
BLOCH’S FORMULA FOR 0-CYCLES WITH MODULUS AND HIGHER

DIMENSIONAL CLASS FIELD THEORY
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Abstract. We prove Bloch’s formula for the Chow group of 0-cycles with mod-
ulus on a smooth quasi-projective surface over a field. We use this formula
to give a simple proof of the rank one case of a conjecture of Deligne and
Drinfeld on lisse Q`-sheaves. This was originally solved by Kerz and Saito in
characteristic ≠ 2.
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1. Introduction

Let X be a normal and complete variety over a finite field k. Let U ⊂X be a quasi-projective
open subvariety which is smooth and whose complement is the support of an effective Cartier
divisor on X. Let (VZ)Z be a family of semisimple lisse Q`-sheaves on the normalizations
ZN , where Z runs through all closed integral curves on U . The family (VZ)Z is said to be a
2-skeleton sheaf if for two curves Z1 ≠ Z2, the sheaves VZ1 and VZ2 become isomorphic up to
semi-simplification after pull-back to the support of ZN1 ×U ZN2 .

Let ψZ ∶Z
N → Z be the normalization of the closure Z of an integral curve Z ⊂ U in X and

let Z∞ = ψ−1
Z (Z ∖ U). The family (VZ)Z is said to have bounded ramification if there exists

an effective Cartier divisor D ⊂X supported on X ∖U such that for all integral curves Z ⊂ U ,

one has the inequality of Cartier divisors ∑
y∈Z∞

ary(VZ)[y] ≤ ψ∗Z(D) on Z
N

, where ary(VZ) is

the local Artin conductor of VZ at y (see [45]).
Motivated by the work of Drinfeld [13], a conjecture of Deligne [14] states that given a

2-skeleton sheaf (VZ)Z with bounded ramification, there exists a lisse Q`-sheaf V on U such
that V ∣ZN ≅ VZ after semi-simplification for all integral curves Z ⊂ U .
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Let CH0(X ∣D) denote the Chow group of 0-cycles on X with modulus (see [5] or [29]) for
any effective Cartier divisor D ⊂ X. Let C(U) = lim←Ð

D⊂X∖U

CH0(X ∣D), where D runs through

all effective Cartier divisors supported on X ∖ U . Let πab
1 (U) denote the abelianized étale

fundamental group of U .
Kerz and Saito [29] showed that C(U) is independent of the choice of the compactifi-

cation X and that there is a reciprocity map ρU ∶C(U) → πab
1 (U). This induces a map

ρ0
U ∶C(U)0 → πab

1 (U)0 on the degree zero parts (see 8.3). The rank one case of the above
conjecture of Deligne is then a direct consequence of another conjecture, namely, the map ρ0

U
is an isomorphism of topological pro-finite abelian groups. Kerz and Saito proved this latter
conjecture when char(k) ≠ 2 through a series of several highly non-trivial reductions.

In this paper, we give a simple and independent proof of the theorem of Kerz and Saito,
including the missing characteristic 2 case. As a byproduct, we obtain a simple proof of the
rank one case of Deligne’s conjecture in all positive characteristics. We deduce these results
by proving Bloch’s formula for CH0(X ∣D) when X is a smooth quasi-projective surface over
an arbitrary base field k.

1.1. The main results. We now state our precise results. For a local ring A and an ideal
I ⊂ A, let KM

∗ (A, I) denote the relative Milnor K-theory (e.g., see [25, § 1.3]). Let Ah

denote the Henselization of A with respect to its maximal ideal. For a closed immersion of
Noetherian schemes D ⊂ X defined by the sheaf of ideals ID, we let KMn,X denote the Zariski

(resp. Nisnevich) sheaf on X whose stalk at a point x ∈ X is the relative Milnor K-group
KM
n (OX,x,ID,x) (resp. KM

n (OhX,x,IhD,x))

Theorem 1.1. Let X be a smooth quasi-projective surface over a field k and let D ⊂X be an
effective Cartier divisor. Then there are canonical isomorphisms

(1.1) ρX ∣D ∶CH0(X ∣D) ≅Ð→H2
zar(X,KM2,(X,D))

≅Ð→H2
nis(X,KM2,(X,D)).

