COHOMOLOGICAL HASSE PRINCIPLE AND RESOLUTION OF

QUOTIENT SINGULARITIES

MORITZ KERZ AND SHUJI SAITO

ABSTRACT. In this paper we study weight homology of singular schemes. Weight
homology is an invariant of a singular scheme defined in terms of hypercoverings
of resolution of singularities. Our main result is McKay principle for weight ho-
mology of quotient singularities, i.e. we describe weight homology of a quotient
scheme in terms of weight homology of an equivariant scheme. Our method is
to reduce the geometric McKay principle for weight homology to Kato’s cohomo-
logical Hasse principle for arithmetic schemes. The McKay principle for weight
homology implies McKay principle for the homotopy type of the dual complex of
the exceptional divisors of a resolution of a quotient singularity. As a consequence
we show that the dual complex is contractible for isolated quotient singularities.
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Quite a few examples have been observed which show that an arithmetic method
can play a significant role for a geometric question. In this paper we present such a
new example. The geometric question concerns the dual (or configuration) complex
of the exceptional divisors of a resolution of a quotient singularity X /G, where X is
a quasi-projective smooth scheme over a perfect field k£ endowed with an action of a
finite group G. Let Z be the singular locus of X/G. Assume furthermore that there
exists a resolution of singularities g : Y > X /G such that g is proper birational and
an isomorphism outside Z and E = g*I(Z)red is a simple normal crossing divisor
on the smooth scheme V. The dual complex I'(E) is a CW-complex (which is a
A-complex in the sense of [Hat, Section 2.1]) whose a-simplices correspond to the
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connected components of
glal — H Ei,N---NE;
1<i9<t1 << <N
where FE1,..., En are the irreducible components of F.

A model case is a Klein quotient singularity C2 /G, where G C SLy(C) acts linearly
on C2. The origin 0 € C2 /G is the unique singular point of C2 /G. Let g : Y — C? /G
be the minimal resolution. The irreducible components of the exceptional locus
E = g~ 1(0) are rational curves that form a configuration expressed by the Dynkin
diagrams. For example, if we take a binary dihedral

G=<o,7|0"=1,12=-1, 701 = -0 !>,

the irreducible components of FE form a configuration looking as

A SR

consisting of (n + 2) rational curves. The configuration complex I'(E) is

with (n 4 2) vertices and (n + 1) edges.

For general G C SLy(C) McKay observed a mysterious coincidence of I'(E) and
the so-called McKay graph which is computed in terms of representations of G. The
higher dimensional generalization of this fact, called McKay correspondence, is now
a fertile land of algebraic geometry. For more details on this, we refer the readers to
an excellent exposition by M. Reid [Re]. Here we just quote the following principle:

McKay principle: Let G be a finite group and X be a quasi-projective smooth
G-scheme over a field & (i.e. a quasi-projective smooth scheme over k endowed with
an action of G), and g : Y — X/G be a resolution of singularities of X/G. Then
the answer to any well posed question about the geometry of Y is the G-equivariant
geometry of X.

In this paper we investigate McKay principle for the homotopy type of I'(E),
which is known to be an invariant of X/G independent of a choice of a resolution
Y — X/G by a theorem of Stepanov and its generalizations ([St], [ABW1], [Pa],
[Th]).

Let us fix the setup for our main result. Let X and G be as before and 7 : X —
X /@G be the projection. Fix a closed reduced subscheme S C X /G which is projective
over k and contains the singular locus (X/G)sing of X/G. Let T = 17'(5)cq be the

reduced part of 7~ 1(S). Assume that we are given the following datum:
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e a proper birational morphism g : Y — X/G such that Y is smooth, Fg =

g7 (9)req is a simple normal crossing divisor on Y and ¢ is an isomorphism
over X/G - S.

e a proper birational G-equivariant morphism f : X > Xin Cq/k such that X
is a smooth G-scheme, Ep = f~1(T),q is a G-strict simple normal crossing
divisor on X (cf. Definition 1.5) and f is an isomorphism over X — 7'

TS )pea =T X o« X Er = f"UT)eq
S > X/G < g ? < ES:g_I(S)red

Note that we do not assume the existence of a morphism Er — Eg. By definition
G act on I'(E7) and we can form a CW-complex I'(ET)/G.

Theorem 0.1. (Theorem 11.1) We assume that ch(k) = 0 or that k is perfect
and canonical resolution of singularities in the sense of [BM] holds over k. In the
homotopy category of CW -complexes, there exists a canonical map

¢:T(Er)/G — T'(Eg)
which induces isomorphisms on the homology and fundamental groups:
H,(T(Er)/G) —» Ho(D(Es))  for Va € Z,
™ (T(Er)/G) = 7 (T(Es)).

By using basic theorems in algebraic topology (Whitehead and Hurewicz), Theo-
rem 0.1 implies the following:

Corollary 0.2. Let the assumption be as in Theorem 0.1.

(1) If T(E7)/G is simply connected, ¢ is a homotopy equivalence.

(2) If T'(ET)/G is contractible, I'(Eg) is contractible.

(3) If T is smooth (e.g. dim(T) = 0 which means that (X/G)sing is isolated),
['(Eg) is contractible.

We will deduce the following variant of Corollary 0.2(3).

Corollary 0.3. (Corollary 11.4) Let A be a complete reqular local ring containing
Q and let G be a finite group acting on A. Set X = Spec(A) and assume that X/G
has an isolated singularity s € X/G. Let g : Y — X/G be a proper morphism such
that g is an isomorphism outside s and E; = g~'(5)req is a simple normal crossing
divisor in the reqular scheme Y. Then the topological space ['(Ey) is contractible.

Here we recall some known results on the contractibility of the dual complex of
the exceptional divisor of a resolution of singularities. Let (Y,S) be an isolated
singularity over algebraically closed field of characteristic 0. We recall the following
implications for (Y, S):

finite quotient = KLT = rational,

where K LT stands for Kawamata log terminal. Let ¢ : Y =Y be proper birational
such that Y smooth, Es = ¢~ (5),eq is a simple normal crossing divisor and ¢ is an
isomorphism over Y — S. The following facts are known:

e If (Y, S) is rational, H,(I'(Eg)) is torsion ([ABW2]). The proof uses weight
argument in Hodge theory.

e there exists a rational singularity (Y,S) such that I'(Eg) has the homotopy
type of P2, in particular 7 (['(Eg)) = Hi(T'(Es)) = Z/27Z ([Pa)).
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o If (Y,S) is KLT, m(I'(Es)) = 1. This is a consequence of a theorem of
Kollar and Takayama ([Ko], [Ta]).

An intriguing question is whether I'(Eg) is contractible if (Y, 5) is KLT.

Now we explain the main idea of the proof of Theorem 0.1. The proof of the
assertion on the fundamental group relies on a geometric interpretation of the fun-
damental group of the dual complex of a simple normal crossing divisor. More
generally, for any locally noetherian scheme E, we associate a CW-complex I'(E) to
E in the same way as the case of simple normal crossing divisors and show a natural
isomorphism

m(D(E)) =~ m1°(E),
where the right hand side denotes the classifying group of cs-coverings E' — FE,
which is by definition a morphism of schemes such that any point x € E has a
Zariski open neighborhood U C E such that E' x g U ~ [[ U with a possibly infinite
coproduct (see §10).

In order to show the assertion of Theorem 0.1 on the homology groups, we need
introduce the equivariant weight homology. Let Ceq/), be the category of pairs (X, G)
of a finite group G and a G-scheme X which is quasi-projective over k (see §1 for
the definition of morphisms in Ceq/x). For simplicity we ignore the p-torsion if

ch(k) = p > 0 and work over A := Z[-] (we can extend the following results to the
p

case A = Z assuming appropriate form of resolution of singularities). Let Modx
be the category of A-modules. An equivariant homology theory H = {H,}q>0 with
values in A-modules on Ceq/ is a sequence of functors:

Ha(—) : Ceq/k) — Modp (a S ZZO)

which are covariant for proper morphisms and contravariant for strict open immer-
sions (a strict morphism in Ceq/, means a G-equivariant morphism for some fixed G)
such that if i : Y < X is a strict closed immersion in Ceqy/g, with open complement
j : V = X there is a long exact sequence called localization sequence (see Definition
1.1)
D (V) A Hy(X) L Ha(V) S Hy (V) — e
A main input is the following result (see Theorem 1.4).

Theorem 0.4. For a A-module M, there exists a homology theory on Ceq/y with
values in A-modules:

(X,G) = HY(X,G; M) (a € Zo)

called equivariant weight homology with coefficient M satisfying the following con-
dition: Let E be a projective G-scheme over k which is a G-strict simple normal
crossing divisor on a smooth G-scheme over k (see Definition 1.5 for G-strict).
Then we have
H"(E,G; M) ~ H.(I'(E)/G)
which is computed as the homology of the complex:
ooy pro(BED/G 9 g mo(Blet /G 9 9 g rmo(BI)/G

In particular, if X is a projective smooth G-scheme over k, we have

MX©/a fora=20
0 fora#0

where X(©) is the set of the generic points of X.

HY(X,G; M) g{
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In case G is the trivial group e, we write HV (X; M) for H)V (X, G; M).

The construction of H)Y (X,G; M) hinges on a descent argument due to Gillet—
Soulé ([GS1], [GS2]) and Jannsen [J], going back to Deligne [SGA4] Exposé Vs, If
X is proper over k, we take a A-admissible hyperenvelope (X,, G) (see Definition

2.4) which is a certain simplicial object in Cq /k such that X, are smooth projective

over k for all n, and then define H)Y (X, G; M) as homology groups of the complex
ooy MT(Xn)/G 9y prmo(Xn-1)/G 9y 0 9 prmo(Xo)/G

The existence of hyperenvelopes relies on equivariant resolution of singularities. In
case ch(k) = 0 it follows from canonical resolution of singularities [BM]. In case
ch(k) > 0 the construction depends on Gabber’s refinement of de Jong’s alteration
theorem [I1].

Theorem 0.1 is deduced from the following theorem (see Theorem 1.7 and Corol-
lary 1.9 in §1).

Theorem 0.5 (McKay principle for weight homology). For (X,G) € Ceqi let 7 :
X — X/G be the projection viewed as a morphism (X,G) — (X/G,e) in Ceqr,
where e is the trivial group. Then the induced map
e HV(X,G; M) — HY (X/G; M)

is an isomorphism for all a € Z. In particular, if X is projective smooth over k, we
have HV (X/G; M) = 0 for a # 0.

Note that the last statement is non-trivial since X /G may be singular even though
X is smooth.

For k = k and M uniquely divisible Theorem 0.5 follows from the yoga of weights.
To see this let us for simplicity assume k£ = C. In terms of the weight filtration on
singular cohomology with compact support, see [D2], one has

H," (X, G; M) = Homg(WoH{ (Xan, Q)¢ M),
where the upper index G stands for G-invariants. It is not difficult to check that
H(X/G)an, Q) = HY (Xan, Q)
is an isomorphism, from which Theorem 0.5 follows in this special case.

