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Abstract. We construct a theory of higher local symbols along Paršin chains
for reciprocity sheaves. Applying this formalism to differential forms, gives a new
construction of the Paršin-Lomadze residue maps, and applying it to the torsion
characters of the fundamental group gives back the reciprocity map from Kato’s
higher local class field theory in the geometric case. The higher local symbols
satisfy various reciprocity laws. The main result of the paper is a characterization
of the modulus attached to a section of a reciprocity sheaf in terms of the higher
local symbols.
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1. Introduction

In this note we apply the results from [RSb] to obtain a theory of higher local sym-
bols for reciprocity sheaves. These symbols are higher dimensional generalizations
of the local symbols defined by Rosenlicht-Serre [Ser84] in the 1-dimensional case
for commutative algebraic groups. Higher local symbols are defined along Paršin
chains and satisfy various reciprocity laws. Applying this formalism to differential
forms, gives a new construction of the Paršin-Lomadze residue maps, and applying
it to the torsion characters of the fundamental group gives back the reciprocity map
from Kato’s higher local class field theory in the geometric case. The main result of
the paper is a characterization of the modulus attached to a section of a reciprocity
sheaf in terms of the higher local symbols. This result will be an essential ingredient
in [RSc] and [Sai].

1.1. We fix a perfect field k. Reciprocity sheaves were introduced by Kahn, Saito,
and Yamazaki in [KSY22]. A reciprocity sheaf F is a Nisnevich sheaf with transfers
which has the additional property, that any section a ∈ F (U) over a smooth k-
scheme U has a modulus, i.e., there is a proper k-scheme X and an effective Cartier
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divisor D on X, such that U = X \ D and the pair (X,D) measures the defect
of a being regular outside of U . Though one should think of the modulus as a
measure for the pole order or the depth of ramification of a along D, the interest
comes from the fact that it is defined in a motivic way, namely by requiring that
the action of certain finite correspondences is zero on a, see 2.1 and the references
there for details. The subgroup of sections of F (U) with modulus (X,D) is denoted

by F̃ (X,D). If X is projective of dimension d over k, then in [RSb, Proposition 6.7]
we construct a pairing

(1.1.1) (−,−)(X,D)K/K : F̃ (XK , DK)⊗Z H
d(XK,Nis, K

M
d (OXK

, IDK
))→ F (K),

where K is a function field over k, XK = X ⊗k K, KM
d is Kerz’ improved Mil-

nor K-theory sheaf, and KM
d (OXK

, IDK
) = Ker(KM

d,X → KM
d,D). For particular

reciprocity sheaves this gives back several pairings which were constructed in the
literature by different methods, e.g., if F = Homcont(π

ab(−),Q/Z) and K is a fi-
nite field, this pairing (or at least the pro-system over larger and larger D) was
constructed in [KS86] to obtain higher dimensional geometric class field theory, or
if k has characteristic zero and F (U) denotes the absolute rank one connections
on U , this pairing was constructed by Bloch-Esnault in the case U has dimension

1. A disadvantage of the motivic definition of F̃ (X,D) is that it is hard to de-
cide which sections of F (U) have modulus (X,D). To study the pairing in other
interesting examples, e.g., F (U) = H1(Ufppf , G) for G a finite k-group scheme, or
F (U) = H0(U,Rn+1ε∗Q/Z(n)) with Q/Z(n) the étale motivic complex of weight n
with Q/Z-coefficient and ε : Xét → XNis the change of sites map, it is desirable to

get a better hold on F̃ (X,D). Easier-to-handle global descriptions of F̃ (X,D) are
given in [RSb] and [RSc]. In the present article we give a purely local description,
at least under certain extra assumptions on (X,D).

1.2. Let K be a function field over k. Recall that a Paršin chain (or maximal chain)
on an integral finite-type K-scheme X of dimension d is a sequence x = (x0, . . . , xd)
of points of X with xi < xi+1, i.e., xi is a strict specialization of xi+1, for all
i = 0, . . . , d − 1. Let F be a reciprocity sheaf. For any maximal chain x on X, we
define in section 5 the higher local symbol

(1.2.1) (−,−)X/K,x : F (Kh
X,x)⊗Z K

M
d (Kh

X,x)→ F (K),

where Kh
X,x is the henselization of OX,x0 along the chain x, see 3.2 for details. The

definition of this pairing relies on the map cx : KM
d (Kh

X,x)→ Hd(X, j!K
M
d,U) already

considered in [KS86] and the pushforward Hd(XNis, j!F 〈d〉U) → F (K) constructed
in [RSb] (and relying on the pushforward constructed in [BRS]). Using the natural
map K(X) ↪→ Kh

X,x (1.2.1) also induces a semi-local pairing

(−,−)X/K,x : F (K(X))⊗Z K
M
d (K(X))→ F (K).

The family of these symbols (for all X and all x) is uniquely determined by the
properties (HS1)-(HS4) which resemble the properties used by Serre to characterize
and construct his local symbols on curves for commutative algebraic groups in [Ser84,
III]. This uniqueness property can be used to check that the higher local symbols
coincide for F = Ωq with those defined by Paršin and Lomadze ([Par76], [Lom81]),
for details on this and further examples see 5.6. The property (HS3) roughly says
that the symbol (−,−)X/K,x vanishes on

F̃ (XK , DK)⊗KM
d (OXK

, IDK
)h(x0,...,xd−1),
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where KM
d (OXK

, IDK
)h(x0,...,xd−1) is the Nisnevich stalk of KM

d (OXK
, IDK

) at the chain

(x0, . . . , xd−1), see (3.2.2). The property (HS4) is the reciprocity theorem∑
xi−1<y<xi+1

(a, β)X/K,(x0,...,xi−1,y,xi+1,...,xd) = 0,

for all a ∈ F (K(X)), β ∈ KM
d (K(X)), and i ∈ {0, . . . , d}, where in the case

i = 0, we have to assume X projective. Interestingly, in [Lom81] (and many similar
constructions) property (HS3) follows easily from the definition of the local symbol
and the reciprocity law (HS4) is a theorem, whose proof requires a more involved
argument, whereas in our case (HS4) is a formal consequence of the construction
and (HS3) follows from the pairing (1.1.1), which is one of the main results from
[RSb].

The main result of the present paper is the following theorem (the statement in
the body of the text is a bit stronger).

Theorem 1.3 (see Theorem 6.1, Proposition 7.3). Let X be a smooth k-scheme of
pure dimension d and D an effective Cartier divisor on X whose support has simple
normal crossings. Let U = X \ |D| and a ∈ F (U). Assume that there exists an
open dense immersion X ↪→ X into a smooth and projective k-scheme, such that
(X \ U)red has simple normal crossings. Let V ⊂ X be an open neighborhood of the
generic points of |D|. Then the following conditions are equivalent:

(i) a ∈ F̃ (X,D).
(ii) For any function field K/k and any maximal chain x = (x0, x1 . . . , xd) on

VK with xd−1 ∈ DK, we have

(aK , β)XK/K,x = 0, for all β ∈ KM
d (OXK

, IDK
)xd−1

,

where XK = X ⊗k K and aK ∈ F (UK) denotes the pullback of a.

If furthermore D is a reduced divisor with simple normal crossings, then the same
is true without assuming the existence of the smooth projective compactification X
with SNCD boundary.

If F has level≤ 3 (see 6.5) one can also get around the assumption on the existence
of the smooth compactification with SNCD boundary, see Corollary 6.6.

The proof of Theorem 1.3 uses the main results from [RSb]. The stronger state-
ment for D reduced relies on [Sai, Corollary 2.5], [Sai20], and an additional diagonal
argument explained in section 7. Theorem 1.3 and the properties (HS1)-(HS5) of
the higher local symbols play an important role in the proofs of the main result of
[RSc] and in the proof of [Sai, Theorem 4.2].

Notation 1.4. (1) In this paper k denotes a field and Sm the category of sepa-
rated schemes which are smooth and of finite type over k. For k-schemes X
and Y we write X×Y := X×k Y . For n ≥ 0 we write Pn := Pn

k , An := An
k .

(2) Let F be a Nisnevich sheaf on a scheme X and x ∈ X a point. Then we
denote by Fx its Zariski stalk and by F h

x = lim−→x∈U/X F (U) the Nisnevich

stalk, where the limit is over all Nisnevich neighborhoods U → X of x.
(3) For a reduced ring R, Frac(R) denotes its total ring of fractions.
(4) For a scheme X we denote by X(i) (resp. X(i)) the set of i-dimensional (resp.

i-codimensional) points of X.
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2. Preliminaries on reciprocity sheaves and pairings

This paper builds on [RSb]. In this section we recall some notations and results,
see loc. cit. and the references there for more details.

In this section k is a perfect field.

2.1. A modulus pair (X,D) in the sense of [KMSY21a], [KMSY21b] consists of a
separated scheme of finite type over k and an effective (possibly empty) Cartier
divisor D on X, such that the complement U = X \ D is smooth over k. The
modulus pair (X,D) is called proper, if X is proper over k. Let F be a presheaf
with transfers and U ∈ Sm. A modulus for an element a ∈ F (U) is a proper
modulus pair (X,D) with U = X \ D, such that for all S ∈ Sm and all integral
closed subschemes Z ⊂ A1×S×U , which are finite and surjective over a connected
component of A1

S and such that the normalization Z̃ of the closure of Z in P1×S×X
satisfies ∞S|Z̃ ≥ D|Z̃ , we have

[Z0]∗a = [Z1]∗a,

where [Zε] denotes the finite correspondence from S to U associated to Z∩({ε}×S),
ε ∈ {0, 1} ⊂ A1.

A reciprocity sheaf in the sense of [KSY22] is a presheaf with transfers F which is
a Nisnevich sheaf on Sm and for which any section a ∈ F (U) has a modulus (X,D).
We denote by RSCNis the category of reciprocity sheaves. For a proper modulus
pair (X,D) with X \D = U we set

F̃ (X,D) = {a ∈ F (U) | (X,D) is a modulus for a}.

If (X,D) is not proper we set

F̃ (X,D) = lim−→
(Y,E)

F̃ (Y,E),

where the limit is over the cofiltered ordered set of compactifications (Y,E) of (X,D),
see [KMSY21a, 1.8]. We also regularly work with pairs (X,D), which are equal to
a projective limit lim−→i∈I(Xi, Di) with (Xi, Di) modulus pairs and I some filtered set

(e.g., X is of finite type over a function field K/k , D is an effective Cartier divisor
on X and U = X \D is regular). In this case we set

F̃ (X,D) = lim−→
i∈I

F̃ (Xi, Di).

