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Abstract. In this paper we show the existence of an action of Chow correspon-
dences on the cohomology of reciprocity sheaves. In order to do so, we prove a
number of structural results, such as a projective bundle formula, a blow-up for-
mula, a Gysin sequence, and the existence of proper pushforward. In this way we
recover and generalize analogous statements for the cohomology of Hodge sheaves
and Hodge-Witt sheaves.

We give several applications of the general theory to problems which have been
classically studied. Among these applications, we construct new birational invari-
ants of smooth projective varieties and obstructions to the existence of zero-cycles
of degree one from the cohomology of reciprocity sheaves.
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Introduction

0.1. Overview. It is a well-known fact that a large class of cohomology theories
for algebraic varieties can be equipped with an exceptional, covariant functoriality,
despite the fact that they are naturally contravariant. The existence of this kind
of “trace”, or “Gysin” morphism associated to projective (or even proper) maps of
smooth schemes is usually manifesting the existence of some Poincaré duality theory
for the cohomology one is interested in; if one replaces cohomology with homology,
which is naturally covariant, the exceptional functoriality is conversely represented
by the existence of a pull-back along a certain class of maps. The construction
of cohomological Gysin morphisms has occupied vast literature, stemming from
Grothendieck’s trace formalism for coherent cohomology [Har66].

A classical instance in the homological setting is represented by the Chow groups.
If X is a smooth quasi-projective variety over a field k, the Chow groups CH∗(X)
are naturally covariant for proper maps and admit contravariant Gysin maps for
quasi-projective local complete intersection morphisms [Ful98]. Fulton’s construc-
tion of the Gysin morphism was later promoted by Voevodsky in the context of his
triangulated category of mixed motives DMeff

Nis(k) over a perfect field k. Associated
to a codimension n closed immersion of smooth k-schemes, i : Z → X, Voevodsky
[Voe00b] constructed a distinguished triangle

M(X − Z)→M(X)
i∗−→M(Z)(n)[2n]

∂X,Z−−−→M(X − Z)[1]

where i∗ is the Gysin morphism and ∂X,Z is a residue map. Combining it with
a projective bundle formula for motives, also provided by Voevodsky, the classi-
cal method of Grothendieck allows one to define exceptional functoriality along an
arbitrary projective morphism between smooth k-varieties, factoring it as a closed
immersion followed by a projection of a projective bundle. This as well as the natu-
rality properties of Voevodsky’s Gysin maps have been studied in detail by Déglise
[Dég08], [Dég12].

In more recent times, Gysin morphisms for generalized cohomology theories have
been constructed in the context of A1-homotopy theory, making use of the full six
functor formalism as developed by [Ayo07a], [Ayo07b] and [CD19]. See [DJK18] for
more history and updated developments in that direction.

From the Gysin sequence, the projective bundle formula and the blow-up formula
(the latter being also an ingredient in the construction of the first one) in the trian-
gulated category of Voevodsky’s motives it is possible to get corresponding formulas
for every cohomology theory which is representable in DMeff

Nis(k). This is the case
of the sheaf cohomology of any complex of (strictly) A1-invariant Nisnevich sheaves
with transfers.

However, A1-invariant Nisnevich sheaves do not encompass all of the phenomena
that one would like to study. Interesting examples of sheaves which fail to satisfy
this property are given by the sheaves of (absolute and relative) differential forms,
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Ωi
−/Z,Ω

i
−/k, the p-typical de Rham-Witt sheaves of Bloch-Deligne-Illusie, WmΩi,

smooth commutative k-groups schemes with a unipotent part (seen as sheaves with
transfer), or the complexes Rε∗Z/pr(n), where Z/pr(n) is the étale motivic complex
of weight n with Z/pr coefficients, ε is the change of site functor from the étale to
the Nisnevich topology, and p > 0 is the characteristic of k.

For some of the above examples, instances of an exceptional functoriality have
been studied before, with results scattered in the literature. In the case of the sheaves
of differential forms, the existence of the pushforward is of course a consequence of
general Grothendieck duality, e.g., [Har66], [Nee96]. In this paper, we offer a unified
approach to treat the cohomology of arbitrary reciprocity sheaves, a notion that
includes all of the above examples: this is a particular abelian1 subcategory RSCNis

of the category of Nisnevich sheaves with transfers on Smk. Its objects satisfy,
roughly speaking, the property that for any X ∈ Smk, each section a ∈ F (X) “has
bounded ramification”, i.e., that the corresponding map a : Ztr(X) → F factors
through a quotient h0(X ) of Ztr(X), associated to a pair X = (X,X∞) where X
is a proper scheme over k and X∞ is an effective Cartier divisor on X such that
X = X − |X∞|. See 1.6 for more details. The category of reciprocity sheaves has
been introduced by Kahn-Saito-Yamazaki in [KSY] (see also its precursor [KSY16]),
and is based on a generalization of the idea of Rosenlicht and Serre of the modulus
of a rational map from a curve to a commutative algebraic group [Ser84, III].

Voevodsky’s category of homotopy invariant Nisnevich sheaves, HINis is an abelian
subcategory of RSCNis. Heuristically, A1-invariant sheaves are special reciprocity
sheaves with the property that every section a ∈ F (X) has “tame” ramification
at infinity. Slightly more exotic examples of reciprocity sheaves are given by the
sheaves Conn1 (in characteristic zero), whose sections over X are rank 1-connections,
or Lisse1

` (in characteristic p > 0), whose sections on X are the lisse Q`-sheaves of
rank 1. Since RSCNis is abelian and it is equipped with a lax2 symmetric monoidal
structure [RSY22], many more interesting examples can be manufactured by taking
kernels, quotients and tensor products. See 11.1 for even more examples.

0.2. Cohomology of cube invariant sheaves. In order to formulate our main
results, we need a bit of extra notation. In [KMSY21a], the authors introduced the
category MCor of modulus correspondences, whose objects are pairs X = (X,X∞),
called modulus pairs, where X is a separated scheme of finite type over k equipped
with an effective Cartier divisor X∞ (the case X∞ = ∅ is allowed) such that the
interior X − |X∞| = X is smooth. The morphisms are finite correspondences on
the interiors satisfying some admissibility and properness conditions, see 1.1. The
category MCor admits a symmetric monoidal structure, denoted ⊗. Let MPST be
the category of additive presheaves of abelian groups on MCor. Given X ∈MCor
and F ∈MPST, we write FX for the presheaf on the small étale site X ét given by
U 7→ F (U,U ×X X∞). We say that F is a Nisnevich sheaf if, for every X ∈MCor,
the restriction FX is a Nisnevich sheaf; the full subcategory of Nisnevich sheaves of
MPST is denoted MNST. Thanks to [KMSY21a], the inclusion MNST ⊂MPST
has an exact left adjoint (the sheafification functor).

Among the objects of MPST, we are interested in a special class, namely those
which satisfy the properties of being cube invariant, semipure and withM-reciprocity,

1The fact that the category of reciprocity sheaves is abelian is a non-trivial result, see [Sai20a].
2In the sense that only a weak form of associativity is known to hold, cf. [RSY22, Thm. 1.5]
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see 1.4. The first two properties are easy to explain. Let � = (P1,∞) ∈ MCor.
Then F ∈MPST is cube-invariant if for any X ∈MCor the natural map

F (X )→ F (X ⊗�)

induced by the projection X × P1 → X is an isomorphism. We have that F is
semipure if the natural map

F (X )→ F (X, ∅), (X = X − |X∞|)
is injective. The last condition of M -reciprocity is slightly more technical, and we
refer the reader to the body of the paper. We write CIτ,sp for the category of cube
invariant, semipure presheaves with M -reciprocity and CIτ,spNis for CIτ,sp ∩MNST.

It is possible to show (see [MS, 1.6], [KSY, 2.3.7]) that there is a fully faithful
functor

ωCI : RSCNis → CIτ,spNis

admitting an exact3 left adjoint, so that one can in particular specialize Theorem 0.1
below on cube invariant sheaves to the case of reciprocity sheaves. If G ∈ RSCNis,

we write G̃ for ωCI(G), and for F ∈ CIτ,spNis , n ≥ 1 let us write

γnF = HomMPST(G̃
⊗HINis

n
m , F ) ∼= HomMPST(K̃Mn , F ).

This is a form of (negative) twist, see 4.4, called contraction in Voevodsky’s theory
([MVW06, 23]). The tensor product with subscript HI is the tensor product for
homotopy invariant Nisnevich sheaves with transfers from [MVW06, Chapt. 8], KMn
is the sheaf of improved Milnor K-theory introduced in [Ker10] and the isomorphism
follows from a result of Voevodsky [RSY22, 5.5]. See Theorem 11.1 and Theorem
11.8 for some computations of the twists. The Bloch formula implies that for any
family of supports Φ and any cycle α ∈ CH i

Φ(X) (see 5.1) there is a natural cupping
map

cα : (γiF )X [−i]→ RΓΦFX in D(XNis),

which is compatible with refined intersection and pullback, see 5.8.
The following theorem summarizes parts of our results. Write MCorls for the

subcategory of MCor whose objects X = (X,D) satisfy the additional condition
that X ∈ Sm and |D| is a simple normal crossing divisor.

Theorem 0.1. Let F ∈ CIτ,spNis and let X = (X,D) ∈MCorls.

(1) (Projective bundle formula, Theorem 6.3) Let V be a locally free OX-module

of rank n+ 1 and let P = P(V )
π−→ X be the corresponding projective bundle.

Let P = (P, π∗D). Then there is a natural isomorphism in D(XNis)
n∑
i=0

λiV :
n⊕
i=0

(γiF )X [−i]→ Rπ∗FP

where λiV is induced by cξi for the i-fold power ξi ∈ CHi(X) of the first Chern
class ξ of V .

(2) (Gysin sequence, Theorem 7.16) Let i : Z ↪→ X be a smooth closed sub-
scheme of codimension j intersecting D transversally (Def. 2.11) and set
Z = (Z,D|Z). Then there is a canonical distinguished triangle in D(XNis)

(0.1.1) i∗γ
jFZ [−j]

gZ/X−−−→ FX
ρ∗−→ Rρ∗F(X̃,D|X̃+E)

∂−→ i∗γ
jFZ [−j + 1],

3i.e. commuting with finite limits and colimits.
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where ρ : X̃ → X is the blow-up of X along Z and E = ρ−1(Z). The Gysin
map gZ/X satisfies an excess intersection formula (7.9.1), it is compatible
with smooth base change (Prop. 7.9), and with the cup product with Chow
classes (Prop. 7.8).

We stress the fact that, in constrast to the A1-invariant setting, our Gysin se-
quence does not involve the cohomology of the open complement of Z ⊂ X but,
rather, the cohomology of a modulus pair constructed by taking the blow-up of X

along Z. When F = G̃ and G ∈ HINis, one can in fact verify that (0.1.1) gives
back the classical Gysin sequence of Déglise and Voevodsky. For non-A1-invariant
sheaves, the existence of the Gysin map is new essentially in all of the above-
mentioned examples: for instance, it does not follow from the work of Gros [Gro85]

for the de Rham-Witt sheaves. Other interesting cases are given by F = C̃onn1 or

L̃isse1, see Corollary 11.6. We may also apply (0.1.1) for D = ∅ and F the whole de
Rham-Witt complex complex and obtain in this way a Gysin sequence for the crys-
talline cohomology RuX∗OX/Wn , where uX : (X/Wn)crys → XNis is the natural map
of sites, which generalizes to higher codimension the classical sequence induced by
the residue map along a smooth closed divisor, see Corollary 11.10 and the following
remark.

The key computation leading to the above results is the vanishingH i(Y, F(Y,ρ∗L)) =
0, for i ≥ 1, where ρ : Y → An is the blow-up in the origin and L ⊂ An a hyperplane
passing through the origin, see Theorem 2.12. The proof of this theorem occupies
almost all of section 2 and relies deeply on the theory of modulus sheaves with
transfers.

By factoring any projective morphism as a closed embedding followed by a pro-
jection from a projective bundle, we can use Theorem 0.1 to construct pushforward
maps (in fact, we construct, the pushforward with proper support along a quasi-
projective morphism). See Definition 8.5 and Proposition 8.6 for the main proper-
ties. Note that the pushforward is compatible with composition, smooth base-change
and cup product with Chow classes. See 9.5 and Theorem 9.7.

For F = ωCIWmΩi, the construction gives even a refinement of the pushforward
map for cohomology of Hodge-Witt differentials constructed by Gros [Gro85]. See
Cor. 0.6 below.

0.3. Chow correspondences. When a cohomology theory is equipped with push-
forward with proper support and a cup-product with cycles, it is possible, with a
bit of extra work, to produce an action of Chow correspondences. Let S be a sep-
arated k-scheme of finite type, and let CS be the category whose objects are maps
(f : X → S) with the property that the induced map X → Spec(k) is smooth and
quasi-projective. As for morphisms, we set (if Y is connected)

CS(X, Y ) = CHdimY
Φprop
X×SY

(X × Y )

where Φprop
X×SY is the family of supports on X × Y consisting of closed subsets which

are contained in X ×S Y and that are proper over X. Composition is given by the
usual composition of correspondences using the refined intersection product [Ful98,
16]. If F • is a bounded below complex of reciprocity sheaves and (f : X → S) and
(g : Y → S) are objects of CS, we can define for α ∈ CS(X, Y ) a morphism

α∗ : Rg∗F
•
Y → Rf∗F

•
X in D+(SNis)
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that is compatible with the composition of correspondences, satisfies a projection
formula, and gives back the pushforward for reciprocity sheaves when α = [Γth] is
the transpose of the graph of a proper S-morphism h : X → Y . See Proposition
9.10.

For homotopy invariant sheaves, the existence of the action of Chow correspon-
dences follows from work of Rost [Ros96] and Déglise [Dég12] (although, to our
knowledge, this has not beet spelled out explicitly in the literature).

Previous instances of constructions of an action of Chow correspondences on the
cohomology of Hodge and Hodge-Witt differentials can be found in [CR11] and
[CR12]. However, we remark that the approach followed in this paper is conceptually
different: in [CR11] and [CR12], the existence of the whole de Rham and de Rham-
Witt complex, with its structure of graded algebra, was used. In contrast, here
the projective push-forward is directly constructed starting from a single reciprocity
sheaf F (and its twists). Our statements are also finer, since we get morphisms
defined at the level of derived categories, rather than just between the cohomology
groups.

0.4. Applications. Let us now discuss how we can apply the formulas established
so far to get new interesting invariants.

0.4.1. Obstructions to the existence of zero cycles of degree 1. In Section 10.1 we
explain how to use the proper correspondence action on the cohomology of an arbi-
trary reciprocity sheaf to construct very general obstructions of Brauer-Manin type
to the existence of zero cycles on smooth projective varieties over function fields,
recovering the classical obstruction as a special case.

Here is the main result (see Theorem 10.1):

Theorem 0.2. Let f : Y → X be a dominant quasi-projective morphism between
connected smooth k-schemes. Assume that there are integral subschemes Vi ⊂ Y
which are proper, surjective, and generically finite over X of degree ni, i = 1, . . . , s.
Set N = gcd(n1, . . . , ns). Let F • ∈ Comp+(RSCNis) be a bounded below complex
of reciprocity sheaves. Then there exists a morphism σ : Rf∗F

•
Y → F •X in D(XNis)

such that the composition

F •X
f∗−→ Rf∗F

•
Y

σ−→ F •X

is multiplication with N .

In particular, if f is proper and f ∗ : H i(X,F •X)→ H i(Y, F •Y ) is not split injective,
then the generic fiber of f cannot have index 1, i.e., there cannot exist a zero cycle
of degree 1. It is then possible to assemble the morphisms σ in order to produce a
generalization of the classical Brauer-Manin obstruction in the case of the function
field of a curve (see (10.2.3) and the references there for more details). This is
explained in Corollary 10.4.

See also the end of Section 10.1 for a comprehensive list of references to previous
works where unramified cohomology groups have been used to study obstructions
to the local-global principle for rational points, rather than for 0-cycles, over special
types of global fields.

0.4.2. Birational invariants. Once we have established an action of Chow correspon-
dences on the cohomology of reciprocity sheaves, this can be used to find birational
invariants.
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Let us fix again a separated k-scheme of finite type S. We say that (f : X → S)
and (g : Y → S) ∈ CS, with X and Y integral, are properly birational over S if there
exists an integral scheme Z (that we call proper birational correspondence) over S
and two proper birational S-morphisms Z → X, Z → Y (note that we don’t assume
that f or g is proper). If we let Z0 ⊂ X × Y be the image of Z → X × Y , we can
then look at the composition [Z0]∗ ◦ [Zt

0]∗, and get for example the following result.

Theorem 0.3 (see Theorem 10.10). Let F ∈ RSCNis and assume that F (ξ) = 0,
for all points ξ which are finite and separable over a point of X or Y of codimen-
sion ≥ 1. Then any proper birational correspondence between X and Y induces an
isomorphism

Rg∗FY
'−→ Rf∗FX .

If Y = S in the statement of Theorem 0.3, we get a vanishing Rif∗FX = 0 for
i ≥ 1 and for any projective birational morphism f : X → Y and F as in the
theorem. The prototype example of a sheaf satisfying the condition F (ξ) = 0 is the
sheaf of top differential forms, ΩdimX

/k . For this, the birational invariance is classical
in characteristic zero, and follows from Hironaka’s resolution of singularities. In
positive characteristic it was proven in [CR11] by using a similar action of Chow
correspondences (although the statements in loc.cit. were for the cohomology groups,
not for the whole complexes in the derived category, see also [Kov]). On the other
hand, Theorem 0.3 provides a very general class of birational invariants, many of
which are new to us: for example, using results of Geisser-Levine, we can consider
the cohomology of the étale motivic complexes Riε∗(Z/pn(d)) (for all i and n if
char(k) = p > 0), where d = dimX = dimY . See Corollary 11.16 for a more
extensive list.

Among the other applications, we can use Theorem 0.3 to generalize parts of
[Pir12, Thm 3.3] (which generalizes [CTV12, Prop 3.4]). See Corollary 11.19 for
more details.

We remark that the global sections of reciprocity sheaves enjoy a general invari-
ance under proper (stable) birational correspondences, without assuming F (ξ) = 0
for ξ as above. See Theorem 10.7 and the notations there.

As a byproduct of 0.2, we also get (stably) proper birational invariance (see Def-
inition 10.2) for the n-torsion of the relative Picard scheme, PicX/S[n], for all n and
any flat, geometrically integral, and projective morphism X → S between smooth
connected k-schemes such that the generic fiber has index 1. This is classical and
known to the experts if S is the spectrum of an algebraically closed field, but it is
new for general S. See Corollary 11.24.

0.4.3. Decomposition of the diagonal. In section 10.3 we investigate the implications
of the cycle action in case we have a decomposition of the diagonal, a method which
was first employed in [BS83]. For example we obtain:

Theorem 0.4 (see Theorem 10.13). Let f : X → S be a smooth projective mor-
phism, where S is the henselization of a smooth k-scheme in a 1-codimensional
point or a regular connected affine scheme of dimension ≤ 1 and of finite type over
a function field K over k. Assume that the diagonal cycle [∆Xη ] of the generic fiber
Xη of f has an integral decomposition. Then, for any F ∈ RSCNis, the pullback
along f induces an isomorphism

H0(X,F ) ∼= H0(S, F ).
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See Remark 10.14 for some conditions under which the diagonal decomposes.
Note that in the case F = Riε∗Z/pn(j), with (i, j) 6= (0, 0), and X is defined over an
algebraically closed field of characteristic p > 0 and admits an integral decomposition
of the diagonal, we obtain H0(X,Riε∗Z/pn(j)) = H0(Spec k,Riε∗Z/pn(j)) = 0.
(The vanishing follows from [GL00].) This immediately implies a positive answer to
Problem 1.2 of [ABBvB19], and reproves Theorem 1 in loc. cit. See Corollary 11.21.
See also the recent work [Ota], for a different approach.

In case S = Spec k and F is A1-invariant Theorem 0.4 is classical; Totaro proved
that it also holds for F = Ωi

−/k (see [Tot16, Lem 2.2]) and - building on ideas
of Voisin and Colliot-Thélène-Pirutka - used this to find many new examples of
hypersurfaces that are not stably rational. It is an interesting question, whether the
flexibility in the choice of the sheaf F coming from Theorem 0.4 — e.g., F can be
any quotient of Ωi

−/k, say F = ΩN
−/k/ dlogKM

N from Corollary 11.16 — can be used
to find new examples of non-stably rational varieties.

Results for higher cohomology groups are also obtained if F satisfies certain extra
assumptions, see Theorems 10.15, 10.16 and see Corollary 11.22 for examples.

0.4.4. Cohomology of ordinary varieties. Following Bloch-Kato [BK86] and Illusie-
Raynaud [IR83], we say that a variety X over a perfect field k of characteristic p > 0
is ordinary if Hm(X,Br

X) = 0 for all m and r, where Br
X = Im(d : Ωr−1

X → Ωr
X). It is

equivalent to ask that the Frobenius F : Hq(X,WΩr
X) → Hq(X,WΩr

X) is bijective
for all q and r. If X is an abelian variety A, this recovers the property that the
p-rank of A is the maximum possible, namely equal to its dimension. For them, we
have the following result.

Corollary 0.5 (see Corollary 11.14). Let f : X → S be a surjective morphism
between smooth projective connected k-schemes. Assume that the generic fiber has
index prime to p. Then

X is ordinary =⇒ S is ordinary.

Note that the assumption on the generic fiber is of course guaranteed if Xk(S) has
a zero cycle of degree prime to p (for example, when Xk(S) is an abelian variety).
Similar implications hold for the properties “X is Hodge-Witt” or “the crystalline
cohomology of X is torsion-free”. See Remark 11.15.

In connection to ordinary varieties, let us also mention the following result (see
Corollary 11.12):

Corollary 0.6. Let f : Y → X be a morphism of relative dimension r ≥ 0 be-
tween smooth projective k-schemes. Assume that X is ordinary. Then the Ekedahl-
Grothendieck pushfoward (see [Gro85, II, 1.]) factors via

(0.6.1) RΓ(Y,WnΩq
Y )[r]→ RΓ(Y,WnΩq

Y /B
q
n,∞)[r]

f∗−→ RΓ(X,WnΩq−r
X ),

where Bq
n,∞ =

⋃
s F

s−1dWn+s−1Ωq−1 (see [IR83, IV, (4.11.2)]) and f∗ is induced by
the pushforward from 9.5.

Note that this is an essentially immediate consequence of the fact that the sheaves
Bq
n,∞ are reciprocity sheaves, our general formalism and the computation of the

twists of Theorem 11.8. In fact, even when X is not ordinary, we always obtain a
factorization in top degree

RΓ(Y,WnΩr
Y )[r]→ RΓ(Y,WnΩr

Y /B
r
n,∞)[r]

f∗−→ RΓ(X,WnOX)

as a byproduct of the proof of Corollary 11.12.
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0.4.5. Relationship with logarithmic motives. In [BPØ], Park, Østvær, and the first
author recently introduced a triangulated category of logarithmic motives over a
field k. Similar in spirit to Voevodsky’s construction, the starting point is the
category lSm/k of log smooth (fs)-log schemes over k, promoted then to a category
of correspondences. The localization with respect to a new Grothendieck topology,
called the dividing-Nisnevich topology, and with respect to the log scheme �, the
log compactification of A1

k, produces the category denoted by logDMeff
dNis(k).

A theorem of Saito, see [Sai20b], shows that there exists a fully faithful exact
functor

Log : RSCNis → Shvltr
dNis(k,Z)

such that Log(F ) is strictly �-invariant in the sense of [BPØ, Def. 5.2.2], where the
target is the category of dividing Nisnevich sheaves with log transfers on lSm/k.
See [BPØ, 2,4]. This shows that Nisnevich cohomology of reciprocity sheaves is
representable in logDMeff

dNis(k). Formulas like the projective bundle formula, the
blow-up formula, the existence of the Gysin sequence and so on in logDMeff

dNis(k)
can then be used to re-deduce a posteriori some of the results in the present paper,
under some auxiliary assumptions.

We warn the reader that in the proof of the main result of [Sai20b] one needs in
an essential way the formalism of push forward maps along projective morphisms,
that we show in the present work.

Moreover, note that the motivic formulas given in [BPØ] cannot be used to deduce
results involving higher modulus, that we do instead systematically in the present
paper, and that the projective bundle formula, the blow-up formula and the Gysin
triangle (using the identification of the log Thom space) in [BPØ] are only proved
under the assumptions of resolution of singularities, which we don’t need. Finally, a
general theory of log motives over a base (not just over a field) would be necessary
to get the full strength of the sheaf-theoretic version of the results in this work.

Warning. The content of Theorem 0.1 and of other main results in this paper
(namely Corollary 2.19 and Theorem 3.1) are a sheaf theoretic analogue to some
of the results on motives with modulus in [KMSY20], more precisely to [KMSY20,
Thm. 7.3.2], [KMSY20, Thm. 7.4.3] and [KMSY20, Thm. 7.4.4] (the latter being in
fact a Theorem of K. Matsumoto, proved only for the inclusion of a smooth divisor
Z in X, whereas we consider the case of Z being a smooth closed subscheme of any
codimension).

We warn the reader that our results cannot be recovered from the existing liter-
ature: for this to be the case it would be necessary to show that the cohomology
of �-invariant sheaves is representable in the category of motives with modulus
MDMeff(k) constructed in [KMSY20]. In view of [KMSY20, Thm. 5.2.4], one
would require a positive answer to the following two questions.

Question 0.7. (1) Is the Nisnevich cohomology of �-invariant sheaves invariant under
blow-up with center contained in the support of the modulus?

(2) Is a �-invariant sheaf F equivalent (in the derived category of sheaves) to its

derived Suslin complex RC�
∗ (F ) defined in [KMSY20, Def. 5.2.3]?

Both questions seem out of reach for general �-invariant sheaves: note that (1)
would amount to answer affirmatively to [KMSY21a, Question 1, p.4], and that a
(weaker) version of it is the content of Theorem 2.12, which is one of the crucial
technical results of this paper.
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Question (2) is equivalent to ask whether the cohomology of a �-invariant sheaf
with transfers is again �-invariant. For A1-invariant sheaves with transfers this is
a deep theorem of Voevodsky, and boils down to studying a non-trivial interaction
between the Nisnevich sheafification functor and the localization functor LA1(−).
For semi-pure sheaves (cf. 1.4 below), this is shown in [Sai20a], but the general case
is wide open (the first and third author once claimed the general case in characteristic
0 but a gap was found in its proof). We hope that the main results of this paper
are useful in attempts to answer the above open questions.

Moreover, even if both questions are answered positively, in order to get the full
statement of Theorem 0.1 from the motivic point of view it would be necessary to
develop the whole theory of motives with modulus over a base, which is not available
at the moment.

0.5. Organization of the paper. We conclude this introduction with a quick
presentation of the structure of the paper.

In §1 we discuss some preliminaries and fix the notation. Nothing in this Section
is new, and it can be found in [KMSY21a], [KMSY21b], [MS]. In §2 we prove a key
“descent” property for �-invariant sheaves, namely Proposition 2.5. This is a crucial
technical result that allows us to prove the invariance of the cohomology of cube
invariant sheaves along a certain class of blow-ups, see Theorem 2.12. Once this
is established, we proceed to prove that the cohomology of cube invariant sheaves
is also invariant with respect to the product with the modulus pair (Pn,Pn−1),
Theorem 2.18. In §3 we prove a smooth blow-up formula; in §4 we introduce the twist
and prove some of its basic properties. In §5 we use Rost’ theory of cycle modules
together with a formula for the tensor product of reciprocity sheaves to construct
the cup product with Chow classes. In §6 we prove the projective bundle formula,
and in §7 we construct the Gysin sequence: for this we essentially follow the steps of
Voevodsky’s construction in [Voe00b], but we also get a finer theory with supports
(the local Gysin map). In §8 we assemble the Gysin maps and the morphisms
induced by the projective bundle formula to construct general pushforwards. In this
section we make use also of the cancellation theorems of [MS]. In §9 we explain
the construction of the action of Chow correspondences on reciprocity sheaves (and
complexes of sheaves). Finally, in §10 and §11 we collect the main applications and
a list of examples of reciprocity sheaves. The reader who is mostly interested in
examples and applications may read the last two sections without having precise
knowledge of modulus sheaves with transfers.

In the paper, we use frequently the results from [Sai20a], which plays a funda-
mental role for us.
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1. Preliminaries

1.1. Notations and conventions. In the whole paper we fix a perfect base field k.
We denote by Sm the category of smooth separated k-schemes. We write P1 = P1

k

etc. and X ×Y = X ×k Y , for k-schemes X, Y . For a function field K/k we denote
by K{x1, . . . , xn} the henselization of K[x1, . . . , xn](x1,....xn). Let R be a regular
noetherian k-algebra. By [Pop86, (1.8) Thm] and [AGV72, Exp I, Prop 8.1.6] we
can write R = lim−→i

Ri, where (Ri)i is a directed system of smooth k-algebras, and

we use the notation F (R) = lim−→i
F (SpecRi), for any presheaf F on Sm.

If X is a scheme and F is a Nisnevich sheaf on X, we will denote by H i(X,F ) =
H i(XNis, F ) the ith cohomology group of F on the small Nisnevich site of X, similar
with higher direct images. We denote by X(n) (resp. X(n)) the set of n (resp. co-)
dimensional points in X.

1.2. A recollection on modulus sheaves with transfers. We recall some ter-
minology and notations from the theory of modulus sheaves with transfers, see
[KMSY21a], [KMSY21b], [KSY], and [Sai20a] for details.

1.1. A modulus pair X = (X,X∞) consists of a separated k-scheme of finite type X
and an effective (or empty) Cartier divisor X∞ such that X := X \ |X∞| is smooth;
it is called proper if X is proper over k. Given two modulus pairs X = (X,X∞)
and Y = (Y , Y∞), with opens X := X \ |X∞| and Y := Y \ |Y∞|, an admissible left
proper prime correspondence from X to Y is given by an integral closed subscheme
Z ⊂ X × Y which is finite and surjective over a connected component of X, such

that the normalization of its closure Z
N → X × Y is proper over X and satisfies

(1.1.1) X∞|ZN ≥ Y∞|ZN ,

as Weil divisors on Z
N

, where X∞|ZN (resp. Y∞|ZN ) denotes the pullback of X∞

(resp. Y∞) to Z
N

. The free abelian group generated by such correspondences
is denoted by MCor(X ,Y). By [KMSY21a, Propositions 1.2.3, 1.2.6], modulus
pairs and left proper admissible correspondences define an additive category that
we denote by MCor. We write MCor for the full subcategory of MCor whose
objects are proper modulus pairs. We denote by τ the inclusion functor τ : MCor→
MCor. The induced category of additive presheaves of abelian groups is denoted
by MPST (resp. MPST). We have functors

ω : MCor→ Cor, ω : MCor→ Cor

given by (X,X∞) 7→ X \ |X∞|, where Cor is the category of finite correspondences
introduced by Suslin-Voevodsky (see e.g. [MVW06]). Note that there is also a fully
faithful functor

Cor→MCor, X 7→ (X, ∅).
We will abuse notation by writing

(1.1.2) X = (X, ∅) ∈MCor, for X ∈ Sm .

Write τ ∗ for the restriction functor along τ and write τ! for its left Kan extension.
Similarly, write ω∗ (resp. ω∗) for the restriction functor along ω (resp. ω) and ω!
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(resp. ω!) for its left Kan extension. We have the following commutative diagrams
at our disposal

(1.1.3) MPST

ω! %%

MPST
τ!oo

ω!yy
PST

MPST

τ∗

++
MPSTτ!

oo

PST.
ω∗

99

ω∗

ee

Here PST is the category of presheaves of abelian groups on Cor, the functors in
the left triangle are left adjoint to the functors in the right triangle, all the functors
are exact, the diagrams commute, and we have τ ∗F (X ) = F (X ), ω∗F (X ) = F (X)
and

(1.1.4) ω!F (X) = F (X, ∅)
(1.1.2)
=: F (X)

for X = (X,X∞) and X = X \ |X∞|.
We denote by Ztr(X ) the presheaf on MCor (resp. MCor) represented by X in

MCor (resp. in MCor). We have τ!Ztr(X ) = Ztr(X ) and ω!Ztr(X ) = Ztr(X).
Let X = (X,X∞), Y = (Y , Y∞) ∈MCor. We set

X ⊗ Y := (X × Y , p∗X∞ + q∗Y∞),

where p and q are the projections from X×Y to X and Y , respectively. In fact this
defines a symmetric monoidal structure on MCor (resp. MCor) which extends (via
Yoneda) uniquely to a right exact monoidal structure ⊗ on MPST (resp. MPST).
Similarly, there is a monoidal structure on PST. The functors ω!, ω!, τ! are monoidal,
since they are all defined as left Kan extensions of the functors ω, ω and τ , which
are clearly monoidal. For F ∈ MPST the functor (−) ⊗ F : MPST → MPST
admits a right adjoint denoted by HomMPST(F,−); similar with F ∈MPST (see,
e.g., [MVW06, 8]).

1.2. For F ∈MPST and X = (X,X∞) ∈MCor denote by FX the presheaf

(1.2.1) (ét/X)op 3 U 7→ FX (U) := F (U,X∞|U),

where (ét/X) denotes the category of all étale maps U → X. We say F is a Nisnevich
sheaf if FX is a Nisnevich sheaf, for all X ∈MCor. We denote by MNST the full
subcategory of MPST consisting of Nisnevich sheaves.

We say F ∈ MPST is a Nisnevich sheaf if τ!F is and denote the corresponding
full subcategory by MNST. The functors in (1.1.3) restrict to Nisnevich sheaves
and have the same adjointness and exactness properties, see [KMSY21b, 4.2.5, 5.1.1,
6.2.1]. Furthermore, there are Nisnevich sheafification functors

aNis : MPST→MNST, aNis : MPST→MNST,

aVNis : PST→ NST,

which are left adjoint to the forgetful functors, restrict to the identity on Nisnevich
sheaves and satisfy

(1.2.2) ω!aNis = aVNisω!, ω!aNis = aVNisω!, τ!aNis = aNisτ!

and

(1.2.3) aNisω
∗ = ω∗aVNis, aNisω

∗ = ω∗aVNis,

see [KMSY21a, Thm 2], [KMSY21b, Thm 4.2.4, 4.2.5, 6.2.1] (aVNis was constructed by
Voevodsky). It follows that NST, MNST, and MNST are Grothendieck abelian
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categories and that the sheafification functors are exact. For F ∈ MPST and
X = (X,X∞) ∈MCor we have

(1.2.4) aNis(F )(X ) = lim−→
f :Y→X

F(Y ,f∗X∞),Nis(Y ),

where the limit is over all proper morphisms f : Y → X which restrict to an isomor-
phism over X = X \ |X∞| and F(Y ,f∗X∞),Nis denotes the Nisnevich sheafification of

the presheaf F(Y ,f∗X∞) on the site Y Nis, see [KMSY21a, Thm.2(1)]. In the following
we will use the notation

FNis := aNis(F ), HNis := aVNis(H), F ∈MPST, H ∈ PST.

Lemma 1.3. A morphism ϕ : F → G in MNST is surjective (i.e., has vanishing
cokernel), if for all X = (X,X∞) ∈ MCor, with X normal, and all x ∈ X the
morphism

F (X(x))→ G(X(x))

is surjective, where X(x) = (X(x), X∞|X(x)
) and X(x) = SpecOh

X,x
is the spectrum of

the henselization of the local ring OX,x.

Proof. Let C be the cokernel of ϕ in MPST. We want to show aNis(C) = 0. For
X ∈ MCor, set CX = Coker(ϕX : FX → GX ) in the category of presheaves on
(ét/X); denote by CX ,Nis its Nisnevich sheafification. By (1.2.4) it suffices to show
CX ,Nis = 0, if X is normal. The latter is equivalent to the surjectivity of ϕX in the
category of Nisnevich sheaves on X, which is equivalent to the statement. �

1.4. Set � := (P1,∞) ∈MCor. For F ∈MPST we say that

(1) F is cube-invariant if the map F (X ) → F (X ⊗ �) induced by the pullback
along the projection is an isomorphism.

(2) F has M-reciprocity if the counit map τ!τ
∗F → F is an isomorphism.

(3) F is semipure if the unit map F → ω∗ω!F is injective.

We denote by MPSTτ the full subcategory of MPST consisting of the objects with
M -reciprocity. Note that for X a proper modulus pair we have Ztr(X ) ∈MPSTτ .
We denote by CIτ,sp the full subcategory of MPST consisting of the cube-invariant
semipure objects with M -reciprocity. We set

MNSTτ := MPSTτ ∩MNST and CIτ,spNis := CIτ,sp ∩MNST .

By [Sai20a, Thm 10.1], the sheafification functor aNis restricts to

(1.4.1) aNis : CIτ,sp → CIτ,spNis .

The natural inclusion CIτ,spNis ↪→MPSTτ has a left adjoint

(1.4.2) h�,sp0,Nis : MPSTτ → CIτ,spNis

given by

h�,sp0,Nis(F ) = aNis(h
�
0 (F )sp),

where for G ∈MPST

(1) h�0 (G) ∈MPST is the maximal cube invariant quotient of G defined by

(1.4.3) h�0 (G)(X ) = Coker(G(X ⊗�)
i∗0−i∗1−−−→ G(X )),

where iε : {ε} → �, ε ∈ {0, 1}, are induced by the natural closed immer-
sions,
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(2) Gsp = Im(G→ ω∗ω!G) denotes the semipurification of F .

The left adjointness of (1.4.2) to the natural inclusion follows from [MS, Lem 1.14(i)]

and the adjunction τ! a τ ∗. We note that for any F ∈MPST the presheaf h�,sp0,Nis(F )
is defined and is in fact a cube-invariant, semipure Nisnevich sheaf on MCor.

For X a proper modulus pair we set

(1.4.4) h�,sp0,Nis(X ) := h�,sp0,Nis(Ztr(X )) ∈ CIτ,spNis .

Lemma 1.5. Let F ∈ CIτ,spNis and G,H ∈ MPSTτ . Assume there is a surjection
Ztr(X )→→ G, for some X ∈MCor. We have

(1) HomMPST(G,F ) ∈ CIτ,spNis ;

(2) HomMPST(H ⊗G,F ) = HomMPST(h�,sp0,Nis(H),HomMPST(G,F )).

Proof. (1). First assumeG = Ztr(X ), for some X ∈MCor. In this case Hom(G,F )(Y) =
F (X⊗Y). Clearly this defines a cube-invariant Nisnevich sheaf. It hasM -reciprocity
by [Sai20a, Lem 1.27(2)], and has semipurity by [Sai20a, Lem 1.29(2)]. Hence
Hom(G,F ) ∈ CIτ,spNis in this case. In the general case consider a resolution⊕

j

Ztr(Yj)→
⊕
i

Ztr(Xi)→ G→ 0.

We obtain an exact sequence

(1.5.1) 0→ Hom(G,F )→
∏
i

Hom(Ztr(Xi), F )→
∏
j

Hom(Ztr(Yj), F ).

This directly implies cube-invariance and semipurity. The sheaf property holds
since iNisaNis : MPST→MPST is left exact, where iNis is the forgetful functor. In
general M -reciprocity won’t hold since τ!τ

∗ does not commute with infinite products;
however it clearly holds if the first product in (1.5.1) is finite and by assumption we
find such a resolution. (2) follows from (1) and adjunction. �

1.6. The full subcategory of PST given by RSC := ω! CIτ,sp is called the category
of reciprocity presheaves. The full subcategory of NST given by RSCNis := ω! CIτ,spNis

is called the category of reciprocity sheaves. It is direct to see that RSC is an abelian
category, closed under sub-objects and quotients in PST. On the other hand, it is
a theorem [Sai20a, Thm. 0.1] that RSCNis is also abelian. We use the following
notation for a proper modulus pair X

h0(X ) := ω!(h
�
0 (X )) = ω!(h

�,sp
0 (X )) ∈ RSC

and

h0,Nis(X ) := ω!(h
�
0,Nis(X )) = ω!(h

�,sp
0,Nis(X )) ∈ RSCNis.

Note that h0,Nis(X ) = h0(X )Nis. By [MS, (1.13)] (see also [KSY, Prop 2.3.7]) there
is an adjunction

(1.6.1) CIτ,spNis
ω!

// RSCNis,
ωCI

oo

where ωCI is right adjoint to ω! and is given by

ωCI(F ) = τ! HomMPST(h�0 (−), ω∗F ).

In the notation of [KSY] we have ωCI = τ!ω
CI.
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Recall that Voevodsky’s category of homotopy invariant Nisnevich sheaves, HINis

is an abelian subcategory of RSCNis, and thanks to [Voe00a, Th. 5.6], the natural
inclusion HINis → NST has a left adjoint

(1.6.2) hA
1

0,Nis : NST→ HINis .

By [KSY, Prop. 2.3.2], we have

(1.6.3) hA
1

0,Nis(h0,Nis(X )) = hA
1

0,Nis(Ztr(ωX )).

2. Cohomology of blow-ups and invariance properties

2.1. A lemma on modulus descent.

Notation 2.1. For m,n ≥ 1 we use the following notation

�
(m,n)

:= (P1,m · 0 + n · ∞), �
(n)

:= �
(n,n)

.