Our basic strategy to show Theorem 0.5 in general is to introduce another (arith-
metic) homology theory

(X,G)P—)KHa(X,G,M) (CLGZZU)

called equivariant Kato homology with coefficient M as a replacement for the weight
zero part of singular cohomology with compact support above. Here we assume that
M is a torsion A-module. As in case of the weight homology, we simply write
KH,(X,G;M) = KHy(X; M) in case G = e. For this homology theory McKay
principle is rather easily shown:

Proposition 0.6. (Proposition 8.3) For (X,G) € Ceq/k, ©: X — X/G induces an
isomorphism

mt KHo(X,G; M) = KH,(X/G; M) for all a € 7.
Theorem 0.5 follows from Proposition 0.6 and the following.
Theorem 0.7. (Theorem 9.1) There exists a map of homology theories on Ceq/k*
KH,(X,G; M) — HY (X,G; M)

which is an isomorphism if k is a purely inseparable extension of a finitely generated
field and M = A := Q/A.
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The proof of Theorem 0.7 relies on Theorem 0.9 below on the cohomological Hasse
principle. The cohomological Hasse principle originally formulated as conjectures by
K.Kato [K1], concerns a certain complex of Bloch-Ogus type on an arithmetic scheme
X (which means a scheme of finite type over Z):

01) -5 @ H Y (2,2/nZ(0) L @ H(2,Z/nZ(a—1)) L -
TE€EX (q) 2€X (a—1)

L @ HAe,z/nz(1) L @ H(2,Z/nZ)
:L‘GX(I) :DEX(O)

Here X(,) denotes the set of points € X such that dim {z} = a with the closure

m of x in X, and the term in degree a is the direct sum of the Galois cohomology
H'Y(z, 7 /n7Z(a)) of the residue fields (x) for z € X(q) (for the coefficients Z /nZ(a),
see [KeS, Lemma 1.5]. If (n,ch(k(x)) = 1, Z/nZ(a) is the Tate twist of n-roots of
unity). The homology groups of the above complex is denoted by KH,(X;Z/nZ)
and called the Kato homology of X (in case X has a component flat over Z, one
need modify the definition in order to take into account contributions of R-valued
points of X but we ignore it). Kato [K1] conjectured.

Conjecture 0.8. Let X be a proper smooth scheme over a finite field, or a reqular
scheme proper flat over Z. Then

KHy,(X;Z/nZ)=0 fora#D0.

In case dim(X) = 1 the Kato conjecture is equivalent to the Hasse principle for
the Brauer group of a global field (i.e. a number field or a function field of a curve
over a finite field), a fundamental fact in number theory.

A generalization of the Kato homology to the (non-equivariant) case over a
finitely generated field was introduced in [JS] and the equivariant Kato homology
KH,(X,G; M) is its equivariant version (it agrees with K H,(X;7Z/nZ)incase G = e
and M = Z/nZ). As for non-equivariant case, the following result has been shown.

Theorem 0.9. ([KeS]) Assume that k is a purely inseparable extension of a finitely
generated field. For a proper smooth scheme X over k and for a prime to £ # ch(k),
we have

KH,(X;Qp/Zy) = h_r)n KH,(X;Z]0"Z) =0 for a#0.

If k is finite, the same holds by replacing Qp/Zy by 7 /nZ with n prime to ch(k).

Key ingredients of the proof of Theorem 0.9 is Deligne’s theorem [D1] on the Weil
conjecture and Gabber’s refinement of de Jong’s alteration.

Theorem 0.7 is shown by using Theorem 0.9. As a corollary of Theorem 0.7 and
Proposition 0.6, we get the following extension of Theorem 0.9 to a singular case.

Corollary 0.10. (Corollary 9.3) Let k be a purely inseparable extension of a finitely
generated field. Let X be a proper smooth scheme with an action of a finite group
G over k. For a prime to ¢ # ch(k), we have

KH,(X/G;Q¢/Z¢) =0 fora#0.
If k is finite, the same holds by replacing Qq/Zy by Z/nZ with n prime to ch(k).

The paper is organized as follows. In §1 we explain the properties of the equivari-
ant weight homology theory and state McKay principle for the equivariant weight
homology and its corollaries. The construction of the equivariant weight homology
theory occupies four section §2 through §5. The sections §6 and §7 are preliminaries
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for the construction of the equivariant Kato homology and the proof of its basic
properties given in §8. In §9 a comparison theorem of the equivariant Kato homol-
ogy and the weight homology is proved. McKay principle for the equivariant weight
homology stated in §1 is deduced from the comparison theorem. In §10 we relate
the fundamental group of the dual complex to the classifying group of cs-coverings.
Using this and the McKay principle stated in §1, we prove the main theorem 0.1 in
§11.

A. Thuillier, relying on the theory of Berkovich spaces, announced similar results
to the ones presented in this note, in particular Corollary 0.2(3).

A part of this work was done while the second author’s stay at University of
Regensburg. He thanks Uwe Jannsen and the first author cordially for hospitality
and financial support. We thank Sam Payne for explaining us his work on the topic.
We thank Yoshihiko Mitsumatsu for helpful discussions on algebraic topology.

1. EQUIVARIANT WEIGHT HOMOLOGY

By k we denote a field and let A be either Z or Z[1/p], where p is the exponential
characteristic of k. Let Ceq/p be the category of pairs (X, G) of a finite group G
and a G-scheme X which is quasi-projective over k (i.e. X € C /. equipped with
a left action of G over k). For objects (X,G) and (Y, H) of Ceq/i, the morphisms
(X,G) — (Y,H) are pairs (¢, f) of a group homomorphism ¢ : G — H and a
map of G-schemes f : X — Y, where we endow Y with the induced G-action.
Note that the category Ceq has fibre products. We will often write just X for an
object (X, &) € Ceq/, when it is clear from the context that X is endowed with a
group-action.

We say (¢, f) is strict if G = H and ¢ is the identity. For fixed G, let Cg/k - Ceq/k
be the subcategory of G-schemes and strict morphisms. A morphism in Cgyy is
simply denoted by f: X — Y. Notice that in case G = e the trivial group, Cq/y is
identified with C, i.e. the category of quasi-projective schemes over k.

A strict open immersion (resp. strict closed immersion, resp. strict proper mor-
phism) in Ceq/k means an open immersion (resp. closed immersion, resp. proper
morphism) in Cq/y, for some G. An equivariant simplicial scheme is a simplicial
object in Cgq/y, for some G.

Definition 1.1. Let Coq g4 be the category with the same objects as Coq/ and with
morphisms in Ceq/p Whose underlying morphisms of schemes are proper. Let A be
a commutative ring. An equivariant homology theory H = {H,}q>0 with values in
A-modules on Cqy /. is a sequence of covariant functors:

Hy (=) : Coq/ps — Mody
satisfying the following conditions:
() For each strict open immersion j : V' < X in Ceyy, there is a map j*
H,(X) — Hy(V), associated to j in a functorial way.

(43) If i : Y — X is a strict closed immersion in Cgq/;, With open complement
7 : V — X, there is a long exact sequence (called localization sequence)

5k

-5 Hy(V) =5 Hy(X) 5 Hy(V) =5 Hoot (V) — -

(The maps 0 are called the connecting morphisms.)
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(7i7) The sequence in (ii) is functorial with respect to proper morphisms or strict
open immersions in Ceq/k, in the following sense. Consider a commutative
diagram in Ceq/

i/

UIGI jl XIGI ZIGI
U,6") — (X,G) —— (Z.,¢)

lfU lf lfz
such that the squares of the underlying schemes are cartesian, and 7 (resp.
i') is a strict closed immersion and j (resp. j') is its open complement.

If G = G' and f is a strict open immersion, the following diagram is
commutative.

Ha(Za G) — Ha(Xa G) - Ha(Ua G) - a+1(Za G)

A
Hy(Z',G) = Hy(X',G) = Hy(U',G) - Hoy1 (7, G)

If f is proper, the following diagram is commutative.

Ho(Z',G') = Ho(X',G') = Ho(U', G") = Ho1 (2", &)

(fz)*J( f*l (fU)*l (fz)*J(

Ha(Za G) - Ha(Xa G) - Ha(Ua G) - a+1(Za G)

A morphism between homology theories H and H' is a morphism ¢ : H — H' of
functors on Ceq/p+, Which is compatible with the long exact sequences from (ii).

Definition 1.2. We call (X, &) € Ceqp, primitive if G' acts transitively on the set
of irreducible components of X. Let Seq/p C Ceqsi (resp. Sqr C Cqyi) be the full
subcategory of objects whose underlying schemes are smooth projective over k and
Seq " C Seqyi; (vesp. Sgr/l;cn C Sgyx) be the full subcategories of primitive objects.

Let p be the exponential characteristic of k. Let k be the perfection of k. We
consider the following condition on resolution of singularities:

(RS),, : For (X,G) NE Coq/i With X reduced, there are (X',G) € Coq/ic With X’

smooth over k and a strict, projective, birational morphism f : X’ — X
such that f is an isomorphism over the regular locus X,.4 of X and that the
reduced part of f~!(X — X,,) is a simple normal crossing divisor on X'.

Remark 1.3. (1) The condition (RS),, includes as a special case G = e (non-
equivariant) resolution of singularities proved by Hironaka [H| assuming
ch(k) = 0. Under the same assumption (RS),, is a consequence of canonical
resolution of singularities shown in [BM].

(2) In case ch(k) > 0, (RS),, would be false in general if we did not work over

the perfection k of k.

Theorem 1.4. (see Construction 5.2) Assume the following conditions:

1
() A= Z[I—)], or A =7 and (RS),, holds.
For a A-module M, there exists a homology theory on Ceq p with values in A-modules:
(X,G) = H,' (X, G; M)

colled equivariant weight homology. It satisfies:
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(i) there are canonical isomorphisms for (X, G) € Seqr,

MxXQ/G fora=20

w . ~
Y (x.Goan ={ ) fora =0

compatible with pushforward in Seqi, where X©) s the set of the generic
points of X.

(ii) M — HWY (—; M) is a covariant functor from A-modules to the category of
equivariant homology theories,

(7i1) for a short exact sequence of A-modules

0— M — My — M3 —0
there is a natural long exact sequence
c— Hy (= My) = Hy' (=5 Ma) — Hg¥' (= Ms) = HyZy (= My) = -+
(iv) for (X, Q) € Coq there is a natural convergent spectral sequence
By, = Torg (M, H) (X, G; A)) = Hy' (X, G; M),

(v) HY(X,G;A) is a finitely generated A-module for all a > 0,
(vi) For extensions of fields k C k' there are natural pushforward maps

T HY (X, Gy M) — H)Y (X, G; M),

where the left hand side weight homology is relative to the base field k'. It

satisfies:

(a) If k' is purely inseparable over k, Tk /i 1S an isomorphism.

(b) For fized (X,G) € Coq and a > 0, and for a directed system of fields
{ka}acr with kg C ko for o = « and hﬂa ko =K' the inverse system

{H;" (X, G; M)}a
becomes stationary for big o and equal to H) (Xpr, G; M).
If G = e is trivial, we write H)V (X; M) for HYV (X, G; M).

In §4 and §5 we give a descent construction of the equivariant weight homology.
In the non-equivariant case this is due to Gillet-Soulé ([GS1], [GS2]) and Jannsen
[J], relying on ideas of Deligne [SGA4] Exposé VP, If ch(k) > 0 our construction
depends on Gabber’s refinement of de Jong’s alteration theorem [I1], see Theorem 2.2.

Definition 1.5. A G-stable simple normal crossing divisor £ on a smooth scheme
over k with a G-action is G-strict if for any irreducible component F; of E and for
any g € G, g(E;) = E; or E; Ng(E;) = 2.

Ezample 1.6. Let X € Cg/, be a G-strict simple normal crossing divisor (Definition
1.5). Then HY (X,G; M) is the homology of the complex:
ooy proXEh/G 9 g pmo(xlemily/a O, 0 9y mo(XPN)/G
Here Xi,..., Xy are the G-primitive components of X and
Xl = T Xieie Kigrosia =XigN---NX5,),
1<ip<++<ig <N

and mp(—) denotes the set of connected components, and the differentials 0 are
obvious alternating ones. Note that assuming equivariant resolution of singularities
one can essentially calculate H" by these recipes up to extensions of groups.
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One of the main results of this paper is the following. Our proof in Section 9 uses
arithmetic results due to Jannsen and the authors on Kato’s cohomological Hasse
principle ([J], [JS] and [KeS]). Recall that p is the exponential characteristic of k.

