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Introduction

A fundamental fact in number theory is the Hasse principle for the Brauer group
of a global field K, which is a global-local principle for a central simple algebra A
over K:

A~ M,(K) if and only if A ®x K, ~ M,(K,) for all places = of K,

where M, (%) is the matrix algebra and K, is the completion of K at zO In 1985
Kazuya Kato [K] formulated a fascinating framework of conjectures which gener-
alizes this fact to higher dimensional arithmetic schemes, namely schemes of finite
type over a finite field or the ring of integers in a number field or a local field.
For an integer n > 0 and for an arithmetic scheme X, he defined a collection of
Z /nZ-modules

KH,(X,Z/nZ) (a>0)

which we call the Kato homology of X. The Hasse principle for the Brauer group
of a global field K is equivalent to the vanishing K H, (X, Z /nZ) = 0 for all n > 0,
where X = Spec(Ok) with the ring Ok of integers in K. As a generalization
of this fact, he proposed the following conjecture called the cohomological Hasse
principle.

Conjecture 0.1. Let X be either a proper smooth variety over a finite field, or a
reqular scheme proper flat over the ring of integers in a number field or in a local
fieldd Then

KH,(X,Z/nZ)=0 fora>D0.

There is work on the conjecture by Kato [K], Colliot-Théléne [CT] and Jannsen-
Saito [JS1], where the vanishing K H,(X,Z/nZ) = 0 for small degree a is shown.
The first aim of this article is to report on the recent progress on the conjecture,
the work of U. Jannsen, M. Kerz and the author, which proves the vanishing in all
degrees under suitable conditions. The second aim is to give applications of these
results. It turns out that the cohomological Hasse principle plays a significant
role in arithmetic geometry, in particular in the study of motivic cohomology of
arithmetic schemes.

Motivic cohomology is an important object to study in arithmetic geometry. It
includes the ideal class group and the unit group of a number field, and the Chow
groups of algebraic varieties. It is closely related to zeta-functions of algebraic
varieties over a finite field or an algebraic number field. One of the important open
problems is the conjecture that motivic cohomology of regular arithmetic schemes
is finitely generated, a generalization of the known finiteness results on the ideal
class group and the unit group of a number field (Minkowski and Dirichlet), and
the group of the rational points on an abelian variety over a number field (Mordell-
Weil). There have been only few results on the conjecture except the cases stated
above and the one-dimensional case (Quillen). In [JS2] it was found that the
Kato homology K H,(X,Z/nZ) fills a gap between motivic cohomology with finite
coefficient and étale cohomology of X. Thus, thanks to known finiteness results on



Cohomological Hasse principle and motivic cohomology 3

étale cohomology, the cohomological Hasse principle implies new finiteness results
on motivic cohomology.

We will also give other implications. One is a result on special values of the zeta
function ((X,s) of a smooth projective variety over a finite field, which expresses

C(X,0)":= lim ((X,s) - (1 —¢°)

by the cardinalities of the torsion subgroups of motivic cohomology groups of X.
It may be viewed as a geometric analogue of the analytic class number formula for
the Dedekind zeta function of a number field.

Another application is a generalization of the higher dimensional class field
theory by Schmidt-Spiess [ScSp] which describes the abelian fundamental group of
a smooth variety over a finite field by using its Suslin homology of degree 0. Suslin
homology is an algebraic analogue of singular homology for topological spaces and
is compared to motivic homology defined by Voevodsky. We generalize the work of
Schmidt-Spiess to its higher-degree variant and establish an isomorphism between
Suslin homology of higher degree and the dual of étale cohomology.

Finally we give an application to a geometric problem on singularities. A
consequence is the vanishing of weight homology groups of the exceptional divisors
of desingularizations of quotient singularities.

The paper is organized as follows.

In §1 we give a brief review on motivic cohomology. There are mainly two
ways of definition. The first one is due to Voevodsky [V1] who constructed the
triangulated category of motives and defined motivic (co)homology as the space
of maps in this category. We will not go into details of this construction but
we explain another (more concrete) definition of motivic (co)homology given by
Bloch’s higher Chow group and Suslin’s homology.

In §2 we state the finiteness conjecture of motivic cohomology and recall some
known results on the conjecture. As a tool to approach the conjecture, we introduce
the cycle class map from motivic cohomology to étale cohomology constructed by
Bloch [B1] and Geisser-Levine [GL] and K.Sato [Sat2].

In §3 we state the Kato conjectures on the cohomological Hasse principle to-
gether with a lemma which affirms that the Kato homology controls the kernel and
cokernel of the cycle class map introduced in §2.

In §4 we recall all known results on the Kato conjectures and give a very rough
sketch of the proof of the most recent result due to Kerz-Saito [KeS], [Sa3].

In §5 we state some new results on the finiteness conjecture of motivic coho-
mology as an application of the result of Kerz-Saito.

In §6 we give its application to special values of the zeta function of a smooth
projective variety over a finite field.

In §7 we give as another application a higher-degree variant of the higher di-
mensional class field theory of Schmidt-Spiess [ScSp].

In §8 we explain a geometric application to quotient singularities.
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The author is grateful to Prof. J.-L. Colliot-Thélene and Prof. T. Geisser for
their helpful comments on the first version of this paper.

1. Motivic cohomology

The purpose of this section is to give a quick review on motivic cohomology. We
start with the class number formula for an algebraic number field K:

_IOUE)| - R
|(OIX( )t0r5|

where (x(s) is the Dedekind zeta function of K, pg is the rank of the unit group

O of the ring Ok of integers, (O )tors is the torsion part of O (namely the

group of the roots of unity in K), CI(K) is the ideal class group of Ok, and Rk
is Dirichlet’s regulatord

11_[)1(1) Cr(s)-s 0 = (L.1)

The philosophical question arises whether one could view the above formula as
an arithmetic index theorem:

‘ index (analytic invariant) ‘ :‘ characteristic class (e.g. Euler characteristic) ‘

An answer to the question is given by motivic cohomology
Hjy (X, Z(r))
which is defined for a scheme X (satisfying a reasonable condition) and for integers
i and r. Indeed, in case X = Spec(Ok) with Ok as above, we have
CU(K)=H;(X,Z(1)), OF = Hy(X,Z(1)).
Motivic cohomology theory may be considered universal cohomology theory

in view of the existence of regulator maps to other cohomology theories, defined
according to the context where X lives:

Hiy (X, 2.(r))
Hp(X,Z(r)) (Deligne cohomology)
Hi,(X,7Z(r)) — H!(X,Zr)) (étale cohomology )
Hzrys (X/W (k)) (crystalline cohomology)

(Betti cohomology)

Dirichlet’s regulator map that defines Rg in (1.1) can be viewed as a special case
of the regulator map to Deligne cohomology.