In particular,

�
(1)

= (P1, 0 +∞).

Lemma 2.2. Let R be an integral regular k-algebra. For all m,n ≥ 1, there is an
isomorphism

θm,n : h0(�
(m,n)

)(R)
'−→ ((R[t]/tm)× ⊕ (R[z]/zn)×)/R× ⊕ Z,

where R× acts diagonally on the direct sum. If Z ∈ ω!Ztr(�
(m,n)

)(R) is a prime
correspondence which we can write as Z = V (g), for an irreducible polynomial
g = art

r + . . .+ a1t+ a0 ∈ R[t] with ar, a0 ∈ R×, and r ≥ 1, then

θm,n(Z) = (g(t)/(t− 1)r, g∞(z)/(1− z)r, r),

where g∞(z) = a0z
r + . . . + ar−1z + ar. Furthermore, if m′ ≤ m and n′ ≤ n, then

we obtain a commutative diagram

h0(�
(m′,n′)

)(R)
θm′,n′ //

��

((R[t]/tm
′
)× ⊕ (R[z]/zn

′
)×)/R× ⊕ Z

��
h0(�

(m,n)
)(R)

θm,n // ((R[t]/tm)× ⊕ (R[z]/zn)×)/R× ⊕ Z,

where the vertical map on the left hand-side is induced by �
(m′,n′) → �

(m,n)
in MCor

and the vertical map on the right is the natural quotient map.

Proof. The map θm,n is the composition of the two isomorphisms

h0(�
(m,n)

)(R)
' (∗)−−−→ Pic(P1

R,m · 0 + n · ∞)

' (∗∗)−−−→ ((R[t]/tm)× ⊕ (R[z]/zn)×)/R× ⊕ Z,

which are defined as follows. We denote by FR := m · 0R + n · ∞R ⊂ P1
R the closed

subscheme: (*) is induced by the classical map from Weil to Cartier divisors

Ztr(�
(m,n)

)(R) 3 D 7→ (O(D), idOFR ) ∈ Pic(P1
R, FR),

where O(D) is the line bundle on P1
R given by O(D)(U) = {f ∈ R(t)× | divU(f) ≥

D}; it is an isomorphism by [RY16, Thm 1.1]. For (**) consider the exact sequence

H0(P1
R,O×)→ H0(FR,O×)→ Pic(P1

R, FR)→ Pic(P1
R)→ Pic(FR).
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The last map decomposes as Pic(R)⊕ Pic(P1)→ Pic(FR) given by

(M,O({1})⊗n) 7→ (M|P1
R
⊗ (O({1})⊗n)|FR = M|FR .

Since FR → SpecR has a section the map Pic(R)→ Pic(FR) is injective. Hence the
above sequence yields an exact sequence

H0(P1
R,O×)→ H0(FR,O×)→ Pic(P1

R, FR)
d−→ Z→ 0,

where d(L, α) := d(L) := deg(L|P1
Frac(R)

); we can choose a splitting of d by r 7→
(OP1

R
({1})⊗r, idOFR ); the map in the middle sends u ∈ H0(FR,O×) to (OP1

R
, u· :

OFR
'−→ OFR), where u· is the isomorphism given by multiplication by u. Let (L, α)

be a pair with L a line bundle on P1
R with d(L) = r and α : OFR

'−→ L|FR an

isomorphism; we find an isomorphism ϕ : L ⊗ O({1})⊗−r '−→ OP1
R

and define the

isomorphism α′ as the composition

α′ = (α′m·0, α
′
n·∞) : OFR

'α−−→ L|FR = (L⊗O({1})⊗−r)|FR
ϕ|FR−−−→ (OP1)|FR ,

where the equality follows from the fact that we have a canonical identification
O({1})|FR = O|FR . Hence ϕ induces an isomorphism (L⊗O({1})⊗−r, α) ∼= (OP1

R
, α′);

the isomorphism (**) is given by

(L, α) 7→ (α′m·0(1), α′n·∞(1), d(L)).

Let Z = V (g) ∈ Ztr(�
(m,n)

)(R) be a prime correspondence as in the statement.
Write t = T0/T1 and let G ∈ R[T0, T1] be the homogenization of g. We have an
isomorphism

O(Z)⊗O({1})⊗−r = OP1
R
· (T0−T1)r

G

'−→ OP1
R
,

where the second isomorphism is given by multiplication with G/(T0 − T1)r. Thus
θm,n admits the description from the statement, where z = 1/t. The commutativity
of the diagram follows directly from this. �

Remark 2.3. Denote by Wm the ring-scheme of big Witt vectors of length m. If A
is a ring we can identify the A-rational points of the underlying group scheme with

Wm(A) = (1 + tA[t])×/(1 + tm+1A[t])×.

Then the maps θm,n from Lemma 2.2, m,n ≥ 1, induce isomorphisms in NST

θm,n : h0,Nis(�
(m,n)

)
'−→Wm−1 ⊕Wn−1 ⊕Gm ⊕ Z.

Indeed, it follows immediately from Lemma 2.2 that we have such an isomorphism of
Nisnevich sheaves. To check the compatibility with transfers it suffices to check the
compatibility with transfers of the limit lim←−m,n θ

m,n (since the transition maps are

surjective). Since W⊕W⊕Gm⊕Z is a Z-torsion-free sheaf on SmNis for which the
pull-back along dominant étale maps is injective, the compatibility with transfers
follows automatically from [MS, Lem 1.1].

Lemma 2.4. The unit map

(2.4.1) h�,sp0,Nis(�
(1)

)
'−→ ω∗ω!h

�,sp
0,Nis(�

(1)
) ∼= ω∗(Gm ⊕ Z)

is an isomorphism in CIτ,spNis . Furthermore, the natural maps

(2.4.2) h�,sp0,Nis(�
(m,n)

)→ h�,sp0,Nis(�
(1)

)
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are surjective, for all m,n ≥ 1, and there exists a splitting in CIτ,spNis

sm,n : ω∗(Gm ⊕ Z)→ h�,sp0,Nis(�
(m,n)

)

of (2.4.2) such that the following diagram is commutative for integers m′ ≥ m and
n′ ≥ n:

(2.4.3) ω∗(Gm ⊕ Z)
sm′,n′ //

sm,n ''

h�,sp0,Nis(�
(m′,n′)

)

��

h�,sp0,Nis(�
(m,n)

).

Proof. The second isomorphism in (2.4.1) holds by Lemma 2.2 and Remark 2.3; the
unit map is injective by semipurity. We show the surjectivity of the composite map

(2.4.4) h�,sp0,Nis(�
(m,n)

)→ h�,sp0,Nis(�
(1)

)→ ω∗(Gm ⊕ Z),

for m,n ≥ 1. By Lemma 1.3 it suffices to show the surjectivity on (SpecR, (f)),
where R is an integral normal local k-algebra and f ∈ R \ {0}, such that Rf is
regular. Denote by

ψ : Ztr(�
(m,n)

)(R, f)→ R×f ⊕ Z
the precomposition of (2.4.4) evaluated at (R, f) with the quotient map

Ztr(�
(m,n)

)(R, f)→ h�,sp0,Nis(�
(m,n)

)(R, f).

By Lemma 2.2

(2.4.5) ψ(V (a0 + a1t+ . . .+ art
r)) = ((−1)ra0/ar, r),

provided that Z = V (a0 + a1t + . . . + art
r) is an admissible prime correspondence

and ai ∈ Rf . We claim that ψ is surjective. To this end, observe that for a ∈ R×f
we find N ≥ 0 and b ∈ R such that

(2.4.6) ab = fnN , and afmN ∈ R.
Set W := V (tmnN + (−1)mnNa) ⊂ SpecRf [t, 1/t] and K = Frac(R). Let tmnN +
(−1)mnNa =

∏
i hi be the decomposition into monic irreducible factors in K[t, 1/t]

and denote by Wi ⊂ SpecRf [t, 1/t] the closure of V (hi). (Note that Wi = Wj for
i 6= j is allowed.) The Wi correspond to the components of W which are dominant
over Rf ; since W is finite (the polynomial defining W is monic) and surjective over
Rf , so are the Wi. We claim

(2.4.7) Wi ∈ Ztr(�
(m,n)

)(R, f).

Indeed, let Ii (resp. Ji) be the ideal of the closure of Wi in SpecR[t] (resp. SpecR[z]
with z = 1/t). By (2.4.6)

btnmN + (−1)mnNfnN ∈ Ii and fmN + (−1)mnNfmNazmnN ∈ Ji.
Hence (f/tm)nN ∈ R[t]/Ii and (f/zn)mN ∈ R[z]/Ji. It follows that f/tm (resp.
f/zn) is integral over R[t]/Ii (resp. R[z]/Ji); thus (2.4.7) holds. Put

Wa =
∑
i

Wi ∈ Ztr(�
(m,n)

)(R, f).

We claim

(2.4.8) ψ(Wa) = (a,mnN) ∈ R×f ⊕ Z.
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Indeed, it suffices to show this after restriction to the generic point of R, in which
case it follows directly from the definition of the Wi and (2.4.5). This implies the
surjectivity of ψ and that of (2.4.4). Next, we show that (2.4.4) has a splitting. Let

ωm,na ∈ h�,sp0,Nis(�
(m,n)

)(R, f) be the class of Wa and λm,na = ωm,na − ωm,n1 , where ωm,n1

is defined as ωm,na replacing a by 1 (and using the same N). By (2.4.8) the image of
λm,na under the map (2.4.4):

h�,sp0,Nis(�
(m,n)

)(R, f)→ R×f ⊕ Z

is (a, 0).

Claim 2.4.1. λm,na is independent of the choice of N , and we have

(2.4.9) λm,nab = λm,na + λm,nb for a, b ∈ R×f .

Moreover, for m′ ≥ m and n′ ≥ n, the image of λm
′,n′

a under

h�,sp0,Nis(�
(m′,n′)

)→ h�,sp0,Nis(�
(m,n)

)

coincides with λm,na .

By the semipurity of h�,sp0,Nis(�
(m,n)

) and [Sai20a, Thm 3.1], we have an injective
homomorphism

(2.4.10) h�,sp0,Nis(�
(m,n)

)(R, f) ↪→ ω!h
�,sp
0,Nis(�

(m,n)
)(K) = h0(�

(m,n)
)(K).

By Lemma 2.2 the isomorphism

θm,n : h0(�
(m,n)

)(K)
'−→ ((K[t]/tm)× ⊕ (K[z]/zn)×)/K× ⊕ Z

sends ωm,na to

θm,n(ωm,na ) =

(
(−1)mnNa

(t− 1)mnN
,

1

(1− z)mnN
,mnN

)
.

Thus θm,n(λm,na ) = (a, 1, 0), which is independent of N . By the injectivity of (2.4.10)
this implies the first two assertions of the claim; similarly the final assertion of the
claim follows form the commutative diagram in Lemma 2.2.

Since λm,na does not change if we replace f by uf with u ∈ R×, the map a→ λm,na

glues to give a global morphism of Nisnevich sheaves which induces the splitting
sm,n from the statement. It remains to check that sm,n is compatible with transfers.
To this end it suffices to check that ω!(sm,n) is compatible with transfers and since
the transition maps are surjective it further suffices to show that

lim←−
m,n

ω!(sm,n) : Gm ⊕ Z→ lim←−
m,n

ω!h
�,sp
0,Nis(�

(m,n)
)

is compatible with transfers. Since we can identify the target with W⊕W⊕Gm⊕Z
by Remark 2.3, the compatibility holds automatically by [MS, Lem 1.1]. �

Proposition 2.5. Denote by ψ : A1
y×A1

s → A1
x×A1

s the morphism induced by the
k[s]-algebra morphism k[x, s]→ k[y, s], x 7→ ys. We denote by the same symbol the
induced morphism in MCor

(2.5.1) ψ : �
(1)

y ⊗�
(2)

s → �
(1)

x ⊗�
(1)

s .
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Let F ∈ CIτ,spNis and X ∈MCor. Then ψ∗ factors as follows

F (�
(1)

y ⊗�
(1)

s ⊗X )

��

F (�
(1)

x ⊗�
(1)

s ⊗X )
ψ∗ //

55

F (�
(1)

y ⊗�
(2)

s ⊗X ),

where the vertical map is induced by the natural morphism �
(2)

s → �
(1)

s .

Proof. It is direct to check that ψ induces a morphism (2.5.1). To check the fac-
torization statement, we may replace F by Hom(Ztr(X ), F ) to reduce to the case
X = (Spec k, ∅), see Lemma 1.5(1). By Yoneda and (1.4.2) we are reduced to show
that we have a factorization as follows

(2.5.2) h�,sp0,Nis(�
(1)

y ⊗�
(1)

s )

uu

h�,sp0,Nis(�
(1)

x ⊗�
(1)

s ) h�,sp0,Nis(�
(1)

y ⊗�
(2)

s ).
ψoo

a

OO

By [MS, Lem 1.14(iii)] and Lemma 2.4, the map a is surjective. Thus we have to
show ψ(Ker a) = 0. By semipurity it suffices to show that we have a factorization
as in (2.5.2) after applying ω!. By [RSY22, Prop 5.6] we have

H := ω!(h
�,sp
0,Nis(�

(1)

x ⊗�
(1)

s )) = h0,Nis(�
(1)

x ⊗�
(1)

s ) = KM2 ⊕Gm ⊕Gm ⊕ Z,

where KM2 is the (improved) Milnor K-theory sheaf; in particular H is A1-invariant.

Thus ω!(ψ) and ω!(a) factor via hA
1

0,Nis(h0,Nis(�
(1)

y ⊗ �
(2)

s )) (cf. (1.6.2)). Thus we
obtain solid arrows in NST

(2.5.3) H

vv
H hA

1

0,Nis(h0,Nis(�
(1)

y ⊗�
(2)

s )).
ψ̄

oo

ā

OO

Since ā is the composition of the natural isomorphisms (cf. (1.6.3))

hA
1

0,Nis(h0,Nis(�
(1)

y ⊗�
(2)

s )) ∼= hA
1

0,Nis(Ztr(A
1
y \ {0})⊗PST Ztr(A

1
s \ {0})) ∼= H

the dotted arrow exists, which completes the proof. �

Remark 2.6. Going through the definitions one can check that the map H → H
induced by ψ̄ in (2.5.3) is on a regular local ring R given by

({a, b}, c, d, n) 7→ ({a, b}+ {d,−1}, cd, d, n),

where we use the identification H(R) = KM
2 (R)⊕R× ⊕R× ⊕ Z.

2.2. Cohomology of a blow-up centered in the smooth part of the modulus.
The goal of this Section is to prove Theorem 2.12 below, giving the invariance of the
cohomology of cube invariant sheaves along a certain class of blow-ups. This plays
a fundamental role in what follows, and it is used in the proof of the (Pn,Pn−1)-
invariance of the cohomology.

Recall the following definition from [Sai20a, 5].
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Definition 2.7. Let F ∈ CIτ,sp. We define the the modulus presheaf σ(n)(F ) by

σ(n)(F )(Y) = Coker(F (Y)
pr∗−−→ F (Y ⊗ (P1, n0 +∞))),

where pr∗ is the pullback along the projection pr : Y ⊗ (P1, n0 +∞) → Y . Note
that pr∗ is split injective, with left inverse given by the inclusion i1 : Spec k ↪→ P1

of the 1-section. Hence we have an isomorphism, natural in Y
F (Y ⊗ (P1, n0 +∞)) ∼= σ(n)(F )(Y)⊕ F (Y).

Following [Sai20a, Def. 5.6], we write F
(n)
−1 for σ(n)(F ) when F is moreover in

MNST. Note that we have a natural identification

F
(n)
−1 = HomMPST((P1, n · 0 +∞)/1, F ) = F (−⊗ (P1, n0 +∞))/F (−),

where (P1, n · 0 +∞)/1 = Coker(Ztr(Spec k, ∅) i1−→ Ztr(P
1, n · 0 +∞)) in MPST.

By Lemma 1.5(1) we have F
(n)
−1 ∈ CIτ,spNis if F ∈ CIτ,spNis , so that the association

F 7→ F
(n)
−1 gives an endofunctor of CIτ,spNis . This construction is the modulus version

of Voevodsky’s contraction functor, see [MVW06, p. 191].

Notation 2.8. We denote by MCorls the full subcategory of MCor consisting of
“log smooth” modulus pairs, i.e., objects X = (X,D), where X ∈ Sm and |D| is a
simple normal crossing divisor (in particular, each irreducible component of |D| is
a smooth divisor in X). Note that ⊗ restricts to a monoidal structure on MCorls.

Lemma 2.9. Let F ∈ CIτ,spNis and X = (X,D) ∈MCorls. Let H ↪→ X be a smooth
divisor, such that |D|+H is SNCD, and denote by j : U := X\H ↪→ X the inclusion
of the complement. Then

Rij∗F(U,D|U ) = 0, for all i ≥ 1,

where F(U,D|U ) denotes the Nisnevich sheaf on U defined in (1.2.1).

Proof. This is an immediate consequence of [Sai20a, Cor 8.6(3)]. �

Lemma 2.10. Let F ∈ CIτ,spNis and X = (X,D) ∈ MCorls. Let Ei ⊂ A1, i =
1, . . . , n, be effective (or empty) divisors and denote by π : An

X → X the projection.
Then

Riπ∗(F(A1,E1)⊗...⊗(A1,En)⊗X ) = 0, for all i ≥ 1, n ≥ 0.

Proof. First consider the case n = 1. Set E := E1 and �
(E,r)

:= (P1, E + r ·∞), for

r ≥ 1. The natural morphism �
(E,r) → � induces a map FX⊗� → FX⊗�(E,r) . The

cohomology sheaves of the cone C of this map are supported in X×|E+∞|, whence
Riπ∗C = 0, i ≥ 1, where π : P1

X → X is the projection. We obtain surjections

Riπ∗FX⊗� → Riπ∗FX⊗�(E,r) → 0, for all i ≥ 1.

By the cube-invariance of cohomology (see [Sai20a, Thm 9.3]) the left term vanishes.
Thus M -reciprocity (see [Sai20a, 1.27(1)]) yields

0 = lim−→
r

Riπ∗FX⊗�(E,r) = Riπ∗j∗F(A1,E)⊗X ,

where j : A1
X ↪→ P1

X is the open immersion. Together with Lemma 2.9 we obtain

Riπ∗Rj
k
∗F(A1,E)⊗X = 0, for all i ≥ 1, k ≥ 0.

Thus the vanishing Riπ∗F(A1,E)⊗X = 0 follows from the Leray spectral sequence.
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The general case follows by induction, by factoring π as An
X

π1−→ An−1
X

πn−1−−−→ X
and observing

π1∗(F(A1,E1)⊗...⊗(A1,En)⊗X ) = F1,(A1,E2)⊗...⊗(A1,En)⊗X ,

where F1 := HomMPST(Ztr(A
1, E1), F ) lies in CIτ,spNis by Lemma 1.5(1). �

2.11. We recall some standard terminology. Let (X,D) ∈ MCorls, Y ∈ Sm,
and let f : Y → X be a k-morphism of finite type. We say D is transversal to
f , if for any number of irreducible components D1, . . . , Dr of the SNCD |D|, the
morphism f intersects the scheme-theoretic intersection D1 ∩ . . . ∩Dr transversally
(i.e., the scheme-theoretic inverse image f−1(D1 ∩ . . .∩Dr) is smooth over k and of
codimension r in Y ). Note that f is always transversal to the empty divisor.

If f is a closed immersion we also say Y and D intersect transversally. Since
X is of finite type over a perfect field, this is equivalent to say, that for any point
x ∈ Y ∩ D we find a regular sequence of parameters t1, . . . , tn ∈ OX,x, such that
OY,x = OX,x/(t1, . . . , ts) and the irreducible components of |D| containing x are in
SpecOX,x given by V (ts+1), . . . , V (tr), with 1 ≤ s ≤ r ≤ n.

Theorem 2.12. Let F ∈ CIτ,spNis and X = (X,D) ∈ MCorls. Assume there is a
smooth irreducible component D0 of |D| which has multiplicity 1 in D. Let Z ⊂ X
be a smooth closed subscheme which is contained in D0 and intersects |D − D0|
transversally. Let ρ : Y → X be the blow-up in Z. Then the natural map

FX
'−→ Rρ∗F(Y,ρ∗D)

is an isomorphism in the derived category of abelian Nisnevich sheaves on X.

The proof is given in 2.16. The key point is to understand the case of the blow-
up of A2 in the origin with D0 a line, which is established in the next Lemma.
Here, after some preliminary steps, we are reduced to prove the vanishing of the
cohomology of the pushforward of F along the projection from the blow-up to the
exceptional divisor. This is where the modulus descent, i.e., Proposition 2.5, is
crucially used.

Lemma 2.13. Let F ∈ CIτ,spNis and X = (X,D) ∈MCorls. Let ρ : Y → A2 be the
blow-up in the origin 0 ∈ A2 and let L be a line containing 0. Then

RiρX∗F(Y,ρ∗L)⊗X = 0, for all i ≥ 1,

where ρX := ρ× idX : Y ×X → A2 ×X is the base change of ρ.

Proof. We can assume X is henselian local and

L = V (x) ⊂ A2 = Spec k[x, y].

Set

F := F(Y,ρ∗L)⊗X ;

it is a Nisnevich sheaf on Y × X. For i ≥ 1, the higher direct images RiρX∗F are
supported in 0×X whence

Hj(A2
X , R

iρX∗F) = 0, for all i, j ≥ 1,

and

RiρX∗F = 0⇐⇒ H0(A2
X , R

iρX∗F) = 0.
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Furthermore, ρX∗F = F(A2,L)⊗X , since (Y, ρ∗L) ⊗ X ∼= (A2, L) ⊗ X in MCor (see
[KMSY21a, 1]). Hence by Lemma 2.10

H i(A2
X , ρX∗F) = H i(A2

X , F(A2,L)⊗X ) = 0.

Thus the Leray spectral sequence yields

(2.13.1) H0(A2
X , R

iρX∗F) = H i(Y ×X,F), i ≥ 0,

and we have to show, that this group vanishes for i ≥ 1. Write

Y = Proj k[x, y][S, T ]/(xT − yS) ⊂ A2 ×P1,

and denote by

π : Y ×X ↪→ A2 ×P1
X → P1

X = ProjOX [S, T ]

the morphism induced by projection. In order to show that (2.13.1) vanishes, we
can project along π and use the Leray spectral sequence

H i−j(P1
X , Rπ

j
∗F)⇒ H i(Y ×X,F)

to reduce the problem to showing that

(2.13.2) H i(P1
X , R

jπ∗F) = 0, i ≥ 1, j ≥ 0.

The terms Rjπ∗F for j ≥ 1 are easy to handle using Lemma 2.10. Indeed, set
s = S/T and write

P1 \ {∞} = A1
s := Spec k[s], P1 \ {0} = Spec k[1

s
].

Set U := A1
s ×X and V := (P1 \ {0})×X and

U := (A1
s, 0)⊗X , V := (P1 \ {0})⊗X .

We have

π−1(U) = A1
y × U, π−1(V ) = A1

x × V,
and the restriction of π to these open subsets is given by projection. Furthermore
by construction,

(2.13.3) F|π−1(U) = F(A1
y ,0)⊗U , F|π−1(V ) = F(A1

x,0)⊗V .

Thus Lemma 2.10 (in the case n = 1) yields

Rjπ∗F = 0, j ≥ 1.

It remains to show

(2.13.4) H i(P1
X , π∗F) = 0, i ≥ 1.

Set

(2.13.5) F1 := Hom(Ztr(A
1
x, 0), F ).

Note that F1 ∈ CIτ,spNis by Lemma 1.5(1). Let j : V ↪→ P1
X be the open immersion.

Its base change along π induces a morphism

(2.13.6) ι : (A1
x, 0)⊗ V → (Y, ρ∗L)⊗X in MCor .

This yields an exact sequence of Nisnevich sheaves on P1
X

0→ π∗F
π∗(ι∗)−−−→ j∗F1,V → Γ→ 0,
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defining Γ; here the first map is injective by the semipurity of F . Since Γ is supported
on 0×X we obtain for i ≥ 2

H i(P1
X , π∗F) = H i(P1

X , j∗F1,V)

= H i(V, F1,V), by Lem 2.9,

= 0, by Lem 2.10.

It remains to prove the vanishing (2.13.4) for i = 1. This will occupy the rest of the
proof. Let

a : Y ×X → A1
x ×P1 ×X

be induced by the base change of the closed immersion Y ↪→ A2 × P1 followed by
the base change of the projection A2 → A1

x. The map a induces a morphism

(2.13.7) α : (Y, ρ∗L)⊗X → (A1
x, 0)⊗P1

X in MCor,

where P1
X := P1 ⊗ X , and which precomposed with ι from (2.13.6) yields the

morphism

(2.13.8) αι : (A1
x, 0)⊗ V → (A1

x, 0)⊗P1
X ,

induced by the open immersion A1
x × V ↪→ A1

x ×P1
X . This gives a factorization

F1,P1
X

π∗F

j∗F1,V

π∗(α∗)

π∗(ι∗)

where the diagonal morphism is injective, by [Sai20a, Thm 3.1(2)] and the semipurity
of F1. This implies that the morphism labeled π∗(α

∗) is injective too. Similarly,
the embedding V → (P1, 0)⊗X , induces another injective morphism F1,(P1,0)⊗X →
j∗F1,V . In total, we obtain the following commutative diagram

(2.13.9) 0 // F1,P1
X

π∗(α∗) // π∗F //

π∗(ι∗)

��

Σ

ϕ

��

// 0

0 // F1,P1
X

π∗((αι)∗) // j∗F1,V // Λ // 0

0 // F1,P1
X

// F1,(P1,0)⊗X //
?�

OO

Λ(0) //
?�

OO

0,

with exact rows, defining the cokernels Σ, Λ and Λ(0), as well as the map ϕ. Ap-
plying RΓ(P1

X ,−) yields

Σ

ϕ

��

∂1 // H1(P1
X , F1,P1

X
) // H1(P1

X , π∗F)→ 0

��
Λ

∂2 // H1(P1
X , F1,P1

X
) // H1(P1

X , j∗F1,V)→ 0

Λ(0)
?�

OO

// // H1(P1
X , F1,P1

X
) // H1(P1

X , F1,(P1,0)⊗X ) = 0

OO
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with exact rows and in which the ∂i are the connecting homomorphisms and where

Σ := H0(P1
X ,Σ), Λ := H0(P1

X ,Λ), Λ(0) := H0(P1
X ,Λ(0)).

The group H1(P1, F1,(P1,0)⊗X ) vanishes by the cube invariance of cohomology, see
[Sai20a, Thm 9.3], thus ∂2|Λ(0) is surjective, the vanishing (2.13.4) for i = 1 will
follow, if we can show

(2.13.10) Λ(0) ⊂ ϕ(Σ).

Note that Σ, Λ, and Λ(0) have support in 0×X ⊂ U , so we can compute the global
sections on U instead of P1 to show (2.13.10). Now, since H1(U, F1,U) = 0, by
Lemma 2.10, unravelling the definitions we obtain from (2.13.3) and (2.13.9) with
G := F (−⊗X ) and A1

s = P1 \ {∞} the following descriptions:

Σ =
G((A1

y, 0)⊗ (A1
s, 0))

α∗G((A1
x, 0)⊗A1

s)
,

Λ =
G((A1

x, 0)⊗ (A1
s \ {0}, ∅))

G((A1
x, 0)⊗A1

s)
,

(2.13.11) Λ(0) =
G((A1

x, 0)⊗ (A1
s, 0))

G((A1
x, 0)⊗A1

s)
.

By [Sai20a, Lem 5.9] we have isomorphisms (see Notation 2.1)

(2.13.12)
G(�

(1)

x ⊗ (A1
s, 0))

G((P1
x,∞)⊗ (A1

s, 0))

'−→ G((A1
x, 0)⊗ (A1

s, 0))

G(A1
x ⊗ (A1

s, 0))
,

(2.13.13)
G(�

(1)

x ⊗�
(1)

s )

G(�
(1)

x ⊗ (P1
s,∞))

'−→ G(�
(1)

x ⊗ (A1
s, 0))

G(�
(1)

x ⊗A1
s)

.

Write j for the open immersion (A1
x, 0) ↪→ �

(1)

x . The base change of j∗ induces a
commutative diagram

(2.13.14)

G((A1
x, 0)⊗A1

s) G((A1
x, 0)⊗ (A1

s, 0)) Λ(0)

G(�
(1)

x ⊗A1
s) G(�

(1)

x ⊗ (A1
s, 0)).

j∗ j∗

The horizontal composite morphism is zero by (2.13.11), hence the kernel of the

diagonal arrow contains G(�
(1)

x ⊗ A1
s). Next, note that from (2.13.12) we get the

surjective morphism

(2.13.15) G(�
(1)

x ⊗ (A1
s, 0))⊕G(A1

x ⊗ (A1
s, 0))→ G((A1

x, 0)⊗ (A1
s, 0))→ 0.

Combining (2.13.15), (2.13.13) and (2.13.14) we get a surjection

(2.13.16) G(A1
x ⊗ (A1

s, 0))⊕G(�
(1)

x ⊗�
(1)

s )→→ Λ(0).

Note that the pullback of the open immersion π−1(V ) ↪→ Y × X along π−1(U) ↪→
Y ×X induces the open immersion

A1
x × (A1

s \ {0})×X → A1
y ×A1

s ×X
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which is induced by base change from the k[s]-linear map

k[y, s] 7→ k[x, s, 1/s], y 7→ x/s.

It gives the following two morphisms in MCor

ι1 : (A1
x, 0)⊗ (A1

s \ {0})⊗X → (A1
y, 0)⊗ (A1

s, 0)⊗X .

ι2 : (A1
x, 0)⊗ (A1

s \ {0})⊗X → �
(1)

y ⊗�
(2)

s ⊗X .
Furthermore, consider the base change of the map (2.5.1)

ψ : �
(1)

y ⊗�
(2)

s ⊗X → �
(1)

x ⊗�
(1)

s ⊗X ,
which is induced by x 7→ ys; it restricts to

ψ1 : (A1
y, 0)⊗ (A1

s, 0)→ A1
x ⊗ (A1

s, 0).

In particular, ψ1 ◦ ι1 is induced by the open immersion A1
x \ {0} × A1

s \ {0} ↪→
A1
x×A1

s \{0} and ψ ◦ ι2 is induced by the identity on A1
x \{0}×A1

s \{0}. Consider
the following diagram

G(A1
x ⊗ (A1

s, 0))
ψ∗1 // G((A1

y, 0)⊗ (A1
s, 0))

ι∗1
��

r1 // Σ

ϕ

��
G((A1

x, 0)⊗ (A1
s \ {0}, ∅))

r2 // Λ

G(A1
x ⊗ (A1

s, 0))
r3 //

?�

OO

Λ(0).
?�

OO

Here the maps ri are the natural maps into the quotients; the diagram commutes
by definition of the morphisms involved. Hence

(2.13.17) Im(G(A1
x ⊗ (A1

s, 0))→ Λ(0)) ⊂ ϕ(Σ).

Consider now the following diagram

G(�
(1)

y ⊗�
(1)

s )
r1 //

��

Σ

ϕ

��

G(�
(1)

x ⊗�
(1)

s )
ψ∗ //

55

G(�
(1)

y ⊗�
(2)

s )

ι∗2
��

G((A1
x, 0)⊗ (A1

s \ {0}, ∅))
r2 // Λ

G(�
(1)

x ⊗�
(1)

s )
r3 //

?�

OO

Λ(0).
?�

OO

Here the maps r1 and r3 are induced by restriction followed by the quotient map
using (2.13.12) and (2.13.13); the two squares and the triangle on the lower left
commute by definition of the morphisms involved; the map ψ∗ factors via the dotted
arrow in the diagram, by Proposition 2.5. This shows

Im(G(�
(1)

x ⊗�
(1)

s )→ Λ(0)) ⊂ ϕ(Σ),

which together with (2.13.17) and (2.13.16) implies (2.13.10). This completes the
proof of the lemma. �
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Lemma 2.14. Let the assumptions and notations be as in Theorem 2.12. Assume
additionally codim(Z,X) ≤ 2. Then Theorem 2.12 holds.

Proof. There is nothing to prove for codim(Z,X) = 1, we therefore consider the case
codim(Z,X) = 2. Since (Y, ρ∗D) ∼= (X,D) in MCor we have ρ∗F(Y,ρ∗D)

∼= F(X,D).
Thus it remains to show the vanishing

(2.14.1) Riρ∗F(Y,ρ∗D) = 0, for all i ≥ 1.

The question is Nisnevich local around the points in Z. Let z ∈ Z be a point
and consider the regular henselian local ring A = OhX,z. For V ⊂ X set V(z) :=
V ×X SpecA. Denote by D′ ⊂ X the closed subscheme defined by D − D0. By
assumption we find a regular system of local parameters x, y, t1 . . . , ts of A, such
that Z(z) = V (x, y), D0,(z) = V (x), and D′(z) = V (tn1

1 · · · tnrr ), for some r ≤ s and
ni ≥ 1. Let K ↪→ A be a coefficient field over k; we obtain an isomorphism

K{x, y, t1, . . . , ts}
'−→ A.

Let ρ1 : Ã2 → A2 be the blow-up in 0. By the above the blow-up in Z

ρ : (Y, ρ∗D)→ (X,D)

is Nisnevich locally around z over k isomorphic to the morphism

(Ã2, ρ∗1(x))⊗ (As
K , (

r∏
i=1

tnii ))→ (A2, (x))⊗ (As
K , (

r∏
i=1

tnii )),

which is induced by base change from ρ1. Hence the vanishing (2.14.1) follows from
Lemma 2.13. �

Lemma 2.15. Let X be a finite type k-scheme and Z0 ⊂ Z1 ⊂ X closed subschemes.
Let ρ : X ′ → X be the blow-up of X in Z0 and let ρ′ : X ′′ → X ′ be the blow-up of X ′

in the strict transform Z̃1 of Z1. Furthermore, let σ : Y ′ → X be the blow-up in Z1

and let σ′ : Y ′′ → Y ′ be the blow-up of Y ′ in σ−1(Z0). Then there is an isomorphism

X ′′
' //

ρρ′ !!

Y ′′

σσ′}}
X.

Proof. Recall the following general fact: Let I,J ⊂ OX be two coherent ideal
sheaves. Then the blow-up X̃ → X of X in I · J is equal to the composition
X2

π2−→ X1
π1−→ X, where π1 is the blow-up in I and π2 is the blow-up in π−1

1 J ·OX1 .
This is proven using the universal property of blow-ups, see, e.g., [Sta19, Tag 080A].

Here denote by Ii ⊂ OX the ideal sheaves of Zi. We have I1 ⊂ I0. Let π : X̃ → X
be the blow-up of X in I1 · I0. By the remark above, π is isomorphic as X-scheme
to σσ′. Furthermore, note that ρ′ is also equal to the blow-up of X ′ in ρ−1(Z1).
Indeed, the ideal sheaf of ρ−1(Z1) is equal to ρ−1I1 · OX′ = IE · Ĩ1, where IE is the
ideal sheaf of the exceptional divisor of ρ and Ĩ1 is the ideal sheaf of Z̃1; since IE is
invertible, the blow-ups of X ′ in Ĩ1 and in ρ−1I1 · OX′ are isomorphic. Thus by the
remark above the X-scheme ρρ′ is isomorphic to π as well. �

2.16. Proof of Theorem 2.12. The proof is by induction on c = codim(Z,X),
the induction start for c ≤ 2 being Lemma 2.14. Assume c > 2. The question
is local on X. Hence we can assume X = SpecA and that there is a regular
sequence y1, . . . , yc, t1, . . . , tr ∈ A such that Z = V (y1, . . . , yc), D0 = V (y1) and

https://stacks.math.columbia.edu/tag/080A
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D′ = D −D0 = V (tn1
1 · · · tnrr ), for some ni ≥ 1. Set Z2 := V (y1, y2). Let ρ : Y → X

be the blow-up in Z and denote by Z̃2 the strict transform of Z2. Then ρ∗D has SNC
support with the strict transform D̃0 of D0 being a smooth component containing
Z̃2. Furthermore, Z̃2 intersects ρ∗D − D̃0 transversally and codim(Z̃2, Y ) = 2. Let
ρ′ : Y ′ → Y be the blow-up in Z̃2. By Lemma 2.14 we find

(2.16.1) Rρ∗F(Y,ρ∗D)
∼= R(ρρ′)∗F(Y ′,(ρρ′)∗D).

Let σ : W → X be the blow-up in Z2 and set Zc−1 := σ−1(Z). Then σ∗D has
SNC support with the exceptional divisor E being a smooth component contain-
ing Zc−1. Furthermore Zc−1 intersects the strict transform of D transversally and
codim(Zc−1,W ) = c− 1. Let σ′ : W ′ → W be the blow-up in Zc−1. By Lemma 2.14
and induction we find

F(X,D)
∼= Rσ∗F(W,σ∗D)

∼= R(σσ′)∗FW ′,(σσ′)∗D.

Thus the statement follows from Lemma 2.15 and (2.16.1). �

2.3. (Pn,Pn−1)-invariance of cohomology. We follow the basic strategy of [KS20,
Lem 10]. See also [BPØ, Prop 7.3.1].

Lemma 2.17. Let F ∈ CIτ,spNis and X = (X,D) ∈ MCorls. Let x ∈ Pn be a k-
rational point and L ⊂ Pn a hyperplane. Denote by ρ : Y → Pn the blow-up in x.
Denote by q : Y × X → E × X the base change of the morphism Y → E which
parametrizes the lines in Pn through x. Then the pullback

q∗ : F(E,L′)⊗X
'−→ Rq∗F(Y,ρ∗L)⊗X

is an isomorphism, where L′ = L̃ ∩E, with L̃ ⊂ Y the strict transform of L. (Note
L′ = ∅, if x 6∈ L.)

Proof. Note that the projection morphism Y → E makes Y into a P1-bundle over E
and induces a morphism (Y, ρ∗L)⊗ X → (E,L′)⊗ X . The latter morphism locally
over E has the form of the projection �⊗W →W , for some W ∈MCor. Indeed,
over an affine neighborhood U ⊂ E intersecting (resp. not intersecting) L′, the
modulus pairW can be taken to be (U,L′∩U)⊗X (resp. (U, ∅)⊗X ). In both cases
the divisor {∞}×U ×X on P1×U ×X is the restriction of the exceptional divisor
to q−1(U) = P1 × U ×X. Thus the statement follows from the cube-invariance of
cohomology, see [Sai20a, Thm 9.3]. �

Theorem 2.18. Let F ∈ CIτ,spNis . Let L ⊂ Pn be a hyperplane and X = (X,D) ∈
MCorls. Then the pullback

FX
'−→ Rπ∗F(Pn,L)⊗X ,

along the projection π : Pn
X → X is an isomorphism.

Proof. The case n = 1 is [Sai20a, Thm 9.3]. Assume n ≥ 2. Let x ∈ Pn be a
k-rational point, L ⊂ Pn a hyperplane with x ∈ L, and ρ : Y → Pn the blow-up in
x. Then Rρ∗F(Y,ρ∗L)⊗X = F(Pn,L)⊗X by Theorem 2.12. Thus the statement follows
from Lemma 2.17 and induction. �

Corollary 2.19. Let F ∈ CIτ,spNis and X = (X,D) ∈ MCorls. Let V be a vector
bundle on X and denote by

π : P(V ) := Proj(Sym•OX (V ))→ X
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the structure map. Then π∗ induces an isomorphism

π∗ : FX
'−→ π∗F(P(V ),π∗D).

Proof. The question is local on X, hence we can assume that V is trivial of rank
n+ 1. Let L ⊂ Pn be a hyperplane and consider

FX
π∗−→ π∗FPn⊗X ↪→ π∗F(Pn,L)⊗X .

The second map is injective by semipurity and [Sai20a, Thm 3.1(2)]; the composition
is an isomorphism by Theorem 2.18, hence so is the first map. �

3. Smooth blow-up formula

Theorem 3.1. Let F ∈ CIτ,spNis and X = (X,D) ∈MCorls. Let Z ⊂ X be a smooth
closed subscheme which intersects D transversally. Consider the following cartesian
diagram

E

ρE
��

iE // X̃

ρ

��
Z

i // X,

in which ρ is the blow-up of X along Z. Set

X̃ = (X̃,D|X̃), Z = (Z,D|Z), E = (E,D|E).

Then there is a distinguished triangle in the bounded derived category of Nisnevich
sheaves of abelian groups Db(XNis)

FX
ρ∗⊕(−i∗)−−−−−→ Rρ∗FX̃ ⊕ i∗FZ

i∗E+ ρ∗E−−−−→ i∗RρE∗FE → FX [1].

Proof. The first part of the argument is similar to the proof of [Gro85, IV.1.1.]. We
have to show that the diagram

FX Rρ∗FX̃

i∗FZ i∗RρE∗FE

ρ∗

i∗ i∗E

ρ∗E

is homotopy cartesian in Db(XNis). To this end it suffices to show that the following
maps are isomorphisms:

(3.1.1) ρ∗E : FZ → ρE∗FE ,

(3.1.2) ρ∗ : FX → ρ∗FX̃ ,

(3.1.3) i∗E : Rjρ∗FX̃ → i∗R
jρE∗FE , j ≥ 1.

