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GROUP WITH MODULUS
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ABSTRACT. We prove a Lefschetz hypersurface theorem for abelian fundamen-
tal groups allowing wild ramification along some divisor. In fact, we show that
isomorphism holds if the degree of the hypersurface is large relative to the rami-
fication along the divisor.

1. STATEMENT OF MAIN RESULTS

Let X be a normal variety over a perfect field k¥ and U C X be an open subset
such that X \ U is the support of an effective Cartier divisor on X. Let D be an
effective Cartier on X with support in X \ U. We introduce the abelian fundamental
group 7% (X, D) as a quotient of 7{°(U) classifying abelian étale coverings of U with
ramification bounded by D. More precisely, for an integral curve Z C U, let ZV
be the normalization of the closure of Z in X with ¢z : ZY¥ — X, the natural
map. Let Z,, C ZY be the finite set of points = such that ¢z(z) ¢ U. Then
7% (X, D) is defined as the Pontryagin dual of the group filp H'(U) of continuous
characters x : 7¢*(U) — Q/Z such that for any integral curve Z C U , its restriction
x|z : T{°(Z) — Q/7Z satisfies the following equality of Cartier divisors on ZV:

Y art,(x|2)ly] < 63D,

where art,(x|z) € Z>¢ is the Artin conductor of x|z at y € Z and ¢3,D is the
pullback of D by the natural map ¢z : ZV — X.

Such a global measure of ramification in terms of curves has first considered by
Deligne and Laumon, see [La).

Now assume that X is smooth projective over k (we fix a projective embedding)
and that ¢ = X \ U is a simple normal crossing divisor. Let Y be a smooth
hypersurface section such that Y x x C' is a reduced simple normal crossing divisor
on Y and write deg(Y) for the degree of Y with respect to the fixed projective
embedding of X. Set F =Y Xxx D. Then one sees from the definition that the map
Y NU — U induces a natural map

vyyx 1 ™Y, E) = n{’(X, D).
Our main theorem says:

Theorem 1.1. Assume that Y is sufficiently ample with respect (X, D) (see Def-
inition 8.1). If d := dim(X) > 3, vy x is an isomorphism. If d = 2, 1y/x is
surjective.

Below we see that Y is sufficiently ample if deg(Y") > 0.

Corollary 1.2. Let X be a normal proper variety over a finite field k. Then
7 (X, D)% is finite, where

7% (X, D)° = Ker(n2(X, D) — 7% (Spec(k))).
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Proof. In case X and X \ U satisfy the assumption of Theorem 1.1, the corollary
follows from the corresponding statement for curves. The finiteness in the curves
case is a consequence of class field theory. For the general case, one can take by [dJ]
an alteration f : X’ — X such that X’ and X'\ U’ with U’ = f~1(U) satisfies the
assumption of Theorem 1.1. Then the assertion follows from the fact that the map
fo: TP (U") — 788 (U) has a finite cokernel. O

Corollary 1.2 can also be deduced from [Ra, Thm. 6.2]. It has recently been
generalized to the non-commutative setting by Deligne, see [EK].
Theorem 1.1 is a central ingredient in our paper [KeS].

2. REVIEW OF RAMIFICATION THEORY

First we review local ramification theory. Let K denotes a henselian discrete
valuation field of ch(K) = p > 0 with the ring Ok of integers and residue field .
Let 7 be a prime element of O and mg = (1) C Ok be the maximal ideal. By the
Artin-Schreier-Witt theory, we have a natural isomorphism for s € Z>1,

(2.1) s s Wi(K) /(1L = F)W,(K) — H'(K,Z/p’Z),

where W,(K) is the ring of Witt vectors of length s and F' is the Frobenius. We
have the Brylinski-Kato filtration indexed by integers m > 0

ﬁl}%gWs(K) ={(as—-1,...,a1,a9) € W(K) |piUK((L7;) > —m},

where v is the normalized valuation of K. In this paper we use its non-log version
introduced by Matsuda [Mal]:

fil,, W, (K) = fil'% W, (K) + V* 6l W, (K),

where s’ = min{s,ord,(m + 1)}. We define ramification filtrations on H(K) :=
HY(K,Q/Z) as

filps H' (K) = H' (K){p'} @ sglés(ﬁll?ﬁWs(K ) (m > 0),
fil,, H'(K) = H' (K){p'} @ SL;Jlés(ﬁlmWs(K)) (m > 1),

where H'(K){p'} is the prime-to-p part of H'(K). We note that this filtration is
shifted by one from Matsuda’s filtration [Ma, Def.3.1.1]. We also let filyH'(K) be
the subgroup of all unramified characters.