2.2. Let F ∈ RSCNis. Let K be a function field over k and U a regular quasi-
projective K-scheme of dimension d. Choose a factorization

U
j−→ X

f−→ SpecK

of the structure map U → SpecK with X reduced, j open dense, and f projective.
Building on the results from [BRS], we define in [RSb, 4.] for such a factorization,
a pushforward map

(f, j)∗ : Hd(XNis, j!(F 〈d〉U))→ F (K),

where “j!” denotes the extension-by-zero functor. Here F 〈d〉 ∈ RSCNis is the dth
twist of F introduced in [RSY21, 5.5] and F 〈d〉U denotes its restriction to UNis.
There is a natural map of Nisnevich sheaves FU ⊗Z K

M
d,U → F 〈d〉U on Sm, where
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KM
d denotes the Nisnevich sheafification of the improved Milnor K-theory from

[Ker10], which induces a morphism on XNis

(2.2.1) j∗FU ⊗Z j!K
M
d,U → j!F 〈d〉U .

This yields the pairing

(2.2.2) (−,−)U⊂X/K : F (U)⊗Z H
d(XNis, j!K

M
d,U)

∪−→ Hd(XNis, j∗FU ⊗Z j!K
M
d,U)

(2.2.1)−−−→ Hd(XNis, j!F 〈d〉U)
(f,j)∗−−−→ F (K).

It is a factorization of the usual pairing induced by finite correspondences from
SpecK to U in the following sense: If x ∈ U is a closed point there is a natural
isomorphism

(2.2.3) θx : Z '−→ Hd
x(UNis, K

M
d,U),

induced by the Gersten resolution (see [Ker10, Proposition 10, (8)]). Composing
with the natural map Hd

x(UNis, K
M
d,U) → Hd(XNis, j!K

M
d,U) and taking the sum over

all closed points x yields the map

(2.2.4) Z0(U) =
⊕
x∈U(0)

Z→ Hd(XNis, j!K
M
d,U).

By [RSb, Lemma 6.6] we have for all a ∈ F (U) and ζ ∈ Z0(U)

(2.2.5) (a, [ζ])U⊂X/K = ζ∗a,

where [ζ] on the left denotes the image of ζ under (2.2.4) and on the right we view
ζ as a finite correspondence from SpecK to U .

2.3. We recall the main result from [RSb]. Let F ∈ RSCNis. Let K be a function
field over k and let X be an integral projective K-scheme of dimension d and U ⊂ X
a dense open subscheme which is regular. Let D ⊂ X be a closed subscheme (not
necessarily a divisor) such that Dred = X \ U . Let ν : Y → X be the normalization
of X. We define

(2.3.1) Fgen(X,D) := Ker

F (U)→
⊕

y∈Y (1)∩ν−1(D)

F (Y h
y \ y)

F̃ (Y h
y , D

h
y )

 ,

where Y h
y = SpecOhY,y and Dh

y = D ×X Y h
y . Furthermore, we define for r ≥ 1

Vr,X|D = Im(O×X|D ⊗Z K
M
r−1,X → KM

r,X), where O×X|D = Ker(O×X → O
×
D).

This sheaf is very close to the relative Milnor K-sheaf KM
r (OX , ID) defined in [KS86,

(1.3)], where ID denotes the ideal sheaf of D. In fact the two sheaves agree for
r = 1 and they have the same stalks at all points with infinite residue field. Thus
the natural inclusion Vd,X|D ↪→ KM

d (OX , ID) induces by Grothendieck-Nisnevich
vanishing an isomorphism

(2.3.2) Hd(XNis, Vd,X|D)
'−→ Hd(XNis, K

M
d (OX , ID)).

The composition

(2.3.3) Z0(U)
(2.2.4)−−−→ Hd(XNis, j!K

M
d,U)→ Hd(XNis, Vd,X|D)

is therefore surjective by [KS86, Theorem 2.5]. We define R(X|D) by the exact
sequence

0→ R(X|D)→ Hd(XNis, j!K
M
d,U)→ Hd(XNis, Vd,X|D)→ 0.
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Theorem 2.4 ([RSb, Proposition 6.7, Theorem 6.8]). Assumptions as above.

(1) The pairing (2.2.2) induces a pairing

(−,−)(X,D)/K : Fgen(X,D)⊗Z H
d(XNis, Vd,X|D)→ F (K).

(2) Assume X ∈ Sm is projective over k and D is an effective Cartier divisor
with simple normal crossing support. Then for a ∈ F (U) with U = X \ D
we have

F̃ (X,D) = Fgen(X,D) = {a ∈ F (U) | (aK , γ)UK⊂XK/K = 0 ∀K/k, γ ∈ R(XK |DK)},
where in the set on the right, K runs over all function fields over k, XK =
X ⊗k K, and aK is the pullback of a to F (UK).

In this paper we give a purely local description of the right hand side in (2), using
Paršin chains and higher local rings.

3. Recollections on Paršin chains, higher local rings, and
cohomology

We recall some definitions and results from [KS86, (1.6)] (see also [RSb, 5.]). In
this section, X is a reduced noetherian separated scheme of dimension d <∞, such
that X(d) = X(0).

3.1. For x, y ∈ X we write

y < x :⇐⇒ {y} ( {x}, i.e., y ∈ {x} and y 6= x.

A chain on X is a sequence

(3.1.1) x = (x0, . . . , xn) with x0 < x1 < . . . < xn.

The chain x is a maximal Paršin chain (or maximal chain) if n = d and xi ∈ X(i).

Note that the assumptions on X imply xi ∈ {xi+1}
(1)

. We denote

c(X) = {chains on X} and mc(X) = {maximal chains on X}.
A maximal chain with break at r ∈ {0, . . . , d} is a chain (3.1.1) with n = d − 1

and xi ∈ X(i), for i < r, and xi ∈ X(i+1), for i ≥ r. We denote

mcr(X) = {maximal chain with break at r on X}.
For x = (x0, . . . , xd−1) ∈ mcr(X), we denote by b(x) the set of y ∈ X(r) such that

(3.1.2) x(y) := (x0, . . . , xr−1, y, xr, . . . , xd−1) ∈ mc(X).

3.2. Let S ⊂ X be a finite subset contained in an affine open neighborhood of X.
A strict Nisnevich neighborhood of S is an étale map u : U → X such that U is
affine, the base change u−1(S) → S of u is an isomorphism, and every connected
component of U intersects u−1(S).

Let x = (x0, . . . , xn) be a chain on X. A strict Nisnevich neighborhood of x is a
sequence of maps

U = (Un → . . .→ U1 → U0 → X =: U−1),

such that Ui → Ui−1 is a strict Nisnevich neighborhood of Ui−1,xi = Ui−1 ×X {xi},
for all i = 0, . . . , n. There is an obvious notion of morphism between two strict
Nisnevich neighborhoods and picking a representative in each isomorphism class
yields a filtered set

N(x) := {strict Nisnevich neighborhoods of x}.
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Assume x ∈ mcr(X) and y ∈ b(x). If U is a strict Nisnevich neighborhood as above,
then repeating Ur−1 in the rth spot yields a map of filtered sets

(3.2.1) N(x)→ N(x(y)).

The Nisnevich stalk of a presheaf F on XNis at x ∈ c(X) is defined to be

(3.2.2) F h
x := lim−→

U=(Un→...→X)∈N(x)

F (Un).

Note that for x ∈ mcr(X) and y ∈ b(x) the map (3.2.1) induces a natural map

(3.2.3) ιy : F h
x → F h

x(y).

For F = OX we write OhX,x = F h
x with F = O and Kh

X,x = Frac(OhX,x). By [RSb,

Lemma 5.3] OhX,x = Rn, where we recursively define:

R0 = OhX,x0 and Ri =
∏
p∈Ti

Rh
i−1,p, i ≥ 1,

where Ti = SpecRi−1 ×X {xi} is the finite set of prime ideals in Ri−1 lying over the
prime ideal in OX,x0 corresponding to xi; this is also the definition used in [KS86].

Lemma 3.3. Let x = (x0, . . . , xn) ∈ c(X). Let Y = {xn} and set y = x viewed as

a chain on Y . Then OhX,x/r = OhY,y, where r denotes the radical of OhX,x.

Proof. If U ∈ N(x), then U ×X Y ∈ N(y) and it follows from [Gro67, Proposition
(18.6.8)], that Nisnevich neighborhoods of the form U ×X Y are cofinal in N(y). �

3.4. Let F be an abelian Nisnevich sheaf on X and x = (x0, . . . , xn) ∈ c(X). We
set

H i
x(X,F ) := lim−→

U=(Un→...→X)∈N(x)

H i
Un,xn

(Un,Nis, F ),

where on the right hand side we consider the local cohomology group in the finite set

Un,xn = Un ×X {xn}. Assume xn−1 ∈ {xn}
(1)

and write x′ = (x0, . . . , xn−1). There
is a natural map

(3.4.1) δx : H i
x(X,F )→ H i+1

x′ (X,F )

induced by the connecting homomorphism of the localization sequence, see [KS86,
Definition 1.6.2(4)] (or [RSb, 5.4]). Following [KS86, Definition 1.6.2(5)], we define
for a maximal chain x = (x0, . . . , xd) the map

(3.4.2) cx := sx0 ◦ cx,0 : F (Kh
X,x) := F h

x → Hd(XNis, F ),

where sx0 : Hd
x0

(XNis, F ) → Hd(XNis, F ) is the forget-support-map and cx,0 is the
composition

(3.4.3) cx,0 : F h
x = H0

(x0,...,xd)(XNis, F )
δ(x0,...,xd)−−−−−→ H1

(x0,...xd−1)(XNis, F )
δ(x0,...xd−1)−−−−−−−→ . . .

. . .
δ(x0,x1)−−−−→ Hd

x0
(XNis, F ).

Proposition 3.5 ([KS86, Lemma 1.6.3]). For any abelian group A, the map

Φ : Hom(Hd(XNis, F ), A)→
∏

x∈mc(X)

Hom(F h
x , A), α 7→ (α ◦ cx)x∈mc(X),
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is injective. Furthermore, the image of Φ consists of those tuples (χx)x∈mc(X) sat-
isfying the following condition: For any r ∈ {0, . . . , d}, x ∈ mcr(X), and for any
a ∈ F h

x , we have χx(y)(ιy(a)) = 0 for almost all y ∈ b(x), and∑
y∈b(x)

χx(y)(ιy(a)) = 0.

where ιy : F h
x → F h

x(y) is the map from (3.2.3).