Another important property of motivic cohomology is its relation to algebraic
K-theory via the spectral sequence for smooth X

Ept = Hy (X, 2(=3) = K—py(X) (1.2)

which is an algebraic analogue of the Atiyah-Hirzebruch spectral sequence for top-
logical K-theory (see [Gra2] and [Le]).
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Here we introduce two kinds of constructions of motivic cohomology. The first
one is due to Voevodsky [V1] who constructed DM (k), the triangulated category
of motives over a field k. It is a tensor category equipped with a functor

M:Sm/k— DM(k); X - M(X)

where Sm/k is the category of smooth schemes over the field k. Motivic coho-
mology and homology of X € Sm/k are then defined as the space of maps in
DM (k):

Hj (X, 7Z(r)) = Homp gy (M (X), Z(r)]i]),

HM(X,Z(r)) = Hompx) (Z(r)[i], M (X))
respectively, where Z (1) is a distinguished object in DM (k) called the Tate object.

It is invertible for the tensor structure and Z(r) for r € Z is the r-th tensor power
of Z(1). We do not go into details on DM (k).

Another (more concrete) definition of motivic (co)homology is given by

CH"(X,q), Bloch’s higher Chow group ([B2], [Le])
HZ(X,7), Suslin homology ([SV1], [Sc])

defined for a scheme X of finite type over a field or a Dedekind domain. We
note that CH"(X,q) for ¢ = 0 is the Chow group of algebraic cycles on X of
codimension r modulo rational equivalence. We have the following comparison
result ([V4], [MVW], Lecture 19):

Theorem 1.1. For a smooth scheme X over a field, we have natural isomorphisms

Hiy (X, Z(r)) ~ CH"(X,2r —i), HM(X,Z(0))~ H(X,Z).

Before going to a brief review of the definition of Bloch’s higher Chow group
and Suslin homology, we first recall the singular homology of a topological space
X:

HQ(Xa Z) = Hq(S(X, .))

where s(X, o) is the singular chain complex:
o s(X,q) D s(X,g—1) L - o 5(X,0),

s(X,q) = @ Z[T], T ranges over all continuous maps Af,, — X.
r

Here
Azop: {(550,561,...,.’1,'[1) E]Rq+1 ‘ Z i :1, ZT; ZO}

0<i<q
is the standard simplex and the boundary map 0 is the alternating sum of the

restrictions to the faces of codimension 1 in Af, 0
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The definition of Bloch’s higher Chow group and Suslin homology is an alge-
braic analogue of the above construction. Here we assume that X is of finite type
over a field &k while it is possilbe to treat more general cases (cf. [Le] and [Sc]).
The standard simplex is replaced by its algebraic analogue

A? = Spec(Klto, . -, t4]/(D_ti — 1)),
=0

whose faces are A®* = {t;; = --- = t;,_, = 0} C A?. We have two kinds of
analogues of s(X,q) given by the spaces of algebraic cycles on X x A?:

ZT(X)q) = @ Z[F]7 CO(qu): @ Z[E]
T'CX xA¢ ECX XA

where T' (resp. Z) ranges over all integral closed subschemes of X x A?, which
have codimension r and intersect properly all faces A C A? (resp. which are
finite surjective over A?). One may be tempted to take I' and = as maps of
schemes f : A? — X but this does not give a correct answer (such f give rise to
algebraic cycles on X x A? by taking its graphs but there are not sufficiently many
maps of schemes )0

These groups fit into the so-called cycle complexes (graded homologically)
2N(X,8) i -2 2" (X, q) N 2"(X,q—1) SN 2"(X,0),

co(X,0) ¢ o= (X, q) -2 co(X,q — 1) 2 -+ L5 6o(X, 0).

Bloch’s higher Chow group and Suslin homology are defined as the homology
groups of these complexes:

CH"(X,q) := Hy(2"(X, o)),
HY(X,Z):= Hy(co(X, »)).
One may also consider the versions with finite coefficients:
CH"(X,q;Z/nZ) := Hy (2" (X, ®) ® Z/nZ),
H}(X,Z/nZ):= Hy(co(X, ) @ Z/nZ).

In what follows, for a regular scheme of finite type over a perfect field or a
Dedekind domain, we denote (cf. Theorem 1.1)

Hj(X,%(r)) = CH"(X,2r — i), 13)
Hi/(X,7Z/nZ(r)) = CH" (X, 2r — i; 7 /n7). '
We have an exact sequence

0— Hi(X,Z(r))/n— Hy (X, Z/nZ(r)) — Hib ' (X, Z(r))[n] = 0 (1.4)

where M[n] = Ker(M - M) for an abelian group M.



Cohomological Hasse principle and motivic cohomology 7

2. Finiteness conjecture on motivic cohomology

A fundamental question in arithmetic geometry is the following.

Conjecture 2.1. For a reqular scheme X of finite type over F, or Z, Hi,(X,Z(r))
is finitely generated.

In view of the spectral sequence (1.2), the conjecture would imply that the
algebraic K-groups K;(X) of X are finitely generated, which is the so-called Bass
conjecture. The above conjecture is a basis of the conjectures on special values of
zeta functions of arithmetic varieties due to Beilinson and Bloch-Kato.

Remark 2.2. For a (not necessarily regular) scheme X of finite type over F, or
Z, CH"(X,q) is conjectured to be finitely generated. Indeed this follows from
Conjecture 2.1 by the localization sequence for higher Chow groups.

In §5 we will present new finiteness results on motivic cohomology. Very little
had been known about the conjecture except the following results. Let X be a
regular scheme of finite type over F, or Z.

