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Abstract. Let X be a smooth variety over a field k and D an effective divisor

whose support has simple normal crossings. We construct an explicit cycle
map from the Nisnevich motivic complex Z(r)X|D,Nis of the pair (X,D) to

a shift of the relative Milnor K-sheaf KM
r,X|D,Nis

of (X,D). We show that

this map induces an isomorphism Hi+r
M,Nis(X|D,Z(r)) ∼= Hi(XNis,KM

r,X|D,Nis
),

for all i ≥ dimX. This generalizes the well-known isomorphism in the case

D = 0. We use this to prove a certain Zariski descent property for the motivic

cohomology of the pair (A1
k, (m + 1){0}).
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Introduction

Recently several attempts have been made to introduce a theory of motivic
cohomology with modulus. The first attempt was due to S. Bloch and H. Esnault
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([BE03a], [BE03b]) who introduced additive higher Chow groups of a field k. It
is conceived as motivic cohomology for k[t]/(t2), or an additive version of Bloch’s
higher Chow group for a pair (A1

k, 2·{0}) of the affine line A1
k over k with modulus 2·

{0}, where {0} denotes the origin of A1
k regarded as a divisor. They showed that the

part given by zero-cycles of these groups coincide with the absolute differential forms
of k. The first author [Rül07] generalized this computation to the case k[t]/(tm+1)
for arbitrary m ≥ 1 and proved that these groups give a cycle theoretic description
of the big de Rham-Witt complex of Hesselholt-Madsen [HM01] of k. Park [Par09]
extended the definition of Bloch-Esnault to introduce additive higher Chow groups
TCHr(X,n;m) for a k-schemeX. The groups studied by Bloch-Esnault and Rülling
correspond to the case X = Spec k and r = n. Motivated by a work [KeS14] of
Kerz and the second author, Park’s definition is extended in [BS14] to higher Chow
groups CHr(X|D,n) for a pair (X,D) of an equidimensional k-scheme X and an
effective Cartier divisor D on X. For (X,D) = (Y ×A1

k, (m+ 1) · (Y × {0})), with
Y an equidimensional k-scheme and m ≥ 1, we have

(1) CHr(X|D,n) = TCHr(Y, n+ 1;m).

The definition of CHr(X|D,n) is given by

(2) CHr(X|D,n) = Hn(zr(X|D, •)),
where zr(X|D, •) is the cycle complex with modulus, which is a subcomplex of the
cubical version of Bloch’s cycle complex zr(X, •) consisting of those cycles satisfying
a certain modulus condition. In particular we have a natural map

CHr(X|D,n)→ CHr(X,n),

where CHr(X,n) = Hn(zr(X, •)) is Bloch’s higher Chow group (see §1 for other ba-
sic properties of CHr(X|D,n)). As in the case of Bloch’s cycle complex, zr(X|D, •)
gives rise to a complex zr(−|D, •) of étale sheaves on X. In case X is smooth over k
we define the r-th motivic complex of (X,D) to be the following complex of Zariski
sheaves on X

Z(r)X|D := zr(−|D, 2r − •).
We denote by

Z(r)X|D,Nis

the corresponding complex on XNis. The motivic cohomology of (X,D) is by defi-
nition (see [BS14, Def 2.10])

(3) Hi
M(X|D,Z(r)) := Hi(XZar,Z(r)X|D).

If D = 0 we get back Bloch’s definition of the motivic complex and motivic
cohomology. We simply write Z(r)X and Hi

M(X,Z(r)) instead of Z(r)X|0 and

Hi
M(X|0,Z(r)). We define the motivic Nisnevich cohomology of (X,D) to be

Hi
M,Nis(X|D,Z(r)) := Hi(XNis,Z(r)X|D).

An important property of the classical motivic complex is the cycle map to the
Milnor K-sheaf:

(4) φrX : τ≥rZ(r)X → KMr,X [−r],

which is a map in Db(XZar) the derived category of bounded complexes of Zariski
sheaves on X (see 2.1.1 for the definition of the Milnor K-sheaf KMr,X). By the
Gersten resolution for higher Chow groups, one knows that φrX is actually an iso-
morphism. In fact one can realize φrX as an explicit morphism of actual complexes
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from τ≥rZ(r)X to the Gersten complex of KMr,X [−r]. This construction is well known
to the experts but due to the lack of a reference, we include its review in §3.1. The
first main result of this paper is a construction of the relative version of (4):

(5) φrX|D : τ≥rZ(r)X|D → KMr,X|D[−r],

where KMX|D is the relative Milnor K-sheaf for (X,D), which is a subsheaf of KMr,X
(see Definition 2.4). Unfortunately we can construct it as a morphism in Db(XZar)
only assuming Dred is smooth. If Dred is a simple normal crossing divisor (SNCD)
on X, we can construct a natural map in Db(XNis):

(6) φrX|D,Nis : τ≥rZ(r)X|D,Nis → KMr,X|D,Nis[−r]

fitting in the following commutative diagram

τ≥rZ(r)X|D,Nis

φrX|D,Nis//

��

KMr,X|D,Nis[−r]

��
τ≥rZ(r)X,Nis

'
φrX,Nis

// KMr,X,Nis[−r],

where φrX,Nis is the Nisnevich sheafication of φrX . In fact we show that the Cousin

complex of KMr,X|D,Nis is a resolution (see Corollary 2.24) and we can realize φrX|D,Nis

as an explicit morphism of complexes from τ≥rZ(r)X|D,Nis to the Cousin complex

of KMr,X|D,Nis[−r]. The inclusion KMr,X|D,Nis ↪→ K
M
r,X,Nis induces a natural map from

the Cousin complex of KMr,X|D,Nis to the Gersten complex of KMr,X,Nis and there is

a diagram of morphisms between actual complexes underlying the above diagram.
We will prove the following.

Theorem 1 (Theorem 3.8). Let X be a smooth equidimensional scheme of di-
mension d = dimX and D an effective divisor such that Dred is a simple normal
crossing divisor. Then:

(i) Hi
M(X|D,Z(r)) = 0 = Hi

M,Nis(X|D,Z(r)) for i > d+ r.

(ii) The cycle map Z(r)X|D,Nis → τ≥rZ(r)X|D,Nis

φrX|D,Nis−−−−−→ KMr,X|D,Nis[−r] induces

an isomorphism

φd,rX|D,Nis : Hd+r
M,Nis(X|D,Z(r))

'−→ Hd(XNis,KMr,X|D,Nis).

If moreover Dred is smooth, then all maps in the following commutative dia-
gram are isomorphisms

Hd+r
M (X|D,Z(r))

' //

φd,r
X|D '
��

Hd+r
M,Nis(X|D,Z(r))

φd,r
X|D,Nis'
��

Hd(XZar,KMr,X|D)
' // Hd(XNis,KMr,X|D,Nis).

As an application of Theorem 1, we will prove the Zariski descent property for
additive higher Chow groups (see Theorem 3 below). From (2) and (3) we have a
natural map

(7) CHr(X|D,n)→ H2r−n
M (X|D,Z(r)).
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In the classical case where D = 0, (7) is an isomorphism, which is known as the
Zariski descent property for Bloch’s higher Chow groups. It is a consequence of
the Mayer-Vietoris property of Bloch’s cycle complex zr(X, •) which follows from
the localization theorem for the complex. In case D 6= 0, it is not clear whether
zr(X|D, •) has some reasonable localization property at all. On the other hand,
the higher dimensional class field theory with wild ramification suggests that the
Nisnevich descent property for higher Chow groups with modulus is related to some
deep arithmetic questions. As a consequence of [KeS14, Theorem III], we have the
following result.

Theorem 2. Let X be a smooth projective variety of dimension d over a finite
field k and U ⊂ X be the open complement of a SNCD on X. Write CHd(X|D) =

CHd(X|D,n) for n = 0. Then the natural map

(8) lim←−
D

CHd(X|D)→ lim←−
D

H2d
M,Nis(X|D,Z(d))

is an isomorphism, where the limit is taken over all effective divisors D on X
supported on X − U .

Indeed, by [BS14, Theorem 3.3] the group CHd(X|D) is equal to the Chow group
of zero-cycles with modulus denoted by C(X,D) in [KeS14], and by Theorem 1,
the group H2d

M,Nis(X|D,Z(d)) is isomorphic to Hd
Nis(X,KMd,X|D,Nis) which is the

idèle class group used in the class field theory of Kato-Saito [KS86]. We have a
commutative diagram

lim←−
D

C(X,D) //

ρKeSU ((

lim←−
D

Hd
Nis(X,KMd,X|D,Nis)

ρKaSU

��
πab

1 (U)

where πab
1 (U) is the abelian fundamental group of U and ρKeSU (resp. ρKaSU ) is

the reciprocity map from [KeS14] (resp. [KS86]). The reciprocity maps ρKeSU

and ρKaSU were shown to be bijections onto the subgroup of πab
1 (U) consisting of

those elements, whose images in πab
1 (Spec k) are integral powers of the Frobenius

substitution of k. These clearly imply Theorem 2. On the other hand, one can
deduce [KeS14, Theorem III] from the Kato-Saito class field theory assuming (8) is
an isomorphism.

Using Theorem 1 one can find examples, where the map (7) or its Nisnevich
version

(9) CHr(X|D,n)→ H2r−n
M,Nis(X|D,Z(r))

are not isomorphisms, see Remark 3.13. These examples however arise from the
fact that, if r < dimX and n = r − dimX, the right-hand side of the above map
does not necessarily vanish. At this moment we don’t have any definitive idea on
what to expect for n ≥ 0. In this paper we only present the following special case.

Theorem 3 (Theorem 4.12). Let k be a field of characteristic 6= 2. The natural
maps

(10) CHr(A1
k|(m+ 1){0}, r − n)

'−→ Hr+n
M (A1

k|(m+ 1){0},Z(r)), n ≥ 1,

are isomorphisms.
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Notice that the right hand side of (10) is isomorphic to the Nisnevich motivic
cohomology Hr+n

M,Nis(A1
k|(m + 1){0},Z(r)) by Theorem 1. Notice also that the left

hand side of (10) is TCHr(k, r − n+ 1;m) (cf. (1)) which is clearly zero for n ≥ 2
and the right hand side is zero by Theorem 1. We prove the isomorphism (10) for
n = 1 by constructing the following commutative diagram for all r,m ≥ 1

CHr(A1
k|(m+ 1){0}, r − 1)

'α

��

(10) // Hr+1
M (A1

k|(m+ 1){0},Z(r))

' β

��
WmΩr−1

k '
γ // U1KM

r (k((T )))/Um+1KM
r (k((T ))).

where α is up to sign the isomorphism from [Rül07], β is an isomorphism deduced by
using Theorem 1, and γ is an isomorphism following from a comparison isomorphism
between the big de Rham-Witt sheaves and relative Milnor K-sheaves established
in Theorem 4.8, which is reminiscent of Bloch’s original construction of the p-typical
de Rham-Witt complex in [Blo77].

The following theorem was suggested by the referee.

Theorem 4 (Theorem 5.1). Let k be a field and X a smooth equidimensional k-
scheme of dimension d, D an effective Cartier divisor on X such that Dred is a
simple normal crossing divisor. Then we have, for all n ≥ 2 and all non-negative
integers m1, . . . ,mn,

Hd+r+n
M,Nis (X ×k Ank |(p∗D +

n∑
i=1

mi · q∗i {0}),Z(r)) = 0,

where qi : X ×k Ank → A1
k denotes the projection to the i-th factor of Ank and

p : X ×k Ank → X is the projection.

This gives another example, where (9) is an isomorphism, since the vanishing
CHr(X ×k Ank |(p∗D +

∑n
i=1mi · q∗i {0}), r − (d+ n)) = 0, for n ≥ 2, was proven in

[KP15, Thm 5.11].

Acknowledgements. The second author wishes to thank heartily Moritz Kerz,
Lars Hesselholt and Federico Binda for inspiring discussions. He is also very grateful
to the department of mathematics of the university of Regensburg for the financial
support via the SFB 1085 “Higher Invariants” (Regensburg). The first author
thanks Takao Yamazaki for discussions around Remark 3.13. The authors thank
the referee for suggesting Theorem 4.

Conventions. A k-scheme is a separated scheme of finite type over a field k. A
simple normal crossing divisor (SNCD) on a smooth k-scheme X is by definition a
reduced effective Cartier divisor E on X such that, if E1, . . . , En are the irreducible
components of E, then the intersections Ei1 ∩ · · · ∩Eir are smooth over k and have
codimension r in X, for all r ∈ [1, n] and (i1, . . . , ir) ∈ [1, n]r.

1. Cycle complex with modulus

We recall the definition of Chow groups with modulus from [BS14, 2.]. In this
section k is a field, X an equidimensional k-scheme and D an effective Cartier
divisor on X with complement U = X \ |D|.
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1.1.1. Set P1 = Proj k[Y0, Y1] and let y = Y1/Y0 be the standard coordinate function
on P1. We set

� = P1 \ {1}, �n = (P1 \ {1})n, n > 1.

By convention we set �0 = Spec k. Let qi : (P1)n → P1 be the projection onto the
i-th factor. We use the coordinate system (y1, . . . , yn) on (P1)n with yi = y ◦ qi.
Let Fni ⊂ (P1)n be the Cartier divisor defined by {yi = 1} and put Fn =

∑n
i=1 F

n
i .

A face of �n is a subscheme F defined by equations of the form

yi1 = ε1, . . . , yir = εr, r ∈ [1, n], (i1, . . . , ir) ∈ [1, n]r, εij ∈ {0,∞}.
We denote by ıF : F ↪→ �n the closed immersion. For ε = 0,∞ and i ∈ [1, n], let

ıni,ε : �n−1 ↪→ �n

be the inclusion of the face of codimension 1 given by yi = ε.

Definition 1.1. For r, n ≥ 0 we denote by Cr(X|D,n) the set of all integral closed
subschemes Z ⊂ U ×�n of codimension r which satisfy the following conditions:

(1) Z intersects U × F properly for all faces F ⊂ �n.
(2) The case n = 0: The closure of Z in X does not meet D.
(3) The case n ≥ 1: Denote by Z ⊂ X × (P1)n the closure of Z and by

νZ : Z̃ → X × (P1)n the composition of the normalization Z̃ → Z followed

by the closed immersion Z ↪→ X × (P1)n. Then the following inequality
between Cartier divisors holds:

(1.1.1) ν∗
Z

(D × (P1)n) ≤ ν∗
Z

(X × Fn).

An element of Cr(X|D,n) is called an integral relative cycle of codimension r for
(X,D).

Lemma 1.2. Let Z ′ ⊂ Z be integral closed subschemes in X × (P1)n intersecting

the Cartier divisors D× (P1)n and X×Fn properly. Let νZ : Z̃ → X× (P1)n be the

composition of the normalization Z̃ → Z with the natural inclusion Z ↪→ X× (P1)n

and similar with νZ′ : Z ′ → X × (P1)n. Then the inequality ν∗Z(D × (P1)n) ≤
ν∗Z(X × Fn) implies the corresponding inequality with νZ replaced by νZ′ .

Proof. This is essentially [KP12, Prop 2.4], see [BS14, Lem 2.1] for the version we
need here. �

1.1.2. Chow groups with modulus. Denote by zr(X|D,n) the free abelian group on
the set Cr(X|D,n). By Lemma 1.2 there is a well-defined pullback map (idX×ıF )∗ :
zr(X|D,n) → zr(X|D,m) for any m-dimensional face �m ∼= F ⊂ �n. We obtain
a cubical object of abelian groups (see e.g. [Lev09, 1.1]):

n 7→ zr(X|D,n) (n = {0,∞}n, n = 0, 1, 2, 3, . . .).

For each n we have the subgroup zr(X|D,n)degn of degenerate cycles, i.e. those
cycles which come from zr(X|D,n− 1) via pullback along one of the n projections
U ×�n → U ×�n−1. We set

zr(X|D,n) :=
zr(X|D,n)

zr(X|D,n)degn
.

The n-th boundary operator ∂ : zr(X|D,n)→ zr(X|D,n− 1) is given by

∂ =

n∑
i=1

(−1)i(∂∞i − ∂0
i ),
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where ∂εi = (idX × ıni,ε)∗ : zr(X|D,n) → zr(X|D,n − 1) is the pullback along the
face {yi = ε}. We get a complex zr(X|D, •), which is the complex associated to
the cubical object n 7→ zr(X|D,n). The higher Chow groups of (X,D) are defined
to be

CHr(X|D,n) := Hn(zr(X|D,n)), n, r ≥ 0,

see [BS14, Def 2.5]. If D = 0 we get back Bloch’s classical definition of the cycle
complex and higher Chow groups. We simply write zr(X, •) and CHr(X,n) instead
of zr(X|0, •) and CHr(X|0, n), respectively.

1.1.3. Motivic cohomology with modulus. For an étale map V → X we denote by
DV the pullback of D to V . Then the presheaves

zr(−|D,n) : Xét 3 (V → X) 7→ zr(V |DV , n)

are sheaves for the étale topology, a fortiori for the Zariski and the Nisnevich
topology. In case X is smooth over k the r-th motivic complex of (X,D) is defined
to be the complex of Zariski sheaves on X

Z(r)X|D := zr(−|D, 2r − •).
We denote by

Z(r)X|D,Nis

the corresponding complex onXNis. The motivic cohomology (X,D) is by definition

Hi
M(X|D,Z(r)) := Hi(XZar,Z(r)X|D),

see [BS14, Def 2.10]. If D = 0 we get back Bloch’s definition of the motivic complex
and motivic cohomology. We simply write Z(r)X and Hi

M(X,Z(r)) instead of
Z(r)X|0 andHi

M(X|0,Z(r)). We define the motivic Nisnevich cohomology of (X,D)
to be

Hi
M,Nis(X|D,Z(r)) := Hi(XNis,Z(r)X|D).

1.1.4. We give a list of properties and results:

(1) The modulus condition (1.1.1) implies that any Z ∈ Cr(X|D,n) is already
closed in X ×�n. Therefore there is a natural map

CHr(X|D,n)→ CHr(X,n),

where the right hand side is (the cubical version of) Bloch’s higher Chow
groups.

(2) The above definition generalizes the additive higher Chow groups defined by
Bloch-Esnault and Park. In the case (X,D) = (Y ×A1

k, (m+1) ·(Y ×{0})),
with Y an equidimensional k-scheme and m ≥ 1, we have

CHr(X|D,n) = TCHr(Y, n+ 1;m).

(3) There is a natural isomorphism

CHr(X|D, 0)
'−→ CHr(X|D),

where the right hand side is the group of r-codimensional cycles on U
modulo “rational equivalence with modulus D”, see [BS14, 3.].

(4) Assume X is normal. Then there is a natural quasi-isomorphism

ZX|D(1) ∼= Ker(O×X → O
×
D)[−1],

see [BS14, 1.5, Thm 4.3].
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(5) If X is smooth and Dred is a simple normal crossing divisor, then there is

a cycle map φX|D : Z(r)X|D → Ω≥rX/Z(logD) ⊗OX OX(−D) in the derived

category D−(X) of bounded above complexes of Zariski sheaves, see [BS14,
7.3]. For k = C, there are regulator maps from the motivic cohomology of
(X,D) to a relative version of Deligne cohomology, Betti cohomology and
a relative Abel-Jacobi map, see [BS14, 8., 9.].

2. Relative Milnor K-sheaves

In this section k is a field and X a smooth connected k-scheme. We denote by
X(c) the set of codimension c points in X and by η the generic point of X .

2.1. The Gersten complex of Milnor K-sheaves.

2.1.1. For r ∈ Z we denote by KMr,X the r-th Milnor K-sheaf on X. By definition
it is the Zariski sheaf which on an open V ⊂ X is given by

KMr,X(V ) = Ker(KM
r (k(η))

⊕∂x−−−→
⊕

x∈X(1)∩V

KM
r−1(k(x))),

where ∂x : KM
r (k(η))→ KM

r−1(k(x)) denotes the tame symbol from [BT73, §4]. In

particular KMr,X = 0 for r < 0, KM0,X = Z and KM1,X = O×X . There is a canonical

resolution KMr,X → C•r,X by flasque sheaves called the Gersten resolution (see e.g.

[Ros96, Thm 6.1])
(2.0.1)

0→ KMr,X → iη∗K
M
r (k(η))→

⊕
x∈X(1)

ix∗K
M
r−1(k(x))→

⊕
x∈X(2)

ix∗K
M
r−2(k(x))→ . . .︸ ︷︷ ︸

:=C•r,X

,

where ix : x→ X denotes the inclusion.
By [Ker10, Prop 10, (8) and Thm 13] the stalk of KMr,X at x ∈ X is the subgroup

of KM
r (k(η)) generated by symbols of the form {a1, . . . , ar}, ai ∈ O×X,x, i.e.

(2.0.2) KMr,X,x = {O×X,x, . . . ,O
×
X,x} ⊂ K

M
r (k(η)).

If k is an infinite field, then by [Ker09, Thm 1.3 and Def 2.1]

(2.0.3) KMr,X = (O×)⊗Zr/R,

where R ⊂ (O×)⊗Zr is the subsheaf of abelian groups which is generated by local
sections of the form b1 ⊗ . . . ⊗ bi−1 ⊗ a ⊗ (1 − a) ⊗ bi+2 ⊗ . . . ⊗ br, where a ∈ O×X
with 1− a ∈ O×X and bi ∈ O×X .