The map (3.1.1) is an isomorphism by Corollary 2.19, since E is a projective bundle
over Z. The question for the other two isomorphisms is Nisnevich local. Since Z and
D intersect transversally we can assume that X = (An, ∅)⊗Z with Z = (Z,DZ) ∈
MCorls and that X̃ is the blow up of X = An × Z at {0} × Z (cf. the proof of
Lemma 2.14). Write An = Pn \ L and let Y be the blow-up of 0 ∈ Pn and denote
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by E0 the exceptional divisor. Note that L is embedded isomorphically into Y , not
intersecting E0. We obtain the diagram

E0 × Z
ı̄E //

ρ̄E
��

Y × Z q //

ρ̄

��

E0 × Z
ρ̄E
��

Z
ı̄ // Pn × Z π // Z,

where ı̄ : Z = {0} × Z ↪→ Pn × Z is the closed immersion, ρ̄ is the base change of
the blow-up, π and ρ̄E are the projections and q is as in Lemma 2.17. It remains to
show that the following maps are isomorphisms

(3.1.4) ρ̄∗ : F(Pn,L)⊗Z → ρ̄∗F(Y,L)⊗Z ,

(3.1.5) ı̄∗E : Rj ρ̄∗F(Y,L)⊗Z → ı̄∗R
j ρ̄E∗FE0⊗Z , j ≥ 1.

Indeed, the restriction of these two isomorphisms to An
Z = Pn

Z \ LZ yields the
isomorphisms (3.1.2) and (3.1.3).

The map (3.1.4) is an isomorphism away from 0× Z. Since source and target of
Rπ∗(3.1.4) are both isomorphic to FZ by Theorem 2.18 and Lemma 2.17, (3.1.4) is
an isomorphism everywhere. Similarly, (3.1.5) is an isomorphism if Rπ∗(3.1.5) is.
To show the latter, first observe that we have

(3.1.6) Raπ∗R
bρ̄∗(F(Y,L)⊗Z) = 0, for a 6= 0.

Indeed, if b ≥ 1, then Rbρ̄∗F(Y,L)⊗Z has support in 0 × Z; if b = 0 the cohomology
for a ≥ 1 vanishes by (3.1.4) and Theorem 2.18. Now Rπ∗(3.1.5) is equal to the
composition

π∗R
j ρ̄∗F(Y,L)⊗Z ∼= Rj ρ̄E∗Rq∗F(Y,L)⊗Z ∼= Rj ρ̄E∗FE0⊗Z ,

where the first isomorphism follows from (3.1.6) and the Leray spectral sequence
and the second isomorphism holds by Lemma 2.17. This completes the proof. �

4. Twists

4.1. A tensor formula for homotopy invariant sheaves.

Lemma 4.1. (Bloch-Gieseker) Assume k infinite of exponential characteristic p ≥
1. Let X be an integral quasi-projective k-scheme and D a Cartier divisor on X.
Let n ≥ 1 be an integer with (n, p) = 1. Then there exists a finite and surjective
morphism π : Y → X and a Cartier divisor E on Y such that the following properties
hold:

(1) Y is integral, normal and π−1(Xsm) is a smooth open subscheme of Y , where
Xsm is the smooth locus of X;

(2) π∗D = nE;
(3) deg(π) divides a power of n;
(4) if D is effective, then so is E.

Proof. The proof is a slight modification of [BG71, Lem 2.1]. First note that (4)
follows from (2) and (1). Also, it suffices to prove the statement for D a very ample
divisor. Let i : X ↪→ PN := P be an immersion such that O(D) = i∗OP(1). By
Bertini’s theorem (see, e.g., [Jou83, I, Cor 6.11]) we find hyperplanes H0, . . . , HN ⊂
P such that all the intersections Hi0∩. . .∩Hir and Hi0∩. . .∩Hir∩Xsm are transversal
(or empty), for all {i0, . . . , ir} ⊂ {0, . . . , N} and all 0 ≤ r ≤ N . Let Yi be a linear
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polynomial defining Hi, so that P = Proj k[Y0, . . . , YN ]. Let Π : P → P be the
k-morphism defined by Yi 7→ Y n

i , i = 0, . . . , N . Note that Π is finite of degree nN

and it is étale over P \ ∪iHi. Form the cartesian diagram

X ′
i′ //

π′

��

P

Π
��

X
i // P.

Then X ′ ×X Xsm is smooth: this can be checked after base change to the algebraic
closure of k and then the argument is the same as in the second and third paragraph
in the proof of [BG71, Lem 2.1] (the choice of the Hi is crucial here). Let X ′′ ⊂ X ′

be an irreducible component (with reduced scheme structure) and denote by Y the
normalization of X ′′ and by π : Y → X the composition

Y → X ′′ ↪→ X ′
π′−→ X

and by E = OP(1)|Y the pullback of OP(1) along

Y → X ′′ ↪→ X ′
i′

↪→ P.

Then π : Y → X and E satisfy the conditions of the statement. �

Lemma 4.2. Let F,G ∈ PST. Let

(4.2.1) ω∗F ⊗MPST ω
∗G→ ω∗(F ⊗PST G)

be the morphism in MPST, which is induced by adjunction from the isomorphism

ω!(ω
∗F ⊗MPST ω

∗G) ∼= (ω!ω
∗F )⊗PST (ω!ω

∗G) ∼= F ⊗PST G.

Then we obtain a surjection in MNST

aNis((4.2.1)) : aNis(ω
∗F ⊗MPST ω

∗G)→→ aNis(ω
∗(F ⊗PST G)).

Proof. Denote by Hl (resp. Hr) the source (resp. target) of (4.2.1) and take X =
(X,D) ∈MCor. By definition, ⊗MPST (resp. ⊗PST) is the Day convolution of the
tensor product on MCor (resp. on Cor), so that we have the following presentations
(which also hold for general (X,D), cf. [SV00, §2])

Hl(X,D) =

 ⊕
Y,Z∈MCor

F (Yo)⊗Z G(Zo)⊗Z MCor(X ,Y ⊗ Z)

 /Rl,

where for Y = (Y , Y∞) we set Yo = Y \Y∞, and where Rl is the subgroup generated
by the elements

f ∗a⊗ g∗b⊗ h− a⊗ b⊗ (f ⊗ g) ◦ h,
where Y ,Y ′,Z,Z ′ ∈ MCor, a ∈ F (Yo), b ∈ G(Zo), f ∈ MCor(Y ′,Y), g ∈
MCor(Z ′,Z), and h ∈MCor(X ,Y ′ ⊗Z ′). Similarly,

Hr(X,D) =

( ⊕
Y,Z∈Sm

F (Y )⊗Z G(Z)⊗Z Cor(X \D, Y × Z)

)
/Rr,

where Rr is the subgroup generated by

f ∗a⊗ g∗b⊗ h− a⊗ b⊗ (f × g) ◦ h,
where Y, Y ′, Z, Z ′ ∈ Sm, a ∈ F (Y ), b ∈ G(Z), f ∈ Cor(Y ′, Y ), g ∈ Cor(Z ′, Z),
and h ∈ Cor(X \D, Y ′ × Z ′).
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Let
∑

i ai ⊗ bi ⊗ γi ∈ Hr(X,D), where ai ∈ F (Yi), bi ∈ G(Yi), and γi ∈ Cor(X \
D, Yi × Zi). By [KMSY21a, Thm 1.6.2] we find a proper morphism ρ : X ′ →
X inducing an isomorphism X ′ \ |ρ∗D| '−→ X \ |D|, such that the closure of any
irreducible component of γi in X ′×Yi×Zi is finite over X ′, for all i. By (1.2.4) and
Lemma 1.3 we are reduced to show the following:

Claim 4.2.1. Assume X is henselian local of geometric type (i.e. X = Spec(OhX,x)
for X integral quasi-projective k-scheme). Let V ∈ Cor(X \D, Y × Z) be a prime
correspondence, such that the closure of V ⊂ X × Y × Z of V is finite over X, and
let a ∈ F (Y ), b ∈ G(Z). Then the class of a⊗ b⊗ V in Hr(X,D) lies in the image

of Hl(X,D)
(4.2.1)−−−→ Hr(X,D).

Let V be as above. Since the closure V ⊂ X × Y × Z of V is integral and finite
over X, it is local. Denote by v ∈ V the closed point and by y ∈ Y , z ∈ Z the images
of v, respectively. We get induced maps OY,y → Γ(V ,OV ) and OZ,z → Γ(V ,OV ).
Hence

V ⊂ (X \D)× U1 × U2,

where j1 : U1 ↪→ Y and j2 : U2 ↪→ Z are open affines containing y and z, respectively.
Denote by V ′ ∈ Cor(X \ D,U1 × U2) the induced prime correspondence. Then
V = (j1 × j2) ◦ V ′ and thus

a⊗ b⊗ V = j∗1a⊗ j∗2b⊗ V ′ in Hr(X,D).

Hence Claim 4.2.1 follows from the following:

Claim 4.2.2. Let (X,D) ∈MCor, let Y, Z be smooth quasi-projective k-schemes, let
V ∈ Cor(X \D, Y ×Z) be a prime correspondence and a ∈ F (Y ), b ∈ G(Z). Then

the class of a⊗ b⊗ V in Hr(X,D) lies in the image of Hl(X,D)
(4.2.1)−−−→ Hr(X,D).

We prove the claim. First we reduce to k infinite by a standard trick: If k is finite
denote by k(`) a Z`-Galois extension of k for a prime `; by a trace argument the
(diagonal) pullback Hr(X,D) → Hr(Xk(`), Dk(`)) ×Hr(Xk(`′), Dk(`′)) is injective for
` 6= `′.

In the following we assume k infinite. By assumption we find proper modulus pairs
Y = (Y , Y∞) and Z = (Z,Z∞) such that Y and Z are projective and Y = Y \ |Y∞|
and Z = Z \ |Z∞|. Since V is closed in X \ |D| × Y × Z we find an integer n0 such
that V ∈MCor((X,n0D),Y ⊗ Z). Choose n ≥ n0 with (n, p) = 1. By Lemma 4.1

we find a modulus pair Y ′ = (Y
′
, Y ′∞) together with a finite and surjective morphism

π̄Y,n : Y
′ → Y such that deg π̄Y,n divides a power of n and π̄∗Y,n(Y∞) = nY ′∞, similarly

for Z. Denote by πY,n : Y ′ → Y the induced finite and surjective morphism in Sm
and by πtY,n ∈ Cor(Y, Y ′) the correspondence induced by the transpose of the graph.
In Hr(X,D) we obtain

deg(πY,n) deg(πZ,n) · (a⊗ b⊗ V ) = πY,n∗π
∗
Y,na⊗ πZ,n∗π∗Z,nb⊗ V

= (πtY,n)∗π∗Y,na⊗ (πtZ,n)∗π∗Z,nb⊗ V
= π∗Y,na⊗ π∗Z,nb⊗ (πtY,n × πtZ,n) ◦ V.

Observe that the components of (πtY,n × πtZ,n) ◦ V ∈ Cor(X \ D, Y ′ × Z ′), are the
irreducible components of

V ×Y×Z (Y ′ × Z ′) = (idX\|D| × πn,Y × πn,Z)−1(V ).
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Let W be such a component, it comes with a finite and surjective map W → V .

Denote by V ⊂ X×Y ×Z and W ⊂ X×Y ′×Z ′ the closure of V and W , respectively,
and denote by Ṽ → V and W̃ → W the normalizations. Since W is contained in

V ×Y×Z (Y
′ × Z

′
), the natural maps from W̃ to Y and Z factor via a morphism

W̃ → Ṽ . We obtain

nD|W̃ ≥ n0D|W̃ ≥ Y∞|W̃ + Z∞|W̃ = nY ′∞|W̃ + nZ ′∞|W̃ ,

where the second inequality follows from V ∈MCor((X,n0D),Y ⊗ Z). Hence

(πtY,n × πtZ,n) ◦ V ∈MCor((X,D),Y ′ ⊗Z ′).
It follows that δn · (a ⊗ b ⊗ V ) lies in the image of Hl(X,D) → Hr(X,D), where
δn := deg(πY,n) deg(πZ,n). Choose r ≥ n0 with (r, p) = 1 = (r, n). Since δn divides
a power of n and δr divides a power of r we find integers s, t with

a⊗ b⊗ V = sδn · (a⊗ b⊗ V ) + tδr · (a⊗ b⊗ V ).

This proves Claim 4.2.2 and hence also the lemma. �

Proposition 4.3. For F1, . . . , Fn ∈ HINis, consider the map
(4.3.1)
ω∗F1⊗MPST· · ·⊗MPSTω

∗Fn → ω∗(F1⊗PST· · ·⊗PSTFn)→ ω∗(F1⊗HINis
· · ·⊗HINis

Fn),

where the first map is induced by (4.2.1) and the associativity of ⊗MPST and ⊗PST

and the second map is induced by the natural surjective map (cf. (1.6.2))

F1 ⊗PST · · · ⊗PST Fn → hA
1

0,Nis(F1 ⊗PST · · · ⊗PST Fn) := F1 ⊗HINis
· · · ⊗HINis

Fn,

where we use the notation from 1.4 and ⊗HINis
denotes the monoidal structure on

HINis defined by Voevodsky. Then,(4.3.1) induces an isomorphism

(4.3.2) h�,sp0,Nis(ω
∗F1 ⊗MPST · · · ⊗MPST ω

∗Fn)
'−→ ω∗(F1 ⊗HINis

· · · ⊗HINis
Fn).

Proof. We begin by observing that for F,G ∈ CIτ,spNis , the formula F ⊗CIτ,spNis
G =

τ!h
�,sp
0,Nis(τ

∗F ⊗MPST τ
∗G) defines a symmetric monoidal structure on CIτ,spNis thanks

to [MS, Prop. 3.2]. Next, note that ω∗H ∈ CIτ,spNis for H ∈ HINis by [KSY, Lem.
2.3.1] and [KMSY21b, Prop. 6.2.1b)]. Moreover

h�,sp0,Nis(ω
∗F1 ⊗MPST ω

∗F2) = h�,sp0,Nis(τ!ω
∗F1 ⊗MPST τ!ω

∗F2)

= τ!h
�,sp
0,Nis(ω

∗F1 ⊗MPST ω
∗F2)

= τ!h
�,sp
0,Nis(τ

∗(ω∗F1)⊗MPST τ
∗(ω∗F2)) = ω∗F1 ⊗CIτ,spNis

ω∗F2,

for every F1, F2 ∈ HINis. Here, the isomorphisms follow from (1.1.3) and the exact-
ness of τ!.

We now observe that the functor ω∗ is lax monoidal from PST to MPST (this
follows from the fact that ω∗ is right adjoint to ω!, which is strict monoidal by

construction). By applying h�,sp0,Nis to (4.3.1), we obtain the functorial map (4.3.2),
which we can rewrite for n = 2 as

(4.3.3) ω∗F1 ⊗CIτ,spNis
ω∗F2 → ω∗(F1 ⊗HINis

F2).

In particular, ω∗ restricts to a lax symmetric monoidal functor from HINis to CIτ,spNis ,
and the statement of the Proposition is equivalent to the fact ω∗ is in fact (strictly)
monoidal, i.e. that the map (4.3.3) is an isomorphism (note that the identity for the
tensor product is simply the constant sheaf Z, and that ω∗Z = Z). Since the tensor
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products in CIτ,spNis and HINis are in particular associative, it is enough to prove the
claim when n = 2.

By Lemma 4.2, the map (4.3.3) (or, equivalently, (4.3.2)) is surjective. On the
other hand, we have

ω!h
�,sp
0,Nis(ω

∗F1 ⊗MPST ω
∗F2) = aVNisω!h

�
0 (ω∗F1 ⊗MPST ω

∗F2)sp

= aVNisω!h
�
0 τ!(ω

∗F1 ⊗MPST ω
∗F2)

= aVNisω!τ!h
�
0 (ω∗F1 ⊗MPST ω

∗F2)

= aVNisω!h
�
0 (ω∗F1 ⊗MPST ω

∗F2),

where the first equality follows from the definition of h�,sp0,Nis (cf. (1.4.2)) and ω!aNis =

aVNisω! (cf. (1.2.2)), and the second holds by the fact ω!A
sp = ω!A for A ∈ MPST

and ω∗ = τ!ω
∗ (cf. (1.1.3)) and the monoidality of τ!, and the third follows from

h�0 (τ!B) = τ!h
�
0 (B) for B ∈ MPST, where h�0 (B) ∈ MPST is the maximal cube

invariant quotient of B defined by the same way as (1.4.3), and the last holds by
ω!τ! = ω! (cf. (1.1.3)). Thus ω!(4.3.2) is an isomorphism by [RSY22, Thm 5.3] in
view of ω∗F = F̃ (see [RSY22, (3.14.5)]) by [KSY, Lem. 2.3.1]. Since both sides of
(4.3.2) are semipure the map (4.3.2) is injective as well. �

4.2. Definition and basic properties of twists.

Definition 4.4 (see [MS, §2]). Let F ∈ CIτ,spNis . We define γnF and F (n), n ≥ 0,
recursively by

γ0F := F, γ1F := γF := HomMPST(ω∗Gm, F ), γnF := γ(γn−1F )

and

F (0) := F, F (1) := h�,sp0,Nis(F ⊗MPST ω
∗Gm), F (n) := F (n− 1)(1).

Corollary 4.5. Let F ∈ CIτ,spNis . Then γnF , F (n) ∈ CIτ,spNis , for all n ≥ 0. Further-
more,

(4.5.1) γnF = HomMPST((�
(1)

red)⊗MPSTn, F ) = HomMPST(ω∗KM
n , F ),

and

(4.5.2) F (n) = h�,sp0,Nis(F ⊗MPST (�
(1)

red)⊗MPSTn) = h�,sp0,Nis(F ⊗MPST ω
∗KM

n ),

where

(4.5.3) �
(1)

red := Coker(Ztr({1})→ Ztr(P
1, 0 +∞)) ∈MPSTτ

and KM
n is the improved Milnor K-theory from [Ker10] (there denoted by K̂M

n ).

Proof. For a proper modulus pair X we have τ!τ
∗Ztr(X ) = Ztr(X ). It follows that

�
(1)

red ∈MPSTτ . By Lemma 2.4 we have h�,sp0,Nis(�
(1)

red) = ω∗Gm. Thus

(4.5.4) γF = HomMPST(�
(1)

red, F ).
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Indeed (we drop the index MPST from Hom and Hom)

Hom(�
(1)

red, F )(X ) = Hom(Ztr(X )⊗�
(1)

red, F )

= Hom(�
(1)

red,Hom(Ztr(X ), F ))

= Hom(h�,sp0,Nis(�
(1)

red),Hom(Ztr(X ), F ))

= Hom(h�,sp0,Nis(�
(1)

red), F )(X )

= γF (X ),

where the third equality holds by Lemma 1.5(1), (2). This implies the first equality
in (4.5.1) and also that γnF ∈ CIτ,spNis , for all n ≥ 0, by Lemma 1.5(1). For the second
equality in (4.5.1), first note that it follows from [Ker10] and results by Voevodsky
(see [RSY22, 5.5]), that we have

(4.5.5) KM
n
∼= G

⊗HINis
n

m ∈ HINis .

Hence by Proposition 4.3 and [MS, Lem 1.14(iii)], we obtain

(4.5.6) ω∗KM
n = h�,sp0,Nis((ω

∗Gm)⊗MPSTn) = h�,sp0,Nis((�
(1)

red)⊗MPSTn).

Thus the second equality in (4.5.1) follows from the adjunction (1.4.2). The equali-
ties in (4.5.2) follow similarly. �

Remark 4.6. By Corollary 4.5 the twist γnF (resp. F (n)) agrees with the definition
in [MS, (2.3)] (resp. [MS, after Prop 3.2]).

Remark 4.7. Let F ∈ CIτ,spNis and X ∈MCorls. By (4.5.4) and [Sai20a, Lem 5.9] we
have

γ1F (X ) =
F ((P1, 0 +∞)⊗X )

F ((P1,∞)⊗X )
=
F ((A1, 0)⊗X )

F (A1 ⊗X )
.

4.8. For later use in section 8 we define a certain maps induced by adjuntion. Let
F ∈ CIτ,spNis . For n ≥ 0 we have an adjunction map

(4.8.1) F → HomMPST(ω∗KM
n , F ⊗MPST ω

∗KM
n )

which sends a ∈ F (X ) to (we drop the subscript MPST)

a⊗ id ∈ Hom(Ztr(X )⊗ ω∗KM
n , F ⊗ ω∗KM

n ),

where we identify an element a ∈ F (X ) with the map a : Ztr(X )→ F . Composing

(4.8.1) with the map induced by the natural map F ⊗ ω∗KM
n → h�,sp0,Nis(F ⊗ ω∗KM

n )
Corollary 4.5 yields a map

(4.8.2) κn : F → γn(F (n)) =: γnF (n)

which by Remark 4.6 coincides with the morphism [MS, (3.5)]. Note that κ0 is the
identity and that for m,n ≥ 0 the following diagram commutes

(4.8.3) F
κm+n //

κm
��

γm+n(F (m+ n))

γm(F (m))
γmκn // γmγn(F (m)(n)).
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5. Cup product with Chow cycles with support

5.1. Milnor K-theory and intersection theory with supports. Everything
in this subsection is well-known, however we give some explanations for lack of
reference.

5.1. Recall that a family of supports on a scheme X is a non-empty collection Φ of
closed subsets of X which is stable under taking finite unions and closed subsets.
The main examples are the family ΦZ , for a closed subset Z ⊂ X, which consists of
all the closed subsets in Z, the family Φ≥c of all closed subsets of codimension ≥ c,
and the family Φprop

X/S , for a morphism X → S, which consists of all closed subsets in

X which are proper over S. If F is a sheaf on X and Φ is a family of support, then

ΓΦ(X,F ) = {s ∈ F (X) | supp(s) ∈ Φ} = lim−→
Z∈Φ

ΓZ(X,F ),

and ΓΦ(F )(U) = ΓΦ∩U(U, F ), for an open U ⊂ X. For a morphism f : Y → X we
denote by f−1Φ the smallest family with supports on Y containing all closed subsets
of the form f−1(Z), Z ∈ Φ.

Let X be k-scheme. We denote by CHi(X) the Chow group of i-dimensional
cycles on X. If X is equidimensional of dimension d, we denote by CHi(X) the
Chow group of i-codimensional cycles on X, i.e. CHi(X) = CHd−i(X). If Φ is a
family of supports on X, we set

(5.1.1) CHi
Φ(X) = lim−→

Z∈Φ

CHd−i(Z),

where the transition maps in the directed limit are given by pushforward along
closed immersions. Note that for a closed subset Z ⊂ X we have

CHi
Z(X) := CHi

ΦZ
(X) = CHd−i(Z),

in particular CHi
X(X) = CHi(X). The notation CHi

Z(X) is not superfluous since if
Z is singular the pullback along the refined Gysin homomorphism as in [Ful98, §6]
relies on the embedding Z ↪→ X.

5.2. We recall some facts on the relation between Milnor K-theory and intersection
theory. Let KM

i be the improved Milnor K-sheaf from [Ker10]. Its restriction to Sm
is homotopy invariant and hence for X ∈ Sm its restriction to (ét/X) is a Nisnevich
sheaf denoted by KM

i,X and we have

(5.2.1) Rε∗K
M
i,X = ε∗K

M
i,X ,

where ε : XNis → XZar denotes the canonical morphism of sites, see [Voe00b, Thm
3.1.12].

If Z is a finite-type k-scheme, we denote by C•(i)(Z) the degree i (homological)
Gersten complex of KM

∗,Z (e.g. [Ros96, 5.]), i.e.,

Cn(i)(Z) =
⊕
z∈Z(n)

KM
n+i(z),

and the differentials are induced by the tame symbol. (For the tame symbol we use
the sign convention from [Ros96, p. 328].) Recall that the formation Z 7→ C•(i)(Z)
is covariant functorial with respect to proper maps and contravariant functorial
with respect to quasi-finite flat maps, see [Ros96, Prop (4.6)]. The assignment
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U 7→ C•(i)(U) defines a complex of sheaves on ZNis which we denote by C•,Z(i). If
Z is equidimensional of dimension e, then we define

(5.2.2) Cn
Z(i) := Ce−n,Z(i− e)

and obtain the cohomological degree i Gersten complex C•Z(i) the global sections of
which we also denote by C•(i)(Z).

In the following we assume X ∈ Sm is equidimensional. By [Ker10, Prop 10(8)],
the Gersten complex is a resolution on the Nisnevich site for the sheaf KM

i,X , i.e.

KM
i,X

'−→ C•X(i) in D(XNis).

Note that C•X(i) sits in cohomological degree [0, i]. By (5.2.1) and since ε∗C
•
X(i) is

a flasque resolution of ε∗K
M
i,X , we can use C•X(i) to compute Nisnevich cohomology

with supports of KM
i,X . If dimX = d and ı : Z ↪→ X is a closed immersion, then

ΓZC
n
X(i) = ı∗Cd−n,Z(i− d).

This gives rise to Bloch’s formula (with support)

(5.2.3) CHi
Φ(X) = H i

Φ,Zar(X,K
M
i ) = H i

Φ,Nis(X,K
M
i ) =: H i

Φ(X,KM
i ),

where Φ is a family of supports on X.

Lemma 5.3. Let f : Y → X be a morphism between equidimensional smooth
schemes and let Φ be a family of supports on X. The following diagram commutes

(5.3.1) H i
Φ(X,KM

i )

f∗

��

(5.2.3)
// CHi

Φ(X)

f∗

��

H i
f−1Φ(Y,KM

i )
(5.2.3)

// CHi
f−1Φ(Y ),

where the pullback on the right is induced by the refined Gysin homomorphism in
[Ful98, 6.6] (see also [CR11, 1.1.30]) and the pullback on the left is induced from the
sheaf structure of KM

i on the category of schemes.

Proof. In [Ros96, 12] a morphism of complexes

(5.3.2) I(f) : C•(i)(X)→ C•(i)(Y )

is defined, depending on the choice of a coordination of the tangent bundle TX of
X (see [Ros96, §9] for the definition of a coordination). It is compatible with the
pullback f ∗ : KM

i (X) → KM
i (Y ), by [Ros96, (12.3)Prop, (12.4)Cor]. Furthermore,

if u : U → X is étale, a coordination of TX induces by pullback a coordination of
TU and hence it is direct to check that we have

u∗Y ◦ I(f) = I(fU) ◦ u∗ : C•(i)(X)→ C•(i)(YU),

where uY : YU → Y is the base change of u along f and fU : YU → U is the base
change of f along u. It follows that the choice of a coordination on TX allows one
to promote (5.3.2) to a morphism of complexes of sheaves on XNis

(5.3.3) I(f) : C•(i)X → f∗C
•(i)Y

which is compatible with the pullback f ∗ : KM
i,X → f∗K

M
i,Y . In view of 5.2, taking

sections with support ΓΦ(X,−) and then cohomology, gives a map

H i(ΓΦ(X, I(f))) : H i
Φ(X,KM

i )→ H i
f−1Φ(Y,KM

i )
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that we identify with the left vertical map in (5.3.1). Consider the following diagram
of solid arrows

(5.3.4) Ci(i)(X)

I(f)
��

Cd−i(i− d)(Z)? _oo

IZ(f)
��

// // CHd−i(Z)

f !

��
Ci(i)(Y ) Ce−i(i− e)(f−1(Z))? _oo // // CHe−i(f

−1(Z)),

where Z ∈ Φ, d = dimX, e = dimY , and f ! is the refined Gysin map from
[Ful98, 6.6]. It remains to show that there exists a dotted arrow IZ(f) making
the diagram commute. Since the pushforward on C•(i) is compatible with the
one on Chow groups, we can assume that Z is integral with dimZ = d − i, i.e.,
Cd−i(i− d)(Z) = Z · [Z]. By definition of I(f) and f ! it suffices to consider the case
where f = i : Y ↪→ X is a regular closed immersion defined by a coherent ideal
sheaf J . Denote by NY/X = Spec(⊕n≥0J

n/Jn+1) the normal bundle over Y and fix
a coordination τ of NY/X in the sense of [Ros96, 9., p.371]. Set Z ′ := Z ×X Y and
N := NY/X ×Y Z ′; the pullback of τ along Z ′ ↪→ Y induces a coordination τ ′ of
N . Denote by CZ′/Z the normal cone of Z ′ ↪→ Z and by ν : CZ′/Z ↪→ N the closed
immersion induced by J⊗OXOZ →→ JOZ . Note that CZ′/Z has pure dimension d−i,
see [Ful98, B 6.6], and thus

Cd−i(i− d)(CZ′/Z) =
⊕

z∈(CZ′/Z)(0)

Z.

With the notation from [Ros96, 9., 11.] we define IZ(f) to be the composition

IZ(f) : Cd−i(i− d)(Z)
J(Z,Z′)−−−−→ Cd−i(i− d)(CZ′/Z)

ν∗−→ Cd−i(i− d)(N)
r(τ ′)−−→ Ce−i(i− e)(Z ′).

Let D(Z,Z ′) → A1 = Spec k[t] be the deformation scheme from [Ros96, 10.], so
that D(Z,Z ′)|A1\{0} = Z × (A1 \ {0}) and D(Z,Z ′)|0 = CZ′/Z . Then by definition
(see [Ros96, 11.])

J(Z,Z ′)([Z]) = divD(Z,Z′)(t)|CZ′/Z = [CZ′/Z ],

where [CZ′/Z ] denotes the cycle associated to the scheme CZ′/Z , [Ful98, 1.5]. Thus the
map J(Z ′, Z) corresponds to the specialization map σ : CHd−i(Z)→ CHd−i(CZ′/Z)
from [Ful98, 5.2]. Therefore, the above definition of IZ(f) makes the square on the
right in (5.3.4) commutative, by the alternative description of i! on the Chow side
in [Ful98, 6.2, 2nd paragraph on p. 98]. We subdivide the left square as follows:

(5.3.5) Cd−i(i− d)(Z)
ν∗◦J(Z,Z′)

//

��

Cd−i(i− d)(N)

��

r(τ ′)
// Ce−i(i− e)(Z ′)

��
Ci(i)(X)

J(X,Y )
//

I(f)

44
Ci(i)(NY/X)

r(τ)
// Ci(i)(Y ),

the vertical maps are all induced by pushforward along the respective closed immer-
sion. It follows directly from the definition of the maps r(τ) and r(τ ′) in [Ros96,
(9.1)-(9.4)], that the right square of (5.3.5) commutes. For the left square note that
D(Z,Z ′) is an integral and closed subscheme of D(X, Y ), hence it is the closure of
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Z × (A1 \ {0}) in D(X, Y ); furthermore D(Z,Z ′) ∩NY/X = D(Z,Z ′) ∩N = CZ′/Z .
Thus by definition

J(X, Y )([Z]) = [CZ′/Z ] in Ci(i)(NY/X).

This yields the commutativity of the left square in (5.3.5). �

5.4. In [Ros96, 14.1] a cross product

Cp(i)(X)× Cq(j)(Y )→ Cp+q(i+ j)(X × Y ), (a, b) 7→ a× b

is defined by sending (ax, by), where ax ∈ KM
i−p(x), x ∈ X(p), and by ∈ KM

j−q(y),

y ∈ Y (q), to

(5.4.1) ⊕z∈(x×y)(0) lz ax|z · by|z,

where x×y denotes the fiber product of k-schemes, lz denotes the length of the local
ring of x × y at z and ax|z ∈ KM

i−p(z) denotes the pullback of ax to z and similar

with by|z. Note that z ∈ (x× y)(0) implies z ∈ (X × Y )(p+q). By [Ros96, (14.4)] we
have

(5.4.2) d(a× b) = (da)× b+ (−1)i−p(a× db),

where d denotes the differential of the Gersten complex. (There seems to be a
typo in the formula in loc. cit.: the (−1)n in that formula should be a (−1)n+p as
follows from what is said in the proof and [Ros96, R3f, R3d]; this formula is for
the homological notation, if one translates to the cohomological notation via (5.2.2)
one obtains (5.4.2).) We have to modify the cross product to obtain a morphism of
complexes (with the usual sign convention for a tensor product of complexes). For
a ∈ Cp(i)(X) and b ∈ Cq(j)(Y ) we set

(5.4.3) a� b := (−1)i(q+j)a× b.

Then we obtain

d(a� b) = (da) � b+ (−1)p a� db.

Thus � induces a morphism of complexes

(5.4.4) � : tot(C•(i)(X)⊗Z C
•(j)(Y ))→ C•(i+ j)(X × Y ),

which via the augmentation from Milnor K-theory is compatible with

(5.4.5) KM
i (X)⊗Z K

M
j (Y )→ KM

i+j(X × Y ), a⊗ b 7→ π∗Xa · π∗Y b,

with πX : X × Y → X the projection. In degree i+ j the map (5.4.4) is given by

(
⊕
x∈X(i)

Z · x)⊗Z (
⊕
y∈Y (j)

Z · y)→
⊕

z∈X×Y (i+j)

Z · z,

x⊗ y 7→
⊕

z∈(x×y)(0)

(−1)i(j+j)lz · z =
⊕

z∈(x×y)(0)

lz · z.

Hence for families of support Φ on X and Ψ on Y the following diagram commutes

(5.4.6) CHi
Φ(X)× CHj

Ψ(Y )
� //

'
��

CHi+j
Φ×Ψ(X × Y )

'
��

H i
Φ(X,KM

i )×Hj
Ψ(Y,KM

j )
� // H i+j

Φ×Ψ(X × Y,KM
i+j),
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where the upper horizontal map is the exterior product of cycles, see [Ful98, 1.10]
and Φ×Ψ denotes the smallest family of supports containing Z1×Z2, for all Z1 ∈ Φ
and Z2 ∈ Ψ. We note that if τ : X × Y → Y ×X is the switching morphism, then

(5.4.7) τ∗(a� b) = (−1)ij+pq(b� a), a ∈ Cp(i)(X), b ∈ Cq(j)(Y ),

as follows directly from (5.4.1) and (5.4.3). The above and Lemma 5.3 implies that
the intersection product with support

(5.4.8) ∆∗ ◦� : CHi
Φ(X)× CHj

Ψ(X)→ CHi+j
Φ∩Ψ(X),

from [Ful98, 8] corresponds via Bloch’s formula to

(5.4.9) ∆∗ ◦� : H i
Φ(X,KM

i )×Hj
Ψ(X,KM

j )→ H i+j
Φ∩Ψ(X,KM

i+j),

where Φ ∩Ψ = {Z1 ∩ Z2 | Z1 ∈ Φ, Z2 ∈ Ψ}.

5.2. Cupping.

5.5. Let F,G ∈ MNST and let X be a k-scheme and D and E effective Cartier
divisors on it, such that (X,D), (X,E) ∈MCor. We recall that there is a natural
morphism of Nisnevich sheaves on X

(5.5.1) F(X,D) ⊗Z G(X,E) → (F ⊗MNST G)(X,D+E)

which is defined as follows: For U → X we have a surjection (see the proof of Lemma
4.2)

π :
⊕

Y,Z∈MCor

F (Y)⊗Z G(Z)⊗Z MCor((U, (D + E)U),Y ⊗ Z)

→→ (F ⊗MPST G)(U, (D + E)U).

Composition with π gives then a morphism

(5.5.2) F (U,DU)⊗G(U,EU)→ (F ⊗MPST G)(U, (D + E)U),

a⊗ b 7→ π(a⊗ b⊗∆U),

where ∆U ∈MCor((U, (D + E)U), (U,DU)⊗ (U,EU)) is the diagonal (note that it
is indeed an admissible correspondence). If we now compose (5.5.2) with the value
on (U, (D + E)U) of the natural map (the sheafification)

(F ⊗MPST G)→ aNis(F ⊗MPST G) = F ⊗MNST G

we get the desired map (5.5.1).

Lemma 5.6. Let F ∈ CIτ,spNis and X,D,E as in 5.5. Assume X is connected.
Consider the map

(5.6.1) (γ1F (X,D))⊗Z Gm(X \ E)→ F (X,D + E)

defined as composition

(γ1F (X,D))⊗Z Gm(X \ E)
(5.5.1)−−−→ (γ1F ⊗MNST ω

∗Gm)(X,D + E)

adj.−−→ F (X,D + E),

where the morphism ’adj.’ is induced by the counit of the adjunction (−) ⊗MPST

ω∗Gm a HomMPST(ω∗Gm,−). Then the precomposition of (5.6.1) with the natural
map

F (�
(1) ⊗ (X,D))⊗Z Ztr(�

(1)
)(X,E)→ γ1F (X,D)⊗Z Gm(X \ E),
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stemming from (4.5.4) and Lemma 2.4, is given by

F (�
(1) ⊗ (X,D))⊗Z Ztr(�

(1)
)(X,E)→ F (X,D + E),

a⊗ f 7→ ∆∗X((f − deg(f) · s1)⊗ id(X,D))
∗a,

where s1 ∈ MCor((X,E),�
(1)

) is the graph of X → Spec k = {1} ↪→ P1 and
∆X ∈MCor((X,D + E), (X,E)⊗ (X,D)) is the graph of the diagonal.

Proof. Note that under the identification Ztr(�
(1)

) = �
(1)

red ⊕ Z, see (4.5.3), the
projection to the first factor is given by

Ztr(�
(1)

)(X,E) 3 f 7→ (f − deg(f) · s1) ∈ �
(1)

red(X,E).

Since by Lemma 2.4 we have h�0,Nis(�
(1)

red) = ω∗Gm, the statement of the lemma is
direct from the explicit description of (5.5.1) in 5.5. �

Lemma 5.7. Let X be a scheme and Z ⊂ X a closed subset X. Let A,B ∈ D(XNis)
and assume that the cohomology sheaves H i(B) have support in Z, for all i ∈ Z.
Then the natural map

RΓZ(A⊗LZ B)
'−→ A⊗LZ B

is an isomorphism. In particular, for any C ∈ D(XNis) we obtain the canonical
morphism

(5.7.1) A⊗LZ RΓZC
∼= RΓZ(A⊗LZ RΓZC)→ RΓZ(A⊗LZ C).

Proof. Denote by j : U = X \ Z ↪→ X the open immersion. By assumption
H i(B|U) = H i(B)|U = 0, i.e., B|U = 0 in D(XNis). Therefore the statement fol-
lows from the distinguished triangle (see [Sta19, Tag 09XP])

RΓZ(A⊗LZ B)→ A⊗LZ B → Rj∗(A⊗LZ B)|U
+1−→

and the isomorphism (A⊗LZ B)|U = A|U ⊗LZ B|U . �

5.8. Let F ∈ CIτ,spNis . Let X = (X,D) ∈MCor with X ∈ Sm, let Φ be a family of
supports on X, and α ∈ CHi

Φ(X), see 5.1. We define the morphism

(5.8.1) cα : (γiF )X [−i]→ RΓΦFX in D(XNis)

as follows: choose a representative α̃ ∈ CHi
Z(X), Z ∈ Φ, of α; by the identification

CHi
Z(X) = H i

Z(X,KM
i ) = ExtiXNis

(ZX , RΓZK
M
i,X)

the cycle α̃ induces a morphism in D(XNis) (again denoted by α̃)

α̃ : ZX [−i]→ RΓZK
M
i,X = RΓZ(ω∗KM

i )(X,∅).

We define cα as the composition in D(XNis)

(γiF )X [−i] id⊗α̃−−−→ (γiF )X ⊗LZ RΓZK
M
i,X

(5.7.1)−−−→ RΓZ((γiF )X ⊗LZ KM
i,X)

els−→ RΓΦ((γiF )X ⊗LZ KM
i,X)

→ RΓΦ((γiF )X ⊗Z (ω∗KM
i )(X,∅))

(5.5.1)−−−→ RΓΦ(γiF ⊗MNST ω
∗KM

i )X
adj−→ RΓΦFX ,

https://stacks.math.columbia.edu/tag/09XP
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where the map els is the enlarge-support-map, the fourth map is induced by the
quotient map A ⊗L B → H0(A ⊗L B) = A ⊗ B, and adj is induced by adjunction
via Corollary 4.5. It is direct to check that the definition of cα does not depend on
the choice of α̃.

The morphism cα satisfies the following functorial properties.

Lemma 5.9. Let F ∈ CIτ,spNis . Let X = (X,D) ∈ MCor with X ∈ Sm, let Φ be a
family of supports on X.

(1) We have cα+β = cα + cβ, for α, β ∈ CHi
Φ(X).

(2) Let Ψ be another family of supports containing Φ. Denote by the same letter
ı the natural maps CHΦ → CHΨ and RΓΦ → RΓΨ. Then ıcα = cıα, for any
α ∈ CHi

Φ(X).
(3) Let Y = (Y,E) ∈ MCor. Let f : Y → X be a morphism in Sm, such

that E ≥ f ∗D, and let α ∈ CHi
Φ(X). Consider the pullback cycle f ∗α ∈

CHi
f−1Φ(Y ) (see Lemma 5.3). The following diagram commutes

(γiF )X [−i] cα //

f∗

��

RΓΦFX

f∗

��
Rf∗(γ

iF )Y [−i]
cf∗α // Rf∗RΓf−1ΦFY = RΓΦRf∗FY .