Theorem 2.3. Hj (X,Z(1)) is finitely generated for all integers q0
In factd we have
Pic(X) q=2
Hi/(X,Z(1))=CH'(X,2—q) = { [(X,0%) g¢=1
0 otherwise
Therefore the above theorem is a consequence of the finiteness results on the ideal
class group and the unit group for the ring of integers in a number field (Minkowski

and Dirichlet), and the Mordell-Weil theorem on the rational points of an abelian
variety over a number field.

Theorem 2.4. If dim(X) =1, H},(X,Z(r)) is finitely generated up to torsionD]

This follows from the fact that K;(X) is finitely generated, due to Quillen [Q]
(see also [Gral]), together with a result on the degeneracy of the spectral sequence
(1.2) up to torsion ([Le], Theorem 11.7). As for the torsion part of Hj, (X, Z(r)),
one can show that it is finite assuming the Bloch-Kato conjecture stated later in
this section (see Theorem 2.7 and [Le], Theorems 14.3 and 14.5).

Theorem 2.5. H2¥(X,Z(d)) is finitely generated where d = dim(X).

Note that H2?(X,Z(d)) coincides with the Chow group CHg(X) of zero cy-
cles on X modulo rational equivalence. Theorem 2.5 is a consequence of higher
unramified class field theory due to Bloch[B1] and Kato-Saito[KS1]:

Theorem 2.6. Let X be a reqular scheme proper over F, or Z. Assume X(R) = 0)
for simplicity. Then the higher reciprocity map

px : CHo(X) — 7{*(X)

is an isomorphism if X is flat over Z, and injective with dense image otherwise.
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Here 7¢%(X) is the abelian fundamental group of X and the definition of px

will be given in §8. Theorem 2.5 follows from Theorem 2.6 and the finiteness result
of 7#*(X) due to Katz-Lang.

A way to approach Conjecture 2.1 is to use the cycle class map. Let X be a
regular scheme of finite type over a perfect field or the ring Oy of integers in a
number field or in a local field. Under a technical condition (which is necessary
only in the case X is flat over O and n is not invertible in O), there is a cycle
class map

px : Hy (X, Z/nZ(r)) = Hi (X, 7 /nZ(r)) (2.1)

from the motivic cohomology with finite coefficient to the étale cohomology with
suitable coefficient (explained below). The constructions of the cycle class map are
due to Bloch [B1] and Geisser-Levine [GL] and K.Sato [Sat2]. The target group of
the cycle class map varies according to the context: In case n is invertible on X,

Hét(X) Z/TLZ(T')) = Hét(X) /J’gr)>

where pu,, is the étale sheaf of the n-th roots of unity. In case X is smooth over a
perfect field k and n = mp” with p = ch(k) and (p,m) =1,

H}(X,Z/nZ(r)) = Hy (X, Z/mZ(r)) @ H™" (X, W, Q% 1), (2.2)

where W, Q% is the logarithmic part of the de Rham-Witt sheaf W, % ([Il1],
I 5.7). Finally, in case X is flat over O and and n is not invertible on Oy,
H{ (X,7Z/nZ(r)) is the hyper cohomology of a certain object of the derived cate-
gory of complexes of étale sheaves, which is defined by K. Sato [Satl] as an étale
incarnation of the motivic complex on X with finite coefficient.

We note that the target group of the cycle class map is known to be finite. Thus
the injectivity of the map would imply a finiteness result for motivic cohomology
of X. Indeed we have the following result due to Suslin-Voevodsky [SV2] and
Geisser-Levine [GL] (see also K.Sato [Sat2]).

Theorem 2.7. Let X be as above. Assume (BK)Y , (see below) for every prime
{ dividing n. Then the cycle class map

px  Hy (X, Z/nZ(r)) = Hi(X, Z /nZ(r))
is an isomorphism for i < r and injective for i =r + 1.

In case X is smooth over a perfect field of characteristic p > 0 and n = p",
this is a theorem of Geisser-Levine, which is used in Sato’s work for the mixed
characteristic case.

Corollary 2.8. Let X be as above and assume X is of finite type over F, or Z.
Then Hiy(X,Z/nZ(r)) is finite for i <r+ 1.
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We now explain the condition (BK)tX’Z. For a field L and a prime ¢ and an
integer t > 0, we have the Galois symbol map

Wy K(L)/€ — HY(L, Z/IL(1))

where H*(L,Z /¢Z(t)) = H},(Spec(L), Z /¢Z(t)) is the Galois cohomology of L and
KM (L) denotes the Milnor K-group of L. It is conjectured that hi, . is surjective.
The conjecture is called the Bloch-Kato conjecture in case | # ch(L) (the case
I = ch(L) is known to hold due to Bloch-Gabber-Kato [BK]). The surjectivity of
hi, is known if ¢ = 1 (the Kummer theory) or ¢ = 2 (Merkurjev-Suslin [MS]) or
¢ = 2 (Voevodsky [V1]). Recently a proof of the conjecture has been announced
by Rost and Voevodsky (see [SJ] and [V2], and [HW], [V3], [Wel] and [We2] for
details).

For a scheme X, we introduce the condition:

(BK)tX 0 htL’ ¢ is surjective for any field L finitely generated over a residue field of X.

3. Cohomological Hasse principle

In this section we discuss the cohomological Hasse principle which generalizes the
following theorem of Hasse-Minkowski to higher dimensional arithmetic schemes[]
It plays an important role in the study of motivic cohomology of arithmetic schemes
(see Lemma 3.6 below).

Theorem 3.1. A quadratic form with rational coefficients
aXP 4 a, X2 (a1,...,a, €Q)
has a non-trivial zero in Q if and only if it has in R and Q, for every prime p.
In general, a quadratic form over a field k& with ch(k) # 2:
X2 —aY?-0bZ% (a,b€ k)
has a non-trivial zero in k if and only if
h(a) Uh(b) =0 € H*(k,Z/27)
where h : k% /2 ~ H'(k,Z/27) is the Kummer isomorphism, and
U: H' (k,7/27) x H' (k,7./27) — H*(k,7./27)

is the cup product. Therefore the case n = 3 (which is the most crucial to the
proof) of the theorem is equivalent to the injectivity of the restriction map

H*(Qz/22) » P H*(Qy,Z/2Z) & H*(R Z/2Z)
pEPy
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where Py is the set of the rational primes. Moreover we have the residue isomor-
phism for p € Py:
0, : H*(Q,,7/27) ~ H'(F,,7Z/27), (3.1)

and Theorem 3.1 is equivalent to the injectivity of the residue map:

H*(QZ/22) % @ H'(F,,Z/22) ® H*(R,Z/2L). (3.2)

pGP@
This fact has been extended to the following.