Definition 2.1. For y € H!(K) we denote the minimal m with x € fil,, H'(K) by
art g (x) and call it the Artin conductor of x.

We have the following fact (cf. [Ka] and [Mal).

Lemma 2.2.

(1) fily HY(K) is the subgroup of tamely ramified characters.

(2) fil,, H'(K,) C fil®*H'(K) C fil,,, . H (K).

(3) fil, H'(K) = fil°% | H'(K) if (m,p) = 1.

The structure of graded quotients:
gr,, H'(K) = fil,, H(K) /fil,,_1 H (K) (m > 1)
are described as follows. Let Q}( be the absolute Kahler differential module and put
fil, Qe = mE™ @0y Qo

We have an isomorphism
(2.2) gL, = filn Qe /il 1 Q) ~ m "0 Qo K.
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We have the maps

s—1 ]
Féd:Ws(K) — Q}( i (as—1,...,a1,a0) = Z apl_ldai.

)
1=0

and one can check F*d(fil, W(K)) C fil,QL..

Theorem 2.3. ([Ma]) The maps F*d factor through ds and induce a natural map
fil, H' (K) — fil, Q%

which induces for m > 1 an injective map (called the refined Artin conductor for K)

(2.3) arty : gr, HY(K) < gr,Qk.

Next we review global ramification theory. Let X,C' be as in the introduction
and fix a Cartier divisor D with |D| C C. We recall the definition of 7% (X, D). We
write H'(U) for the étale cohomology group H'(U,Q/Z) which is identified with

the group of continuous characters 7°(U) — Q/Z.

Definition 2.4. We define filp H'(U) to be the subgroup of x € H'(U) satisfying
the condition: for all integral curves Z C X not contained in C, its restriction
x|z : T{°(Z) — Q/7Z satisfies the following equality of Cartier divisors on ZV:

> arty(xlz)ly] < 65D,
YE€EZoo

where art,(x|z) € Z>¢ is the Artin conductor of x|z at y € Z and ¢3,D is the
pullback of D by the natural map ¢, : ZV — X. Define

(2.4) 7{°(X, D) = Hom(filp H(U), Q/7Z),
endowed with the usual pro-finite topology of the dual.

For the rest of this section we assume that X is smooth and C' is simple normal
crossing. Let I be the set of generic points of C' and let C\ = {A} for A € I. Write

(2.5) D =Y myCh.

For A € I let K, be the henselization of K = k(X) at X\. Note that K is a henselian
discrete valuation field with residue field k(C)).

Proposition 2.5. We have
filp H'(U) = Ker(H'(U) — €D H'(K»)/film, H' (K))).
AET

Proof. This is a consequence of ramification theory developed in [Ka] and [Ma]. See
[KeS, Cor.2.7] for a proof. O

Proposition 2.6. Fiz A € I such that my > 1 in (2.5). The refined Artin conductor
artr, (cf. Theorem 2.3) induces a natural injective map

arte, : filp H(U)/filp_c, HY(U) — H°(Cy, 2% (D) @0, Oc,)

which is compatible with pullback along maps f : X' — X of smooth varieties with
the property that f~(C) is a reduced simple normal crossing divisor.

Proof. This follows from the integrality result [Ma, 4.2.2] of the refined Artin con-
ductor. 0

Proposition 2.6 motivates us to introduce the following log-variant of filp H' (U).
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Definition 2.7. We define il S8 H' (U) as
RIS H (U) = Ker (H' (U) — €@ H' (K, /filg H' (K))).
el
Lemma 2.8.

(1) file HY(U) is the subgroup of tamely ramified characters.
(2) filpH'(U) C il¥HY(U) C filp o H'(U).
(3) filpH' (U) = il¢ (H'(U) if (my,p) =1 for all A € I.

Proof. This is a direct consequence of Lemma 2.2. O

3. PROOF OF MAIN THEOREM

Let X be a smooth projective variety over a perfect field of characteristic p > 0
and C' C X be areduced simple normal crossing divisoron X. Let j : U = X\C C X
be the open immersion. Take an effective Cartier divisor

D = Zm)\C)\ with my > 0.
Ael
Let I' = {\ € I | p/m,} and put
D' = Z(m/\ + I)C,\ + Z m)C).
xel' AeI\I'

Let Y be a smooth hypersurface section such that Y x x C' is a reduced simple
normal crossing divisor on Y.