In case X is not connected and X = tjXj is its decomposition into connected
components with corresponding immersions ij : Xj ↪→ X, we set

KMr,X :=
⊕
i

ij∗KMr,Xi .

2.1.2. By [Ker10, Prop 10, (11)] we have an isomorphism of Zariski sheaves

KMr,X ∼= Hr(Z(r)X).

In particular Y 7→ H0(Y,KMr,Y ) defines a homotopy invariant presheaf with transfers

on the category of smooth k-schemes in the sense of [Voe00b, 3.]. Hence by [Voe00b,
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Thm 3.1.12] it restricts to a sheaf on the Nisnevich site XNis, which we continue to
denote by KMr,X or if we want to stress that we are on XNis by KMr,X,Nis.

2.2. Milnor K-sheaf of a complement of an SNCD.

2.2.1. Let Y be a scheme and F a sheaf of abelian groups on Y . Let Z ⊂ Y
be a closed subscheme and denote by j : V = Y \ Z ↪→ Y the inclusion of the
complement. We denote by ΓZ(F) the sheaf on Y of sections of F with supports
in Z and by HiZ(F) = RiΓZ(F) the i-th cohomology sheaf with support in Z. For
a scheme point y ∈ Y , we also define

Hi
y(F) := Hiy(F)y = lim−→

y∈U
Hi
y∩U (U,F),

where y denotes the closure of y in Y and the limit is over all open neighborhoods
of y. We have isomorphisms

(2.0.4)
j∗(F|V )

F
∼= H1

Z(F) and Ri−1j∗(F|V ) ∼= HiZ(F), for i ≥ 2.

Assume that the ideal sheaf I of Z ⊂ X is generated by a regular sequence of
global sections t1, . . . , tc ∈ Γ(Y,OY ). Then we can use the Zariski cover V = {Vi =
Y \V (ti), i = 1, . . . c} of V to build the Cech complex C•(V,F), which is a complex of
sheaves on V resolving F|V . We obtain a natural map Hi(j∗C•(V,F))→ Rij∗F|V .
For an element a ∈ F(V1 ∩ . . . ∩ Vc) we denote by

(2.0.5)

[
a

t1, . . . , tc

]
∈ Γ(Y,HcZ(F))

the image of a under the composition

F(V1 ∩ . . . ∩ Vc)→ Γ(Y,Hc−1(j∗C•(V,F)))

→ Γ(Y,Rc−1j∗(F|V ))
(2.0.4)−−−−→ Γ(Y,HcZ(F)).

Lemma 2.1. Let E ⊂ X be a simple normal crossing divisor and denote by j :
V ↪→ X the inclusion of the complement.

Then HiE(KMr,X) = 0 for all i 6= 1. Furthermore, for r ≥ 1 and x ∈ E

(2.1.1) (j∗KMr,V )x = {(OX,x[ 1
f ])×, . . . , (OX,x[ 1

f ])×} ⊂ KM
r (k(η)),

where f ∈ OX,x is a local equation for E.

Proof. First of all, notice that for a smooth closed subscheme Z ⊂ X of pure
codimension c, we have ΓZ(C•r,X) = C•r−c,Z [−c]. Hence HiZ(KMr,X) = 0 for all i 6= c

and HcZ(KMr,X) = KMr−c,Z .
Now for the lemma write E = ∪ni=1Ei, where the Ei are the irreducible com-

ponents of E. We do induction on n. If n = 1, i.e. E ⊂ X is a smooth integral
subscheme of codimension 1, the first statement follows directly from the remark
above. For the second statement observe that we obtain the following exact se-
quence from the long exact localization sequence

(2.1.2) 0→ KMr,X → j∗KMr,V
∂E−−→ i∗KMr−1,E → 0,

where i : E ↪→ X denotes the closed immersion and ∂E is induced by the symbol
∂e : KM

r (k(η))→ KM
r−1(k(e)), with e ∈ E the generic point. Clearly the right hand
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side of (2.1.1) is contained in the left hand side. Therefore it suffices to show that
the left hand side is contained in

{O×X,x, . . . ,O
×
X,x}+ {O×X,x, . . . ,O

×
X,x, f} ⊂ K

M
r (k(η)).

This follows from the short exact sequence above and the description (2.0.2) for
KMr,X and KMr−1,E .

In general, set E′ = ∪i<nEi. Thus E = E′ ∪En and the vanishing assertion fol-
lows by induction from the long exact sequence . . .→ HiEn(KMr,X)→ HiE(KMr,X)→
HiE\En(KMr,X)→ . . .. Denote by jn : V ↪→ X \E′ and in : En \ (En ∩E′) ↪→ X \E′
the inclusions. The second statement follows by induction from the exact sequence

0→ KMr,X\E′ → jn∗KMr,V → in∗KMr−1,En\(En∩E′) → 0

and a similar argument as in the case n = 1. �

Corollary 2.2. Let E ⊂ X and j : V ↪→ X be as in Lemma 2.1.

(1) We have Rij∗KMr,V = 0, for all i ≥ 1, and

j∗KMr,V = {j∗O×V , . . . , j∗O
×
V } ⊂ K

M
r (k(η)).

(2) For T ⊂ X a closed subscheme of pure codimension c, we have

HiT (j∗KMr,V ) = 0, for i < c.

Proof. By the long exact localization sequence Rij∗KMr,V ∼= H
i+1
E KMr,X for i ≥ 1.

Hence (1) follows directly from Lemma 2.1. It follows that j∗C
•
r,V is a flasque

resolution of j∗KMr,V , which directly implies (2). �

Corollary 2.3. Let z ∈ X be a point of codimension c ≥ 1 and t1, . . . , tc ∈ OX,z
a regular system of parameters. We set t := t1 · · · tc and tĵ := t1 · · · t̂j · · · tc. (By

convention if c = 1 we set t1̂ := 1.) Then with the notation from 2.2.1

{(OX,z[ 1
t ])
×, . . . , (OX,z[ 1

t ])
×}∑c

j=1{(OX,z[
1
tĵ

])×, . . . , (OX,z[ 1
tĵ

])×}
∼= Hc

z(KMr,X) ∼= KM
r−c(k(z)),

where on the left the quotient is between two subgroups of KM
r (k(η)). Moreover

with the notation from (2.0.5), the isomorphism KM
r−c(k(z))

'−→ Hc
z(KMr,X) is given

by

(2.3.1) {b1, . . . , br−c} 7→
[
{b̃1, . . . , b̃r−c, t1, . . . , tc}

t1, . . . , tc

]
,

where b̃i ∈ (OX,z)× is any lift of bi ∈ k(z)×.

Proof. Since the question is local around z we can assume that the sequence
t1, . . . , tc is a regular sequence of global sections of OX and that Z = {z} is glob-
ally defined by their vanishing. We denote by j : V := X \ Z ↪→ X the open
embedding. For n ≥ 0 denote by Sn ⊂ Nn+1 the set of tuples (i0, i1, . . . , in) with
1 ≤ i0 < . . . < in ≤ c. For i ∈ [1, c] set Vi := X \V (ti) and for I = (i0, . . . , in) ∈ Sn
set VI := Vi0∩ . . .∩Vin . Denote by jI : VI ↪→ V the open embeddings. By Corollary
2.2, (1), we have

Rj∗(jI∗j
−1
I K

M
r,V ) = Rj∗RjI∗KMr,VI = j∗jI∗KMr,VI ,

where for the first and second equality, we use that the inclusions VI ↪→ V and
VI ↪→ X are complements of an SNCD. It follows that the Cech complex C•(V,KMr,V )
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is acyclic for j∗, where V = {V1, . . . , Vc}. Therefore Rj∗(KMr,V ) = j∗C•(V,KMr,V ).

Now the first isomorphism from the statement of the corollary follows from (2.0.4)
and Corollary 2.2, (1). The second isomorphism in the statement is an immediate
consequence of the fact that j∗C

•
r,V is a flasque resolution of j∗KMr,V (see Corollary

2.2, (1)).
It remains to prove the explicit formula (2.3.1). We can assume X = SpecA

with A := OX,z. Then for an abelian sheaf F on V the stalk of j∗C•(V,F) at z is
the following complex of abelian groups (starting in degree 0)

G(F)• :
⊕
I∈S0

F(VI)
∂̌0

−→
⊕
I∈S1

F(VI)
∂̌1

−→ . . .
∂̌c−2

−−−→
⊕

I∈Sc−1

F(VI),

with

(∂̌n(αI)I∈Sn)J =

n+1∑
j=0

(−1)j(αJ(j))|VJ ,

where J(j) equals the tuple J with the j-th entry omitted. Let C•r,V be the Gersten

complex from (2.0.1) and set C• := j∗C
•
r,V . Then the sections of C• over VI form

the following complex

C•(VI) := Γ(VI , j∗C
•
r,V ) :⊕

x∈V (0)
I

KM
r (k(x))

∂K,0−−−→
⊕
x∈V (1)

I

KM
r−1(k(x))

∂K,1−−−→ . . .
∂K,c−2

−−−−→
⊕

x∈V (c−1)
I

KM
r−c+1(k(x)).

Let T be the total complex associated to the double complex G•(C•); its differen-
tials are given by

∂T,n = (∂̌i + (−1)i∂K,n−i)i∈[0,n] : Tn → Tn+1.

Then the natural maps G•(KMr,V ) → G•(C0) and C•(V ) → G0(C•) induce quasi-
isomorphisms

G•(KMr,V )
'−→ T

'←− C•(V ).

For i ∈ [0, c] the vanishing loci V (tc−i+1, . . . , tc) ⊂ X = SpecA are integral closed
subschemes which are regular; we denote by zi their unique generic points, i.e.

{zi} = V (tc−i+1, . . . , tc).

In particular, zi ∈ X(i), zc = z and z0 is the generic point of X. Take b1, . . . , br−c ∈
k(z)× and let b̃1, . . . , b̃r−c ∈ A× be lifts. (By abuse of notation we will also write

b̃i (resp. ti) for the image of b̃i (resp. ti) under any ring homomorphism A → R.)
For i ∈ [0, c− 1] set

ac−1−i := {b̃1, . . . , b̃r−c, t1, . . . , ti+1} ∈ KM
r−(c−1−i)(k(zc−1−i)), i ∈ [0, c− 1],

and define

αi :=
(
(αi,I,x)

x∈V (c−1−i)
I

)
I∈Si ∈ G

i(Cc−1−i) =
⊕
I∈Si

Cc−1−i(VI),

by

αi,I,x =

{
ac−1−i, if I = (1, . . . i+ 1) and x = zc−1−i,

0, else.
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By definition

{b̃1, . . . , b̃r−c, t1, . . . , tc} 7→ αc−1 under Gc−1(KMr,V )→ T c−1

and

{b̃1, . . . , b̃r−c, t1} 7→ α0 under KM
r−c+1(k(zc−1))→ Cc−1(V )→ T c−1.

Further, under the composition

KM
r−c+1(k(zc−1))→ Cc−1(V ) � (Rc−1j∗KMr,V )z

∂−→ Hc
z(KMr,X) = ΓzC

c
r,X = KM

r−c(k(x))

the element {b̃1, . . . , b̃r−c, t1} is sent to {b1, . . . , br−c}. Altogether it remains to
show that for c ≥ 2 we have

(2.3.2) α0 ≡ αc−1 mod ∂T,c−2T c−2.

To this end we define for i ∈ [0, c− 2],

βi = ((βi,I,x)x∈V (c−2−i))I∈Si ∈ Gi(Cc−2−i)

by

βi,I,x =

{
ac−2−i, if I = (1, . . . , i+ 1) and x = zc−2−i,

0, else.

We have

∂̌i(βi) = (−1)i+1αi+1.

One checks this easily using that for J ∈ Si+1 and j ∈ [1, i+ 2], we have

J(j) = (1, . . . , i+ 1) and zc−2−i ∈ V c−2−i
J ⇐⇒ J = (1, . . . , i+ 2) and j = i+ 2.

On the other hand

∂K,c−2−i(βi) = αi.

This directly follows from

x ∈ {zc−2−i}
(1)
∩ V(1,...,i+1) and ∂x(ac−2−i) 6= 0⇐⇒ x = zc−1−i.

Thus

∂T,c−2(βi) = ∂̌i(βi) + (−1)i∂K,c−2−i(βi) = (−1)i+1(αi+1 − αi).
Altogether

α0 ≡ α1 ≡ . . . ≡ αc−1 mod ∂T,c−2T c−2.

This shows (2.3.2) and hence finishes the proof. �

2.3. The relative Milnor K-sheaf.

Definition 2.4. Let D be an effective divisor on X. Denote by j : U := X\D ↪→ X
the inclusion of the complement.

(1) We define the Zariski sheaf KMr,X|D for r ∈ Z to be the image of the map

Ker(O×X → O
×
D)⊗Z j∗KMr−1,U → j∗KMr,U , a⊗ {b1, . . . , br−1} 7→ {a, b1, . . . , br−1}.

In particular KMr,X|D = 0 for r ≤ 0 and KM1,X|D = Ker(O×X → O
×
D).
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(2) We have a presheaf on the small Nisnevich site of X

XNis → (abelian groups), (v : V → X) 7→ H0(V,KMr,V |v∗D) =: KMr,X|D(V ).

We denote by KMr,X|D,Nis the Nisnevich sheaf on XNis associated to this

functor. If u : X ′ → X is étale and x′ ∈ X ′ is a point we set

(2.4.1) KM,h
r,X|D,x′ := lim−→

(v,y)

H0(V,KMr,V |(u◦v)∗D),

where the limit is over the filtered category of pairs (v, y), where v : V → X ′

is étale and y ∈ V is a point such that v induces an isomorphism k(x′)
'−→

k(y).

Remark 2.5. If v : V → X is an étale map that factors through the open immersion
j : U ↪→ X, then by 2.1.2

H0(V,KMr,X|D,Nis) = KMr,U (V ) = H0(V,KMr,V ).

Assume Dred is a SNCD. For x ∈ D, set A := OX,x and denote by Ah its henseliza-

tion. Then KMr,X|D,x (resp. KM,h
r,X|D,x) is by Lemma 2.1 the subgroup of KM

r (k(η))

(resp. KM
r (Frac(Ah))) generated by symbols of the form {1 + fa, b1, . . . , br−1},

where f ∈ A is a local equation for D, a ∈ A (resp. Ah) and bi ∈ A[ 1
f ]× (resp.

Ah[ 1
f ]×).

The stalk of the sheaf KMr,X|D at a generic point of the effective divisor D looks

as follows.

2.3.1. Let A be a discrete valuation ring with its maximal ideal m and K the field

of fractions. We set U
(0)
K = A× and U

(n)
K = 1 + mn, for m ≥ 1. We denote by

U0KM
r (K) the image of the natural map (A×)⊗r → KM

r (K) and by UnKM
r (K),

n ≥ 1, the image of the multiplication map U
(n)
K ⊗Z K

M
r−1(K)→ KM

r (K).

The following two Lemmas are well known.

Lemma 2.6. Let (A,K,m) be as above and denote by K̂ the fraction field of the
completion of A along m. Then for all n ≥ 1 the natural map

KM
r (K)/UnKM

r (K)→ KM
r (K̂)/UnKM

r (K̂)

is an isomorphism.

Proof. We define an inverse map. Clearly there is a well defined map (K̂×)⊗Zr →
KM
r (K)/UnKM

r (K) which sends an element a1⊗. . .⊗ar to the class of {b1, . . . , br},
where we take any bi ∈ K× with bi ≡ ai mod 1 + mn. This map also kills the

Steinberg relations. Indeed if we take a ∈ K̂× \ U (1)

K̂
and b ∈ K× with b ≡ a

mod U
(n)

K̂
then 1 − b ≡ 1 − a mod U

(n)

K̂
. Hence a ⊗ (1 − a) is sent to the class of

{b, 1 − b} = 0. If we take a ∈ U (1)

K̂
and b ∈ K× with b ≡ 1 − a mod U

(n)

K̂
, then

1− b ≡ a mod U
(n)

K̂
and a⊗ (1− a) is sent to the class of {1− b, b} = 0. It follows

that this map factors to give a well-defined map inverse to the natural map from
the statement. �

Lemma 2.7. Let A be an integral local ring with its maximal ideal m and the
fraction field K = Frac(A). For elements a, b, c ∈ A and s, t ∈ m, the following
equality holds in KM

2 (K):
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(1) {1 + as, 1 + bt} = −{1 + ab
1+asst,−as(1 + bt)}.

(2) {1 + s−1
1+ctct, 1−

1+ct
1+csts} = {1 + cst, s}.

Proof. (1) is straightforward and (2) follows from (1) by setting

a = − 1 + ct

1 + cst
, b =

c(s− 1)

1 + ct
.

�

Proposition 2.8. Let D be an effective divisor on X whose support has simple
normal crossings. Let x ∈ D be a point and D1, . . . , Dn all the irreducible compo-
nents of D passing through x. Let ti ∈ OX,x be a local equation for Di around x
and assume that around x the divisor D is given by the vanishing of tm1

1 · · · tmnn ,
with mi ≥ 1.

(1) Assume either there exists an i0 ∈ [1, n] with mi0 ≥ 2 or n ≥ r. Then
KMr,X|D,x is equal to the subgroup of KM

r (k(η)) which is generated by ele-

ments of the form

(2.8.1) {1 + a ·
∏
i∈Is

tmi−1
i ·

∏
i∈[1,n]\Is

tmii , 1 + u1ti1 , . . . , 1 + ustis , us+1, . . . , ur},

where s ∈ [0,min(r − 1, n)], Is = {i1, . . . , is} ⊂ [1, n], a ∈ OX,x and ui ∈
O×X,x.

(2) Assume m1 = . . . = mn = 1 and n < r. Then KMr,X|D,x is equal to the

subgroup of KM
r (k(η)) which is generated by elements of the form (2.8.1)

for s ≤ n− 1 together with elements of the form

(2.8.2) {1 + u1t1, . . . , 1 + untn, un+1, . . . , ur}, ui ∈ O×X,x.

Proof. Set A = OX,x and denote by m its maximal ideal. The statement holds for
r = 1 by definition. For r ≥ 2 denote by Lr the subgroup of KM

r (k(η)) which in
case (1) is generated by the elements (2.8.1) and in case (2) is generated by the
elements (2.8.1) for s ≤ n− 1 and the elements (2.8.2). In both cases the inclusion
Lr ⊂ KMr,X|D,x follows directly from Lemma 2.7, (1) and Remark 2.5. For the other

inclusion it suffices to show (in both cases)

{1 + atm1
1 · · · tmnn , ti1 , . . . , tis} ∈ Ls+1

for a ∈ A, {i1, . . . , is} ⊂ [1, n]. If one of the mi’s is ≥ 2 or n > s this follows directly
from Lemma 2.7, (2). If m1 = . . . = mn = 1 and s = n, then we can use Lemma
2.7, (2) to reduce to the case n = 1. Setting t := t1 it therefore remains to show

(2.8.3) {1 + at, t} ∈ L2, a ∈ A.

To this end notice that 1 + tA is multiplicatively generated by elements in 1 + tA×.
Indeed if b ∈ m we can write

1 + tb = (1 + t
1

1 + t(b− 1)
)(1 + t(b− 1)).

Therefore we can assume in (2.8.3) that a ∈ A×. Then the statement follows from
0 = {1 + ta,−ta} = {1 + ta, t}+ {1 + ta,−a}. This finishes the proof. �
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Corollary 2.9. Let D1 and D2 be effective divisors on X whose supports are simple
normal crossing divisors. Assume D1 ≤ D2. Then we have the inclusion of sheaves

KMr,X|D2
⊂ KMr,X|D1

⊂ KMr,X on XZar

and

KMr,X|D2,Nis ⊂ K
M
r,X|D1,Nis ⊂ K

M
r,X on XNis

Proof. This follows directly from Proposition 2.8. �

2.4. The structure of relative Milnor K-sheaves. In this subsection we as-
sume that D is an effective divisor on X whose support has simple normal cross-
ings. We denote by i : Dred ↪→ X the corresponding closed immersion, by j :
U = X \D ↪→ X the inclusion of the complement and by {Dλ}λ∈Λ the irreducible
components of D. We write ΩqX = ΩqX/Z etc.

2.4.1. We write N = {0, 1, 2, . . .} and endow NΛ with a semi-order by

(mλ)λ∈Λ ≤ (mλ)λ∈Λ ⇔ mλ ≤ nλ, for all λ ∈ Λ.

For m = (mλ)λ∈Λ ∈ NΛ, we set

Dm :=
∑
λ∈Λ

mλDλ.

For ν ∈ Λ, set

δν = (0, . . . ,

ν
∨
1, . . . , 0) ∈ NΛ

and we define the following sheaves for r ≥ 1

grm,νKMr,X := KMr,X|Dm
/KMr,X|Dm+δν

on XZar

and

grm,νKMr,X,Nis := KMr,X|Dm,Nis/K
M
r,X|Dm+δν ,Nis on XNis.

Notice that this makes sense by Corollary 2.9 and that these sheaves have support
in Dν . We remark that grm,νKMr,X,Nis is also the Nisnevich sheaf associated to the
presheaf
(2.9.1)

XNis 3 (v : V → X) 7→ H0(VZar,KMr,V |v∗Dm
/KMr,V |v∗Dm+δν

) =: grm,νKMr,X(V ).