Theorem 3.2. (Brauer-Hasse-Noether and Witt) Let X be either Spec(Ok) with
Ok the ring of integers in a number field or in a local field, or a proper smooth
curve over o finite field. Let K be the function field of X. For simplicity, in case
K is a number field, we assume that n is odd or that X(R) = § (namely K is
totally imaginary). Then the residue map

H*(K,Z/nZ(1)) % @ H'(x(z),Z/nZ) (3.3)
€X(0)

is injective, where X o) is the set of the closed points of X, k(x) is the residue field
of x € X, and Z/nZ(1) is defined as in (2.2).

We remark that there is a natural isomorphism
H?(K,Z/nZ(1)) = Br(K)[n],

where Br(K) is the Brauer group of K (the set of equivalence classes of central
simple algebras over K endowed with a suitable group structure). Thus Theorem
3.2 in case K is a global field, is equivalent to the Hasse principle for the Brauer
group of K, namely the following global-local principle for such an algebra A:

A~ My(K) & Aok K, ~ M(K,) (V2 € X(g))

where M, () is the matrix algebra and K, is the completion of K at zO

In 1985 K.Kato [K] formulated a fascinating framework of conjectures which
generalize Theorem 3.2 to higher dimensional arithmetic schemes X, namely a
scheme of finite type over a finite field or the ring of integers in a number field or
a local field. He defined a complex of abelian groups KCe(X,Z /nZ) (now called
the Kato complex of X):

D P H (2,2 /n2) S P HY@, L n(a— 1) D -
:ceX(a) weX(a—l)

D P HAe,z /(1) L @ H(z,Z/nZ)
zEX(1) z€X(0)
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Here H*(x,7 /nZ(a)) is the Galois cohomology of the residue fields x(x) of z and
Z/nZ(a)is defined as in (2.2). The term in degree a is the direct sum of the Galois
cohomology group for x € X(,), where

X(a) = {ZE eX | dlmm = a},

the set of those points of X whose closure in X has dimension a. Note that x € X,
if and only if trdegy r(x) = a or trdeggr(z) =a — 1.

In case X is as in Theorem 3.2, KCo(X,Z/nZ) coincides with the complex
(3.3), and the assertion of Theorem 3.2 is equivalent to the vanishing of the first
homology group Hi (KCe(X,Z/nZ)).

We define Kato homology of an arithmetic scheme X as
KH,(X,Z/nZ) = H,(KCs(X,Z/nZ)) (a>0). (3.4)
We will also use

KH,(X,Q/2) = lim KH,(X,Z/nZ),

n

KH,(X,Q /%, =lim KH,(X,Z/("Z),
—
where £ is a prime. Kato notices that Theorem 3.2 admits the following conjectural
generalization.
Conjecture 3.3. Let X be a proper smooth variety over a finite fieldd Then
KH,(X,Z/nZ)=0 (Ya>0).

We remark that Geisser [Ge2] defined Kato homology with integral coefficient
and studied an integral version of Conjecture 3.3.

Conjecture 3.4. Let X be a reqular scheme proper flat over the ring Oy, of integers
in a number field. Assume

(%) either n is odd or k is totally imaginary.

Then
KH,(X,Z/nZ)=0 (Ya>0).

We note that the assumption (%) may be removed by modifying K H,(X,Q/Z)
(see [JS1] Conjecture C on page 482).

Conjecture 3.5. Let X be a regular scheme proper and flat over Spec(Oy) where
Oy, is the ring of integers in a local field. Then

KH,(X,Z/nZ)=0 fora>0.

The relationship of Kato homology of an arithmetic scheme to its motivic co-
homology is explained in the following lemma (see [JS2], Lemma 6.2).
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Lemma 3.6. Let X be a connected reqular scheme of finite type over a finite field
or the ring Oy of integers in a number field or of a local field with d = dim(X).
For an integer ¢ > 0, assume (BK)tXl witht =2d—i+1 (see §2). Then the cycle
class map (2.1)

px : Hi (X, Z/nZ(r)) — H.(X,Z /nZ(r))

is an isomorphism for r > d := dim(X), and there is an exact sequence

KHoq i1o(X,Z/0nZ) — Hi (X, Z/nZ(d)) £5
H,(X,Z/nZ(d)) = KHaq i11(X,Z/nZ).

4. Results on Cohomological Hasse principle

In this section we state the known results on the Kato conjectures 3.3, 3.4 and
3.5. Let X be as in the conjectures. As explained, the Kato conjectures in case
dim(X) = 1 rephrase the classical fundamental facts on the Brauer group of a
global field and a local field.

Kato [K] proved Conjectures 3.3, 3.4, and 3.5 in case dim(X) = 2. He deduced
it from higher class field theory for X proved in [KS2] and [Sal]. For X of dimension
2 over a finite field, the vanishing of K H»(X,Z /nZ) in Conjecture 3.3 had been
earlier established in [CTSS] (prime-to-p-part), and by M. Gros [Gr] for the p-part.

The first result after [K] is the following;:

Theorem 4.1. (Saito [Sa2]) Let X be a smooth projective 3-fold over a finite field
F. Then KH3(X,Qu/Z¢) =0 for any prime £ # ch(F).

This result was immediately generalized to the following;:

Theorem 4.2. (Colliot-Théléne [CT], Suwa [Sw]) Let X be a smooth projective
variety over a finite field. Then

KH,(X,Q/Z)=0 for0<a<3

[CT] handled the prime-to-p part where p = ch(F'), and Suwa [Sw] later adapted
the technique of [CT] to handle the p-part. A tool in [Sa2] is a class field theory of
surfaces over local fields, while the technique in [CT] is global and different from
that in [Sa2].