When D = 0, Theorem 1.1 is classical and was first proven by Bloch [7] for Quillen K-
theory and by Kato [24] for Milnor K-theory. For general D, Theorem 1.1 was proven earlier
by Binda and Krishna [2, Theorem 1.8] when k is algebraically closed. When X is affine and
k is perfect, this theorem was proven by Gupta and Krishna [20, Theorem 1.4]. We shall refer
to this theorem as the Bloch-Kato formula.

Combining Theorem 1.1 with an induction argument due to Kerz and Saito [29] and the
Kato-Saito class field theory [25], we obtain the following.

Theorem 1.2. Let U be a smooth quasi-projective variety of dimension d ≥ 1 over a finite
field k. Suppose there is an open immersion U ⊂X such that X is normal and proper over k
and (X ∖U)red is the support of an effective Cartier divisor on X. Then the reciprocity map

ρ0
U ∶C(U)0 → πab

1 (U)0

is an isomorphism of pro-finite topological abelian groups.

Since the rank one lisse Q`-sheaves on U are same as the characters of the pro-finite group
πab

1 (U), the following is an immediate consequence of Theorem 1.2 and the Pontryagin duality
theorem for pro-finite groups.

Corollary 1.3. The rank one case of Deligne’s conjecture is true for any smooth quasi-
projective variety U over a finite field.
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We list some more applications of Theorem 1.1. Apart from its application to higher dimen-
sional class field theory and solution of the rank one case of Deligne’s conjecture, Theorem 1.1
has further applications. It is used in [3] to prove a restriction isomorphism for the relative
0-cycle group on a regular and flat projective scheme over a henselian discrete valuation ring
with arbitrary reduction. Theorem 1.1 is used in [4] to give an explicit comparison between the
motivic cohomology (in the sense of Suslin-Voevodsky) and the Levine-Weibel Chow group
of a normal crossing scheme. Finally, it forms a crucial step in the recent proof of Bloch’s
formula for the Chow group of 0-cycles with modulus in higher dimensions in [21].

1.2. Outline of proofs. Let U be as in Theorem 1.2. Kerz and Saito [29] defined a reciprocity
map ρU ∶C(U) → πab

1 (U), and the goal is to show that this is an isomorphism on the degree
zero parts. As a first step, it is possible to use an alteration (in the sense of de Jong) to assume
that the compactification X of U is smooth and projective, with complement (X ∖U)red the
support of a strict normal crossing divisor. Next, using a generalized version of the Bertini
theorem of Poonen [41] and the Lefschetz hyperplane theorem of Kerz and Saito [28], one
reduces to the case when d ≤ 2. This is the main point, and it is the case for which we provide
a new and simple proof in this paper.

The d = 1 case is classical. Our strategy for proving Theorem 1.2 in d = 2 case is the follow-
ing. We define a cycle class map ρX ∣D ∶CH0(X ∣D)→H2

nis(X,KM2,(X,D)) for any effective Cartier

divisor D ⊂X supported on X∖U . Theorem 1.1 says that this map is an isomorphism. Taking
the limit over all such D ⊂X, we get an isomorphism ρ̃U ∶C(U)→ lim←Ð

D

H2
nis(X,KM2,(X,D)). Let

us denote the limit on the right side as CKS(U).
Kato and Saito [25] constructed a reciprocity isomorphism ρ̂0∶CKS(U)0 ≅Ð→ πab

1 (U)0. We
thus have maps

C(U)0 ρ̃0UÐ→ CKS(U)0 ρ̂0

Ð→ πab
1 (U)0.

It is easy to check that the composite map is the reciprocity map ρ0
U of Kerz and Saito. The

map ρ̂0 was shown to be an isomorphism by Kato and Saito [25]. This provides a proof of
Theorem 1.2.

The heart of this paper is the proof of Theorem 1.1. This proof has two main ingredients:
(1) the fundamental exact sequence of [2] which relates the 0-cycles group with modulus on
smooth varieties with a modified version of the Levine-Weibel 0-cycle group (referred to as
the lci Chow group) on a singular variety, and (2) a proof of Bloch’s formula for the modified
version of the Levine-Weibel 0-cycle group. For (2), we use the existence of a good theory of
pull-back and push-forward for the modified Levine-Weibel Chow group and a pro-` extension
trick to reduce it to the case when the ground field is infinite.