For an étale map v : V → X we can write v∗Dλ = Dλ,1t . . .tDλ,jλ , with Dλ,i ⊂ V
irreducible smooth divisors. For a subset S ⊂ Λ set

v∗S := {(λ, i) |λ ∈ S, i ∈ [1, jλ]}

and for i ∈ [1, jν ]

m(ν,i) := (m(λ,j))(λ,j)∈v∗(Λ\{ν}) +mνδ(ν,i),

with

m(λ,j) := mλ and δ(ν,i) = (0, . . . ,

(ν,i)
∨
1 , . . . , 0) ∈ Nv

∗Λ.

Then {Dλ′}λ′∈v∗Λ are the irreducible components of v∗Dred and

(2.9.2)
KMr,V |v∗Dm

KMr,V |v∗Dm+δν

=

jν⊕
i=1

KMr,V |Dm(ν,i)

KMr,V |Dm(ν,i)+δ(ν,i)

by defn
=

jν⊕
i=1

grm(ν,i),(ν,i)KMr,V .
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Proposition 2.10. We keep the notations from above. Let m = (mλ)λ∈Λ be an
element in NΛ and take ν ∈ Λ, r ≥ 1. Denote by iν : Dν ↪→ X the closed immersion.
Assume mν = 0 and set

Dν,m :=
∑

λ∈Λ\{ν}

mλ(Dν ∩Dλ).

Then there is a natural surjection

(2.10.1) grm,νKMr,X � iν∗KMr,Dν |Dν,m .

If the tλ’s are local equations for the Dλ’s around a point x ∈ X, then the compo-
sition of this map with KMr,X|Dm

→ grm,νKMr,X is given by

(2.10.2) {1 + tma, b1, . . . , br−1} 7→ {1 + tmā, b̄1, . . . , b̄r−1},

where a ∈ OX , bi ∈ O×X\|Dm| with ā ∈ ODν , b̄i ∈ O×Dν\|Dν,m| as their images and

tm =
∏
λ∈Λ t

mλ
λ . This map induces an isomorphism between sheaves on XNis

(2.10.3) grm,νKMr,X,Nis
'−→ iν∗KMr,Dν |Dν,m,Nis.

Furthermore, if Dred is smooth, then (2.10.1) is already an isomorphism.

Proof. Assume tν ∈ Γ(X,OX) is an equation for Dν . Then we have the following
map at our disposal

stν : KMr,X → KMr,Dν , α 7→ stν (α) := ∂Dν (α · {tν}),

where ∂Dν : KM
r+1(k(X)) → KM

r (k(Dν)) denotes the tame symbol defined by the
valuation corresponding to Dν . One directly checks

stν ({a1, . . . , ar}) = {ā1, . . . , ār},

where ai ∈ O×X and āi ∈ O×Dν is its image. This also shows that stν does not depend
on the choice of the equation tν . Therefore we can write sDν instead of stν . In
particular, in case Dν is not given by a global equation we can locally define maps
as above and glue them to obtain a morphism

sDν : KMr,X → KMr,Dν .

Restricting along the open immersion j : X \ |Dm| ↪→ X we obtain an induced map

KMr,X|Dm
↪→ j∗KMr,X\|Dm|

sDν−−→ j∗KMDν\|Dν,m|.

It is immediate to check that the image of this map is KMr,Dν |Dν,m and that it factors

to give the map (2.10.1) from the statement. (Use Proposition 2.8 to check that
KMr,X|Dm+δν

is mapped to zero.)

If Dred is smooth, then (2.10.1) is an isomorphism. Indeed, it suffices to consider
the case in which D is connected. Then (2.10.1) is a map KMr,X/KMr,X|D → K

M
r,D

and it is easy to see that the assignment {ā1, . . . , ār} 7→ {a1, . . . , ar} mod KMr,X|D,

in which the ai ∈ O×X are lifts of the āi ∈ O×D, induces a well-defined map KMr,D →
KMr,X/KMr,X|D, which is inverse to (2.10.1).

Let v : V → X be étale. With the notation from (2.9.2) we have

KMr,v∗Dν |v∗Dν,m =

jν⊕
i=1

KMr,D(ν,i)|D(ν,i),m(ν,i)
,
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here D(ν,i), i ∈ [1, jν ], are the irreducible components of |v∗Dν | and

D(ν,i),m(ν,i)
=

∑
(λ,j)∈v∗(Λ\{ν})

mλ(D(λ,j) ∩D(ν,i)).

It follows that the map (2.10.1) induces a map from the presheaf (2.9.1) to the
presheaf

XNis 3 (v : V → X) 7→ H0(V, iν∗KMDν |Dν,m) = KMDν |Dν,m(v−1Dν),

where we use the notation from Definition 2.4, (2). We obtain the map (2.10.3)
by Nisnevich sheafification. The surjectivity of (2.10.3) follows from the surjectiv-
ity of (2.10.1). To prove the injectivity, it suffices to show the following (for all
(X,D)): Let x ∈ Dν be a point, let V ⊂ X be an open neighborhood of x and
α ∈ H0(V, grm,νKMr,X) be an element which under (2.10.1) is mapped to zero in

H0(V ∩ Dν ,KMr,Dν |Dν,m). Then there exists an étale morphism v : V ′ → V and a

point x′ ∈ V ′ such that v induces an isomorphism k(x)
'−→ k(x′) with the property

that v∗α = 0 in grm,νKMr,X|D(V ′).

To this end, we can assume, after shrinking V around x, that we have a cartesian
diagram

Dν,V := Dν ∩ V �
� //

��

V

��
An−1
k
� � // Ank ,

in which the vertical arrows are étale, the bottom horizontal arrow is induced by
k[t1, . . . , tn] � k[t1, . . . , tn]/(tn) and the pullback of the coordinate tλ to OV is a
local equation for Dλ. We choose a splitting Ank → An−1

k of the bottom map; in

this way V becomes an An−1
k -scheme and we set

V1 := V ×An−1
k

Dν,V .

We have a diagonal embedding Dν,V ↪→ V1. The projection v1 : V1 → V is étale
and hence we can write v∗1(Dν,V ) = Dν,V t E, for some smooth divisor E ⊂ V1.
We set V ′ := V1 \ E and denote by v : V ′ → V the map induced by v1. Then

v : V ′ → V is étale, v induces an isomorphism v−1(Dν,V )
'−→ Dν,V and there is a

natural map induced by the projection π : V ′ → Dν,V which splits the inclusion
Dν,V ↪→ V ′. We obtain a commutative diagram

(2.10.4) grm,νKMr,X(V ′)

(∗)

((
grm,νKMr,X(V )

v∗

OO

// KMr,Dν |Dm,ν
(Dν,V ).

It suffices to show that (∗) in (2.10.4) is injective. Denote by Dm,V , Dm+δν ,V and
Dm,ν,V the pullback along the open immersion V ↪→ X of Dm, Dm+δν ,V and Dm,ν ,
respectively. We consider the composition

KMr,Dν,V
π∗−→ KMr,V ′ → KMr,V ′/KMr,V ′|v∗Dm+δν,V

.
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The restriction of this map to KMr,Dν,V |Dm,ν,V
induces a map

KMr,Dν,V |Dm,ν,V
→ KMr,V ′|v∗Dm,V

/KMr,V ′|v∗Dm+δν,V
.

Taking global sections we obtain a map

(2.10.5) KMr,Dν |Dm,ν
(Dν,V )→ grm,νKMr,X(V ′).

Using the explicit description (2.10.2) of the map (∗) in (2.10.4) it is straightforward
to check that (2.10.5) and (∗) are inverse to each other. This finishes the proof of
the proposition. �

Remark 2.11. The proof of the injectivity of (2.10.3) is the only place where we
need the Nisnevich topology.

2.4.2. We denote by X˜
Zar (resp. X˜

Nis) the topos of sheaves of sets on the site XZar

(resp. XNis) and by ε = (ε−1, ε∗) : X˜
Nis → X˜

Zar the natural morphism of topoi.
Then ε∗ is left exact when restricted to the category of abelian sheaves and right
derives to a functor

Rε∗ : D+(XNis)→ D+(XZar),

between the derived categories of bounded below complex of abelian sheaves onXNis

and XZar, respectively. Since the cohomological dimension of XNis is ≤ dimX (see
e.g. [Nis89, 1.32]) this functor restricts to a functor between the derived category
of complexes with bounded cohomology

Rε∗ : Db(XNis)→ Db(XNis).

Corollary 2.12. In the situation of Proposition (2.10) we have a distinguished
triangle in Db(XZar)

Rε∗(KMr,X|Dm+δν ,Nis)→ Rε∗(KMr,X|Dm,Nis)→ R(ε ◦ iν)∗(KMr,Dν |Dν,m,Nis)
[1]−→ .

Proof. This follows directly from Proposition 2.10 together with the observation
Rε∗iν∗ = Rε∗Riν∗ = R(ε ◦ iν)∗. �

2.4.3. We keep the notations from 2.4.1. For ν ∈ Λ and q ≥ 0 we define the
following sheaf on XZar (with support in Dν)

(2.12.1) ωX|D,m,ν := ωqm,ν := (ΩqX(logD)(−Dm))|Dν ,

where we use the short hand notation

ΩqX(logD)(−Dm) := OX(−Dm)⊗OX ΩqX(logD).

It is immediate to check that the differential dq : ΩqU → Ωq+1
U restricts to a differ-

ential dq : ΩqX(logD)(−Dm)→ Ωq+1
X (logD)(−Dm), which induces a differential

dq : ωqm,ν → ωq+1
m,ν .

If tλ ∈ OX are local parameters of the Dλ, then this differential is explicitly given
by

(2.12.2) dq(tm ⊗ ω) = tm ⊗
(
dω +

∑
λ∈Λ

mλ · dlog (tλ) ∧ ω
)
,

where we write tm :=
∏
λ∈Λ t

mλ
λ . We set

(2.12.3) Zqm,ν := Ker(ωqm,ν
dq−→ ωq+1

m,ν ), Bqm,ν := Im(ωq−1
m,ν

dq−1

−−−→ ωqm,ν).



HIGHER CHOW GROUPS WITH MODULUS AND RELATIVE MILNOR K-THEORY 19

Proposition 2.13. We keep the notation from above. Set M := j∗(O×U )∩OX and
denote by Mgp the sheaf of groups on X associated to the monoid M. Then there
is a surjective morphism of ODν -modules

OX(−Dm)|Dν⊗Z

q∧
Mgp � ωqm,ν , a⊗x1∧. . .∧xq 7→ a⊗ dlog (x1)∧. . .∧ dlog (xq).

With the notation from (2.12.2) the kernel is the ODν -module which is locally gen-
erated by elements of the form

tmā⊗ a ∧ x2 ∧ . . . ∧ xq −
∑
i

tmūi ⊗ ui ∧ x2 ∧ . . . ∧ xq,

for all a, xi ∈ M and ui ∈ O×X satisfying a =
∑
i ui in OX and where ā, ūi denote

the images in ODν .

Proof. This follows directly from the definition of ωqm,ν and the description of log-
arithmic differentials given in [Kat89, (1.7), p. 196]. �

Proposition 2.14. We keep the notations from above. Let m = (mλ)λ∈Λ be an
element in NΛ and take ν ∈ Λ, r ≥ 1. Assume mν ≥ 1. Then there is a natural
surjection

(2.14.1) ωr−1
m,ν /B

r−1
m,ν � grm,νKMr,X

given by

class of (ā⊗ dlog x1 ∧ . . . ∧ dlog xr−1) 7→ class of {1 + a, x1, . . . , xr−1},

where xi ∈Mgp, ā ∈ OX(−Dm)|Dν and a ∈ OX(−Dm) is a lift of ā.

Proof. For ā ∈ OX(−Dm)|Dν and x = (x1, . . . , xr−1) ∈
∏r−1
i=1 Mgp define

ϕ(ā, x) := class of {1 + a, x} in grm,νKMr,X ,

where a ∈ OX(−Dm) is some lift of ā. Since (1 + a)(1 + b) ≡ (1 + a + b) mod
1 +OX(−Dm+δν ), for all a, b ∈ OX(−Dm), this element is well-defined and induces

a multilinear map ϕ : OX(−Dm)|Dν ⊕
⊕r−1

i=1 Mgp → grm,νKMr,X . This also implies

that if one of the xi’s equals −1, then ϕ(ā, x) = 0. Since {x, x} = {x,−1} in KM2,X ,
the map ϕ induces a surjective homomorphism

OX(−Dm)|Dν ⊗Z

r−1∧
Mgp � grm,νKMr,X .

For a ∈M and y = (y2, . . . , yr) ∈
∏r−2
i=1 M we have

ϕ(tmā, a, y) = −ϕ(tmā,−tm, y) = −ϕ(tmā, tm, y)− ϕ(tmā,−1, y)(2.14.2)

= −ϕ(tmā, tm, y).

For a =
∑
i ui, with ui ∈ O×X , we get

ϕ(tmā, a, y) = −ϕ(tmā, tm, y) =
∑
i

−ϕ(tmūi, t
m, y) =

∑
i

ϕ(tmūi, ui, y).

Hence by Proposition 2.13, ϕ factors through ωr−1
m,ν . It remains to show that ϕ

vanishes on Br−1
m,ν . It suffices to check this locally. Therefore it suffices to show that

the boundary of a form (with the obvious abuse of notation) tmadlog y, with either
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a ∈ O×X or 1 + a ∈ O×X , is mapped to zero under ϕ. Using the formula (2.12.2) for
the differential, we see that it suffices to show

0 =

{
ϕ(tmā, a, y) +

∑
λ ϕ(mλt

mā, tλ, y), if a ∈ O×X ,
ϕ(tm(1 + a), (1 + a), y) +

∑
λ ϕ(mλt

mā, tλ, y), if 1 + a ∈ O×X .

In case a ∈ O×X , this vanishing follows directly from (2.14.2). In case 1 + a ∈ O×X ,
we observe that ϕ(tm, tm, y) = 0 and hence

ϕ(tm(1 + a), (1 + a), y) = −ϕ(tm(1 + a), tm, y) = −ϕ(tm, tm, y)− ϕ(tmā, tm, y)

= −ϕ(tmā, tm, y),

which yields the promised vanishing in this case. �

Proposition 2.15. Assume mν ≥ 1 and that k has either characteristic 0 or prime
to mν . Then the map (2.14.1) is an isomorphism.

Proof. For r = 1 the statement holds by definition. For r ≥ 2 we have

(2.15.1) Br−1
m,ν = Zr−1

m,ν

by [BS14, Lem 6.2] (here we use that either char(k) = 0 or (char(k),mν) = 1). We
have a well-defined map

KM
r (k(η))→ Ωrk(η), {a1, . . . , ar} 7→ dlog (a1) ∧ . . . ∧ dlog (ar).

This clearly induces a map KMr,X|Dm
→ ΩrX(logDred)(−Dm). We obtain a well-

defined map

(2.15.2) grm,νKMr,X −→
ΩrX(logDred)(−Dm)

ΩrX(logDred)(−Dm+δν )
= ωrm,ν .

The composition

(2.15.3) ωr−1
m,ν

(2.14.1)−−−−−→ grm,νKMr,X
(2.15.2)−−−−−→ ωrm,ν

is equal to the differential (2.12.2). Indeed, under this composition a local section
tmādlog x ∈ ωr−1

m,ν is sent to

dlog (1 + tmā) dlog x =
tm

1 + tmā
(da+

∑
λ

mλa dlog tλ) ∧ dlog (x)

= tm(1− tmā)(da+
∑
λ

mλadlog tλ) ∧ dlog (x)

= tm(da+
∑
λ

mλa dlog tλ) ∧ dlog (x).

Hence the statement follows from (2.15.1). �

Theorem 2.16. Assume k has characteristic p > 0. Let the notation be as above
and let m′ ∈ NΛ be the smallest tuple with p · m′ ≥ m. Assume p|mν . Then the
inverse Cartier operator induces an isomorphism

C−1
m,ν : ωqm′,ν

'−→ Hq(ω•m,ν),

a⊗ dlog x1 ∧ . . . ∧ dlog xq 7→ ap ⊗ dlog x1 ∧ . . . ∧ dlog xq,

where a ∈ OX(−Dm′)|Dν and xi ∈M.
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Proof. This is proven in [KSS, Thm 3.2] (in a slightly different situation). For the
reader’s convenience we give the proof. By [BS14, Lem 6.2] (which is [KSS, Lem
3.4]) ω•n,µ is acyclic if (nµ, p) = 1, for all n = (nλ) ∈ NΛ and µ ∈ Λ. By the special
choice of m′ we see that the natural inclusion

(2.16.1) Ω•X(logD)(−Dpm′) ↪→ Ω•X(logD)(−Dm)

is a quasi-isomorphism. Indeed we can refine this inclusion to a filtration whose
graded pieces are of the form ω•n,µ as above. We have p · (m′ + δν) ≥ m + δν and
since p|mν the tuple m′ + δν is minimal with this property. Thus if we replace in
(2.16.1) m′ by m′ + δν and m by m + δν , we again get a quasi-isomorphism. This
yields a distinguished triangle in Db(XZar)

Ω•X(logD)(−Dp(m′+δν))→ Ω•X(logD)(−Dpm′)→ ω•m,ν
[1]−→ .

Let F : X → X be the absolute Frobenius. The classical Cartier isomorphism (see
e.g. [Kat70, Thm (7.2)]) gives an isomorphism of OX -modules

C−1 : ΩqX(logDred)
'−→ Hq(F∗Ω•X(logD)).

Twisting this with OX(−Dm′) yields an isomorphism

ΩqX(logD)(−Dm′)
'−→ Hq(F∗(Ω•X(logD)(−Dpm′))).

Using the triangle from above we get the following commutative diagram of abelian
sheaves for all q ≥ 0

0 // ΩqX|Dm′+δν

//

' C−1

��

ΩqX|Dm′
//

' C−1

��

ωqm′,ν

��

// 0

· · · // Hq(Ω•X|Dp(m′+δν )
) // Hq(Ω•X|Dpm′ )

// Hq(ω•m,ν) // · · · ,

where we use the short hand notation Ω•X|Dm
= Ω•X(log(D))(−Dm). The statement

follows. �

2.4.4. With the notations above write mν = ps ·m′ν with s ≥ 0 and (p,m′ν) = 1.
We inductively define sheaves of subgroups on Dν

Bqr,m,ν , Z
q
r,m,ν ⊂ ωqm,ν , for r ∈ [1, s+ 1], q ≥ 0,

by the formulas

Bq1,m,ν := Bqm,ν , Zq1,m,ν := Zqm,ν

and

Bqr,m′,ν
C−1

m,ν−−−→
'

Bqr+1,m,ν/B
q
m,ν , Zqr,m′,ν

C−1
m,ν−−−→
'

Zqr+1,m,ν/B
q
m,ν , r ∈ [1, s].

We obtain a chain of inclusions

Bqm,ν = Bq1,m,ν ⊂ . . . ⊂ B
q
s+1,m,ν ⊂ Z

q
s+1,m,ν ⊂ . . . ⊂ Z

q
1,m,ν = Zqm,ν ⊂ ωqm,ν .

Proposition 2.17. For m ∈ NΛ, ν ∈ Λ, with mν ≥ 1, q ≥ 0 and T ⊂ Dν a closed
subset of codimension c we have

HiT (ωqm,ν/B
q
m,ν) = 0 = HiT (ωqm,ν/Z

q
m,ν), for all i < c.
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Furthermore if k has characteristic p > 0 and mν = psm′ν , with s ≥ 0 and (m′ν , p) =
1, then also
(2.17.1)
HiT (ωqm,ν/B

q
r,m,ν) = 0 = HiT (ωqm,ν/Z

q
r,m,ν), for all i < c, and r ∈ [1, s+ 1].

Proof. First we observe that ωqm,ν is a locally free sheaf on the regular scheme Dν .
Hence HiT (ωqm,ν) = 0, for all i < c and q ≥ 0. Set p := char(k). Now assume either
p = 0 or p > 0 and (mν , p) = 1. By [BS14, Lem 6.2] we have Bqm,ν = Zqm,ν , for all
q ≥ 0. Therefore the exact sequence

(2.17.2) 0→ ωqm,ν/Z
q
m,ν → ωq+1

m,ν → ωq+1
m,ν /B

q+1
m,ν → 0

yields, for all i < c,

Hi−1
T (ωq+1

m,ν /Z
q+1
m,ν ) = Hi−1

T (ωq+1
m,ν /B

q+1
m,ν ) = HiT (ωqm,ν/Z

q
m,ν) = HiT (ωqm,ν/B

q
m,ν).

Since ωqm,ν = 0 for q >> 0 we get by descending induction over q that

HiT (ωqm,ν/Z
q
m,ν) = HiT (ωqm,ν/B

q
m,ν) = 0, for all q ≥ 0, i < c.

In particular the statement is proven if p = 0. Furthermore, if p > 0, then (2.17.1)
is proven in the case s = 0. To finish the proof we assume p > 0 and s ≥ 1. Let
m′ ∈ NΛ be the smallest tuple such that p · m′ ≥ m. By induction on s we have
HiT (ωqm′,ν/B

q
r,m′,ν) = HiT (ωqm′,ν/Z

q
r,m′,ν) = 0, for all r ∈ [1, s], q ≥ 0 and i < c. An

application of the Cartier operator yields
(2.17.3)
HiT (Zqm,ν/B

q
r+1,m,ν) = HiT (Zqm,ν/Z

q
r+1,m,ν) = 0, for all r ∈ [1, s], q ≥ 0, i < c.