The arithmetic version of the above theorem was established in the following:

Theorem 4.3. (Jannsen-Saito [JS1]) Let X be a regular projective flat scheme
over S = Spec(Oy) where k is a number field or a local field. Fix a prime £.
Assume that for any closed point v € S, the reduced part of X, = X Xgwv is
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a divisor with simple normal crossings on X and that X, is reduced if v|¢. For
simplicity, if k is a number field, we assume that £ # 2 or k is totally imaginary.
Then

KH,(X,Q/Z¢) =0 for0<a<3

The following theorem is a direct consequence of [J], Theorem 0.5. It reduces
Conjecture 3.4 to Conjecture 3.5 for Kato homology with Q/Z-coefficient.

Theorem 4.4. (Jannsen [J]) Let X be a regular projective flat scheme over
S = Spec(Oy) where k is a number field. For each closed point v € S, let
Sy = Spec(Og, ) where k, is the completion of k at v and write Xg, = X xg S,.
Fiz a prime £ and assume for simplicity that £ # 2 or k is totally imaginary. Then
we have a natural isomorphism

KH,(X,Q /%) ~ EB KH,(X,,Q/Z¢) fora>0.
vES (o)

In the next theorem, Conjecture 3.3 is shown assuming resolution of singulari-
ties.

Theorem 4.5. (Jannsen [J], Jannsen-Saito [JS2]) Let X be a projective smooth
variety of dimension d over a finite field. Let t > 1 be an integer. Then we have

KH,(X,Q/Z)=0 for0<a<t

if either t <4 or (RS),, or (RES), , (see below) holds.

(RS), : For any X integral and proper of dimension< d over F, there exists a
proper birational morphism 7 : X’ — X such that X' is smooth over F. For
any U smooth of dimension< d over F, there is an open immersion U — X
such that X is projective smooth over F' with X — U a divisor with simple
normal crossings on X.

(RES), : For any smooth projective variety X over F, any divisor ¥ with simple
normal crossings on X with U = X — Y, and any integral closed subscheme
W C X of dimension< ¢ such that W NU is regular, there exists a birational
proper map ¥ : X' — X such that X' is projective smooth over F' and
7Y (U) =~ U, and that Y’ = X' — 7~ }(U) is a divisor with simple normal
crossings on X', and that the proper transform of W in X’ is regular and
intersects transversally with Y.

We note that a proof of (RES)3 is given in [CJS] based on an idea of Hironaka,
which enables us to obtain the unconditional vanishing of Kato homology in degree
a <4.
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The above approach has been improved to remove the assumptions (RS), and
(RES), on resolution of singularities, at least if we are restricted to the prime-to-
ch(F') part:

Theorem 4.6. (Kerz-Saito [KeS], [Sa3]) Let X be a proper smooth variety over
a finite field F. For a prime { # ch(F), we have KHq(X,Q;/%Z¢) =0 for a > 0.

A key to the proof is the following refinement of de Jong’s alteration theorem
due to Gabber (see [I12]).

Theorem 4.7. (Gabber) Let F be a perfect field and X be a variety over F. Let
W C X be a proper closed subscheme. Let £ be a prime different from ch(F). Then
there exists a projective morphism m: X' — X such that

e X' is smooth over F' and the reduced part of =1 (W) is a divisor with simple
normal crossings on X.

e 7 is generically finite of degree prime to £,
The same technique proves the following arithmetic version as well:

Theorem 4.8. (Kerz-Saito [KeS], [Sa3]) Let X be a regular scheme, proper flat
scheme over a henselian discrete valuation ring with finite residue field F'. Then,
for every prime £ # ch(F'), we have KH,(X,Q¢/Z¢) =0 for a > 0.

We remark that one can prove the above results with Z /¢"Z-coefficient instead
of Q¢ /Zcoefficient by using the Bloch-Kato conjecture:

Theorem 4.9. Let X and ¢ be as in Theorem 4.6 or Theorem 4.8. Assume
(BK)tX’Z holds. Then we have KH,(X,Z/{"Z) =0 for 0 < a < t.

In the rest of this section we give a very rough sketch of the proof of Theorem
4.6. We fix a finite field F' and work in the category C of schemes separated of
finite type over F. We first recall the following:

Definition 4.10. Let C, be the category with the same objects as C, but mor-
phisms are the proper maps in C. Let Ab be the category of abelian group. A
homology theory H = {H,}4cz on C is a sequence of covariant functors:

H,(—): C. — Ab
satisfying the following conditions:

(i) For each open immersion j : V < X in C, there is a map j* : H,(X) —
H,(V), associated to j in a functorial way.

(ii) If i : Y — X is a closed immersion in X, with open complement j : V — X
there is a long exact sequence (called localization sequence)

e s Hy(Y) =5 Ho(X) L5 Ho(V) =5 Hoa (V) — -

(The maps 9 are called the connecting morphisms.) This sequence is func-
torial with respect to proper maps or open immersions, in an obvious way.
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It is an easy exercise to check that Kato homology (3.4)
KH(—,A)={KH,(—,MN}acz (A=Z/nZ, QZ, Q%)

provides us with a homology theory on C. Another homology theory which we use
is the étale homology theory H¢'(—,A) on C given by

HS(X,A) := H *(X¢, Rf'A) for f: X — Spec(F) in C.

where Rf' is the right adjoint of Rfi defined in [SGA 4], XVIII, 3.1.4. Using a
result of [JSS], we can identify K H,(X,A) with an E%-term of the niveau spectral
sequence to get the following map as an edge homomorphism

€ H (X,A\) - KH,(X,A) foreacha>1and X €C.
This gives rise to a natural transformation of homology theories
e: H®(— A)[-1] = KH(—,A).

We now keep our attention to the above homology theories in case A = Q,/Z,
with ¢ # ch(F) and in this case we simply write K H,(X) and H*(X). For each
integer d > 0 consider the following condition:

KC(d): For any connected X € C with dim(X) < d which is proper and smooth
over F' we have K H,(X) =0 for a > 1.

We prove KC(d) by induction on d. One of the basic ingredients in the proof is
a result of Jannsen and Saito [JS2] relying on weight arguments [D] which implies
the following:

Claim 4.11. Assume KC(d — 1). Let X € C be connected proper smooth over
F, and let Y be a divisor with simple normal crossings on X such that one of the
irreducible components of Y is ample. Put U = X — Y. Then the composite map

bu: HE (U) < KH (U) -2 KH,_1(Y)
is injective for 1 < a < d and surjective for a > 2.