When the ground field is algebraically closed, Levine [36] constructed a geometric theory
of Chow ring on singular varieties. As a consequence, he showed that for a reduced quasi-
projective surface X over an algebraically closed field, the cycle class map from the Levine-
Weibel Chow group to K0(X) is injective. Even as Levine’s complete proof is yet unpublished,
a published account of the dimension two case of his proof is available in [6]. A major part of
this paper is devoted to showing that Levine’s program can be carried out for surfaces over
an arbitrary infinite field. In particular, the injectivity of the cycle class map (for surfaces)
holds over any infinite field. A known relation between the Levine-Weibel and the lci Chow
groups (shown in [2]) then shows that this holds for the latter group too. The injectivity of
the cycle class map implies Bloch’s formula.

In § 2, we recall definitions of all cycle groups and recollect some results from [2] that play
key roles in our proofs. In § 3, we construct the cycle class map and the Bloch-Kato map
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which are used in the proof of Bloch’s formula. We prove some results regarding these maps
which are later used in the main proofs. The key results in this section are Theorems 3.6
and 3.7. The next four sections form the heart of the proofs, where the goal is to carry out
Levine’s strategy over an arbitrary infinite fields. Here, the main idea is solely due to Levine.
However, due to the complications arising from the arbitrariness of the ground field, we need
to include new arguments at several places to ensure that Levine’s results remain valid over
such fields. In § 8, we finish the proofs of our main results.

2. The Chow group of 0-cycles

In this section, we fix our notations and recall the definitions of various 0-cycle groups that
we use in our proofs. We also prove some results relating these groups.

2.1. Notations. For a field k, we shall let Schk denote the category of quasi-projective
schemes over k. We let Smk denote the subcategory of Schk consisting of smooth schemes
over k. For X ∈ Schk, we let Xreg denote the largest open subscheme of X which is regular.
We let Xsing denote the complement of Xreg in X with its reduced induced closed subscheme
structure. Recall here the convention that if dim(X) = d, then Xsing contains every point
of X which lies on an irreducible component of X of dimension less than d. We shall let
Xsm denote the set of points in X where the map X → Spec (k) is smooth. It is clear by
the definition of smooth morphisms that Xsm ⊂ X is open. We let Xnsm = X ∖Xsm with the
reduced induced closed subscheme structure. Note that Xsm ⊂Xreg and hence Xsing ⊂Xnsm.

For X,Y ∈ Schk, we shall write the product X ×k Y as X ×Y . If X1×⋯×Xn is a product of
schemes, then pi will denote the projection from this product to its i-th factor (unless we use
a specific notation in some context). We shall often write X × Pnk as PnX . If z ∈ Z ∶= X × Y is
a closed point, then it is not true in general that z is uniquely determined by its projections
p1(z) ∈ X and p2(z) ∈ Y . However, this is indeed true if z happens to be a k-rational point
of X × Y . In this case, we can uniquely write z = (p1(z), p2(z)) ∈X × Y . More generally, if S
is a scheme and X,Y ∈ SchS , then the canonical map (X ×S Y )(S)→X(S)× Y (S) of sets is
bijective. This fact will be used frequently in this paper. If f ∶X ′ →X is a morphism in Schk,
then a rational fiber of f will mean the scheme-theoretic fiber over a k-rational point of X.

We shall let Z(X) denote the free abelian group generated by integral closed subschemes
of X. If f ∶X ′ →X is a proper map and V ⊂X ′ is an integral closed subscheme, then we shall
let f∗(V ) ∈ Z(X) denote the push-forward on X of the cycle [V ] in the sense of [17].

If X ∈ Schk and V1, V2 ⊂ X are two irreducible closed subschemes of X, then we shall say
that they intersect properly if codimX(V1 ∩ V2) ≥ codimX(V1) + codimX(V2). If V1 or V2 is
not necessarily irreducible, then we shall say that they intersect properly if every irreducible
component of V1 intersects every irreducible component of V2 properly. If V1, V2 are two closed
subschemes intersecting properly, we shall let V1 ⋅ V2 be their intersection product as a cycle
on X in the sense of [17, Chapter 6]. We shall use this intersection product only in the case
when V1∩V2 ⊂Xreg. We shall let codimX(∅) =∞. If X is integral and f ∈ k(X)× is a rational
function, we shall let div(f) denote the cycle associated to f in Z(X) as in [17].