3.6. For x ∈ mcr(X), r ∈ {0, . . . , d}, and a ∈ F h
x , Proposition 3.5 implies

(3.6.1) cx(y)(ιy(a)) = 0, for almost all y ∈ b(x) and
∑
y∈b(x)

cx(y)(ιy(a)) = 0.

Note that in case r = d, the composition

(3.6.2) F h
x

ιy−→ F h
x(y)

δx(y)−−→ H1
x(XNis, F )

is zero, for all y ∈ b(x). In particular cx(y) ◦ ιy = 0, for all y ∈ b(x).

3.7. Let F be a presheaf of abelian groups on XZar and x = (x0, . . . , xn) ∈ c(X).
We can define the Zariski stalk Fx of F at x as above, but in fact Fx = Fxn . If
x ∈ mc(X), we can define also the map analogous to (3.4.3):

(3.7.1) cZar
x,0 : Fx → Hd

x0
(XNis, F ).

In [KS86] Proposition 3.5 is deduced by induction from the coniveau spectral se-
quence for Nisnevich cohomology and the Grothendieck-Nisnevich vanishing (stat-
ing that the cohomology of an abelian sheaf on XNis vanishes above the dimension
of X). Since the Zariski analogue of both statements hold, we also have a Zariski
analogue of Proposition 3.5. In particular, for w ∈ X(0), the map⊕

x∈mc(X),x0=w

Fx
cZarx,0−→ Hd

w(XZar, F )

is surjective. This follows from the Zariski analogue of Proposition 3.5 applied to
the (d− 1)-dimensional scheme Spec(OX,w)\{w}.

4. Some auxiliary results for relative Milnor K-theory

In this section k denotes any field and X is a reduced noetherian excellent sepa-
rated k-scheme of dimension d <∞, such that X(d) = X(0).

4.1. Let T be a noetherian reduced purely 1-dimensional and excellent semilocal
scheme with total ring of fractions κ(T ) and denote by ν : T̃ → T the normalization.
Writing T as a union of irreducible components T = ∪iTi we obtain κ(T ) =

∏
i κ(Ti)

and T̃ =
∐

i T̃i with the obvious notation. Let S be the set of closed points of T
and set κ(S) =

∏
s∈S κ(s). Then we define

∂S :=
∑
s∈S

∑
s′∈ν−1(s)

Nmκ(s′)/κ(s) ◦∂vs′ : KM
r (κ(T ))→ KM

r−1(κ(S)),

where vs′ denotes the discrete valuation on Frac(OT̃ ,s′) defined by s′, ∂vs′ is the
classical tame symbol, and Nmκ(s′)/κ(s) is the norm map.
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Let x = (x1, . . . , xn−1, xn) ∈ c(X) and assume xn−1 ∈ X(d−1) and xn ∈ X(d), in

particular xn−1 ∈ {xn}
(1)

. Set X ′ = {xn−1} and x′ := (x1, . . . , xn−1) ∈ c(X ′). We
define

(4.1.1) ∂x := ∂Sd−1
: KM

r (Kh
X,x)→ KM

r (Kh
X′,x′)

Here we use the following notation: Sd−1 is the set of closed points of the reduced
1-dimensional and excellent semi-local ring OhX,x′ , where we view x′ as a chain on

X; note Kh
X,x = Frac(OhX,x′) and κ(Sd−1) = Kh

X′,x′ , by Lemma 3.3.

For x ∈ mc(X) as above and i ∈ {0, . . . , d} set xi = (x0, . . . , xi) ∈ mc({xi}). We
denote by ∂X,x the following composition

(4.1.2) ∂X,x := ∂x1 ◦ ∂x2 ◦ . . . ◦ ∂xd : KM
r (Kh

X,x)→ KM
r−d(κ(x0)).

For d = 0 this is the identity (by convention).

Lemma 4.2. Assume x0 is contained in Xreg the regular locus of X. Then the
following diagram commutes

KM
d (Kh

X,x)
cx,0 //

∂X,x
$$

Hd
x0

(XNis, K
M
d,X),

Z
θx0

'
88

where cx,0 is the map (3.4.3), ∂X,x is the map (4.1.2), and θx0 the map (2.2.3).

Proof. We may assume X = Xreg. By [Ker10, Proposition 10(8)] the Gersten com-
plex viewed as complex on XNis is a resolution of KM

d,X ; since its terms are fur-
thermore acyclic for the global section functor, we may use it to compute the local
cohomology. This in particular yields the identifications in the diagram below for
0 ≤ j ≤ d

Hj
(x0,...,xd−j)(XNis, K

M
d,X)

δ(x0,...,xd−j) // Hj+1
(x0,...,xd−j−1)(XNis, K

M
d,X)

KM
d−j(K

h
Y,(x0,...,xd−j))

∂Sd−j−1 // KM
d−j−1(Kh

Z,(x0,...,xd−j−1)),

where Y := {xd−j}, Z := {xd−j−1}, and Sd−j−1 denotes the set of closed points in
OhY,(x0,....xd−j−1) and the other notation is taken from 3.4 and 4.1. Composing the

diagram for j = 0, . . . , d− 1 yields the statement. �

The following result is taken from [KS86]. In loc. cit. it is formulated in a slightly
different situation, but in view of (2.3.2), the same proof works here.

Lemma 4.3 ([KS86, Proposition 2.9]). Let i : Y → X be a closed immersion with Y
integral of dimension e and assume Y ∩Xreg 6= ∅. Let D ⊂ X be a closed subscheme
which does not contain Y . Then there exists a closed subscheme E ⊂ Y and a map
(see 2.3 for notation)

(4.3.1) i∗ : He(YNis, Ve,Y |E)→ Hd(XNis, Vd,X|D)

which is uniquely determined by the requirement that for any regular open U ⊂ X\D
and regular open U ′ ⊂ (Y ∩ U) \ E which is dense in Y , the following diagram
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commutes:

(4.3.2) Z0(U ′) //

i∗
��

He(YNis, Ve,Y |E)

i∗
��

Z0(U) // Hd(XNis, Vd,X|D)

where the horizontal maps are the maps (2.3.3). Moreover, for any y ∈ mc(Y ) and
any x = (y, xe+1, . . . , xd) ∈ mc(X), the following diagram is commutative:

(4.3.3) KM
e (Kh

Y,y)
cy
// He(YNis, Ve,Y |E)

i∗
��

KM
d (Kh

X,x)
cx //

∂
x
y

OO

Hd(XNis, Vd,X|D)

where we set (using the notation from 4.1)

∂xy := ∂xe+1
◦ . . . ◦ ∂xd : KM

d (Kh
X,x)→ KM

e (Kh
Y,y),

with xj = (y, xe+1, . . . , xj), for j ≥ e+ 1.

4.4. We recall some constructions and results from [KS86, §4]. Let D be a closed
subscheme of X which is nowhere dense and is defined by the ideal sheaf I ⊂ OX .
We define the Nisnevich sheaf V r,X|D on X by

U 7→ V r,X|D(U) = Ker

 ⊕
η∈U(0)

KM
r (k(η))→

⊕
x∈U(1)

⊕η>xKM
r (k(η))

(Vr,U |DU
)hx

 ,

where U runs over the étale X-schemes and DU = D ×X U . Note that this sheaf

agrees with the sheaf K
M

r (OX , I) defined in loc. cit. for r = 1 and, if d ≥ 2, for all
r ≥ 1: For r = 1, this is immediate. For d ≥ 2, (Vr,U |DU

)hx = KM
r (OU , IU)hx since the

residue fields k(x), for x ∈ U (1), have infinitely many elements (see 2.3). Note that
we have a natural map

Vr,X|D → V r,X|D.

The cokernel of the image of this map is supported in codimension 2 and the kernel
in codimension 1. Since the cohomological dimension of the Nisnevich cohomology
of a noetherian scheme is bounded by its dimension, we obtain an isomorphism

(4.4.1) Hd(XNis, Vr,X|D)
'−→ Hd(XNis, V r,X|D).

We will need the following statement from loc. cit.:

Proposition 4.5 ([KS86, Proposition 4.2]). Let f : Y → X be a finite morphism
and assume Y is reduced and f(Y (0)) ⊂ X(0). Assume r = 1 or d ≥ 2 and r ≥ 1
arbitrary. Then the norm map on Milnor K-theory

Nm : f∗

( ⊕
η∈Y (0)

iη∗K
M
r,η

)
→

⊕
ξ∈X(0)

iξ∗K
M
r,ξ

induces a morphism

Nm : f∗(V r,Y |E)→ V r,X|D,

for some large enough closed subscheme E ⊂ Y containing D ×X Y .
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Corollary 4.6. Let f : Y → X be a separated morphism of finite-type with f(Y (0)) ⊂
X(0) and dimY = dimX = d. Assume r = 1 or d ≥ 2 and r ≥ 1. Let
D ⊂ X be a closed subscheme and set DY := D ×X Y . Let x1, . . . , xn ∈ X(1)

and β1, . . . , βn ∈
⊕

η∈Y (0) KM
r (k(η)). Assume that there exists an open affine sub-

scheme in X containing all the points x1, . . . , xn. Then there exits an element
γ ∈

⊕
η∈Y (0) KM

r (k(η)) such that for all i = 1, . . . , n

γ − βi ∈ (V r,Y |DY
)y, for all y ∈ f−1(xi),

Nm(γ)− Nm(βi) ∈ (V r,X|D)xi ,

where Nm :
⊕

η∈Y (0) KM
r (k(η))→

⊕
ξ∈X(0) KM

r (k(ξ)) is the norm map.

Proof. We may replace f by a compactification and hence assume that f is proper.
Furthermore, we may replace X by its semi-localization at the points x1, . . . xn and
f by the base change. The semi-localization exists since x1, . . . , xn are contained in
an affine open in X. Thus X is affine, integral, excellent, and 1-dimensional and
f : Y → X is a proper, dominant, and quasi-finite morphism, whence it is finite

and surjective. Let ν : Ỹ → Y be the normalization. Thus Ỹ is a finite disjoint

union of Dedekind schemes. By Proposition 4.5 we find a closed subscheme E ⊂ Ỹ
containing DỸ such that

(4.6.1) ν∗(V r,Ỹ |E) ⊂ V r,Y |DY
and Nm((f ◦ ν)∗(V r,Ỹ |E)) ⊂ V r,X|D.