Now assume that the vanishing (2.17.1) holds for q + 1; we want to show that it
also holds for q. The exact sequence (2.17.2) gives the vanishing Hi(ωqm,ν/Zqm,ν) for
all i < c. Therefore the exact sequence

0→ Zqm,ν/B
q
r+1,m,ν → ωqm,ν/B

q
r+1,m,ν → ωqm,ν/Z

q
m,ν → 0

together with (2.17.3) yields

HiT (ωqm,ν/B
q
r+1,m,ν) = 0, for all i < c, r ∈ [1, s].

Similarly we also get

HiT (ωqm,ν/Z
q
r+1,m,ν) = 0, for all i < c, r ∈ [1, s].

Finally the exact sequence

0→ ωqm′,ν
C−1

m,ν−−−→ ωqm,ν/B
q
m,ν → ωqm,ν/Z

q
m,ν → 0

yields HiT (ωqm,ν/B
q
m,ν) = 0, for all i < c. This finishes the proof. �

Remark 2.18. One can show that ωqm,ν/B
q
r,m,ν and ωqm,ν/Z

q
r,m,ν are locally free ODν -

modules, where the ODν -module structure is induced by the one from F rX∗ω
q
m,ν ,

where FX : X → X is the absolute Frobenius (cf. [Ill79, 0, Prop 2.2.8]). This
immediately implies (2.17.1).

Theorem 2.19. Assume k has characteristic p > 0 and mν = psm′ν , with s ≥ 0
and (m′ν , p) = 1. Then the map (2.14.1) factors to give an isomorphism

(2.19.1) ωr−1
m,ν /B

r−1
s+1,m,ν

'−→ grm,νKMr,X .
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Proof. For s = 0 this is Proposition 2.15. Now assume s ≥ 1 and take m ∈ NΛ

minimal with p ·m′ ≥ m. Clearly the multiplication with p on KMr,X induces maps

KMr,X|Dm′

·p−→ KMr,X|Dm
, KMr,X|Dm′+δν

·p−→ KMr,X|Dm+δν
.

It is direct to check that we obtain a commutative diagram

0 // Br−1
s,m′,ν

//

C−1
m,ν'
��

ωr−1
m′,ν

C−1
m,ν

��

(2.14.1)// grm
′,νKMr,X

·p
��

// 0

0 // Br−1
s+1,m,ν/B

r−1
m,ν

// ωr−1
m,ν /B

r−1
m,ν (2.14.1)

// grm,νKMr,X // 0.

By induction on s, the upper horizontal sequence is exact and we have to show that
so is the lower one. Clearly, the lower sequence is exact on the left and on the right.
The exactness of the upper sequence implies that the lower is a complex. It remains
to show that the induced map (2.19.1) is injective. By Proposition 2.17 it suffices to
check this at the generic point ην of Dν . Since the composition (2.15.3) is equal to
the differential, the kernel of ωr−1

m,ν /B
r−1
m,ν → grm,νKMr,X is contained in Zr−1

m,ν /B
r−1
m,ν

and therefore lies in the image of C−1
m,ν . Thus it remains to show that the map

(grm
′,νKMr,X)ην

·p−→ (grm,νKMr,X)ην is injective. Set A := OX,ην , K := Frac(A) and
write mν = pm. Then A is a DVR which is essentially smooth over k and we have
to show that the map

(2.19.2) UmKM
r (K)/Um+1KM

r (K)
·p−→ UpmKM

r (K)/Upm+1KM
r (K)

induced by multiplication with p is injective (here we use the notations of 2.3.1).
To this end we may replace A and K by their completions, where now A is formally
smooth over k, see Lemma 2.6. Denote by K0 the residue field of A; it is separable
over k (since Dν is smooth over k). By [EGA IV1, Thm (19.6.4)] there is an iso-
morphism of k-algebras A ∼= K0[[t]]; hence K ∼= K0((t)). Therefore the injectivity
of (2.19.2) follows from Corollary 4.10, proven later independently. This finishes
the proof. �

Corollary 2.20. Let k be a field of characteristic p ≥ 0 and assume mν ≥ 1. Set

s :=

{
0, if p = 0

vp(mν), if p > 0,

where vp : Q→ Z is the p-adic valuation. Then there is a distinguished triangle in
Db(XZar) (with the notation from 2.4.2)

Rε∗(KMr,X|Dm+δν ,Nis)→ Rε∗(KMr,X|Dm,Nis)→ ωr−1
m,ν /B

r−1
s+1,m,ν

[1]−→ .

Furthermore, the canonical map

grm,νKMr,X
'−→ Rε∗grm,νKMr,X,Nis

is an isomorphism.

Proof. The assignment

XNis 3 (v : V → X) 7→ H0(V, v∗iν∗ω
q
m,ν)
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defines a sheaf on XNis which we denote by ωqm,ν,Nis. We define sheaves on XNis by

Zqm,ν,Nis := Ker(ωqm,ν,Nis
dq−→ ωq+1

m,ν,Nis), Bqm,ν,Nis := Im(ωq−1
m,ν,Nis

dq−1

−−−→ ωqm,ν,Nis).

Furthermore, if p > 0, then the Cartier isomorphism from Theorem 2.16 induces

an isomorphism C−1
m,ν,Nis : ωqm,ν,Nis

'−→ Hq(ω•m,ν,Nis) and we can define the sheaves

Zqr,m,ν,Nis and Bqr,m,ν,Nis as in 2.4.4. Proposition 2.15 and Theorem 2.19 yield an
isomorphism between sheaves on XNis

ωr−1
m,ν,Nis/B

r−1
s+1,m,ν,Nis

'−→ grm,νKMr,X,Nis.

Therefore it suffices to show that the natural map

(2.20.1) ωr−1
m,ν /B

r−1
s+1,m,ν → Rε∗(ω

r−1
m,ν,Nis/B

r−1
s+1,m,ν,Nis)

is an isomorphism. To this end we note that for a quasi-coherent sheaf E on X
we have Rε∗ENis = E, where ENis is the Nisnevich sheaf XNis 3 (v : V → X) 7→
H0(V, v∗E) (cf. [Mil80, III, Prop 3.7]). If p > 0 and FX denotes the absolute
Frobenius on X, then ωr−1

m,ν /B
r−1
s+1,m,ν is a quotient of the quasi-coherent OX -module

F s+1
X∗ ω

r−1
m,ν and hence is quasi-coherent. We get (2.20.1) in this case. If p = 0 we

have the natural isomorphism ωqm,ν ∼= Rε∗ω
q
m,ν,Nis, for all q ≥ 0. Furthermore,

Zqm,ν,Nis
∼= Bqm,ν,Nis, see (2.15.1). Hence descending induction on q and the exact

sequence on XNis

0→ Zqm,νNis → ωqm,νNis → Bq+1
m,ν,Nis → 0

give

Rε∗Z
q
m,ν,Nis

∼= Zqm,ν
∼= Bqm,ν

∼= Rε∗B
q
m,ν,Nis.

The isomorphism (2.20.1) follows. �

Corollary 2.21. Assume that Dred is smooth (D = 0 is allowed). Then the natural
map

(2.21.1) KMr,X|D
'−→ Rε∗KMr,X|D,Nis

is an isomorphism.

Proof. By 2.1.2 and [Voe00b, Thm 5.1, 2.] the natural mapKMr,Dred
→ Rε∗KMr,Dred,Nis

is an isomorphism. Thus by Proposition 2.10 and Corollary 2.20, the natural maps
grm,νKMr,X → Rε∗grm,νKMr,X,Nis are isomorphism for all m, ν, r. Hence the state-
ment. �

2.5. The Cousin resolution of relative Milnor K-sheaves.

Theorem 2.22. Let D be an effective divisor on X and assume that Dred is a sim-
ple normal crossing divisor. Then for all closed subschemes T ⊂ X of codimension
c, and for all i < c, we have

HiT (Rε∗KMr,X|D,Nis) = 0.

Proof. Corollary 2.9 and Corollary 2.21 (for D = 0) give a distinguished triangle
in Db(XZar)

Rε∗KMr,X|D,Nis → K
M
r,X → Rε∗(KMr,X/KMr,X|D,Nis)

[1]−→ .
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By the exactness of the Gersten resolution 2.0.1 we have HiT (KMr,X) = 0, for all

i < c. Hence it suffices to show that Hi−1
T (Rε∗(KMr,X/KMr,X|D,Nis)) = 0, for all i < c.

With the notation from 2.4.1 we have

Hi−1
T (Rε∗grm,νKMr,X,Nis) = Hi−1

T∩Dν (Rε∗grm,νKMr,X,Nis).

Since c−1 ≤ codim(T ∩Dν , Dν) it follows from Corollary 2.12 together with induc-
tion on the dimension of X, Corollary 2.20 and Proposition 2.17 that these groups
vanish for i < c. Now the theorem follows since KMr,X/KMr,X|D,Nis is a successive

extension of the sheaves grm,νKMr,X,Nis. �

2.5.1. The Cousin complex. Let D be an effective divisor on X. We denote by
C•r,X|D the Cousin complex of KMr,X|D (see [Har66, IV, 2.]). It has the following

shape (with the notation from 2.2.1)

C•r,X|D : iη∗H
0
η (KMr,X|D)→

⊕
x∈X(1)

ix∗H
1
x(KMr,X|D)→ . . .

→
⊕
x∈X(i)

ix∗H
i
x(KMr,X|D)→ . . . .

Here ix : x ↪→ X denotes the immersion. Similarly, we denote by Ch,•r,X|D the Cousin

complex of Rε∗KMr,X|D,Nis

Ch,•r,X|D : iη∗H
0
η (Rε∗KMr,X|D,Nis)→

⊕
x∈X(1)

ix∗H
1
x(Rε∗KMr,X|D,Nis)→ . . .

→
⊕
x∈X(i)

ix∗H
i
x(Rε∗KMr,X|D,Nis)→ . . . .

In particular these are complexes of flasque sheaves. The restriction of C•r,X|D to

U = X \D equals the Gersten resolution of KMr,U by Corollary 2.3:

(2.22.1) (C•r,X|D)|U = C•r,U .

If furthermoreDred has simple normal crossings, then by Corollary 2.21 (for (X,D) =
(U, 0)) we also have

(Ch,•r,X|D)|U = C•r,U .

The natural map KMr,X|D → Rε∗KMr,X|D,Nis induces a natural map of complexes on

XZar

(2.22.2) C•r,X|D → Ch,•r,X|D.

Finally we give an alternative description of the terms appearing in Ch,•r,X|D: If

Z ⊂ X is closed we have Rε∗RΓZ = RΓZRε∗, by [SGA4II, V, Prop 4.9, Prop 4.11].
Hence for x ∈ X(c) we have

Hc
x(Rε∗KMr,X|D,Nis) = lim−→

x∈V
Hc
x∩V (VNis,KMr,X|D,Nis),

where the limit ranges over all Zariski open neighborhoods V ⊂ X of x. Let
Xh

(x) = SpecOhX,x be the henselization of X at x and denote by ihx : Xh
(x) → X the

canonical map. Then the above together with [Nis89, 1.27 and 1.29.3] yield

Hc
x(Rε∗KMr,X|D,Nis) = Hc

x(Xh
(x),Nis, (i

h
x)−1KMr,X|D,Nis).
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Corollary 2.23. Assume that Dred has simple normal crossings. Then there is an
isomorphism

Rε∗KMr,X|D,Nis
'−→ Ch,•r,X|D in Db(XZar).

Furthermore if Dred is smooth the natural morphisms

KMr,X|D → C•r,X|D
(2.22.2)−−−−−→ Ch,•r,X|D

are quasi-isomorphism of complexes.

Proof. The first part follows from Theorem 2.22 and [Har66, IV, Prop 3.1], the
second part from the first and Corollary 2.21. �

2.5.2. The Cousin Complex in the Nisnevich topology. Consider the presheaf of
complexes

XNis 3 (v : V → X) 7→ Γ(V,Chr,V |v∗D).

The explicit description of C•,hr,X|D in 2.5.1 above and excision for local Nisnevich

cohomology (see [Nis89, 1.27 Thm]) implies that this presheaf is a sheaf of complexes
on XNis, which we denote by

C•r,X|D,Nis.

By construction there are natural maps of complexes KMr,X|D(V ) → C•r,X|D,Nis(V )

where we use the notation from Definition 2.4,(2). This yields a morphism

(2.23.1) KMr,X|D,Nis → C•r,X|D,Nis on XNis.

Corollary 2.24. Assume Dred has simple normal crossings. Then (2.23.1) is a
quasi-isomorphism.

Proof. It suffices to show that for all étale maps v : V → X and all points y ∈ V
the Nisnevich stalk Hi(C•r,X|D,Nis)

h
y (defined as in (2.4.1)) vanishes for i ≥ 1 and is

isomorphic to KM,h
r,X|D,y for i = 0. This follows directly from Corollary 2.23. �

2.6. Pushforward for projections from projective space.

2.6.1. Let f : Y → Z be a proper morphism between equidimensional finite type
k-schemes. Set e = dimY − dimZ. Then there is a morphism of complexes

f∗ : f∗C
•
r+e,Y [e]→ C•r,Z .

See e.g. [Ros96, Prop 4.6, (1)]. (Also notice that the complexes C•r,Y are defined

if Y is not smooth, see e.g. [Ros96, 5].) If Y and Z are smooth, then this map
induces a morphism in the derived category

f∗ : Rf∗KMr+e,Y [e]→ KMr,Z .

2.6.2. Let Y be a smooth scheme and denote by π : PNY → Y the projection. Denote
by

c1(O(1)) ∈ R1π∗O×PNY
the first Chern class of OPNY (1) and by

c1(O(1))i ∈ Riπ∗KMi,PNY , i ∈ [0, N ],

its i-fold cup-product (by convention c1(O(1))0 = 1 ∈ Z). Finally,

dlog (c1(O(1)))i ∈ Riπ∗ΩiPNY /Y , i ∈ [0, N ],
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denotes the image of c1(O(1))i under the map dlog : Riπ∗KMi,PNY → Riπ∗Ω
i
PNY /Y

.

Lemma 2.25. Let D be an effective Cartier divisor on X and assume that Dred

is a simple normal crossing divisor. Let {Dλ}λ∈Λ be the union of the irreducible
components of D. For a scheme Y set PY := PNY and denote by πY : PY → Y the
projection. For m ∈ NΛ and ν ∈ Λ and with the notation from (2.12.1) we have the
sheaves ωqX|D,m,ν on Dν at our disposal together with the subsheaves BqX|D,r,m,ν , for

r ≥ 1, as defined in 2.4.4. (In characteristic 0, we set BqX|D,r,m,ν := BqX|D,m,ν for

all r ≥ 1.) Then for all q ≥ 0 and r ≥ 1 we have on XZar

RiπDν∗(ω
q
PX |PD,m,ν/B

q
PX |PD,r,m,ν) = 0 = RiπX∗KMq,PX , for all i > N,

and for i ∈ [0, N ] there are natural isomorphisms

(2.25.1) − ∪c1(O(1))i : KMq−i,X
'−→ RiπX∗KMq,PX

and

− ∪ dlog (c1(O(1)))i : ωq−iX|D,m,ν/B
q−i
X|D,r,m,ν

'−→ RiπDν∗(ω
q
PX |PD,m,ν/B

q
PX |PD,r,m,ν),

induced by the cup product with (c1(O(1)))i and dlog (c1(O(1)))i, respectively. Fur-
thermore the corresponding statement on XNis equally holds.

Proof. We have the exact sequence (see (2.1.2))

0→ KMq,PX → j∗KMq,AX → K
M
q−1,HX → 0,

where HX ⊂ PX is a hyperplane with complement j : AX ↪→ PX . Therefore the
statement for KMq follows by induction from the isomorphism

KMq,X
'−→ R(πX ◦ j)∗KMq,AX ∼= RπX∗j∗KMq,AX

where the first isomorphism is homotopy invariance (see [Voe00b, Thm 3.1.12]
together with 2.1.2) and the second comes from Corollary 2.2.

Now we prove the statement for ωqm,ν . Let F ⊂ k be the prime subfield. We
have

ωqPX |PD,m,ν =

N⊕
j=0

π−1
Dν

(ωq−jX|D,m,ν)⊗F ρ−1ΩjPF /F ,

where ρ : PDν = Dν ×F PF → PF is the projection. This decomposition is com-
patible with the differential and the Cartier operator in the obvious sense. We
get

ωqPX |PD,m,ν/B
q
PX ,PD,r,m,ν

=

N⊕
j=0

π−1
Dν

(ωq−jX|D,m,ν/B
q−j
X|D,r,m,ν)⊗F ρ−1(ΩjPF /F /B

j
PF ,r

),

where BjPF ,r is defined as in 4.1.3 below. In the following we write P := PF and

Ωq := ΩqPF /F and Bqr := Bqr,PF , etc. By the Künneth formula (see [EGA III2,

Thm (6.7.8)]) it suffices to show that Hi(P,Ωj/Bjr) = 0, for i 6= j, and that the

cup product with dlog (c1(O(1)))j induces an isomorphism F
'−→ Hi(P,Ωi/Bir), for

i ∈ [0, N ]. This statement holds in the case r = 0, where we set Bj0 := 0 (see e.g.
[SGA7II, Exp XI]). Hence it suffices to show

Hi(P,Bjr) = 0 for all i, j, r.
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If char(k) > 0, the vanishing for r = 1 holds by [Ill90, Prop 1.4]. For r ≥ 2
the vanishing follows by induction from the isomorphism BNr

∼= BNr+1/B
N
1 which

is induced by the inverse Cartier operator. In characteristic zero the statement
follows from Lemma 2.26 below.

Finally the Nisnevich case. In view of the definition of the corresponding Nis-
nevich sheaves, see 2.1.2 and the proof of Corollary 2.20 the statement for the
Nisnevich sheaves follows from the two facts which hold for any smooth k-scheme:

(1) Hi(XNis,KMr,X) = Hi(XZar,KMr,X) (see 2.1.2 and [Voe00b, Thm 3.1.12]).

(2) Hi(XNis,FNis) = Hi(XZar,F), where F is any quasi-coherent sheaf and
FNis its associated Nisnevich sheaf (cf. [Mil80, III, Prop 3.7]).

This finishes the proof of the lemma. �

Lemma 2.26. Let k be a field of characteristic zero. Set P := PNk . Then

Hi(P,Hj(Ω•P/k)) = 0, i 6= j,

and the cup-product with dlog (c1(O(1)))i induces an isomorphism

k
'−→ Hi(P,Hi(Ω•P/k)), i ∈ [0, N ].

Furthermore for Bj := Im(d : Ωj−1 → Ωj) and Zi := Ker(d : Ωj → Ωj+1) we have

Hi(P,Bj) = 0, all i, j, Hi(P,Zj) = 0, all i 6= j, Hi(P,Zi) ∼= k, all i ∈ [0, N ].

Proof. By [BO74, (4.2)Thm and (2.2)] the Cousin complex of Hj(Ω•P/k) is a res-

olution. Since de Rham cohomology in characteristic zero satisfies purity we get
that for H ⊂ P a hyperplane the complex ΓH(Cousin(Hj(Ω•P/k))) is isomorphic to

the complex Cousin(Hj−1(Ω•H/k)) shifted by −1, i.e. we have an isomorphism

RΓHHj(Ω•P/k) ∼= Hj−1(Ω•H/k)[−1] in Db(PZar).

Hence the long exact localization sequence looks like this
(2.26.1)
. . .→ Hi−1(H,Hj−1(Ω•H/k))→ Hi(P,Hj(Ω•P/k))→ Hi(A,Hj(Ω•A/k))→ . . . ,

where A = P \H. Furthermore the presheaf X 7→ Hj(X,Ω•X/k) on Smk is a homo-

topy invariant pretheory (see [Voe00a, 3.4]) and hence so is its Zariski sheafification
X 7→ Γ(X,Hj(Ω•X/k)) (see [Voe00a, Prop 4.26]). Hence [Voe00a, Thm 4.27] implies

Hi(A,Hj(Ω•A/k)) = 0, for all (i, j) 6= (0, 0), and H0(A,H0(Ω•A/k)) = k.

The first two statements of the lemma are direct consequences of this, the exact
sequence (2.26.1) and induction.

We prove the last statement. Observe that the natural maps Hi(P,Zj) →
Hi(P,Ωj) and Hi(P,Hj(Ω•)) are surjective for all i, j. (Clearly for i 6= j and
for i = j it follows from the fact that the isomorphism k ∼= Hi(P,Ωi) and k ∼=
Hi(P,Hi(Ω•)) both given by the cup-product with dlog (c1(O(1)))i factor over
Hi(P,Zi).) We obtain short exact sequences for all i, j

0→ Hi(P,Bj)→ Hi(P,Zj)→ Hi(X,Hj(Ω•))→ 0

and
0→ Hi(P,Bj+1)→ Hi+1(P,Zj)→ Hi+1(P,Ωj)→ 0.