2.2. The Levine-Weibel Chow group of a surface. Since we use the Levine-Weibel
Chow group [38] only for surfaces, we do not recall its definition in full generality. In the case
of surfaces, we shall use the following variant of the Levine-Weibel Chow group which was
defined by Levine [36]. It was shown in ibid. that this variant is actually isomorphic to the
Levine-Weibel Chow group, but we shall have no occasion to use this comparison. We fix an
arbitrary field k.
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Definition 2.1. Let X be a reduced quasi-projective surface over k and let Y ⊂ X be a
nowhere dense closed subscheme containing Xsing. Let Z0(X,Y ) be the free abelian group

on the set of closed points lying in X ∖ Y . Let RL0 (X,Y ) denote the subgroup of Z0(X,Y )
generated by cycles C0 −C∞ ∈ Z0(X,Y ) such that the following hold:

There exists a closed subscheme C ⊂X × P1
k of pure dimension one such that

(1) C ∩ P1
Y is finite and C ∩ (Y × {0,∞}) = ∅.

(2) C ∩ (X × {0,∞}) is finite.
(3) The projection map C → P1

k is flat over a neighborhood of {0,∞}.
(4) If p1∶P1

X → X is the projection, then (p1)∗(C ⋅ (X × {0})) = C0 and (p1)∗(C ⋅ (X ×
{∞})) = C∞.

(5) The ideal of C in P1
X is a complete intersection in the local ring of every point x ∈

C ∩ P1
Y .

We define CHL
0 (X,Y ) to be the quotient

Z0(X,Y )

RL0 (X,Y )
. When Y = Xsing, we write CHL

0 (X,Y )
simply as CHL

0 (X). In this paper, we shall refer to CHL
0 (X) as the ‘Levine-Weibel Chow

group’ of X. We shall call a subscheme C as above a Cartier curve relative to Y . A Cartier
curve in general will mean the one relative to Xsing.

In the sequel, we shall use the notation CHLW
0 (X,Y ) for the original definition of the

Chow group of 0-cycles given by Levine and Weibel [38]. The notion of “Cartier curves” was
introduced in [38, Definition 1.2]: we shall reserve the term ‘Levine-Weibel Cartier curves’ for
those defined in [38].

The following lemma allows us to assume C to be reduced in the definition of the Levine-
Weibel Chow group if k is infinite.

Lemma 2.2. Assume that k is infinite. Let the pair (X,Y ) be as in Definition 2.1. Then
RL0 (X,Y ) is the subgroup of Z0(X,Y ) generated by cycles C0 −C∞ ∈ Z0(X,Y ), where C is a
reduced Cartier curve in P1

X . If X is integral, we can assume C to be integral.

Proof. Let C ⊂ P1
X be a Cartier curve. Then it is also a Levine-Weibel Cartier curve on P1

X .
In the latter case, it was shown in [37, Lemma 1.4] that we can find reduced Levine-Weibel
Cartier curves C1, . . . ,Cr on P1

X which miss Y ×{0,∞} (since its codimension in P1
X is at least

two, see [15, Lemma 1.3]) such that we have

C ⋅ (X × {0}) −C ⋅ (X × {∞}) =
r

∑
i=1

[Ci ⋅ (X × {0}) −Ci ⋅ (X × {∞})]

in Z0(P1
X ,P

1
Y ). In particular, we get

C0 −C∞ =
r

∑
i=1

[(p1)∗(Ci ⋅ (X × {0})) − (p1)∗(Ci ⋅ (X × {∞}))] =
r

∑
i=1

[(Ci)0 − (Ci)∞] .

Since each Ci is a Cartier curve in our sense and is reduced, we are done. If X was integral,
it was shown in [37, Lemma 1.4] that we could have chosen each Ci to be integral. This
finishes the proof. �

Lemma 2.3. Assume that C ⊂ P1
X is a reduced Cartier curve. We can then find another

reduced Cartier curve C ′ ⊂ P1
X such that the projection C ′ →X is finite and C0−C∞ = C ′

0−C ′
∞.

Proof. Write C = C1 ∪ . . . ∪ Cr as union of irreducible components. Suppose that all the
components Ci for 1 ≤ i ≤ s are such that the composition Ci → X is finite and p1(Ci) = xi is
a closed point of X for s < i ≤ r. Note that p1 is projective. Let Ci be one of these non-finite
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components. Then condition (1) in Definition 2.1 implies that xi ∈Xreg. Moreover, we have

(p1)∗(Ci ⋅ (X × {0})) − (p1)∗(Ci ⋅ (X × {∞})) = (p1)∗(Ci ×P1 {0} −Ci ×P1 {∞}) = 0

as 0-cycles on Xreg. Note that the above intersection makes sense, thanks to conditions (1)
and (2) in Definition 2.1.