Theorem 1.7 (McKay principle for weight homology). Assume the condition (%)
of Theorem 1.4. For (X,G) € Coqp let m: X — X/G be the projection viewed as a
morphism (X,G) — (X/G,e) in Coq/- Then the induced map

e HV(X,G; M) — HY (X/G; M)

15 an tsomorphism for all a € 7.

Corollary 1.8. Let the assumption be as in 1.7. Assume (X,G) € Sé’éim . Then
M a=0

mrsean={y

Corollary 1.8 is a direct consequence of Theorem 1.7 and Theorem 1.4(i).

Corollary 1.9. Let the assumption be as in 1.7. Let (X, Q) € Coq/i and assume X
is smooth over k. Let S C X/G be a reduced closed subscheme which contains the
singular locus of X/G. Let f:Y — X/G be a proper birational morphism such that
Y is smooth over k and f is an isomorphism outside S. Assume
(i) S is proper over k (e.g. S is isolated),
(ii) There exist a strict open immersion j : X — X in Cq/k, and an open immer-
sionY < Y with X andY projective and smooth over k, and a commutative

diagram
Y Y
|
X/G—X/G

where f is proper birational.
Then the map
HY (f71(S); M) = HY (S; M)
is an isomorphism for alla € Z. In particular, if S is smooth over k, HV (f=1(S); M)
0 for a # 0.

Remark 1.10. The assumption (i¢) always holds if ch(k) = 0 thanks to [H] and [BM].
Assuming that k is perfect, the assumption (ii) is a consequence of (RS),,.

Here we deduce Corollary 1.9 from Theorem 1.7 We may assume that (X,G)
is primitive and Y is connected. Put S = S U (X/G — X/G) C X/G. By the
localization sequence for weight homology we have a commutative diagram with
exact rows

HYL (V) ——H (Y = f719) —H' (f1(S)) ——H," (Y)

l 5 l l

HY(X/)G) —= HY, (X/G = S) HY(S) HY (X/G).

In the diagram we suppressed the coefficients M for simplicity of notation. The
second vertical isomorphism holds since Y — f~1(S) =2 X /G — S. By Corollary 1.8
we get
M a=0

HY Y, M) S HY(X/G,M) = { 0 a0
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Thus, from the above diagram we deduce an isomorphism
Hy' (f71(S); M) = H,¥ (S5 M)

By the assumption (i), S is the disjoint sum of S and (X/G — X/G). Hence the
above isomorphism induces the desired isomorphism of Corollary 1.9. [

From the proof of Theorem 1.7 we also deduce the boundedness of H" in Sec-
tion 9.

Proposition 1.11. For X € Cq/; and for a A-module M we have under condition
(%) of Theorem 1.4

HY(X,G;M) =0
if a > dim(X) + 1.

Proposition 1.11 would follow immediately from Theorem 1.4 under the assump-
tion of a strong form of equivariant resolution of singularities, which we do not have
in positive characteristic at the moment. See [GS1, Sec. 2.5] for an analogous argu-
ment. Our proof of Proposition 1.11 relies on equivariant Kato homology and is of
arithmetic nature (see its proof in the last part of §9).

2. ADMISSIBLE ENVELOPES

Let the notation be as in Section 1. We define A-admissible envelopes of equivariant
schemes generalizing an idea of Gillet [Gi]. Then we state an equivariant alteration
theorem due to Gabber and sketch a proof. This allows us to construct smooth hy-
perenvelopes of equivariant simplicial schemes. Recall that p denotes the exponential
characteristic of the base field k& and that A is either Z or Z[1/p].

Definition 2.1. ([GS1, 1.4.1]) A morphism f : (X,G) — (Y,G) in Cg is called a
A-admissible envelope if the underlying morphism X — Y is proper and it satisfies
the following condition.

If A = Z, for a primitive G-equivariant scheme (Spec(L),G) where L is a finite
product of fields, the induced map X (L) — Y (L) on the the sets of G-equivariant
points of X and Y with values in (Spec(L), G) is surjective.

If A # Z, for each prime number ¢ # p and for each G-equivariant point P € Y (L)
with values in (Spec(L), G), there is a finite G-equivariant extension (Spec(L’), G) —
(Spec(L), G) of degree prime to ¢ and a G-equivariant point P’ € X (L') mapping to
PeY(L) = Y(L).

Clearly the system of A-admissible envelopes is closed under compositions and
base changes.

For the construction of admissible envelopes we need some sort of resolution of
singularities over the base field k. For this consider the following condition:

(G), : For a prime number ¢ and (X,G) € Ceq/p With X reduced,
there are (X', G) € Coq/p With X’ smooth over k and a strict, surjec-
tive, projective morphism f : X’ — X which is finite of degree prime
to £ over any maximal point of X.

Theorem 2.2 (Gabber). If k is perfect, (G), holds whenever { # p.

In case G = e this result due to Gabber is shown in [Il]. Gabber communicated
the following proof [Ga] to us in the general case.
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Proof  Without loss of generality X is G-primitive. Let X; be an irreducible
component of X and put

G1={g € Glg(X1) = X1 }.

Let Gy be an ¢-Sylow subgroup of G; and denote by D — Y = X; /G, the locus
over which Gy does not act freely on X;. According to [Il, Theorem 1.3], there
is a dominant generically finite morphism ¢ : Y/ — Y of degree prime to ¢ such
that Y’ is smooth and D’ = ¢ (D) is a simple normal crossing divisor on Y.
Let Y1 be the normalization of Y" in k(Y') ®yyy k(X1). As Y is tamely ramified
over Y', we use Abhyankar’s lemma [SGA1, XIIT Proposition 5.1] in order to find
étale locally over Y’ an embedding of Y] into a Kummer étale extension of the log
scheme (Y', D'). By [Il, Proposition 6.6(c)] (Y1, D) is log regular where D is the
reduced preimage of D’. Using results of Kato, Niziol and Gabber [K2] and [N] on
resolution of log regular schemes, we find an equivariant resolution of singularities
(X1,Ge) — (Y1,Gy). If we let (X', G) be the equivariant smooth scheme given by
X" =G xq, X{, the morphism f : (X',G) — (X, G) is as demanded in (G),. O

Proposition 2.3. Assume the condition (%) of Theorem 1.4 and further that k is
perfect. Then, for any (X, G) € Cq with X reduced, there is a A-admissible envelope
[ (X", Q) = (X, Q) with X' smooth over k.

Proof In case A = Z and (RS) ¢q Dolds, the assertion is proved by the same

1
argument as [GS1] Lemma 2. We prove the assertion in case A = Z[-]. We use

p
the induction on d = dim(X). Start with an arbitrary prime ¢ # p. According
to Theorem 2.2, there is (X, G) with X, smooth over k and a surjective proper
morphism f; : (X;,G) — (X,G) which is finite of degree prime to ¢ over each
maximal point of X. For every prime ¢ in the set
L= {¢' prime | ¢ # p and ¢| deg(fo)},
choose (X},G) with X}, smooth over k and a surjective proper morphism fp :
(Xy,G) — (X, G) which is finite of degree prime to ¢’ over each maximal point of
X. Consider the object
Xpew = X, 11 [T X0
el
in Cg. Then fgen : (Xgen, G) — (X, G) is a A-admissible envelope over a dense
open G-equivariant subscheme U C X. Now by induction there is a A-admissible
envelope fy, @ (Y',G) — (Y,G) with Y’ smooth over k, where Y = X — U with
reduced structure. The morphism

f=feen Il fop: XyIIY' — X
is the envelope we are looking for. [J

In the next section A-admissible equivariant hyperenvelopes will play a central
role.

Definition 2.4. A A-admissible hyperenvelope is an equivariant morphism of sim-
plicial schemes f : X4 — Y, in Cﬁl Jk such that the morphism

X, — (coskZ:lska_lX.)a
is a A-admissible envelope for any a > 0.

The system of A-admissible hyperenvelopes of equivariant simplicial schemes is
closed under composition and base change. This can be deduced from the charac-
terization of hypercovers given in [GS2, Lem. 2.6] and the analogous statement for
A-admissible envelopes.
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Combining Proposition 2.3 and Theorem 2.2 with the proof of [GS1, Lemma 2],
we deduce:

Proposition 2.5. Assume the condition (%) of Theorem 1.4 and further that k is
perfect. Then for X, € Cé there is a A-admissible hyperenvelope Yo — X, in Cé
with Yo /k smooth for all a > 0.

3. DESCENT CONSTRUCTION OF HOMOLOGY THEORIES

In this section we explain how to extend equivariant homology functors defined
for smooth projective varieties to all varieties, assuming that they satisfy a certain
descent property. The construction is an equivariant version of Gillet—Soulé [GS1,
§2]

Let Cy(Mody) be the category of homological complexes of A-modules vanishing
in negative degrees. By definition an equivariant simplicial scheme (X,,G) is a
simplicial object in Cg/y, for a fixed finite group G. We say that (X, G) has proper
face maps if the underlying morphisms of the face maps are proper.

Definition 3.1. A homology functor
P : Coqyr — C(Mod,y)

is a covariant functor on Ceq/k, which is also contravariant with respect to strict
open immersions and which satisfies the following conditions.

(4) Ifi:Y — X isastrict closed immersion in Cey/, with strict open complement
j 'V — X the composition

(YY) 45 o(X) L5 o(V)

vanishes as a map of complexes.
(74) In the situation (i) the induced homomorphism

cone[®(Y) N (X)) — (V)

is a quasi-isomorphism.
(4ii) Consider a diagram in Ceq/y

v, e L (x',q)
lfv lf
V,6) —1 (X,Q),

such that the diagram of the underlying schemes is cartesian, and f and
fv are proper, and j and ;' are strict open immersions. Then the following
square comimutes:

(X, ") = d(V, G

(fV)*l lf*

(X,G) — o(V,G)

(i) For (X,G) and (Y, G) in Sgq /i, the natural morphism of complexes
(X))@ o(Y) S SX]]Y)

is an isomorphism.
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We also use the notion of a homology functor on Cg/, for a fixed finite group G,
whose definition is analogous. Using total complexes one extends a homology functor
@ : Coq/p — C(Mod ) to a functor

® : Clp e — O (Mody),

where Cﬁl Tk is the category of equivariant simplicial schemes with proper face maps
and proper morphisms.

Definition 3.2. For a homology functor ®, the functors H(®) = {H,(®)}>0 with
Hy(®) : Coqir — Mody ; (X,G) — Hy(®(X,G))

form a homology theory on Ceq, (this is obvious from the definition). We call H(®)
the homology theory associated to ®.

Definition 3.3. A pre-homology functor
F:Seq/p = Cr(Mody)

is a covariant functor on Sey/, Which satisfies the following condition: For (X, G)
and (Y, G) in Sgq/k, the natural morphism of complexes

FX)oFPY)3 FX]]Y)
is an isomorphism.

Definition 3.4. ([GS1])

(1) Let ASg/, be the category with the same objects as Sg/, and with mor-

phisms
Homys,,, (X,Y) = AHoms, , (X,Y),

the free A-module on the set Homs,, , (X,Y"). It is easy to check that ASq/y,
is a A-additive category and the coproduct X ®Y of X,Y € Ob(S) is given
by X][Y.