Definition 3.1.

(1) Assuming dim(X) > 3, we say that Y is sufficiently ample for (X, D) if the
following conditions hold:
(A1) H(X,Q4 (-=Z+Y)) = 0 for any effective Cartier divisor = < D and for
i=d,d—1,d—2.
(A2) For any A € I, we have

HY(C\, Q% (D' —Y)® O¢,) = H(Cy, O, (D' = Y)) = H' (Cy, Oc, (D' - 2Y)) = 0.

(2) Assuming dim(X) = 2, we say that Y is sufficiently ample for (X, D) if the
following condition holds:
(B) H(X,Q4(-=+Y)) = 0 for any effective Cartier divisor = < D and for
i=1,2.

We remark that there is an integer IV such that any smooth Y of degree> N is
sufficiently ample for (X, D).

Theorem 1.1 is a direct consequence of the following.
Theorem 3.2. Let Y be sufficiently ample for (X, D). Write E =Y xx D.
(1) Assuming d := dim(X) > 3, we have isomorphisms
flp HY(U) = filgHY(UNY) and GIEH'(U) — GI2H (U NY).
(2) Assuming d = 2, we have injections
flpH (U) < flgH (U NY) and GIBHY(U) = GI2HY(UNY).

For an abelian group M, we let M{p'} denote the prime-to-p torsion part of M.
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Lemma 3.3. (1) Assuming d := dim(X) > 3, we have an isomorphism
filpH' (U){p'} — filgH' (U NY){p'}

and the same isomorphism for ﬁll[())g.
(2) Assuming d =2, we have an injection

filp H (U){p'} = filgH' (U NY){p'}
and the same injection for ﬁllgg.
Proof. Noting
il B (U){p'} = o B (U){p'} = SIG3H (U){p'} = I5H (U) {p'),
this follows from the tame case of Theorem 1.1 due to [SS]. O
By the above lemma, Theorem 3.2 is reduced to the following.
Theorem 3.4. Let the assumption be as in Theorem 3.2. Take an integer n > 0.
(1) Assuming d := dim(X) > 3, we have isomorphisms
fil, H (U)[p"] — lgH (U NY)[p"]

and the same isomorphism for ﬁll[())g.
(2) Assuming d =2, we have an injection

filp H (U)[p"] — fileH (U NY)[p"]

.. . log
and the same injection for fil;)°.

In what follows we consider an effective Cartier divisor with Z[1/p]-coefficient:
D:Zm,\c,\, my EZ[I/p]Zo.
Ael
We put
[D] =) [ma]Cx  with [my] = max{i € Z | i < my}.
Ael

and F(£D) = F®p, Ox(£[D]) for an Ox-module. For D as above, let ﬁllganOX
be the subsheaf of j, W, Oy of local sections

a € W,Oy such that a € ﬁlﬁ%Wn(KA) for any A € I,

where fill%8 W, (K)) := ﬁqgi
K = k(X) at A. We note

]Wn(K,\) is defined in §2 for the henselization K of

Ox (D) = fil%¥W, 0x forn=1.
The following facts are easily checked:

e The Frobenius F induces F : il W,Ox — fIpEW, Ox.

e The Verschiebung V' induces V : ﬁll[O)an,lOX — ﬁIIBanO X.
e The restriction R induces R : ﬁllDOan(’) x — fi1'os Wn-10x.

D/p
e The following sequence is exact:

(3.1) 0 Ox (D) s BIEW,0x 5 6158 W, _10x — 0.
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We define an object (Z/p"Z)x|p of the derived category D’(X) of bounded com-
plexes of étale sheaves on X:

(Z/p"Z) x|p = Cone(£il'% W, 0x =5 HI0EW,,0x)[~1].

D/p
We have a distinguished triangle in D?(X):
(3.2) (Z/p"Z) xp — B, WaOx =5 GIEW,0x 5.