The last statement of the lemma follows directly from this via descending induction
over i. �
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Lemma 2.27. We keep the notations from above and set π := πX . Then the
pushforward π∗ : Rπ∗KMr+N,PX [N ] → KMr,X from 2.6.1 is equal to the composition

of the canonical map Rπ∗KMr+N,PX [N ] → RNπ∗KMr+N,PX with the inverse of the

isomorphism (2.25.1) (for (i, q) = (N, r +N)).

Proof. Notice that there is a canonical map Rπ∗KMr+N,PX [N ]→ RNπ∗KMr+N,PX by
the vanishing statement of Lemma 2.25. We have to show that the pushforward
π∗ : RNπ∗KMr+N,PX → K

M
r,X is the inverse of the isomorphism (2.25.1). Let i : X ↪→

PX be a section of π and consider the pushforward i∗ : i∗KMr,X [−N ] → KMr+N,PX .
The composition

KMr,X
RNπ∗(i∗)−−−−−−→ RNπ∗KMr,PX

π∗−→ KMr,X
is the identity. Hence it suffices to show that RNπ∗(i∗) is the equal to (2.25.1).
Further it suffices to check this in the generic point η ∈ X. The statement
now follows directly from the explicit description of the isomorphism KM

r (k(η)) ∼=
HN
η (KMr+N,PX ) given in (2.3.1). �

Theorem 2.28. Let D be an effective Cartier divisor on X and assume that Dred

is a simple normal crossing divisor. For a scheme Y set PY := PNY . Denote by
π : PX → X the projection. Then for r ≥ 0 we have on XNis

(2.28.1) Riπ∗KMr,PX |PD,Nis = 0, for all i > N,

and for i ∈ [0, N ] the cup product with c1(O(1))i ∈ Riπ∗KMi,PX ,Nis induces an iso-
morphism

(2.28.2) − ∪c1(O(1))i : KMr−i,X|D,Nis
'−→ Riπ∗KMr,PX |PD,Nis.

If Dred is smooth the same is true on XZar with KMr,X|D,Nis replaced by KMr,X|D.

Proof. This follows immediately by induction on the dimension of X, Proposition
2.10, Proposition 2.15, Theorem 2.19 and Lemma 2.25. �

Definition 2.29. In the situation of Theorem 2.28 above we define the pushforward

π∗ : Rπ∗KMr+N,PX |PD,Nis[N ]→ KMr,X|D,Nis

to be the composition

Rπ∗KMr+N,PX |PD,Nis[N ]
can. (2.28.1)−−−−−−−→ RNπ∗KMr+N,PX |PD,Nis

' (2.28.2)−−−−−−→ KMr,X|D,Nis.

Notice that by Lemma 2.27 this definition of the pushforward is compatible (in the
obvious sense) with the pushforward π∗ : Rπ∗KMr+N,PX [N ]→ KMr,X from 2.6.1.

3. Cycle Map to cohomology of relative Milnor K-sheaves

Let k be a field and X an equidimensional scheme of finite type over k.

3.1. The classical cycle map. Everything in this subsection is well known to the
experts. We give the proofs for lack of references.

3.1.1. Recall the notations from section 1. In particular for n ≥ 1 we have �n ⊂
(P1)n ⊃ (P1 \ {∞})n = Spec k[y1, . . . , yn]. By convention �0 = Spec k. Denote by
πn : X ×�n → X the projection. Recall that for r ≥ 0, n ∈ [0, r] and Z ⊂ X ×�n
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an integral closed subscheme of codimension r, the dimension formula (see e.g.
[EGA IV2, Prop (5.6.5)]) yields

codim(πn(Z), X) ≥ r − n,

where πn(Z) denotes the closure of πn(Z) in X, and equality holds if and only if Z

is generically finite over πn(Z). We can therefore define the a group homomorphism

ϕr,n
X

: zr(X,n)→
⊕

x∈X(r−n)

KM
n (k(x))

by

ϕr,n
X

(Z) =

{
(−1)rn ·Nmk(z)/k(πn(z)){yn(z), . . . , y1(z)}, if k(z)/k(πn(z)) is finite,

0, else

∈ KM
n (k(πn(z))),

where Z ⊂ X × �n is an integral closed subscheme of codimension r which meets
all the faces properly and has generic point z ∈ Z, yi(z) denotes the residue class
of yi ∈ OX×�n,z and Nmz/πn(z) : KM

n (k(z)) → KM
n (k(πn(z))) denotes the norm

map on Milnor K-theory. (By convention it equals multiplication with the degree
[k(z) : k(πn(z))] if n = 0.) Clearly ϕr,n

X
sends degenerate cycles to 0 and hence it

induces a map

ϕr,nX : zr(X,n)→
⊕

x∈X(r−n)

KM
n (k(x)).

For n 6∈ [0, r] we define ϕr,nX to be the zero map.

Lemma 3.1. For r ≥ 0 the collection of maps (ϕr,2r−iX )i∈Z induces a morphism of
complexes

ϕrX : zr(X, 2r − •)→ C•r,X(X)[−r],

where C•r,X is the Gersten complex, see 2.1.1. (It is defined for general X, see e.g.

[Ros96, 5.], but if X is not smooth it does not need to be a resolution.) Furthermore
this map is compatible with restrictions to open subsets of X in the obvious sense.

Proof. The second assertion is clear. For the first assertion we have to show that
for n ∈ [1, r + 1], Z ⊂ X ×�n an integral closed subscheme of codimension r with

generic point z ∈ Z intersecting all the faces properly and x ∈ {πn(z)} ∩X(r−n+1)

we have the following equality in KM
n−1(k(x))

(3.1.1) (−1)r∂Mx (ϕr,nX,πn(z)(Z)) = ϕr,n−1
X,x (∂cyc(Z)),

where we denote by ϕr,nX,x the composition of ϕr,nX with the projection to the x-

summand and ∂Mx : KM
n (k(πn(z)))→ KM

n−1(k(x)) and ∂cyc : zr(X,n)→ zr(X,n−
1) denote the boundary maps in C•r,X and zr(X, 2r − •), respectively. Notice that

the factor (−1)r appears on the left hand side in the equation (3.1.1) since by
convention the shifting operation [−r] on complexes multiplies the boundary maps
by this factor. We consider two cases.
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1st case: k(z)/k(πn(z)) is finite. Set Z0 = πn(Z). We have x ∈ Z(1)
0 . Denote by

Z ⊂ X × (P1)n the closures of Z. We have a commutative diagram

Z̃

j̃
��

ν //

π̃

��

Z

j

��
πn

��

Z̃
ν //

π̃
��

Z

πn

��
Z̃0 ν0

// Z0,

in which the horizontal maps are the normalizations, j and j̃ are open immersions
and the other vertical maps are induced by the projection X × (P1)n → X. Notice

that Z, Z̃ and Z̃0 are finite over a neighborhood of any point of Z
(1)
0 . We compute:

∂Mx (ϕr,nX,πn(z)(Z)) = (−1)nr
∑

x̃0∈ν−1
0 (x)

Nmx̃0/x(∂x̃0
Nmz/πn(z){yn(z), . . . , y1(z)})

= (−1)nr
∑

x̃0∈ν−1
0 (x)

∑
x̃∈π̃−1

(x̃0)

Nmx̃/x(∂x̃{yn(z), . . . , y1(z)})

= (−1)nr
∑

x̃0∈ν−1
0 (x)

∑
x̃∈π̃−1(x̃0)

Nmx̃/x(∂x̃{yn(z), . . . , y1(z)}).

Here the first equality holds by definition of ∂Mx , for the second see e.g. [Ros96,

(1.1), R3b and Thm (1.4)], the third equality holds since a point x̃ ∈ Z̃ \ Z̃ has one
of the yi coordinates equal to 1 and therefore ∂x̃{yn(z), . . . , y1(z)} = 0 in this case.

In particular we can assume x ∈ Z(1)
0 ∩ πn(Z). Since Z intersects all faces properly

only the two following cases can occur:

(1) x is not contained in any of the subsets πn(∂εi (Z)), i = 1, . . . , n, ε = 0,∞.
(2) There exists exactly one i0 ∈ {1, . . . , n} and one ε0 ∈ {0,∞} such that

x ∈ πn(∂ε0i0 (Z)).

In case (1) we get

∂Mx (ϕr,nX,πn(z)(Z)) = 0 = ϕr,n−1
X,x (∂cyc(Z)).

In case (2) we set ε′0 := 1 if ε0 = 0 and ε′0 := −1 if ε0 =∞ and get

∂Mx (ϕr,nX,πn(z)(Z))

= (−1)nr+i0−1
∑

x′∈π−1
n (x)

∑
x̃∈ν−1(x′)

vx̃(yi0(z)ε
′
0)·Nmx̃/x(ν∗{yn(x′), . . . , ŷi0(x′), . . . , y1(x′)})

= (−1)nr
∑

x′∈π−1
n (x)

(−1)i0−1 ·ε′0 ·ordx′(yi0(z))·Nmx′/x{y1(x′), . . . , ŷi0(x′), . . . , yn(x′)}

= (−1)rϕr,n−1
X,x (∂cyc(Z)).

Here the first equality holds by definition of the tame symbol, the second by the
projection formula for the norm map and [Ful98, Ex 1.2.3] and the third by the
definition of the maps involved. This proves (3.1.1) in this case.
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2nd case: k(z)/k(πn(z)) has positive transcendence degree. In this case we have
to show

(3.1.2) ϕr,n−1
X,x (∂cyc(Z)) = 0.

This is clearly the case if there is no point in Z(1) which is finite over x. Otherwise
if such a point exists and we denote by W ⊂ X×�n its closure, then the dimension
formula yields

r + 1− n = codim(πn(W ), X) = codim(πn(W ), πn(Z)) + codim(πn(Z), X).

By assumption codim(πn(Z), X) > r − n. Hence πn(W ) = πn(Z) and since x is

the generic point of πn(W ) we obtain:

(1) The base change Zx = Z×X×�n (x×�n) is an affine integral 1-dimensional
scheme of finite type over x.

(2) The natural map z → Z factors uniquely through the projection Zx → Z.

Thus Zx ⊂ x×�n is an integral closed subscheme of dimension 1 which intersects
all the faces properly and we have

ϕr,n−1
X,x (∂cyc(Z)) = ϕn−1,n−1

x,x (∂cyc(Zx)),

where the maps on the right are ∂cyc : zn−1(x, n)→ zn−1(x, n− 1) and ϕn−1,n−1
x,x :

zn−1(x, n − 1) → KM
n−1(k(x)). Denote by Zx the closure of Zx in (P1

x)n and by

ν : C → Zx the normalization. Then by definition

∂cyc(Zx) =

n∑
i=1

(−1)i
(( ∑

x′∈Zx∩(yi=∞)

( ∑
x̃∈ν−1(x′)

vx̃(y−1
i )[x̃ : x′]

)
· x′
)

−
( ∑
x′∈Zx∩(yi=0)

( ∑
x̃∈ν−1(x′)

vx̃(yi)[x̃ : x′]
)
· x′
))

.

Applying ϕn−1,n−1
x,x and using that Zx intersects all faces properly we obtain by a

similar calculation as in the 1st case

ϕn−1,n−1
x,x (∂cyc(Zx)) = (−1)n−1

∑
x̃∈C

Nmx̃/x(∂x̃({yn(z), . . . , y1(z)}).

This is zero by the reciprocity law for the tame symbol (see e.g. [Ros96, (2.4)]).
Hence the vanishing (3.1.2). �

Corollary 3.2. Let X be a smooth equidimensional k-scheme and r ≥ 0. Then
the maps {ϕrU}U⊂X , where U ranges over all open subsets of X, induces a quasi-
isomorphism of complexes of Zariski sheaves on XZar

φrX : τ≥rZ(r)X
qis−−→ C•r,X [−r].

Here Z(r)X is the complex of Zariski sheaves U 7→ zr(U, 2r − •). In particular we
have an isomorphism in Db(XZar) (also denoted by φrX)

φrX : τ≥rZ(r)X
'−→ KMX [−r].

Proof. By the Gersten resolution for higher Chow groups (see [Blo86, Thm (10.1)])
we have Hi(Z(r)X) = 0 for all i > r. Thus it suffices to show that φrX induces an
isomorphism Hr(Z(r)X) ∼= H0(C•r,X). This follows directly from the definition of

ϕr,rX , [Blo86, Thm (10.1)] and the construction of the isomorphism CHr(k(X), r)
'−→

KM
r (k(X)) in [Tot92, 3.]. �
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3.2. The relative cycle map.

3.2.1. Let D be an effective Cartier divisor on X and denote by j : U := X\D ↪→ X
the inclusion of the complement. For r ≥ 0 let C•r,X|D be the Cousin complex of

KMr,X|D and Ch,•r,X|D the Cousin complex of Rε∗KMr,X|D,Nis, see 2.5.1. For n ∈ [0, r]

we define a morphism

ϕr,nX|D : zr(X|D,n)→ Ch,r−nr,X|D (X)

as the precomposition of the natural map Cr−nr,X|D(X)
(2.22.2)−−−−−→ Ch,r−nr,X|D (X) with

(3.2.1) zr(X|D,n) ↪→ zr(X,n)U
ϕr,nX−−−→

⊕
x∈U(r−n)

KM
n (k(x))

(2.22.1)−−−−−→ Cr−nr,X|D(X),

where zr(X,n)U ⊂ zr(X,n) is the subgroup of cycles on X × �n supported in
U ×�n (i.e. cycles on X×�n whose support is contained in U ×�n, cf. 1.1.4, (1))
and the first map is the natural inclusion from 1.1.4, (1). For n 6∈ [0, r] we define
ϕr,nX|D to be the zero map.

Proposition 3.3. Let X be a smooth equidimensional scheme and D an effective
divisor such that Dred is a simple normal crossing divisor. For r ≥ 0 the collection
of maps (ϕr,2r−iX|D )i∈Z induces a morphism of complexes

ϕrX|D : zr(X|D, 2r − •)→ Ch,•r,X|D(X)[−r].

Furthermore, this map is compatible with restriction to open subsets of X in the
obvious sense and hence induces a morphism between complexes of sheaves on XZar

φrX|D : τ≥rZ(r)X|D → Ch,•r,X|D[−r].

If Dred is a smooth divisor φrX|D factors as a morphism of complexes

τ≥rZ(r)X|D → C•r,X|D[−r] (2.22.2)−−−−−→ Ch,•r,X|D[−r],

where the first map is induced by (3.2.1).

Proof. Once we know that ϕrX|D is a map of complexes it is clear that it induces a

map between complexes of sheaves φrX|D. For the first statement we have to show

the following: For n ∈ [1, r + 1], Z ∈ Cr(X|D,n) (see Definition 1.1) with generic

point z ∈ Z and for all points x ∈ {πn(z)} ∩X(r−n+1) the following equality holds
in Hr−n+1

x (Rε∗KMr,X|D,Nis)

(3.3.1) (−1)r∂Cx (ϕr,nX|D,πn(z)(Z)) = ϕr,n−1
X|D,x(∂cyc(Z)),

where we denote by ϕr,nX|D,x the composition of ϕr,nX|D with the projection to the

x-summand and by ∂Cx : Hr−n
πn(z)(Rε∗K

M
r,X|D) → Hr−n+1

x (Rε∗KMr,X|D) and ∂cyc :

zr(X|D,n) → zr(X|D,n − 1) the boundary maps in Ch,•r,X|D and zr(X|D, 2r − •),
respectively.

Notice that the restriction of ϕr,nX|D to U equals the map ϕr,nU from 3.1.1. In

particular, for x ∈ U the equality (3.3.1) follows from Lemma 3.1. Thus we can
assume x ∈ D. Therefore we have to show the vanishing of the left hand side in
(3.3.1). By definition of ϕr,nX|D we can further assume that k(z)/k(πn(z)) is finite.



34 KAY RÜLLING AND SHUJI SAITO

Taking the definition of the boundary maps in the Cousin complex Ch,•r,X|D into

account we see that it remains to show the following:
Denote by Z0 ⊂ X the closure of πn(Z) and by z0 = πn(z) ∈ Z0 its generic

point. Assume k(z)/k(z0) is finite and x ∈ D ∩ Z0 ∩X(r−n+1). Then we have to
show

(3.3.2) ϕr,nX|D,z0(Z) ∈ Im(Hr−n
Z0

(Rε∗KMr,X|D)x → Hr−n
z0 (Rε∗KMr,X|D)).

Observe that under the above assumptions we have x ∈ Z(1)

0 . Denote the com-
position of the map (3.2.1) with the projection to the z0-summand by

ψz0 : zr(X|D,n)→ Hr−n
z0 (KMr,X|D).

Notice that (3.3.2) holds if

(3.3.3) ψz0(Z) ∈ Im(Hr−n
Z0

(KMr,X|D)x → Hr−n
z0 (KMr,X|D)).

Also, in case (3.3.3) holds for all Z, we actually get that (3.2.1) induces a morphism
of complexes.

In the following we will show that (3.3.3) is satisfied if Z0 is normal or if Dred is
smooth, and that (3.3.2) holds in general. This will prove the proposition.

1st case: Z̄0 is normal. In this case Z̄0 is regular at x. Hence we find a regular
sequence t1, . . . , tr−n ∈ OX,x with OX,x/(t1, . . . , tr−n) ∼= OZ0,x

. Let f ∈ OX,x be

a local equation for D and denote by D0 = D|Z0
the pullback of D to Z0. The

image of f in OZ0,x
is still denoted by f . We claim that in order to prove (3.3.3)

it suffices to show

(3.3.4) Nmk(z)/k(z0){yn(z), . . . , y1(z)} ∈ KM
n,Z0|D0,x

.

Indeed set ν := Nmk(z)/k(z0){yn(z), . . . , y1(z)}. If the claim (3.3.4) holds we can

lift ν to an element ν̃ ∈ KMn,X|D,x (using the explicit description from Remark 2.5).

We obtain an element (see (2.0.5))[
ν̃ · {t1, . . . , tr−n}
t1, . . . , tr−n

]
∈ (Hr−n

Z0
(KMr,X|D))x,

which by Corollary 2.3 maps under restriction to the generic point of Z0 to the
element ψz0(Z) ∈ Hr−n

z0 (KMr,X|D) ∼= KM
n (k(z0)).

We have OZ0,x
[ 1
f ] = k(z0). Therefore (KM

n,Z0|D0
)x is generated by symbols of

the form {1 + fa, κ1, . . . , κn}, where a ∈ OZ0,x
and κi ∈ k(z0)× (see Remark 2.5).

Denote by A the completion of OZ0,x
along the maximal ideal and by K its fraction

field; it is a complete discrete valuation field with A as its ring of integers. Let m be
the valuation of f ∈ A. Then by Lemma 2.6 the natural map KM

n (k(z0))→ KM
n (K)

induces an isomorphism

KM
n (k(z0))/(KM

n,Z0|D
)x → KM

n (K)/UmKM
n (K).

Therefore it suffices to show that the pullback of Nmk(z)/k(z0){yn(z), . . . , y1(z)} to

KM
n (K) lies in UmKM

n (K). We have k(z)⊗k(z0) K =
∏
i Li, where each Li equals

the completion of k(z) along a point in the normalization of the closure of Z in
X × (P1)n, which lies above x. Now we fix i and set L := Li. Denote by B the
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normalization of A in L, by m its maximal ideal and by ι : k(z) ↪→ L the natural
inclusion. We set

aj :=

{
ι(yj(z))− 1, if ι(yj(z)) ∈ B
ι(yj(z)

−1)− 1, if ι(yj(z)
−1) ∈ B.

By the compatibility of the norm map with pullback we are reduced to show

(3.3.5) NmL/K{1 + a1, . . . , 1 + an} ∈ UmKM
n (K).

The modulus condition (1.1.1) which the integral cycle Z satisfies translates into

a1 · · · an/f ∈ B.
Up to permuting the factors aj (and therefore changing the element in (3.3.5) by
a sign) we can assume that there is an integer µ ∈ [1, n] such that a1, . . . , aµ ∈ m
and aµ+1, . . . , an ∈ B×. A fortiori we have

a1 · · · aµ/f ∈ B.
Then we can apply Lemma 2.7, (1), repeatedly (starting from s = a1, t = a2,
a = b = 1) to obtain

{1 + a1, . . . , 1 + an} = {1 + ua1 · · · aµ, λ2, . . . , λn}, u ∈ B×, λj ∈ L×.

In particular, {1 + a1, . . . , 1 + an} ∈ Um·eKM
n (L), where e denotes the ramification

index of L/K. Therefore (3.3.5) follows from NmL/K(Um·eKM
n (L)) ⊂ UmKM

n (K),
see [Kat83, Prop. 2] (also [Mor12, Thm 1.1]).

2nd case: Z0 is arbitrary. We denote by ν0 : Z̃0 → Z0 the normalization. It is a
finite map and hence factors as a closed immersion Z̃0 ↪→ PNX := PX followed by the

projection PX → X. There is a generic point of Z×Z0
Z̃0 which maps to the generic

point of Z and we denote by Z ′ ⊂ Z×Z0
Z̃0 its closure. We can view Z ′ as a closed

subscheme of PX×�n. By construction the projection PX×�n → X×�n induces
a finite and surjective morphism Z ′ → Z. It follows that Z ′ has codimension N + r
in PX ×�n, intersects all faces properly and satisfies the modulus condition (1.1.1)
with respect to the effective divisor PD ⊂ PX . Furthermore the closure of the image
of Z ′ in PX equals Z̃0, which has generic point z0. Thus we can apply the 1st case
to obtain

(3.3.6) ψz0(Z ′) ∈ Im(Hr+N−n
Z̃0

(KMr+N,PX |PD )x′ → Hr+N−n
z0 (KMr+N,PX |PD )),

where x′ is any point in Z̃
(1)
0 ∩ PD. A fortiori

(3.3.7) ϕr+N,nPX |PD,z0(Z ′) ∈

Im(Hr+N−n
Z̃0

(Rε∗KMr+N,PX |PD )x′ → Hr+N−n
z0 (Rε∗KMr+N,PX |PD )).