Now we sketch a proof of KC(d — 1) = KC(d). Let X € C be a connected
proper smooth over F' with dim(X) = d. Fix an element a € KH,(X) for a > 1.
We have to show a = 0. From the construction of €,, it is easy to see that there
is a dense open subscheme j : U — X satisfying the condition

(%) j*() is in the image of e, : H" | (U) — KH,(U).

Suppose for the moment that Y = X — U is a divisor with simple normal crossings
on X. Then one can use a Bertini argument to find a hypersurface section H < X
such that Y U H is a divisor with simple normal crossings. Replacing Y by Y U H
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and U by U — U N H, the condition (x) is preserved. Consider the commutative
diagram

KHoi(U) —2 > KH,(Y) —> KHoy(X) > KH,(U) —2> KH, ()

€a+1 €a
Sag1 Sa

HSH(U) HE | (U)

By the assumption KC(d — 1), Claim 4.11 implies that the map 4, is injective and
the map 0441 is surjective. A simple diagram chase shows that a = 0.

In the general case in which Y < X is not necessarily a divisor with simple
normal crossings we use Theorem 4.7 to find an alteration f : X’ — X of degree
prime to ¢ such that f~1(Y) is a divisor with simple normal crossings. We then
construct a pullback map

F i KH,(X) > KHy(X')

which allows us to conduct the above argument for f*(a) € K H,(X'). This implies
f*(a) = 0 and taking the pushforward gives f.f*(a) = deg(f) @ = 0. Since deg(f)
is prime to ¢ we conclude a = 0 and therefore we have finished the proof.

The construction of the necessary pullback map on Kato homology, especially in
the arithmetic case, and its compatibility with the pullback map on etale homology
are the most severe technical difficulties. This problem is solved using Rost’s
version of intersection theory and the method of deformation to normal cones [R].

5. Application: Finiteness of motivic cohomology

In the following sections we present some applications of the results on the coho-
mological Hasse principle of §4. The first apllication is on the finiteness conjecture
for motivic cohomology.

Theorem 5.1. Let X be a quasi-projective scheme over either a finite field F' or
a henselian discrete valuation ring with finite residue field F. Let n > 0 be an
integer prime to ch(F') and assume (BK)tX’e for all primes £|n and integers t > 0.
Then CH" (X, q; Z /nZ) is finite for all r > dim(X) and ¢ > 0.

Proof When X is regular and projective over the base, the assertion follows from
Theorem 4.9 and Lemma 3.6. The general case is reduced to the special case by
using the localization sequence for CH"(X, ¢;Z /nZ) and Gabbers’s theorem 4.7
(and its variant for schemes over a discrete valuation ring). For simplicity we only
treat the case over a finite field F. We may assume n = {™ for a prime ¢ #
ch(F). We proceed by induction on dim(X). First we remark that the localization
sequence for higher Chow groups implies that for a dense open subscheme U C X,
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the finiteness of CH" (X, ¢; Z /nZ) for all r > dim(X) and ¢ is equivalent to that of
CH"(U, q;Z /nZ). Thus it suffices to show the assertion for any smooth variety U
over F. If U is an open subscheme of a smooth projective variety X over F', we have
already seen that the assertion holds for X and hence for U by the above remark.
In general Gabbers’s theorem 4.7 implies that there exist an open subscheme V' of
a smooth projective variety X over F', an open subscheme W of U, and a finite
étale morphism 7 : V' — W of degree prime to £. We know that the assertion holds
for V' so that it holds for W by a standard norm argument. This completes the
proof by the above remark. [

We note that the above theorem implies an affirmative result on the Bass
conjecture. Let K}(X,Z/nZ) be Quillen’s higher K-groups with finite coefficients
constructed from the category of coherent sheaves on X (which coincide with the
algebraic K-groups with finite coefficients constructed from the category of vector
bundles when X is regular).

Corollary 5.2. Under the assumption of Theorem 5.1, K[(X,Z [nZ) is finite for
i > dim(X) — 2.

Proof Theorem 2.7 implies that CH" (X, ¢; Z /nZ) is finite for r < g+1. Hence the
assertion follows from Theorem 5.1 and the Atiyah-Hirzebruch spectral sequence
(see [Le] for its construction in the most general case):

By = CH *(X,~p—¢;Z/nZ) = K_,_,(X,Z/nZ)

—P—q

(note EY'? can be nonzero only if ¢ <0 and p+¢ <0). O

6. Application: Special values of zeta functions

Let X be a smooth projective variety over a finite field F'. We consider the zeta

function
1

1—N(z)~*

where N(z) is the cardinality of the residue field k(z) of . The infinite product
converges absolutely in the region {s € C | R(s) > dim(X)} and can be continued
to the whole s-plane as a meromorphic function. Indeed the fundamental results
of Grothendieck and Deligne imply that

¢X,s) = [[ Pia",

0<i<2d

(x,9) =]

=€X(0)

(s e C

where P%(t) € Z[t], and that for every integer r

(X r)* = Tim ((X,8) - (1= ")
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is a rational number, where p, = —ords=.((X,s). The problem is to express
these values in terms of arithmetic invariants associated to X. It has been stud-
ied by Milne [Mil] (who used étale cohomology) and Lichtenbaum [Li] (who used
(conjectural) étale motivic complexes) and Geisser [Gel] (who used Weil-étale co-
homology). As an application of Theorem 4.9, we get the following new result on
the problem.

Theorem 6.1. Let X be a smooth projective variety over a finite field F. Let
p =ch(F) and d = dim(X).

(1) For all integers j, the torsion part H]];/[(X,Z(d))tws of HJ{/[(X, Z(d)) is finite
modulo the p-primary torsion subgroup. Moreover, H3,(X,Z(d))tors is finite
if d < 4.

(2) We have the equality up to a power of p:
«x,0 = I 1HL (X, Z(d) o] 7V (6.1)
0<j<2d
The equality holds also for the p-part if d < 4.

Remark 6.2. Let X = Spec(Ogk) where O is the ring of integers in a number
field. The formula (6.1) should be compared with the formula

_ |H12\/I(Xa Z(l))torS| .

R
HY (X, Z(D))iors]

i .g PO —
lim ((X,5) -5

which is obtained by rewriting the class number formula (1.1) using motivic coho-
mology. Thus (6.1) may be viewed as a geometric analogue of the class number
formula. Note that the regulator Rk does not appear in (6.1) since H3,(X,Z(d))
is (conjecturally) finite for j # 2d.