By the Approximation Lemma, we find an element γ ∈
⊕

η∈Y (0) KM
r (k(η)) such that

γ − βi ∈ (V r,Ỹ |E)x̃i for all x̃i ∈ (fν)−1(xi).

The statement follows from this and (4.6.1). �

5. Higher local symbols

We introduce higher local symbols along maximal chains for reciprocity sheaves.
These generalize local symbols for curves, see [KSY16, Proposition 5.2.1] and [Ser84]
for the classical case of commutative k-groups. Furthermore, we obtain a unified
construction for several higher local symbols defined in the literature, e.g., by Paršin,
Lomadze, Kato and many more. The results will be used in section 6 to give a
characterization of the modulus in terms of local symbols. The content of this
section will also play a crucial role in [RSc].

In this section k is a perfect field, K is function field over k, and X is an integral
scheme of finite type over K and dimension d. We fix F ∈ RSCNis.

Definition 5.1. Let x = (x0, . . . , xd) ∈ mc(X). We define the pairing

(5.1.1) (−,−)X/K,x : F (Kh
X,x)⊗Z K

M
d (Kh

X,x)→ F (K)

as follows: Choose an open subscheme V ⊂ X which is quasi-projective and contains
x0. Choose a dense open regular subscheme U ⊂ V . Choose a dense open immersions
jV : V ↪→ Y into an integral projectiveK-scheme (a projective compactification) with
structure map f : Y → SpecK and denote by j : U ↪→ Y the induced immersion.
Note that x ∈ mc(Y ). We define (5.1.1) as the composition

F (Kh
X,x)⊗Z K

M
d (Kh

X,x) = (FU ⊗ j!K
M
d,U)x → j!(F 〈d〉U)x

cx−→ Hd(YNis, j!F 〈d〉U)
(f,j)∗−−−→ F (K),
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where the first map is the stalk at x of (2.2.1), cx is the map (3.4.2), and (f, j)∗ is
the pushforward recalled in 2.2. It follows from Lemma 5.2(1), (2) below that this
definition is independent of the choice of V , U , and Y .

Take r, s ∈ {0, . . . , d}. Precomposing (5.1.1) with the natural map

F (Kh
X,(xr,...,xd))⊗Z K

M
d (Kh

X,(xs,...,xd))→ F (Kh
X,x)⊗Z K

M
d (Kh

X,x),

cf. (3.2.3), we obtain pairings (denoted by the same symbol)

(5.1.2) (−,−)X/K,x : F (Kh
X,(xr,...,xd))⊗Z K

M
d (Kh

X,(xs,...,xd))→ F (K),

in particular, for r = d and s = d− 1, we get the pairing

(5.1.3) (−,−)X/K,x : F (K(X))⊗Z K
M
d (Frac(OhX,xd−1

))→ F (K).

We call (5.1.1), (5.1.2), and (5.1.3) the higher local symbol of F at x.

Lemma 5.2. Let the situation be as above.

(1) The definition of the higher local symbol (5.1.1) is independent of the choice
of the quasi-projective open V ⊂ X containing x0, the regular dense open
subset U ⊂ V , and the choice of the projective compactification V ↪→ Y .

(2) Let X be quasi-projective, U ⊂ X a regular dense open, and j : U ↪→ X ↪→ X
a projective compactification. Let a ∈ F (U) and β ∈ KM

d (Kh
X,x). Then

(a, β)X/K,x = (a, cx(β))U⊂X/K , for all x ∈ mc(X),

where (−,−)U⊂X/K : F (U)⊗Z H
d(XNis, j!K

M
d,U)→ F (K) is from (2.2.2).

Proof. (1). We start by showing the independence of the choice of the projective
compactification of V . Thus assume we have two projective compactifications j :
U ↪→ V ↪→ Y and j′ : U ↪→ V ↪→ Y ′ and denote by f : Y → SpecK and
f ′ : Y ′ → SpecK the projective structure maps. It suffices to consider the situation,
where we have a projective morphism g : Y ′ → Y such that g ◦ j′ = j and f ◦g = f ′.
In this case the independence follows from the following commutative diagram

F 〈d〉(Kh
X,x)

cx //

cx ((

Hd(YNis, j!F 〈d〉U)

��

(f,j)∗ // F (K)

Hd(Y ′Nis, j
′
!F 〈d〉U),

(f ′,j′)∗

77

where the vertical map in the middle is induced by the natural map j! → Rg∗j
′
! ,

see [RSb, (4.3.3)]. The right triangle commutes by [RSb, Lemma 4.7(3)]. The left
triangle commutes since both maps labeled cx factor over Hd

x0
(V, F 〈d〉V ).

Next we show the independence of the choice of U . By the above, it suffices
to consider a dense open immersion ν : U ′ ↪→ U with projective compactifications
j : U ↪→ V ↪→ Y and j′ = j ◦ ν : U ′ ↪→ U ↪→ V ↪→ Y . In this case the independence
follows from the commutative diagram

F 〈d〉(Kh
X,x)

cx //

cx ((

Hd(YNis, j
′
!F 〈d〉U ′)

nat.
��

(f,j′)∗ // F (K)

Hd(YNis, j!F 〈d〉U).

(f,j)∗

77

Here the commutativity of the right triangle holds by [RSb, Lemma 4.7(2)] and the
one of the left triangle is obvious.
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It remains to check the independence of the choice of V . To this end, let V, V ′ ⊂ X
be two open quasi-projective subschemes containing x0, let V ↪→ Y → SpecK and
V ′ ↪→ Y ′ → SpecK be projective compactifications, and let U ⊂ V and U ′ ⊂ V ′ be
two open regular subschemes. We obtain the open immersions U ↪→ Y and U ′ ↪→ Y ′.
Let V ′′ ⊂ V ∩ V ′ be an affine open neighborhood of x0 and let U ′′ ⊂ U ∩U ′ ∩ V ′′ be
a dense open regular subscheme. We have two induced open immersions U ′′ ↪→ Y
and U ′ ↪→ Y ′. Denote by (5.1.1)(U,V,Y ) the pairing (5.1.1) constructed using U ↪→
V ↪→ Y → SpecK. Then

(5.1.1)(U,V,Y ) = (5.1.1)(U ′′,V,Y ) = (5.1.1)(U ′′,V ′′,Y ) = (5.1.1)(U ′′,V ′′,Y ′),

where the first equality holds by the independence of the choice of U proven above,
the second equality holds by definition of the pairing (it only depends on the maps
U ↪→ Y → SpecK), and the third equality holds by the independence of the choice
of the compactification of V ′′ proven above. This together with the analog reasoning
for (U ′, V ′, Y ′) instead of (U, V, Y ), implies (5.1.1)(U,V,Y ) = (5.1.1)(U ′,V ′,Y ′).

(2). This follows form the compatibility of the boundary maps from the localiza-
tion sequence with cup-products, see [RSb, (6.7.5)] �

Proposition 5.3. The pairings (5.1.1) satisfies the following properties for all a ∈
F (K(X)):

(HS1) Let X ↪→ X ′ be an open immersion where X ′ is an integral K-scheme of
dimension d. Then for all β ∈ KM

d (Kh
X,x)

(a, β)X/K,x = (a, β)X′/K,x,

(HS2) Let x = (x0, . . . , xd) ∈ mc(X), and Xd−1 ⊂ X be the closure of xd−1, and set
x′ = (x0, . . . , xd−1) ∈ mc(Xd−1). Then for all β ∈ KM

d (Kh
X,x)

(a, β)X/K,x =

{
β · TrK(X)/K(a), if d = 0,

(a(xd−1), ∂xβ)Xd−1/K,x′ , if d ≥ 1 and a ∈ F (OX,xd−1
),

where a(xd−1) ∈ F (K(Xd−1)) is the restriction of a and ∂x is defined in
(4.1.1), and TrK(X)/K : F (K(X)) → F (K) is the trace for the finite map
SpecK(X)→ SpecK.

(HS3) Let D ⊂ X be a strict closed subscheme such that X \ D is regular. As-
sume a ∈ Fgen(X,D). Then, for x = (x0, . . . , xd) ∈ mc(X) and x′ =
(x0, . . . , xd−1) ∈ mcd(X), we have (See 4.4 for the definition of V d,X|D)

(a, β)X/K,x = 0, for all β ∈ (V d,X|D)hx′ .

(HS4) Let x′ ∈ mcr(X) with 0 ≤ r ≤ d− 1. Then for all β ∈ KM
d (Kh

X,x′)

(a, ιyβ)X/K,x′(y) = 0, for almost all y ∈ b(x′).

If either r ≥ 1 or r = 0, X is quasi-projective, and the closure of x1 in X is
projective over K, where x′ = (x1, . . . , xd), then∑

y∈b(x′)

(a, ιyβ)X/K,x′(y) = 0,

where ιy : Kh
X,x′ → Kh

X,x′(y) is the map (3.2.3).

Furthermore, the family{
(−,−)X/K,x : F (K(X))⊗KM

dimX(K(X))→ K | x ∈ mc(X)

}
dimX≤d

,
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where X is running through all integral schemes of finite type of dimension ≤ d, is
uniquely determined by (HS1)-(HS4).