Let x ∈ D ∩ Z(1)

0 be as in (3.3.2). Then there exists an open neighborhood Ṽ of

x× P in PX such that Ṽ ∩ Z̃0 contains all 1-codimensional points of Z̃0 lying over

x and such that ϕr+N,nPX |PD,z0(Z ′) comes from an element in

Hr+N−n
Z̃0∩Ṽ

(Ṽ , Rε∗KMr+N,PX |PD ) = Hr+N−n
Z̃0∩Ṽ

(ṼNis,KMr+N,PX |PD,Nis).

(This follows from (3.3.7) and the fact that the Cousin complex is a resolution, see

Corollary 2.23.) After possibly shrinking Ṽ we find an open neighborhood V ⊂ X

of x such that Ṽ ⊂ PV and the complement of Z̃0∩ Ṽ ⊂ Z̃0∩PV has codimension 2
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in Z̃0. It follows from Theorem 2.22 that ϕr+N,nPX |PD,z0(Z ′) spreads out to an element

of

Hr+N−n
Z̃0∩PV

(PV,Nis,KMr+N,PX |PD,Nis).

Now the pushforward from Definition 2.29 induces a commutative diagram

Hr+N−n
Z̃0∩PV

(PV,Nis,KMr+N,PX |PD,Nis)

��
Hr+N−n

(Z0∩V )×V PV
(PV,Nis,KMr+N,PX |PD,Nis)

π∗

��

// Hr+N−n
z0 (KMr+N,PX |PD,Nis)

Hr−n
Z0∩V

(VNis,KMr,X|D,Nis)
// Hr−n

z0 (KMr,X|D,Nis).

For the equality on the right notice that both groups are equal to KM
n (k(z0)). By

definition of ϕ∗,∗∗|∗ it is also immediate that ϕr+N,nPX |PD,z0(Z ′) = ϕr,nX|D,z0(Z). Hence

(3.3.2) also holds in the 2nd case. If Dred is smooth the above proof goes through
if we drop the ‘Nis’, hence (3.3.3) also holds in the second case. This finishes the
proof of the proposition. �

Corollary 3.4. Let X and D be as in Proposition 3.3 and denote by j : U :=
X \D ↪→ X the inclusion of the complement of D. Then for all r ≥ 1 we have the
following commutative diagram in Db(XZar)

τ≥rZ(r)X|D
φrX|D //

��

Rε∗KMr,X|D,Nis[−r]

��
τ≥rZ(r)X

'
φrX

// KMr,X [−r],

in which the lower horizontal map is an isomorphism. Here the horizontal maps
are induced by the maps φrX and φrX|D from Corollary 3.2 and Proposition 3.3,

respectively, and the left vertical map is induced by the natural inclusion and the
right vertical map is induced by the natural inclusion KMr,X|D,Nis ↪→ K

M
r,X,Nis and

the isomorphism Rε∗KMr,X,Nis
∼= KMr,X from Corollary 2.21. Furthermore if Dred is

smooth we can replace Rε∗KMr,X|D,Nis[−r] by KMr,X|D[−r].

Proof. This follows directly from Corollary 3.2, 2.1.1, Proposition 3.3 and Corollary
2.23. �

Remark 3.5. (1) The dlog map induces a natural map

dlog : KMr,X|D → ΩrX(logDred)(−D),

see the proof of Proposition 2.15. Clearly it also induces a map of complexes
KMr,X|D → Ω≥rX (logDred)(−D). The composition in Db(XZar)

Z(r)X|D → τ≥rZ(r)X|D
φrX|D−−−→ Rε∗KMr,X|D,Nis

dlog−−−→ Rε∗(Ω
≥r
X,Nis(logDred)(−D)) = Ω≥rX (logDred)(−D)
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is the regulator map defined in [BS14, (7.10)], at least up to sign.
(2) Assume k is a perfect field of positive characteristic. Denote byWnΩ•X(logD)

the logarithmic de Rham-Witt complex for the log scheme (X, j∗O×U ∩OX),
see [HK94, 4.]. It defines a differential graded algebra and we denote by

WnΩ•X(logD)(−D) ⊂WnΩ•X(logD)

the differential graded ideal generated by Wn(OX(−D)) = Ker(WOX →
WOD). Then it is not hard to see that there is a natural map

dlog : KMr,X|D →WnΩrX(logD)(−D), {a1, . . . , ar} 7→ dlog [a1] · · · dlog [ar],

where [−] : OX → WnOX denotes the Teichmüller lift. Since the sheaf
WnΩrX(logD)(−D) can be viewed as a coherent sheaf onWnX = SpecWOX ,
its Zariski and its Nisnevich cohomology coincide and as in (1) we obtain
a cycle map

Z(r)X|D →WnΩ≥rX (logD)(−D).

Corollary 3.6. Assume Dred has simple normal crossings. Then the family {ϕrV |v∗D}v,

where v runs through all étale maps v : V → X, induces a morphism of complexes
of Nisnevich sheaves

φrX|D,Nis : τ≥rZ(r)X|D,Nis → C•r,X|D,Nis[−r],

see 1.1.3 and 2.5.2 for the notations. By Corollary 2.24 we get an induced map
(still denoted by the same symbol) φrX|D,Nis : τ≥rZ(r)X|D,Nis → KMr,X|D,Nis[−r] in

Db(XNis) fitting in the following commutative diagram

τ≥rZ(r)X|D,Nis

φrX|D,Nis//

��

KMr,X|D,Nis[−r]

��
τ≥rZ(r)X,Nis

'
φrX,Nis

// KMr,X,Nis[−r],

in which the lower horizontal map is an isomorphism.

Proof. It suffices to prove the existence of φrX|D,Nis. That is, we have to see that

for a map V ′ → V between étale X-schemes the following diagram commutes:

zr(V ′|DV ′ , 2r − •)
ϕr
V ′|D

V ′// Ch,•r,V ′|DV ′ (V
′)[−r]

zr(V |DV , 2r − •)
ϕrV |DV //

OO

Ch,•r,V |DV (V )[−r],

OO

where the vertical arrows are the restriction maps. By definition of ϕr∗|∗ in 3.2.1 it

suffices to check this over U = X \D. Hence we can assume D = 0. In this case the
statement follows from the definition of ϕr,n in 3.1.1 and the compatibility of the
norm on Milnor K-theory with pullback, see e.g. [Ros96, R1c and (1.4)Thm]. �

Proposition 3.7. Let X be a smooth equidimensional scheme and D an effective
divisor such that Dred is a simple normal crossing divisor. Then the map on XNis

Hr(Z(r)X|D,Nis) � KMr,X|D,Nis
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induced by the cycle map φrX|D,Nis is surjective for all r ≥ 1. Furthermore, if Dred

is smooth, with Nis replaced by Zar, the same statement holds.

Proof. It suffices to show that for V → X étale and elements a ∈ KM1,X|D(V ) and

bi ∈ OV (UV )× (where UV := V ×X U) there exists a cycle α ∈ zr(V |DV , r) with
∂(α) = 0 in zr(V |DV , r − 1) that satisfies

(3.7.1) ϕr,nV |DV (α) = {a, b1, . . . br−1} ∈ KMr,X|D(V ) ⊂ KM
r (k(V )).

We can assume that none of the elements a, bi is equal to 1. Denote by Γa,b1...,br−1

the graph of the map UV → (P1)r defined by a, b1, . . . , br−1 and set

Z := Γa,b1...,br−1
∩ (UV ×�r).

Notice that Z is isomorphic to UV , it has empty intersection with all faces and its
closure Z̄ ⊂ V × (P1)r is smooth and satisfies (with the notation from 1.1.1)

(D × (P1)r) · Z̄ ≤ F r1 · Z̄;

thus in particular it satisfies the modulus condition (1.1.1). It is immediate to check

that α := (−1)
r(r+1)

2 · [Z] satisfies (3.7.1). This proves the proposition. �

Theorem 3.8. Let X be a smooth equidimensional scheme of dimension d = dimX
and D an effective divisor such that Dred is a simple normal crossing divisor. Then:

(1) Hi
M(X|D,Z(r)) = 0 = Hi

M,Nis(X|D,Z(r)) for i > d+ r.

(2) The cycle map Z(r)X|D,Nis → τ≥rZ(r)X|D,Nis

φrX|D,Nis−−−−−→ KMr,X|D,Nis[−r] in-

duces an isomorphism

φd,rX|D,Nis : Hd+r
M,Nis(X|D,Z(r))

'−→ Hd(XNis,KMr,X|D,Nis).

If moreover Dred is smooth, then all maps in the following commutative
diagram are isomorphisms

(3.8.1) Hd+r
M (X|D,Z(r))

' //

φd,r
X|D '
��

Hd+r
M,Nis(X|D,Z(r))

φd,r
X|D,Nis'
��

Hd(XZar,KMr,X|D)
'

(2.21.1)
// Hd(XNis,KMr,X|D,Nis).

We need the following two lemmas in the proof of the theorem. In the following
we will freely use basic properties of local cohomology of Nisnevich sheaves, for
details see [Nis89].

Lemma 3.9. Let k, (X,D) be as in Theorem 3.8 above. Then on XZar

HnD(τ≥rZ(r)X|D) =

{
0, if n < r,

H0
D(Hn(Z(r)X|D)), if n ≥ r and n 6= r + 1,

and for n = r + 1 there is a natural exact sequence

0→ H1
D(Hr(Z(r)X|D))→ Hr+1

D (τ≥rZ(r)X|D)→ H0
D(Hr+1(Z(r)X|D))→ 0.

Furthermore, the same statements hold when we replace XZar and Z(r)X|D by XNis

and Z(r)X|D,Nis, respectively.
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Proof. We do the proof for Z(r)X|D; it works the same way for Z(r)X|D,Nis. Con-
sidering the spectral sequence

Ea,b2 = HaD(Hb(τ≥rZ(r)X|D))⇒ H∗D(τ≥rZ(r)X|D)

we see that it suffices to prove the following claim:

(3.9.1) HaD(Hb(τ≥rZ(r)X|D)) = 0, for all (a, b) 6∈ {(1, r)} ∪ ({0} × [r, 2r]).

Clearly we have the vanishing for all (a, b) ∈ (Z× (−∞, r− 1])∪ (Z× [2r+ 1,∞])∪
((−∞,−1]×Z). For a ≥ 1 and b ≥ r we have surjections (which are isomorphisms
for a ≥ 2)

Ra−1j∗Hb(Z(r)U ) � HaD(Hb(Z(r)X|D)),

where j : U = X \ D ↪→ X is the inclusion of the complement. Hence the claim
(3.9.1) follows from Hb(Z(r)U ) = 0 for b > r, Hr(Z(r)U ) = KMr,U (see Corollary

3.2) and Ra−1j∗KMr,U = 0, for a ≥ 2 (by Corollary 2.2). (For last vanishing in the

Nisnevich case use that Ra−1j∗KMr,U,Nis is the sheaf associated to V 7→ Hb−1((V ×X
U)Nis,KMr,U ) = Hb−1((V ×X U)Zar,KMr,U ).) �

Lemma 3.10. Let k, (X,D) be as in Theorem 3.8 above. Then

Hi
D(XZar, τ≥rZ(r)X|D) = 0, if i > d+ r,

and the natural map

Hd−1(XZar,H1
D(Hr(Z(r)X|D)) � Hd+r

D (XZar, τ≥rZ(r)X|D)

is surjective. Furthermore the same statements hold when we replace XZar and
Z(r)X|D by XNis and Z(r)X|D,Nis, respectively.

Proof. We do the proof for Z(r)X|D; it works the same way for Z(r)X|D,Nis. Con-
sidering the spectral sequence

Ea,b2 = Ha(X,HbD(τ≥rZ(r)X|D))⇒ H∗D(X, τ≥rZ(r)X|D)

we see that by Lemma 3.9 it suffices to show

(3.10.1) Ha(X,H0
D(Hb(Z(r)X|D))) = 0, for b ≥ r and a+ b ≥ r + d

and

(3.10.2) Ha(X,H1
D(Hr(Z(r)X|D))) = 0, for a ≥ d.

For a closed immersion iA : A ↪→ X denote by i!A : (abelian sheaves on X) →
(abelian sheaves on A) the unique functor which satisfies iA∗i

!
A = ΓA = H0

A, see
[SGA2, Exp. I, 1.]. (For the Nisnevich case, see [Nis89, 1.23].) We obtain

Ha(X,H1
D(Hr(Z(r)X|D))) = Ha(D, i!DH1

D(Hr(Z(r)X|D)).

Hence the vanishing (3.10.2) follows directly from Grothendieck’s general vanishing
theorem [Tohoku, Thm 3.6.5] by which the cohomological dimension of a noetherian
scheme is less or equal to its Krull dimension. (For the Nisnevich case, see [Nis89,
1.32].)

Next we prove (3.10.1). Denote by ΦnX|D the family of supports on X consisting

of all closed subschemes A ⊂ X of dimension dim(A) ≤ n which intersect D prop-
erly. Denote by ΦnX|D ∩D the smallest family of supports which contains all closed

subsets of the form A ∩D, with A ∈ ΦnX|D. Notice that

(3.10.3) dim(A) ≤ n− 1, for A ∈ ΦnX|D ∩D.
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If Z ⊂ U×�2r−b is an integral closed subscheme of codimension r, then the closure
Z0 ⊂ X of its image under the projection to U lies in Φd+r−b

X|D . Since Hb(Z(r)X|D)

is the sheaf on XZar associated to V 7→ CHr(V |DV , 2r − b) we obtain

Hb(Z(r)X|D) = H0
Φd+r−b
X|D

(Hb(Z(r)X|D))

and

H0
D(Hb(Z(r)X|D)) = H0

Φd+r−b
X|D ∩D(Hb(Z(r)X|D)) = lim−→

A∈Φd+r−b
X|D ∩D

iA∗i
!
A(Hb(Z(r)X|D)).

Thus

Ha(X,H0
D(Hb(Z(r)X|D))) = lim−→

A∈Φd+r−b
X|D ∩D

Ha(A, i!A(Hb(Z(r)X|D))),

which is zero for a+b ≥ d+r since the cohomological dimension of A is ≤ d+r−b−1
by (3.10.3) and [Tohoku, Thm 3.6.5]. (For the Nisnevich case, use [Nis89, 1.24] to
get the equality above and then apply [Nis89, 1.32] to obtain the vanishing.) �

Proof of Theorem 3.8. In the following, the subscript σ ∈ {Zar,Nis} indicates in
which topology we are. Denote by j : U = X \ D ↪→ X the inclusion of the
complement of D. First notice that each abelian sheaf F on Xσ has a Γ(Xσ,−)-
acyclic resolution of length d. (Take τ≤d of the Godement resolution of F ; it is
Γ(Xσ,−)-acyclic by [Tohoku, Thm 3.6.5] (resp. [Nis89, 1.32]); see [Nis89, 2.18] for
the Godement resolution in case σ = Nis.) This shows that Hi(Xσ, τ<rZ(r)X|D) =
0, for all i ≥ d+ r, and hence

Hi
M,σ(X|D,Z(r)) = Hi(Xσ, τ≥rZ(r)X|D,σ), for i ≥ d+ r.

We have an exact sequence

Hi+r
D (Xσ, τ≥rZ(r)X|D,σ)→ Hi+r(Xσ, τ≥rZ(r)X|D,σ)→ Hi+r(Uσ, τ≥rZ(r)U,σ).

For i > d the left hand side vanishes by Lemma 3.10 and the right hand side is
isomorphic to Hi(Uσ,KMr,U,σ) and hence also vanishes. This yields the first part of
the theorem.

It remains to prove that φd,rX|D,σ is an isomorphism for σ = Nis and if Dred is

smooth also for σ = Zar. In the following σ = Zar is only allowed in the case
where Dred is smooth. By Corollary 3.4 and Corollary 3.6 we have a commutative
diagram

Hd+r−1(Uσ,ZU ) //

φd−1,r
U,σ'
��

Hd+r
D (Xσ,ZX|D) //

φd,rD⊂X,σ
��

Hd+r(Xσ,ZX|D) //

φd,r
X|D,σ
��

Hd+r(Uσ,ZU )

φd,rU,σ'
��

Hd−1(Uσ,KU ) // Hd
D(Xσ,KX|D) // Hd(Xσ,KX|D) // Hd(Uσ,KU ),

where we use the short hand notations ZU = τ≥rZ(r)U,σ, ZX|D = τ≥rZ(r)X|D,σ,

KU = KMr,U,σ and KX|D = KMr,X|D,σ, the rows are the localization exact sequences

and the maps φi,rU,σ are isomorphisms (see Corollary 3.2). SinceHd+r+1
D (Xσ,ZX|D) =

0 by Lemma 3.10 the map Hd+r(Xσ,ZX|D)→ Hd+r(Uσ,ZU ) is surjective. Hence

it suffices to show that φd,rD⊂X,σ is an isomorphism. For b ≥ 2 we have by Corollary
2.2

HbD(KMr,X|D,σ) ∼= Rb−1j∗KMr,U,σ = 0.
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Also H0
D(KMr,X|D,σ) = 0, since KMr,X|D,σ is by definition a subsheaf of j∗KMr,U,σ. Thus

Hd
D(Xσ,KMr,X|D,σ) = Hd−1(Xσ,H1

D(KMr,X|D,σ)). We have a commutative diagram

Hd−1(Xσ,H1
D(Hr(Z(r)X|D,σ))) // //

��

Hd+r
D (Xσ, τ≥rZ(r)X|D,σ)

φr,dD⊂X,σ
��

Hd−1(Xσ,H1
D(KMr,X|D,σ))

' // Hd
D(Xσ,KMr,X|D,σ),

in which the top horizontal map is surjective by Lemma 3.10. Thus it suffices to
show that the map

(3.10.4) H1
D(Hr(Z(r)X|D,σ))→ H1

D(KMr,X|D,σ)

induced by φrX|D,σ is an isomorphism. To this end, consider the following commu-

tative diagram

Hr(Z(r)X|D,σ) //

φrX|D,σ
����

j∗Hr(Z(r)U,σ) //

' φrU,σ

��

H1
D(Hr(Z(r)X|D,σ)) //

(3.10.4)

��

0

0 // KMr,X|D,σ // j∗KMr,U,σ // H1
D(KMr,X|D,σ) // 0.

Here the rows are the localization exact sequences, the map φrU,σ is an isomorphism

(see Corollary 3.2) and φrX|D,σ is surjective by Proposition 3.7. It follows that

(3.10.4) is an isomorphism. This finishes the proof of the theorem. �

Remark 3.11. (1) It follows from Corollary 3.6 and Lemma 3.9 that the ob-
struction for the cycle map φrX|D,Nis : τ≥rZ(r)X|D,Nis → KMr,X|D,Nis[−r] to

be an isomorphism is the non-vanishing of

H0
D(Hn(Z(r)X|D,Nis)) = Ker(Hn(Z(r)X|D,Nis)→ j∗Hn(Z(r)U,Nis)), for n ≥ r.

Indeed, if this vanishing holds, then HnD(Z(r)X|D,Nis) = 0, for all n ≥ r

and n 6= r + 1, and Hr+1
D (Z(r)X|D,Nis) = H1

D(Hr(Z(r)X|D,Nis)) by Lemma
3.9. Hence Hn(Z(r)X|D,Nis) = Hn(Rj∗Z(r)U,Nis) = 0, for all n ≥ r+ 2. For
n = r we obtain a commutative diagram

0 // Hr(Z(r)X|D,Nis) //

����

j∗Hr(Z(r)U,Nis) //

'
��

H1
D(Hr(Z(r)X|D,Nis)) // 0

0 // KMr,X|D,Nis
// j∗KMr,U,Nis.

Here the rows are exact, the left vertical map is surjective by Proposi-
tion 3.7 and the right vertical map is bijective by the Nisnevich version
of Corollary 3.2. It follows that the left vertical map is an isomorphism.
Furthermore the right exactness of the top row yields that the natural
map Hr+1

D (Z(r)X|D,Nis) → Hr+1(Z(r)X|D,Nis) is the zero map and hence

Hr+1(Z(r)X|D,Nis) ⊂ Hr+1(Rj∗Z(r)U,Nis) = 0.
If we assume that Dred is smooth, then a similar remark applies for the

corresponding Zariski statement.
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(2) Going back through the proofs, one easily checks that the commutative
diagram (3.8.1) of isomorphisms exists for all divisors D whose support has
simple normal crossings and which satisfies that (2.10.1) is an isomorphism
(for all (m, ν)).

Corollary 3.12. Let X be a smooth curve over k and D an effective divisor on
X. Then we have isomorphisms

H2
M,Nis(X|D,Z(1)) ∼= H1(XZar,O×X|D) ∼= CH1(X|D, 0).

