In this section we discuss an implication of Theorem 0.8 on the injectivity of the regulator
map. Let X be a member of M . We are interested in the regulator map to Deligne cohomology

ρX : CH2(X, 1)⊗Q −→ H3
D(X,Q(2)),

where CH2(X, 1) is Bloch’s higher Chow group defined to be the cohomology of the complex

K2(C(X))
∂tame−→

⊕
C⊂X

C(C)∗
∂div−→

⊕
x∈X

Z,

where the sum on the middle term ranges over all irreducible curves on X and that on the right
hand side over all closed points of X. The map ∂tame is the so-called tame symbol and ∂div is
the sum of divisors of rational functions on curves. We have the localization exact sequence

CH2(U, 2) −→ CH1(Z, 1) −→ CH2(X, 1),

where

CH1(Z, 1) = Ker(
⊕

1≤i≤3

C(Zi)
∗ ∂div−→

⊕
x∈Z

Z) with Zi = X ∩ Yi.

By [AS2] Th.7.1 we get the following.

Theorem 6.1. For t ∈M −MNL, ρXt is injective on the subspace

Σt := Im(CH1(Zt, 1) −→ CH2(Xt, 1))⊗Q ⊂ CH2(Xt, 1)⊗Q.

In this section we show there exists t ∈ M −MNL such that Σt 6= 0 so that Theorem 6.1
has a non-trivial implication on the injectivity of ρXt . For this we need introduce some special
locus in the moduli space M .

Definition 6.2. Let T12 ⊂M be the locus of those X defined by an equation

F = wA+ z1z2B + c1z
d
1 + c2z

d
2 for some w ∈ P 1, A ∈ P d−1, B ∈ P d−2, c1, c2 ∈ C∗.

We define T23 (resp. T31) similarly by replacing (z1, z2) by (z2, z3) (resp. (z3, z1)).
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We note that T σ(p,q)(c) ⊂ T12 with σ, the identity, and p = 1, q = 0. For X in T12 defined by
such an equation as above we consider the following element

c12(X) = ((
z2

w
)|Z1 , (

w

z1

)|Z2 , 1) ∈ C(Z1)
∗ ⊕ C(Z2)

∗ ⊕ C(Z3)
∗.

It is easy to check c12(X) ∈ CH1(Z, 1). For X in T23 (resp. T31) we define an element c23(X)
(resp. c31(X)) in CH1(Z, 1) by the same say. Let [cij(X)] ∈ CH2(X, 1) be the image of
cij(X) ∈ CH1(Z, 1) for (i, j) = (1, 2) or (2, 3) or (3, 1).

Theorem 6.3. (1) If d ≥ 4, T12 6⊂MNL and ρXt([c12(Xt)]) 6= 0 for all t ∈ T12 −MNL.
(2) If d ≥ 6, T12 ∩ T23 6⊂ MNL and ρXt([c12(Xt)]), ρXt([c23(Xt)]) are linearly independent

for all t ∈ (T12 ∩ T23)−MNL.
(3) If d ≥ 10, T12 ∩ T23 ∩ T31 6⊂ MNL and ρXt([c12(Xt)]), ρXt([c23(Xt)]), ρXt([c23(Xt)]) are

linearly independent for all t ∈ (T12 ∩ T23 ∩ T31)−MNL.

Proof. Fix 0 ∈M and letX be the corresponding surface in P3. By Lemma 1.1, if 0 ∈M−MNL,
we have

F 2H2(U,Q(2)) = Q · reg2
U(αU) with αU = {z2

z1

,
z3

z1

} ∈ CH2(U, 2).

By [AS2], Th.7.1, it implies that the kernel of the composite map

CH1(Z, 1)⊗Q −→ CH2(X, 1)⊗Q ρX−→ H3
D(X,Q(2))

is generated by

∂U(αU) = δ := ((
z3

z2

)|Z1 , (
z1

z3

)|Z2 , (
z2

z1

)|Z2) ∈ CH1(Z, 1),

where ∂U : CH2(U, 2) → CH1(Z, 1).