(2) For a simplicial object in Sg:

0o

S0 do
X.: "'XQi)Xl(s—OXO,

S1 01

—

02

—

we define a homological complex in ASq
AXe : o o X, I X o, 0= Y (=1)76;
j=0
This gives a functor
Sé/k - C+(ASG/k)a
where C (ASq/y) is the category of homological complexes in ASq -

Let F': Sq/i — Cy(Mody) be a pre-homology functor. Using total complexes,
one extends F' to a functor

(3.1) F:Ci(ASgk) — Cp(Mody).
For a simplicial object Xo in Sg /i, we write F'(X,) = F(AX,).
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Consider the following descent conditions for a homology functor ® on Ceqyy, (resp.
a pre-homology functor F' on S, /;.). For a homology functor @, we let @, Seq/k denote
the pre-homology functor obtained by restricting ® to the subcategory Sgq/x 0f Coq/k-
(D) : For any finite group G and for any A-admissible equivariant
hyperenvelope of simplicial schemes f : Xo — Y, in Cé‘;, ,» the map

[« ®(X,) = O(Y,)

is a quasi-isomorphism.

(D)p For any finite group G and for any X, € C}(ASg/) with
the property that ®s /k(X*) is acyclic for any homology functor ®
satisfying (D)4, we have that F(X,) is acyclic.

Lemma 3.5. (1) If a homology functor ® satisfies (D)4, then F = D5, SO
isfies (D) .
(2) Let f: Xo = Y, be a A-admissible hyperenvelope in Cqy, such that Xo and
Yo are objects in Sgi- If a pre-homology functor F satisfies (D), then
[« : F(Xo) = F(Ya) is quasi-isomorphism.

Proof (1) is obvious. We prove (2). Put C, = cone(AX, A AY,) in Oy (ASqk)-

For a homology functor ®, we have

I+

5., (C.) = cone(®(X.) L5 B(V2)).

eq/k
Hence, if ® satisfies (D)4, @ Seq /k(C*) is acyclic since f, is a quasi-isomorphism.
Thus (D) implies
F(C,) = cone(F(X.) L5 F(Y.))

is acyclic, which proves the desired conclusion of Lemma 3.5. [J

The heuristic idea for the following construction is that there should be a universal
extension up to quasi-isomorphisms of a pre-homology functor F satisfying (D) to
something similar to a homology functor ® satisfying (D)gr. However we do not
know how to make this precise, but we can at least construct the expected homology

theory associated to ®. The construction we explain below is essentially due to
Gillet-Soulé [GS1].

Construction 3.6. We now assume the following:
(i) k is perfect,
(74) the condition (%) of Theorem 1.4 holds.

Given a pre-homology functor F' with values in A-modules satisfying (D), we
construct an equivariant homology theory HY' (see Definition 1.1) with the following
properties:

(1) There is a canonical isomorphism of homology groups

HF ~ H,(F) forallacZ

Seq/k

compatible with equivariant pushforwards.
(2) For X, € Sé/k and X € Cg/ proper and for a A-admissible equivariant
hyperenvelope X, — X, there is a natural descent spectral sequence

Eib =0} (X,,G) = HI ,(X,G).

(3) If F = @5, for a homology functor ® satisfying (D)g, we have a canonical
isomorphism of homology theories H = H(®).
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(4) Let F — F' be a morphism of pre-homology functors satisfying (D), and
(D) with associated homology theories H' and H''. Then there is a
canonical morphism of homology theories HY — HF ". Furthermore, if for
every (X, G) € Seq/k, the map F(X,G) — F'(X,G) is a quasi-isomorphism,
the induced morphism of homology theories H — H¥ " is an isomorphism.

(5) Let F" be cone(F — F') for a morphism of pre-homology functors F — F’
satisfying (D) and (D) and let H, H" and HF" be the associated
homology theories. Then for (X, G) € S¢q/), there is a long exact sequence

.= HY(X,q) - HI (X,6) - HI" (X,GQ) = H (X,G) — -
compatible with equivariant proper pushforward and strict equivariant open
pullback.

(6) Assume that for every (X, G) € Seq i and every a € Z, the complex F(X, G)
consists of finitely generated A-modules. Then the homology groups HX (X, G)
are finitely generated A-modules for every (X, G) € Coq/p-

(7) Let M be a A-module. Assume that for every (X, G) € Seq/k, the complex
F(X,@G) consists of flat A-modules. There is a natural spectral sequence

By = Tor (M, By (X, G)) = H, 3" (X.G),
where FF @y M(X,G) = F(X,G) @z M.

Now we describe how this constructions is accomplished. The non-equivariant
case is explained in detail by Gillet-Soulé [GS1, §2] and the equivariant case works
similarly, which we explain briefly.

We start with a pre-homology functor F' satisfying (D). For (X,G) € Coq/
choose an equivariant compactification j : (X,G) — (X, G), where X is projective
over k and j is a strict open immersion with dense image. It exists by a construction
explained in the first part of Section 6. Let i : (Y,G) — (X, @) be the strict closed
immersion of the (reduced) complement of X in X. By Proposition 2.5 we can
choose a commutative diagram in Cé Ik

(3.2) (¥..G) —=~ (X.,G)

oo
(¥.@) —> (X, G).
where (Y,,G), (X,.,G) € Sé/k and f, g are A-admissible equivariant hyperenvelopes.
Then we set

2 —
HI(X,@) = H,(cone[F(Y,) — F(X,)]).
It can be shown that the homology groups H (X, G) are independent of the choices

made, i.e. are unique up to canonical isomorphism, and satisfy the axioms of an
equivariant homology theory.

_ We sketch a proof of independence. Let us first fix the compactification (X,G) —
(X, G). Choose a different commutative diagram in Cé/k

!

(3.3) (Y1,G) ~> (X, Q)

ok

7 —

Y, G) — (X, G).
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where (Y], G), (Y’,,G) € Sé/k and f’ ¢' are A-admissible equivariant hyperen-
velopes. Thanks to Lemma 3.5(2), the method of [GS1, §2.2] produces a canonical
isomorphism

cone[F (Y,) = F(X.)] = cone[F(Y]) = F(X,)] in D4 (Mody).

As for independence from compactifications, consider another compactification
(X,G) — (Y’,G) with complement (Y’,G). By a standard trick, see [GS1, §2.3],
one can assume that there is a commutative diagram

(3.4) (1", 6) — (X',G)
Y, G) — (X, G).

Choose smooth A-admissible hyperenvelopes mapping to (3.4)
(3.5) (Y),G) — (X, Q)

(Yo, G) — (7., G)
where all terms are in Sé/k. We are ought to show that the induced map

cone[F(Y]) = F(X,)] 55 cone[F(Y,) — F(X,)]

is a quasi-isomorphism. This follows from the following.

Claim 3.7. Let = denote the total complex of the diagram in Cy(ASq)) obtained
by applying the functor in Definition 3.4(2) to the diagram (3.5). Then

F(E)~0 in Dy(Mody).

For any homology functor ® satisfying (D), we have

oY) — O(X,) oY) — o(X)
D5, (B) = Tot || L) =Tot | | L | =0 inDi(Mody),
oY) — ®(X.) oY) — o(X)

where the first quasi-isomorphism is obvious from the definition, the second follows
from (D)4, and the last follows from Definition 3.1(i¢). By (D), this implies the
claim. [

4. DESCENT CRITERION FOR HOMOLOGY FUNCTORS

In this section and the next we will explain two basic descent theorems which give
criteria for a homology functor ® (resp. a pre-homology functor F') to satisfy the
descent condition (D)4 (resp. (D)) from §3. This will then allow us to apply the
methods of Section 3 in order to construct equivariant weight homology theory.

We say that an equivariant homology functor (Definition 3.1)
D : Coq/ — O (Mod y)
has quasi-finite flat pullback if the following conditions hold.

e For a strict quasi-finite flat morphism f : (X,G) — (Y, @) there is a func-
torial pullback f*: ®(Y,G) — ®(X,G) which coincides with the usual open
pullback if f is an open immersion.
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e Consider a commutative diagram in Cg/y

!

V',G) —1— (X',G)

| I

(Va G) % (Xa G)a
such that the diagram of the underlying schemes is cartesian, and f and fy
are proper, and j and j' are quasi-finite flat. Then the following diagram
commutes:

B(X) > (V)

| |

2(X) —~ (V).

e For a strict finite flat morphism f : (X, G) — (Y, G) of degree d, the compo-
sition
feoff:@(Y,G) = @Y, Q)
is multiplication by d.

Our first fundamental descent theorem reads.

Theorem 4.1. Consider an equivariant homology functor ® on Cqp, which we
assume to have quasi-finite flat pullback if A # 7. Then ® satisfies (D).

Proof The proof of Theorem 4.1 is practically the same as that of [GS2, Theorem 3.4
and Theorem 3.9] (see also [GS2, §5.6]). One just has to add a G-action everywhere.
the details are left to the readers. [

5. DESCENT CRITERION FOR PRE-HOMOLOGY FUNCTORS AND WEIGHT
HOMOLOGY

We explain a descent criterion for equivariant pre-homology functors (Definition
3.3) in terms of equivariant Chow motives. We start with explaining the construction
of the latter.

By the naive equivariant Chow group of (X, G) € Ceq/i, one usually means the
Chow group of the quotient variety CH,(X/G) (a > 0). The problem with this
definition is that there is no intersection product and no flat pullback on naive
Chow groups. Edidin, Graham and Totaro ([EG], [To]) suggested a definition of
refined Chow groups. Choose a k-linear representation G x V' — V such that for all
1 # g € G the codimension in V' of

Fix(g,V) ={v € V|g-v = v and gy, = id}

is greater than the dimension of X. Here we view V as an equivariant affine space.
Now define

CHy(X,G) = CHgyq, (X x V/G) (dy = dim(V)),
where we endow X x V' with the diagonal G-action. In [EG] it is shown that this is
independent of choices of V. For (X, G) primitive of dimension d, we write

CH"(X,G) = CHy_o(X, G).

In what follows we consider covariant Chow motives with coefficients in A. We
do not care about pseudo-abelian envelopes nor non-effective motives. Fix a finite
groups G. The objects of our category of Chow motives, denoted by Chowg/y, are
the objects of Sg /. For (X,G) € Sgyi, we write M(X, @) for the induced object in
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Chowgy,. For X,Y € Sg/p, we let the morphisms in the category of Chow motives
be

Homc’howg/k (M (Xa G)a M(Ya G)) = @ CHdl (Xz X Ya G) X7 A.
el
where X = [[ X; with (X;,G) € Sg/), primitive of dimension d;. Compositions are
el
defined as compositions of correspondences. Clearly M defines a covariant functor
from Sy, to Chow gy, by associating to a morphism f : X — Y its graph in X x Y.
It extends in an obvious way to a A-linear functor

(5].) M ASG/IC — ChO’LUG/k,

where ASq/y, is defined in Definition 3.4(1). Clearly the functor M in (5.1) induces
a canonical A-linear functor

(52) M : C+(ASG/k) — C’+(Ch0wc;/k)
which induces a canonical A-linear functor
(53) M : K+(ASG/k) — K+(ChowG/k),
where K (ASq/)) (resp. K (Chowgy)) is the homotopy category of C4 (ASq/k)
(resp. Cy(Chowgyy))-
We can now state our fundamental descent theorem for pre-homology functors.
Theorem 5.1. Given a pre-homology functor
F i Seqp = C1(Mody),
assume that for any finite group G, there is an additive A-linear functor
F‘G : ChO’lUG/k — C+(MOdA)
such that the restriction FISG/k of F' to Sg, is the composition of Fe with Saw —

ASayi M, Chowgyy,- Then F satisfies the descent property (D) p.