(4) For α ∈ CHi
Φ(X), β ∈ CHj

Ψ(X) denote by α ·β ∈ CHi+j
Φ∩Ψ(X) the intersection

product of α and β, see (5.4.8). The following diagram commutes

γi(γjF )X [−i][−j]

Cor 4.5

cα[−j]
// RΓΦ(γjF )X [−j]

cβ

��
(γi+jF )X [−(i+ j)] cα·β

// RΓΦ∩ΨFX .

Proof. (1) and (2) are immediate to check. For (3) we may assume Φ = ΦZ , for some
closed subset Z ∈ X. It suffices to show the commutativity of the adjoint square,
which we can decompose into the following two diagrams (we write G := γiF )

f−1GX [−i] id⊗α //

��
1

f−1GX ⊗L f−1RΓZK
M
i,X

��

//

2

f−1RΓZ(GX ⊗KM
i,X)

��
GY [−i]

id⊗f∗α
// GY ⊗L RΓf−1ZK

M
i,Y

// RΓf−1Z(GY ⊗KM
i,Y ),

and

f−1RΓZ(GX ⊗KM
i,X)

(5.5.1)
//

��
3

f−1RΓZ(G⊗ ω∗KM
i )X

adj. //

��
4

f−1RΓZFX

��
RΓf−1Z(GY ⊗KM

i,Y )
(5.5.1)

// RΓf−1Z(G⊗ ω∗KM
i )Y

adj.
// RΓf−1ZGY ,

where the vertical maps are induced by pullback along f : Y → X and for the first
diagram we use the canonical identification f−1A ⊗LZ f−1B = f−1(A ⊗LZ B). The
identity Rf∗RΓf−1Z = RΓZRf∗ and the natural map id→ Rf∗f

−1 yield by adjunc-
tion a natural transformation f−1RΓZ → RΓf−1Zf

−1; using this the commutativity
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of the square 2 is direct to check; furthermore the proof of the commutativity of
the squares 3 and 4 reduces to the case without support (i.e., Z = X), which is
immediate to check. The commutativity of square 1 follows from Lemma 5.3. For
(4) we may assume Φ = ΦZ and Ψ = ΦZ′ . Consider the following diagram

(γiγjF ⊗L Ki,Z)[−j] //

id⊗β
��

(γiγjF ⊗Ki)[−j]Z
ϕi //

id⊗β
��

γjF [−j]Z
id⊗β
��

γiγjF ⊗L Ki,Z ⊗L Kj,Z′
//

��

((γiγjF ⊗Ki)⊗L Kj,Z′)Z
ϕi //

��

(γjF ⊗L Kj,Z′)Z

��
γiγjF ⊗L (Ki ⊗Kj)Z∩Z′

µ

��

// (γiγjF ⊗Ki ⊗Kj)Z∩Z′
ϕi //

µ

��

(γjF ⊗Kj)Z∩Z′

ϕj

��
γi+jF ⊗L Ki+j,Z∩Z′ // (γi+jF ⊗Ki+j)Z∩Z′

ϕi+j // FZ∩Z′ ,

in which we skip the indices X and X, we write K instead of KM , we write CZ :=
RΓZC, for C ∈ D(XNis), the tensor products are over Z, the map µ is induced by
multiplication KM

i ⊗ KM
j → KM

i+j and Corollary 4.5, the maps ϕi are induced by
the composition

(5.9.1) (γiG)X ⊗Z K
M
i,X

(5.5.1)−−−→ (γiG⊗MNST ω
∗KM

i )X
adj−→ G,

for G ∈ CIτ,spNis , and the unlabeled arrows are induced maps of the form

G⊗L RΓZH
(5.7.1)−−−→ RΓZ(G⊗L H)→ RΓZ(G⊗H),

for sheaves G,H. It is direct to check that this diagram commutes. Thus it remains
to show that the composition in D(XNis)

(5.9.2) ZX [−j − i] α[−j]−−−→ RΓZK
M
i,X [−j] id⊗β−−−→ RΓZK

M
i,X ⊗L RΓZ′K

M
i,X

→ RΓZ∩Z′(K
M
i,X ⊗KM

i,X)→ RΓZ∩Z′K
M
i+j,X

is equal to the morphism induced by the intersection product α · β ∈ CHi+j
Z∩Z′(X),

see (5.4.8). Denote by pi : X × X → X the projection to the ith factor and by
∆ : X ↪→ X × X the diagonal. Since ∆−1p−1

i = idX we obtain that the above
composition is adjoint to

p−1
1 ZX [−i]⊗L p−1

2 ZX [−j] α⊗β−−→ p−1
1 RΓZK

M
i,X ⊗L p−1

2 RΓZ′K
M
j,X

p∗1⊗p∗2−−−→ RΓZ×XK
M
i,X×X ⊗L RΓX×Z′K

M
j,X×X

mult−−→ RΓZ×Z′Ki+j,X×X

∆∗−→ ∆∗RΓZ∩Z′K
M
i+j,X .

By the compatibility of (5.4.4) and (5.4.5) this composition maps in D(XNis) to the
composition of complexes

p−1
1 ZX [−i]⊗ p−1

2 ZX [−j] α⊗β−−→ p−1
1 ΓZC

•
X(i)⊗ p−1

2 ΓZ′C
•
Y (j)

�−→ ΓZ×Z′C
•
X×X(i+ j)

I(∆)−−→ ∆∗ΓZ∩Z′C
•
X(i+ j),
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where I(∆) is a morphism as in (5.3.3) (and it is compatible with ∆∗ : KM
X×X,i+j →

∆∗K
M
X,i+j, see after (5.3.3)). Thus it follows from the compatibility of (5.4.8) and

(5.4.9) that (5.9.2) is induced by the intersection product α · β. �

Lemma 5.10. Let F ∈ CIτ,spNis and X = (X,D) ∈ MCor with X ∈ Sm. Let E be
an effective Cartier divisor on X which we view as an element in CH1

|E|(X). Denote
by j : U = X \ |E| ↪→ X the open immersion and set U = (U,D|U). Then the
composition

H1(cE) : (γ1F )X → R1Γ|E|FX
∼= j∗FU/FX ,

factors via the natural map (which is injective by the semipurity of F )

(5.10.1) F(X,D+E)/FX ↪→ j∗FU/FX .

If ν : V ↪→ X is an open neighborhood of |E|, such that E|V = Div(e) is principal
with e ∈ Γ(V,OV ), then the induced map

(5.10.2) (γ1F )X → F(X,D+E)/FX ∼= F(V,(D+E)|V )/F(V,D|V )

sends an element a ∈ (γ1F )(X ), represented by an element in F (�
(1) ⊗ X ) which

restricts to ã ∈ F ((A1, 0)⊗X ) to the class modulo F (V,D|V ) of

(5.10.3) ∆∗V (Γe × ν)∗ã ∈ F (V, (D + E)|V ),

where Γe ∈ MCor((V,E|V ), (A1, 0)) is the graph of the morphism e ∈ A1(V ) and
∆V ∈MCor((V, (D + E)|V ), (V,E|V )⊗ (V,D|V )) is induced by the diagonal.

Proof. Set G1 =
⊕

x∈|E|(0) ix∗Z, where ix : x ↪→ X is the closed immersion. The

complex G := [j∗Gm,U
Div−−→ G1] is a Γ|E|-acyclic resolution of Gm,X on XNis and

hence

RΓ|E|Gm,X = G1[−1].

The map ZX [−1] → RΓ|E|Gm,X corresponding to E ∈ CH1
|E|(X) (see 5.8) is thus

induced by the map of complexes ϕE : ZX [−1] → G1[−1] which sends 1 ∈ ZX to
the Weil divisor [E]. Set X ′ := (X,D + E). We obtain a commutative diagram

(γ1F )X ⊗Z Gm,X

(5.6.1)
//

��

FX

��
(γ1F )X ⊗Z j∗Gm,U

(5.6.1)
// FX ′

� � // j∗FU .

where the last horizontal arrow is injective by semipurity. This yields a map on the
cokernels (taken vertically)

(γ1F )X ⊗Z G
1 θ1

−→ FX ′/FX ↪→ j∗FU/FX .

where the last morphism is injective again by semipurity. Set C := [FX ′ → FX ′/FX ],
then we obtain a morphism of complexes θ which fits in the commutative diagram
of complexes

(5.10.4) ((γ1F )X ⊗Z Gm,X)[0]
(5.6.1)

//

��

FX [0]

qis

��
(γ1F )X ⊗Z G

θ // C.
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Consider the following diagram in D(XNis)

(γ1F )X [−1] //

cE

**

))

(γ1F )X ⊗LZ RΓ|E|Gm,X

(∗)
��

// RΓ|E|FX

'
��

RΓ|E|((γ
1F )X ⊗Z G)

θ // RΓ|E|C

(γ1F )X [−1]
id⊗ϕE // (γ1F )X ⊗Z G

1[−1]
θ1

//

OO

FX ′/FX [−1],

OO

where the map (∗) is the composition

(γ1F )X ⊗LZ RΓ|E|Gm,X
(5.7.1)−−−→ RΓ|E|((γ

1F )X ⊗LZ Gm,X)

'−→ RΓ|E|((γ
1F )X ⊗LZ G)

nat.−−→ RΓ|E|((γ
1F )X ⊗Z G)

and, using that G1 and FX ′/FX have support in |E|, the lower vertical maps are
induced by the natural map Γ|E| → RΓ|E|. The upper half of the diagram commutes
by the definition of cE (see 5.8) and the commutativity of (5.10.4); the lower half of
the diagram commutes by the definition of the involved maps. Thus H1(cE) factors
via (5.10.1). If V is as in (5.10.2), then we can lift [E] ∈ G1(V ) to e ∈ Γ(V, j∗Gm).
Therefore, formula (5.10.3) follows directly from the definition of θ1 and Lemma 5.6,
where we have to use the fact that the graph of the composition s1 : V → Spec k =
{1} ↪→ A1 defines an element in MCor((V, ∅), (A1, 0)) and hence ∆∗V (Γs1 × ν)∗ã
vanishes modulo F (V,D|V ). �

Remark 5.11. Let C∗(−) : Comp+(NST) → Comp+(NST) be the classical A1-
fibrant replacement functor given by the Suslin complex [MVW06, 2.14]. When
applied to Ztr(G

∧i
m ), it gives an explicit model for the weight i motivic complex

Z(i)[i] = C∗Ztr(G
∧i
m ) [MVW06, 3.1]. Let F ∈ MNST. By adjunction, we get an

evaluation pairing

ω∗(Z(i)[i])⊗L HomD(MNST)(ω
∗(Z(i)[i]), F [0])→ F [0]

where we note that ω∗(Z(i)[i]) is still a bounded below complex of MNST, since
the functor ω∗ is exact. By taking H0 in the above pairing, we get an induced map

ω∗H0((Z(i)[i]))⊗ HomMNST(ω∗H0(Z(i)[i]), F )→ F

noting that ω∗(Z(i)[i]) is concentrated in non negative degrees, and since there is an
isomorphism ω∗H0(Z(i)[i]) ∼= ω∗KM

i , this reads, for every X = (X,D) ∈MCor, as

KM
i,X ⊗ (γiF )X → F.

By construction, it agrees with the cup product pairing (5.9.1). We will not use this
extended version of the pairing in the rest of the paper.

6. Projective bundle formula

6.1. Let F ∈ CIτ,spNis and X = (X,D) ∈MCorls. Let V be a locally free OX-module
of rank n+ 1. Denote by

π : P = P(V ) = Proj(Sym•OXV )→ X
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the projection of the corresponding projective bundle and set P := (P, π∗D). Let
ξ := c1(OP (1)) ∈ CH1(P ) be the first Chern class of the hyperplane line bundle
OP (1) and denote by ξi ∈ CHi(P ) its i-fold self-intersection. We denote by λiV the
composition in D(XNis)

λiV : (γiF )X [−i] π∗−→ Rπ∗(γ
iF )P [−i]

cξi−−−→
(5.8.1)

Rπ∗FP , 0 ≤ i ≤ n.

We thus get a map

(6.1.1) λV =
n∑
i=0

λiV :
n⊕
i=0

(γiF )X [−i]→ Rπ∗FP .

Lemma 6.2. Let F and (X,D) be as in 6.1. Consider the projection π : P1×X →
X. Then

H1(λ1
V ) : (γ1F )X

'−→ R1π∗FP1⊗X

is an isomorphism and Riπ∗FP1⊗X = 0, for all i ≥ 2.

Proof. Set P := P1 ⊗X and define C1 by the exact sequence

(6.2.1) 0→ FP → F(P1,0)⊗X → C1︸ ︷︷ ︸
=:C

→ 0,

where the first map is injective by the semipurity of F . Since C1 has support in
0×X and Riπ∗F(P1,0)⊗X = 0, for all i ≥ 1, by the cube invariance of the cohomology,
[Sai20a, Thm 9.3], it follows that C is a π∗-acylic resolution of FP sitting in degree
[0, 1]. This proves the vanishing statement. Furthermore, we claim that

π∗C
1 = (γ1F )X .

Indeed, for U → X étale and U = (U,DU) we have

(6.2.2) (γ1F )X (U) =
F ((A1, 0)⊗ U)

F (A1 ⊗ U)
= π∗C

1(U),

where the first equality holds by Remark 4.7; the second equality holds by the
following two observations: since C1 is supported on 0 × X, we have an exact
sequence on P1 ×X

0→ j∗FA1⊗X → j∗F(A1,0)⊗X → C1 → 0,

where j : A1 × X ↪→ P1 × X is the open immersion, and by the Lemmas 2.9 and
2.10 we have

R1π∗(j∗FA1⊗X ) = R1(πj)∗FA1⊗X = 0.

Furthermore, the map π∗FP → π∗F(P1,0)⊗X is an equality by Corollary 2.19 and
hence (6.2.1), (6.2.2) and R1π∗F(P1,0)⊗X = 0 imply R1π∗FP = π∗C

1 = (γ1F )X . It
remains to show that H1(λ1

V ) : (γ1F )X → R1π∗FP = (γ1F )X realises such isomor-
phism. To this end, note that on U → X we can identify H1(λV ) by Lemma 5.10
with the composition

γ1F (U)
π∗−→ γ1F (P1 ⊗ U) =

F ((A1, 0)⊗P1 ⊗ U)

F (A1 ⊗P1 ⊗ U)
∆∗

A1
U

(Γ×ν)∗

−−−−−−−→ F ((A1, 0)⊗ U)

F (A1 ⊗ U)
= γ1F (U),
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where ν : A1
U ↪→ P1

U is the open immersion and we identify ξ on P1
U with the class

of the divisor 0×U and where Γ is the graph of the projection A1×U → A1. Thus
the equality

(idA1 × π) ◦ (Γ× ν) ◦∆A1
U

= idA1
U

implies the statement. �

We are now ready to prove the projective bundle theorem in our setting.

Theorem 6.3. The map (6.1.1) is an isomorphism in D(XNis).

Proof. The question is local on X. Hence the statement follows for n = 1 from
Lemma 6.2. We now assume n ≥ 2 and P = Pn

X . Consider the diagram

E
iE //

ρE
��

Y
q //

ρ

��

E

ρE
��

X
i // P

π // X,

where π is the projection, i a section of π, ρ the blow-up of P in i(X), iE is the closed
immersion of the exceptional divisor, and q is the standard map, which identifies
Y with P(W ), where W := OE ⊕ OE(1). Denote by V (resp. VE) the trivial OX-
module of rank n + 1 (resp. n) defining the projective bundle P (resp. E) over
X (recall we work locally on X). We set E := (E,D|E) and Y := (Y,D|Y ). By
Corollary 2.19 we have

(6.3.1) Rπ∗FP ∼= FX ⊕ τ≥1Rπ∗FP ,

where the map FX = π∗FP → Rπ∗FP is split by the section i. Thus applying Rπ∗ to
the exact triangle from Theorem 3.1 induced by the blow-up Y → P , we can split
off FX to obtain the triangle on the bottom of the following diagram:

⊕ni=1(γiF )X [−i]

⊕iλiV
��

(0,λVE [−1])
// RρE∗FE ⊕RρE∗γ1FE [−1]

id+0 //

λW
��

RρE∗FE

τ≥1Rπ∗FP
ρ∗1 // Rπ∗Rρ∗FY

i∗E // RρE∗FE ,

where the map labeled by ρ∗1 is induced by (6.3.1) and ρ∗. Note that the bottom
triangle is actually split since i∗Eq

∗ = id. In the top left λVE is applied to E/X and
(γ1F )X and it is an isomorphism by induction. Hence the top sequence is a split
triangle as well. Since λW is also an isomorphism by the n = 1 case, it remains to
show that the diagram is commutative. Let ξ = c1(OP (1)), ξE = c1(OE(1)) and
η = c1(OP(W )(1)) be the first Chern classes of the corresponding fundamental line
bundles. The commutativity of the right square follows from i∗E ◦ cη = ci∗Eη ◦ i

∗
E = 0,

where we use Lemma 5.9(3) for the first equality and i∗EOP(W )(1) = OE for the
second. The commutativity of the left square reduces by Lemma 5.9(3) to the
equality

ρ∗(ξi) = q∗(ξi−1
E ) · η ∈ CHi(Y ),

which is well-knwon and straightforward to check. �
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7. The Gysin triangle

We begin with an elementary lemma on split exact triangles in an arbitrary tri-
angulated category.

Lemma 7.1. Let A
a−→ B

b−→ C
∂−→ A[1] be an exact triangle in a triangulated category

T .

(1) If τ : C → B is a section of b, then there is a unique map σ : B → A, such
that a ◦ σ = idB − e, where e := τ ◦ b ∈ HomT (B,B). Moreover σ is a
retraction of a.

(2) If σ : B → A is a retraction of a, then there is a unique map τ : C → B,
such that τ ◦ b = idB − ε, where ε := a ◦ σ ∈ HomT (B,B). Moreover τ is a
section of b

In (1) (resp. (2)) we call σ (resp. τ) the canonical retraction defined by τ (resp.
the canonical section defined by σ). Moreover, the canonical section defined by the
canonical retraction of τ is equal to τ , and similarly with σ.

Proof. (1). By the existence of the section τ the long exact sequence stemming
from applying HomT (B,−) to the exact triangle (a, b, ∂) breaks up into short exact
sequences; in particular we obtain the short exact sequence

0→ HomT (B,A)
a◦−→ HomT (B,B)

b◦−→ HomT (B,C)→ 0.

This gives a unique σ with a ◦σ = idB − e. It follows that a ◦ (σ ◦ a) = a. Since also
a◦ : HomT (A,A) → HomT (A,B) is injective (by the existence of τ), we see that σ
is a retraction. Similar for (2); the other statements are clear. �

7.2. Having the projective bundle formula and the blow-up formula at disposal, we
can construct the Gysin triangle by formally following the procedure indicated by
Voevodsky in [Voe00b, 3.5]. Note that our statement is sheaf-theoretic, and therefore
the arrows are reversed compared to loc.cit. We begin by setting the notation.

Let F ∈ CIτ,spNis and X = (X,D) ∈ MCorls (see Notation 2.8). Let i : Z ↪→ X
be a smooth closed subscheme intersecting D transversally (see Definition 2.11).
Denote by ρ : X̃ → X the blow-up of X along Z, and let ρE : E = ρ−1(Z) → Z be
the exceptional divisor. We define the modulus pairs X̃ = (X̃,D|X̃), Z = (Z,D|Z)

and E = (E,D|E) with the obvious convention on the divisor.
Let ρ1 : Y → X×P1 be the blow-up of X×P1 along Z×0 and let E1 = ρ−1

1 (Z×0)
be the exceptional divisor. We obtain the following modulus pairs in MCorls

Y = (Y, (D ×P1 +X ×∞)|Y ), E1 = (E1, (D × 0)|E1)

and the following obvious morphisms in MCor

i : Z → X , iZ0 : Z = Z ⊗ 0→ X ⊗�,

ρ : X̃ → X , ρ1 : Y → X ⊗�, iX̃ : X̃ → Y ,

iE : E → X̃ , iE1 : E1 → Y , iEE1 : E → E1,

ρE : E → Z, ρE1 : E1 → Z ⊗ 0 = Z,

iε : X = X ⊗ ε→ X ⊗�, ε ∈ {0, 1}, π : X ⊗�→ X ,
where all the i’s are induced by closed immersions of the underlying schemes, in
particular iX̃ is induced by identifying X̃ with the strict transform of X × 0 in
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Y and iEE1 is the pullback of iX̃ along iE1 . This gives the following commutative
diagram in MCor:

E X̃

E1 Y

Z X

Z ⊗ 0 X ⊗�

iE

ρE

iEE1

ρ

iX̃

ρE1

iE1

i

i0
iZ0 π

ρ1

We will denote the underlying morphisms of schemes by the same letter. Note that
i1 : X = X ⊗ 1→ X ⊗� extends canonically to a morphism

i1,Y : X → Y .

Finally the morphism underlying iEE1 is equal to the natural inclusion

iEE1 : P(N ∨Z/X) ↪→ P(OZ ⊕N ∨Z/X),

where N ∨Z/X = I/I2 is the conormal sheaf, I being the ideal sheaf of Z ↪→ X. We
obtain the following diagram,

(7.2.1)
⊕j

i=0(γiF )Z [−i]

��

'

λOZ⊕N
∨
Z/X // RρE1∗FE1

i∗EE1

��⊕j−1
i=0 (γiF )Z [−i]

λN∨
Z/X

'
// RρE∗FE ,

where j = codim(Z,X), the horizontal maps are the isomorphisms from Theorem
6.3, and the vertical map on the left is the projection. Using Lemma 5.9 it is direct
to check that (7.2.1) commutes. Thus i∗EE1

in (7.2.1) has a canonical section

s : RρE∗FE → RρE1∗FE1 ,

splitting off the summand (γjF )Z [−j]. Let b1 be the morphism in D(XNis) defined
as the composition

Rπ∗Rρ1∗FY i∗RρE1∗FE1
⊕j

i=0 i∗(γ
iF )Z [−i]

⊕j
i=1 i∗(γ

iF )Z [−i]
i∗E1 '

where the second isomorphism is the inverse of λOZ⊕N∨Z/X , and the rightmost arrow

is the canonical projection. Similarly, we define b as the composition

Rρ∗FX̃ i∗RρE∗FE
⊕j−1

i=0 i∗(γ
iF )Z [−i]

⊕j−1
i=1 i∗(γ

iF )Z [−i]
i∗E '

where the second isomorphism is the inverse of λN∨
Z/X

and the last map is the canon-

ical projection. This gives the following commutative diagram of solid arrows in
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D(XNis):

(7.2.2)

Rπ∗FX⊗� Rπ∗Rρ1∗FY
⊕j

i=1 i∗(γ
iF )Z [−i]

FX Rρ∗FX̃
⊕j−1

i=1 i∗(γ
iF )Z [−i],

ρ∗1

i∗0=i∗1 '

σ1

i∗1,Y i∗
X̃

b1

h

τ1

π∗ ρ∗ b
6�

σ

s

τ

where the dashed arrows are defined as follows. First, note that the bottom hori-
zontal sequence is a distinguished triangle obtained from the distinguished blow-up
triangle from Theorem 3.1 for (X ,Z). Indeed, we have the following diagram in
D(XNis):

FX Rρ∗FX̃ ⊕ i∗FZ i∗RρE∗FE
⊕j−1

i=0 (γiF )Z [−i]

FX Rρ∗FX̃ i∗τ≥1RρE∗FE
⊕j−1

i=1 (γiF )Z [−i]

ρ∗⊕(−i∗) i∗E+ρ∗E

can.

λN∨
Z/X

'

ρ∗ can.◦(i∗E)
∑j−1
i=1 λ

i
V

'

where V = N ∨Z/X , the unlabeled maps are the natural projections, can. is the canon-

ical map to the truncation τ≥1, and the composition of the second and the (inverse
of the) third arrow in the bottom line is b. Every square is commutative, and the
middle one is clearly homotopy cartesian, so that the bottom line is part of a dis-
tinguished triangle as required. In a similar fashion, the top line of (7.2.2) is part of
a distinguished triangle obtained from the blow-up triangle for (X ⊗�, Z × 0) after
applying Rπ∗.

Going back to (7.2.2), note that the right square is commutative thanks to the
definitions of b and b1, and the commutativity of (7.2.1). The square on the left
commutes if the left vertical arrow is i∗0. By cube-invariance it is an isomorphism,
with inverse π∗ and thus it is equal to i∗1. Replacing i∗0 with i∗1 we see then that the
upper triangle in the left square is commutative. The lower triangle on the other
hand does not commute. Set

σ1 := π∗ ◦ i∗1,Y ;

it is a retraction of ρ∗1. We define the (dotted) map τ1 as the canonical section
defined by σ1, see Lemma 7.1. Set

(7.2.3) τ := i∗
X̃
◦ τ1 ◦ s;

it is a section of b (that we can identify with (can. ◦ i∗E) up to the isomorphism

τ≥1RρE∗FE '
⊕j−1

i=1 (γiF )Z [−i]). We define σ as the canonical section defined by τ
(again see Lemma 7.1). The proof of the following corollary is immediate from the
previous constructions.

Corollary 7.3. Let F and ρ : X̃ → X and Z be as in 7.2 and j = codim(Z,X).
We have isomorphisms in D(XNis)

(7.3.1) FX ⊕
j−1⊕
r=1

i∗γ
rFZ [−r] ρ∗+τ−−−→

'
Rρ∗FX̃ .



50 FEDERICO BINDA, KAY RÜLLING, AND SHUJI SAITO

7.4. Let F ∈ CIτ,spNis , X = (X,D) ∈MCorls and let i : Z ↪→ X be a smooth closed
subscheme of codimension j ≥ 1 intersecting D transversally. Set Z = (Z,D|Z).
Following [Voe00b, p. 220/21] we define the Gysin map

(7.4.1) gZ/X : i∗(γ
jFZ)[−j]→ FX

as follows: let the notation be as in (7.2.2). We set

v : i∗(γ
jF )Z [−j] −→ Rπ∗Rρ1∗FY

as the composition τ1 ◦ νj, where νj is the canonical inclusion i∗(γ
jF )Z [−j] →⊕j

i=1 i∗(γ
iF )Z [−i]. Then the Gysin map is

gZ/X := −σ ◦ i∗
X̃
◦ v.

Remark 7.5. We can replace the top row in (7.2.2) with the equivalent one

(7.5.1) Rπ∗FX⊗� Rπ∗Rρ1∗FY i∗τ≥1RρE1∗FE1 .
ρ∗1

σ1

can.◦i∗E1

τ ′1

where τ ′1 is the canonical section induced by σ1. Note that τ1 = τ ′1 ◦
∑j

i=1 λ
i
V1

where
V1 = OZ ⊕ N ∨Z/X , and can. is the canonical map i∗RρE1∗FE1 → i∗τ≥1RρE1∗FE1 . In
particular the Gysin map satisfies

(7.5.2) gZ/X = −σ ◦ i∗
X̃
◦ τ ′1 ◦ λ

j
V1
.

Remark 7.6. The Gysin map can be described alternatively as follows. Set

β := i∗1,Y − σ ◦ i∗X̃ : Rπ∗Rρ1∗FY → FX .

We have β ◦ (ρ∗1) = 0 : Rπ∗FX⊗� → FX , and since the top row in (7.2.2) is split
exact, there exists a unique map

β1 :

j⊕
i=1

i∗(γ
iF )Z [−i]→ FX

such that β = β1 ◦ b1. Then a diagram chase shows that

(7.6.1) gZ/X = β1 ◦ νj.

Remark 7.7. Let i : Z ↪→ X be as above. One can consider the class [Z] of Z in the
Chow group with support CHj

Z(X), and the cup product construction (5.8.1) gives
a morphism

(7.7.1) c[Z] : (γjF )X [−j]→ RΓZFX → FX

in D(XNis), where the last morphism is the forget support map. It is a natural
question to compare (7.7.1) and (7.4.1): this is done in Theorem 7.12 below.

Proposition 7.8. Let F ∈ CIτ,spNis , X = (X,D), Z = (Z,D|Z) be as in 7.4 above.
Assume X is equidimensional and let Φ be a family of supports on X and α ∈
CHr

Φ(X). Then the following diagram

i∗(γ
j+rF )Z [−j − r]

gZ/X //

ci∗α
��

γrFX [−r]
cα

��
i∗RΓZ∩Φγ

jFZ [−j] = RΓΦi∗γ
jFZ [−j]

gZ/X // RΓΦFX

commutes, where i∗α ∈ CHr
Φ∩Z(Z) is the refined pullback of α (see Lemma 5.3).
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Proof. We use the notation from 7.2 and in particular (7.2.2) above. We compute:

gZ/X ◦ ci∗α
(∗)
= −σ ◦ i∗

X̃
◦ τ ′1 ◦ λ

j
V1
◦ ci∗α

(2∗)
= −σ ◦ i∗

X̃
◦ τ ′1 ◦ cξj ◦ ρ∗E1

◦ ci∗α
(3∗)
= −σ ◦ i∗

X̃
◦ τ ′1 ◦ c(iρE1

)∗α ◦ λjV1

(4∗)
= −σ ◦ i∗

X̃
◦ τ ′1 ◦ c(iρE1

)∗α ◦ ((can. ◦ i∗E1
) ◦ τ ′1) ◦ λjV1

(5∗)
= −σ ◦ i∗

X̃
◦ τ ′1 ◦ (can. ◦ i∗E1

) ◦ cρ∗1π∗α ◦ τ
′
1 ◦ λ

j
V1

(6∗)
= −σ ◦ i∗

X̃
◦ (id− ρ∗1 ◦ σ1) ◦ (cρ∗1π∗α) ◦ τ ′1 ◦ λ

j
V1

(7∗)
= −σ ◦ i∗

X̃
◦ cρ∗1π∗α ◦ (id− ρ∗1 ◦ σ1) ◦ τ ′1 ◦ λ

j
V1

(8∗)
= −σ ◦ i∗

X̃
◦ cρ∗1π∗α ◦ τ

′
1 ◦ λ

j
V1

(9∗)
= −σ ◦ cρ∗α ◦ i∗X̃ ◦ τ

′
1 ◦ λ

j
V1

(10∗)
= −σ ◦ cρ∗α ◦ (ρ∗ ◦ σ + τ ◦ b) ◦ i∗

X̃
◦ τ ′1 ◦ λ

j
V1

(11∗)
= −σ ◦ ρ∗ ◦ cα ◦ σ ◦ i∗X̃ ◦ τ1 ◦ νj

(12∗)
= −cα ◦ σ ◦ i∗X̃ ◦ τ1 ◦ νj

(13∗)
= cα ◦ gZ/X ,

where

(∗) holds by (7.5.2),
(2∗) holds by the definition of λjV1

in 6.1,

(3∗) holds by Lemma 5.9(3), (4) and the definition of λjV ,
(4∗) holds by ((can. ◦ i∗E1

) ◦ τ ′1) = id on i∗τ≥1RρE1∗FE1 ,
(5∗) holds by iρE1 = πρ1iE1 , and Lemma 5.9(3),
(6∗) holds since τ ′1 is the section defined by the section σ1 (see 7.1),
(7∗) follows again from Lemma 5.9(3) and the fact that σ1 = π∗ ◦ i∗1,Y and

πρ1i1,Y = id.
(8∗) holds by (id− ρ∗1 ◦ σ1) ◦ τ ′1 = τ ′1,
(9∗) holds by πρ1iX̃ = ρ, and Lemma 5.9(3),

(10∗) holds by id = ρ∗ ◦ σ + τ ◦ b,
(11∗) holds by Lemma 5.9(3), τ ′1 ◦ λ

j
V = τ1 ◦ νj, see Remark 7.5, and

b ◦ i∗
X̃
◦ τ ′1 ◦ λ

j
V = h ◦ b1 ◦ τ1 ◦ νj = h ◦ νj = 0,

(12∗) holds by σ ◦ ρ∗ = id,
(13∗) holds by definition of the Gysin map in 7.4;

whence the statement. �

Proposition 7.9. Let X = (X,D) ∈ MCorls and F ∈ CIτ,spNis . Let i : Z ↪→ X
be a smooth closed subscheme of codimension j, intersecting D transversally (see
Definition 2.11) and set Z = (Z,D|Z). Let X ′ ∈ Sm and let f : X ′ → X be a
morphism, such that i′ : Z ′ := X ′×X Z ↪→ X ′ is a smooth closed subscheme of pure
codimension m ≤ j and |f ∗D| is a simple normal crossing divisor intersecting Z ′
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transversally. Set X ′ := (X ′, f ∗D) and Z ′ := (Z ′, (f ∗D)|Z′). Let fZ : Z ′ → Z be the
base change of f and consider the excess normal bundle

Exc = f ∗Z(NZ/X)/NZ′/X′ .

Then the following diagram commutes

(7.9.1) i∗γ
jFZ [−j]
f∗Z
��

gZ/X // FX

f∗

��
Rf∗(i

′
∗γ

jFZ′ [−j])
cβ // Rf∗(i

′
∗γ

mFZ′ [−m])
gZ′/X′ // Rf∗FX ′ ,

where β := cj−m(Exc)∩Z ′ ∈ CHj−m(Z ′) and cj−m(Exc) is the (j−m)th Chern class
of Exc. In particular, the Gysin map is compatible with smooth base change.

Proof. First observe that given two distinguished triangles ∆ and ∆′ with sections σ
and σ′ (resp. τ and τ ′) as in Lemma 7.1, and ϕ : ∆→ ∆′ is a morphism of triangles
which commutes with σ and σ′ (resp. τ and τ ′), then ϕ also commutes with the
canonical sections defined by these sections. From this and the commutative diagram

(7.9.2) BlZ′(X
′) �
� //

� _

��

BlZ(X)×X X ′ //
� _

��

BlZ(X)
� _

��
BlZ′×0(X ′ ×P1) �

� //

**

BlZ×0(X ×P1)×X X ′ //

��

BlZ×0(X ×P1)

��
X ′ ×P1 // X ×P1

(and all the diagrams which this diagram induces) we see that the various pullbacks
induced by f : X ′ → X commute with the section σ1, thus with τ ′1 from (7.5.1). It
is direct to check that by (7.5.2) we are reduced to show the commutativity of the
following diagram

(7.9.3) i∗γ
jFZ [−j]

λjV //

f∗Z
��

RρE1∗FE1
f̃∗E1 // RfZ∗RρE′1∗FE ′1

Rf∗(i
′
∗γ

jFZ′ [−j])
cβ // Rf∗(i

′
∗γ

mFZ′ [−m])

λm
V ′

55

where V = N ∨Z/X ⊕OZ , V ′ = N ∨Z′/X′ ⊕OZ′ , E1 (resp. E ′1) is the exceptional divisor

in BlZ×0(X × P1) (resp. in BlZ′×0(X ′ × P1)), the maps are as in the following
commutative diagram (which is induced by (7.9.2) and is in general not cartesian)

E ′1
f̃E1 //

ρE′1
��

E1

ρE1

��
Z ′

fZ // Z,

and E1 = (E1, D|E1) (resp. E ′1 = (E ′1, D|E′1)). In view of the definition of λV (see 6.1)
and Lemma 5.9(3),(4) we are reduced to show

(7.9.4) f̃ ∗E1
(ξj) = ζm · ρ∗E′1(β) in CHj(E ′1),
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where ξ = c1(OE1(1)) ∈ CH1(E1) and ζ = c1(OE′1(1)) ∈ CH1(E ′1). This follows
from the excess intersection formula: Indeed, consider the cartesian diagram

Z ′� _

s′

��

Z ×X X ′
fZ //

� _

��

Z� _

s

��
E ′1
� � // E1 ×X X ′ // E1,

where the lower horizontal map is a factorization of f̃E1 and s is the closed immersion
induced by the zero section Z ↪→ NZ/X followed by the open immersion NZ/X ↪→ E1

and similar with s′. We obeserve

s′
∗NE′1/E1×XX′ = NZ′/E1×XX′/NZ′/E′1 = f ∗ZNZ/NZ/X/NZ′/NZ′/X′ = Exc,

see, e.g., [Ful98, Exa 6.3.2] for the first equality. Furthermore, we have ξj = s∗Z and
ζm = s′∗(Z

′). Thus the projection formula [Ful98, Exa 8.1.7] and the above yield

ζm · ρ∗E′1(β) = s′∗(cj−m(Exc) ∩ Z ′) = s′∗(cj−m(s′
∗NE′1/E1×XX′) ∩ Z

′),

which is equal to f̃ ∗E1
(s∗Z) by excess intersection [Ful98, Prop 6.6(c)]. �

Lemma 7.10. Let the notations be as in 7.2 and 7.4 and assume j = codimX(Z) ≥
1. Then the pullback maps i∗E1

and ρ∗ induce the following isomorphism on coho-
mology with supports

(7.10.1) i∗E1
: Rjπ∗Rρ1∗RΓE1

FY
'−→ i∗R

jρE1∗FE1

and

(7.10.2) ρ∗ : RjΓZFX
'−→ Rjρ∗RΓEFX̃ .

Furthermore, if we define the local Gysin map gjZ/X ,Z by the composition

gjZ/X ,Z : i∗γ
jFZ

λjV−→ i∗R
jρE1∗FE1

−(i∗E1
)−1

−−−−−→ Rjπ∗Rρ1∗RΓE1
FY

i∗
X̃−→ Rjρ∗RΓEFX̃

(ρ∗)−1

−−−→ RjΓZFX ,

where V = N ∨Z/X ⊕OZ, then the Gysin map gZ/X is equal to the composition

i∗γ
jFZ [−j]

gjZ/X ,Z [−j]
−−−−−−→ RjΓZFX [−j] ∼= RΓZFX → FX ,

where the isomorphism RjΓZFX [−j] ∼= RΓZFX is [Sai20a, Cor 8.6(3)] and the last
arrow is the forget-supports-map. Moreover, the Gysin map determines the local
Gysin map via

gjZ/X ,Z = RjΓZ(gZ/X )[−j].

Proof. We will use without further notice the isomorphism RΓARf∗ = Rf∗RΓf−1(A),
for a morphism f : V → W and a closed subset A ⊂ W . For (7.10.1) apply
Rπ∗RΓZ×0 to the blow-up sequence of (X ⊗�, Z × 0) (see Theorem 3.1) to obtain
the following long exact sequence

. . .→ Rjπ∗RΓZ×0FX⊗� → Rjπ∗Rρ1∗RΓE1
FY

i∗E1−−→ i∗R
jρE1∗FE1 → . . .

Since Z×0 has codimension j+1 in X×P1 the term on the left vanishes by [Sai20a,
Cor 8.6(3)]; by existence of the canonical section as in (7.2) (for (X×�, Z×0) instead
of (X , Z)) we see that i∗E1

is split surjective. This yields the isomorphism (7.10.1).
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For (7.10.2) apply RΓZ to the blow-up sequence of (X , Z) to obtain the long exact
sequence

. . .→ RjΓZFX
ρ∗−→ Rjρ∗RΓEFX̃ → i∗R

jρE∗FE → . . .

By the existence of the canonical section σ as in (7.2) the map ρ∗ is injective and by
the projective bundle formula, see Theorem 6.3, the right hand side vanishes. This
yields the isomorphism (7.10.2).

Since RΓZ = i∗Ri
! and Ri! is right adjoint to i∗, the Gysin morphism factors via

the counit RΓZFX → FX and by the isomorphism RjΓZFX [−j] ∼= RΓZFX also via

gZ/X : i∗γ
jFZ [−j]

RjΓZ(gZ/X )[−j]
−−−−−−−−−→ RjΓZFX [−j] ∼= RΓZFX → FX .

Thus it remains to show

gjZ/X ,Z = RjΓZ(gZ/X ).

By (7.5.2) it remains to show that

(7.10.3) RjΓZ(σ) = (7.10.2)−1,

and that τ j1 := RjΓZ(τ ′1) is equal to the composition
(7.10.4)

i∗R
jρE1∗FE1

(7.10.1)−1

−−−−−→ Rjπ∗Rρ1∗RΓρ−1
1 (Z×0)FY

e−→ Rjπ∗Rρ1∗RΓρ−1
1 (Z×P1)FY ,

where e is the enlarge-support map. (Note that i∗
X̃

from the definition of the local

Gysin map factors via e.) For (7.10.3) we observe that RjΓZ(σ) is by definition a
section of the isomorphism (7.10.2), hence has to be the inverse of that isomorphism.
To compute τ j1 we consider the following diagram:

(7.10.5) Rjπ∗Rρ1∗RΓρ−1
1 (Z×0)FY

e

��

b′′

))
RjΓZRπ∗FX⊗�

i∗0=i∗1 '
��

ρ∗1

// RjΓZRπ∗Rρ1∗FY

i∗1,Yuu

b1 //

σj1

uu
i∗R

jρE1∗FE1

τ j1

hh

RjΓZFX .