Lemma 3.5. There is a distinguished triangle

(Z/pL)x\p — (Z/P"L) x1p — (Z/P" " L) x| pjp — -

Proof. The lemma, follows from the commutative diagram

n—1
0 —= Ox(D/p) = filp5 W, Ox —> filp% , Wy 1 Ox —>0

LI_F ll_F ll_p

n—1
0 —— Ox (D) —"= Gl W, 0x — > fil5 W, 10x —0

Lemma 3.6. There is o canonical isomorphism
1
Y (U)[p"] ~ H(X, (Z/p"Z) x|p)-

Proof. Noting that the restriction of (Z/p"Z)x|p to U is Z/p"Z on U, we have the
localization exact sequence

(3.3)  H'X,(Z/p"L)xip) = H' (U, Z/p"Z) — HE(X, (Z/p"L)x p)-
For the generic point A of C), (3.2) gives us an exact sequence

H)(X, ﬁlllo)g/anOX) 8 HL(X AEEW,0x) — HE(X, (Z/p"Z) xp) = H3(X, ﬁlllo)g/anOX).

By [Gr, Cor.3.10] and (3.1) we have
H (X, 61%8 W,0x) = Hy(X, 618 W,0x) =0 fori>?2

D/p
and . | .
0] 0O,
H)\ (X, ﬁng/;anOX) ~ Wy (KA)/ﬁlmgA/an(K/\)a
HY (X, AIEW,0x) = Wi (K))/fL%8 W, (K)).
Thus we get

H(X, (Z/p"Z) x|p) = H' () [p"]/filgg H' (K)[p"].
Hence Lemma 3.6 follows from (3.3) and the injectivity of
HE(X, (Z[p"Z)x\p) = D HI(X, (Z/p"Z) x|p)-
A€l
This injectivity is a consequence of
Claim 3.7. For x € C with dim(Ox z) > 2 we have
H(X,(Z[p"Z)x)p) = 0.
By Lemma 3.5 it suffices to show Claim 3.7 in case n = 1. Triangle (3.2) gives us
an exact sequence
1-F
Hy(X,0x (D)) = Hy (X, (Z/pZ)xp) = H7 (X, Ox(D/p)) — H;(X, Ox(D)).

If dim(Ox ) > 2, HY(X,Ox (D)) =0 and H2(X,Ox(D/p)) = 0 by [Gr, Cor.3.10],
which implies H7 (X, (Z/pZ) x|p) = 0 as desired.
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We now assume dim(Ox ,) = 2. Let (Z/pZ)x denote the constant sheaf Z /pZ on
X and put

1-F
Note that Fx|p = 0 for D = 0. By definition we have a distinguished triangle

(Z/pZ)x — (Z/pZ)X\D — Fxip .
By [SGAL, X, Theorem 3.1], we have H2(X,(Z/pZ)x) = 0. Hence we are reduced
to showing
(3.4) HE(X, Fyjp) = 0.

Without loss of generality we can assume that D has integral coefficients. We
prove (3.4) by induction on multiplicities of D reducing to the case D = 0. Fix
an irreducible component C) of C' with the multiplicity my > 1 in D and put
D' = D — Cy. We have a commutative diagram with exact rows and columns

(Z/pZ)x (Z/pZ)x
0 — Ox(D'/p) — Ox(D/p) L 0

ll—F ll—F lF
0—— Ox(D") Ox(D) — O¢, (D) —=0.

Here O¢, (D) = Ox (D) ® O¢,, and L = O¢, (D/p) if plm, and £ = 0 otherwise.
Thus we get short exact sequences

0_>‘7:X|D’_>‘7:X|D_>OCA(D)_>0 lfp /fm/\,
O%fX‘D/%fX‘D%OCk(D)/OCX(D/p)p—)O 1fp|m)\

We may assume H2(X,F x|p') = 0 by the induction hypothesis. Hence (3.4) follows
from

(3.5) HZ(Cy, Oc, (D)) =0,

(3.6) H;(Cx,0c, (D)/Oc, (E)P) =0,

where we put £ = [D/p]. We may assume z € C) so that dim(O¢, ) = 1 by the
assumption dim(Ox ;) = 2. (3.5) is a consequence of [Gr, Cor.3.10]. In view of an
exact sequence

0 — OCA(pE)/OCA (E)p - OC)\(D)/OCA (E)p - OC)\(D)/OC)\ (pE) -0,
(3.6) follows from
Hg(c)n OCA (pE)/OCx (E)p) =0 and H:E(Cz\v OC& (D)/OCA (pE)) = 0.