Construction 5.2. (Construction of weight homology) Fix a A-module M. For
(X, G) € Seq/i We set

(5.4) FYV(X,G) = Homy(CH (X, G), M)[0] ~ MX /0] € Oy (Mody),
where X(© is the set of the generic points of X. It is easy to see that F' AV}/ is a pre-

homology functor such that (F}/ )1Sa Ik extends to a A-linear functor on Chow gy

Therefore Theorem 5.1 shows that F}} satisfies the descent property (D) FW-

We now assume that the condition (J) of Theorem 1.4 holds. If one assumes
further that & is perfect, we can apply Construction 3.6 to F' ]\V/}/ to get a homology
theory on Ceq/i:

(X,G) = {HY (X,G; M)} o0
If k is not perfect field k, we define
(5.5) H(X,G; M) = HY (X @ k, G5 M),

where k is the perfection of k. This homology theory is called weight homology with
coefficient M.
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It is clear from Construction 3.6 that Theorem 1.4(7) through (v) hold. To define
the map 73 /4, in (vi), we argue as follows. By (5.5), we may replace k and k' by their
perfections to assume that those fields are perfect. Let v : Seq/p — Seqpr be the
base change functor X — X ®j k’. Write F' and F’ for the pre-homology functors
(5.4) on Seq i, and Seq/p Tespectively. Then we have a morphism F' o — F of
pre-homology functors on Sgj, induced by natural maps

CH(X,G) —» CHY(X &4 k', G) for (X,G) € Suqi-
By Construction 3.6(4), this induces a morphism of corresponding homology theories
HF — gF' o, _ HF

which gives the desired map 7;s/,. Theorem 1.4(vi)(a) is obvious and (b) is easily
shown by using (v).

!

To prepare the proof of Theorem 5.1 we have to introduce a rigidified version of the
equivariant Gersten complex for algebraic K-theory [Q]. In fact one could also use
the Gersten complex for Milnor K-theory. Fix a sequence of linear G-representations
Vj (j > 0) over k with linear surjective equivariant transition maps V; — V;_; such
that for any g # 1 € G, the codimension of Fix(g, V}) in V; converges to infinity as
J — 00. For X € Ceq/ define

Ryi(X,G)=lim P  Ki(k(x)) ®zA,
) wE(XXVj)/G’
dim m:q+i+dvj

where the limit is taken over flat pullbacks. For fixed ¢ € Z we get a homological
complex of A-modules:

RyX,G): B R (X,G) -5 Ryisa(X,G) L -+ 25 R o(X, G,

where R, ;(X,G) sits in degree ¢ and 0 are boundary maps arising from localization
theory for algebraic K-theory [Q]. These complexes form homology functors

Rq : Ceq/k — C+(MOdA)

which have quasi-finite flat pullbacks [Q]. Hence we deduce the following proposition
from Theorem 4.1.

Proposition 5.3. For any q € Z the descent property (D)4, is satisfied for ® = R,.

Recall that the prehomology functor (Ry) s, defined as the restriction of Ry to
Seq/k €xtends to a canonical functor (cf. (3.1))
C+(ASG/k) — C+(MOdA).
which we denote by R, for simplicity. With almost verbatim the same proof as for
Theorem 1 of [GS1] we obtain the following (cf. (5.3)):
Proposition 5.4. For X, € K (ASq) with Ry(X.) acyclic for all ¢ > 0 we have

M(X*) =0¢€ K+(Ch0’lUG/k)

Proof of Theorem 5.1: Consider X, € C;(ASg/,) such that (I)ISeq/k(X*) is acyclic
for every homology functor ® satisfying (D)s. In particular, by Proposition 5.3
R,(X,) is acyclic for every ¢ € Z. By Proposition 5.4 this implies that M(X,) =0
in Ky(Chowgy,). Since F factors through Chowg/, by assumption, we conclude
that F(X,) =0 in K4 (Mody). O
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6. EQUIVARIANT COHOMOLOGY WITH COMPACT SUPPORT

Let the notation be as in §1. For X € Cg/, we consider G-sheaves F of torsion
A-module on Xgi, which means that G acts in compatible way with the action of
G on X. The G-sheaves of torsion A-modules on (X, G) form an abelian category
ShvG(X, A)tor- For a morphism f : X — Y in Cg/y, the direct image functor f, on
sheaves extends to the functor

(61) f* : ShUG(X,A)tor — ShUG(Y,A)tOI-.

For a morphism (¢, f) : (X, &) — (Y, H) in Ceqp, the pullback functor f* on sheaves
extends to the functor

(6.2) (6, )"+ Shug(Y) = Shve(X, Asor-

For F € Shvg(X, A)tor, we define its equivariant cohomology groups with compact
support. First we choose an equivariant compactification

j: X=X
where j is an open immersion in Cg/; and X is proper over k. Such j always exists:
Take a (not necessarily equivariant) compactification j' : X < Z and consider the

map

|G| times
—N—
T:X‘—>Z><k-"XkZ

induced by 5’ - g for all g € G. Then one takes X to be the closure of the image of
7 and j to be the induced immersion. Global sections on X form a functor

(X, -) : Shva(X) = Mod g ; F — (X, F).
with its derived functor
RD(X,—) : D¥(Shvg(X)) — DT (Mod ().

Let

I'(G,—) : Mod gy — Mody 5 M — M€
be the functor of taking the G-invariants of A[G]-modules and

RI'(G,-) : D+(M0dA[G]) — DY (Mody,)
be its derived functor.

We define equivariant cohomology groups by
H"(X,G;F)=H"(RI'(G,RI'(X,F))) fornecZ

and we define equivariant cohomology groups with compact support as
(6.3) H!(X,G;F) = H"(RT (G, RT (X, 5F))) forne€Z.
We have a convergent spectral sequence
(6.4) Byt = HY(G, HY(X, F)) = H*YY(X, G; F).

Lemma 6.1. Let (X,G) € Ceqr, with G acting trivially on X. Then there is an
isomorphism of A-modules

H"(X,G; F) = H"(X, Ba(F)).
Here Bg denotes the cohomological Bar resolution functor

Ba(-) : Shua(X) — CF(Sho(X)).
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Let ¢ : Z — X be a closed immersion in Cg/, and j : U — X be its open
complement. For F € Shvg (X, A)yor we have an exact sequence in Shvg (X, A)tor
0= jgj*F > F =i, di*F—0

which induces a long exact sequence

(6.5)
-2 HYU, G F) L HYN(X, Gy F) -5 HY(Z, Gy F) -5 HY™W (U, G j* F) — - -

Take f: (X,G) — (Y, H) in Ceq/, and choose a commutative diagram in Ceq

(X,G) 2 (X,0)
(6.6) |7 |7
(Y,H) -2 (V,H)

where jx and jy are strict open immersions, and X and Y are proper over k. Such
a choice is always possible by the above construction.

Assume G = H, f is strict and the underlying morphism f : X — Y is flat and
quasi-finite. If p is invertible in A we construct the pushforward map

(6.7) fo: HU(X, G5 f*F) = HXY, G; F).

By SGA XVIII Theorem 2.9, we have the trace morphism Rf,f*F — F. By applying
(jy )1, it induces a map Rf,jx,f*F — jy,F, which gives rise to a G-equivariant map

RU(X, jx\f*F) = RU(Y, jy\F).
This induces the map (6.7) by applying RI'(G, —) and taking cohomology.
Assume the underlying morphism f : X — Y is proper. Then we construct the
pullback map
(6.8) ffHMNY,H;F)— H)X,G; f*F).
By the properness of f the map X — Y x5 X induced from (6.6) is an isomorphism

and we have the base change isomorphism f*jy!}' = Jx 1f*F by SGA2 XVII 5.2.1.
It gives rise to an equivariant map

f*: RU(Y,jv\F) = RU(X, jx . f*F)
which induces
RU(H,RU(Y, jy,F)) = RU(G, RU(Y, jy,F)) L RD(G, RU(X, jx f* F)),

where the first map is induced by G — H. This induces the map (6.8). If f is a
strict closed immersion, it is easy to see that f* coincides with the pullback map in
(6.5).

For an extension %'/k of fields and for (X, G) € Coq/s, put
X' = X Xgpec(k) Spec(k') € Cg p with f: X' — X the natural map,

where the action of G on X’ is induced from that on X via the base change. We
construct the base change map
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For a G-equivariant compactification jx : X <+ X, we have a cartesian diagram
j ! -/
X == X

b
X 2, X
where X' =X X gpec(k) Spec(k') with f:X — X the natural map. It gives rise to

the base change isomorphism f jx ,F = 3% f*F, which induces the map (6.9) by
the same argument as before.

Lemma 6.2. Let the notation be as above.

(1) Consider a commutative diagram in Ceqyy,
U6~ (X.@) —— (2.6

o |s |1

U,6) —— (X,6) «'— (2.0)
such that the squares of the underlying schemes are cartesian, and i (resp.
i') is a strict closed immersion and j (resp. j') is its open complement. Take

F € Shvg(X, A)ior and put F' = f*F.
If f is proper, the following diagram is commutative.

H(U,G;j*F) —= H} (X, G; F) —= H}(Z,G;i* F) — HH (U, G; j* F)

| /| | ")

HE (U, G137 F) — HE(X', G5 F) — HE (2, G F') = HeH (U1, G F)

If G = G and f is strict, flat and quasi-finite and if F € Shvg(Y, A)tor
is the limit of the subsheaves annihilated by integers prime to ch(k), the
following diagram is commutative.

H}U',G; " F') =~ HNX', Gy F') = HN(Z',G;i" F') = HI (U, G5 7 F)

f*l f*l f*l f*l
HI (U, G J*F) —= HINX,G: F) —= HI(Z,G;i* F) —= HI4 (U, G j*F)

Assuming further that f is finite flat of degree d, the composition f.f* is
the multiplication by d.
(2) Consider morphisms in Cqyy,

(U,GQ) L (X,0) «— (Z,@)

where 1 is a strict closed immersion and j is its open complement. Take
F € Shwg(X,A)or. Let k'/k be an extension of fields and X' U', Z', F'
be the base changes of X,U, Z,F via k'/k respectively. Then the following
diagram is commutative.

HU,G;j*F) —= H!(X,G; F) — H!Z,G;i* F) —= H(U,G; j* F)

Lk’/kl Lk’/kl Lk’/kl Lk’/kl

HY(U', Gs " F') > HA(X', G5 F') > H2 (2, Gy F')  HIH (U, Gy 7 F)

Proof The corresponding fact in the non-equivariant case (i.e. the case G is trivial)
are well-known and the lemma is proved by the same argument as in that case. [
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For (X, G) € Ceq/, X is quasi-projective over k by definition, and by SGA1, V§l,
the geometric quotient X/G exists. Let 7 : X — X/G be the natural projection,
which is viewed as a map (X,G) — (X/G,e) in Ceq/p, Where e is the trivial group.
A sheaf F of torsion A-modules on X/G gives rise to 7*F € Shvg(X, A)or and a
map

(6.10) ™ HNX/G,F) - H}(X,G; 7" F).
by the formalism of (6.8).
Proposition 6.3. If G acts freely on X, © is an isomorphism for all n.

Proof Take an equivariant compactification j : X < X and let 7 : X — X /G be
the projection to the geometric quotient. Then j induces a commutative diagram

x 45 X
X/G 1 X/G
As in (6.1) we have a canonical pushforward functor
Ty - Shvg(X,A)tor — Shvg(X/G,A)tor,

where we consider X/G with the trivial G-action, and similarly for 7. Putting
Y =X/G and Y = X /G. we have

H!MX,G;m*F) = H"(X,G; i7" F)
= H"(Y,G; T jim* F)
= H"(Y,G; jimm* F)
= H"(Y, Bg(jimm* F))
= H"(Y, jiBg(m.7*F))
= H"(Y, Bg(m.7*F))

where the second and third equality hold since m and 7 are finite. The fourth equality
holds by Lemma 6.1. Finally it is well known that there is a quasi-isomorphism
Bg(mm*F)) >~ F, since 7 is an étale covering with Galois group G. This completes
the proof of Proposition 6.