Here the middle line and the triangle on the left lower side are induced by applying
RjΓZ to the diagram (7.2.2) up to the isomorphism

⊕j
i=1(γiF )Z [−i] ' τ≥1RρE1∗FE1

from (7.2.1), with the obvious notation for σj1 and τ j1 , and b′′ is the isomorphism
(7.10.1). By definition of τ j1 (see 7.2 and Lemma 7.1) we have

τ j1 ◦ b1 = id− ρ∗1σ
j
1.

Thus

(7.10.6) τ j1 = τ j1b1e(b
′′)−1 = e(b′′)−1 − ρ∗1σ

j
1e(b

′′)−1.

By definition σj1 = (i∗0)−1i∗1,Y = π∗ ◦ i∗1,Y . We claim that i∗1,Y ◦ e = 0. Indeed i∗1,Y is
induced by FY → i1,Y ∗FX⊗1. Consider the natural commutative diagram

RΓρ−1
1 (Z×0)FY

//

��

RΓρ−1
1 (Z×0)(i1,Y ∗FX⊗1) = 0

��
FY // i1,Y ∗FX⊗1,
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where the top right corner vanishes since ρ−1
1 (Z × 0)∩ i1,Y (X ×{1}) = ∅. The map

i∗1,Y ◦ e is induced by applying RjΓZRπ∗Rρ1∗ to this diagram and going counter-
clockwise starting at the top left corner; hence the vanishing i∗1,Y ◦ e = 0. Thus

(7.10.6) yields τ j1 = e(b′′)−1, which proves that τ j1 is equal to the composition (7.10.4).
�

7.11. We recall a general formula for the refined Gysin morphism of a blow-up. Let
a : V ↪→ W be a regular closed immersion of quasi-projective k-schemes with normal
sheaf NV/W and denote by f : W̃ → W the blow-up of W along V . We have then
the cartesian square

Ṽ := f−1(V )
b //

g

��

W̃

f

��
V

a // W

Since Ṽ = P(N ∨V/W ) the excess normal bundle satisfies

Exc = g∗NV/W/NṼ /W̃ = g∗NV/W/OṼ (−1),

i.e. it is the universal quotient bundle on P(N ∨V/W ) (see e.g. [Ful98, 6.7]).

LetW ′ → W be a finite-type morphism and denote by V ′, W̃ ′, Ṽ ′ and by f ′, g′, a′, b′

the base-changes along W ′ → W . The refined Gysin morphism of f is a map
f ! : CHm(W ′) → CHm(W̃ ′). Let T ⊂ W ′ be an m-dimensional integral closed sub-
scheme, and denote by [T ] ∈ CHm(W ′) its cycle class. Then by [Ful98, Exa 6.7.1,
Prop 17.5]

(7.11.1) f ![T ] = [T̃ ] + b′∗

{
c(Exc|Ṽ ′) ∩ g

′∗s(T ∩ V ′, T )
}
m

in CHm(W̃ ′),

where T̃ = BlT∩V ′(T ) ⊂ BlV ′(W
′) ⊂ W̃ ′ is the blow-up of T in T ∩ V ′, c(Exc|Ṽ ′)

is the total Chern class of the pullback of Exc to Ṽ ′, and s(T ∩ V ′, T ) is the Segre
class of T ∩ V ′ in T defined in [Ful98, 4.2].

Theorem 7.12. Let F ∈ CIτ,spNis , X = (X,D) ∈MCorls and i : Z ↪→ X a smooth
closed subscheme of codimension j intersecting D transversally. Set Z = (Z,D|Z).
Then we have the following equality of maps of sheaves on XNis

(7.12.1) Hj(cZ) = gjZ/X ,Z ◦ i
∗ : γjFX → i∗γ

jFZ → RjΓZFX ,

where cZ is the morphism (5.8.1) for Z viewed as cycle in CHj
Z(X). In particular,

the following diagram commutes in D(XNis)

γjFX [−j]

i∗

��

cZ // RΓZFX

��
i∗γ

jFZ [−j]
gZ/X // FX .

In particular, if X admits a k-morphism q : X → Z, such that q ◦ i = idZ (locally
in the Nisnevich topology this is always possible, see Lemma 7.14 below), then

(7.12.2) gZ/X = cZ ◦ q∗ : i∗γ
jFZ [−j]→ RΓZFX → FX .

Proof. The equivalence of the two statements follows from the isomorphismRΓZFX
∼=

RjΓZFX [−j] (see [Sai20a, Cor 8.6(3)]) and the definition of the local Gysin map,
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see Lemma 7.10. We show the equality (7.12.1). This is a local question and we can
therefore assume that the normal sheaf of Z in X is trivial, i.e.,

(7.12.3) NZ/X ∼= O⊕jZ .

Let the notation be as in 7.2. Set ξ = c1(OE1(1)) ∈ CH1(E1). Note that the pullback
i∗E1

: CHj
E1

(Y ) → CHj
E1

(E1) is by definition (see Lemma 5.3) equal to the refined
Gysin map (see [Ful98, 6.2])

i!E1
: CHj−1(E1)→ CHj(E1)

corresponding to the diagram

E1 E1

iE1

��
E1

iE1 // Y.

The normal sheaf of the immersion iE1 is

NE1/Y = OY (E1)|E1 = OE1(−1).

Thus by the excess intersection formula (see [Ful98, Cor 6.3]) we find

(7.12.4) − i!E1
(ξj−1) = ξj.

Set η := ξj−1 viewed as an element in CHj
E1

(Y ). Consider the following diagram

γjFX [−j]

i∗

��

(πρ1)∗
// R(πρ1)∗γ

jFY [−j]
cη //

i∗E1
��

R(πρ1)∗RΓE1
FY

−i∗E1

��
i∗γ

jFZ [−j]

λjV

33

ρ∗E1 // i∗RρE1∗γ
jFE1 [−j]

c
ξj // i∗RρE1∗FE1 .

The right square commutes by (7.12.4) and Lemma 5.9(3), the left square clearly
commutes, hence so does the big outer square. Thus by Lemma 7.10

(7.12.5) ρ∗ ◦ gjZ/X ,Z ◦ i
∗ = i∗

X̃,E1
◦Hj(cη) ◦ (πρ1)∗ : i∗γ

jFX → Rjρ∗RΓEFX̃ ,

where i∗
X̃,E1

:= Rj(πρ1)∗RΓE1
(i∗
X̃

).

Set Z1 := ρ−1
1 (Z ×P1). We have E1 ⊂ Z1 and i−1

X̃
(E1) = i−1

X̃
(Z1) = E. Denote by

the same letter ı the two enlarge-support maps ı : RΓE1
→ RΓZ1

and ı : CHj
E1

(Y )→
CHj

Z1
(Y ). We also denote by i∗

X̃,Z1
the two maps induced by i∗

X̃

i∗
X̃,Z1

: Rj(πρ1)∗RΓZ1
FY → Rjρ∗RΓEFX̃ , CHj

Z1
(Y )→ CHj

E(X̃).

Clearly we have in both cases

i∗
X̃,E1

= i∗
X̃,Z1
◦ ı.

Thus (7.12.5) yields

(7.12.6) ρ∗ ◦ gjZ/X ,Z ◦ i
∗ = i∗

X̃,Z1
◦Hj(cı(η)) ◦ (πρ1)∗ : i∗γ

jFX → Rjρ∗RΓEFX̃ .

The strict transform of Z × P1 ⊂ X × P1 in Y is the blow-up of Z × P1 in the
Cartier divisor Z × 0 and is therefore isomorphic to Z ×P1. We obtain

Z1 = (Z ×P1) ∪ E1
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and E1∩(Z×P1) = Z×0 is embedded as the zero section in the normal bundleNE1Y ,
which is equal to E1 \E. On the other hand, X̃ ⊂ Y is the strict transform of X×0
and intersects E1 in E, see, e.g., [Ful98, 5.1]. Thus in Y we have X̃ ∩ (Z ×P1) = ∅.

Claim 7.12.1. We claim that the following equality holds in CHj
Z1

(Y )

(πρ1)![Z] = ı(η) + [Z ×P1],

where (πρ1)! : CHd−j(Z)→ CHd+1−j(Z1) is the refined Gysin map corresponding to
the cartesian diagram

Z1
//

� _

��

Z� _

i
��

Y
πρ1 // X.

Assuming Claim 7.12.1, we can conclude as follows. The composition

γjFY [−j]
c[Z×P1]−−−−→ RΓZ1

FY
i∗
X̃−→ RΓEFX̃

factors via

RΓZ×P1FY
i∗
X̃−→ RΓ(Z×P1)∩EFX̃ .

Since X̃ ∩ (Z ×P1) = ∅ by what was said after (7.12.6), we have

(7.12.7) i∗
X̃,Z1
◦ c[Z×P1] = 0.

Thus we obtain the following equality of maps i∗γ
jFX → Rjρ∗RΓEFX̃

ρ∗ ◦ gjZ/X ,Z ◦ i
∗ = i∗

X̃,Z1
◦Hj(cı(η)) ◦ (πρ1)∗, by (7.12.6),

= i∗
X̃,Z1
◦Hj(c(πρ1)∗Z−[Z×P1]) ◦ (πρ1)∗, by 7.12.1,

= i∗
X̃,Z1

(πρ1)∗ ◦Hj(cZ), by (7.12.7), 5.9,

= ρ∗ ◦Hj(cZ).

The statement follows since ρ∗ here is an isomorphism, see (7.10.2).
Proof of Claim 7.12.1. First note

(πρ1)![Z] = ρ!
1[Z ×P1].

To compute this expression we apply the formula (7.11.1) in the case where a =
iZ0 : Z × 0 ↪→ X × P1, f = ρ1 : Y → X × P1, (W ′ → W ) = (Z × P1 ↪→ X × P1)
and T = Z ×P1 and m = d+ 1− j, where d = dimX. In particular, we have

W̃ ′ = Z1, V ′ = V = Z × 0, Ṽ ′ = Ṽ = E1,

and T̃ = Z × P1. Since the conormal bundle of Z × 0 ↪→ Z × P1 is trivial, [Ful98,
Prop 4.1(a)] yields

ρ∗E1
s(Z × 0, Z ×P1) = [E1].

By (7.12.3) we have NZ×0/X×P1 = O⊕j+1
Z . The Whitney formula yields

c(Exc|E1) = (1− ξ)−1 = 1 + ξ + . . .+ ξj,

where ξ = c1(OE1(1)). Thus Claim 7.12.1 follows from (7.11.1). �
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Corollary 7.13. Let F , X = (X,D), i : Z ↪→ X, and Z as in Theorem 7.12 above.
Assume D = ∅ (thus X = X and Z = Z). Let Φ be a family of supports on Z and
α ∈ CHr

Φ(Z). Then

ci∗α = gZ/X ◦ cα ◦ i∗ :

γj+rFX [−j − r]→ γj+rFZ [−j − r]→ RΓΦγ
jFZ [−j]→ RΓΦFX ,

where we view i∗α ∈ CHj+r
Φ (X).

Proof. It suffices to consider α = [V ], with V ⊂ Z irreducible and of codimension
r, and Φ = ΦV . By [Sai20a, Cor 8.6(1)] we have RΓV FX

∼= τ≥j+rRΓV FX (here we
need D = ∅). Hence we have a natural map Rj+rΓV FX [−j − r] → RΓV FX in the
derived category and the two maps in the statement are induced by composing this
map with the two morphisms of sheaves

(7.13.1) Hj+r(ci∗V ), Hj+r(gZ/X ◦ cV ◦ i∗) : γj+rFX → Rj+rΓV FX .

Thus it suffices to show that the two maps in (7.13.1) are equal. By [Sai20a, Cor
8.6(1)] the restriction Rr+jΓV FX → ν∗R

r+jΓV \Vsing
FX\Vsing

is injective, where ν :

X \ Vsing ↪→ X is the open immersion. Thus we may furthermore assume that V is
smooth. The question is local on X and we can therefore assume that there exists
a closed subset W ⊂ X of pure codimension r such that V = i∗W in CHr

V (Z) =
CH0(V ). In this situation we have the following equality of maps γj+rFX [−j− r]→
RΓV FX

gZ/X ◦ cV ◦ i∗ = gZ/X ◦ ci∗W ◦ i∗ = gZ/X ◦ i∗ ◦ cW = cZ ◦ cW = cZ·W = ci∗V ,

where the second and forth equality hold by Lemma 5.9 and the third equality by
Theorem 7.12. This implies the statement. �

Lemma 7.14. Let S be an affine scheme and Z ↪→ X a closed immersion of
affine S-schemes. Assume that X is noetherian, integral and normal and Z is
irreducible and formally smooth and of finite type over S. Then there exists a Nis-
nevich neighborhood u : X ′ → X of Z (i.e., u is étale and induces an isomorphism

u−1(Z)
'−→ Z) which admits an S-morphism X ′ → Z, such that the composition

Z ∼= u−1(Z) ↪→ X ′ → Z is the identity.

Proof. We follow an argument in the proof of [Sai20a, Lem 8.5]. Write S = SpecR,

X = SpecA and Z = SpecA/I. Set Zn := SpecA/In and X̂Z = Spec ÂI , where

ÂI = lim←−n(A/In). Since Z is formally smooth over S, we find a compatible system of

S-morphisms {Zn → Z} which reduce to the identity on Z; it induces a morphism of

S-schemes π̂ : X̂Z → Z of which the natural closed immersion Z ↪→ X̂Z is a section.
We can form the closed immersion ε̂ := idX̂Z × π̂ : X̂Z ↪→ X̂Z×S Z which restricts to

the diagonal on Z ×S Z. By [Elk73, Thm 2bis] we find therefore an Xh
Z-morphism

εh : Xh
Z ↪→ Xh

Z×S Z which restricts to the diagonal on Z×S Z, where Xh
Z = SpecAhI

is the henselization of the pair (X,Z). Composing εh with the projection to Z yields
an S-morphism uh : Xh

Z → Z. Since X is normal and noetherian, so is any affine
étale scheme Y over X; in particular such a Y is a disjoint union of integral normal
X-schemes. Since Z is irreducible, any Nisnevich neighborhood Y → X of Z can be
refined to a Nisnevich neighborhood Y ′ → X of Z with Y ′ integral. It follows that
we can write AhI = lim−→B, where the limit is over all étale maps A → B inducing
an isomorphism A/I → B/IB with B integral; the transition maps B → B′ in this
system are automatically étale and hence (since B and B′ are integral) also injective;
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thus also B → AhI is injective. Since A/I is of finite type over R it follows that the
R-algebra map uh

∗
: A/I → AhI factors via an R-algebra map A/I → B for some B

as above. This yields the statement. �

Corollary 7.15. Let F ∈ CIτ,spNis and X = (X,D) ∈MCorls. Let i : Z ↪→ Z ′
i′

↪−→ X
be closed immersion of smooth schemes of codimension a = codim(Z,Z ′) and b =
codim(Z ′, X), such that D intersects Z and Z ′ transversally. Set Z = (Z,D|Z) and
Z ′ = (Z ′, D|Z′). We have the following equality

RaΓZ(gbZ′/X ,Z′) ◦ gaZ/Z′,Z = ga+b
Z/X ,Z : i∗γ

a+bFZ → Ra+bΓZFX .

In particular, the following diagram commutes

i∗γ
a+bFZ [−a− b]

gZ/X //

gZ/Z′ [−b] ((

FX

i′∗γ
bFZ′ [−b].

gZ′/X

99

Proof. The second statement follows from the first and Lemma 7.10. The first
statement is local in X and we may therefore assume that we find a smooth closed
subscheme Z ′′ ⊂ X of codimension a such that Z = Z ′ ×X Z ′′. Since i∗ : γa+bFX →
i∗γ

a+bFZ is surjective by Lemma 7.14 it suffices to show the equality after precom-
position with i∗. Consider the following diagram

γa+bFX

i∗

""

i′∗

��

cZ′′ // RaΓZ′′γ
bFX

i′∗

��

cZ′

))
i′∗γ

a+bFZ′ cZ
//

��

i′∗R
aΓZγ

bFZ′
gbZ′/X ,Z′

// Ra+bΓZFX

i∗γ
a+bFZ ,

gaZ/Z′,Z

55

where the maps cZ , cZ′ , and cZ′′ are defined viewing Z, Z ′, and Z ′′ as cycles in
CHa

Z(Z ′), CHb
Z′(X), and CHa

Z′′(X), respectively. The square commutes by Lemma
5.9(3) and the triangles commute by Theorem 7.12. By definition of the refined
intersection product we have Z ′ · Z ′′ = Z in CHa+b

Z (X). Thus the statement follows
from Lemma 5.9(4) and Theorem 7.12. �

Theorem 7.16. Let X = (X,D) ∈ MCorls and F ∈ CIτ,spNis . Let i : Z ↪→ X be
a smooth closed subscheme of codimension j intersecting D transversally and set
Z = (Z,D|Z). Then there is a canonical distinguished triangle in D(XNis)

(7.16.1) i∗γ
jFZ [−j]

gZ/X−−−→ FX
ρ∗−→ Rρ∗F(X̃,D|X̃+E)

∂−→ i∗γ
jFZ [−j + 1],

where ρ : X̃ → X is the blow-up of X along Z and E = ρ−1(Z).

Proof. We first consider the case j = 1. In this case X̃ = X and Z = E. Denote by
j : U = X \Z ↪→ X the open immersion and set U = (U,D|U) and X ′ := (X,D+Z).
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Consider the following diagram of solid arrows of sheaves on XNis

(7.16.2) γ1FX
(5.10.2)

//

i∗ ����

cZ

**
FX ′/FX

� � // j∗FU/FX
' // R1ΓZFX .

i∗γ
1FZ

(∗)

99

g1
Z/X ,Z

55

The diagram commutes by Lemma 5.10 and Theorem 7.12, the vertical arrow is
surjective by Lemma 7.14.

Claim 7.16.1. The dotted arrow (∗) exists, makes the diagram commute, and is an
isomorphism. (It is automatically uniquely determined).

Indeed, the question is local around the points of Z. We may therefore assume
that we have an étale morphism u : X → S[t], such that S = SpecK{x1, . . . , xn},
with a function field K, D = u∗Div(xr11 · · · xrss ), and u induces an isomorphism

Z ∼= u−1(t = 0)
'−→ S. In particular, we have a morphism q : X → S such that the

composition

(7.16.3) q ◦ i : Z
'−→ S

is an isomorphism. Thus the arrow (∗) exists by (7.12.2) as the composition

i∗γ
1FZ

q∗−→ γ1FX
(5.10.2)−−−−→ FX ′/FX .

By Lemma 5.10 the map (∗) is induced by pullback along the composition

X
∆X−−→ X ×X u∗(t)×idX−−−−−−→ A1 ×X

idA1×q−−−−→ A1 × S;

this composition is equal to u. Set S := (S,Div(xr11 · · ·xrss )). Hence the map (∗) is
on Z equal to (cf. Remark 4.7)

F ((A1, 0)⊗Z)

F (A1 ⊗Z)
∼=
F ((A1, 0)⊗ S)

F (A1 ⊗ S)

u∗−→ F (X,D + Z)

F (X,D)
.

It remains to show that u∗ becomes an isomorphism if we replace X by a Nisnevich
neighborhood around the point (x1, . . . , xn, t). By the usual trace argument we may
assume that the field K is infinite. By [Sai20a, Lem 6.7] we may therefore assume
that (X,Z) is a V -pair over S (in the sense of [Sai20a, Def 2.1]). Clearly (A1

S, 0S)
is also a V -pair over S and (7.16.3) gives an identification Z ∼= 0S. Thus u∗ is an
isomorphism by [Sai20a, Cor 2.21]. This proves Claim 7.16.1.

We construct the triangle from the statement in the case j = 1. Set

α := (∗)−1 : FX ′/FX
'−→ i∗γ

1FZ .

Denote by r : FX ↪→ FX ′ the inclusion. For exact triangles we adopt the sign
conventions from [Con00, 1.3]. Thus the boundary map cone(r) → FX [1] of the
exact triangle determined by r, is given by −idFX in degree −1. We define the
boundary map ∂ as the composition

∂ : FX ′ → FX ′/FX
α−→ i∗γ

1FZ

and we define a quasi-isomorphism ϕ as the composition

ϕ : cone(r)
qis−→ FX ′/FX

α−→ i∗γ
1FZ ,
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where the first map is induced by the quotient map in degree 0. It remains to show
that the following diagram is commutative in D(XNis)

(7.16.4) cone(r)[−1] //

ϕ[−1]
��

FX
r // FX ′ // cone(r)

ϕ

��
i∗γ

1FZ [−1]
gZ/X // FX

r // FX ′
∂ // i∗γ

1FZ .

By definition the square on the right commutes; by Lemma 7.10 the square on the
left is the big outer square of the following diagram

(7.16.5) cone(r)[−1] //

qis

��

cone(FX → j∗FU)[−1] //

qis

��

FX

FX ′/FX [−1] //

α

��

j∗FU/FX [−1]
' // R1ΓZFX [−1]

OO

i∗γ
1FZ [−1],

g1
Z/X ,Z

22

where the vertical arrow on the top right is the composition

R1ΓZFX [−1] ∼= RΓZFX → FX ,

where the isomorphism comes from [Sai20a, Cor 8.6(3)]. The lower triangle in
(7.16.5) commutes by the definition of α, the left top square commutes by functori-
ality, the right top square commutes by the definitions of the involved maps. Thus
the square on the left in (7.16.4) commutes. We have constructed the canonical
distinguished Gysin triangle in codimension 1.

We consider the general case j ≥ 1. Let ρ : X̃ → X be the blow-up along Z and
E the exceptional divisor. Set X̃ = (X̃,D|X̃) and X̃ ′ = (X̃,D|X̃ + E) (note that

|E +D|X̃ | is a SNCD), moreover we use the notation from 7.2. Set

C :=

j−1⊕
r=1

i∗γ
rFZ [−r]

and consider the following diagram in D(XNis)

(7.16.6) i∗γ
jFZ [−j]⊕ C

gZ/X⊕(−id)

��

(6.1.1)[−1]

'
// RρE∗γ

1FE [−1]

gE/X̃

��
FX ⊕ C
ρ∗+0

��

(7.3.1)

'
// Rρ∗FX̃

��
Rρ∗FX̃ ′

∂Z⊕0
��

Rρ∗FX̃ ′

∂E
��

i∗γ
jFZ [−j + 1]⊕ C[1]

(6.1.1)

'
// RρE∗γ

1FE ,

where the right column is Rρ∗ applied to the Gysin triangle for E ↪→ X̃ stemming
from the codimension 1 case above and the map ∂Z is defined so that the lower
square commutes. This defines the triangle (7.16.1). Note that the right column
is a distinguished triangle and the left column is the direct sum of (7.16.1) and
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C
−id−−→ C → 0 → C[1]. If the top square commutes, then (7.16.1) is therefore a

distinguished triangle, by [Nee01, Prop 1.2.3]. Thus it remains to show:

Claim 7.16.2. The top square in diagram (7.16.6) commutes.

This is equivalent to the commutativity of the squares resulting from precompo-
sition with the canonical maps i∗γ

rFZ [−r]→ i∗γ
jFZ [−j]⊕ C, for r = 1, . . . , j. We

consider two cases.
1st case: r = 1, . . . , j − 1. In this case we have to show the commutativity of the

following diagram

(7.16.7) i∗γ
rFZ [−r]

λr−1
V
��

λrV // i∗Rρ∗FE

−τ
��

i∗Rρ∗γ
1FE [−1]

gE/X̃ // Rρ∗FX̃ ,

with τ as in (7.2.3) and V = N ∨Z/X . Note that the two compositions −τ ◦ λrV and

gE/X̃ ◦ λ
r−1
V factor automatically via the forget-support map RΓZRρ∗FX̃ → Rρ∗FX̃ .

By applying RΓZ to the second isomorphism in (7.3.1) and using the isomorphism
RjΓZFX [−j] ∼= RΓZFX from [Sai20a, Cor 8.6(3)] we obtain

RΓZRρ∗FX̃
∼= RjΓZFX [−j]⊕ i∗τ≥1RρE∗FE .

Since HomD(XNis)(i∗γ
rFZ [−r], RjΓZFX [−j]) = 0 for r < j, we see that it suffices to

show the equality (7.16.7) after composing with

(7.16.8) ıE : Rρ∗FX̃
i∗E−→ i∗RρE∗FE

can.−−→ i∗τ≥1RρE∗FE .

Since ıE is a section of τ we are reduced to show

Rρ∗(i
∗
E ◦ gE/X̃ ) ◦ λr−1

V = −λrV : i∗γ
rFZ [−r]→ i∗RρE∗FE .

By the definition of λV (see (6.1.1)) and Lemma 5.9(4) it remains to check

(7.16.9) i∗E ◦ gE/X̃ ,E = −cξ : γ1FE [−1]→ FE .

which follows from Proposition 7.9 applied to the cartesian diagram

E
= //

=

��

E

iE
��

E
iE // X̃.

2nd case: r = j. In this case we have to check the commutativity of the square

(7.16.10) i∗γ
jFZ [−j]

gZ/X

��

λj−1
V // RρE∗γ

1FE [−1]

Rρ∗(gE/X̃)

��
FX

ρ∗ // Rρ∗FX̃ .

By the the second isomorphism in (7.3.1) we have the vanishing ıE ◦ ρ∗ = 0, with
ıE the map from (7.16.8); hence also ıE ◦ ρ∗ ◦ gZ/X = 0. On the other hand, the

vanishing ıE ◦ Rρ∗(gE/X̃ ) ◦ λj−1
V = 0 follows from (7.16.9), Lemma 5.9(4), and the
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vanishing ξj = 0 in CHj(E), which holds since E has relative dimension j − 1 over
Z. By Corollary 7.3 and [Sai20a, Cor 8.6(3)] we have

RΓZRρ∗FX̃
∼= RjΓZFX [−j]⊕ i∗τ≥1RρE∗FE
∼= Rj−1ρ∗R

1ΓEFX̃ [−j]⊕ i∗τ≥1RρE∗FE .

Hence it suffices to show the commutativity of the diagram of sheaves

(7.16.11) i∗γ
jFZ

gjZ/X ,Z
��

Hj−1(λV )
// Rj−1ρE∗(γ

1FE)

g1
E/X̃ ,E
��

RjΓZFX
ρ∗ // Rj−1ρ∗R

1ΓEFX̃ .

This is a local question and we may therefore assume thatNZ/X = O⊕jZ . Thus we are
back at showing the commutativity of (7.16.10), under the additional assumption
NZ/X = O⊕jZ . Hence the statement follows from Proposition 7.9 by observing that
the excess normal sheaf in question is in this case is equal to (see [Ful98, 6.7])

Exc = ρ∗ENZ/X/OE(−1) = O⊕jE /OE(−1)

and that the Whitney sum formula in this case yields

cj−1(Exc) ∩ E = ξj−1.

This shows the commutativity in the second case r = j and hence completes the
proof of Claim 7.16.2 and the theorem. �

Remark 7.17. The reader should compare Theorem 7.16 with the classical Gysin
triangle in the A1-motivic setting. Recall that for X ∈ Sm and i : Z ↪→ X a smooth
closed subscheme of codimension i, there is a distinguished triangle in DMgm(k),
called the Gysin triangle (see e.g. [Dég12, 2.20]),

(7.17.1) M(X − Z)
j∗−→M(X)

i∗−→M(Z)(i)[2i]
∂X,Z−−−→M(X − Z)[1]

which gives, after applying any realisation functor H∗,∗(−) the localisation long
exact sequence
(7.17.2)

· · · → Hn−2i,j−i(Z)
i∗−→ Hn,j(X)

j∗−→ Hn,j(X − Z)
∂X,Z−−−→ Hn+1−2i,j−i(Z)→ · · · .

The most significant difference between our formulation, even when D = ∅, and
the formulation in the A1-setting is that the cohomology of the open complement
U = X − Z of Z in X, which appears in (7.17.2) and (7.17.1), is replaced by the
cohomology of the pair (X̃, E), where X̃ is the blow-up of Z in X, and E is the
exceptional divisor. In the modulus setting, where smooth schemes get replaced by
“compactifications” X = (X,D), we need then to “compactify” (X − Z) without
changing its “homotopy type”, and the pair (X̃, E) does the job. For reduced
modulus the formula in Theorem 7.16 is also witnessed in the logarithmic setting,
see [BPØ, 7.5].

8. Pushforward

In this section we construct a pushforward for F ∈ CIτ,spNis along projective mor-
phisms by using the projective bundle formula from section 6 and the Gysin map
from section 7. This is a classical approach which can be found, e.g., in [Har66,
III] (for coherent sheaves) and the dual version in [Ful98, 6.] (Chow groups) and
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[Dég08, 5.] (motives). In fact we construct, the pushforward with proper support
along quasi-projective morphisms, which for the Kähler (resp. the de Rham-Witt)
differentials was done in [CR11] (resp. [CR12]).

Definition 8.1. We say a family of supports Φ on an S-scheme X is a family of
proper supports for X/S, if Φ consists of closed subsets in X, which are proper over
S.

Definition 8.2. Let F ∈ CIτ,spNis and X = (X,D) ∈MCorls. Let V be a locally free
OX-module of rank n+ 1 and denote by π : P = P(V )→ X the projection and set
P = (P, π∗D). Let j : U ↪→ P be an open immersion and denote by πU : U → X
the restriction of π and set U = (U, π∗UD). Let Φ be a family of proper supports for
U/X and let Ψ be a family of supports on X satisfying Φ ⊂ π−1

U Ψ. We define the
morphism in D(XNis)

(8.2.1) tr(U ,Φ)/(X ,Ψ) : RπU∗RΓΦFU → RΓΨ(γnF )X [−n]

as the composition

RπU∗RΓΦFU
∼= Rπ∗RΓΦFP

enlarge supp−−−−−−−→ Rπ∗RΓπ−1ΨFP

(6.1.1)−1

−−−−−→
'

n⊕
i=0

RΓΨ(γiF )X [−i] proj.−−→ RΓΨ(γnF )X [−n],

where the first isomorphism is induced from the excision isomorphism

Rj∗RΓΦFU = RΓΦRj∗j
−1FP = RΓΦFP

stemming from the fact that Φ is by assumption also a family of supports on P . If
it is clear from the context which families of support we take, we also write trU/X
instead of tr(U ,Φ)/(X ,Ψ). In particular, we write (see 5.1 for notation)

trP/X := tr(P,ΦP )/(X ,ΦX) : Rπ∗FP → (γnF )X [−n]

which is simply the projection to the n-th component of the inverse of the projective
bundle formula (6.1.1).

Lemma 8.3. Assumptions and notations as in Definition 8.2.

(1) Let ı : RπU∗RΓΦFU → Rπ∗RΓπ−1ΨFP = RΓΨRπ∗FP be the natural map
(excision composed with enlarge-supports). Then

tr(U ,Φ)/(X ,Ψ) = RΓΨ(trP/X ) ◦ ı.

(2) Let f : Y → X be a morphism in Sm such that Y := (Y, f ∗D) ∈ MCorls.
We obtain a diagram

UY
� � //

fU
��

πUY
%%

PY

fP
��

πY
// Y

f
��

U �
� // P

π // X,
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in which the two squares are cartesian. Set UY = (UY , π
∗
Y f
∗D). The follow-

ing diagram commutes

Rf∗RπUY ∗RΓf−1
U ΦFUY

trUY /Y // Rf∗RΓf−1Ψ(γnF )Y [−n]

RπU∗RΓΦFU
trU/X //

f∗U

OO

RΓΨ(γnF )X [−n].

f∗

OO

(3) Let s : X ↪→ P be a section of π which is contained in U , i.e., s(X) ⊂ U .
Then s(X) defines a proper family of supports for U/X and the following
diagram commutes

RπU∗s∗γ
nFX [−n]

gX/U,s(X) // RπU∗RΓs(X)FU

tr(U,s(X))/X
��

γnFX [−n],

where gX/U ,s(X) = RΓs(X)(gX/U) : s∗γ
nFX [−n]→ RΓs(X)FU is induced by the

Gysin map (7.4.1).
(4) Let V ′ be another locally free OX-module of rank n′ + 1 and let π′ : P ′ :=

P(V ′) → X be the projection. Let U ′ ⊂ P ′ be open and Φ′ be a family of
proper supports for U ′/X. Denote by π′U ′ the restriction of π′ to U ′ and set
U ′ := (U ′, π′U ′

∗D). Then Ξ := Φ ×X Φ′ is a proper family of supports for
U ×X U ′/U ′ and for U ×X U ′/U and the following diagram commutes

R(πU ×X π′U ′)∗RΓΞ(FU⊗XU ′)
tr(U⊗XU′,Ξ)/(U,Φ)

//

tr(U⊗XU′,Ξ)/(U′,Φ′)
��

RπU∗RΓΦ(γn
′
F )U [−n′]

tr(U,Φ)/(X ,Ψ)

��

Rπ′U ′∗RΓΦ′(γ
nF )U ′ [−n]

tr(U′,Φ′)/(X ,Ψ) // RΓΨ(γn+n′F )X [−(n+ n′)],

where U ⊗X U ′ = (U ×X U ′, (πU ×X π′U ′)∗D).
(5) Let i : Z ↪→ X be a smooth closed subscheme of codimension c intersecting

D transversally and set Z := (Z, i∗D) ∈MCorls. We obtain the diagram

UZ
� � //
� _

iU
��

πUZ
%%

PZ� _
iP
��

πZ
// Z� _

i
��

U �
� // P

π // X,

in which the two squares are cartesian. Set UZ := (UZ , π
∗
UZ
i∗D). Then the

following square commutes

RπU∗RΓΦiU∗(γ
cF )UZ [−c]

gUZ/U //

trUZ/Z
��

RπU∗RΓΦFU

trU/X
��

RΓΨi∗(γ
c+nF )Z [−c− n]

gZ/X // RΓΨ(γnF )X [−n],

where gUZ/U and gZ/X are the Gysin maps.
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(6) Let i : Z ↪→ X and Z be as in (5) above and assume that i factors as

Z ↪→ U
πU−→ X, such that Ψ ∩ Z = Φ ∩ Z. Then Z ↪→ U is a closed

immersion of codimension c+ n and then following square commutes

RπU∗RΓΦFU

trU/X
��

RΓΨi∗γ
n+cFZ [−c− n]

gZ/U
44

gZ/X // RΓΨγ
nFX [−n].

Proof. (1) holds by definition. For (2) first observe that f−1
U Φ is a family of proper

supports for UY /Y ; by (1) we are reduced to show

f ∗ ◦ trP/X = trPY /Y ◦ f ∗P .

By definition and with the notation from 6.1 this follows from the equality

(8.3.1) cξiY ◦ π
∗
Y ◦ f ∗ = f ∗P ◦ cξi ◦ π∗, i = 0, . . . , n,

where ξY = c1(OPY (1)) ∈ CH1(PY ) and ξ = c1(OP (1)) ∈ CH1(P ). Since f ∗P ξ = ξY
the equality (8.3.1) follows from Lemma 5.9(3). For (3) it suffices to show

(8.3.2) trP/X ◦ gX/P = id(γnF )X [−n].

Indeed this follows from the equality RΓs(X)FU = RΓs(X)FP , the compatibility of
the Gysin with restriction along open immersions (see Proposition 7.9), and from
(1). By (7.12.2) we have gX/P = cs(X) ◦ π∗, where we view s(X) ∈ CHn(P ). The
projective bundle formula yields

s(X) =
n∑
i=0

π∗(αi) · ξi, for certain αi ∈ CHn−i(X).

Applying π∗ we obtain αn = X from [Ful98, Exa 3.3.3] and the fact that s is a
section of π. By Lemma 5.9(3), (4) we obtain (with the notation from 6.1)

gX/P =
n−1∑
i=0

cξi ◦ π∗ ◦ cαi + cξn ◦ π∗ =
n−1∑
i=0

λiV ◦ cαi + λnV .

Thus equality (8.3.2) follows directly from the definition of trP/X . Next (4). Note
that Ξ is by definition the smallest family of supports on U ×X U ′ containing all
closed subsets of the form Z×XZ ′ with Z ∈ Φ and Z ′ ∈ Φ′. Thus Ξ is clearly a family
of proper supports over U and U ′, respectively, and we have Ξ ⊂ (πU ×X π′U ′)−1(Ψ).
Using (1) it is easy to see that the commutativity of the square in (4) is implied by
the commutativity of the following diagram

(8.3.3) R(π ×X π′)∗FP⊗XP ′
trP⊗XP′/P //

trP⊗XP′/P′

��

Rπ∗(γ
n′F )P [−n′]

trP/X
��

Rπ′∗(γ
nF )P ′ [−n]

trP′/X// (γn+n′F )X [−(n+ n′)].

Let ξ = c1(OP (1)) ∈ CH1(P ) and η = c1(OP ′(1)) ∈ CH1(P ′). Denote by p :
P ×X P ′ → P and q : P ×X P ′ → P ′ the projections. With the notation from 6.1
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we have for i, j = 0, . . . , n,

λjπ∗V ′ ◦ λ
i
V = cq∗ηj ◦ p∗ ◦ cξi ◦ π∗, by defn,

= cq∗ηj ◦ cp∗ξi ◦ p∗π∗, by 5.9(3),

= c(q∗ηj)·(p∗ξi) ◦ q∗π′
∗
, by 5.9(4),

= cp∗ξi ◦ cq∗ηj ◦ q∗π′
∗
, by 5.9(4),

= cp∗ξi ◦ q∗ ◦ cηj ◦ π′
∗
, by 5.9(3),

= λiπ′∗V ◦ λ
j
V ′ , by defn.

Now the commutativity of the diagram (8.3.3) follows from this and the definition
of tr. For (5) it suffices as above to show that the following diagram commutes

Rπ∗iP∗(γ
cF )PZ [−c]

gPZ/P //

trPZ/Z
��

Rπ∗FP

trP/X
��

(γc+nF )Z [−c− n]
gZ/X // (γnF )X [−n].

By definition of tr it suffices to show for all j = 0, . . . , n

gPZ/P ◦ λ
j
i∗V = λjV ◦ gZ/X : (γc+jF )Z [−c− j]→ Rπ∗FP .

Since λjV = cξj ◦ π∗ and λji∗V = ci∗P ξj ◦ π
∗
Z the above equality follows from the

Propositions 7.8 and 7.9. Finally (6). By considering the diagram

Z �
� // U ×X Z

��

� � // U

πU
��

Z �
� i // X

with cartesian square, we see that the statement follows from (5), (3), and the
functoriality of the Gysin map, see Corollary 7.15. �

8.4. Recall from [TT90, Exa 2.1.2(d) and Lem 2.1.3] that a morphism f : Y → X
in Sm is quasi-projective in the sense of [Gro61, Def (5.3.1)] if and only if there
is a locally free OX-module of finite rank V such that f factors as an immersion
Y ↪→ P(V ) followed by the projection P(V )→ X.

We say such a morphism f has relative dimension r, if r = dimYi − dimXj is
constant, for Yi ranging through the connected components of Y mapping to the
connected component Xj of X.

Definition 8.5. Let F ∈ CIτ,spNis . Let X = (X,D) ∈MCorls and let f : Y → X be
a quasi-projective morphism in Sm of relative dimension r ∈ Z, which is transversal
to D (see Definition 2.11). Let Φ be a family of proper supports for Y/X and let Ψ
be a family of supports on X such that Φ ⊂ f−1Ψ. Choose a factorization

(8.5.1) f : Y
i−→ U

π−→ X,

where i is a closed immersion of codimension c and π is the composition of an open
immersion into a projective bundle over X, U ↪→ P , followed by the projection
P → X. Let n be the relative dimension of π, so that r = n− c. Set Y := (Y, f ∗D)
and U = (U, π∗UD).

For e ≥ c = codim(Y, U) we define the map

(8.5.2) (i, π)e∗ : Rf∗RΓΦγ
eFY [−e]→ RΓΨγ

e+rFX [−e− r]
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as the following composition:

Rf∗RΓΦγ
eFY [−e]

gY/U−−−→ Rπ∗RΓΦγ
e−cFU [−e+ c]

trU/X−−−→ RΓΨγ
e+rFX [−e− r].

Proposition 8.6. Assumptions as in Definition 8.5.

(1) Let Y
i′−→ U ′

π′−→ X be another factorization as in (8.5.1). Then

(i, π)e∗ = (i′, π′)e∗, for all e ≥ codim(Y, U ×X U ′).
(2) Let g : Z → Y be a quasi-projective morphism in Sm of relative dimension

s, which is transversal to f ∗D. Let Ξ be a family of proper supports for Z/Y

such that Ξ ⊂ g−1Φ. Let Z
i′−→ U ′

π′−→ X be a factorization of fg as in (8.5.1)
with codim(Z,U ′) = c′. Set U ′Y = U ′ ×X Y and i′Y := i′ × g : Z ↪→ U ′Y and
π′Y := pY : U ′Y → Y . Set Z := (Z, g∗f ∗D) etc.

Then we have codim(Z,U ′Y ) = c′+r, Ξ is also a proper family with supports
for Z/X and for e ≥ c′ + c+ r we have a commutative diagram

R(fg)∗RΓΞγ
eFZ [−e]

(i′,π′)e∗ //

(i′Y ,π
′
Y )e∗ **

RΓΨγ
e+r+sFX [−e− r − s]

Rf∗RΓΦγ
e+sFY [−e− s].