Claim 6.4. Write Λ =
⊕

1≤j≤3 C(Zj)
∗.

(1) Assume 0 ∈ T12 and that X is defined by an equation as Definition 6.2:

F = wA+ z1z2B + c1z
d
1 + c2z

d
2 .

Then the following elements are linearly independent in Λ⊗Q;

δ, ((
z2

w
)|Z1 , (

w

z1

)|Z2 , 1).

(2) Assume 0 ∈ T12 ∩ T23 and that X is defined by an equation as Definition 6.2:

F = wA+ z1z2B + c1z
d
1 + c2z

d
2

= vA′ + z2z3B
′ + c′2z

d
2 + c′3z

d
3

Then the following elements are linearly independent in Λ⊗Q;

δ, ((
z2

w
)|Z1 , (

w

z1

)|Z2 , 1), (1, (
z3

v
)|Z2 , (

v

z2

)|Z3).

(3) Assume 0 ∈ T12 ∩ T23 and that X is defined by an equation as Definition 6.2:

F = wA+ z1z2B + c1z
d
1 + c2z

d
2

= vA′ + z2z3B
′ + c′2z

d
2 + c′3z

d
3

= uA′′ + z3z1B
′′ + c′′3z

d
3 + c′′1z

d
1

Then the following elements are linearly independent in Λ⊗Q;

δ, ((
z2

w
)|Z1 , (

w

z1

)|Z2 , 1), (1, (
z3

v
)|Z2 , (

v

z2

)|Z3), ((
u

z3

)|Z1 , 1, (
z1

u
)|Z3).
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Proof. We only show Claim 6.4 (3). The others are easier and left to the readers. Assume the
contrary. Then there are integers e, l,m, n not all zero such that

(
z2

w
)l(
u

z3

)n(
z3

z2

)e ≡ 1 mod z1,

(
w

z1

)l(
z3

v
)m(

z1

z3

)e ≡ 1 mod z2,

(
v

z2

)m(
z1

u
)n(

z2

z1

)e ≡ 1 mod z3.

We note u, v, w 6∈ ∑1≤j≤3 C · zj since otherwise it would contradict (3-1). Hence the condition
implies l = m = n = e and u, v, w coincides up to non-zero constant. Thus we get

F ≡ z1z2B + c1z
d
1 + c2z

d
2 ≡ z2z3B

′ + c′2z
d
2 + c′3z

d
3 ≡ z3z1B

′′ + c′′3z
d
3 + c′′1z

d
1 mod w,

which is absurd. This completes the proof of Claim 6.4. �

By Claim 6.4, the proof of Theorem 6.3 is complete if we show that T12 6⊂ MNL (resp.
T12 ∩ T23 6⊂MNL, resp. T12 ∩ T23 ∩ T31 6⊂MNL) if d ≥ 4 (resp. d ≥ 6, resp. d ≥ 10). Indeed we
have

codimM(T12) =

(
d+ 3

3

)
−
((

d+ 2

3

)
+

(
d

2

)
+ 2

)
= 2d− 1.

One note that T12 ∩ T23 ∩ T31 6= ∅ since the Fermat surface zd0 + zd1 + zd2 + zd3 = 0 belongs to it.
Hence, for any irreducible component T of T12∩T23 (resp. T12∩T23∩T31), codimM(T ) ≤ 2(2d−1)

(resp. codimM(T ) ≤ 3(2d − 1)). By Theorem 0.8 (1) it suffices to check
(
d+2
2

)
− 5 is greater

than 2d − 1 (resp. 2(2d − 1), resp. 3(2d − 1)) if d ≥ 4 (resp. d ≥ 6, resp. d ≥ 10). This
completes the proof of Theorem 6.3. �
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