A similar isomorphism to that in Proposition 6.3 holds in a radicial situation:

Lemma 6.4. (1) Let f:(X,G) = (Y,Q) be a map in Cq), where the underly-
ing morphism is finite, surjective and radicial. For F € Shvg(Y, A)tor, the
pullback map (6.8)

[P HNY, G F) — HN(X, G5 F)

s an isomorphism.
(2) For a purely inseparable extension k'/k of fields and for (X,G) € Coqp, the
base change map (6.9)

bk [k ¢ HS(X,G,]:) - HZ;’(X’,G; f*]:)
18 an isomorphism.

Proof This follows from [SGA4] XVIII 1.2 and XVII 5.2.6. O
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7. EQUIVARIANT ETALE HOMOLOGY

Let the assumption be as in §6. Let G be the absolute Galois group of k and
M be a discrete A[G]-module which is torsion as a A-module and continuous as a
G, module. We let M denote the corresponding étale sheaf on Spec(k). When M
is finite, we write M"Y = Homy (M, Ay), the dual A[Gi]-module, where A, be the
torsion A-module Q/A.

Definition 7.1. The equivariant étale homology groups of (X,G) € Coq/p With
coefficient in a finite A[Gg]-module M are defined as

H®(X,G; M) = HY(X,G;MY)"  for a >0,

where MY on the right hand side denotes the pullback to X of the étale sheaf MY
on Spec(k). For a A[Gk]-module M which is torsion as a A-module, we write

M = lim M,
?

with M, finite A[G]-modules and set
HX,G; M) = 131}15t (X,G; M,).
n

By Lemma 6.2, the functor
Coq/ie = Mody ; (X,G) — HS'(X,G; M) (a € Z)
provides us with a homology theory on Cey /i in the sense of Definition 1.1.

For (X, G) € Ceq/ and an integer a > 0, let X,y denotes the set of such x € X

that dim({z}) = a. The group G acts on the set X(q) and we let X(,)/G denotes
the quotient set. For x € X(,)/G, let Gz be the corresponding G-orbit in X.

For a homology theory H on Cq/i (Definition 1.1), we have a spectral sequence
of homological type, called the niveau spectral sequence:

(7.1) By (X,G:M) = @ Happ(z,G;M) = Hep(X,G; M),
CEGX(Q)/G

where
Hy(z,G; M) = lim Hy(V,G; M),
—
vC{Gz}

with the limit taken over all non-empty G-stable open subschemes V in the closure
{Gz} of Gz in X. This spectral sequence was constructed by Bloch-Ogus [BO] in
the non-equivariant case. The same construction works for the equivariant case and
one can show the following:

Proposition 7.2. For the spectral sequence (7.1), the following facts hold.

(1) The spectral sequence is covariant with respect to morphisms in Ceq/), whose
underlying morphism of schemes are proper, and contravariant with respect
to strict open immersions in Ceq/p-

(2) Consider a commutative diagram in Ceqyy,

v, —L (x,@)

| I

V,6) —— (X,Q),
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such that the diagram of the underlying schemes is cartesian, and f and fy
are proper, and j and j' are strict open immersions. Then the following
square commutes:

("
(Eg (X', G M), dy ) —— (B, (V',G'; M), dy )

(fV)*l lf*

(Eap(X, G M), dg ) —— (Bg p(V, G5 M), dg p)

' Ya,b » Ya,b

For the homology theory in Definition 7.1, the above spectral sequence for (X, G) €
Ceq/k is written as

(72) (X G M @ Ha+b z G; M) = Ha+b(X7 G; M)a
:DEX(Q)/G
Proposition 7.3. For the spectral sequence (7.2), the following facts hold.

(1) If ch(k) is invertible in A, the spectral sequence is contravariantly functorial
for strict flat quasi-finite maps. For a commutative diagram in Ceqyy,

v,a@) = (x,a@)

lfv lf
(V,G) —— (X,q),

such that the diagram of the underlying schemes is cartesian, and f and fy
are proper, and j and j' are strict and flat quasi-finite, the following square
commutes:

(")
(Eg (X', G M), dy ) —— (B, (V',G'; M), dy )

(fV)*l lf*

(Eé,b(Xa G; M)ad(llb) 7* (Eé,b(va G; M)ad(llb)

Assuming further that f is finite flat of degree d, the composition f.f* is the
multiplication by d.

(2) If f : (X',G) = (X, G) is a map in Cqyy, where the underlying morphism is
finite, surjective and radicial, it induces an isomorphism of spectral sequences

(BL(X',G; M), dL,) = (BL,(X,G;M),d.,).

(3) For a purely inseparable extension k'/k of fields and for (X,G) € Ceqy, there
s a natural isomorphism of spectral sequences

o)

(Eap(X', G5 M), dy ) — (Ey (X, G M), dy ),

where X' = X Xgpec(r) Spec(k’) with the G-action induced from that on X.
(4) We have Eib(X, G; M) =0 for b < 0. The projection m: X — X/G induces
isomorphisms for oll a € 7

Eyo(X,Gi M) = (€D Hala; M)
TE€EX(q)

2
Sy
=
s

s M) = B, (X/G; M)
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and hence an isomorphism of complezes
(Bao(X, G5 M), dug) = (ELo(X/G; M), dy ).

Proof (1) through (3) follow immediately from Lemma 6.2 and Lemma 6.4. To
show (4), we may assume M is finite. In the proof all homology (resp. cohomol-
ogy) functors have coefficients M (resp. M"). For simplicity we suppress M in the
notation. Recall for z € X(,)/G
a+b(w G) = h_H)l Homy (Hg-l_b(Ua G)aAoo)a
UCTGa}

where the limit is taken over all non-empty G-stable affine open subschemes U in
the closure {Gz} of Gz in X. By the affine Lefschetz theorem we have H(U) = 0
for all i < a. Hence the spectral sequence (6.4) implies

(7.3) HYU,G) =0 fori<a, HU,G)~HYU)".
This immediately implies (1) and an isomorphism
ELy(X,G)= @ Hile,G) ~ ( D Ha(m))G
xEX(a)/G :IIGX(a)
noting that for z € X,y we have
H,(z) = lim Homy (HS(V), Aso)
vcle}
where the limit is taken over all non-empty affine open subschemes V' in the closure
{z} of x in X. To complete the proof, it remains to show
(7.4) HS (x,G) ~ H (y) for z € X(,)/G and y = 7(z),
noting X(,)/G =~ (X/G)(,), an isomorphism of sets. Let H be the image of G in
Aut(Gz), the scheme theoretic automorphism group, and put H, = {0 € H | o(z) =

x}. One can choose a Hy-stable affine open subschemes U in {z} such that H, acts
freely on U and o(U) No'(U) = @ for 0,0’ € H with 0~'o’ ¢ H,. Put

G-U=|Jo)= ][] o).
ocEeG oc€EH/H,
By (7.3), (6.4) implies
HYU,G)~( @ Hio = HYU)": ~ HY(U, H,),

where the last group denotes the equivariant cohomology with compact support for
(U, Hy) € Ceq/- By Proposition 6.3 we get

H (U, Hy) ~ H!(U/H,) = HZ (G - U/G),
where the last equality holds since U/H, = G - U/G. Thus we get
(7.5) H(2,G) ~ lim Hom, (H (G -U/G), Aso)-

UC{z}

As U runs over all H,-stable non-empty open subsets of m, G - U/G runs over all

non-empty open subsets of T/G where T' = {Gz}. Consider the finite morphism
mr: T/G — S where S C X/G is the closure of y = 7(z) in X/G.

Claim 7.4. Letting z € T/G be the generic point (note that T/G is integral),
k(z)/k(y) is purely inseparable. In particular wr is an isomorphism on the un-
derlying topological spaces.

The claim follows from [Bourbaki, Ch.V §2.2 Thm.2(ii)].
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Thanks to the above claim, we get from (7.5) and Proposition 6.4
H'(r,G) = lim Hom (HE(V), Asc) = HE'(y).
vciy}

where V' ranges over all non-empty open subsets of @, which proves the desired
claim (7.4). This completes the proof of Proposition 7.3. O

8. EQUIVARIANT KATO HOMOLOGY
Let the assumption be as in §7.

Definition 8.1. For (X,G) € Ceq/p, the equivariant Kato complex KC'(X,G; M)
of X with coefficient M is defined as

Ejo(X,G; M)+ = E}o(X,G; M) = E} 1 o(X,G; M) — -+ — Ejo(X,G; M) |

where d = dim(X) and the boundary maps are d!-differentials and E&yO(X ,G; M) is
put in degree a.

In case G = e, KC(X, G; M) is simply denoted by KC(X; M). This complex has
been introduced first in [JS] as a generalization of a seminal work by Kato [K1].

Lemma 8.2. The correspondence
KC(—,G; M) : Coqir = C1(Mody) 5 (X,G) = KC(X,G; M)
is a homological functor on Ceqy/y, in the sense of Definition 3.1.

Proof The properties 3.1(i) and (i7) follow from the exact sequence of complexes

0= KC(Y,G: M) 5 KO(X,G; M) 255 KC(U,G; M) — 0

for a closed immersion ¢ : Y — X in Cq/4, and its complement j : U = X — Y — X,
which is an easy consequence of the fact X(4) = Y(4) [[U(q). The functoriality for
proper morphisms and strict open immersions follows from Proposition 7.2(1). The
property 3.1(7i7) follows from Proposition 7.2(2). The property 3.1(iv) is obvious.
[l

Proposition 8.3. For (G, X) € Coqi with the projection 7 : X — X/G, the natural
map
Tt KCO(X,G; M) - KC(X/G; M)
15 an tsomorphism of complexes.
Proof  This follows from Proposition 7.3(4). O
Proposition 8.4. (1) If f : (X', G) = (X, Q) is a map in Cqyy, where the under-

lying morphism is finite, surjective and radicial, it induces an isomorphism
of complexes

fi : KO(X',G; M) — KC(X,G; M).

(2) For a purely inseparable extension k'/k of fields and for (X,G) € Ceqy, there
s a natural isomorphism of complezes

KC(X',G; M) — KC(X,G; M).
where X =X X spec(k) Spec(k') with the G-action induced from that on X.
Proof This follows from Proposition 7.3(2) and (3). O
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Proposition 8.5. The homological functor KC(—,G; M) on Ceqyi Satisfies the de-

scent condition (D) g from Section 3.

eq/

Proof This follows from Proposition 7.3(1) and Theorem 4.1. [

Definition 8.6. The equivariant Kato homology with coefficient M is the homology
theory on Cey/; associated to the homology functor KC(—,G; M) (see Definition
3.2). By definition, for (X, G) € Ceq/s,

KH,(X,G; M) = Hy(KC(X,G; M)) = Ef o(X,G; M) (a € Zxo).
In case G = e, KH,(X,G; M) is simply denoted by K H,(X; M).
By Proposition 7.3(1) we have an edge homomorphism for each integer a > 0:
(8.1) €% H*(X,G; M) — KH,(X,G; M)
which is viewed as a map of homology theories (see Definition 1.1) on Ceq /-

Now we assume that G acts trivially on M and construct a map of homology
theories on Ceq

yur i {KHa(=; M) }aez — {H,' (= M) }aez
First note HS'(Spec(k); M) & M, and hence
KC(Spec(k); M) = M[0],

where Spec(k) is viewed as an object of C.y/r with the trivial action of e. For

_ eq/
(X,G) € S%lm, the natural map 7 : X — Spec(k) induces a map of complex

et KCO(X,G; M) — KC(Spec(k); M) = M][0].
For (X, G) € Seq/k> We get a natural map (see (5.4))
(8.2) v KC(X, Gy M) — MX”/C0] ~ FIV (X, G)

by taking the sum of the above maps for the G-orbits of connected components of
X. This gives us a map of prehomology theories

(8.3) v KC(—; M) — FYY

Theorem 8.7. Assume the condition (%) of Theorem 1.4. There exists a map of
homology theories on Ceq:

v AKHo(—=; M) }acz = {HY (= M) }aez
such that for (X, G) € Seq/k, it coincides with the map induced from (8.2).