Proof. The first isomorphism follows from Theorem 3.8 and Hilbert 90. The second
isomorphism is classical and follows from the fact that the two term complex

K× →
⊕

x∈(X\|D|)(1)
ix∗(K

×/O×X,x)⊕
⊕

x∈|D|(0)
ix∗(K

×/(1 + mnxx ))

is the Cousin resolution of O×X|D. �

Remark 3.13. Let (X,D) be as in Theorem 3.8 with d = dimX. We have a natural
map

(3.13.1) CH1(X|D, 1− d)→ Hd+1
M,Nis(X|D,Z(1)).

If d = 1, this is an isomorphism by Corollary 3.12. But Theorem 3.8 implies that
it is in general not an isomorphism for d ≥ 2. Indeed, assume d = 2, then the
left-hand side vanishes, whereas the right-hand side is equal to H2(XNis,O×X|D).

The short exact sequence of Nisnevich sheaves 0 → O×X|D → O
×
X → i∗O×D → 0

induces an isomorphism of H2(XNis,O×X|D) with the cokernel of Pic(X)→ Pic(D).

But in general, this cokernel will not be zero, since not every line bundle on D lifts
to a line bundle on X. Note that this non-vanishing already occurs for reduced
and irreducible D. In particular, also the Zariski version of (3.13.1) is not an
isomorphism in general. For further counter examples in this spirit see Theorem
5.1, (1).

4. Motivic cohomology of (A1, (m+ 1) · {0})

4.1. Big de Rham-Witt Complex. A truncation set S is a subset of the positive
integers with the property that a positive integer s is an element of S if and only
if all positive divisors of s are contained in S. Examples are the sets {1, 2, . . . ,m}
and P = {1, p, p2, . . .}, for p a prime number. For a truncation set S and n ∈ N
we define the new truncation set S/n := {s ∈ S |ns ∈ S}. Notice that S/n is
the empty set if and only if n 6∈ S. We denote by J the category of truncation
sets, where the morphisms are inclusions. We denote by (dgaZ) the category of
differential graded Z-algebras in the sense of [Ill79, 0, 3.1].

Let R be a ring containing a field. Recall (see e.g. [Hes15, 4]) that the big de
Rham-Witt complex of R is a functor

Jop → (dgaZ), S 7→WSΩ·R,

that takes limits to colimits and which is equipped with graded ring homomor-
phisms, called Frobenius morphisms,

Fn : WSΩ·R →WS/nΩ·R, S ∈ J, n ∈ N,
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and homomorphisms of graded groups, called Verschiebung morphisms,

Vn : WS/nΩ·R →WSΩ·R, S ∈ J, n ∈ N.

These maps are in fact natural transformations between functors on J (in the
obvious sense) and satisfy various relations, see [Hes15, Def 4.1]. Notice that since
R is defined over a field we have dlog [−1] = 0 ∈WSΩ1

R for all S (see [Hes15, Rmk
4.2, (c)]) and WSΩ·R is a quotient of Ω·WS(R)/Z. This implies that WSΩ·R is really

a differential graded algebra in this case; in particular the relation x · x = 0 for a
homogeneous element x ∈WSΩ·R of odd degree holds.

Some facts: W∅Ω· = 0, WSΩ0
R = WS(R) = the ring of big Witt vectors,

W{1}Ω·R = Ω·R/Z =: Ω·R and for a finite truncation set S the dga WSΩ·R is a quo-

tient of Ω·WS(R)/Z. It follows that the restriction maps WSΩ·R → WTΩ·R (T ⊂ S)

are surjective. Finally if R is defined over a field of positive characteristic p, we
have W{1,p,...,pn−1}Ω

·
R = WnΩ·R the p-typical de Rham-Witt complex of length n

of Bloch-Deligne-Illusie. When working with the p-typical de Rham-Witt complex
we write F s = Fps and V s = Vps . We set WmΩ·R := W{1,2,...,m}Ω·R.

Lemma 4.1. Let k be a field and (Ri)i∈I a direct system system of k-algebras. Set
R = lim−→i∈I Ri. Then for all finite truncation sets S we have

WSΩqR = lim−→
i∈I

WSΩqRi .

Proof. For a finite truncation set S, we put E·S :=
⊕

q≥0 lim−→i∈I WSΩqRi . We have

a natural map of graded rings E·S →WSΩ·R. Furthermore for a general truncation
set S we define E·S := lim←−T⊂S E

·
T , where the limit is over all finite truncation sets T

contained in S and the transition maps are induced by the obvious restriction maps.
It then straightforward to check that S 7→ E·S is a Witt complex over R (in the
sense of [Hes15, Def 4.1]). Since W−Ω·R is the initial object in the category of Witt
complexes, we obtain a morphism of graded rings WSΩ·R → E·S for all truncation
sets S. For a finite truncation set this map is clearly inverse to the natural map
above. �

4.1.1. Relation big - and p-typical de Rham-Witt. Let R be a ring containing a field
of characteristic exponent p ≥ 1 and S ∈ J be a finite truncation set. Set

εS :=
∏

primes `∈S
` 6=p

(1− 1
`V`(1)) ∈WS(R),

where the product is over all primes ` ∈ S different from p. Then for all q ≥ 0 there
is an isomorphism of abelian groups

WSΩqR
'−→

∏
j∈S

(j,p)=1

WS/j∩PΩqR, α 7→ (Fj(α)|S/j∩P )j ,

where P = {1, p, p2, . . .}, with inverse map given by

(4.1.1)
∏
j∈S

(j,p)=1

WS/j∩PΩqR
'−→WSΩqR, (αj) 7→

∑
j

1

j
Vj(εS/jα̃j),

where α̃j ∈ WS/jΩ
q
R is some lift of αj ∈ WS/j∩PΩqR. These isomorphisms are

functorial in S in the obvious sense. (See [HM01, 1.2] or [Rül07, Thm 1.11].)
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4.1.2. Let X be a scheme over a field and S a truncation set. Then there is a unique
sheaf of groups WSΩqX on X such that for any open affine U = SpecR ⊂ X we
have Γ(X,WSΩq) = WSΩqR. Indeed, this is true for the p-typical de Rham-Witt
and therefore if S is a finite truncation set we have to set

WSΩqX :=
∏
j∈S

(j,p)=1

WS/j∩PΩqX

and if S is infinite then WSΩqX := lim←−T⊂SWTΩqX , where the limit is over all finite

subsets. Clearly all the structure maps sheafify. Notice that WSΩ0
X = WSOX is

the sheaf of big Witt vectors over X.

Remark 4.2. In case p = 1 the isomorphism from 4.1.1 above has the shape
WmΩqR

∼=
∏m
j=1 ΩqR. It is direct to check that under this isomorphism the re-

striction WmΩqR →Wm−1ΩqR is given by projecting to the first m− 1-components.
In particular we have an exact sequence

0→ ΩqR

1
mVm−−−→WmΩqR →Wm−1ΩqR → 0.

4.1.3. Let k be a perfect field of characteristic p > 0 and R an essentially smooth
k-algebra. Let C−1 : ΩqR → ΩqR/B

q
1 be the inverse Cartier operator, where Bq1 =

dΩq−1
R . Recall that it is injective with image Zq1/B

q
1 , where Zq1 = Ker(d : ΩqR →

Ωq+1
R ). We obtain a chain of subgroups (see e.g. [BK86, (1.3)])

0 = Bq0 ⊂ B
q
1 ⊂ . . . ⊂ Bqn ⊂ B

q
n+1 ⊂ . . . ⊂ Z

q
r+1 ⊂ Zqr ⊂ . . . ⊂ Z

q
1 ⊂ Z

q
0 := ΩqR,

where by definition C−1(Bqi ) = Bqi+1/B
q
1 and C−1(Zqi ) = Zqi+1/B

q
1 , for i ≥ 0.

Notice that we can iterate the inverse Cartier operator n-times to obtain a morphism

C−n : ΩqR → ΩqR/B
q
n,

which is injective and has image equal to Zqn/B
q
n. By convention C−0 = id.

Let m ≥ 1 be an integer and write m = m1p
s with (m1, p) = 1 and s ≥ 0.

Following [BK86, (4.7)] we define

θ : Ωq−1
R → (ΩqR/B

q
s)⊕ (Ωq−1

R /Bq−1
s ), α 7→ (C−s(dα), (−1)q−1m1C

−s(α))

and

grqm(R) := Coker(θ : Ωq−1
R → (ΩqR/B

q
s)⊕ (Ωq−1

R /Bq−1
s )).

(This is the group denoted by mGq+1
n in [BK86, (4.7)], for n > s.)

Proposition 4.3 (cf. [Ill79, I, Cor 3.9], [HK94, Thm (4.4)]). In the above situation
let m be a positive integer and write m = m1p

s with (m1, p) = 1 and s ≥ 0. Then
there is an exact sequence of groups

0→ grqm(R)→WmΩqR →Wm−1ΩqR → 0,

where the map on the right is given by restriction and the map on the left is induced
by

ΩqR ⊕ Ωq−1
R →WmΩqR, (α, β) 7→ Vm(α) + (−1)qdVm(β).

Proof. For j ∈ {1, 2, . . . ,m} with (j, p) = 1 denote by n(j,m) the unique integer
≥ 1 satisfying

jpn(j,m)−1 ≤ m < jpn(j,m).
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We get

n(j,m) =

{
s+ 1, if j = m1

n(j,m− 1), else.

Hence under the isomorphism from 4.1.1 the restriction WmΩqR → Wm−1ΩqR be-
comes ∏

1≤j≤m
j 6=m1,(j,p)=1

Wn(j,m)Ω
q
R

×Ws+1ΩqR →

 ∏
1≤j≤m

j 6=m1,(j,p)=1

Wn(j,m)Ω
q
R

×WsΩ
q
R,

which is the identity on the first component and the restriction Ws+1 → Ws on
the second. (Here WsΩ

q
R = 0 for s = 0, by convention.) Thus the kernel of

WmΩqR →Wm−1ΩqR is given by the image of

grsWΩqR := Ker(Ws+1ΩqR →WsΩ
q
R)

under the isomorphism of 4.1.1. By [Ill79, I, Cor. 3.9] there is a surjection

ψ :
ΩqR
Bqs
⊕

Ωq−1
R

Zqs+1

→ grsWΩqR, (α, β) 7→ m1V
s(α) + (−1)qdV s(β)

with

Kerψ =

{
(α, β) ∈

Bqs+1

Bqs
⊕ Zq−1

s

Zq−1
s+1

|m1V
s(α) = (−1)q−1dV s(β)

}
.

It follows that for any (α, β) ∈ Kerψ there exist elements α′, β′ ∈ Ωq−1
R with

(α, β) = (C−s(dα′), C−s(β′)).

Now take any α′′, β′′ ∈Ws+1Ωq−1
R lifting α′, β′. Then by [Ill79, I, Prop. 3.3]

α = C−s(dα′) ≡ F s(dα′′) mod Bqs , β ≡ C−s(β′) ≡ F s(β′′) mod Zq−1
s+1 .

Now m1V
s(α) = (−1)q−1dV s(β) yields

m1p
sdα′′ = (−1)q−1psdβ′′ in Ws+1ΩqR.

Since the map Ωq−1
R → Ws+1Ωq−1

R given by lifting and multiplying with ps is
injective by [Ill79, I, Prop. 3.4], we obtain

β′ ≡ m1(−1)q1α′ mod Zq−1
1 .

Define

θ′ : Ωq−1
R → (ΩqR/B

q
s)⊕ (Ωq−1

R /Zq−1
s+1 ), α 7→ (C−s(dα),m1(−1)q−1C−s(α)).

We obtain

Kerψ = Im θ′.

There is a natural surjection

grqm(R) = Coker θ � Coker θ′.

This map is in fact an isomorphism, as follows directly from the observation Ker θ′ =
Zq−1

1 and the Snake Lemma. Altogether we see that ψ induces an isomorphism
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grqm(R)
'−→ grsWΩqR. Finally the composition of ψ with the isomorphism (4.1.1)

sends (α, β) ∈ ΩqR ⊕ Ωq−1
R to

1
m1
Vm1

(εS/m1
m1Vps(α)) + 1

m1
Vm1

(εS/m1
(−1)qdVps(β))

=Vm1ps(Fps(εS/m1
)α) + (−1)qdVm1ps(Fps(εS/m1

)β)

=Vm(α) + (−1)qdVm(β),

where we set S := {1, . . . ,m} and view Vps as map W{1} = WS/m1ps → WS/m1
.

This finishes the proof. �

Proposition 4.4 (cf. [HK94, Prop. 4.6]). Let k be a field, X a regular scheme
over k and S a finite truncation set. Then there is a surjective morphism

(4.4.1) (WSOX ⊗Z ∧qZO
×
X)⊕ (WSOX ⊗Z ∧q−1

Z O×X)→WSΩqX ,

which on local sections is defined by

(w ⊗ a1 ∧ . . . ∧ aq, 0) 7→ w dlog [a1] · · · dlog [aq]

and
(0, w ⊗ a1 ∧ . . . ∧ aq−1) 7→ dw dlog [a1] · · · dlog [aq−1],

where [−] : O×X → WSO×X denotes the Teichmüller lift. Furthermore, if F ⊂ k is
the prime field of k, the kernel of this map is the sheaf of WS(F )-modules generated
by the local sections

(4.4.2) (Vn([a1])⊗a1∧ . . .∧aq, 0)−n(0, Vn([a1])⊗a2∧ . . .∧aq), ai ∈ O×X , n ∈ S.

Proof. Denote by ES the sheaf on the left-hand side of (4.4.1) and by KS the
sheaf of WS(F )-modules generated by the elements (4.4.2). Clearly there is a well-
defined and unique morphism ES → WSΩqX as in the statement. Further the
relations dWS(F ) = 0, ndVn = Vnd and Vn(α dlog [a]) = Vn(α) dlog [a] imply that
KS lies in the kernel of this map. The rest of the statement is local. Hence we may
assume that X is the spectrum of a regular local k-algebra R. By [Pop86, (2.7)
Cor] R is a filtered direct limit of local rings which are essentially smooth over F .
Hence by Lemma 4.1 we can assume that R is essentially smooth over F . Consider
the following group homomorphism

(4.4.3)
∏
j∈S

(j,p)=1

ES/j∩P → ES

given by

(xj ⊗ aj , yj ⊗ bj)j →
∑
j

(
1
jVj(εS/j x̃j)⊗ aj ,

1
jVj(εS/j ỹj)⊗ bj

)
,

where xj , yj ∈ WS/j∩P (R), x̃j , ỹj ∈ WS/j(R) are lifts of xj , yj and aj ∈ ∧qR×,

bj ∈ ∧q−1R×, the εS/j ’s are the ones from 4.1.1 and p is the characteristic exponent
of F . The isomorphism (4.1.1) for q = 0 immediately gives that (4.4.3) is an
isomorphism. We obtain a commutative square

ES // WSΩqR

∏
j∈S

(j,p)=1
ES/j∩P

(4.4.3) '

OO

// ∏ j∈S
(j,p)=1

WS/j∩PΩqR.

(4.1.1)'

OO
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In case p = 1 it is straightforward to check that the bottom horizontal map is
surjective with kernel equal to

∏
j KS/j∩P . (It suffices to show E1

{1}/K
1
{1}
∼= Ω1

R,

which is easily done using the universal property of Ω1
R.) In case p > 1, this follows

from [HK94, Prop. (4.6)]. (Notice that WS/j∩P (Fp) is a quotient of Z and hence
KS/j∩P is equal to the group generated by the elements (4.4.2).) Hence the top map
is surjective. It is a direct computation that the vertical arrow on the left-hand
side maps

∏
j KS/j∩P into KS (use 1

jVj(xy) = 1
j2Vj(x)Vj(y)). This finishes the

proof. �

Remark 4.5. Let S be a finite truncation set and p ≥ 1 the characteristic exponent
of the perfect field F . The WS(F )-submodule of (WSOX ⊗Z ∧qZO

×
X)⊕ (WSOX ⊗Z

∧q−1
Z O×X) generated by the elements (4.4.2) is actually equal to the group generated

by the elements

(4.5.1) (Vn([λa1])⊗ a1 ∧ . . . ∧ aq, 0)− n(0, Vn([λa1])⊗ a2 ∧ . . . ∧ aq),

for ai ∈ O×X , λ ∈ F, n ∈ S.

Indeed, take n, r ∈ S, λ ∈ F , a ∈ O×X and write n = n′pt with (n′, p) = 1 and
r = r′ps with (r′, p) = 1 and c := gcd(r′, n) = gcd(r′, n′). Notice [λ] = Fps [λ] ∈
WS(F ). Then on the one hand we get

Vr([λ]) ·
(
Vn([a])⊗ a, −nVn(a)

)
= psVr′([λ]) ·

(
Vn([a])⊗ a, −nVn([a])

)
= ps c

2

r′

(
Vnr′

c

([λ
n
c a

r′

c ])⊗ a
r′

c , −nr
′

c Vnr′
c

([λ
n
c a

r′

c ])

)
.

On the other hand we have(
Vn([λa])⊗ a, −nVn([λa])

)
= 1

n′Vn′([λ]) ·
(
Vn([a])⊗ a, −nVn([a])

)
.

4.2. De Rham-Witt and relative Milnor K-sheaves.

4.2.1. Let R be a noetherian local domain containing a field. We denote R((T )) :=
R[[T ]][ 1

T ]. By definition the r-th Milnor K group of R((T )) is the quotient of
R((T ))⊗Zr by the subgroup generated by the elements

b1 ⊗ . . .⊗ bi−1 ⊗ a⊗ (1− a)⊗ bi+2 ⊗ . . .⊗ br,
bi ∈ R((T ))×, a, 1− a ∈ R((T ))×. Notice that R((T )) is a local ring containing an
infinite field. Hence the relations {a,−a} = 0 and {a, b} = −{b, a} hold, see e.g.
[Ker09, Lem 2.2]. In particular our definition of KM

r (R((T ))) coincides with the

one from [BK86, 4.] and also with K̂M
r (R((T ))) defined in [Ker09]. Let K be the

fraction field of R then the natural map KM
r (R((T ))) ↪→ KM

r (K((T ))) is injective,
see [Ker09, Prop 10].

We denote by

UmKM
r (R((T )))

the subgroup of KM
r (R((T ))) generated by symbols of the form

{1 + xTm, y1, . . . , yr−1}, x ∈ R[[T ]], yi ∈ R((T ))×.

Notation 4.6. Let X be a regular connected scheme over a field and A1 =
SpecZ[T ]. For m ≥ 0 we set

AX |m := (X ×Z A1,m · (X × {0})).
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We define KMr,X×A1 as in 2.1.1 (there for a smooth scheme) and KMr,AX |m as in

Definition 2.4.

Lemma 4.7. We keep the notations from above. Let j : X × (A1 \ {0}) ↪→ X ×A1

be the open immersion and x ∈ X a point. Set R := OX,x. Then for all m ≥ 1
there is a natural isomorphism

(j∗KMr,X×(A1\{0})/K
M
r,AX |m)x

'−→ KM
r (R((T )))/UmKM

r (R((T ))),

where we view x via X ∼= X × {0} ↪→ X × A1 as a point on X × A1.

Proof. Set A := OX×A1,x×{0} and K = Frac(A). As in Lemma 2.1 and Remark 2.5

we have the following equalities of subgroups of KM
r (K(T ))

(j∗KMr,X×(A1\{0}))x×{0} = {(A[ 1
T ])×, . . . , (A[ 1

T ])×},

KMr,AX |m,x×{0} = {1 + TmA, (A[ 1
T ])×, . . . , (A[ 1

T ])×}.

Since under the natural map K(T ) ↪→ K((T )) the ring A[ 1
T ] is mapped into R((T ))

and (1 + TmA) is mapped into (1 + TmR[[T ]]), we obtain a natural map as in the
statement. The inverse map is constructed in the same way as in Lemma 2.6. �

4.2.2. We recall (see e.g. [Hes15, Ex. 1.16]) that for all m ≥ 1 and all rings R,
there is an isomorphism of groups

γ : Wm(R)
'−→ 1 + TR[[T ]]

1 + Tm+1R[[T ]]
,

m∑
n=1

Vn([an]) 7→
m∏
n=1

(1 + anT
n).

There are different conventions for this isomorphism (see [Hes15, before Add 1.15]),
we pick the one which is compatible with [BK86].

The following theorem generalizes the above isomorphism to higher degree and is
reminiscent of Bloch’s original construction of the p-typical de Rham-Witt complex
in [Blo77].

Theorem 4.8. Let X be a regular scheme over a field. For r ≥ 0 and m ≥ 1 there
is an isomorphism of sheaves of abelian groups on X

(4.8.1) WmΩrX
'−→

KMr+1,AX |1

KMr+1,AX |(m+1)

,

which sends

w dlog [a1] · · · dlog [ar] 7→ {γ(w), a1, . . . , ar}
and

dw dlog [a1] · · · dlog [ar−1] 7→ (−1)r{γ(w), a1, . . . , ar−1, T},
where w ∈WmOX , ai ∈ O×X .