(i,π)e+s∗

33

Proof. (1). We obtain the following diagram in which ST = S ×X T and all maps
are the obvious ones

Y

��

// Y U ′ //

��

Y

i′

��
UY //

��

UU ′ //

��

U ′

π′

��
Y

i // U
π // X.

We form the modulus pairs U ′, UU ′, etc. in the obvious way by pulling back the
divisor from X; all these pairs are in MCorls and all morphisms are transversal
to the corresponding pullback of D. We can view Φ as a family of supports on
Y, U, U ′, P, P ′, and Ξ := Φ×X Φ as a family of supports on UY, Y U ′, UU ′, PP ′, etc.
Let c′ = codim(Y, U ′), n′ = dim(U ′/X). We have

codim(Y, U ×X U ′) = n+ c′ = c+ n′ =: m.

We obtain the following diagram in which the grayish entries keep track of the
γ-twist, the modulus pair, and the support, the rest is omitted for readability:

γeY,Φ

gY/UY

��

gY/YU′ //

1

γe−n
′

YU ′,Ξ

trYU′/Y //

gYU′/UU′

��

2

γeY,Φ

gY/U′

��

γe−nUY,Ξ
gUY/UU′ //

trUY/Y

��

3

γe−mUU ′,Ξ
trUU′/U′ //

trUU′/U

��

4

γe−c
′

U ′,Φ

trU′/X

��
γeY,Φ

gY/U // γe−cU ,Φ
trU/X // γe+rX ,Ψ
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The square 1© is commutative by Corollary 7.15, the squares 2© and 3© commute
by Lemma 8.3(5), the square 4© commutes by Lemma 8.3(4), and finally we have
trYU ′/Y ◦ gY/YU ′ = id and trUY/Y ◦ gY/UY = id by Lemma 8.3(3). Thus the whole
diagram commutes. It follows that going counterclockwise from the top left to the
bottom right corner gives the pushforward using the factorization (8.5.1), whereas
going clockwise yields the pushforward using the primed-version of this factorization
and therefore these two pushforwards agree.

(2). We have the commutative diagram

Z i′Y
//

g

%%

i′

**
U ′Y

//

π′Y

��

U ′ ×X U

��

// U ′,

π′

��
Y

f

44
i // U

π // X

in which the squares are cartesian. Then (2) follows directly from Lemma 8.3(4),
(5), (6) and Corollary 7.15. �

8.7. Recall from 1.6 that the functor ωCI : RSCNis → CIτ,spNis is right adjoint to ω!.

Let F ∈ RSCNis and set F̃ := ωCIF . By the weak cancellation theorem [MS, Cor
3.6] the natural map from 4.8

(8.7.1) κe : F̃
'−→ γe(F̃ (e)), e ≥ 0.

is an isomorphism.
Let X , f : Y → X and Φ,Ψ be as in Definition 8.5 and assume the relative

dimension of f is r = 0. We define

f∗ := κ−1
e ◦ (i, π)e∗ ◦ κe : Rf∗RΓΦF̃Y → RΓΨF̃X ,

where e � 0. It follows from Proposition 8.6, that f∗ is independent of the choice
of a factorization (8.5.2) and it follows from the commutativity of (4.8.3) that it is
independent of the choice of e.

Proposition 8.8. Let F ∈ RSCNis and set F̃ := ωCIF ∈ CIτ,spNis . Let X = (X,D),
f : Y → X, Y, Ψ and Φ be as in 8.5 above and assume that f is of relative dimension
r = 0.

(1) Let g : Z → Y be a quasi-projective morphism of relative dimension 0 in
Sm and assume that g is transversal f ∗D. Set Z := (Z, g∗f ∗D). Let Ξ be
a family of proper supports for Z/Y such that Ξ ⊂ g−1Φ. Then Ξ is also a
family of proper supports for Z/X and we have

(f ◦ g)∗ = f∗g∗ : Rg∗Rf∗RΓΞF̃Z → Rf∗RΓΦF̃Y → RΓΨF̃X .

(2) Assume X and Y are connected and Φ = f−1Ψ. Then

deg(Y/X)· = f∗ ◦ f ∗ : RΓΨF̃X → Rf∗RΓΦF̃Y → RΓΨF̃X ,

where

deg(Y/X) :=

{
[k(Y ) : k(X)] if f is dominant

0 else.

(3) Assume X and Y are connected and f is proper and its restriction f|Y \|f∗D| :
Y \ |f ∗D| → X \ |D| is finite and surjective. Then

H0(f∗) = (Γtf )
∗ : f∗F̃Y → F̃X ,
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where Γtf ∈MCor(X ,Y) is the transpose of the graph of f .

Proof. (1). This follows from Proposition 8.6(2). (2). Choose a factorization (8.5.1)
and e ≥ c = n, then f∗ ◦ f ∗ is by Theorem 7.12 equal to the composition

RΓΨF̃X
κe−→ RΓΨγ

e(F̃ (e))X
π∗U−→ RπU∗RΓΦγ

e(F̃ (e))U
cY−→ RπU∗RΓΦγ

e−n(F̃ (e))U [n]

trU/X−−−→ RΓΨγ
e(F̃ (e))U

κ−1
e−−→
'

RΓΨF̃X .

Let Y ⊂ P be the closure of Y ; it induces a cycle in CHn(P ). It remains to show:

Claim 8.8.1. For G ∈ CIτ,spNis the composition

γnGX
π∗−→ Rπ∗γ

nGP
cY−→ Rπ∗GP [n]

trP/X−−−→ γnGX ,

is equal to the multiplication with deg(Y/X).

To this end, let ξ = c1(OP (1)) ∈ CH1(P ). By the projective bundle formula there
exist cycles αi ∈ CHn−i(X), such that

Y =
n∑
i=0

π∗αi · ξi, in CHn(P ).

Applying π∗ : CHn(P ) → CH0(X) = Z we find deg(Y/X) = αn and hence Claim
8.8.1 follows from Lemma 5.9(1),(3),(4) and the definition of trP/X .

(3). By semipurity we can assume D = ∅. Since restriction to a dense open subset
is injective for F ∈ RSCNis (e.g., [Sai20a, Thm 3.1]) we can reduce to the case where
X and Y are points and f is induced by a finite field extension; since both sides of
the equality in (3) are transitive we can assume that this field extension is simple, so
that f factors as a closed immersion Y ↪→ P1

X followed by the projection P1
X → X.

In this situation H0(f∗) is equal to the composition

F (Y )
κ1−→ (γ1F̃ (1))(Y )

g
Y/P1

X−−−−→ H1(P1
Y , F̃ (1)(P1

Y ,∅))
tr

P1
X
/X

−−−−→ (γ1F̃ (1))(X)
κ−1

1−−→ F (X).

In the following we set
Trh := (Γth)

∗ : h∗FU ′ → FU ,

for a finite surjective morphism h : U ′ → U in Sm.

Claim 8.8.2. Let V be a locally free OU -module of rank n + 1. Set P = P(V ) and
P ′ = P(h∗V ) and denote by h′ : P ′ → P the base change of h : U ′ → U , so that we
have a commutative diagram

P ′
h′ //

π′

��

P

π
��

U ′
h // U.

Let G ∈ CIτ,spNis . Then

Trh ◦trP ′/U ′ = trP/U ◦ Trh′ : H i(P ′, GP ′)→ H i−n(U, (γnG))U).

for all i.
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We prove the claim. Let λiV = cξi ◦ π∗ be as in (6.1), where ξ = c1(OP (1)) ∈
CH1(P ) and π : P → U is the projection. Then by the definition of trP/U it suffices
to show

Trh′ ◦λih∗V = λiV ◦ Trh : h∗(γ
iG)U ′ [−i]→ Rπ∗GP , for all i.

We know π∗ ◦Trh = Trh′ ◦π′∗, since the pullback is compatible with the composition
of finite correspondences. Thus we are left to show the commutativity of

(8.8.1) (γiF )P [−i]
cξi // FP

h′∗(γ
iF )P ′ [−i]

Trh′

OO

ch′∗ξi
// h′∗FP ′

Trh′

OO

Using the definition of cξi in 5.8 and the explicit description (5.5.2) of the map
(5.5.1) we see that (8.8.1) follows from the projection formula

(Trh′(a)⊗ β ⊗∆P ) = Trh′(a⊗ h′∗β ⊗∆P ′) in (G⊗MPST ω
∗KM

i )(P ),

where a ∈ G(P ′), β ∈ KM
i (P ), ∆P and ∆P ′ are the respective diagonals. The

projection formula follows from the description of ⊗MPST, e.g., [RSY22, Lem 4.3],
and the equality of finite correspondences

(8.8.2) (idP ′ × Γh′) ◦ Γ∆P ′
◦ Γth′ = (Γth′ × idP ) ◦ Γ∆P

∈ Cor(P, P ′ × P ),

which can be deduced from the cartesian diagram

P ′
(idP ′×h′)◦∆P ′ //

h′

��

P ′ × P
h′×idP
��

P
∆P // P × P.

This completes the proof of the claim.

We come back to the proof (3). Consider the following commutative diagram

(8.8.3) Y �
� // P1

Y

��

f1 // P1
X

��
Y

f // X,

in which the vertical maps are the projections and the square is cartesian. Clearly

it suffices to show for G = F̃ (1) and with the notation from above

(8.8.4) Trf = trP1
X/X
◦ gY/P1

X
: (γ1G)(Y )→ (γ1G)(X).

We compute using (8.8.3)

Trf = Trf ◦(trP1
Y /Y
◦ gY/P1

Y
) by Lem 8.3(3)

= trP1
X/X
◦ Trf1 ◦ gY/P1

Y
by Claim 8.8.2

= trP1
X/X
◦ gY/P1

X
by Lem 8.9 below.

This proves (8.8.4) and finishes the proof of the proposition. �
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Lemma 8.9. Let F ∈ RSCNis and F̃ = ωCIF ∈ CIτ,spNis . Let f : X1 → X be a finite
and surjective morphism in Sm and let Z be a smooth k-scheme which comes with
two closed immersions i : Z ↪→ X and i1 : Z ↪→ X1 both of codimension 1 such that
i = f ◦ i1. Then the following diagram commutes in D(XNis)

f∗i1∗(γ
1F̃ )Z [−1]

gZ/X1 // f∗F̃X1

(Γtf )∗

��

i∗(γ
1F̃ )Z [−1]

gZ/X // F̃X ,

where Γtf is the transpose of the graph of f which we view in MCor((X, ∅), (X1, ∅)) =
Cor(X1, X).

Proof. Note that (Γtf )
∗ also induces a morphism on the cohomology with supports

(8.9.1) f∗R
1ΓZ1

FX1 → f∗R
1Γf−1(Z)FX1 = R1ΓZ(f∗FX1)

(Γtf )∗

−−−→ R1ΓZFX ,

where we use Rif∗ = 0 for all i > 0, which holds by the finiteness of f . Here,
Z1 = i1(Z), and the first arrow is the enlarge support map. Using this map and
the local Gysin map from Lemma 7.10 we see that the statement is local around
Z. By Lemma 7.14 we can replace X by a Nisnevich neighborhood of Z to find a
morphism q : X → Z such that q ◦ i = idZ . Set q1 := q ◦ f : X1 → Z; it satisfies
q1 ◦ i1 = idZ . Whence Theorem 7.12 yields

gZ/X = ı ◦ cZ ◦ q∗ : i∗(γ
1F )Z [−1]→ RΓZFX → FX ,

(Γtf )
∗ ◦ gZ/X1 = (Γtf )

∗ ◦ ı ◦ cZ1 ◦ q∗1 : f∗i1∗(γ
1F )Z1 [−1]→ f∗RΓZ1

FX1 → f∗FX1 ,

where cZ (resp. cZ1) is defined viewing Z ∈ CH1
Z(X) (resp. Z1 ∈ CH1

Z1
(X1)) and ı

is the forget support map in both cases. Thus it suffices to show the equality

(8.9.2) cZ = (8.9.1) ◦ cZ1 ◦ f ∗ : (γ1F )X [−1]→ RΓZFX ,

since clearly we also have the commutativity

(Γtf )
∗ ◦ ι = ι ◦ (8.9.1)

where ι is again the forget support map.
Again this statement is local in Z and we can therefore assume that there are

global functions d ∈ H0(X,OX) and d1 ∈ H0(X1,OX1) with

Z = DivX(d) and Z1 = DivX1(d1).

Since as cycles we have f∗Z1 = Z we can (by [Ful98, Prop 1.4]) additionally choose
d and d1 such that

(8.9.3) NmX1/X(d1) = d.

Note that Γtf also defines an element in MCor((X,Z), (X1, Z1)) and thus Lemma
5.10 together with Remark 4.7 show that (8.9.2) is implied by the commutativity of
the following diagram

F̃ ((A1, 0)⊗X1)
(5.10.2)

// F̃ (X1, Z1)/F (X1)

(Γtf )∗

��

F̃ ((A1, 0)⊗X)

(id×f)∗

OO

(5.10.2)
// F̃ (X,Z)/F (X).
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We prove the commutativity of the above diagram. By (5.10.3) it suffices to show
(8.9.4)

(Γtf )
∗∆∗X1

(d1×idX1)∗(idA1×f)∗ = ∆∗X(d×idX)∗ : F̃ ((A1, 0)×X)→ F̃ (X,Z)/F (X),

where by abuse of notation we denote by d : (X,Z)→ (A1, 0) (resp. d1 : (X1, Z)→
(A1, 0)) the morphisms of modulus pairs induced by d (resp. d1) and by ∆X :
(X,Z) → (X,Z) ⊗X (resp ∆X1 : (X1, Z) → (X1, Z) ⊗X1) the diagonal map. We
have

(Γtf )
∗∆∗X1

(d1 × idX1)∗(idA1 × f)∗ = (Γtf )
∗∆∗X1

(idX1 × f)∗(d1 × idX)∗(8.9.5)

= ∆∗X(Γtf × idX)∗(d1 × idX)∗,

where the second equality is induced by (8.8.2). Note that the graph of d1 in X1×A1

is given by V (t − d1), where t is the coordinate of A1. As in [Ful98, Prop 16.1.1,
Prop 1.4] we find

(8.9.6) (Γtf×idX)∗(d1×idX)∗ = ((f×idA1)∗(Γd1)×idX)∗ = (DivX×A1(P (t))×idX)∗,

where P (t) = NmX1[t]/X[t](t − d1) ∈ O(X)[t] is the minimal polynomial of d1 over
k(X). Note that by (8.9.3) we have

P (t) = tn − TrX1/X(d1)tn−1 + . . .+ (−1)nd,

where n = deg(X1/X). Putting (8.9.5) and (8.9.6) together and setting G =

HomMPST(Ztr(X), F̃ ) ∈ CIτ,spNis we find that (8.9.4) is implied by

(8.9.7) DivX×A1(t− d)∗ = DivX×A1(P (t))∗ : G(A1, 0)→ G(X,Z)/G(X),

where we view DivX×A1(t − d),DivX×A1(P (t)) ∈ MCor((X,Z), (A1, 0)). To show
this we can shrink X around the generic point of Z (by purity, see [Sai20a, Cor
8.6(1)]). Thus in the following we assume Z ∈ X is a point with residue K = k(Z).
The map q : X → Z from the beginning of the proof induces a morphism X →
SpecK[d] which is étale. By [Sai20a, Rmk 2.2(1), Lem 4.2, Lem 4.3] we see that
(A1

K = SpecK[t], 0K) and (X,Z) are V -pairs over K in the sense of [Sai20a, Def

2.1]. There is a canonical identification 0K ∼= Z. We claim that g ∈ { t−d
t−1
, P (t)

(t−1)n
} is

admissible for the pair ((A1
K , 0K), (X,Z)) in the sense of [Sai20a, Def 2.3], i.e., we

have to show

(1) g is regular in a neighborhood of X ×K 0K ;
(2) DivX×A1(g)×A1 0K = ∆0K , where ∆0K : 0K ↪→ X×K 0K is the diagonal (via

the identification 0K = Z fixed above);
(3) g extends to an invertible function in a neighborhood of X ×K∞K in X ×K

P1
K .

All points are immediate to check. Therefore [Sai20a, Thm 2.10(2)] yields

DivX×KA1
K

( t−d
t−1

)∗ = DivX×KA1
K

( P (t)
(t−1)n

)∗ : G(A1
K , 0K)/G(A1

K)→ G(X,Z)/G(X).

Since DivX×A1(t − 1)∗(G(A1, 0)) ⊂ G(X), this implies (8.9.7) and completes the
proof of the lemma. �

9. Proper correspondence action on reciprocity sheaves

In this section we fix a reciprocity sheaf F ∈ RSCNis and set F̃ := ωCIF ∈ CIτ,spNis ,
see (1.6.1).



74 FEDERICO BINDA, KAY RÜLLING, AND SHUJI SAITO

9.1. Pushforward and cycle cupping for reciprocity sheaves.

9.1. Recall the twists of reciprocity sheaves from [RSY22, 5e]: For n ≥ 1 we define
recursively

(9.1.1) F 〈0〉 := F, F 〈n〉 := ω!(ω
CI(F 〈n− 1〉)(1)),

where (−)(1) denotes the twist from Definition 4.4. Thus F 〈n〉 ∈ RSCNis and
F 〈m+ n〉 = F 〈m〉〈n〉, for all m,n ≥ 0. There exists a natural surjective map

(9.1.2) ω!(F̃ (n))→→ F 〈n〉,
which is defined as follows: Let G ∈ CIτ,spNis ; twisting the adjunction map G →
ωCIω!G by (1) and applying ω!, yields a map ω!(G(1))→ (ω!G)〈1〉. For G = F̃ this
yields (9.1.2) for n = 1, and in general we define it recursively by

ω!(F̃ (n)) = ω!(F̃ (n− 1)(1))→ ω!(F̃ (n− 1))〈1〉 → F 〈n− 1〉〈1〉 = F 〈n〉.
The surjectivity holds by [RSY22, 5e(4)]. It is not known in general whether this is
an isomorphism.

We also define recursively for n ≥ 0

(9.1.3) γ0F := F, γnF := HomPST(Gm, γ
n−1F ).

It follows from [MS, Prop 2.10] that for G ∈ CIτ,spNis we have

(9.1.4) γnω!G = ω!γ
nG ∈ RSCNis.

We obtain an isomorphism

(9.1.5) γnF 〈n〉 ∼= γn−1ω!γ
1( ˜(F 〈n− 1〉)(1)) ∼= γn−1ω!

˜(F 〈n− 1〉)
∼= γn−1F 〈n− 1〉 ∼= F,

where the first isomorphism holds by definition and (9.1.4), the second by the weak
cancellation theorem [MS, Cor 3.6], the third by ω!τ!ω

CI = id, and the forth by
induction. It is direct to check that the composition

(9.1.6) F = ω!F̃
κn−→
'

ω!(γ
nF̃ (n))

(9.1.4)−−−→
'

γnω!F̃ (n)
(9.1.2)−−−→ γnF 〈n〉 (9.1.5)−−−→

'
F

is the identity.

Lemma 9.2. The functor γn : RSCNis → RSCNis is exact, for all n ≥ 0. Further-
more, if char(k) = 0, and

0→ G1 → G2 → G3 → 0

is an exact sequence in MNST with Gi ∈ CIτ,spNis , then so is

0→ γn(G1)→ γn(G2)→ γn(G3)→ 0.

Proof. First recall that RSCNis is an abelian category, by [Sai20a, Thm 0.1], and
that a sequence 0 → F1 → F2 → F3 → 0 in RSCNis is exact if and only if the
sequence 0 → (F1)X → (F2)X → (F3)X → 0 of sheaves on XNis is exact, for any
X ∈ Sm. It suffices to consider the case n = 1. Given a short exact sequence in
RSCNis as above we obtain for X ∈ Sm a short exact sequence on P1

X,Nis

0→ (F̃1)(P1
X ,∅) → (F̃2)(P1

X ,∅) → (F̃3)(P1
X ,∅) → 0.

Applying Rπ∗, with π : P1
X → X the structure map we get a short exact sequence

0→ R1π∗(F̃1)(P1
X ,∅) → R1π∗(F̃2)(P1

X ,∅) → R1π∗(F̃3)(P1
X ,∅) → 0
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using the fact that π∗(F̃3)(P1
X ,∅) = (F̃3)(X,∅). Applying the projective bundle formula

(see Theorem 6.3) yields an exact sequence

0→ (ω!γ
1F̃1)X → (ω!γ

1F̃2)X → (ω!γ
1F̃3)X → 0.

The first statement follows from (9.1.4).
Now assume char(k) = 0. We show the second statement. Since γ is left exact

on MPST it suffices to show the surjectivity. By Lemma 1.3, Corollary 4.5, and
resolution of singularities it suffices to show γ(G2)X → γ(G3)X is surjective for all
X ∈ MCorls. This follows from the projective bundle formula, Theorem 6.3, as
above. �

Proposition 9.3. For F ∈ CIτ,spNis , we have ω!γ
nF = HomPST(KMn , ω!F ). In partic-

ular, for F ∈ RSCNis, we have γnF = HomPST(KMn , F ). (This is [MS, Prop 2.10]
for n = 1.)

Proof. Thanks to (9.1.4) and (4.5.1), we have to show that the natural morphism

(9.3.1) ω! HomMPST(ω∗KMn , F )→ HomPST(ω!ω
∗KMn , ω!F ) = HomPST(KMn , ω!F )

is an isomorphism for every F ∈ CIτ,spNis . Evaluating both sides of (9.3.1) on X ∈ Sm,
we see that we can replace F by FX = HomMPST(Ztr(X), F ) and are left to show
that

HomPST(KMn , ω!F ) = (ω!γ
nF )(k) = (γnF )(k).

Indeed, we have

HomPST(KMn , ω!F ) ∼=(1) HomMPST(ω∗KMn , ω∗ω!F )

∼=(2) HomMPST(ω∗KMn , ωCIω!F )

∼=(3) (γnωCIω!F )(k)

∼=(4) Hn(Pn
k , (ω

CIω!F )(Pnk ,∅))

∼=(5) Hn(Pn
k , F(Pnk ,∅))

∼=(6) (γnF )(k)

where the isomorphism (1) follows from the fact that ω∗ is fully faithful, (2) follows
from the fact that ω∗KMn ∈ CIτ , by adjunction and definition of ωCI, (3) is (4.5.1),
the isomorphisms (4) and (6) follow from Theorem 6.3 and isomorphism (5) by
ω!ω

CI = id. �

9.4. Let X ∈ Sm, let Φ be a family of supports on X, and let α ∈ CHr
Φ(X). Then

we define

Cα : FX → RΓΦF 〈r〉X [r]

as the composition

FX = F̃(X,∅)
κr−→ γrF̃ (r)(X,∅)

cα−→ RΓΦF̃ (r)(X,∅)[r]
(9.1.2)−−−→ RΓΦF 〈r〉X [r].

We note that Cα satisfies the analogous properties of cα listed in Lemma 5.9. This
is immediate for 5.9(1) - (3). We give the argument for the analogous property of
Lemma 5.9(4): Let α ∈ CHr

Φ(X) and β ∈ CHs
Ψ(X). Set m = i+ j and consider the
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following diagram in which we omit all the supports for readability

FX
κi //

κm $$

γiF̃ (i)(X,∅)

γi(κj)
��

cα // F̃ (i)(X,∅)[i]
(9.1.2)

//

κj
��

F 〈i〉X [i]

κj
��

γmF̃ (m)(X,∅)
cα //

cα·β ''

γjF̃ (m)(X,∅)[i]

cβ
��

(9.1.2)a
// γjF̃ 〈i〉(j)(X,∅)[i]

cβ
��

F̃ (m)(X,∅)[m]
(9.1.2)a

//

(9.1.2) ((

F̃ 〈i〉(j)(X,∅)[m]

(9.1.2)

��
F 〈m〉X [m],

where (9.1.2)a : G̃(n)→ G̃〈n〉, G ∈ RSCNis, is induced by adjunction from (9.1.2).
All the squares in the diagram commute by functoriality, the top triangle commutes
by (4.8.3), the triangle in the middle commutes by Lemma 5.9(4), and the commu-
tativity of the bottom triangle follows from the definition of the map (9.1.2). Hence
the whole diagram commutes and we obtain Cα·β = Cβ ◦ Cα.

9.5. Let f : Y → X be quasi-projective in Sm, let Φ be a family of proper supports
for Y/X and Ψ a family of supports on X such that Φ ⊂ f−1Ψ. Set r := dimY −
dimX ∈ Z. For a ≥ 0 with a+ r ≥ 0 and b ≥ 0 we define

f∗ : Rf∗RΓΦγ
b(F 〈a+ r〉)Y [r]→ RΓΨγ

b(F 〈a〉)X

as follows: let Y
i−→ U

π−→ X be a factorization as in (8.5.1) with c = codim(Y, U) and
n = dim(U/X), so that r = n− c; let e ≥ c, then we define f∗ as the composition

Rf∗RΓΦγ
b(F 〈a+ r〉)Y [r]

(9.1.4)−−−→ Rf∗RΓΦγ
b( ˜F 〈a+ r〉)(Y,∅)[r]

κe−→ Rf∗RΓΦγ
b+e( ˜F 〈a+ r〉(e))(Y,∅)[r]

(i,π)e∗−−−→ RΓΨγ
b+e+r( ˜F 〈a+ r〉(e))(X,∅)

(9.1.4)−−−→ RΓΨγ
b+e+rω!(

˜F 〈a+ r〉(e))X
(9.1.2)−−−→ RΓΨγ

b+e+r(F 〈a+ e+ r〉)X
(9.1.5)−−−→ RΓΨγ

b(F 〈a〉)X .

It follows from Proposition 8.6(1) that f∗ is independent of the choice of the factor-
ization (8.5.1) and it follows from the commutativity of (4.8.3) that it is independent
of the choice of e.

Remark 9.6. By (9.1.5) we have

γb(F 〈a〉) =

{
F 〈a− b〉 a ≥ b

γb−aF a ≤ b.

Above we work with γb(F 〈a〉) so that we don’t have to distinguish the two cases.

Theorem 9.7. Let f : Y → X, Φ,Ψ, a, r, b be as in 9.5.

(1) idX∗ : FX → FX is the identity.
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(2) Let g : Z → Y be another quasi-projective morphism in Sm of relative
dimension s = dimZ − dimY and let Ξ be a family of proper supports for
Z/Y with Ξ ⊂ g−1Φ, then for a ≥ 0 with a + r + s ≥ 0 and a + r ≥ 0 and
b ≥ 0 we have

(f ◦ g)∗ = f∗ ◦ g∗ : R(f ◦ g)∗RΓΞγ
b(F 〈a+ r + s〉)Z [r + s]→ RΓΨγ

b(F 〈a〉)X .
(3) Let h : X ′ → X be a smooth morphism. We form the base change diagram

Y ′
h′ //

f ′

��

Y

f
��

X ′
h // X.

Set Ψ′ = h−1Ψ, Φ′ = h′−1Φ. The following diagram commutes

Rf∗RΓΦγ
b(F 〈a+ r〉)Y [r]

f∗ //

h′∗

��

RΓΨγ
b(F 〈a〉)X

h∗

��
R(fh′)∗RΓΦ′γ

b(F 〈a+ r〉)Y ′ [r]
f ′∗ // Rh∗RΓΨ′γ

b(F 〈a〉)X′ .

(4) Let Ξ be some family of supports and α ∈ CHs
Ξ(X). Then f ∗α ∈ CHs

f−1Ξ(Y )
and the following diagram commutes

Rf∗RΓΦγ
b(F 〈a+ r〉)Y [r]

Cf∗α //

f∗
��

Rf∗RΓΦ∩f−1Ξγ
b(F 〈a+ r + s〉)Y [r + s]

f∗
��

RΓΨγ
b(F 〈a〉)X

Cα // RΓΨ∩Ξγ
b(F 〈a+ s〉)X [s].

(5) Let β ∈ CHs
Φ(Y ). Then f∗β ∈ CHs−r

Ψ (X) and the following diagram com-
mutes

Rf∗FY
Cβ // Rf∗RΓΦF 〈s〉Y [s]

f∗
��

FX

f∗

OO

Cf∗β // RΓΨF 〈s− r〉X [s− r].

Proof. (1) follows from Lemma 8.3(3) and from (9.1.6) being the identity. (2) follows
from Proposition 8.6(2) and (4.8.3). (3) follows from Proposition 7.9 and Lemma
8.3(2). (4) follows from Proposition 7.8 and by the definition of trU/X from the
following equality for a projective bundle π : P = P(V )→ X

cπ∗α ◦ λiV = cπ∗α ◦ cξi ◦ π∗ = λiV ◦ cα,
which follows from Lemma 5.9. (5) By Corollary 7.13 we are reduced to the case
where f = π : P(V ) → X is a projective bundle with V locally free of rank r + 1
and Φ = Y , Ψ = X. In this case we can write β =

∑r
i=0 ξ

i ·π∗αi, with αi ∈ CHi(X)
and ξi = c1(OP(1))i. Thus π∗β = αr and hence the commutativity of the diagram
follows in this case from the definition of trP/X and the equality

cβ ◦ π∗ =
r∑
i=0

λiV ◦ cαi ,

which holds by Lemma 5.9(1), (3), (4). �
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9.2. Proper correspondence action. In this subsection we fix a scheme S sepa-
rated and of finite type over k.

9.8. We denote by CS the category with objects the S-schemes X → S with the
property that the induced map X → Spec k is smooth and quasi-projective; the
morphisms are given by

CS(X, Y ) =
⊕
i

CHdimYi
Φprop
X×SYi

(X × Yi),

where for simplicity we write X instead of X → S, where Y = tiYi is the decom-
position into connected components, and where Φprop

X×SYi is the family of supports on
X × Yi consisting of those closed subsets which are contained in X ×S Yi and are
proper over X; the composition is defined by

CS(X1, X2)× CS(X2, X3)→ CS(X1, X3),

(α, β) 7→ β ◦ α := p13∗(p
∗
12α · p∗23β),

where pi,j : X1×X2×X3 → Xi×Xj are the projections, the pullbacks p∗ij are induced
by flat pullback, the intersection product is given by (5.4.8), and the pushforward
is well-defined since p13 is proper along (Φprop

X1×SX2
×k X3) ∩ (X1 ×k Φprop

X2×SX3
) and

maps this family of supports into Φprop
X1×SX3

. It follows from [CR11, Prop 1.1.34,
Prop 1.3.10] that CS is a category and the identity in CS(X,X) is induced by the
diagonal ∆ ⊂ X ×S X (cf. also [Ful98, Prop 16.1.1]).

Note that for S = Spec k and X, Y ∈ CS we have a natural map Cor(X, Y ) →
CS(X, Y ) which is compatible with composition.

9.9. Let F ∈ RSCNis. Let S be a k-scheme, let (f : X → S), (g : Y → S) ∈ CS.
For α ∈ CS(X, Y ) we define a morphism in D+(SNis)

(9.9.1) α∗ : Rg∗FY → Rf∗FX

as follows: set F̃ := τ!ω
CIF ; it suffices to consider the case that Y is of pure

dimension d; then (9.9.1) is defined to be the composition

Rg∗FY
p∗Y−→ Rg∗RpY ∗FX×Y
Cα−→ Rg∗RpY ∗RΓΦprop

X×SY
F 〈d〉X×Y [d]

∼= Rf∗RpX∗RΓΦprop
X×SY

F 〈d〉X×Y [d]

pX∗−−→ Rf∗FX ,

where Cα is defined in 9.4, pX , pY : X × Y → X, Y denote the projections, pX∗ is
the pushforward from 9.5, and the isomorphism in the third line follows from the
equality

g∗pY ∗ΓΦprop
X×SY

(G) = f∗pX∗ΓΦprop
X×SY

(G),

for any sheaf G on X × Y .

Proposition 9.10. Let the assumptions be as in 9.9 above.

(1) Let (h : Z → S) ∈ CS and β ∈ CS(Y, Z). Then

α∗ ◦ β∗ = (β ◦ α)∗ : Rh∗FZ → Rf∗FX .

(2) Let ν : S → T be a morphism of separated and finite type k-schemes. Then
ν induces a functor ν∗ : CS → CT . Furthermore, for α ∈ CS(X, Y ) we have

(ν∗α)∗ = Rν∗(α
∗) : Rν∗Rg∗FY → Rν∗Rf∗FX .
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(3) Let h : X → Y be a k-morphism and denote by [Γh] ∈ CY (X, Y ) the class
induced by the graph of h. Then

[Γh]
∗ = h∗ : FY → Rh∗FX .

(4) Let h : X → Y be a proper S-morphism of relative dimension 0, then the
transpose of the graph of h defines a class [Γth] ∈ CY (Y,X) and

[Γth]
∗ = h∗ : Rh∗FX → FY ,

where h∗ is induced by the pushforward from Proposition 8.8.
(5) Let V ∈ Cor(X, Y ) be a finite correspondence and denote by [V ] its image

in CSpec k(X, Y ). Then

V ∗ = [V ]∗ : F (Y )→ F (X).

Proof. For (1) it suffices to show that an equality of maps Rh∗FZ → Rf∗FX (with
the obvious notation)

(pXYX∗ ◦ Cα ◦ pXY ∗Y ) ◦ (pY ZY ∗ ◦ Cβ ◦ pY Z∗Z ) = pXZX∗ ◦ Cβ◦α ◦ pXZ∗Z

This follows directly from Theorem 9.7(1) - (5) and 9.4 (cf. Lemma 5.9(3), (4)).
The first statement of (2) follows from the fact that X ×S Y is closed in X ×T Y ;
the second statement is direct from the definition. For (3) we first observe that

(9.10.1) id = ∆∗X : FX → FX ,

where ∆X denotes the class of the diagonal in CHdX
∆X

(X ×X). Indeed this follows
from Theorem 9.7(5) and the fact that CX : FX → FX is the identity, where we
view X = pX∗(∆X) ∈ CH0

X(X) = Z. Now (3) holds by

[Γh]
∗ = pX∗ ◦ C(idX×h)∗∆X

◦ p∗Y = pX∗ ◦ C∆X
◦ p∗X ◦ h∗ = h∗,

where the second equality holds by 9.7(5) and the third by (9.10.1). The proof of (4)
is similar. Finally (5). By the injectivity of the restriction map along a dense open
immersion (e.g., [Sai20a, Thm 3.1]) we can shrink X around its generic points and
henceforth assume that X and V are smooth and irreducible. Denote by h : V → Y
and f : V → X the maps induced by projection; note that f is finite and surjective.
Denote by Γh the graph of h etc. We have V = Γh ◦ Γtf . By (1), (3), (4) we are
reduced to show

(Γtf )
∗ = H0(f∗) : F (V )→ F (X).

This follows from Proposition 8.8(3). �

9.11. We explain how to extend the cycle action to bounded below complexes in
RSCNis. Let F • ∈ Comp+(RSCNis) be a bounded below complex of reciprocity
sheaves. Let (f : X → S), (g : Y → S) ∈ CS and α ∈ CS(X, Y ). Then we define

(9.11.1) α∗ : Rg∗F
•
Y → Rf∗F

•
X in D+(SNis)

as follows: Denote by InjS the category of injective Nisnevich sheaves on S. By, e.g.,
[Sta19, Tag 013V], we have an equivalence of categories

(9.11.2) K+(InjS)
'−→ D+(SNis),

where K+ denotes the homotopy category of bounded below complexes. The inverse
of this equivalence induces a resolution functor jS : C+(SNis) → K+(InjS), which
for any bounded below complex C• comes with a quasi-isomorphism of complexes
C• → jS(C•). In fact we can choose such jS that for a complex C• we have

(9.11.3) jS(C•) = tot(. . .→ jS(Ci)→ jS(Ci+1)→ . . .),

https://stacks.math.columbia.edu/tag/013V
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where tot(double complex) denotes the associated total complex. By construction
α induces a commutative diagram in D+(SNis) for all i

Rg∗F
i
Y

α∗ //

d
��

Rf∗F
i
X

d
��

Rg∗F
i+1
Y

α∗ // Rf∗F
i+1
X ,

where d : F i → F i+1 is the differential in the complex. Using the resolution functors
on X, Y , and S this translates into a commutative diagram in K+(InjS)

jS(g∗jY (F i
Y ))

α∗ //

d
��

jS(f∗jX(F i
X))

d
��

jS(g∗jY (F i+1
Y ))

α∗ // jS(f∗jX(F i+1
X )).

Hence α∗ induces a morphism from the total complex of the left column (running
over all i) to the total complex of the right column, using (9.11.3) (and an argument
using triple complexes) it is direct to check that the latter can be identified with a
morphism

jS(g∗jY (F •Y ))→ jS(f∗jX(F •X)),

which under the equivalence (9.11.2) induces the morphism (9.11.1).
It follows from Proposition 9.10 that the above construction in fact defines a

functor

(9.11.4) CS → D+(SNis), (f : X → S) 7→ Rf∗F
•
X .

This functor is natural in F • in the obvious sense.

Lemma 9.12. Let F •, (f : X → S), (g : Y → S), and α be as in 9.11 above.
Assume g is projective, Y has pure dimension d, and α lies in the image of the
natural map ı : CHd

Z×SY (X ×Y )→ CS(X, Y ), for some closed subset Z ⊂ X. Then
(9.11.1) factors as

Rg∗F
•
Y → Rf∗RΓZF

•
X → Rf∗F

•
X ,

where the second map is the forget-supports map.

Proof. We first consider the case of a sheaf F ∈ RSCNis. Let α0 ∈ CHd
Z×SY (X ×Y )

with ıα0 = α. By Lemma 5.9(2) and the definition of Cα in 9.4 we have ıCα0 = Cα,
where by abuse of notation we denote the enlarge support map RΓZ×SY → RΓΦprop

X×SY

also by ı. The following diagram commutes by construction of the pushforward (see
9.5)

Rf∗RpX∗RΓZ×SY F 〈d〉X×Y [d]
ı //

pX∗

��

Rf∗RpX∗RΓΦprop
X×SY

F 〈d〉X×Y [d]

pX∗

��
Rf∗RΓZFX // Rf∗FX .

Therefore, pX∗◦Cα0 ◦p∗Y : Rg∗FY → Rf∗RΓZFX induces the looked for factorization.
The case of a complex F • follows directly from the sheaf case by construction of the
correspondence action in 9.11. �

The proof of the following Proposition is inspired by [CL17, Lem 8.1], where a
similar result is proven for the cohomology of the de Rham-Witt complex.
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Proposition 9.13. Let (f : X → S) and (g : Y → S) ∈ CS. Let V ⊂ X ×S Y be
an integral closed subscheme with dimV = dimX, which is proper over X. Assume
the closure VY of the image of V in Y has codimension r. Let F ∈ RSCNis and
assume F (ξ) = 0, for all points ξ which are finite and separable over the generic
point of VY . Then

0 = [V ]∗ : Rg∗FY → Rf∗FX .

Proof. Let V and F be as in the assumption, except that V does not need to be
proper over X. We can assume Y is of pure dimension d.

Claim 9.13.1. The following composition is zero

(9.13.1) Rg∗FY
p∗2−→ R(gp2)∗FX×Y

C[V ]−−→ R(gp2)∗RΓV F 〈d〉X×Y [d].

The claim clearly implies the statement, since [V ]∗ factors via (9.13.1) accord-
ing to (9.9.1) and Lemma 9.12. By [Sai20a, Cor 8.6(1)] we have RΓV F 〈d〉X×Y is
concentrated in degree ≥ d and hence C[V ] : FX×Y → RΓV F 〈d〉X×Y [d] factors via
the natural map Hd

V (F 〈d〉) → RΓV F 〈d〉X×Y [d]. Thus it suffices to prove the claim
with the complex RΓV F 〈d〉X×Y [d] replaced by the sheaf Hd

V (F 〈d〉). For U a Nis-
nevich cover of Y and W → Y étale denote by UW the induced cover of W and by
C(UW , F ) the Čech complex of FW . Denote by C(U , F ) the complex of sheaves on
Y , given by W 7→ C(UW , F ). The natural map FY → C(U , F ) is a resolution (cf.
[God73, II, Thm 5.2.1]). Let C(F ) = lim−→U C(U , F ) be the colimit over the filtered
category of Nisnevich coverings of Y with refinements as maps. Since Y is noether-
ian C(F ) is still a complex of sheaves and defines a resolution FY → C(F ). It follows
from [Sch17, Thm 13.1] that the natural map g∗C(F ) → Rg∗FY is an isomorphism
in the derived category. Note that similar as above we also have a natural map
(gp2)∗ lim−→U C(X ×U , F )→ R(gp2)∗FX×Y (which is in general not an isomorphism).
For an étale map U → Y denote by VU the restriction of V to X×U . Note that C[VU ]

induces a map F (X × U)→ H0(X × U,Hd
VU

(F 〈d〉)X×U), which is compatible with
étale pullbacks (by Lemma 5.9(3)). Therefore C[V ] induces the bottom right map in
the following diagram, which is commutative (we set q2 = g ◦ p2, XY = X × Y )

Rg∗FY
p∗2 // Rq2∗FXY

C[V ] // Rq2∗Hd
V (F 〈d〉XY )

g∗C(F )

'

OO

p∗2 // q2∗ lim−→U C(XU , F )

OO

C[V ] // q2∗ lim−→U C(XU ,H
d
V (F 〈d〉XY )).