The first assertion follows from [Gr, Cor.3.10] noting that O¢, (pE)/Oc, (E)P is
a locally free ng—module. The second assertion holds since O¢, (D)/Oc¢, (pE) is
supported in a proper closed subscheme T of C and x is a generic point of T if
x € T. This complete the proof of Lemma 3.6. [J O

In view of the above results, the assertions for ﬁllDOg of Theorem 3.4(1) and (2)
follows from the following.

Theorem 3.8. Let the assumption be as in Theorem 3.2. The natural map
HY(X,(2/p"Z)xip) = H'(Y,(Z/p"L)yp)

is an isomorphism for d := dim(X) > 3, and it is injective for d = 2.
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Proof. By Lemma 3.5 we have a commutative diagram:

0 0

HY(X,(Z/pZ)xp)

HY(Y, (Z/pZ)y|p)

H'(X,(Z/p"Z)x\p) HY(Y, (Z/p"Z)y|p)

H! (Xv (Z/pn_IZ)X\D/p) — H' (Yv (Z/pn_IZ)Y\E/p)

H?*(X,(Z/pZ)xp) H2(Y,(Z/pZ)yE)

The theorem follows by the induction on n from the following. O

Lemma 3.9. Let the assumption be as Theorem 3.2.

(1) Assuming d > 3, the natural map
H'(X,(Z/pZ)xp) — H'(Y, (Z/pZ)y|)

is an isomorphism for i = 1 and injective for i = 2.
(2) Assuming d = 2, the natural map

HY(X,(Z/pZ)xp) = H' (Y, (Z/pZ)y|R)
1§ 1njective.
Proof. We define an object K of D?(X):
K = Cone(Ox(D/p—Y) =5 Ox(D - Y))[-1].
By the commutative diagram with exact horizontal sequences:
0 —=Ox(D/p~Y) —= Ox(D/p) — Oy (E/p) —=0

llF llF llF

0——=0Ox(D-Y) Ox (D) Oy(E) ——0

we have a distinguished triangle in D®(X):
K = (Z/pZ)x\p = (Z/pZ)y|E .

Hence it suffices to show H*(X,K) =0 for i = 1,2 in case d > 3 and H'(X,K) =0
in case d = 2. We have an exact sequence

H°(Ox(D -Y)) = H'(X,K) = H'(Ox(D/p - Y))
— HY(Ox(D -Y)) = H*X,K) - H*(Ox(D/p - Y))

By Serre duality, for a divisor = on X, we have
H(X,0x(E-Y))=H7(X, Q% (-2+Y))".
Thus the desired assertion follows from Definition 3.1(A1) and (B). O
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It remains to deduce the assertions for filp of Theorem 3.4(1) and (2) from that

for ﬁllgg. Let D' be as in the beginning of this section and E' = D' xx Y. Noting
that the multiplicities of D’ are prime to p, we have by Lemma 2.8(3)

filpy HY(U) = il®_ HYU) and filg H(UNY) =% H(UNY).
Thus the assertions for ﬁllggfc of Theorem 3.4 implies that for fil;». Since filp C
filppr, it immediately implies the injectivity of
filpH'(U) — filpH (U NY).
It remains to deduce its surjectivity from that of
filp HY(U) — filp HY({U NY)
assuming d > 3. For this it suffices to show the injectivity of
filp H'(U) /filp H (U) —= filp HY (U NY) /filpH (U NY).

By Proposition 2.6 we have a commutative diagram

filpy Y (U) /filp ' () @ H(C), Q% (D) ®oy Oc,)

AET!

ﬁlElHl(U N Y)/ﬁlEHl(U N Y)C—> )\Qi HO(C/\ ny, Q%/(D’) R0y OC’XDY)
c ’

Thus we are reduced to showing the injectivity of the right vertical map. Putting
L = Ker(Q% — i.Q}) where i : Y C X, the assertion follows from

H(Cy, L(D") ®0, Oc,) = 0.
Note that we used the fact that Y and C) intersect transversally. We have an exact
sequence
0= Q%(-Y) = L— O0x(-Y)® Oy — 0.
From this we get an exact sequence
0— Q&(D’ -Y)®o, Oc, — L(D") ®ox Oc, = Oc, (D'-Y)® Oc,ny — 0.
We also have an exact sequence
0— OC’X (D, — QY) — OC’X (D, — Y) — O(j)\ (DI — Y) & OC’XHY — 0.

Therefore the desired assertion follows from Definition 3.1(A2). This completes the
proof of Theorem 3.4. [
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