Proof. (HS1) follows from Lemma 5.2(1). (HS2). For d = 0 this follows from the
fact that in this case the pushforward (f, j)∗ appearing in Definition 5.1 is the
pushforward along the finite map f : SpecK(X) → SpecK constructed in [BRS],
which is equal to the trace by [BRS, Proposition 8.10(3)]. Now assume d ≥ 1 and
take a ∈ F (OX,xd−1

), β ∈ KM
d (Kh

X,x). By (HS1) we may assume that X → SpecK is
projective. We find a closed subscheme D ⊂ X with xd−1 ∈ D, such that U = X \D
is regular and a ∈ Fgen(X,D). Denote by i : Y := Xd−1 = {xd−1} ↪→ X the
closed immersion. Choose the closed subscheme E ⊂ Y as in Lemma 4.3 and
choose a regular open U ′ ⊂ (Y ∩ U) \ E which is dense in Y . Since the map
Z0(U ′)→ Hd−1(YNis, Vd−1,Y |E) from (2.3.3) is surjective, we find a cycle ζ ∈ Z0(U ′)
which maps to cx′(∂x(β)); we can view ζ as a finite correspondence from SpecK to
U ′. We denote by

[ζ] = cx′(∂x(β)) ∈ Hd−1(Y, j′!K
M
d−1,U ′) and [i∗ζ] ∈ Hd(X, j!K

M
d,U)

the images of ζ and i∗ζ ∈ Z0(U) under the cycle maps (2.2.4). We compute

(a, β)X/K,x = (a, cx(β))U⊂X/K , by Lem. 5.2(2),

= (a, cx(β))(X,D)/K , by Thm. 2.4(1),

= (a, i∗(cx′∂x(β)))(X,D)/K , by (4.3.3),

= (a, i∗[ζ])U⊂X/K , by Thm. 2.4(1),

= (a, [i∗ζ])U⊂X/K , by (4.3.2),

= (i∗ζ)∗a, by (2.2.5),

= ζ∗i∗a, by defn of corr. action,

= (a(xd−1), [ζ])U ′⊂Y/K , by (2.2.5),

= (a(xd−1), ∂x(β))Y/K,x′ , by Lem. 5.2(2).

This yields (HS2). Property (HS3) follows from Lemma 5.2(2), Theorem 2.4(1),
(4.4.1), and the vanishing of (3.6.2). For (HS4) in the case r ≥ 1 choose a quasi-
projective open V ⊂ X which contains the closed point x0 of x′, and take a projective
compactification V ↪→ Y . Note that x′ also defines a chain on Y and the set b(x′)
does not change when we consider x′ as a chain on X or Y . Hence in this case the
statement follows directly from Definition 5.1 and (3.6.1) applied to F = j!K

M
d,U ,

where j : U ↪→ Y is the inclusion of a dense open regular subscheme. In the case
r = 0, we can take a projective compactification X ↪→ X and view x′ as a chain on
X. By the assumption that the closure of x1 in X is projective, the set b(x′) does
not change when we consider x′ as a chain on X or on X. Hence the statement
follows from (3.6.1) also in this case.

It remains to prove the uniqueness part. Let {〈−,−〉X/K,x | x ∈ mc(X)}dimX≤d
be another family of symbols satisfying (HS1)-(HS4). By (HS1) it suffices to show
〈−,−〉X/K,x = (−,−)X/K,x for all affine K-schemes X; applying (HS1) again we
may assume X is projective. We proceed by induction. If dimX = 0 the symbol
is uniquely determined by (HS2). Now we assume dimX = d ≥ 1 and the symbols
coincide on all closed subschemes of X of dimension strictly smaller d. Set L :=
K(X). Let a ∈ F (L), β ∈ KM

d (L), and x = (x0, . . . , xd) ∈ mc(X). Let D ⊂
X be a strict closed subscheme such that X \ D is regular, xd−1 ∈ D, and a ∈
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Fgen(X,D). By Corollary 4.6 (with f = id) we find an element γ ∈ KM
d (L) such

that β − γ ∈ (V d,X|D)xd−1
and γ ∈ (V d,X|D)u, for all u ∈ X(1) ∩ D \ {xd−1}. Set

x′ = (x0, . . . , xd−2, xd) ∈ mcd−1(X). Then

(a, β)X/K,x
(HS3)

=
∑

u∈b(x′)∩D

(a, γ)X/K,x′(u)
(HS4)

= −
∑

u∈b(x′)\D

(a, γ)X/K,x′(u)

(HS2)
= −

∑
u∈b(x′)\D

(a(u), ∂x′(u)γ){u}/K,(x0,...xd−2,u).

The same computation with 〈−,−〉X/K,x and induction yields the desired equality.
�

The formulation of the above proposition was inspired by the treatment of local
symbols in [Ser84, III, §1]. But note that the construction is completely different.
The next proposition is however a formal consequence of (HS1)-(HS4) (and proper-
ties of Milnor K-theory) in the same way [Ser84, III, Proposition 4] is a consequence
of the properties written in Definition 2 of loc. cit.

Proposition 5.4. Let f : Y → X be a projective and surjective K-morphism
between two integral K-schemes of the same dimension d. Then we have for all
a ∈ F (K(X)) and β ∈ KM

d (K(Y )) and x ∈ mc(X)

(HS5)
∑

y∈mc(Y )

f(y)=x

(f ∗a, β)Y/K,y = (a, f∗β)X/K,x,

where f∗ = Nmk(Y )/k(X) : KM
d (K(Y ))→ KM

d (K(X)) is the norm map.

Proof. We proceed by induction on the dimension d. Set E := K(X) and L :=
K(Y ). For d = 0, (HS5) translates by (HS2) into

β · TrL/K(a) = [L : E] · β · TrE/K(a) for a ∈ F (E), β ∈ Z,

which holds since [L : E] · a = TrL/E(a). Now assume d ≥ 1 and the formula holds
in dimension ≤ d− 1. Write x = (x0, . . . , xd). We consider two cases.

1st case: a ∈ F (OX,xd−1
). Set u := xd−1 ∈ X(1) and denote by X ′ = {u} ⊂ X

the closure. Set x′ = (x0, . . . , xd−1) ∈ mc(X ′). We first collect some standard
commutative diagrams for Milnor K-theory, also to clarify the notation used later;

(5.4.1) KM
d (Kh

X,x)
∂x // KM

d−1(Kh
X′,x′)

KM
d (E)

ιu //

ιx
88

KM
d (Kh

X,u)
∂u //

ιux

OO

KM
d−1(K(X ′)),

ιx′

OO

where ι’s are the natural maps and ∂’s are induced by the tame symbol, see 4.1;

(5.4.2) KM
d (L)

NmL/E

��

∏
ιz //
∏

z∈Yd−1

f(z)=u

KM
d (Kh

Y,z)∑
Nmz/u

��
KM
d (E)

ιu // KM
d (Kh

X,u);
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(5.4.3) KM
d (Kh

Y,z)
∂z //

Nmz/u

��

KM
d−1(K(z))

NmK(z)/K(u)

��
KM
d (Kh

X,u)
∂u // KM

d−1(K(u)),

where z ∈ Yd−1 with f(z) = u. The commutativity of the above diagrams follows
from standard relations in Milnor K-theory, e.g., in [Ros96, 1.] see R3a for (5.4.1),
R1c for (5.4.2), and R3b for (5.4.3). With this notation we want to show

∑
y∈mc(Y )

f(y)=x

(f ∗a, ιyβ)Y/K,y = (a, ιx NmL/E β)X/K,x

assuming a ∈ F (OX,u) and that the equality holds in smaller dimensions. We
compute

(a, ιx NmL/E β)X/K,x =
(
a(u), ∂x(ιx NmL/E β)

)
X′/K,x′

by (HS2)

=
∑

z∈Yd−1

f(z)=u

(
a(u), ιx′ NmK(z)/K(u)(∂zιzβ)

)
X′/K,x′

by (5.4.∗)

=
∑

z∈Yd−1

f(z)=u

∑
y′∈mc(Y (z))

f(y′)=x′

(
f ∗Y (z)a(u), ιy′∂z(ιzβ)

)
Y (z)/K,y′

by induction

Y (z) = {z}

=
∑

z∈Yd−1

f(z)=u

∑
y′∈mc(Y (z))

f(y′)=x′

(
f ∗Y (z)a(u), ∂(y′,ξ)(ι(y′,ξ)β)

)
Y (z)/K,y′

by (5.4.1)

=
∑

y∈mc(Y )

f(y)=x

(f ∗a, ιyβ)Y/K,y by (HS2).

where ξ is the generic point of Y . This completes the proof of the first case.
2nd case: a ∈ F (E). By (HS1) we may assume X to be projective. Let D ⊂ X

be a closed subscheme such that X \ D is regular and a ∈ Fgen(X,D). Enlarging
D we may assume xd−1 ∈ D, Y \ DY is regular, and f ∗a ∈ Fgen(Y,DY ), where
DY = Y ×X D. By Corollary 4.6 we find an element γ ∈ KM

d (L) such that

(i) γ − β ∈ (V d,Y |DY
)y, for all y ∈ Y (1) ∩DY lying over xd−1,

(ii) γ ∈ (V d,Y |DY
)y, for all y ∈ Y (1) ∩DY not lying over xd−1,

(iii) NmL/E(γ − β) ∈ (V d,X|D)xd−1
,

(iv) NmL/E(γ) ∈ (V d,X|D)z, for all z ∈ X(1) ∩D \ {xd−1}.
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Set x′′ := (x0, . . . , xd−2, xd) ∈ mcd−1(X). We compute

(a,NmL/E β)X/K,x =
∑

z∈b(x′′)∩D

(a,NmL/E γ)X/K,x′′(z) by (iii), (iv), (HS3)

= −
∑

z∈b(x′′)\D

(a,NmL/E γ)X/K,x′′(z) by (HS4)

= −
∑

z∈b(x′′)\D

∑
y∈mc(Y )

f(y)=x′′(z)

(f ∗a, γ)Y/K,y by the 1st case

=
∑

z∈b(x′′)∩D

∑
y∈mc(Y )

f(y)=x′′(z)

(f ∗a, γ)Y/K,y by (HS4)

=
∑

y∈mc(Y )
f(y)=x

(f ∗a, β)Y/K,y by (i),(ii), (HS3).

Note that we can apply (HS4) also in the case d = 1, since X and Y are projective.
This completes the proof of the proposition. �

The following corollary will be used in the proof of Proposition 7.3 and in [RSc].

Corollary 5.5. Let f : Y → X be a dominant and quasi-projective K-morphism
between integral K-schemes of the same dimension d. Let x = (x0, . . . , xd) ∈ mc(X)
and u := xd−1. Let y ∈ Y (1) with f(y) = u. We assume that f induces a projective
morphism between the closures of the points y and u. Then Kh

Y,y is finite over Kh
X,u

(see 3.2 for notation) and for all a ∈ F (K(X)) and β ∈ KM
d (Kh

Y,y), we have

(HS5′)
∑

z∈mcd−1(Y ), z<y
f(z(y))=x

(f ∗a, β)Y/K,z(y) =
(
a,Nmy/u(β)

)
X/K,x

,

where z < y means zd−2 < y with z = (z0, . . . , zd−2, zd) and z(y) = (z0, . . . , zd−2, y, zd),
and Nmy/u : KM

d (Kh
Y,y)→ KM

d (Kh
X,u) is the norm map.