We let C ′ ∶= C ∖ (Cs+1 ∪⋯ ∪Cr) (where the closure is taken in P1
X) with the reduced

induced closed subscheme structure. Since xi is a closed point of Xreg for every s < i ≤ r and
C is reduced, it follows that the schemes C and C ′ agree in an open neighborhood of P1

Xsing
.

We conclude that C ′ is a reduced Cartier curve on P1
X , the projection p1∶C ′ →X is finite and

C0 −C∞ = C ′
0 −C ′

∞. �

Note that the above proof shows that an integral Cartier curve C is either finite over X or
C0 −C∞ = 0 in Z0(X,Y ). Combining Lemmas 2.2 and 2.3, we therefore get the following.

Corollary 2.4. Assume that k is infinite. Let the pair (X,Y ) be as in Definition 2.1. Then
RL0 (X,Y ) is the subgroup of Z0(X,Y ) generated by cycles C0 −C∞ ∈ Z0(X,Y ), where C is a
reduced Cartier curve in P1

X which is finite over X. If X is integral, we can assume C to be
integral.

2.3. The lci Chow group of a singular scheme. Let k be any field. The lci Chow group of
a singular scheme was introduced in [2]. We recall it here. Let C be a reduced equidimensional
curve over k and let k(C) denote its ring of total quotients. Let C1, . . . ,Cr be the irreducible
components of C. Then k(C) is the product of the quotient fields of all Ci’s. For f ∈ k(C)×,

we can therefore write f = (fi) ∈
r

∏
i=1

k(Ci)×. We let div(f) be the sum
r

∑
i=1

div(fi) ∈ Z(C).

If Z ⊂ C is a finite closed subset, we let OC,Z denote the semi-local ring of C at Z. Since
O×C,Z ⊂ k(C)×, the cycle div(f) ∈ Z(C) makes sense for any f ∈ O×C,Z . For such finite set Z,

we let Z0(C,Z) denote the subgroup of Z(C) generated by closed points away from Z.
Let X be a reduced quasi-projective scheme over k and let Y ⊂ X be a nowhere dense

closed subscheme containing Xsing.

Definition 2.5. Let C be a reduced curve in Schk and let ν∶C → X be a finite morphism.
We say that ν∶ (C,Z) → (X,Y ) is a good curve relative to Y if Z is a closed subscheme of C
such that the following hold.

(1) No component of C is contained in Z.
(2) ν−1(Y ) ⊆ Z.
(3) ν is a local complete intersection morphism at every point x ∈ C such that ν(x) ∈ Y .

Given any good curve (C,Z) relative to Y , we can consider the push-forward (see § 2.1)

Z0(C,Z) ν∗Ð→ Z0(X,Y ). We let R0(C,Z,X) be the subgroup of Z0(X,Y ) generated by the
set {ν∗(div(f))∣f ∈ O×C,Z}. We write R0(X,Y ) for the subgroup of Z0(X,Y ) defined as the
image of the map

(2.1) ⊕
ν∶(C,Z)→(X,Y ) good

R0(C,Z,X)→ Z0(X,Y ),

where the index set runs over the set of good curves relative to (X,Y ). We define the Chow
group of 0-cycles on X (relative to Y ) to be the quotient

(2.2) CH0(X,Y ) = Z0(X,Y )
R0(X,Y )

.

If Y = Xsing, we shall write CH0(X,Y ) simply as CH0(X). To avoid any conflict of
notations, we shall denote the Chow group of n-dimensional cycles on X modulo rational
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equivalence in the sense of [17, Chapter 1] by CHF
n (X). To distinguish CH0(X,Y ) from

CHL
0 (X,Y ), we shall often refer to it as the ‘lci Chow group’ of (X,Y ). The relation between

CHL
0 (X,Y ) and CH0(X,Y ) is given by the following lemma.

Lemma 2.6. Let k be an infinite field. Let X be a reduced quasi-projective surface over k
and let Y ⊂X be a nowhere dense closed subscheme containing Xsing. Then the identity map
of Z0(X,Y ) induces a canonical surjection

φ(X,Y )∶CHL
0 (X,Y )↠ CH0(X,Y ).