Proof 1If k is perfect, this is an immediate consequence of Proposition 8.5 and
Construction 3.6(4) with Lemma 3.5(1). The general case follows from the above
case thanks to Theorem 1.4(vi)(a) and Proposition 8.4(2).

9. PROOF OF MCKAY PRINCIPLE FOR WEIGHT HOMOLOGY

Let the notation be as in §8 and assume that Gj acts trivially on M. Recall that
A denotes either Z or Z[1/p] where p is the exponential characteristic of k. Write
Aoo = Q/A and A, = A/nA for an integer n > 0. Concerning the map of homology
theories on Coq/x:

s {KHo(=; M) Yaez, = {HY) (=3 M) }aez,

we have the following result, which is one of the main results of this paper.
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Theorem 9.1. Assume that k is a purely inseparable extension of a finitely gener-
ated field. Assume the condition (%) of Theorem 1.4. Then ~ypr is an isomorphism
for M = A In particular, for (X,G) € Seq/i we have

(AOO)X(O)/G fora=0
0 fora#0

where XO) is the set of the generic points of X. If k is finite, the same holds by
replacing Ao by Ay, for any integer n > 0.

KHy(X,G;A) = {

Theorem 1.7 and Proposition 1.11 will be deduced from from Theorem 9.1. The-
orem 9.1 will be deduced from the following result quoted from [JS] Theorem 3.8
and [KeS|] Theorem 3.5.

Theorem 9.2. Assume that k is a purely inseparable extension of a finitely gener-
ated field. Assume the condition (%) of Theorem 1.4. Then, for a smooth projective
scheme X over k, we have KHy(X,As) =0 for a # 0. If k is finite, the same holds
by replacing A by A, for any integer n > 0.

Note that Theorem 9.1 and Proposition 8.3 imply the following extension of The-
orem 9.2 to a singular case.

Corollary 9.3. Let the assumption be as in Theorem 9.2. For (X,G) € Seq/k, we
have KH,(X/G,Ax) =0 for a # 0. If k is finite, the same holds by replacing Ay
by A, for any integer n > 0.

For the proof of Theorem 9.1, we prepare some lemmas.
Lemma 9.4. For X € Seqi, the map (8.2) induces an isomorphism
KHy(X,G; M) = HY (X,G; M).

Proof We may suppose that X is primitive. By Proposition 7.3(4), the edge
homomorphism
€%t HSY(X,G; M) — KHy(X,G; M)
is an isomorphism. Thus the assertion follows from the fact that the map
HG' (X, G; M) — H'(Spec(k), M)

is an isomorphism, which is easily seen from the Definition 7.1. U

Lemma 9.5. Fiz a finite group G and assume KH;(Z,G; M) =0 for all (Z,G) €
Seq/k and for all i > 0. Then
(9.1) yu : KHo(X,G; M) — H) (X,G; M)
is an isomorphism for all (X,G) € Cqyy and for all a € Z.
Proof By Lemma 9.4, the assumption implies that (9.1) is an isomorphism for
all (X,G) € Sgyi, and for all a € Z. Then the lemma follows from Construction
3.6(4). For convenience of the readers, we give a proof. We suppress the coefficient
M from the notation. First assume that X is proper over k. Take a A-admissible
hyperenvelope f : (Xo,G) — (X, G) in Cgy, such that (X,, G) € Sgyy, for all a > 0.
By Construction 3.6(2) and Theorems 8.5, we have spectral sequences

KE)y = KHy(Xo,G) = KHy(X, G),

WEé,b = H(YV(XMG) = HLIL/E/l—b(Xv G)v
and 7ps induces a map of spectral sequences. By the assumption the map on the Fy
terms are all isomorphism which implies the desired isomorphism.
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In case X is not proper, take an open immersion j : X < X in Cqr with X

proper over k. Putting ¥ = X — X, we have a commutative diagram with exact
horizontal sequences

KH(Y,G) — KH,(X,G) — KHi(X,G) — KH; 1(Y,G) — KH;_(X,G)

U B | |

H"(Y,G) — H}(X,G) —= HV (X,G) — H}",(V,G) —— H}*, (X, G)

Since X and Y are proper over k, all vertical maps except the middle are isomor-
phisms and so is the middle one. This completes the proof. [

Proof of Theorem 9.1: By Theorem 1.4(vi) and Proposition 8.4(2), we may assume
that k is the perfection of a finitely generated field. Let M = A, for an integer
n > 0 if k is finite, and let M = Ao, otherwise. For (X,G) € Ceq/p, let 7: (X,G) —
(X/G,e) be the induced map in Cey/i- Consider the commutative diagram

KH,(X,G;M) —— KH,(X/G; M)

| = |

HY(X,G; M) —— H'(X/G; M)

The map . in the upper row is an isomorphisms by Proposition 8.3. The map
~ on the right hand side is an isomorphism by Theorem 9.2 and Lemma 9.5. In
case (X,G) € Seq, HY (X,G; M) = 0 for a # 0 by Theorem 1.4(iv). Thus we get
KH,(X,G; M) = 0 from the diagram. By Lemma 9.5, this implies that 7% is an
isomorphism for all a € Z and for all (X,G) € Coq/i- This completes the proof of
Theorem 9.1. OJ

Now we deduce Theorem 1.7 from Theorem 9.1. By Theorem 1.4(vi), we may
assume that k is the perfection of a finitely generated field. By the universal coeffi-
cient spectral sequence in Theorem 1.4(iv), we may assume M = A. Theorem 1.4(v)
shows that H)V (X, G;A) and HY (X/G; ) are finitely generated A-modules. The
subcategory Modf y C Mod, of finitely generated A-modules is a Serre-subcategory,
so we can talk about the quotient category QMod, = Mod/Modf ,. The long exact
homology sequence for weight homology associated to

(9.2) 0-A—=-Q—=>Ax—0

gives us isomorphisms in QMod ,:

H)' (X, G;Q) ~ H,' (X,G;i M) and  HY (X/G;Q) ~ H,' (X/G5 Ax).
By Theorem 9.1 and Proposition 8.3 we have isomorphisms in Mod 5
H,'(X, G Aoo) & KHo(X, G Aoo) = K Ho(X/G, Aoo) & HyY (X/G; Asc).

Putting this together we get that . : (X,G) — (X/G,e) induces an isomorphism
in QMod ,:

(9-3) HY (X,G;Q) = Hy' (X/G; Q).
Lemma 9.6 below implies that (9.3) is a true isomorphism of Q-modules.

Lemma 9.6. If a morphism of Q-modules ¢ : A — B becomes an isomorphism in
the category QMod , then ¢ is already a true isomorphism of Q-modules.
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We deduce Theorem 1.7 with M = A using the five-lemma from the commutative
diagram with exact rows associated to the sequence (9.2)

HY L (X, G Q) — HYL (X, G5 M) = HV (X, G5 A) — H)Y (X, G;Q) — HY (X, G M)
) | | ] )
HYL(X/G Q) — HLL (X/G M) = H,Y (XG5 A) — HY (X/G;Q) = H,Y (X/G5 Aw).

This completes the proof of Theorem 1.7.
The following theorem is an analogue of Theorem 1.7 for a radicial morphism.

Theorem 9.7. Assume ch(k) = p > 0 and that the condition (%) of Theorem 1.4
holds. Let M be a A-module. A finite radicial surjective morphism m: X' — X in
C/k induces an isomorphism

mot HV(X'; M) = HV(X; M) fora € Z.

Proof By the same argument as the proof of Theorem 1.7, we are reduced to the
case M = Ay, = Q/A. Then the theorem follows from Theorem 9.1 and Proposition
8.4. O

Proof of Proposition 1.11: We may assume that the base field & is finitely gener-
ated. For M = A, we have by Theorem 9.1
Yae : KH, (X, G5 M) — HY (X, G5 Aso).
Thus we get HV (X,G; Ay) = 0 for a > dim(X) since K H,(X,G; Ay ) vanishes in
degrees a > dim(X) by definition. By a simple devissage, this implies
() HY(X,G;M) =0 for a > dim(X) and M torsion.
For a finitely generated A-module M, we consider the exact sequences

0— M/Mypr - M ®27Q > M ®Q/Z — 0,

0 — Mgy = M — M /My — 0,
where M,,, is the torsion part of M. By (*) the first sequence implies

HY(X,G; M/Myy,) ~ HY (X,G; M/Myp,) @7 Q  for a > dim(X),

which implies HY (X, G; M/Myp) = 0 for a > dim(X) since H)Y (X, G; M/M;,,)
is a finitely generated A-module. By (x) we deduce from the second sequence that
HY(X,G; M) = 0 for a > dim(X). This completes the proof of Proposition 1.11.
O

10. DUAL COMPLEXES AND CS-COVERINGS

A dual complex of a simple normal crossing divisor is a special kind of CW-
complex as sketched in the introduction (called A-complex in [Hat, Section 2.1}).
It describes the configuration of the irreducible components of the divisor (see [St],
[Pa] and [ABW1]).

Let E be a locally noetherian scheme and {F,},cx be the set of irreducible
components of E. For a finite subset o = {vy,..., v} C K, put

Ey:=FEy,N---NE,,.

Let {Eqy}ack, be the set of connected components of E;. In case E, = @, K, = &
by convention.
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To a locally noetherian scheme E, we associate its dual complex I' = I'(E) as
follows. Fix a linear ordering of K. The set of vertices of I'(F) is identified with K.
For a finite subset o = {vg,...,vx} C K with vy < -+ < v, put

Ag:{ Z tivi|ti20a Ztizl} CRK.
0<i<k 0<i<k

To each o € K, is associated a k-simplex A, , of ['(E) which is a copy of A,. The
interiors of these simplices are disjoint in I'(£) and we have

I(E) = H H Atr,a/ ~
cCKacK,

where for finite subsets 7 C o C K and for a € K, and 8 € K, such that F, C Eg,
A, g is identified with a face of A, , by the inclusion A; — A, induced by 7 — o.
Clearly, as a topological space I'(E) does not depend on the ordering of K.

Let f: E — E' be a morphism of locally noetherian schemes. Let {E} },cx be
the set of irreducible components of E'. Choosing ¢(v) € K' for each v € K such
that f(E,) C E;S(v)’ we get a continuous map

¢: K — K.
For each a € K, there is a unique ¢(a) € K;ﬁ(a) such that f(E,) C E;(a). We
define an affine map

¢ Doo = Do) i D tivi = Y tig(vi) (£ >0, ti=1).
0<i<k 0<i<k
These maps glue to induce a map of A-complexes
¢:T(E) = T(E).
Lemma 10.1. Up to homotopy, ¢ does not depends on the choice of ¢ : K — K.