Proof of Theorem: For simplicity we treat only the case £ # ch(F'). Put
Hyy (X, Qe /Z(d)) = lim Hy, (X, Z/0"Z(d)),
—

H} (X, Qe /Ze(d)) = lim H,(X,Z/0"Z(d)).

By Theorem 4.6 and Lemma 3.6 we have an isomorphism
iy (X, Qe /Z(d)) ~ HE (X, Qe /Zo(d). (62)
By (1.4) we have an exact sequence
0~ Hip(X,Z(d) ® Qe /e = Hiy (X, Qe /Zo(d) — Hif (X, Z(r){t} = 0 (6.3)

where M {¢} denotes the ¢-primary torsion part for an abelian group M. Assuming
J # 2d, one can show using Deligne’s proof of the Weil conjecture [D] and a theorem
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of Gabber [Ga] that Hgt(X,Qg/Zg(d)) is finite and trivial for almost all ¢ (see
[CTSS], Theorem 2). Thus (6.2) and (6.3) imply H3,(X,Z(d)) ® Q¢/Z, = 0 and
we get an isomorphism of finite groups

Hi (X2 ()} = HY(X, Qu/Z(d). (6.4)
This shows the first assertion (1). For the proof of (2), we use the formula

[Hgt(Xv Z)torS][Hézt(X: Z)cotor][Heflt(X: Z)] e
[Hgt(Xv Z)][Hgt(Xﬂ Z)][Hgt(Xﬂ Z)] e

((X,0)" = (6.5)

due to Milne [Mil], Theorem 0.4. Here HY (X,Z) = Z, H},(X,Z) = 0, and
H! (X,Z) is finite for j > 3, and the cotorsion part HZ (X, Z)cotor of HZ,(X,Z) is
finite. By arithmetic Poincaré duality we have

HEZ'(X, Q0 /Zo(d)) ~ Hom (HJ (X, Z0), Qu /o),
where HM (X, Z) = 1<£n H (X, Z/t"Z), and this group is finite for i > 1. Thus
the desired assertion foTILlows from the following isomorphisms
HY (X, Zo) ~ HL,(X, 2){¢} for j >3,
HZ (X, Ze) = HE (X, Z)cotor{(},

which can be easily shown by using the exact sequence of étale sheaves

0225757/ 0.

7. Application: Higher class field theory

Another application of Theorem 4.9 is a generalization of the higher dimensional
class field theory by Schmidt-Spiess [ScSp] which describes the abelian fundamental
group of a smooth scheme over a finite field by using its Suslin homology of degree
0 (see (7.2) below). The generalization is its higher-degree variant and establishes
an isomorphism between the Suslin homlogy of higher degree and the dual of étale
cohomology (see Theorem 7.2 below).

We start with a brief review of higher dimensional class field theory. Let X be
a regular scheme of finite type over F, or Z. Higher dimensional class field theory
aims at describing all relations among the Frobenius elements

oy € Wfb(X)

associated to closed points of X. Here 7{*(X) is the abelian fundamental group of
X, which classifies the abelian finite étale coverings of X. To be more precise, let
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X0y be the set of the closed points of X. For z € X(q), the residue field x(z) of =
is finite. The closed immersion z — X induces p, : 7¢°(z) — 7%°(X) and 7¢*(x)
is the absolute Galois group of x(z) which is topologically generated by the g-th
power map where ¢ = |k(z)|. The Frobenius element o, € 72*(X) is defined as its
image under p,. This defines the map

px : Zo(X) = 7" (X) ; (”$)xex(o) - H (02)™
weX(o)

where Zy(X) = @ Z is the group of zero cycles on X. It was shown by Lang
zEX(O)
that the image of px is dense in 7§*(X) and the problem is to determine its kernel.

The question was first answered by Kato-Saito [KS2], which used the higher
idele class group of X defined as the cohomolgy group of the sheaf of relative Milnor
K-group with respect to the Nisnevich topology. Unfortunately, the description of
the kernel of px in this formulation is not direct and does not give a clear answer
to the above question except in the case where X is proper over the base. It is the
higher unramified class field theory stated as an (almost) isomorphism:

px : CHo(X) — mf*(X)

(see Theorem 2.6). Recall

CHy(X) = Coker( @ k(y)™ N @ Z)

yEX(1) z€X(0)

where X1 is the set of the generic points of the integral curves on X and § is
given by taking the divisors of functions on those curves.

An essential improvement has been given by the following theorem due to
Schmidt-Spiess [ScSp] and Kerz-Schmidt-Wiesend [W], [KeSc] (see also [Sz]).

Theorem 7.1. Let X be a connected regular scheme of finite type over F, or Z.
Letn > 0 be an integer prime to the characteristic of the function field of X. Then
px : Zo(X) = 73 (X) induces an isomorphism

Coker ( EB K(Y)sn LN @ Z/nZ) ~ 1i%(X)/n

yEX(l) wEX(o)

For y € X(1), k(y)sn is a subgroup of £(y)* defined as follows. For simplicity
we restrict to the case X is over [F,. Let C' C X be the closure of y in X, C be its

normalization, and C be the smooth compactification of C, and put ¥, = C — C.
Then

k() ={a€r(y) |ac (k(y)X)" forallz € X,}

where k(y). is the completion of x(y) at z.
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In what follows we assume that X is smooth over a finite field. Schmidt-Spiess
[ScSp] have established a canonical isomorphism

Coker( @ w(y)sn > P Z/nZ) ~ HS(X,Z/nZ). (7.1)
yEX(l) wEX(o)

(A similar isomorphism was shown by Schmidt [Sc] when X is flat over Z under
a certain tameness condition). Thus Theorem 7.1 can be rephrased as a canonical
isomorphism

HS (X, Z/nZ) ~ 7{*(X) /n. (7.2)

As an application of Theorem 4.9, we can extend this to the following.

Theorem 7.2. ([KeS]) Let X be a connected smooth scheme over a finite field
F, and let n > 0 be an integer prime to ch(F,). Then there exists a canonical
isomorphism for all integers i > 0

HY(X,Z/nZ)~ Hi'(X,Z/nZ)* := Hom(H. " (X,Z /nZ),Z/nZ),

where H? (X, 7 /nZ) is the Suslin homology defined in §1. In particular HY (X, 7 /n7Z)
is finite.