Proof. Set E := K(X) and L := K(Y ). Note that y is an isolated point in f−1(u),

hence OhX,u → OhY,y is finite and injective. Let Y ↪→ Y
f̄−→ X be a projective

compactification of f . Take a closed subscheme D ⊂ X such that X \D and Y \DY

are regular, where DY = Y ×X D, and a ∈ Fgen(X,D), f̄ ∗a ∈ Fgen(Y ,DY ). Set

X ′ = SpecOhX,u and denote by f̄ ′ : Y
′ → X ′ the base change of f̄ . Note that the

total fraction ring of Y
′

is equal to
⊕

z∈f̄−1(u) K
h
Y ,z

. By Corollary 4.6 applied to f̄ ′

and (βz) ∈
⊕

z∈f̄−1(u) K
M
d (Kh

Y ,z
) with βy = β and βz = 0 for z 6= y, we find an

element γ′ ∈
⊕

z∈f̄−1(u)K
M
d (Kh

Y ,z
) such that

(i) β − γ′ ∈ (V d,Y |DY
)hy

(ii) γ′ ∈ (V d,Y |DY
)hz , for all z ∈ f̄−1(u) \ {y},

(iii) Nmy/u(β)− Nmy/u(γ
′) ∈ (V d,X|D)hu,

(iv) Nmz/u(γ
′) ∈ (V d,X|D)hu, for all z ∈ f̄−1(u) \ {y}.
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We have a surjection

KM
d (L)→→

⊕
z∈f̄−1(u)

KM
d (Kh

Y ,z
)

(V d,Y |DY
)hz
.

Indeed, by Proposition 4.5 it suffices to show this for Y normal in which case it
follows from the Approximation Lemma. Thus we find γ ∈ KM

d (L), so that (i)-(iv)
holds with γ′ replaced by γ. Set x′ = (x0, . . . , xd−1). We compute

(a,Nmy/u(β))X/K,x =
∑
z∈Y
f(z)=u

(a,Nmz/u(γ))X/K,x by (iii), (iv), (HS3)

= (a,NmL/E(γ))X/K,x by (5.4.2)

=
∑

z∈mc(Y )

f(z)=x

(f̄ ∗a, γ)Y /K,z by (HS5)

=
∑

z∈mcd−1(Y ), z<y

f(z(y))=x

(f̄ ∗a, β)Y /K,z(y) by (i), (ii), (HS3)

=
∑

z∈mcd−1(Y ), z<y
f(z(y))=x

(f̄ ∗a, β)Y /K,z(y),

where the last equality follows from the assumption that the closure of y in Y ×X {u}
is already closed in Y ×X {u}. This completes the proof of the corollary. �

Examples and Remarks 5.6. We fix a function field K over k and X is an integral
scheme of finite type over K and dimension d and x ∈ mc(X).

(1) Let F = Ωj
−/k. In [Lom81, p. 515] a residue homomorphism

ResX/K,x : Ωj+d
K(X)/k → Ωj

K/k

is defined, which generalizes a construction of Paršin for surfaces, see [Par76,
§1]. (In [Lom81] it is denoted by Resfx, where f : X → SpecK is the structure

homomorphism.) We have for all a ∈ F (K(X)) and β ∈ KM
d (K(X))

(5.6.1) (a, β)X/K,x = ±ResX/K,x(a · dlog β),

where ± is a universal sign depending on the choice of the sign for the tame
symbol and for Res. Indeed, by the construction in loc. cit. the right hand
side satisfies (HS1) and (HS3), (HS2) (up to sign) holds by Lemma 12 and
(HS4) by Theorem 3. Thus (5.6.1) follows from the uniqueness statement
in Proposition 5.3. Note that the construction of ResX/K,x in [Par76] and
[Lom81] are completely different in spirit: the residue is defined in an ex-
plicit way using power series in several variables, property (HS3) holds by
construction, whereas (HS4) is a theorem. On the other hand for the symbol
(−,−)X/K,x the reciprocity law (HS4) follows immediately from the definition
whereas (HS3) is implied by Theorem 2.4, a main result of [RSb].

(2) It follows from the uniqueness statement that in case d = 1 the symbol
(−,−)X/K,x agrees with the local symbol for reciprocity sheaves considered
in [KSY16, Proposition 5.2.1], which generalizes the local symbol for com-
mutative k-groups by Rosenlicht-Serre, see [Ser84].
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(3) Let F = H1((−)ét,Q/Z). Assume K = k is a finite field. Then (5.1.1)
induces a morphism

KM
d (Kh

X,x)→ Hom(F (Kh
X,x), F (k)) = πab

1 (Kh
X,x),

where the equality on the right follows from F (k) = Q/Z. By [KS86, Propo-
sition 3.3] this map decomposes as the product of the maps

KM
d (Frac(V ))→ πab

1 (Frac(V )),

where V runs through all d-discrete valuation rings of k(X) dominating x
(in the sense of [KS86, (3.2)]). It can be shown that the induced morphisms
KM
d (Frac(V )) → πab

1 (Frac(V )) coincide with Kato’s higher local reciprocity
maps ΨFrac(V ) constructed in [Kat80, p. 661] (see [KS86, Theorem 3.5] for
an explanation of how to deduce the henselian case from the complete case
treated in [Kat80]). We leave the verification of this fact to interested readers.

(4) For F = WnΩj, the j-th de Rham-Witt differentials (see [Ill79]), we get
higher local symbols

(−,−)X/K,x : WnΩj
K(X) ⊗Z K

M
d (Kh

X,x)→ WnΩj
K ,

which by the above generalizes the residue symbol from the one-dimensional
case constructed in [Kat80, §2] or [Rü07b, 2.] (see also [Rü07a]). Since
Verschiebung, Frobenius, restriction, and the differential on the de Rham-
Witt complex are morphisms of reciprocity sheaves, it follows that the above
symbol is compatible with these. Note also that from [Kat80, §2.5, Lemma
12] and [KS86, Proposition 3.3], one can define a residue morphism (similar
as in [Lom81])

ResX/K,x : WnΩj+d
K(X) → WnΩj

K .

The connection to the residue symbol defined here should be as in (5.6.1).
One way to verify this would be to show that ResX/K,x satisfies (HS4), e.g.,
using the strategy from [Lom81], and then use uniqueness (the properties
(HS1)-(HS3) are direct to check from the construction). We leave the details
to interested readers.

(5) Let F = G be a commutative k-group. We obtain a pairing

(−,−)X/K,x : G(K(X))⊗Z K
M
d (Kh

X,x)→ G(K).

A pairing like this was also defined in [KS83, III]. (In loc. cit. such a
pairing was defined for higher dimensional local fields, but one can use [KS86,
Proposition 3.3] to obtain an induced pairing as above.) In characteristic
zero, one can check that the two pairings coincide. Indeed, in this case it
suffices to consider G = Ga, Gm, or an abelian variety. For the Ga-case
they are induced by ResX/K,x from (1) by [KS83, p. 144]. If G = Gm, it
is induced for both pairings by an iteration of the tame symbol. For an
abelian variety, (HS2) and the formula in the middle of p. 145 in [KS83]
show that they coincide. In particular we find that the symbol from loc.
cit. in characteristic zero satisfies the reciprocity theorem (HS4). In positive
characteristic we believe that the two pairings coincide, but this remains to
be checked.

(6) Let (Y,E) be a proper modulus pair (see 2.1). The presheaf with trans-
fers h0(Y,E) is defined in [KSY22, Definition 2.2.1] and it is a reciprocity
presheaf by [KSY22, Theorem 2.3.3]. Thus the Nisnevich sheafification
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F = h0(Y,E)Nis is a reciprocity sheaf by [Sai20, Theorem 0.1]. By [KSY22,
Theorem 3.2.1], we have h0(Y,E)(K) = CH0(YK |EK), the Chow group of
zero-cycles with modulus introduced in [KS16]. Therefore (5.1.1) induces a
morphism

(−,−)X/K,x : CH0(YK(X)|EK(X))⊗Z K
M
d (Kh

X,x)→ CH0(YK |EK),

satisfying (HS1)-(HS5). If α ∈ CH0(YK(X), EK(X)) can be represented by a
zero-cycle in YK(X) \ EK(X), which spreads out to a finite correspondence α̃
from U to Y \ E for some smooth open U ⊂ X containing the closed point
x0 of x, then it follows from (HS2), that we have

(α, β)X/K,x = ∂x(β) · f∗α̃ for β ∈ KM
d (Kh

X,x),

where ∂x : KM
d (Kh

X,x)→ KM
0 (κ(x0)) = Z is the map (4.1.2) and f : U × (Y \

E)→ U is the projection.

6. Characterization of the modulus via higher local symbols

In this section k is a perfect field and F ∈ RSCNis. The main result of this section
is the following.

Theorem 6.1. Let (X,D) be a modulus pair (see 2.1) with X of pure dimension d.
Let U = X \ |D| and a ∈ F (U). For a function field K/k denote by XK = X ⊗k K
the base change and by aK ∈ F (UK) the pullback of a. Let W ⊂ |D| be a set of
closed points which contains at least one point of every irreducible component of |D|.
Consider the following conditions (see Definition 5.1):

(i) a ∈ F̃ (X,D).
(ii) For any function field K and x = (x0, . . . , xd) ∈ mc(XK) we have

(aK , β)XK/K,x = 0, for all β ∈ (Vd,XK |DK
)h(x0,...,xd−1).

(iii) For any function field K and x = (x0, x1 . . . , xd) ∈ mc(XK) with x0 ∈ WK

and xd−1 ∈ DK, we have

(aK , β)XK/K,x = 0, for all β ∈ (Vd,XK |DK
)xd−1

.

Then, we have the implication (i) =⇒ (ii) =⇒ (iii). Assume furthermore that there
exists an open dense immersion X ↪→ X into a smooth and projective k-scheme,
such that X \ U is an SNCD, then all the above statements are equivalent.

We stress the fact that (Vd,X|D)h(x0,...,xd−1) in (ii) is the limit over all Nisnevich

neighborhoods of (x0, . . . , xd−1) (see 3.2), whereas (Vd,X|D)xd−1
in (iii) is the Zariski

stalk at the one codimensional point xd−1 ∈ X(1). In section 7 we will see that in
case D is reduced, the assumption on the existence of a smooth compactification is
superfluous (but still X has to be smooth and D is a SNCD).