Proof Pick vg € K and let ¢(vg) = wy € K'. Assume f(FE,,) C quug for wj € K'
with w(, # wy. Let ¢ : [(E) — ['(E") be the map induced by the map ¢ : K — K'
defined as 9 (v) = ¢(v) if v # vg and ¥ (vg) = wj. It suffices to show that v is
homotopic to ¢. Let o = {vg,...,vx} C K and o € K,;. The assumption implies

f(Eo) C f(Eq) C Ey = Eyy N Ey O By NN By,
where
0= ¢(U) U T/J(U) = {w05w63 ¢(U1)a SR ¢(Uk)} C K.
There is a unique connected component E’, of Ej such that f(E.) C E). We have

E, C E;)(a) N E:b(a) and hence Ay(y) 4(a) A0d Ay(y) (o) are faces of Ay .. We define
a map

Ha,a . [07 1] X Aa,a — AG,’y ; (Ta Z tivi) — to(’f”wo + (1 - 7")’[1]6) + Z tzd)(vz)
0<i<k 1<i<k

which gives a homotopy from ¢|a, , to ¥|a, . The maps H;q for all o and « glue
to give a desired homotopy H : [0,1] x I'(E) — T'(E'). O

Lemma 10.2. Let E be a G-strict simple normal crossing divisor over a field as in
Definition 1.5. There is a canonical homeomorphism

I(E/G) — T(E)/G,
of topological spaces.

Proof The proof is straightforward and left to the readers. [
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To investigate fundamental groups of dual complexes, we need a more geometric
interpretation. In the following we introduce the technique of covering spaces of
non-path-connected topological spaces, which we apply to the Zariski topological
space underlying a locally noetherian scheme.

Definition 10.3. For a connected topological space S let Cov(S) be the category
of topological coverings of S. For a point s € S, let 7$*(S, s¢) be the automorphism
group of the fiber functor

Cov(S) — Sets ; S" — S’ x5 s0.

In what follows we omit the base point sy from the notation. We call 7{*(S) the
completely split fundamental group.

If S is a connected scheme we write 7{*(S) for the cs-fundamental group of the
underlying Zariski topological space of S.

Lemma 10.4. If the connected topological space S admits a covering by open subsets
U = (U;)ier such that Cov(U;) consists only of the trivial coverings for all i € I,
then there is a universal connected covering S' — S. We have 7*(S) = Aut(S'/S).

Proof Fix a linear ordering of I. One associates to the open covering U a A-
complex I'({/) in analogy to the construction above. Its k-simplices are the connected
components of Uy, N---NU,, for vg < --- < vy € I. There is a canonical equivalence
Cov(S) = Cov(I'(i4)). In fact objects of both sides are described in terms of the

following data: A family of sets (W;);c; and a family of isomorphisms w, : W; =
W; for each connected component a of U;NUj (i < j) which satisfy cocycle conditions
(one for each connected component of U; N U; N Uy, with i < j < k). Since I'(U4)
is a CW-complex, it is locally path-connected and locally simply connected and
therefore by [Hat, Thm. 1.38] it has a universal covering space. [J

The assumption of Lemma 10.4 is satisfied in particular for the topological space
underlying a locally noetherian scheme.

Proposition 10.5. Let X,Y be connected locally noetherian schemes and let f :
X — Y be a proper surjective morphism with connected fibers. Then the induced
map

fe:m?(X) = 7°(Y)

18 surjective.

Proof Let Y’ — Y be the universal connected covering. Clearly Y’ has a canonical
scheme structure. We have to show that X’ := X xy Y’ is connected. In fact the
fibers of X' — Y’ are connected and the map is closed and surjective. Therefore
different connected components of X’ map onto different connected components of
Y’, but there is just one of the latter. O]

Proposition 10.6. For a connected locally noetherian scheme E, there is a natural
isomorphism

)

Ve 71 (E) — m(T(E)).

Proof An irreducible scheme has only trivial cs-topological coverings. This implies
that there is a canonical equivalence Cov(E) = Cov(I'(E)) by an argument similar
to the proof of Lemma 10.4. [

Corollary 10.7. Let E be a G-strict simple normal crossing divisor as in Definition
1.5. Then we have o natural isomorphism

T (E/G) — m(D(E)/G).
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Proof ~ One combines the isomorphism vg,g of Proposition 10.6 with the isomor-
phism of Lemma 10.2. [

11. McKAY PRINCIPLE FOR HOMOTOPY TYPE OF DUAL COMPLEXES

Let the notation be as §1. We assume ch(k) = 0 or canonical resolution of
singularities in the sense of [BM] holds over k. Let (X,G) € Cqy, with X smooth
and 7 : X — X/G be the projection. Fix a closed reduced subscheme S C X/G
which is projective over k and contains the singular locus (X/G)sing of X/G. Let
T = 771(8)eq be the reduced part of 771(S). Assume that we are given the
following datum:

e a proper birational morphism g : Y — X/G such that Y is smooth, Fg =
g 1(S)req is a simple normal crossing divisor on Y and ¢ is an isomorphism
over X/G - S.

e a proper birational G-equivariant morphism f : X > X in Cqyk such that
X is smooth, Fp = f *1(T)T6d is a G-strict simple normal crossing divisor
on X (cf. Definition 1.5) and f is an isomorphism over X — T

T H)peqg =T s X ¢ X « Er = f~YT)eq
S X/G 12— Y Es =g (9)red

Note that we do not assume that there exists a morphism Er — Eg. By definition
G act on I'(E7) and we can form the topological space I'(Er)/G.

Theorem 11.1. In the homotopy category of CW -complexes, there exists a canon-
ical map

d) : F(ET)/G — F(Es)

which induces isomorphisms on the homology and fundamental groups:

Ho(D(Br)/G) — Ho(D(Es)) for Ya € Z,

o

m (D(Er)/G) — m(L(Es)).
IfT(E7)/G is simply connected, then ¢ is a homotopy equivalence.

The following corollaries are immediate consequences of Theorem 11.1.
Corollary 11.2. If T'(E7)/G is contractible, then I'(Eg) is contractible.

Corollary 11.3. If T is smooth (e.g. dim(T) = 0 which means that (X/G)sing is
isolated), then I'(Eg) is contractible.

Indeed, if T is smooth, one can take X to be the blowup of X along 7T and
I'(ET)/G consists only of O-simplices.

Corollary 11.4. Let A be a complete reqular local ring containing Q and let G be
a finite group acting on A. Set X = Spec(A) and assume that X/G has an isolated
singularity s € X/G. Let g : Y — X/G be a proper morphism such that g is an
isomorphism outside s and Es = g~'(8)eq 45 a simple normal crossing divisor in
the reqular scheme Y. Then the topological space [(Ey) is contractible.



36 MORITZ KERZ AND SHUJI SAITO

Proof Note that Y = X/G = Spec(A%) is automatically noetherian, X — Y is
finite and Y is complete, because we are in characteristic zero [Mu, Sec. 1.2]. One
observes that the morphism X — Y is flat and locally complete intersection outside
s, see [Ma, Thm. 46, Thm. 36(4)].

By algebraization of isolated singularities [Ar, Thm. 3.8] the complete local scheme
Y results from the completion at an isolated singularity s’ € Y’ of a scheme Y’ of
finite type over the residue field k of A“. By [El, Thm. 4] the morphism X — Y
algebraizes to a morphism X’ — Y’ together with the group action G on X'/Y’,
after possibly replacing Y’ by an étale neighborbood of s’. Again after shrinking Y’
around s’ and using Artin approximation [Ar] one finds a proper morphism Y'Y
such that the base change Y’ xy+ Y coincides with ¥ — Y to some arbitrary high
order with respect to powers of the maximal ideal of A. By choosing the order large
one can make sure that Y’ — Y’ is an isomorphism outside ', that Y is regular
and that the reduced preimage Ey of s’ in Y is a simple normal crossing divisor.

It follows from Corollary 11.3 that I'(Ey ) = T'(Es) is contractible.

Proof of Theorem 11.1

The last assertion follows from the first using the relative version of the Hurewich
theorem (cf. [Hat, 4.33]). Choose a G-equivariant proper birational morphism
h: X' — X such that

o X'is smooth, E¢ = h=Y(Er)yeq is a G-strict simple normal crossing divisor
on X' and h is an isomorphism over X — Er,
e there exists a G-equivariant proper morphism X' Y.

Thus we get a commutative diagram

T Er E!
b
X X X'
S
X/G——7

and a G-equivariant map p : Ef, — E7.
Claim 11.5. p induces a G-equivariant homotopy equivalence T'(El.) = T(Er) and
.e.
hence a homotopy equivalence T'(EY.)/G = I'(Er)/G.
.e.

The claim is a consequence of the following general fact:

Theorem 11.6. Let G be a group. Let ¢ : X' — X be a G-equivariant proper
morphism of smooth projective G-schemes over k such that ¢ is an isomorphism
over a dense open subset U C X and such that E = X —U (resp. E' = X'—¢~1(U))
is a G-strict simple normal crossing divisor on X (resp. X'). Then the induced map
[(E') — T'(E) is a G-equivariant homotopy equivalence.

The case G = e is Stepanov’s theorem [St] and its generalizations [Pa, Theorem
1.1] and [ABW1, Theorem 7.5]. The G-equivariant version is proved by the exactly
same argument by replacing the weak factorization theorem of Wlodarczyk [WI]
with its equivariant version [AKMW, Theorem 0.3.1 and Remark (2)]. O

By Claim 11.5 we may assume that there exist a morphism ¢ : )Z'/G — Y.
Take a proper birational morphism % : Y/ — X /G such that Y is smooth, Ey =
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h™Y(BEr/G)yeq is a simple normal crossing divisor on Y’ and h is an isomorphism on
Y’ — Ef. Thus we get a commutative diagram:

m1S)=T «+ Er

\ \
x < x
(11.1) I N
X/G <& v <& X6 &y
T T T T

S « FEs « Er/G +« Ej

From the diagram we get maps of C'W-complexes:

h* *
D(EY) 5 T(Er) /G 25 T(Es).
The composite of these maps is a homotopy equivalence by Theorem 11.6. Hence

the assertion on the fundamental groups follows if one shows the surjectivity of the
induced maps

m1(D(E)) 2= m(D(Br)/G) 25 m (D(Es)).

Noting Y = X /G — Y have geometrically connected fibers by Zariski’s main

theorem, the assertion follows form Proposition 10.6, Corollary 10.7 and Proposition
10.5.

It remains to show the assertion on the homology group. Recall that we are given
a commutative diagram

Wﬁl(s)red =T —— X < ! )’(“- Er = fﬁl(T)red
(11.2) l lﬂ lﬁ
S —— X/G < g ? < Eg = g_l(S)red

where the assumption is the same as in the beginning of this section. Note that
we are now given 7 : X — Y which extends 7 : X — X/G. It induces a map
¢ : Er/G — Eg and we are ought to show that it induces isomorphisms on the
homology groups

H,(D(Er)/G) — Ho(T(Es)) (a € Z).
Since S (and hence T') is assumed projective over k, we may choose X, X and YV

projective over k. By Example 1.6, the homology groups of the dual complexes are
described as the weight homology groups:

H,(D(Er)/G,M) ~ H)Y (E7,G; M), H,(T(Es), M) ~ H}) (Eg; M),

where M is any coefficient module. Thus the desired assertion follows from the
following claim which holds over a field k of arbitrary characteristic.

Claim 11.7. Let the assumption be as (11.2) and assume that X, X and Y are
projective over k. Assume the condition (%) of Theorem 1.4. For a A-module M,
the map (Er,G) — (Es,¢e) in Coq), induces an isomorphism

H, (Er,G; M) ~ H," (Es; M).

Proof We have a commutative diagram with exact rows

HY (X,G;M)— HY. (X — Er,G; M) — HY (Er,G; M) — HV (X,G; M)

| |- | l

HW (?,M) %HW (}7 —E57M) 4>HZV(E5,M) %H;}V(i}

a+1 a+1 5 M)
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The second vertical isomorphism follows from Theorem 1.7 noting ()E — Er)/G =

Y — Es.

[ABW1]
[ABW?2]
[Ar]
[AKMW]

[BM]

[BO]

[Pa]
[Re]

By Theorem 1.4(7) this implies the desired isomorphism of the claim. [
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