OO

This reduces Claim 9.13.1 to the following claim.

Claim 9.13.2. Let U → Y be étale. Then the composition

(9.13.2) F (U)
p∗2−→ F (X × U)

C[VU ]−−−→ H0(X × U,Hd
VU

(F 〈d〉X×U))

is zero.

We prove this claim. We may assume VU is integral with generic point η. Since
the natural restriction Hd

VU
(F 〈d〉X×U) → Hd

η(F 〈d〉X×U) is injective by [Sai20a, Cor
8.6(1)] we may shrink X × U around η and U around ξ := p2(η). The point ξ ∈ U
is finite and separable over the generic point of p2(V ) and thus by assumption
dimOU,ξ = r. Note that p∗2 : OU,ξ → OX×U,η is essentially smooth between regular
local rings, we therefore find a regular parameter sequence of OX×U,η of the form
p∗2(s1), . . . , p∗2(sr), tr+1, . . . , td ∈ OX×U,η, with s1, . . . , sr a regular parameter sequence
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of OU,ξ. Thus up to shrinking U we find a neighborhood W ⊂ X ×U of η such that
the restriction of the cycle [V ] ∈ CHd

V (X × U) to W can be written as

[VW ] = p∗2α · β in CHd
VW

(W ),

with α ∈ CHr
A(U) and β ∈ CHd−r

B (W ), where A = V (s1, . . . , sr), B = V (tr+1, . . . td).
By Lemma 5.9(3), (4) the composition of (9.13.2) with the injection

H0(XU,Hd
VU

(F 〈d〉XU)) ↪→ H0(W,Hd
VW

(F 〈d〉W )))

factors as

(9.13.3) F (U)
Cα−→ H0(U,Hr

A(F 〈r〉Y ))
Cβ◦(p2|W )∗

−−−−−−→ H0(W,Hd
VW

(F 〈d〉W ))).

Thus it suffices to show that F (U)
Cα−→ H0(U,Hr

A(F 〈r〉Y )) is the zero map. By
[Sai20a, Cor 8.6(1)] we have

H0(U,Hr
A(F 〈r〉Y ) = Hr

A(U, F 〈r〉Y ) ↪→ Hr
ξ (F 〈r〉Y ).

(Note that ξ = p2(η) is the generic point of A.) Hence, by Nisnevich excision and
Lemma 7.14, we may assume that A is smooth over k and admits a map U → A,
of which the closed immersion i : A ↪→ U is a section. By Theorem 7.12 and the
definition of Cα (see 9.4) it factors as

Cα : F (U)
i∗−→ F (A)→ Hr

A(U, F 〈r〉U),

where the second map involves the local Gysin map. Since F (A) ⊂ F (ξ) by global
injectivity, the vanishing of Cα and hence of (9.13.3) follows from F (ξ) = 0, which
holds by assumption. �

Proposition 9.14. Let (f : X → S) and (g : Y → S) ∈ CS and F ∈ RSCNis. Let
V ⊂ X ×S Y be an integral closed subscheme with dimV = dimX, which is proper
over X. Assume:

(1) there exists an integral closed subscheme Z0 ⊂ X of codimension r ≥ 1 such
that V ⊂ Z0 × Y ;

(2) there exists a projective alteration (i.e., a generically finite, surjective and

projective morphism) Z
h0−→ Z0 with Z ∈ Sm, such that h0 × idY induces an

alteration (h0 × idY )−1(V )→ V of degree N over V ;
(3) (γrF )Z = 0.

Then
0 = N · [V ]∗ : Rg∗FY → Rf∗FX .

Proof. Set d := codim(V,X×Y ) = dimY . Denote by h := h0×idY : W := Z×Y →
Z0 × Y and h1 : W → X × Y the maps induced by the alteration h0 : Z → Z0

from (2). By assumption h−1(V ) → V is a projective alteration of degree N . Let
α =

∑
imi[Ai] ∈ CHd−r

h−1(V )(W ), where the Ai are those irreducible components

of h−1(V ) which are dominant and generically finite over V and where mi is the
multiplicity of Ai in the cycle [h−1(V )]. We have h∗α = N · [V ] ∈ CHd

V (X × Y ).
Thus the following diagram commutes by Theorem 9.7(5)

(9.14.1) FX×Y

h∗1
��

N ·CV // RΓV F 〈d〉X×Y [d]

Rh1∗FW
Cα // Rh1∗RΓh−1(V )F 〈d− r〉W [d− r],

h1∗

OO
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see 9.4 for Cα and 9.5 for h1∗. By definition of the cycle action in 9.9 the map
N · [V ]∗ : Rg∗FY → Rf∗FX therefore factors via

(9.14.2) R(fpXh1)∗RΓh−1(V )F 〈d− r〉W [d− r] (pXh1)∗−−−−→ Rf∗FX ,

where pX : X × Y → X is the projection. Denote by h01 : Z → X the map induced
by h0 and by pZ : W → Z the projection. Then rel-dim(h01) = −r, rel-dim(pZ) = d
and pXh1 = h01pZ . By Theorem 9.7(2) and cancellation (9.1.5) we can rewrite
(9.14.2) as the composition

R(fh01pZ)∗RΓh−1(V )γ
rF 〈d〉W [d− r] pZ∗−−→ R(fh01)∗γ

rFZ [−r]
h01∗−−→ Rf∗γ

rF 〈r〉X
'−→ Rf∗FX .

Thus N · [V ]∗ factors via R(fh01)∗γ
rFZ [−r], which is zero by (3). �

Corollary 9.15. Let (f : X → S) and (g : Y → S) ∈ CS and F ∈ RSCNis.
Let V ⊂ X ×S Y be an integral closed subscheme with dimV = dimX, which is
proper over X. Denote by VX ⊂ X the closure of the image of V in X. Assume
codim(VX , X) = r and (γrF )Z = 0, for all Z ∈ Sm with dimZ = dimVX .

(1) If the singularities of VX can be resolved, then

0 = [V ]∗ : Rg∗FY → Rf∗FX .

(2) If char(k) = p > 0, then there exists a number n only depending on V (not
on F ) such that

0 = pn · [V ]∗ : Rg∗FY → Rf∗FX .

Proof. (1) follows directly from Proposition 9.14. (2) follows from that proposition
together with the Gabber-de-Jong alteration theorem, see [IT14, Thm 2.1]. �

Remark 9.16. It would be nice to have a resolution-free proof of 9.15(1), in the spirit
of Proposition 9.13. In [CR11, Prop 3.2.2(1)] such a statement was proven for the
cohomology of the Kähler differentials. But the argument relies on the Künneth
decomposition for differentials and it is not clear how to imitate this proof in the
current setup.

Lemma 9.17. Let (f : X → S), (g : Y → S) ∈ CS. Let S1 ⊂ Y be a closed
integral subscheme which is finite and surjective over S and let ν : S̃1 → S1 be its
normalization. Assume S and S̃1 are smooth over k and f is flat. Then the cycle
associated to X ×S S1 defines an element [X ×S S1] ∈ CS(X, Y ) and the following
diagram commutes

Rg∗FY
[X×SS1]∗

//

ν∗1
��

Rf∗FX

(gν1)∗FS̃1

(gν1)∗ // FS,

f∗

OO

where ν1 : S̃1 → Y is induced by ν. (Note that by assumption gν1 : S̃1 → S is finite.)

Proof. Let d = dimY . By Proposition 9.10(1), (3), (4) it suffices to show the
following equality in CHd

X×SS1
(X × Y )

(9.17.1) [Γν1 ] ◦ [Γtgν1
] ◦ [Γf ] = [X ×S S1],
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where Γh denotes the graph of the map h and Γth its transpose. As in [Ful98, Prop
16.1.1, (a), (c)] the left hand side of (9.17.1) is equal to

(f × idS1)∗(idS × ν1)∗[S ×S S̃1] = (f × idS1)∗[S ×S S1] = [X ×S S1],

where we use the flatness of f for the second equality. Hence the lemma. �

10. General applications

10.1. Obstructions to the existence of zero-cycles of degree 1. We can use
the existence of the proper correspondence action on the cohomology of an arbitrary
reciprocity sheaf to construct new local-to-global obstruction for the existence of
zero cycles of degree 1. In general, this kind of obstructions are considered when the
base is a classical global field, i.e., a number field or a function field in one variable
over a finite field. Instead, we have the following general result, where there is no
restriction on the dimension of the base scheme.

Theorem 10.1. Let f : Y → X be a dominant quasi-projective morphism between
connected smooth k-schemes. Assume that there are integral subschemes Vi ⊂ Y
which are proper, surjective, and generically finite over X of degree ni, i = 1, . . . , s.
Set N = gcd(n1, . . . , ns). Let F • ∈ Comp+(RSCNis) be a bounded below complex
of reciprocity sheaves. Then there exists a morphism σ : Rf∗F

•
Y → F •X in D(XNis)

such that the composition

F •X
f∗−→ Rf∗F

•
Y

σ−→ F •X

is multiplication with N . In particular if N = 1, then F •X is a derived direct sum-
mand of Rf∗F

•
Y .

Proof. Set r = dimY − dimX. Denote by Φ the family of supports on Y generated
by the Vi; Φ therefore is a family of proper supports for Y/X. Take ai ∈ Z such
that N =

∑
i aini and set α :=

∑
i ai[Vi], which we can view as a cycle in CHr

Φ(Y ).
We define σ as the composition

Rf∗F
•
Y

Cα−→ Rf∗RΓΦF
•〈r〉Y [r]

f∗−→ F •X ,

where Cα is defined as in 9.4 and f∗ as in 9.5, extended to complexes as in 9.11.
The statement follows from Theorem 9.7(5). �

We spell out as a Corollary the implication on the index of the generic fiber of f .

Corollary 10.2. Let f : X → Y be a projective dominant morphism between con-
nected smooth k-schemes. Let N be the index of the generic fiber XK over K = k(Y )
(i.e. N is the gcd of the residue field degrees [K(x) : K], where x ∈ XK is running
through all closed points).

Then for any bounded below complex of reciprocity sheaves F • and for any i ≥
0 the kernel Ker(f ∗ : H i(Y, F •Y ) → H i(X,F •X)) is N-torsion. In particular, if
f ∗ : H i(Y, F •Y ) → H i(X,F •X) is not split injective for some F • and some i, then
the generic fiber of f cannot have index 1.

Let us now discuss how Theorem 10.1 and Corollary 10.2 can be specialized to
construct new local-to-global obstructions for the existence of zero-cycles of degree
1, that give back the classical Brauer-Manin obstruction as a special case. For the
reader’s convenience, let us quickly review the construction of the Brauer-Manin
pairing (see [Sai89, 8], [Wit12, 1.1]).
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Let K be a function field in one variable over a finite field Fq of characteristic
p > 0, and let S be a proper smooth model of K. Let f : X → S be a projective
dominant morphism, with X smooth over k. Write XK for the base change X×SK.
For v ∈ S(0), let Sv be the henselization of S at v, and let Kv = k(Sv). Write XKv

for X ×K Kv and XSv for X ×S Sv.
Let ε : Smét → SmNis be the change of site functor, and let Q/Z(1) be the étale

motivic complex of weight 1 with Q/Z coefficients. By 11.1(6), R2ε∗Q/Z(1) defines
a Nisnevich reciprocity sheaf.

Since X is projective over S, any cycle αv ∈ CH0(XKv) defines an element of
CSpec(Kv)(SpecKv, XKv), and since F = R2ε∗Q/Z(1) is in RSCNis, we can apply the
proper correspondence action (9.9.1) to define a morphism

(10.2.1) Br(XKv)/Br(XSv)
α∗−→ Br(Kv) = Br(Kv)/Br(Sv)

where the last equality follows from the fact that Br(Sv) = 0, since the residue field
of Sv is finite. By Proposition 9.10(5), α∗ agrees with the morphism induced by the
transfer structure on the cohomology presheaves H2

ét(−,Gm), which in turn is given
by the classical norm map (see [MVW06, Ex. 2.4]).

Taking (Nisnevich) cohomology with support, we can define a morphism by com-
position
(10.2.2)⊕

v∈S(0)

Br(Kv)(= H0(Kv, F ))→
⊕
v∈S(0)

H1
v (Sv, F ) ∼=

⊕
v∈S(0)

H1
v (S, F )→ H1(S, F )

where the last map is surjective, since H1(K,F ) = 0 for dimension reasons. If we
now compose (10.2.2) with (10.2.1) for varying αv, and we reassemble the maps for
v ∈ S(0), we get

Ψ:
∏
v∈S(0)

CH0(XKv)→ Hom(
⊕
v∈S(0)

Br(XKv)/Br(XSv), H
1(S, F )),

and composing with the diagonal embedding Br(XK)
ι−→
⊕

v∈S(0)
Br(XKv), we finally

get

ι∗Ψ:
∏
v∈S(0)

CH0(XKv)→ Hom(Br(XK), H1(S, F ))

that we can further compose with the diagonal morphism from CH0(XK), giving

(10.2.3) CH0(XK) −→
∏
v∈S(0)

CH0(XKv)
ι∗Ψ−−→ Hom(Br(XK), H1(S, F )).

This is the Brauer-Manin sequence in disguise: in fact, the Brauer-Hasse-Noether
Theorem (see e.g., [Wei95, XIII] or [CTS20, Thm. 12.1.8]) implies that

H1(S, F ) ' Coker
(

Br(K)→
⊕
S(0)

Br(Kv)

Br(Sv)

)
' Q/Z.

Conjecturally, the complex (10.2.3) is exact. See [CT99, Conjecture 4], [Sai89].

We now extend the construction of the complex (10.2.3) replacing Br(−) with an
arbitrary reciprocity sheaf. We begin with the following result. Note that S doesn’t
have to be of dimension 1, and that the ground field is an arbitrary perfect field.
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Theorem 10.3. Let f : X → S be a projective and dominant morphism between
smooth connected k-schemes with d = dim(X) − dim(S). Let K = k(S) be the
function field of S and XK = X ×S SpecK. Let

degK : CHd(X)→ CH0(XK)→ Z,

where the second map is the degree map. Then, for any F ∈ RSCNis, there exist
homomorphisms

φ : CHd(X)→ HomD(SNis)(Rf∗FX , FS)

satisfying the following conditions:

(i) For any α ∈ CHd(X) with N = degK(α), the composite

FS
f∗−→ Rf∗FX

φ(α)−→ FS

is the multiplication by N .
(ii) The map f∗FX → FS induced by φ(α) depends only on the image αK ∈

CH0(XK) of α.

Proof. For (i), it is enough to consider the case α = [x] for a closed point x ∈ XK .
Since the closure of x in X is projective, surjective and generically finite over S of
degree [k(x) : K], the statement follows directly from Theorem 10.1. As for (ii),
it is enough to show that if β is a cycle in CHd(X) supported on f−1(T ) for some
proper closed subscheme T ⊂ S, then the morphism f∗FX → FS induced by φ(β) is
zero. But by Lemma 9.12 we have that φ(β) factors through ΓTFS → FS, and since
ΓTFS = 0 by [Sai20a, Thm. 3.1], the claim follows. �

Let’s go back to the case where dim(S) = 1. For F ∈ RSCNis, we have a complex

(10.3.1) F (XK)
ι−→
⊕
S(0)

F (XKv)

F (XSv)

δ−→ H1(X,F ),

where the first map is the diagonal and the second is the composite

(10.3.2) δv : F (XKv) = F (XSv − f−1(v))→ H1
f−1(v)(XSv , FX)

' H1
f−1(v)(X,FX)→ H1(X,FX).

Here, we have used excision in the displayed isomorphism of (10.3.2), and the fact
that (10.3.1) is a complex follows at once from a diagram chase using the exact
sequence of the cohomology with support.

By Theorem 10.3(ii), for αv ∈ CH0(XKv), we have a map

ψv(αv) :
F (XKv)

F (XSv)

φ(α̃v)−→ F (Kv)

F (Sv)
→ H1(S, F ),

where α̃v ∈ CHd(XSv) is any lift of αv. This gives homomorphisms

ψv : CH0(XKv)→ Hom(
F (XKv)

F (XSv)
, H1(S, F )),

which we can assemble for varying v to get

Ψ :
∏
v∈S(0)

CH0(XKv)→ Hom(
⊕
S(0)

F (XKv)

F (XSv)
, H1(S, F )).
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Composing this with the diagonal morphism from (10.3.1), we get

ι∗Ψ :
∏
v∈S(0)

CH0(XKv)→ Hom(F (XK), H1(S, F )).

We have a commutative diagram

(10.3.3) CHd(X)
H1(φ)

//

��

Hom(H1(X,FX), H1(S, F ))

δ∗v
��

CH0(XKv)
ψv // Hom(

F (XKv )

F (XSv )
, H1(S, F ))

where δv comes from (10.3.2). Hence Theorem 10.3 implies the following.

Corollary 10.4. Assume given ξ = (αv) ∈
∏

v∈S(0)

CH0(XKv). If ξ is in the diagonal

image of CH0(XK), there exists s ∈ Hom(H1(X,F ), H1(S, F )) such that Ψ(ξ) =
s ◦ δ, in particular, we have ι∗Ψ(ξ) = 0. If deg(αv) = 1, we can take s to be a
splitting of f ∗ : H1(S, F )→ H1(X,F ).

Remark 10.5. Note that thanks to Theorem 9.7(3) and the definition of σ in 10.1,
the splitting s of Corollary 10.4 is functorial with respect to smooth base change
S ′ → S.

Remark 10.6. In Theorem 10.3 we have shown how it is possible to use sections of an
arbitrary reciprocity sheaf to construct obstructions of Brauer-Manin type to the ex-
istence of zero cycles of degree one over non-classical global fields. If one is interested
in the (in general) finer question of finding obstructions to the existence of rational
points over non-classical global fields K, there is a vast literature in which higher
unramified cohomology groups Hn

nr(K(X)/K,Z/`) or Hn+1
nr (K(X)/K,Q/Z(n)) (in-

deed examples of global sections of reciprocity sheaves, see the list of examples 11.1)
have been used, starting from [CT96]. The classical case, i.e., using the Brauer
group, corresponds to H2

nr(K(X)/K,Q/Z(1)). Here some examples of global fields,
together with the invariant used.

(1) Function field K of a curve over the real field (or a real closed field) using
Hn
nr(k(X)/K,Z/2)). [CT96], [Duc98a], [Duc98b], [PS20].

(2) Function field K of a curve over the complex field, using H1
nr(K(X)/K,Z/n)

[CTG04] and the Appendix by O. Wittenberg to [OS20].
(3) Function field K of a curve over a p-adic field, using H3

nr(K(X)/K,Q/Z(2)).
[HSS15], [HS16] and [CTPS12], [Izq15].

(4) Function field K of a curve over C((t)). [CTH15].

We thank J-L. Colliot-Thélène for providing us with a list of references on the
subject.

10.2. Birational invariants. As observed in [CR11] cycle actions can be used to
find birational invariants. In the following S is a finite type separated k-scheme. We
say that (f : X → S) and (g : Y → S) ∈ CS, with X and Y integral, are

(1) properly birational over S, if there exists an integral scheme Z over S and
two proper birational S-morphisms Z → X, Z → Y ; in this case we call
Z a proper birational correspondence between X and Y (note that we don’t
assume that f , or g is proper);
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(2) stably properly birational over S, if there exist locally free coherentO-modules
V and W on X and Y , respectively, such that the corresponding projective
bundles P(V ) and P(W ) are properly birational over S.

Theorem 10.7. A reciprocity sheaf F ∈ RSCNis is a stably properly birational
invariant over S, i.e., for (f : X → S), (g : Y → S) ∈ CS, with X, Y integral, any
proper birational correspondence between projective bundles over X and Y induces
an isomorphism

f∗FX ∼= g∗FY .

Proof. Let Z be a proper birational correspondence between P := P(V ) and Q :=
P(W ), where V and W are locally free coherent sheaves on X and Y , respectively.
Let Z0 ⊂ P × Q be the image of the induced map Z → P × Q and denote by Zt

0

its transpose. We obtain induced elements [Z0] ∈ CS(P,Q), [Zt
0] ∈ CS(Q,P ). By

assumption on Z and the localization sequence for Chow groups the compositions
[Z0] ◦ [Zt

0] and [Zt
0] ◦ [Z0] are equal to the respective diagonal plus a cycle E which

maps to at least 1-codimensional subschemes in both P and Q. Since by [Sai20a,
Thm 3.1(2)] the restriction to the generic point FP → j∗Fη is injective (and similar
for Q), E acts as zero in both cases, by Lemma 9.12. By Proposition 9.10(1), (3)
the actions [Z0]∗ : g∗πY ∗FQ → f∗πX∗FP and [Zt

0]∗ : f∗πX∗FP → g∗πY ∗FQ are inverse
to each other, where πX : P → X and πY : Q → Y denote the projections. The
statement follows from the projective bundle formula, Theorem 6.3. �

Remark 10.8. In case f and g are projective, the above Theorem also follows directly
from purity and the projective bundle formula, see also [CTHK97, Thm 8.5.1, 8.6.1].

Theorem 10.9. Let p be the exponential characteristic of k. Let (f : X → S), (g :
Y → S) ∈ CS, with X, Y integral, and let Z be a proper birational correspondence
between them. Let Z0 ⊂ X × Y be the image of Z → X × Y .

Then there exists a natural number n ≥ 0 such that for all F ∈ RSCNis with
γ1F = 0 the composition

pn · [Z0]∗ ◦ [Zt
0]∗ : Rf∗FX → Rg∗FY → Rf∗FX

is equal to the multiplication by pn. If p = 1 or if singularities can be resolved in
dimension dimX − 1, then we have an isomorphism

[Z0]∗ : Rg∗FY
'−→ Rf∗FX .

Proof. The proof is similar to the one of Theorem 10.7, where we use the extra
assumption on F and Corollary 9.15 to see that the cycle pnE acts as zero on
Rf∗FX and Rg∗FY , respectively. �

Theorem 10.10. Let (f : X → S), (g : Y → S) ∈ CS, with X, Y integral.
Let F ∈ RSCNis and assume that F (ξ) = 0, for all points ξ which are finite and
separable over a point of X or Y of codimension ≥ 1. Then any proper birational
correspondence between X and Y induces an isomorphism

Rg∗FY
'−→ Rf∗FX .

Proof. The proof is similar to the one of Theorem 10.7, where we use the extra
assumption on F and Proposition 9.13 to see that the cycle E acts as zero on
Rf∗FX and Rg∗FY , respectively. �
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Remark 10.11. (1) Note that taking g = idY : Y → Y = S in Theorem 10.10,
yields the vanishing Rif∗FX = 0, i ≥ 1, for any projective birational mor-
phism f : X → Y and any F as in the theorem.

(2) The archetype of reciprocity sheaf which satisfies the condition F (ξ) = 0 is
ΩdimX
/k . See Corollary 11.16 below for this and more examples. Also the next

lemma shows that there is an ample supply of non-trivial reciprocity sheaves
satisfying this condition.

Lemma 10.12. Let p be the characteristic of the perfect base field k. Let ` be a
prime number. If ` 6= p, we additionally assume that dim` k < ∞, where dim`

denotes the `-cohomological dimension. Let F ∈ RSCNis be `-primary torsion. Let
X ∈ Sm be integral and set

d =

{
dimX, if p = `

dim` k(X), if p 6= `.

Then for every point ξ which is finite over a point of X of codimension ≥ 1 we have

F 〈d〉(ξ) = 0.

If furthermore X is quasi-projective and has a zero-cycle of degree prime to ` and
F (k) 6= 0, then F 〈d〉X 6= 0.

Proof. Note that the second statement is a direct consequence of the proof of The-

orem 10.1. Let F̃ = ωCIF ∈ RSCNis. By Corollary 4.5 we have a surjection

aNis(F̃ ⊗MPST ω
∗KM

n )→→ F̃ (n).

Since ω! is monoidal and exact and ω!aNis = aNisω! (see 1.1 and 1.2) we obtain a
surjection for n ≥ 1

(10.12.1) F ⊗NST K
M
n → ω!(F̃ (n))

(9.1.2)−−−→ F 〈n〉.

We have to show F 〈d〉(ξ) = 0, for ξ as in the statement. By a colimit argument
we may assume that F 〈d〉 is `m-torsion for some m. Set K = k(ξ). By (10.12.1)
it suffices to show (F ⊗PST KM

d /`
m)(K) = 0. By [IR17, 5.1.3 Prop] we have a

surjection ⊕
L/K

F (L)⊗Z K
M
d (L)/`m →→ (F ⊗PST K

M
d /`

m)(K),

where L runs over all finite field extensions of K. Therefore it suffices to show
KM
d (L)/`m = 0, for all fields L finite over K. If ` = p, we have trdeg(L/k) =

trdeg(K/k) ≤ d−1 and the vanishing follows from the Bloch-Kato-Gabber Theorem
(see [BK86, Cor 2.8])

KM
d (L)/pm ∼= WmΩd

L,log ⊂ WmΩd
L,

where WmΩd
L is the de Rham-Witt sheaf in degree d, and the fact that the latter

group is zero, as follows from [Ill79, I, Prop 3.11]. If ` 6= p we have an isomorphism

KM
d (L)/` ∼= Hd

ét(L, µ
⊗d
` ),

by the Milnor-Bloch-Kato conjecture proven by Voevodsky (see [Voe11, Thm 6.16]).
In this case the vanishing follows from dim` L = dim` k(ξ) ≤ d− 1, which holds by
assumption, and [Ser94, II, §4, Prop 11]. �
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10.3. Decomposition of the diagonal. In the following we will investigate the
implications of the cycle action in case we have a decomposition of the diagonal, a
method which was first employed in [BS83].

Theorem 10.13. Let F • be a bounded below complex of reciprocity sheaves. Let
A be an integral excellent k-algebra of dimension ≤ 1, which is a directed limit
A = lim−→ν

Aν such that the Aν are smooth and of finite type over k and the transition

maps Aν → Aν′, for ν ≤ ν ′, are flat. Let f : X → S = SpecA be a smooth projective
morphism of relative dimension d. Let η ∈ S be the generic point and Xη the generic
fiber of f . Assume there exists an integer N , a zero cycle ξ ∈ CH0(Xη) of degree
N and a cycle β ∈ CHd(Z ×η Xη), where i : Z ↪→ Xη is a closed immersion of
codimension ≥ 1, such that

(10.13.1) N · [∆Xη ] = p∗2ξ + (i× id)∗β in CHd(Xη ×η Xη),

where ∆Xη denotes the diagonal.
Then there exists a strict closed subset S0 ⊂ S such that, for all i ≥ 1 the cokernel

Coker(H i(SNis, F
•)⊕H i

Z∪XS0
(XNis, F

•)
f∗+nat.−−−−→ H i(XNis, F

•))

is N-torsion, where XS0 = X ×S S0 and Z ⊂ X is the closure of Z. Furthermore,
if N = 1 and F • sits in degrees ≥ 0, then

H0(S, F •) = H0(X,F •).

Proof. We assume dimA = 1. The proof for dimA = 0 is similar (and easier). For
T a regular k-scheme and Y a quasi-projective T -scheme we denote by CHn(Y/T )
the subgroup of CH∗(Y ) formed by those cycles of relative dimension n over T , see
[Ful98, 20.1]. We find a dense open subset U ⊂ S, such that the decomposition
(10.13.1) extends to a decomposition in CHd(XU ×U XU/U), where XU = X ×S U .
Using the localization sequence for Chow groups we find cycles ξ̄ ∈ CH0(X/S) and
β̄ ∈ CHd(Z ×S X/S) which lift ξ and β, respectively, and a cycle α ∈ CHd(XS0 ×S0

XS0/S), S0 = S \ U , such that the following equality holds in CHd(X ×S X/S)

(10.13.2) N · [∆X ] = p∗2ξ̄ + (i× id)∗β̄ + i0∗α,

where i0 : XS0 ×S0 XS0 ↪→ X ×S X denotes the closed immersion. Furthermore,
since X → S is projective and dimS = 1, we can write ξ̄ =

∑
imi[Ti], where the Ti

are integral closed subschemes of X which are finite over S. (The Ti are quasi-finite
over S by the dimension formula [Gro65, (5.6.5.1)].)

By assumption we find a projective system of smooth projective maps (fν : Xν →
Sν) between smooth k-schemes, such that for ν ′ ≥ ν the transition maps Sν′ → Sν
are affine and flat and we have Xν′ = Xν ×Sν Sν′ , and such that f = lim←−ν fν . Hence

CHd(X ×S X/S) = lim−→
ν

CHd(Xν ×Sν Xν/Sν),

where the transition maps on the right are induced by flat pullback. It follows that
the decomposition (10.13.2) extends for ν large enough to the following decomposi-
tion with the obvious notation

N · [∆Xν ] = p∗2ξν + (iν × id)∗βν + i0ν∗αν in CHd(Xν ×Sν Xν/Sν).

Additionally we can assume that ξν =
∑

imi[Ti,ν ], where Ti,ν ⊂ Xν are finite and
surjective over Sν and such that Ti,ν×SνS = Ti. Since S is excellent and of dimension

1, so is Ti and thus the normalization T̃i → Ti is finite and T̃i is regular. Therefore,
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for ν large enough we can assume that the normalization T̃i,ν of Ti,ν is smooth over
k. In the limit the action of N · [∆Xν ] is equal to N · id on RΓ(X,F •), and the action
of (iν × id)∗βν + i0ν∗αν on RΓ(X,F •) factors by Lemma 9.12 via RΓZ∪XS0

(X,F •).

Furthermore, by Lemma 9.17, the action of p∗2ξν factors in the limit via

(10.13.3) RΓ(X,F •)

⊕
imiµ

∗
i,1−−−−−−→
⊕
i

RΓ(T̃i, F
•)

∑
i(fµi,1)∗−−−−−−→ RΓ(S, F •)

f∗−→ RΓ(X,F •),

where µi : T̃i → Ti is the normalization and µi,1 : T̃i → X is the induced map.
This yields the first statement. If N = 1, ξ is a zero-cycle of degree 1, and hence∑

imi(fµi,1)∗(fµi,1)∗ = id, by Prop 8.8(2). Thus the precomposition of (10.13.3)
with f ∗ is equal to f ∗. For the second statement we observe, that if F • is con-
centrated in degree ≥ 0, then H0

T (X,F •) = H0
T (X,H0(F •)), for T ⊂ X, where

H0(F •) is the zeroth cohomology sheaf of F •. Since H0(F •) ∈ RSCNis the re-
striction H0(F •) → j∗H0(F •)|X\T is injective, for T ⊂ X of positive codimension,
by [Sai20a, Thm 3.1(2)]. Hence H0

T (X,F •) = 0, for any such T , and the second
statement follows from the above. �

Remark 10.14. We recall some classical examples when the diagonal decomposes.
Let K be a function field over k and X a smooth projective and geometrically
connected K-scheme. For a field extension E/K we set XE = X ⊗K E. Then the
following implications hold:

XK is rationally chain connected over K

⇒ deg : CH0(XE)Q
'−→ Q, for all E/K

⇒ (10.13.1) holds for some N ≥ 1,

for the first implication see, e.g., [Kol96, IV, 3.13 Thm], for the second see [BS83,
Prop 1];

X is retract rational over K ⇒ deg : CH0(XE)
'−→ Z, for all E/K

⇒ (10.13.1) holds for N = 1,

see [CTP16, Prop 1.4, Lem 1.5]. (Recall that X is retract rational if there exists a
dense open U ⊂ X and a dense open V ⊂ Pn

K and a morphism V → U which admits
a section). More generally, following [CTP16] one says that a smooth projective K-
scheme is universally CH0-trivial if the degree map CH0(XE)→ Z is an isomorphism
for every field extension E/K.

Theorem 10.15. Let f : X → S = SpecA be as in Theorem 10.13. We assume
the diagonal of the generic fiber of f decomposes as in (10.13.1). Let p denote the
exponential characteristic of k.

Then there exists a number n ≥ 0, such that for all bounded below complexes of
reciprocity sheaves F • with γF i = 0, for all i, the quotient Hj(X,F •)/f ∗Hj(S, F •)
is pnN-torsion. If furthermore pnN = 1 (which for example happens if N = 1 and
we can resolve singularities of all strict closed subschemes of X), then the pulback
is an isomorphism

f ∗ : RΓ(S, F •)
'−→ RΓ(X,F •).
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Proof. The proof works as the one of Theorem 10.13, only that under the extra
assumption on F • we additionally find by Corollary 9.15 some n ≥ 0, such that the
correspondence pn ·((iν×id)∗βν+i0ν∗αν) acts as zero. Note that we use Hironaka and
Gabber-de-Jong to find pn. For the claim in the brackets of the second statement
one has to employ the finer Proposition 9.14. �

Theorem 10.16. Let S be a smooth, connected, and separated k-scheme with generic
point η. Let X be a smooth and quasi-projective k-scheme and f : X → S a flat, pro-
jective k-morphism of relative dimension d. We assume the diagonal of the generic
fiber of f decomposes as in (10.13.1). Let F • be a bounded below complex of reci-
procity sheaves. Assume F i(ξ) = 0, for all ξ which are finite and separable over a
point of codimension ≥ 1 of X and for all i.

Then the cohomology sheaves of the cone of

(10.16.1) f∗ : Rf∗F
•
X → γd(F •)S[−d]

are annihilated by N2. If N = 1, then (10.16.1) is an isomorphism.

Proof. The proof is similar to the one of Theorem 10.13. The transposition induces
an automorphism of CHd(Xη×ηXη). Applying it to a decomposition (10.13.1) yields
a decomposition of the form

N · [∆Xη ] = p∗1ξ + (id× i)∗β,

with ξ ∈ CH0(Xη), β ∈ CHd(Xη ×η Z), and i : Z ↪→ Xη a closed immersion of
codimension ≥ 1. Set e := dimS. Using the localization sequence for Chow groups
we obtain a decomposition in CHd+e(X ×S X)

N · [∆X ] = p∗1ξ̄ + (id× i)∗β̄ + i0∗α︸ ︷︷ ︸
=(∗)

,

with ξ̄ ∈ CHe(X), β̄ ∈ CHd+e(X ×S Z̄), α ∈ CHd+e(XS0 ×S0 XS0), with Z̄ (resp.
S0) strictly closed in X (resp. S). By the assumption on F • and Proposition 9.13
the cycle (∗) acts as zero on Rf∗F

•
X . To understand the action of p∗1ξ̄ consider the

following cartesian diagram

X ×S X
p1

��

� � // X ×X
idX×f
��

X �
� (idX ,f)

// X × S.

It implies that the image of p∗1ξ̄ in CHd+e
X×SX(X ×X) is equal to (idX × f)∗ξ1, with

ξ1 := (idX , f)∗ξ̄ ∈ CHd+e
X×SS(X × S). Let Γtf ∈ CHe

S×SX(S × X) be induced by the
transpose of the graph of f . As in [Ful98, Prop 16.1.1] we have

(idX × f)∗ξ1 = (((idX × f)∗ξ1)t)t = ((f × idX)∗(ξt1))t = (ξt1 ◦ Γf )
t = Γtf ◦ ξ1.

Thus by (the same argument as in) Proposition 9.10 the action of the cycle p∗1ξ̄ =
(idX × f)∗ξ1 on Rf∗F

•
X is equal to the following composition

(10.16.2) Rf∗F
•
X

f∗−→ γd(F •)S[−d]
ξ∗1−→ Rf∗F

•
X ,
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where ξ∗1 is defined as in 9.9 by

γd(F •)S[−d]
p∗2−→ Rp2∗γ

d(F •)X×S[−d]
κe−→ Rp2∗γ

d+e(F̃ •(e))(X×S,∅)[−d]
cξ1−→ Rf∗Rp1∗RΓX×SSF̃

•(e)(X×S,∅)[e]

(9.1.2)−−−→ Rf∗Rp1∗RΓX×SSF
•〈e〉X×S[e]

p1∗−−→ Rf∗F
•
X .

Since [∆X ]∗ acts as the identity on Rf∗F
•
X the above yields altogether that (10.16.2)

is equal to multiplication with N .
Furthermore, we claim

(10.16.3) N · = f∗ ◦ ξ∗1 : γd(F •)S[−d]→ γd(F •)S[−d].

Similar as above this comes down to show ξ1 ◦Γtf = N · [∆S], which by [Ful98, Prop
16.1.1] is equivalent to

(10.16.4) (f × idS)∗ξ1 = N · [∆S].

By definition of ξ1 we have

(f × idS)∗ξ1 = (f × f)∗ξ̄ = δS∗f∗ξ̄,

where δS : S ↪→ S × S is the diagonal. Since ξ̄ is a lift of the degree N zero-cycle ξ
over η we find f∗ξ̄ = N · [S] ∈ CH0(S), which yields (10.16.4).

Altogether the compositions ξ∗1 ◦ f∗ and f∗ ◦ ξ∗1 are multiplication by N . A simple
diagram chase shows that if Hi(C) are the cohomology sheaves of the cone C of f∗,
then each section of Hi(C) is annihilated by N2. �

11. Examples

For F ∈ RSCNis we set F̃ = ωCIF ∈ CIτ,spNis (see (1.6.1)). We spell out some of
the results for specific examples. We will use without further mentioning the fact
that the category of reciprocity sheaves RSCNis is an abelian category, see [Sai20a,
Thm 0.1].

11.1. Examples of Reciprocity sheaves. Here we list some basic examples of
reciprocity sheaves and morphisms between them. Note that a morphism of reci-
procity sheaves F → G is the same as natural transformation of the underlying
functors Corop → Ab; since RSCNis is an abelian category we obtain many more
interesting examples by taking kernels and quotients. More examples can be fabri-
cated by using the lax symmetric monoidal structure (−,−)RSCNis

from [RSY22, 4]
(denoted ⊗ in loc.cit., see also [MS, 1] for the notation).

(1) The category of homotopy invariant Nisnevich sheaves with transfers is an
abelian subcategory of RSCNis, see, [KSY, Cor 2.3.4] and [Sai20a, Thm 0.1].

For H ∈ HINis we have H̃ = ω∗H.
(2) Every smooth commutative k-group scheme is a reciprocity sheaf; every k-

morphism between such group schemes is a morphism of reciprocity sheaves,
see [KSY, Cor 3.2.5(1)]. In case char(k) = 0 we have for (X,D) ∈MCorls

G̃a(X,D) = H0(X,OX(D − |D|)),
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see [RS21, Cor 6.8]; if char(k) = p > 0, then we have for (X,D) ∈MCorls
with U = X \ |D|

W̃n(X,D) =

a ∈ Wn(U)

∣∣∣∣∣∣
ρ∗a ∈ filFvL(D)Wn(L), ∀ρ ∈ U(L), for all
henselian discrete valuation rings L of geo-
metric type over k

 ,

where vL(D) denotes the multiplicity of the pullback of D to SpecOL and
filFj Wn(L) =

∑
s≥0 F

s(filjWn(L)), where for j ≥ 1

filjWn(L) = fillog
j−1Wn(L) + V n−r(fillog

j Wr),

with r := min{n, ordp(j)}, and

fillog
j Wn(L) = {(a0, . . . , an−1) ∈ Wn(L) | pn−1−ivL(ai) ≥ −j, all i},

see [RS21, Thm 7.20].
(3) Assume k has characteristic zero. Then the absolute Kähler differentials

Ωn = Ωn
/Z and the relative ones Ωn

/k form reciprocity sheaves. This follows

from [KSY, Cor 3.2.2] and [KSY16, Thm A 6.2]. Note that the proof in
loc. cit. relies on duality theory. However since we assume char(k) = 0, the
action of finite correspondences can be constructed in an ad hoc manner, see
[LW09, Thm 1.1], and to show that the differentials (absolute or relative)
have reciprocity can be shown by using residues on curves and the trace for
finite field extensions (i.e. classical duality theory for smooth curves over a
field of characteristic 0). We note that

d : Ωn → Ωn+1, dlog : KM
n → Ωn

are morphisms in RSCNis, as follows from [MS, Lem 1.1].
(4) Assume char(k) = p > 0. The (p-typical) de Rham-Witt sheaves WnΩq,

q ≥ 0, n ≥ 1, of Bloch-Deligne-Illusie are reciprocity sheaves, see [KSY, Cor
3.2.5(3)]. As observed in [CR12] it follows from Grothendieck-Ekedahl dual-
ity theory that the structure maps of the de Rham-Witt complex F (Frobe-
nius), V (Verschiebung), R (restriction), and d (differential) are morphisms
of reciprocity sheaves, see also [RS21, Lem 7.7]. Since WΩq = lim←−WnΩq has
no p-torsion and

(11.0.1) dlog : KM
q → WnΩq

factors via WΩq → WnΩq, it follows from [MS, Lem 1.1], that (11.0.1) is a
morphism in RSCNis. (Note however that WΩq 6∈ RSCNis.)

(5) Assume char(k) = p > 0. Denote by WnΩr
log the subsheaf of WnΩr étale

locally generated by log forms (by e.g. [Ill79]) and by Z/pn(r) the motivic
complex of weight r with Z/pn-coefficients, viewed as a complex of étale
sheaves. By [GL00] we have WnΩr

log[−r] ∼= Z/pn(r) on Smét. There is an
exact sequence on Smét (see [CTSS83])

0→ WnΩr
log → WnΩr F−1−−→ WnΩr/dV n−1Ωr−1 → 0.