6.2. Before we prove Theorem 6.1 we recall the following result:

Let X be a separated scheme of finite type over a field K of dimension d. Assume no
irreducible component of dimension d of X is proper. Then for any coherent sheaf
F on X, we have

Hd(XZar,F) = 0.

This theorem was conjectured by Lichtenbaum and proven by Grothendieck, see
[Har67, Theorem 6.9] for Grothendieck’s proof in the quasi-projective case relying
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on duality theory, see [Kle67] for a more elementary proof in the stated generality.
We will use the following consequence (cf. the proof of [Har67, Theorem 6.9]):

Let Y be a proper K-scheme of dimension d. Let W ⊂ Y be a set of closed points
which contains at least one closed point of each irreducible component of dimension
d of Y . Then the natural map

(6.2.1)
⊕
z∈W

Hd
z (YZar,F)→ Hd(YZar,F)

is surjective for all coherent OY -modules F . Indeed, this holds as Hd((Y \W )Zar,F)
vanishes by the above result.

Proof of Theorem 6.1. The implication (i)⇒ (ii) follows from (HS3) in Proposition

5.3 and F̃ (X,D) ⊂ Fgen(X,D), see (2.3.1). The implication (ii)⇒ (iii) is immedi-
ate from the natural map (Vd,XK |DK

)xd−1
→ (Vd,XK |DK

)(x0,...,xd−1). Assume X has a

smooth compactification X such that X \ U is an SNCD. It remains to show that
in this case also (iii)⇒ (i) holds. Let D ⊂ XK be the closure of DK and Y = |D|,
which we will view as a reduced effective Cartier divisor. By Theorem 2.4(2) it
suffices to prove the following:

Claim 6.2.1. Let B ⊂ XK be an effective Cartier divisor supported on XK \ XK

and n ≥ 1. Then the sequence⊕
w∈WK

⊕
xw=(w,x1...,xd)

(Vd,XK |DK
)xd−1

→ Hd(XK,Nis, Vd,XK |D+nY+B)

→ Hd(XK,Nis, Vd,XK |D+B)→ 0

is exact. Here, the second sum is over all xw = (w, x1 . . . , xd−1, xd) ∈ mc(XK) such
that xd−1 ∈ D(0) and the first map is the sum of the maps

(Vd,XK |DK
)xd−1

→ (Vd,XK |DK
)hx′w → (Vd,XK |DK

)hxw → Hd(XK,Nis, Vd,XK |D+nY+B)

where x′w = (w, x1, . . . , xd−1) for xw = (w, x1 . . . , xd) and the last map is induced by
cxw from (3.4.2) noting (Vd,XK |DK

)hxw = (Vd,XK |D+nY+B)hxw = Kh
XK ,xw

.

Considering the same claim with D + B on the right replaced by D + mY + B
and D+nY +B in the middle replaced by D+ (m+ 1)Y +B, for m = 0, . . . , n− 1,
we are reduced to the case n = 1. Let

G = Vd,XK |D+B/Vd,XK |D+Y+B.

It is supported on Y , and by [RSa, Corollary 2.10] we have an exact sequence

(6.2.2) Hd−1(YZar,G)→ Hd(XNis, Vd,X|D+Y+B)→ Hd(XNis, Vd,X|D+B)→ 0.

Then, we obtain surjections⊕
w∈WK

⊕
xw=(w,x1...,xd)

(Vd,XK |DK
)xd−1

→→
⊕
w∈WK

⊕
x′w=(w,x1...,xd−1)

Gxd−1

cZar
x′w,0−−−→→

⊕
w∈W

Hd−1
w (YZar,G)→→ Hd−1(YZar,G).

where the last map is surjective due to (6.2.1) and cZar
x′w,0

is the map (3.7.1) and it is
surjective by Remark 3.7. This proves Claim 6.2.1 and hence the theorem. �
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Remark 6.3. If F = Wn is the sheaf of p-typical Witt vectors of length n, where
p = char(k), the equivalence (i) ⇔ (iii) in Theorem 6.1 is reminiscent of [KR10,
Proposition 7.5] (the case [filFm). Though in loc. cit. k is assumed to be algebraically
closed and it is not necessary to consider all function fields K/k.

Definition 6.4. For (X,D) ∈MCor with U = X − |D|, We define

F LS(X,D) :=

{
a ∈ F (U)

∣∣∣∣∣ (aK , β)XK/K,x = 0 for ∀K/k, ∀x = (x0, . . . , xd) ∈
mc(XK), ∀β ∈ (Vd,XK |DK

)xd−1

}
.

By Theorem 6.1 we always have an inclusion F̃ (X,D) ⊂ F LS(X,D) and this is an
equlaity if X has a smooth projective compactification X such that X \U is SNCD.

6.5. We say that a reciprocity sheaf F has level n ≥ 0, if for any smooth k-scheme
X and any a ∈ F (A1 ×X) the following implication holds:

aA1
z
∈ F (z) ⊂ F (A1

z), for all z ∈ X(≤n−1) =⇒ a ∈ F (X) ⊂ F (A1 ×X),

where aA1
z

denotes the restriction of a to A1
z = A1 × z ⊂ A1 ×X, X(≤n−1) denotes

the set of points in X whose closure has dimension ≤ n − 1, and for a smooth
scheme S we identify F (S) with its image in F (A1 × S) via pullback along the
projection map. This is equivalent to the motivic conductor of F having level n in
the language of [RS21]. The A1-invariant sheaves with transfers are precisely the
reciprocity sheaves of level 0. By [RS21, Part 2], the presheaves X 7→ G(X), with G
a commutative algebraic group, X 7→ Hom(πab

1 (X),Q/Z), X 7→ Lisse1(X), the lisse
Q`-sheaves of rank 1, and X 7→ Conn1

int(X), the integrable rank 1 connections on
X (char(k) = 0), are reciprocity sheaves of level 1; and the presheaves X 7→ Ω1(X),
X 7→ ZΩ2(X) (both in char(k) = 0), and X 7→ H1(Xfppf , G), with G a finite flat
k-group scheme, are reciprocity sheaves of level 2.

We say that resolutions of singularities hold over k in dimension ≤ n, if for any
integral projective k-scheme Z of dimension ≤ n and any effective Cartier divisor E
on Z, there exists a proper birational morphism h : Z ′ → Z such that Z ′ is regular
and |h−1(E)| has simple normal crossings. This is known to hold if char(k) = 0 by
Hironaka or if n ≤ 3 by [CP09].

Corollary 6.6. Assume F has level n ≥ 0 and resolutions of singularities hold over
k in dimension ≤ n. Let (X,D) ba a modulus pair. Assume X is quasi-projective
and set U = X \ |D|. Let a ∈ F (U). The following statements are equivalent

(i) a ∈ F̃ (X,D);
(ii) h∗a ∈ F LS(Z, h∗D), for all k-morphisms h : Z → X with Z smooth, quasi-

projective with dim(Z) ≤ n such that |h∗D| is SNCD.

Proof. By (HS3) we only have to show the implication (ii) ⇒ (i). Let h : Z → X
be as in (ii). By resolution of singularity in dimension ≤ n, Theorem 6.1 together

with Theorem 2.4(2) imply F LS(Z, h∗D) = Fgen(Z, h∗Z) = F̃ (Z, h∗Z). Hence a ∈
F̃ (X,D), by [RSb, Corollary 6.10] �

Remark 6.7. Note that if char(k) = 0 or char(k) = p > 0 and F has level ≤ 3 (see
the examples listed in (6.5) and also [RSb, Example 6.11(5)]), then Corollary 6.6
yields unconditional results.
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7. A diagonal argument

We give a refinement of Theorem 6.1 in the case where D is reduced, see Propo-
sition 7.3 below. In this section k is a perfect field and F ∈ RSCNis.

Lemma 7.1. Let S be a smooth integral k-scheme of dimension d − 1 and X =
A1
S = S[z]. Let L = k(X) be the function field and set XL = X ⊗k L. Write

t = z ⊗ 1, s = 1⊗ z ∈ OXL
.

Let η ∈ (S ×k S)(d−1) be the generic point of the diagonal and let θ1, . . . , θd−1 be a
regular sequence of parameters in A := OS×kS,η. Then A[t, s]/(t, θ1, . . . , θd−1−i) is
integral for i = 0, . . . , d− 1. We denote by xi ∈ XL ⊂ X ×k X, the generic point of
the image of the natural map

SpecA[t, s]/(t, θ1, . . . , θd−1−i)→ X ×k X,

and by xd ∈ X(0)
L the generic point of the component containing x0. Set

β0 :=

{
t− s
t− 1

, θ1, . . . , θd−1

}
, γ0 := {s, θ1, . . . , θd−1} ∈ KM

d (k(xd)).

Then x = (x0, . . . , xd) ∈ mc(XL) and

(7.1.1) ± (aL, β0)XL/L,x = j∗(a− λ∗a) ∈ F (L), for all a ∈ F (P1 \ 0S,∞S),

(7.1.2) (aL, γ0)XL/L,x = 0, for all a ∈ F̃ (P1
S \ 0S),

where aL ∈ F (XL[t−1]) denotes the restriction of a to XL, j : SpecL → X is the
inclusion of the generic point, and the map λ is the composition

X
proj.−−→ S ∼= V (z − 1) ↪→ X.

Proof. By, e.g., [Mat89, Theorems 14.2 and 3] the ring A[t, s]/(t, θ1, . . . , θd−1−i) is
integral, regular and of dimension i + 1. It follows that xi ∈ XL is a point of

dimension i so that x ∈ mc(XL). We first show (7.1.1). Let a ∈ F̃ (P1
S \ 0S,∞S).

Assume d− 1 ≥ 1 and set x′ = (x0, . . . , xd−2, xd) ∈ mcd−1(XL). By (HS4)

(aL, β0)XL/L,x = −
∑

y∈b(x′)
y 6=xd−1

(aL, β0)XL/L,x′(y).

The maximal ideal in OXL,xd−2
is generated by t, θ1 and thus the only point y ∈ X(1)

L

with y > xd−2, at which β0 is not regular is given by zd−1 = SpecOXL,xd−2
/(θ1),

whereas xd−1 = SpecOXL,xd−2
/(t) is the only such point at which aL is not regular.

Thus (HS2) yields

(aL, β0)XL/L,x = −(aL(zd−1), β1)Zd−1/L,(x0,...,xd−2,zd−1),

where Zd−1 = {zd−1} ⊂ XL, and

β1 = ∂zd−1
β0 = ±

{
t− s
t− 1

, θ2, . . . , θd−1

}
∈ KM

d−1(L(Zd−1)).