Proof. Let C ⊂ P1
X be a Cartier curve relative to Y and let Z = P1

Y ∩C. We can assume that
C is reduced and finite over X by Corollary 2.4. It is then easy to see that (C,Z) is a good

curve relative to Y via the composite map ν∶C ↪ P1
X

pXÐ→X. Furthermore, if we let f ∶C → P1
k

be the projection map, then it defines an element of k(C). The conditions (1) and (2) of
Definition 2.1 imply in fact that f ∈ O×C,Z . It is clear that ν∗(div(f)) = C0 − C∞. Hence,

C0 −C∞ ∈R0(X,Y ). This finishes the proof. �

The lci Chow group CH0(X) possesses a reasonable theory of pull-back and push-forward
maps. This property will play a very important role in the proofs of our main theorems. In
contrast, the Levine-Weibel Chow group CHL

0 (X) is not known to have any good theory of
push-forward maps induced by finite maps between two varieties. A particular result that
we shall use in the main proofs is the following. We let (X,Y ) be as in § 2.3. For any field
extension k ↪ k′, we let X ′ = Xk′ ∶= X ⊗k k′ and Y ′ = Yk′ ∶= Y ⊗k k′. We let prk′/k ∶ X ′ → X
denote the projection map.

Proposition 2.7. Let k ↪ k′ be a separable algebraic (possibly infinite) extension of fields.
Then the following hold.

(1) There exists a pull-back map pr∗k′/k∶CH0(X,Y )→ CH0(X ′, Y ′).

(2) If there exists a sequence of separable algebraic field extensions k = k0 ⊂ k1 ⊂ ⋯ ⊂
k′ with k′ = ∪iki such that Xi ∶= Xki and Yi ∶= Yki for each i ≥ 1, then we have

limÐ→
i

CH0(Xi, Yi)
≃Ð→ CH0(X ′, Y ′).

(3) If k ↪ k′ is finite, then there exists a push-forward (prk′/k)∗∶CH0(X ′, Y ′)→ CH0(X,Y )
such that (prk′/k)∗ ○ pr∗k′/k is multiplication by [k′ ∶ k].

Proof. See [2, Proposition 6.1]. �

2.4. Zero cycles with modulus. Let k be any field. Given an integral normal curve C over
k and an effective divisor E ⊂ C, we say that a rational function f on C has modulus E if
f ∈ Ker(O×C,E → O×E). Here, OC,E is the semi-local ring of C at the union of E and the generic

point of C. In particular, Ker(O×C,E → O×E) is just k(C)× if ∣E∣ = ∅. Let G(C,E) denote the
group of such rational functions.

Let X be a reduced quasi-projective scheme over k and let D be an effective Cartier divisor
on X (we allow D to be empty). Let Z0(X,D) be the free abelian group on the set of closed
points of X ∖D. Let C be an integral normal curve over k and let ϕC ∶C → X be a finite
morphism such that ϕC(C) /⊂ D. The push forward of cycles along ϕC gives a well defined
group homomorphism

(ϕC)∗ ○ div∶G(C,ϕ∗C(D))→ Z0(X,D).
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Definition 2.8 (Kerz-Saito). We define the Chow group CH0(X ∣D) of 0-cycles of X with
modulus D as the cokernel of the homomorphism

(2.3) ⊕
ϕC ∶C→X

G(C,ϕ∗C(D))→ Z0(X,D),

where the sum is taken over the set of finite morphisms ϕC ∶C → X from an integral normal
curve such that ϕC(C) /⊂D.

A general theory of higher Chow groups with modulus CHp(X ∣D,q) was introduced in [5],
where it was shown that CH0(X ∣D,0) ≅ CH0(X ∣D). It is clear from the definition that the
inclusion Z0(X ∣D) ⊂ Z0(X) defines a canonical ‘forget modulus’ map CH0(X ∣D)→ CHF

0 (X)
(the latter being Fulton’s Chow group of zero cycles). It is known that the Chow group of
0-cycles with modulus is covariantly functorial for the proper maps: if f ∶X ′ → X is a proper
map, D and D′ are effective Cartier divisors on X and X ′ such that f∗(D) = D′, then there
is a push-forward map f∗∶CH0(X ′∣D′)→ CH0(X ∣D). If f is flat (but not necessarily proper)
of relative dimension zero, then there is a pull-back map f∗∶CH0(X ∣D) → CH0(X ′∣D′) (see
[5, Lemma 2.7] or [33, Propositions 2.10, 2.12]).

Analogous to the case of the lci Chow group, the Chow group of 0-cycles with modulus has
the following nice behavior with respect to the change of the base field.