Proof. Denote by F ⊂ OX the prime field and by p ≥ 1 its characteristic exponent.
We will need the following lemma:

Lemma 4.9. With the above notations we have in KMr+1,AX |1/K
M
r+1,AX |(m+1)

{1 + a1T
n, λ, a2, . . . , ar} = 0,

for all ai ∈ O×X , λ ∈ F , 1 ≤ n ≤ m and r ≥ 1.
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Proof of Lemma 4.9. If p > 1, then F = Fp and the statement follows directly from

λ = λp
s

, for λ ∈ Fp and s ≥ 0. Thus we assume p = 1, i.e. F = Q. For all ν ≥ 1
we have the map

dlog : KMr+1,AX |ν → Ωr+1
A1
X

(log{0}X)(−ν{0}X),

where {0}X = X × {0}, at our disposal, see the proof of Proposition 2.15. By
Proposition 2.15, (2.15.1) and the fact that the composition (2.15.3) is equal to the
differential, the dlog map induces injective maps on the graded pieces

KMr+1,AX |ν

KMr+1,AX |(ν+1)

↪→
Ωr+1

A1
X

(log{0}X)(−ν{0}X)

Ωr+1
A1
X

(log{0}X)(−(ν + 1){0}X)
, ν ≥ 1.

Hence also the induced map

dlogm+1 :
KMr+1,AX |1

KMr+1,AX |(m+1)

↪→
Ωr+1

A1
X

(log{0}X)(−{0}X)

Ωr+1
A1
X

(log{0}X)(−(m+ 1){0}X)

is injective. Since dlogm+1({1+a1T
n, λ, a2, . . . , ar}) = 0 the Lemma is proven. �

We resume with the proof of Theorem 4.8. By the above Lemma the following
equality holds in KMr+1,AX |1/K

M
r+1,AX |(m+1), for all ai ∈ O×X , λ ∈ F and 1 ≤ n ≤ m,

{1 + λa1T
n, a1, a2, . . . , ar}

= {1 + λa1T
n, λa1, a2, . . . , ar} − {1 + λa1T

n,−λa1T
n, a2, . . . , ar}

= (−1)rn · {1 + λa1T
n, a2, . . . , ar, T}.

This together with Proposition 4.4 and Remark 4.5 directly implies that there is a
well-defined map as in the statement. To show that it is an isomorphism, we may
assume that X is the spectrum of a regular local ring and by [Pop86, (2.7) Cor] and
Lemma 4.1 we may further assume that X = SpecR, with R a local ring which is
essentially smooth over F .

We first assume p > 1. In view of Lemma 4.7 the map defined above has the
shape

WmΩrR → U1KM
r+1(R((T )))/Um+1KM

r+1(R((T ))) := U1/Um+1.

This map clearly induces a morphism from the exact sequence from Proposition
4.3, to the exact sequence

0→ Um/Um+1 → U1/Um+1 → U1/Um → 0.

The map on the kernels grqm(R) → Um/Um+1 precomposed with the natural sur-
jection ΩrR ⊕ Ωr−1

R → grqm(R) is given by

(a dlog b1 ∧ . . . ∧ dlog br, 0) 7→ {1 + aTm, b1, . . . , br}

and

(0, adlog b1 ∧ . . . ∧ dlog br−1) 7→ {1 + aTm, b1, . . . , br−1, T},
where a ∈ R, bi ∈ R×. This is the map ρm from [BK86, (4.3)], which by [BK86,

Rmk (4.8)] induces an isomorphism grqm(R)
'−→ Um/Um+1, for all m ≥ 1. Hence

(4.8.1) is an isomorphism by induction on m.
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Now assume p = 1, i.e. F = Q. In this case the map (4.8.1) induces a morphism
from the exact sequence of Remark 4.2 to the exact sequence

0→
KMr+1,AR|m

KMr+1,AR|(m+1)

→
KMr+1,AR|1

KMr+1,AR|(m+1)

→
KMr+1,AR|1

KMr+1,AR|m
→ 0,

where we abuse notations and write R instead of SpecR. The map on the kernels
is given by

(4.9.1) ΩrR → KMr+1,AR|m/K
M
r+1,AR|(m+1)

a dlog b1 ∧ . . . ∧ dlog br 7→ {1 + 1
maT

m, b1, . . . , br},
a ∈ R, bi ∈ R×, and it suffices to show that this map is an isomorphism. With the
notation from (2.12.1) the global sections over SpecR of the sheaf ωrAR|m,m,1 are

Tm ·R⊗R (ΩrR ⊕ (Ωr−1
R ∧ dlog T ))

and the differential d : ωr−1
AR|m,m,1 → ωrAR|m,m,1 is given by

d(Tm ⊗ (α, β ∧ dlog T )) = Tm ⊗ (dα, (−1)r−1mα+ dβ) ∧ dlog T ).

It is direct to check that ΩrR → ωrAR|m,m,1/B
r
AR|m,m,1, α 7→ Tm ⊗ ( 1

mα, 0) is an

isomorphism. Hence, by Proposition 2.15, the map (4.9.1) is an isomorphism as
well. This finishes the proof. �

Corollary 4.10. Let p be a prime number and R be a regular local Fp-algebra. Then
the multiplication with p on KM (R((T ))) induces an injective homomorphism

UmKM
r (R((T )))/Um+1KM

r (R((T )))
p·−→ UpmKM

r (R((T )))/Upm+1KM
r (R((T ))),

for all r,m ≥ 1, .

Proof. As above, using Lemma 4.7 and [Pop86, (2.7) Cor] we reduce to the case
where R is local and essentially smooth over Fp. In this case, lifting and multiplying

with p induces an injective map p : WmΩr−1
R → WpmΩr−1

R , by [Ill79, I, Prop 3.4]
and 4.1.1. Hence the statement follows directly from Theorem 4.8. �

4.3. Motivic cohomology of (A1, (m + 1) · {0}) and additive Chow groups.
Let k be a field of characteristic 6= 2. We write A1

k = Spec k[T ].

4.3.1. Recall from [Rül07, Thm 3.20] that with the notation from 4.6 there is an
isomorphism for all m, r ≥ 1

(4.10.1) θ : CHr(Ak|(m+ 1), r − 1)
'−→WmΩr−1

k

which sends the class of a closed point P ∈ (A1
k \ {0})× (P1 \ {0, 1,∞})r−1 to

θ([P ]) = Trk(P )/k

(
1

[T (P )]
dlog [y1(P )] · · · dlog [yr−1(P )]

)
,

where Trk(P )/k : WmΩr−1
k(P ) → WmΩr−1

k is the trace map from [Rül07, Thm 2.6].

Let f ∈ 1 + Tk[T ] be an irreducible polynomial of degree ≤ m and denote by
w(f) ∈ Wm(k) the corresponding Witt vector, see 4.2.2. Let P,Q ∈ (A1 \ {0}) ×
(P1 \ {0, 1,∞})r−1 be two closed points defined by the following vanishing sets

(4.10.2) P = V (f, y1 − b1, . . . , yr−1 − br−1), bi ∈ k×,

(4.10.3) Q = V (f, 1− Ty1, y2 − b1, . . . , yr−1 − br−2), bi ∈ k×.
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Then

θ(P ) = w(f) dlog [b1] · · · dlog [br−1] ∈WmΩr−1
k

and

θ(Q) = dw(f) dlog [b1] · · · dlog [br−2] ∈WmΩr−1
k .

(Indeed, set L := k[T ]/(f) and denote by t ∈ L the residue class of T . Then the
above formulas follow immediately from the fact that TrL/k : WmΩ•L → WmΩ•k is
a map of differential graded WmΩ•k-modules (see [Rül07, Thm 2.6]) and the fact
that TrL/K(1/[t]) = w(f), see[Rül07, (3.7.3)].)

Lemma 4.11. The cycle map φrAk|(m+1) : τ≥rZ(r)Ak|(m+1) → KMr,Ak|(m+1) (see

Corollary 3.4 in the case where Dred is smooth) induces an isomorphism

(4.11.1) Hr+1
M (Ak|(m+ 1),Z(r))

'−→ U1KM
r (k((T )))/Um+1KM

r (k((T ))),

for all r,m ≥ 1.

Proof. By Theorem 3.8 the cycle map induces an isomorphism

Hr+1
M (Ak|(m+ 1),Z(r))

'−→ H1(A1
k,KMr,Ak|(m+1)).

Set Q := KM
r,A1

k
/KMr,Ak|(m+1). We obtain an exact sequence

H0(A1
k,KMr,A1

k
)→ H0(A1

k,Q)→ H1(A1
k,KMr,Ak|(m+1))→ H1(A1

k,KMr,A1
k
).

Now the term on the very right vanishes by homotopy invariance and for the same
reason the term on the very left equals KM

r (k). Furthermore Q is supported at the
closed point x := {0} ∈ A1

k and therefore H0(A1
k,Q) = KM

r,A1
k,x
/KMr,Ak|(m+1),x. We

obtain an isomorphism

(4.11.2) H1(A1,KMAk|(m+1))
∼= KMr,A1

k,x
/(KMr,Ak|(m+1),x +KM

r (k))

The statement follows from Lemma 4.7 and the observation that the right hand
side is canonically isomorphic to KMr,Ak|1,x/K

M
r,Ak|(m+1),x. For the latter it suffices

to show that T 7→ 0 induces an isomorphism KM
r,A1

k,x
/KMr,Ak|1,x

'−→ KMr,k, which is a

special case of Proposition 2.10. �

Theorem 4.12. Let k be a field of characteristic 6= 2. The following diagram is
commutative for all r,m ≥ 1

CHr(A1
k|(m+ 1){0}, r − 1)

'(−1)r(r−1)/2·(4.10.1)

��

nat. // Hr+1
M (A1

k|(m+ 1){0},Z(r))

' (4.11.1)

��
WmΩr−1

k '
·(4.8.1) // U1KM

r (k((T )))/Um+1KM
r (k((T ))).

In particular the natural maps

CHr(A1
k|(m+ 1){0}, r − n)

'−→ Hr+n
M (A1

k|(m+ 1){0},Z(r)), n ≥ 1,

are isomorphisms. (Notice that for n ≥ 2 the left hand side is clearly zero and the
right hand side is zero by Theorem 3.8.)
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Proof. We show that the two compositions

α : CHr(Ak|(m+ 1), r − 1)
nat.−−→ Hr+1(A1

k,Z(r)Ak|(m+1))

φ1,r
Ak|(m+1)−−−−−−−→ H1(A1

k,KMr,Ak|(m+1))

and

β : CHr(Ak|(m+ 1), r − 1)
(4.10.1)−−−−−→WmΩr−1

k

(4.8.1)−−−−→ U1KM
r (k((T )))/Um+1KM

r (k((T ))) =: U1/Um+1

via(4.11.2)−−−−−−−→ H1(A1
k,KMr,Ak|(m+1))

coincide. By Proposition 4.4 and 4.3.1 it suffices to show

α(P ) = β(P ), α(Q) = β(Q),

where P and Q are the points defined in (4.10.2) and (4.10.3), respectively. In the
following we fix the elements f ∈ 1 + Tk[T ] and bi ∈ k× defining P and Q. Using
the Cousin resolution of KMr,Ak|(m+1), see 2.5.1, we get a surjection

H1
{0}(A

1
k,KMr,Ak|(m+1))⊕

⊕
x∈A1\{0}

KM
r−1(k(x)) � H1(A1

k,KMr,Ak|(m+1)).

Set L = k[T ]/(f) and denote by t ∈ L the residue class of T . We denote by
ıL : KM

r−1(L) → H1(A1
k,KMr,Ak|(m+1)) the map induced by the above surjection.

Then by definition of φrAk|(m+1), see 3.2.1 and 3.1.1, we have

α(P ) = ıL({br−1, . . . , b1}) and α(Q) = ıL({br−2, . . . , b1,
1
t }).

On the other hand the images of P and Q in U1/Um+1 under the composition
(4.8.1) ◦ ((−1)r(r−1)/2 · (4.10.1)) equal

P 7→ {br−1, . . . , b1, f} mod Um+1

and

Q 7→ −{br−2, . . . , b1, T, f} mod Um+1.

We have to compute the images of these elements under the connecting homomor-
phism

(4.12.1) U1/Um+1 → H1(A1
k,KMr,Ak|(m+1)).

To this end, let C• := Γ(A1, C•
r,A1

k
) and C•m+1 := Γ(A1, C•r,Ak|(m+1)) be the global

sections of the Cousin complexes of KM
r,A1

k
and KMr,Ak|(m+1), respectively, and ν :

C•m+1 → C• the natural map between them. Notice that C0 = KM
r (k(t)) = C0

m+1.
Set D• = cone(C•m+1 → C•), i.e. D• is the complex sitting in degrees [−1, 1]

C0
m+1

d−1

−−→ C0 ⊕ C1
m+1

d0−→ C1

with d−1(a) = (a,−d0
Cm+1

(a)) and d0(b, c) = d0
C(b) + ν(c). Then D• is quasi-

isomorphic to U1/Um+1 (see after (4.11.2)). The boundary map (4.12.1) is given
by:

1. Lift an element from U1/Um+1 to Ker(d0) ⊂ C0 ⊕ C1
m+1.

2. Apply −π, with π : C0 ⊕ C1
m+1 → C1

m+1 the projection.



HIGHER CHOW GROUPS WITH MODULUS AND RELATIVE MILNOR K-THEORY 53

3. Consider the class of the resulting element modulo the image of d0
Cm+1

:

C0
m+1 → C1

m+1.

The boundary d0
C is given by the tame symbols ∂x along the various points x ∈ A1

k.
We have

∂x({br−1, . . . , b1, f}) =

{
{br−1, . . . , b1} ∈ KM

r−1(L), if x = V (f),

0, else,

and

∂x(−{br−1, . . . , b1, T, f}) =

{
{br−1, . . . , b1,

1
t } ∈ K

M
r−1(L), if x = V (f),

0, else.

All together we obtain β(P ) = ıL({br−1, . . . , b1}) and β(Q) = ıL({br−2, . . . , b1,
1
t }).

This finishes the proof. �

5. A vanishing result

Theorem 5.1. Let k be a field and X a smooth equidimensional k-scheme of di-
mension d, D an effective Cartier divisor on X such that Dred is a simple nor-
mal crossing divisor. For n ≥ 1 and m = (m1, . . . ,mn) ∈ Nn define the divisor
Em :=

∑n
i=1mi · q∗i {0} on Ank , where qi : Ank → A1

k denotes the projection to the
i-th factor. Denote by p : X×An → X the projection map and set Em,X := X×Em.
Then:

(1)

Hd+r+1
M (X × A1|E(m+1),X ,Z(r)) =

{
0, if m = 0,

Hd(X,WmΩr−1
X ), if m ≥ 1.

(2) For all n ≥ 2 and all m ∈ Nd,

Hd+r+n
M,Nis (X × An|(p∗D + Em,X),Z(r)) = 0.

Proof. By Theorem 3.8, (2), it suffices to prove the corresponding Nisnevich state-
ment of (1). Therefore, we will work in the Nisnevich topology and with the
Nisnevich sheafification of the relative Milnor K-theory for the rest of the proof
and drop the index Nis everywhere. Set

Qp∗D+Em
:= KMr,AnX/K

M
r,AnX |(p∗D+Em,X).

We have

(5.1.1) Hj(A1
X ,KMr,A1

X |E1,X
) = 0, for all j.

Indeed, by Proposition 2.10 QE1
∼= i∗KMr,X , where i : X × {0} ↪→ X × A1 is the

closed immersion. Therefore, the natural map

Hj(A1
X ,KMr,A1

X
)→ Hj(A1

X , QE1
)

is an isomorphism for all j by homotopy invariance. Hence (5.1.1) follows from the
long exact cohomology sequence induced by

0→ KMr,A1
X |E1,X

→ KMr,A1
X
→ QE1 → 0.

This gives the vanishing for m = 0 in (1), by Theorem 3.8. By Theorem 4.8 we
have an exact sequence

0→ KMr,A1
X |E(m+1),X

→ KMr,A1
X |E1,X

→ i∗WmΩr−1
X → 0.
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Hence the statement for m ≥ 1 in (1), follows from Theorem 3.8 and (5.1.1).
Next we prove (2). Notice that the general case is implied by the case n = 2.

For m ∈ N2 we have an exact sequence

Hd+1(KMr,A2
X

)→ Hd+1(Qp∗D+Em
)→ Hd+2(KMr,A2

X |(p∗D+Em,X))→ Hd+2(KMr,A2
X

),

where we abbreviate Hj(A2
X ,−) by Hj(−). Here, the two outer terms vanish by

homotopy invariance and the Nisnevich version of Grothendieck’s general vanishing
theorem. By Theorem 3.8, we therefore have to show

Hd+1(A2
X , Qp∗D+Em

) = 0.

We have an exact sequence

0 −→
KM
r,A2

X |(p∗Dred+Em,X,red)

KM
r,A2

X |(p∗D+Em,X)

−→ Qp∗D+Em
−→

KM
r,A2

X

KM
r,A2

X |(p∗Dred+Em,X,red)

−→ 0.

Thus the statement follows from the two claims:

(5.1.2) Hd+1

(
A2
X ,

KM
r,A2

X

KM
r,A2

X |(p∗Dred+Em,X,red)

)
= 0.

(5.1.3) Hd+1

(
A2
X ,
KM
r,A2

X |(p∗Dred+Em,X,red)

KM
r,A2

X |(p∗D+Em,X)

)
= 0.

We prove the vanishing (5.1.2). We do induction on the number of irreducible
components of D. First assume D = 0. If m = (0, 0), there is nothing to prove. If
m = (1, 0) or (0, 1), then the term in (5.1.2) is equal to Hd+1(A1

X ,KMr,A1
X

), by Propo-

sition 2.10; hence it vanishes by homotopy invariance and the Nisnevich version of
Grothendieck’s general vanishing theorem. If m = (1, 1), we have by Proposition
2.10 an exact sequence

0→ KMr,A1
X |E1,X

→
KM
r,A2

X

KM
r,A2

X |E(1,1),X

→ KMr,A1
X
→ 0.

Hence the vanishing of Hd+1(A2
X ,−) of the middle part follows from (5.1.1) and

homotopy invariance as before. If D 6= 0, let D1 be one of its irreducible components
and write Dred = D1 +D′, where D′ is reduced and effective. By Proposition 2.10

(5.1.4)
KM
r,A2

X |p∗D′+Em,Xred

KM
r,A2

X |(p∗Dred+Em,X,red)

∼= i1∗

 KM
r,A2

D1

KM
r,A2

D1
|(p∗(D′∩D1)red+Em,D1,red

)

 ,

where i1 : A2
D1

↪→ A2
X is the closed immersion. We have Hd+1(A2

D1
,KM

r,A2
D1

) =

0 by homotopy invariance and Hd+2(A2
D1
,KM

r,A2
D1
|(p∗(D′∩D1)red+Em,D1,red

)
) = 0 for

dimension reasons. This implies the vanishing Hd+1(A2
X , (5.1.4)) = 0. Hence we

are reduced to prove the vanishing (5.1.2) with D replaced by D′. We conclude by
induction.

We prove the vanishing (5.1.3). Consider the sheaf

ωr−1
n,ν := ωr−1

A2
X |(p∗D+Em,X),n,ν

,

with the notations from 2.4.3 and define Br−1
s+1,n,ν as in 2.4.4, with s = 0, in case

k has characteristic 0. If (p∗D + Em,X)ν is one of the irreducible components of
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p∗D, set Xν := Dν × A1, if it is an irreducible component of Em,X set Xν := X.

Then ωr−1
n,ν is a locally free sheaf on Xν ×A1 and Br−1

s+1,n,ν is a subsheaf. By Propo-

sition 2.15 and Theorem 2.19 the sheaf KM
r,A2

X |(p∗Dred+Em,X,red)
/KM

r,A2
X |(p∗D+Em,X)

is a successive extension of the sheaves ωr−1
n,ν /B

r−1
s+1,n,ν , for certain s, n, ν. Since

Hd+2(Xν × A1, Br−1
s+1,n,ν) = 0, for dimension reasons, it suffices to show

(5.1.5) Hd+1(Xν × A1, ωr−1
n,ν ) = 0.

Denote by a : Xν ×A1 → Xν and by b : Xν ×A1 → A1 the projection maps. Since
Ω1

A1(log{0})(−m ·{0}) ∼= OA1 , it follows directly from the definition of ωr−1
n,ν in 2.4.3

that there exist locally free sheaves ωr−1 and ωr−2 on Xν , possibly of rank 0, such
that

ωr−1
n,ν
∼= a∗ωr−1 ⊕ a∗ωr−2.

We have for i = r − 1, r − 2

Hd+1(Xν × A1, a∗ωi) = H0(A1, Rd+1b∗(a
∗ωi)) = k[t]⊗k Hd+1(Xν , ω

i) = 0,

where the first equality follows from the Leray spectral sequence, the second from
flat base change and the vanishing holds for dimension reasons. This yields the
vanishing (5.1.5) and finishes the proof. �

Remark 5.2. Let X be an equidimensional k-scheme of dimension d and D an
effective Cartier divisor onX. By [KP15, Thm 5.11] we have the vanishing CHr(X×
An|(p∗D + Em), r − (d + n)) = 0, for all r, all n ≥ 2, and all m ∈ (N≥1)n. In
particular, if the assumptions of Theorem 5.1 are satisfied, the natural map

CHr(X × An|(p∗D + Em), r − (d+ n))→ Hr+d+n
M,Nis (X × An|(p∗D + Em),Z(r))

is bijective.
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morphismes de schémas. II, Institut des Hautes Études Scientifiques. Publications
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[Tohoku] A. Grothendieck, Sur quelques points d’algèbre homologique., Tohoku Math. J. (2) 9
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