If d − 2 = 0 we stop, if d − 2 ≥ 1 we observe that aL(zd−1) ∈ F̃ (Zd−1[t−1]) and we
proceed by applying (HS4) and (HS2) again. Iterating yields

(aL, β)XL/L,x = ±
(
aL(z1),

t− s
t− 1

)
Z1/L,(x0,z1)

,
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where z1 ∈ Z1 is the generic point of SpecOXL,x0/(θ1, . . . , θd−1) and Z1 is its closure
in XL. By the choice of the θi, we have Z1 = SpecL[t] ⊂ P1

L and hence we may
identify x0 with 0L ∈ P1

L. Applying (HS1) and (HS4) one more time we find

(aL, β0)XL/L,x = ±
∑

y∈PL\0L

(
aL(z1),

t− s
t− 1

)
P1

L/L,(y,z1)

.

Note that under the identification Z1 = SpecL[t] ⊂ P1
L, the element aL(z1) cor-

responds to the pullback of a along P1
L → P1

S induced by the natural inclusions

OS ⊂ k(S) ⊂ k(S)(s) = L. Thus aL(z1) ∈ F̃ (P1
L \ 0L,∞L) by the choice of a in

(7.1.1). Since t−s
t−1
∈ (V1,P1

L|∞L
)∞L

we obtain by (HS3) and (HS2)

(aL, β0)XL/L,x = ±
(
aL(z1)|{t−s=0} − aL(z1)|{t−1=0}

)
∈ F (L).

This yields (7.1.1). Now assume a ∈ F (P1
S \ 0S). The same argument as above with

β0 replaced by γ0 yields

(aL, γ0)XL/L,x = ±
∑

y∈PL\0L

(aL(z1), s)P1
L/L,(y,z1) .

This vanishes by (HS2) since aL(z1) ∈ F (P1
L \ 0L) and s ∈ L×. Hence (7.1.2). �

Corollary 7.2. Let S be a smooth integral k-scheme of dimension d − 1 and X =
A1
S = S[z]. Let L = k(X) be the function field and set XL = X⊗kL and SL = S⊗kL.

Let ι : SL = V (t) ↪→ XL be the closed immersion defined by t = 0, where t = z ⊗ 1.
Denote by s0 ∈ SL the image of the generic point of the diagonal in S×S under the
map S ×k S → S ×k X → SL where the first map is the base change of the closed
immersion S ↪→ X defined by z = 0. Denote by η ∈ XL the generic point of the

irreducible component containing ι(s0). Let a ∈ F̃ (P1
S \ 0S,∞S) ⊂ F (X[z−1]).

(1) Assume for all y = (y0, . . . , yd−1) ∈ mc(SL) with y0 = s0 we have

(aL, β)XL/L,(ι(y),η) = 0, for all β ∈ KM
d (OXL,ι(yd−1)).

Then a ∈ Im(F (S)→ F̃ (P1
S \ 0S,∞S)).

(2) Assume for all y = (y0, . . . , yd−1) ∈ mc(SL) with y0 = s0 we have

(aL, β)XL/L,(ι(y),η) = 0, for all β ∈ (Vd,XL|0SL
)ι(yd−1).

Then a ∈ F̃ (P1
S, 0S +∞S).

Proof. By (7.1.1) and with the notation from there, the condition in (1) implies
j∗a = j∗λ∗a. Since j∗ : F (X) → F (L) is injective, by [Sai20, Theorem 3.1], we
obtain the first statement. We show the statement in (2). By [Sai20, (5.7)] (with 0
and ∞ interchanged), we have

F (P1
S, 0S +∞S)

F (P1
S, 0S)

' F (P1
S \ 0S,∞S)

F (P1
S \ 0S)

.

Hence a = b + c, for some b ∈ F (P1
S, 0S +∞S) and c ∈ F (P1

S \ 0S). It suffices to
show c ∈ F (P1

S). Let the notations be as in Lemma 7.1. We have

δ0 := β0 − γ0 =

{
1− s−1t

t− 1
, θ1, . . . , θd−1

}
∈ (Vd,XL|0SL

)xd−1
.

Thus (HS3) yields (bL, δ0)XL/L,x = 0; furthermore (cL, γ0)XL/L,x = 0, by (7.1.2).
Thus the assumption yields 0 = (aL, δ0)XL/L,x = (cL, β0)XL/L,x. Hence c ∈ F (S) by
(7.1.1). �
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The following proposition is a version of the implication (iii) ⇒ (i) in Theorem
6.1 for a modulus pair (X,D) with X smooth and D a reduced SNCD, which does
not require the existence of a smooth compactification X of X such that D is the
restriction of an SNCD on X. Besides Corollary 7.2, an essential ingredient is [Sai,
Corollary 2.5]. Note that though results of the present paper are used in [Sai], this
is not the case in section 2 of loc. cit., hence there is no circular argument.

Proposition 7.3. Let X ∈ Sm and assume D is a reduced SNCD on X. Let
U ⊂ X be an open subset containing all the generic points of D. Let a ∈ F (X \D).

(1) Assume for all function fields K/k and all x = (x0, . . . , xd) ∈ mc(UK) with

xd−1 ∈ D(0)
K , we have

(a, β)XK/K,x = 0, for all β ∈ KM
d (OXK ,xd−1

).

Then a ∈ F (X).
(2) Assume for all function fields K/k and all x = (x0, . . . , xd) ∈ mc(UK) with

xd−1 ∈ D(0)
K , we have

(a, β)XK/K,x = 0, for all β ∈ (Vd,XK |DK
)xd−1

.

Then a ∈ F̃ (X,D).

Proof. We only prove (2), the proof of (1) is similar. By [Sai, Corollary 2.5] there is
an exact sequence

(7.3.1) 0→ F̃ (X,D)→ F (X \D)→
⊕
η∈D(0)

F (OhX,η \ η)

F̃ (OhX,η, η)
.

This reduces us to the case X and D smooth, affine, connected, with generic point

η ∈ D and it suffices to show that the condition in (2) implies a ∈ F̃ (OhX,η, η).

Claim 7.3.1. We may further assume that there is a smooth morphism X → D,
such that D ↪→ X → D is the identity.

Indeed, by [BRS, Lemma 7.13] (which is a variant of [Sai20, Lemma 8.5] and relies
on a result of Elkik [Elk73]), we find an étale morphism u : X ′ → X and a morphism

X ′ → D, such that u induces an isomorphism u−1(D)
'−→ D and the composition

D ↪→ X ′ → D is the identity. Thus it suffices to show

(7.3.2) ((u∗a)K , γ)X′K/K,x = 0 for all γ ∈ (Vd,X′K |DK
)xd−1

,

for K/k and all x = (x0, . . . , xd) ∈ mc(X ′K) with xd−1 ∈ D
(0)
K . By (HS3) (7.3.2)

holds for γ ∈ (Vd,X′K |nDK
)xd−1

for some big enough integer n. Since that natural map

(7.3.3) (Vd,XK |DK
)xd−1

u∗K−→
(Vd,X′K |DK

)xd−1

(Vd,X′K |nDK
)xd−1

is surjective, it suffices to show (7.3.2) for γ = u∗Kβ with β ∈ (Vd,XK |DK
)xd−1

. Since
maximal chains x ∈ mc(X ′K) with xd−1 ∈ DK correspond uniquely to maximal
chains in XK whose 1-codimensional point is the generic point of DK , the vanishing
(7.3.2) follows in this case directly from the vanishing in (2) and the definition of
the map cx in (3.4.2), which is used in Definition 5.1. This proves claim 7.3.1.
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Shrinking further around the generic point of D, we may assume further D =
Div(t) for some t ∈ O(X). The section t corresponds to a morphism v : X → A1

D,
which is étale and satisfies D = v−1(0D). By [Sai20, Lemmas 4.2, 4.4] the morphism

v∗ :
F (A1

D \ 0D)

F̃ (A1
D, 0D)

−→ F (X \D)

F̃ (X,D)

becomes an isomorphism when we shrink D to its generic point. Thus we may
assume a = v∗b for some b ∈ F (A1

D \ 0D). By [Sai20, Lemma 5.9], we have

F (A1
D \ 0D)

F̃ (A1
D, 0D)

∼=
F̃ (P1

D \ 0D,∞D)

F̃ (P1
D, 0D +∞D)

,

so we may assume b ∈ F̃ (P1
D \ 0D,∞D). It remains to show b ∈ F̃ (P1

D, 0D +∞D).
By Corollary 7.2(2) it therefore suffices to show, that for all K/k and all x =

(x0, . . . , xd) ∈ mc(A1
DK

) with xd−1 ∈ DK
(0) (where DK is embedded in A1

DK
along

the zero-section) we have

(7.3.4) (b, γ)A1
DK

/K,x = 0, for all γ ∈ (Vd,A1
DK
|0DK

)xd−1
.

To this end we first observe that by a similar argument as was used around (7.3.3),
the condition in (2) also holds with (Vd,XK |DK

)xd−1
replaced by its Nisnevich stalk

(Vd,XK |DK
)hxd−1

and we may as well consider the Nisnevich stalk of Vd,A1
DK
|0DK

in

(7.3.4). But v∗ induces an isomorphism Oh
A1

DK
,0DK

'−→ OhXK ,xd−1
. Thus the norm

map KM
d (Kh

XK ,xd−1
)→ KM

d (Kh
A1

DK
,0DK

) induces an isomorphism

Nm : (Vd,XK |DK
)hxd−1

'−→ (Vd,A1
DK
|0DK

)hxd−1
.

Now let γ and x ∈ mc(A1
DK

) be as in (7.3.4). By the construction we can lift x

uniquely to y ∈ mc(XK). Take β ∈ (Vd,XK |DK
)hxd−1

with Nm(β) = γ. Then

0 = (a, β)XK/K,y = (v∗b, β)XK/K,y = (b,Nm(β))A1
DK

/K,x = (b, γ)A1
DK

/K,x

where the first equality holds by the condition in (2) and the third equality holds
by (HS5′) in Corollary 5.5. This yields (7.3.4) and completes the proof. �
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Géom. Algébrique 5 (2021), Art. 1, 46.

[KMSY21b] , Motives with modulus, II: Modulus sheaves with transfers for proper modulus
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