The case i@ = 0 of Theorem 7.2 is reduced to the isomorphism (7.2) by the
natural isomorphism H}, (X,Z/nZ)* ~ 7 (X)/n.

Remark 7.3. Let X be separated of finite type over a finite field F. Assuming
resolution of singularities over F, Geisser [Ge3] proved that H? (X, Z/nZ) is finite
for all integers 7 and n.

8. Application: Resolution of quotient singularities

We fix a field k and assume ch(k) = 0. Let C be the category C of separated
schemes of finite type over k. Let S C C be the subcategory of smooth projective
schemes over k. Fix an abelian group A. Based on work of Gillet and Soulé [GS],
Jannsen ([J], Theorem 5.9) proved the following.

Theorem 8.1. There exists a homology theory (cf. Definition 4.10)
HY(=,A):C, — Ab
such that for all X € S, we have

A q=0

Y (X,4) = {
0 a#0,

where mo(X) is the set of connected components of X. We call HYV (X,A) the
weight homology group of X with coefficient A.
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We briefly review the construction of [GS]. To a simplicial object in S:

we associate a chain complex of abelian groups
W(Xe,A): --- — A™(Xn) Oy pAmo(Xnon) Oy 0 9y ATo(Xo),
where 8 : A™0(Xn) 5 A™(Xn-1) is defined as 8 = Y1 (—1)?8, with

Oa : AﬁU(X") — AWO(Xnil) 5 (xi)iEWo(Xn) - ( Z l’z)
da(i)=j

jeEmo(Xn—1) °

For X € C choose an open immersion j : X — X with X € C proper over k and
leti:Y =X — X — X be the closed immersion for the complement. By [GS] 1.4,
one can find a diagram

v, = X,
by lwx (8.1)
Yy - X

where Y, and X, are simplicial objects in S and mx and 7y are hyperenvelopes.
To this diagram one associates a complex

Cone(W (Ya, A) =5 W(X., A)).

By [GS], 1.4, the image W (X, A) of the above complex in the homotopy category
of chain complexes of abelian groups depends only on X and not on a choice of
the diagram (8.1). The homology theory in Theorem 8.1 is defined as

HY(X,A) := H,(W(X,A)) for X €C.

For example, if X is a divisor with simple normal crossings on a smooth projective
variety over k, HV (X, A) is a homology group of the complex:

Ly AT(X®) 0, amp(XD) 8, 8 (X))
where X1,..., Xy are the irreducible components of X and

X = I Xiin Ko =X n--nXi,),
1<i; < <ig <N

and the differentials 9 are obvious ones.
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Theorem 8.2. ([KeS2]) Let X be a quasi-projective smooth variety over k with
action of a finite group G. Let X/G be the geometric quotient ([Mu/], Ch.IT §7,
SGA 1 V§l1).

(1) Assume that X is projective. Then HV (X/G,Z) =0 for all a > 0.

(2) Assume that the singular locus Z of X/G is proper over k. Let w :Y —
X/G be a proper birational morphism such that Y is smooth over k and ©
is an isomorphism over outside Z. Let E be the reduced part of 7= 1(Z).
Then HY (E,Z) ~ HY(Z,Z) for all a. In particular, if Z is reqular, then
HY(E,Z)=0 for all a > 0.

Here we explain an idea of the proof of Theorem 8.2(1). The second assertion
(2) is an easy consequence of (1). Since H)V (Y,Z) for Y € C is finitely generated,
it suffices to show the assertion for the weight homology group with coefficient
A = Q/Z. Without loss of generality, we assume that k is finitely generated
over Q. Then the basic idea of the proof is to introduce an arithmetic invariant
KH,(Y) for Y € C which is defined without referring to desingularizations (or
hyperenvelopes) and to show the following facts:

(x1) HY(Y,Q/Z) ~ KH,(Y) for all Y € C.
(¥2) KH,(X/G) =0 for a # 0, where X/G is as in Theorem 8.2(1).
To define such an invariant we consider

H,(X):= ll_H)l Hom (H? (Xg, Z/nZ),Q/Z) for X € Ob(C). (8.2)

n

where H%(X¢,Z /nZ) is the étale cohomology with compact support (cf. [JS2],
Example 2.5). It provides a homology theory on C and gives rise to the niveau
spectral sequence:

By (X)= D Hpiyle) = Hyppy(X) with Hy(z) = lim H,(V). (83)
wGX(p) ng

Here the limit is over all non-empty open subschemes V' C m The affine Lef-
schetz theorem implies E} ,(X) = 0 for ¢ < 0 and the desired arithmetic invariant
KH,(X) is defined as E? ;(X), an E? term of the spectral sequence. By the same
techniques as the proof of Theorems 4.5 and 4.6, one can prove the following.

Theorem 8.3. For X € S, we have

@2y a=0

KH,(X) =
() { 0 a#0,
The assertion (x1) follows from Theorem 8.3 and a result of Jannsen [J], The-
orem 5.13. We note that the proof of Theorem 8.3 uses the weight argument ([D])
and requires the assumption that k is finitely generated. In order to show the
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assertion (x2), we apply the same argument to the equivariant version of (8.2). We
fix a finite group G and let Cg be the category of quasi-projective schemes over k
with a G-action. We consider

HE(X) := lim Hom (HZ(G; X&, Z/nZ),Q/Z) for X € Ob(C). (8.4)

n

Here
H(G; Xey, Z/nL) == RU(G, RT(X a1, 1 Z /11))),

is the equivariant étale cohomology with compact support, where j : X < X
is any equivariant compactification of X, and RI'(G, —) is the derived functor of
taking G-invariants. This provides a homology theory on Cs and the equivariant
version KHY(X) of KH,(X) is defined as an E*-term of the associated niveau
spectral sequence. Then (x2) follows from the following.

Theorem 8.4. ([KeS2]) Let X € Cg be smooth over k.
(1) We have a natural isomorphism KHS(X) ~ KH,(X/G) for all a.

(2) If X is projective, we have

Z)m X/ g =0
KH(?(X) — (Q/ )
0 a#0,
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