Since the two sheaves on the right of this complex admit a structure of
coherent modules on Wn(X), they are ε∗-acyclic, where ε : Smét → SmNis

denotes the morphism of sites. Hence on SmNis

(11.0.2) Rε∗Z/pn(r) ∼=
(
WnΩr F−1−−→ (WnΩr/dV n−1Ωr−1)

)
[−r],
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which is obviously a complex of reciprocity sheaves.
(6) Denote by Q/Z(n) the étale motivic complex of weight n with Q/Z-coefficients.

Then

(11.0.3) Riε∗Q/Z(n) ∈ RSCNis, all i,

where ε : Smét → SmNis denotes the morphism of sites. Indeed, let p be
the characteristic exponent of k. We can decompose Riε∗Q/Z(n) into the
prime-to-p torsion part, which is A1-invariant by [Voe00a, Cor 5.29], and
the p-primary torsion part which is a reciprocity sheaf by (5) above. In
particular, taking n = 1 and i = 2 we see that the Brauer group defines a
reciprocity sheaf, Br ∈ RSCNis.

(7) Assume char(k) = p > 0. LetG be a finite commutative k-group scheme. De-
note byH1(G) the presheaf on Sm given byX 7→ H1(G)(X) := H1(Xfppf , G).
Then H1(G) ∈ RSCNis, see [RS21, Thm 9.12].

11.2. Results with modulus.

Theorem 11.1. Let k be a field of characteristic zero. Then there is a canonical
isomorphism in CIτ,spNis

G̃a(n)
'−→ Ω̃n,

where (n) denotes the twist from Definition 4.4. Furthermore, if (X,D) ∈MCorls
we have

(11.1.1) G̃a(n)(X,D)
∼= Ω̃n

(X,D) = Ωn
X/Z(logD)(D − |D|).

Furthermore,

(11.1.2) (Ω̃n
/k)(X,D) = Ωn

X/k(logD)(D − |D|).

Proof. The equalities in (11.1.1) and (11.1.2) follow from [RS21]. Indeed, let U ⊂ X
be an open subscheme, and write DU for D ∩ U . Let Y = (Y, Y∞) be a log-smooth
modulus compactification of (U,DU), i.e., Y is smooth and proper and Y∞ = D̄U+Σ,
where D̄U and Σ are effective Cartier divisors on Y , such that |D̄U + Σ| is a SNCD,
U = Y \ |Σ|, and the restriction of D̄U to U is equal to DU . Set YN,∞ = D̄U +N ·Σ.
Then for R ∈ {Z, k}

H0(U,Ωn
X/R(logD)(D − |D|)) = lim−→

N

H0(Y,Ωn
Y/R(log Y∞)(YN,∞ − |Y∞|))

= lim−→
N

H0(Y, (Ω̃n
/R)(Y,YN,∞))

= H0(U, (Ω̃n
/R)(X,D)),

where the second equality is [RS21, Cor 6.8(1)] and the third equality holds by
M -reciprocity, see 1.4.

By [RSY22, Thm 5.20] we have a canonical isomorphism

(11.1.3) ω!(G̃a(n))
'−→ Ωn,

which is defined in such a way that the composition with the natural map Ga ⊗Z

KM
n → ω!(G̃a(n)) (see (5.5.1), (4.5.3)) is given by

OX ⊗Z K
M
n,X → Ωn

X , a⊗ β 7→ a dlog β.

By adjunction (see (1.6.1)) we obtain the canonical map from the statement; it is
injective by semi-purity. To prove surjectivity it suffices by Lemma 1.3 and resolution
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of singularities to prove the surjectivity of G̃a(n)X → Ω̃nX , for any X = (X,D) ∈
MCorls. We may assume X is affine. By Lemma 4.1 we find a finite map π1 : Y1 →
X and an effective divisor E1 on Y1, such that (Y1, E1) ∈MCor and π∗1|D| = 2E1.
Using resolution of singularities we find an isomorphism in (Y,E) ∼= (Y1, E1) in
MCor with (Y,E) ∈ MCorls which is induced by a birational projective map
f : Y → Y1 and E = f ∗E1. Set π := f ◦ π1 : Y → X. Thus π∗|D| = 2E and we find
an effective Cartier divisor E ′ on Y with π∗D = 2E ′ and |E ′| = |E| =: E0. We have

(11.1.4) G̃a(X,D) = OX(D − |D|) π∗−→ π∗OY (2E ′ − 2E) ⊂ π∗G̃a(Y,π∗D−E0),

where the equality and the inclusion follow from (11.1.1) with n = 0. Set e = deg π
and Y = (Y, π∗D). Consider the following diagram

π∗

(
G̃a(Y,π∗D−E0) ⊗Z K̃M

n (Y,E0)

)
(5.5.1)

// π∗

(
G̃a ⊗MPST K̃M

n

)
Y

(∗)
// π∗(Ω̃nY)

(Γtπ)∗

��

G̃aX ⊗Z K̃M
n X

e(id⊗dlog)
//

π∗

OO

Ω̃nX ,

where the map (∗) is induced by (11.1.3), the left vertical map exists by (11.1.4)

and the fact that (K̃Mn )X = (ω∗KMn )X = j∗(KMn )X−D, where j is the open immersion
X −D ↪→ X, and the right vertical map exists since π is projective and finite over
X\|D|. The diagram commutes by the explication of (11.1.3) above and the formula

(Γtπ)∗ ◦ π∗ = e on Ω̃nX . By the description of Ω̃nX above we see that the bottom
horizontal map is a surjective morphisms of sheaves. We can factor the composition
(Γtπ)∗ ◦ (∗) also as

π∗

(
G̃a ⊗MPST K̃M

n

)
Y

(Γtπ)∗−−−→ (G̃a ⊗MPST K̃M
n )X → Ω̃nX .

Hence G̃a(n)X → Ω̃nX is surjective. �

Corollary 11.2. Let k be a field of characteristic zero. Then

γjΩ̃n ∼= Ω̃n−j, γjΩ̃n
/k
∼= Ω̃n−j

/k

for every n, j ≥ 0.

Proof. For the absolute differentials and j ≤ n, this follows immediately from The-
orem 11.1 and the weak cancellation theorem [MS, Cor 3.6], see (8.7.1). For j > n
this is a vanishing statement, which reduces to show

(11.2.1) γ(G̃a) = 0.

By Lemma 6.2 we have (γGa)X = R1π∗OP1
X

= 0, where π : P1
X → X is the

projection. Then semipurity and (9.1.4) together imply (11.2.1).
Now the relative case. Note that Ωi

k/Z ⊗k Ωn−i is a reciprocity sheaf, since the

choice of a basis of Ωi
k/Z yields an identification with a direct sum (indexed by the

basis) ⊕Ωn−i; similar with the relative differentials. It follows from this and [RS21,
Thm 6.4 and Thm 4.15(4)] that the natural map

(11.2.2) ˜Ωi
k/Z ⊗k Ωn−i → ˜Ωi

k/Z ⊗k Ωn−i
/k

is surjective in CIτ,spNis . Set

Fili,n := Im(Ωi
k/Z ⊗k Ωn−i → Ωn), i ∈ [0, n],
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and Fili,n := 0, for i > n. As is well-known we have an isomorphism Fili,n/Fili+1,n ∼=
Ωi
k/Z ⊗k Ωn−i

/k . Consider the following diagram

(11.2.3) 0 // ˜Fili+1,n−1 //

��

F̃ili,n−1 //

��

˜Ωi
k/Z ⊗k Ωn−1−i

/k
//

��

0

0 // γ(F̃ili+1,n) // γ(F̃ili,n) // γ( ˜Ωi
k/Z ⊗k Ωn−i

/k ) // 0.

The top row is exact for all n, i by the left exactness of ωCI and the surjectivity of
(11.2.2). Since we are in characteristic zero the exactness of the bottom sequence
follows from this and Lemma 9.2. The two vertical maps on the left are induced by
the statement of the corollary for the absolute differentials, and the vertical map on
the right is the induced morphism between the cokernels, in particular the diagram
is commutative. Note that by definition and (11.2.1) we have

(11.2.4) γ(F̃ili,n) = 0, for i ≥ n.

Therefore for n = 1, the case of the relative differentials follows from the one for the
absolute differentials and the diagram (11.2.3) with i = 0. Now assume we know

γ(Ω̃m
/k)
∼= Ω̃m−1

/k for all m < n. Then by descending induction over i ≥ 1, (11.2.4),

and diagram (11.2.3) we have an isomorphism γ(F̃ili,n) ∼= F̃ili,n−1, for all i ≥ 1, and
by the absolute case also for i = 0. Thus taking i = 0 in diagram (11.2.3) also
implies the statement in the relative case. �

Corollary 11.3. Assume char(k) = 0. Let (X,D) ∈ MCorls and let i : Z ↪→ X
be a smooth closed subscheme of codimension c intersecting D transversally (see
Definition 2.11). Let ρ : X̃ → X be the blow-up of X in Z and set X̃ := (X, ρ∗D).
There is a canonical isomorphism in D(XNis)

Rρ∗Ω
q

X̃
(log ρ∗D)(ρ∗D − |ρ∗D|)

∼= Ωq
X(logD)(D − |D|)⊕

c−1⊕
r=1

i∗Ω
q−r
Z (log i∗D)(i∗D − |i∗D|)[−r].

Same with Ωq replaced by Ωq
/k.

Proof. This follows from Corollary 7.3, Corollary 11.2, and (11.1.1), resp. (11.1.2).
�

Corollary 11.4. Let the assumption be as in Corollary 11.3. There is a distin-
guished triangle in D(XNis)

i∗Ω
q−c
Z (log i∗D)(i∗D − |i∗D|)[−c]

gZ/X−−−→ Ωq
X(logD)(D − |D|)

ρ∗−→ Rρ∗Ω
q(log ρ∗D + E)(ρ∗D − |ρ∗D|) ∂−→,

where E = ρ−1(Z). Same with Ωq replaced by Ωq
/k.

Proof. This follows from Theorem 7.16, Corollary 11.2, and (11.1.1), resp. (11.1.2).
�
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Remark 11.5. (1) We can extend the statements from the Corollaries 11.3 and
11.4 to complexes as in 9.11 to obtain similar formulas for Ω•, Ω≥n, τ≤nΩ•;
same with Ω•/k.

(2) One can check that in case c = 1 the distinguished triangle in Corollary 11.4
is up to shift and sign induced by the exact sequence

0→ Ωq
X(logD)(D − |D|)→ Ωq

X(logD + Z)(D − |D|)
ResZ−−−→ Ωq−1

Z (log i∗D)(i∗D − |i∗D|)→ 0.

Corollary 11.6. Let k be a perfect field, (X,D) ∈MCorls and let i : Z ↪→ X be a
smooth closed subscheme of codimension c intersecting D transversally. Denote by
ρ : X̃ → X the blow-up of X in Z.

(1) Assume that char(k) = 0. Denote by Conn1 the reciprocity sheaf whose
sections over X are rank 1 connections on X. Recall from [RS21, Thm 6.11]

that the group C̃onn1(X,D) consists of the rank 1 connections on X \ |D|
whose non-log-irregularity is bounded by D. If c = 1, then there is an exact
sequence

0→ C̃onn1(X,D)→ C̃onn1(X,D + Z)→ H0(Z,OZ(i∗D − |i∗D|))/Z

→ H1

(
X,

Ω1
X/k

(logD)(D−|D|)
dlog j∗O×X\|D|

)
→ H1

(
X,

Ω1
X/k

(logD+Z)(D−|D|)
dlog j∗O×X\|D+Z|

)
.

If c ≥ 2, then

C̃onn1(X,D) ∼= C̃onn1(X̃, ρ∗D + E).

(2) Assume that char(k) = p > 0 and fix a prime ` 6= p. Denote by Lisse1 the
presheaf whose sections over X are the lisse Q̄` sheaves of rank 1. By [RS21,

Cor 8.10, Thm 8.8] we have Lisse1 ∈ RSCNis and L̃isse1(X,D) is the group
of lisse Q̄`-sheaves of rank 1 on X \ |D| whose Artin conductor is bounded
by D. If c ≥ 2, then

L̃isse1(X,D) ∼= L̃isse1(X̃, ρ∗D + E).

Proof. For c ≥ 2 both (1) and (2) follow directly from the Gysin sequence, Theorem
7.16. We consider the case c = 1 in (1). We have an isomorphism of reciprocity
sheaves (Ω1

/k/ dlog Gm)Nis
∼= Conn1 (cf. [RS21, 6.10]), whence an isomorphism in

CIτ,spNis

(11.6.1) ωCI(Ω1
/k/ dlog Gm)Nis

'−→ C̃onn1.

We claim that the induced composite map

(11.6.2) Ω̃1
/k → ωCI(Ω1

/k/ dlog Gm)Nis
'−→ C̃onn1

is surjective. Indeed, by Lemma 1.3 and resolution of singularities it suffices to
show that its restriction to any (X,D) ∈MCorls is surjective. The latter is a local
question. Let A = OhX,x be the local ring at some x ∈ X and f ∈ A and equation
for D at x. Since X ∈ Sm, the local ring A is regular and hence the localization Af
is factorial. By the exact sequence

Ω1
Af/k
→ Conn1(Af )→ Pic(Af ) = 0,
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(induced by taking cohomology of the complex [Gm
dlog−−→ Ω1

/k]) we can lift any rank

1 connection E to a differential ωE ∈ Ω1
Af

. It is direct to check from [RS21, Thm

6.11] that E ∈ C̃onn1(A, f) if and only if ωE ∈ Ω̃1(A, f) (with the obvious abuse of
notation), proving the claim.

By (11.6.1), the surjectivity of (11.6.2) and the left exactness of ωCI we have an
exact sequence

0→ ω∗(Gm/(k
alg)×)

dlog−−→ Ω̃1
/k → C̃onn1 → 0,

where (kalg)× = Ker(dlog : Gm → Ω1). Since γ(ω∗(kalg)×) = 0 (e.g. by the
projective bundle formula) and γ(ω∗Gm) = γ(Z(1)) = Z by the weak cancellation
theorem, Corollary 11.2 and Lemma 9.2 yield

γ(C̃onn1) = G̃a/Z.
The statement follows from this and the Gysin sequence. �

11.3. Results without modulus.

11.7. Assume char(k) = p > 0. For F ∈ RSCNis denote by h0
A1(F ) the maximal A1-

invariant subsheaf of F . In particular dlog : KM
r → WnΩr factors via the inclusion

h0
A1(WnΩr) ↪→ WnΩr. We obtain an induced map in CIτ,spNis

dlog : ω∗KM
r → ω∗h0

A1(WnΩr) = ωCIh0
A1(WnΩr) ↪→ W̃nΩr.

Thus, for q ≥ r ≥ 0, n ≥ 1, X ∈ Sm and Y ∈MCor we can define

φrX,Y : WnΩq−r(X)→ Hom(ω∗KM
r (Y), W̃nΩq(X ⊗ Y))

by
φrX,Y(α)(β) := p∗Xα · dlog p∗Yβ,

where α ∈ WnΩq−r(X), β ∈ ω∗KM
r (Y) and pX : X ⊗ Y → X and pY : X ⊗ Y → Y

denote the projections.

The following result is essentially a corollary of the projective bundle formula for
reciprocity sheaves and the computation of the cohomology of the Kähler differentials
of the projective line. The case char(k) = 0 was proved in [MS, Thm 6.1] by a slightly
different method. Recall from Proposition 9.3 that we have HomPST(KM

n , F ) = γnF ,
F ∈ RSCNis.

Theorem 11.8. (1) Assume char(k) = p > 0. For q, r ≥ 0, n ≥ 1 the collection
{φrX,Y }X,Y from 11.7 induces an isomorphism

φr : WnΩq−r '−→ γrWnΩq in RSCNis,

where we set WnΩq−r := 0, if q < r. We have

(11.8.1) φr+s = γs(φr) ◦ φs, for r, s ≥ 0.

Furthermore φr commutes with R, F , V , d (see 11.1(4) for notation), i.e.,

(11.8.2) φr ◦ f = γr(f) ◦ φr, for f ∈ {R,F, V, d}.
(2) Assume char(k) = 0. Then similarly as in (1), we have an isomorphism φr :

Ωq−r '−→ γrΩq, q, r ≥ 0, which satisfies (11.8.1); also for relative differentials
Ω•/k.
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Proof. We will consider the situation in (1) and make a remark on (2) later. First
assume q ≥ r. Fix α ∈ WnΩq−r(X). We claim that φrX(α) := {φrX,Y(α)} with

varying Y defines a morphism ω∗KM
r → W̃nΩq(X ⊗−) in MPST, i.e., we have to

show for Γ ∈MCor(Y ′,Y)

(idX ⊗ Γ)∗φrX,Y(α)(β) = φrX,Y ′(α)(Γ∗β) in W̃nΩq(X ⊗ Y ′).

Since restriction to open subsets is injective on WnΩq it suffices to check this for X
affine and Y = (Y, ∅), Y ′ = (Y ′, ∅). In this case we can lift α to α̃ ∈ WΩq−r(X) and
we can use this to lift φrX(α) to φrX(α̃) : KM

r → WΩq(X×−) via β 7→ p∗X α̃ ·dlog p∗Yβ.
Since φrX(α̃) is obviously a map of sheaves (without transfers) and since WΩq(X×−)
is p-torsion free (see [Ill79, I, Cor 3.5]) it follows from [MS, Lem 1.1] that φX(α̃) is
compatible with transfers and hence so is φrX(α). Thus

φrX(α) ∈HomMPST(ω∗KM
r ,HomMPST(Ztr(X), W̃nΩq))

= (ω!γ
rW̃nΩq)(X) = (γrWnΩq)(X),

where the last equality holds by (9.1.4). Next we claim, that

φr : WnΩq−r → γrWnΩq, α on X 7→ φrX(α)

is a morphism in PST (hence also in RSCNis). Indeed, this can be checked similarly
as above. We show (11.8.1). Let α ∈ WnΩq−r−s(X). Then φs(α) is determined by
φsX,Y(α)(βs) for βs ∈ ω∗KM

s (Y) and γs(φr)(φs(α)) is determined by

φrX⊗Y,Z(φsX,Y(α)(βs))(βr) = p∗Xα · dlog(p∗Yβs · p∗Zβr)

for βr ∈ ω∗KM
r (Z), Z ∈MCor. Here pX , pY and pZ denote the obvious projections.

For α ∈ WnΩq−r−s(X) the map (βs, βr) 7→ p∗Xα · dlog(p∗Yβs · p∗Zβr) also induces an
element in

HomMPST(ω∗KM
s ⊗MPST ω

∗KM
r , W̃nΩq)(X) ∼= (γs+rWnΩq)(X),

where the isomorphism follows from (4.5.1) and (9.1.4). This yields (11.8.1). Fur-
thermore, (11.8.2) follows from the following general formulas in W•Ω

∗

R(α · dlog β) = R(α) · dlog β, d(α · dlog β) = d(α) · dlog β,

F (α · dlog β) = F (α) · dlog β, V (α · dlog β) = V (α) · dlog β.

Next we prove that

(11.8.3) φ1 : Ωq−1 → γ1Ωq

is an isomorphism. Indeed by Lemma 6.2 the map

(11.8.4) H1(λ1
O⊕2) : (γ1Ωq)X

'−→ R1π∗(Ω
q

P1
X

),

is an isomorphism, where π : P1
X → X is the projection. On the other hand by

definition of λ1
O⊕2 and φ1, the precomposition of (11.8.4) with φ1

X is exactly the
cup-product with

− ∪ c1(OP1
X

(1)) : Ωq−1
X → R1π∗Ω

q

P1
X
,

which is well-known to be an isomorphism. Hence (11.8.3) is an isomorphism as
well. Iterating and (11.8.1) yields the isomorphism

φr : Ωq−r '−→ γrΩq, for q ≥ r.
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Note that a similar argument also works in characteristic zero for Ω• and Ω•/k; hence

(2) holds. Since γr is exact (see Lemma 9.2) and φr is compatible with d we obtain
isomorphisms (which we will denote by φr again)

Zq−r '−→ γrZr, Bq−r '−→ γrBq, Zq−r/Bq−r '−→ γr(Zq/Bq),

where Zq = Ker(d : Ωq → Ωq+1) and Bq = dΩq−1. Denote by C−1 : Ωq '−→ Zq/Bq the
inverse Cartier operator. One easily checks that the following diagram commutes

Ωq−r φr //

C−1

��

γrΩq

γr(C−1)
��

Zq−r/Bq−r φr // γr(Zq/Bq).

(In fact this follows from the compatibility of φr with F and [Ill79, I, Prop 3.3].) It
is direct from this to check that we also have isomorphisms

Bq−r
n

'−→ γrBq
n, Zq−r

n
'−→ γrZq

n,

where Bq
n and Zq

n are defined as in [Ill79, 0, (2.2.2)]. Set grq,n := Ker(Wn+1Ωq R−→
WnΩq). By compatibility of φr with R, we see that φr on Wn+1Ωq−r restricts to

(11.8.5) φr : grq−r,n → γrgrq,n.

By [Ill79, I, Cor3.9 ] we have an exact sequence

0→ Ωq/Bq
n

V n−→ grq,n
β−→ Ωq−1/Zq−1

n → 0,

where β is determined by β(V n(a)+dV n(b)) = b. It follows from this and the above
that (11.8.5) is an isomorphism. Hence φr : WnΩq−r → γrWnΩq is an isomorphism
by induction on n.

It remains to show that γrWnΩq = 0, for q < r. By the above it suffices to show
γ1Wn = 0. By the exactness of γ1 it suffices to show γ1Ga = 0. By Lemma 6.2, we
have (γ1Ga)X ∼= R1π∗OP1

X
= 0. This completes the proof of the theorem. �

11.9. Given the fact that the de Rham-Witt sheaves are reciprocity sheaves, we
obtain as a corollary of the above and the abstract results for reciprocity sheaves
new (motivic) proofs of the following results of Gros: projective bundle formula (by
Theorem 6.3 with empty modulus, cf. [Gro85, I, Thm 4.1.11]), blow-up formula (by
(7.3.1) with empty modulus, cf. [Gro85, IV, Cor 1.1.11]), and a proper pushforward
and Gysin morphisms for smooth quasi-projective schemes (for r ≥ 0 in 9.5 take a =
0 and b = r and precompose f∗ with the map induced by WnΩq

Y → γr(WnΩq〈r〉)Y ;
for r < 0 take in 9.5 a = −r and b = −r and post compose with the isomorphism
from the weak Cancellation Theorem; cf. [Gro85, II]). We also obtain the (opposed)
action of properly supported Chow correspondences constructed in [CR12] (by 9.9,
9.10). However let us remind the reader that at the moment the finite transfers
on the de Rham-Witt complex are defined by restricting the action of properly
supported Chow correspondences from [CR12](the construction of which uses all
the results above) to the case of finite correspondences. It is therefore an interesting
problem to have a more direct construction of the transfers structure for the de
Rham-Witt complex (cf. the discussion in the characteristic zero case in 11.1(3)).
The Gysin sequence however is to our knowledge new:
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Corollary 11.10. Let k be a perfect field. Let X ∈ Sm and let i : Z ↪→ X be a
smooth closed subscheme of codimension c. Denote by ρ : X̃ → X the blow-up of X
in Z and set E := ρ−1(Z).

(1) There is a distinguished triangle in D(XNis)

i∗Ω
q−c
Z [−c]

gZ/X−−−→ Ωq
X → Rρ∗Ω̃q

(X̃,E)

∂−→ i∗Ω
q−c
Z [−c+ 1].

Similarly with Ω•/k.

(2) Assume char(k) = p > 0. Then we have a distinguished triangle (for all n)

i∗WnΩq−c
Z [−c]

gZ/X−−−→ WnΩq
X → Rρ∗W̃nΩq

(X̃,E)

∂−→ i∗WnΩq−c
Z [−c+ 1].

(3) Let (X/Wn)crys be the Nisnevich-crystalline site of X relative to SpecWn(k)
and uX : (X/Wn)crys → XNis the map of sites. There is distinguished triangle
in D(XNis)

i∗RuZ∗OZ/Wn [−2c]
gZ/X−−−→ RuX∗OX/Wn → Rρ∗W̃nΩ•(X̃,E)

∂−→ . . .

Proof. (1) and (2) follow directly from Theorem 7.16 and Theorem 11.8. (3) follows
from Illusie’s isomorphism RuX∗OX/Wn

∼= WnΩ•X and the above (cf. 9.11). �

Remark 11.11. (1) Note that in characteristic zero we have Ω̃q
(X̃,E) = Ωq

X̃
(logE).

In positive characteristic this is expected to hold but not yet known (also for
the de Rham-Witt sheaves).

(2) If char(k) = 0, then Rρ∗Ω
•
X̃/k

(logE) ∼= Rj∗Ω
•
U/k, with j : U := X \ Z ↪→ X

the open immersion, and the Gysin sequence becomes the classical one for
de Rham cohomology.

Corollary 11.12. Assume char(k) = p > 0. Let f : Y → X be a morphism of
relative dimension r ≥ 0 between smooth projective k-schemes. Assume that X is
ordinary in the sense of [BK86, Def (7.2)]. Then the Ekedahl-Grothendieck push-
foward (see [Gro85, II, 1.]) factors via

(11.12.1) RΓ(Y,WnΩq
Y )[r]→ RΓ(Y,WnΩq

Y /B
q
n,∞)[r]

f∗−→ RΓ(X,WnΩq−r
X ),

where Bq
n,∞ =

⋃
s F

s−1dWn+s−1Ωq−1 (see [IR83, IV, (4.11.2)]) and f∗ is induced by
the pushforward from 9.5.

Proof. The exactness of γ and Theorem 11.8 imply γrBq
n,∞ = Bq−r

n,∞. Thus by func-
toriality the pushforward induce a morphism of triangles

(11.12.2) RΓ(Y,Bq
n,∞)[r] //

f∗
��

RΓ(Y,WnΩq)[r] //

f∗
��

RΓ(Y,WnΩq/Bq
n,∞)[r]

f∗
��

//

RΓ(X,Bq−r
n,∞) // RΓ(X,WnΩq−r) // RΓ(X,WnΩq−r/Bq−r

n,∞) // .

Since X is ordinary we have RΓ(X,Bq−r
n,∞) = 0, by [IR83, IV, Thm 4.13]. This yields

the factorization. That the pushforward coincides (up to sign) with the Ekedahl-
Grothendieck pushforward, follows from the construction of the pushforward in 9.5
and the explicit description of the projective trace (see Definition 8.2) and the Gysin
map (see Theorem 7.12) as well as the corresponding description for the Ekedahl-
Grothendieck pushforward (see [Gro85, II, 2.6, 3.3], also [CR12, Prop 2.4.1, Cor
2.4.3]). �
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Remark 11.13. Let f : Y → X be as in Corollary 11.12, but without assuming that
X is ordinary. Then the above proof shows that there is a factorization

RΓ(Y,WnΩr
Y )[r]→ RΓ(Y,WnΩr

Y /B
r
n,∞)[r]

f∗−→ RΓ(X,Wn)

which simply follows from the diagram (11.12.2) and the fact that B0
n,∞ = 0.

Corollary 11.14. Assume char(k) = p > 0. Let f : X → S be a surjective mor-
phism between smooth projective connected k-schemes. Assume that the generic fiber
has index prime to p. Then

X is ordinary =⇒ S is ordinary.

Proof. Let Bq = dΩq−1. This is a reciprocity sheaf. By [BK86, Def (7.2)] X is
ordinary if and only if H i(X,Bq) = 0, for i, q ≥ 0. Thus the statement follows from
Corollary 10.2. �

Remark 11.15. Let f : X → S be as in Corollary 11.14, and assume moreover that
the generic fiber has a zero cycle of degree prime to p. Then it is possible, with a
similar argument, to prove the implication

X is Hodge-Witt =⇒ S is Hodge-Witt.

See [IR83, IV, 4.12]. Similarly, if the crystalline cohomology H∗(X/W ) of X is tor-
sion free, the existence of the splitting in Corollary 10.2 implies that the crystalline
cohomology of S is torsion free as well.

Corollary 11.16. Let S be a separated k-scheme of finite type, let X and Y be
integral smooth quasi-projective k-schemes both of dimension N , and let f : X → S,
g : Y → S be morphism of k-schemes. Assume that X and Y are properly birational
over S (see 10.2). Then any proper birational correspondence over S between X and
Y induces an isomorphism

(11.16.1) Rf∗FX
'−→ Rg∗FY ,

where F is one of the following sheaves (resp. complexes)

(1) any complex of reciprocity sheaves whose terms are subquotients of ΩN
/k, e.g.,

ΩN
/k, ΩN

/k/ dlogKM
N , ΩN

/k/h
0
A1(ΩN

/k),

where h0
A1(ΩN

/k) is the maximal A1-invariant subsheaf of ΩN
/k;

and in case char(k) = p > 0 :

(2) any complex of reciprocity sheaves whose terms are subquotient of WnΩN

(n ≥ 1), e.g.,

WnΩN
log, WnΩN/F r−1dWn+r−1ΩN−1, F r−1dWn+r−1ΩN−1, (r ≥ 1),

Rε∗(Z/pn(N)), Riε∗(Z/pn(N)), all i (see 11.1 (5));

(3)
G〈N〉,

where G is a smooth commutative unipotent k-group;
(4)

H1(G)〈N〉,
where G is a finite commutative p-group scheme over k and H1(G)(X) =
H1(Xfppf , G).
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Proof. First note that all the listed examples are (resp. complexes of) reciprocity
sheaves. This follows directly from the examples discussed in 11.1. Therefore the
assertions follow directly from Theorem 10.10 and Lemma 10.12. �

Remark 11.17. (1) The birational invariance of the cohomology of ΩN
/k in char-

acteristic zero is classical (using resolution of singularities), in positive char-
acteristic this was proven in [CR11] by a similar method as here. However
the statement in loc. cit. was only for the cohomology sheaves not the com-
plexes in the derived category. The whole statement can in this case be also
deduced from [Kov]. To our knowledge the other statements in Corollary
11.16 are new.

(2) We get an isomorphism (11.16.1) up to bounded torsion for all F ∈ RSCNis

which are successive extensions of subquotients of Ga. This follows from
Theorem 10.9, the vanishing γ(Ga) = 0 (see Theorem 11.8), and the fact that
γ is exact. In this case the statement can however be also deduced without
the ’up-to-bounded-torsion’ assumption from [Kov, Thm 1.4], the existence
of Macaulayfication, and the fact that smooth schemes have pseudo-rational
singularities (Theorem of Lipman-Teissier).

11.18. Let K be a field of characteristic p. For ` 6= p, the cohomological `-dimesnion
dim`(K) is defined e.g. in [Ser94]. For ` = p the cohomological p-dimension of K is
defined in [KK86, Def 1] by

dimp(K) := inf{i ∈ N | Ωi+1
K = 0 and H1

ét(K
′,Ωi

log) = 0, for all K ′/K finite},
where K ′/K ranges over all finite field extensions.

The corollary below generalizes results of Pirutka [Pir12] and Colliot-Thélène-
Voisin [CTV12], see Remark 11.20. We thank Colliot-Thélène for pointing to these
results.

Corollary 11.19. Let S be a separated k-scheme of finite type, let X and Y be
integral smooth quasi-projective k-schemes both of dimension d, and let f : X → S,
g : Y → S be morphism of k-schemes. Assume that X and Y are properly birational
over S (see 10.2). Let ` be a prime and assume e := dim`(k) <∞. (Note e = 0, if
` = p.) Then any proper birational correspondence over S between X and Y induces
an isomorphism

(11.19.1) Rf∗(R
d+eε∗Z/`r(j))X

'−→ Rg∗(R
d+eε∗Z/`r(j))Y , for all j ≥ 0, r ≥ 1.

Proof. Set F := Rd+eε∗Z/`r(j). We know F ∈ RSCNis. By Theorem 10.10 it
suffices to show F (K) = 0, for any finitely generated field K/k with trdeg(K/k) < d.
Assume ` 6= p. By [GL01, Thm 1.5] we have F (K) = Hd+e

ét (K,µ⊗j`r ), which vanishes
since dim`(K) ≤ d − 1 + e, by [Ser94, II, §4, Prop 11]. Now assume ` = p (hence
e = 0). By [GL00] (see 11.1(5)) we have

F (K) =


WnΩd

K , if j = d

H1
ét(K,WnΩd−1

log ), if j = d− 1

0, else.

Thus in this case F (K) = 0, since dimp(K) ≤ d− 1 by [KK86, 3., Cor 2]. �

Remark 11.20. If we assume ` 6= p, f and g projective and generically smooth, and
we take in (11.19.1) the stalks in the generic point of S and cohomology we get back
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the first statement of [Pir12, Thm 3.3] (which generalizes [CTV12, Prop 3.4]), at
least in the case where the base field is a finitely generated field over a perfect field.

To our knowledge the global statement for S of arbitrary dimension is new even
for ` 6= p. The case ` = p and j = d− 1 seems to be completely new.

The following corollary holds for all reciprocity sheaves. We just spell it out for
one special example.

Corollary 11.21. Let S be the henselization of a smooth k-scheme in a 1-codimensional
point or a regular connected affine scheme of dimension ≤ 1 and of finite type over a
function field K over k. Let f : X → S be a smooth projective morphism of relative
dimension d and let η ∈ S be the generic point. Assume the diagonal of the generic
fiber Xη decomposes as

(11.21.1) [∆Xη ] = p∗2ξ + (i× id)∗β in CH0(Xη ×η Xη),

where ξ ∈ CH0(Xη) and β ∈ CHd(Z ×η Xη) with i : Z ↪→ Xη a closed immersion of
codimension ≥ 1.

Then for all n, i ≥ 0

H0(X,Riε∗Q/Z(n)) = H0(S,Riε∗Q/Z(n))

see 11.1, (6) for notation. In particular, taking n = 1 and i = 2 we obtain Br(X) =
Br(S).

Proof. This follows from Theorem 10.13. (Note, in case S is a regular affine curve
over K it follows, e.g., from [RS21, Lem 2.4] that S satisfies the conditions of that
theorem.) �

Corollary 11.22. Let f : X → S be a flat projective morphism of relative dimension
d between smooth integral and quasi-projective k-schemes. Let dimX = N . Assume
the diagonal of the generic fiber of f decomposes as in (11.21.1). For F = FN as in
Corollary 11.16(1)-(4) (in (1) and (2) we only consider the explicitly listed examples
with the exception of F = ΩN

/k/h
0
A1(ΩN

/k)) the pushforward

Rf∗F
N
X

f∗−→ FN−d
S [−d]

is an isomorphism.

Proof. The proof is similar to the proof of Corollary 11.16 except that we have to
replace the reference to Theorem 10.10 by a reference to Theorem 10.16. Further-
more we have to observe that in the cases considered we have γdFN ∼= FN−d, as
follows directly from the exactness of γ (see Lemma 9.2), Theorem 11.8, and the
weak Cancellation Theorem from [MS], see (9.1.5). �

Remark 11.23. (1) If the diagonal only decomposes rationally, then we obtain a
similar statement as in Corollary 11.22, up to bounded torsion.

(2) If F is a successive extensions of subquotients of Ga, then γF = 0 (as
follows from Theorem 11.8 and the exactness of γ) and we can similarly
apply Theorem 10.15.

The following statement seems to be new if S is not an algebraically closed field.

Corollary 11.24. Let f : X → S and g : Y → S be two flat, geometrically integral,
and projective morphisms between smooth connected k-schemes. We furthermore
assume that the generic fiber of f and the generic fiber of g have index 1 over the
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function field k(S). Denote by PicX/S the relative Picard functor (which is repre-
sentable, e.g., [BLR90, 8.2, Thm 1]) and by PicX/S[n] its n-th torsion subfunctor.

If X and Y are stably properly birational over S (see 10.2(2)), then any proper
birational correspondence between projective bundles over X and Y induces an iso-
morphism of sheaves on SNis

PicX/S[n] ∼= PicY/S[n], for all n.

Proof. By definition, we have that for any morphism of schemes T → S, PicX/S(T ) =
H0(T,R1f∗O×Xfppf

). The assumptions on f ensure that for any such T we have

fT∗OXT = OT , where fT : XT → T denotes the base change of f , (and similarly
with g). Hence f∗O×Xfppf

= O×Sfppf
and therefore also

(11.24.1) f∗µn,Xfppf
= µn,Sfppf

,

where µn,Xfppf
denotes the sheaf of n-th roots of unity in the fppf-topology on X.

This yields an exact sequence on Sfppf

0→ R1f∗µn,Xfppf → R1f∗O×Xfppf

n·−→ R1f∗O×Xfppf
.

Thus on Sét

(11.24.2) PicX/S[n] = v∗(R
1f∗µn,Xfppf

),

where v : Sfppf → Sét denotes the morphisms of sites (we denote the corresponding
morphism on X by the same letter.) The spectral sequence for the composition
Rv∗ ◦Rf∗ yields an exact sequence

(11.24.3) 0→ R1v∗(f∗µn,Xfppf
)→ R1(v ◦ f)∗µn,Xfppf

→ v∗R
1f∗µn,Xfppf

→ R2v∗(f∗µn,Xfppf
).

Write n = mpr, where p is the exponential characteristic of k, (m, p) = 1 and r ≥ 0.
By [Gro68, Thm 11.7] we have

(11.24.4) Rv∗µm,Xfppf
∼= µm,Xét

, Rv∗Gm,Xfppf
∼= Gm,Xét

in particular, the second isomorphism of (11.24.4) gives

(11.24.5) Rv∗µpr,Xfppf
∼= O×Xét

/(O×Xét
)p
r

[−1] ∼= WrΩ
1
Xét,log[−1]

where the second isomorphism holds by [Ill79, I, Prop 3.23.2] and we use that X is
smooth (also for the first isomorphism). Putting (11.24.1) - (11.24.5) together and
using R(v ◦ f)∗ = Rf∗Rv∗ and R2v∗(f∗µn,Xfppf

) = R2v∗(µn,Sfppf
) = 0 (note that S is

smooth too), we obtain an exact sequence on Sét

(11.24.6) 0→ WrΩ
1
Sét,log → R1f∗µm,Xét

⊕ f∗WrΩ
1
Xét,log → PicX/S[n]→ 0.

Let ε : Smét → SmNis be the morphism of sites. We saw in (11.0.2) that F i :=
Riε∗WrΩ

1
log is a reciprocity sheaf, for all i. The assumption on the index of the

general fiber of f is equivalent to the existence of a zero-cycle of degree 1 on the
generic fiber XK → K = k(S), so that we can apply Corollary 10.2 to find that

f ∗ : F 1
S → f∗F

1
X

is split injective. We can factor this map as the following composition

(11.24.7) F 1
S

R1ε∗(f∗)−−−−−→ R1ε∗(f∗WrΩ
1
Xét,log)

d1
ε,f−−→ R1(ε ◦ f)∗WrΩ

1
Xét,log

e1f,ε−−→ f∗F
1
X ,

where d1
ε,f (resp. e1

f,ε ) is an edge map of the spectral sequence associated to Rε∗Rf∗
(resp. to Rf∗Rε∗). Since by the above the composition (11.24.7) is injective, so is
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the first map in that composition; it follows that applying ε∗ to (11.24.6) yields an
exact sequence on SNis

(11.24.8) 0→ F 0
S → ε∗R

1f∗µm,Xét
⊕ f∗F 0

X → ε∗ PicX/S[n]→ 0.

Furthermore, the spectral sequence for Rε∗ ◦Rf∗ and the restriction of (11.24.1) to
Sét yield an exact sequence

(11.24.9) 0→ R1ε∗µm,Sét
→ R1(ε ◦ f)∗µm,Xét

→ ε∗R
1f∗µm,Xét

→ R2ε∗µm,Sét

d2
ε,f−−→ R2(ε ◦ f)∗µm,Xét

.

We claim that d2
ε,f is injective. Indeed, set M j := Rjε∗µm ∈ HINis. We can factor

f ∗ : M2
S → f∗M

2
X as

f ∗ : M2
S

d2
ε,f−−→ R2(ε ◦ f)∗µm,Xét

e2f,ε−−→ f∗M
2
X

where the maps are the edge morphisms of the sprectral sequence to Rε∗Rf∗ (resp.
Rf∗Rε∗). By the assumption on the index of the general fiber of f and Corollary
10.2 we find that f ∗ : M2

S → f∗M
2
X is injective; hence so is d2

ε,f . Furthermore since

the Nisnevich cohomology of a constant sheaf is trivial, we have Rjf∗(ε∗µm,Xét
) = 0,

for all j ≥ 1. This yields

R1(f ◦ ε)∗µm,Xét
∼= f∗R

1ε∗µm,Xét
= f∗M

1
X .

Thus (11.24.9) yields an exact sequence

0→M1
S → f∗M

1
X → ε∗R

1f∗µm,Xét
→ 0.

Together with (11.24.8) we obtain

ε∗ PicX/S[n] = Coker(F 0
S ⊕M1

S

f∗−→ f∗(F
0
X ⊕M1

X))

Since we get a similar description for g : Y → S the statement follows from Theorem
10.7. �
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algébrique du Bois-Marie 1963–1964. Théorie des topos et cohomologie étale des
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