Proposition 2.9. Let k ↪ k′ be a separable algebraic (possibly infinite) extension of fields. Let
X be a non-singular quasi-projective scheme over k with an effective Cartier divisor D. Let
X ′ = Xk′ and D′ = Dk′ denote the base change of X and D, respectively. Let prk′/k ∶ X ′ → X
be the projection map. Then the following hold.

(1) There exists a pull-back pr∗k′/k ∶ CH0(X ∣D)→ CH0(X ′∣D′).

(2) If there exists a sequence of separable algebraic field extensions k = k0 ⊂ k1 ⊂ ⋯ ⊂ k′

with k′ = ∪iki, then we have limÐ→
i

CH0(Xki ∣Dki)
≃Ð→ CH0(X ′∣D′).

(3) If k ↪ k′ is finite, then there exists a push-forward prk′/k ∗ ∶ CH0(X ′∣D′)→ CH0(X ∣D)
such that (prk′/k)∗ ○ pr∗k′/k is multiplication by [k′ ∶ k].

Proof. See [2, Proposition 6.2]. �

Remark 2.10. The reader should be aware of the fact that in the literature there exists another
notion of Chow group of zero cycles with modulus, introduced by H. Russell [44] in the study
of a higher dimensional analogue of the generalized Jacobian of Rosenlicht-Serre. Russell used
his generalized Albanese with modulus to rephrase Lang’s class field theory of function fields
of varieties over finite fields in explicit terms. Note however that the modulus condition in
loc.cit. is different from the one used here (and in [29]), and our work is not directly related
to his. ◻

2.5. The double construction. Let X be a non-singular quasi-projective scheme of dimen-
sion d over k and let D ⊂ X be an effective Cartier divisor. Recall from [2, § 2.1] that the
double of X along D is a quasi-projective scheme S(X,D) =X ∐D X so that

(2.4)

D
ι //

ι
��

X
ι+��

X ι−
// S(X,D)

is a co-Cartesian square in Schk. In particular, the identity map of X induces a finite map
∇ ∶ S(X,D)→X such that ∇○ι± = idX and π = ι+∐ι− ∶X ∐X → S(X,D) is the normalization
map. We let X± = ι±(X) ⊂ S(X,D) denote the two irreducible components of S(X,D). We
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use SX as a shorthand for S(X,D) when the divisor D is understood. SX is a reduced quasi-
projective scheme whose singular locus is Dred ⊂ SX . It is projective (resp. affine) whenever
X is so. It follows from [32, Lemma 2.2] that (2.4) is also a Cartesian square.

It is clear that the map Z0(SX ,D)
(ι∗+,ι∗−)ÐÐÐ→ Z0(X+,D)⊕Z0(X−,D) is an isomorphism, and

there are push-forward inclusion maps p±∗∶Z0(X,D)→ Z0(SX ,D) such that ι∗+ ○p+∗ = id and
ι∗+ ○ p−∗ = 0.

The fundamental result that connects the 0-cycles with modulus on X and 0-cycles on SX
is the following.

Theorem 2.11. Let k be any field. Let X be a smooth quasi-projective surface over k and
let D ⊂X be an effective Cartier divisor. Then there is a split short exact sequence

0→ CH0(X ∣D)
p+∗ÐÐ→ CH0(SX)

ι∗−Ð→ CH0(X)→ 0.

Proof. This is the restatement of the dimension two case of [2, Theorem 1.9] if we assume k
is perfect. However, the only place in the proof of this theorem where the perfectness is used
is the construction of the map τ∗X ∶CHLW

0 (SX)→ CH0(X ∣D) in [2, § 5] when k is infinite. The
only reason for this assumption was to be able to apply Bertini theorems for reduced schemes.
However, the relevant Bertini theorem was known only for schemes which are geometrically
reduced (the two notions coincide over a perfect field) when [2] was written. But we can
now remove this extra assumption in view of the new Bertini theorem [18, Corollary 3.10] for
reduced schemes over any infinite field. �

3. The cycle class and Bloch-Kato maps

In this section, we shall recall the connection between various Chow groups defined in § 2
and the algebraic K-groups. We shall construct the Bloch-Kato map which will be used in the
proof of the Bloch-Kato formula. We fix a field k. For a k-scheme X, we let K0(X) denote
π0(K(X)), where K(X) is the Bass-Thomason-Trobaugh K-theory spectrum of X. If X
is quasi-projective over k, then K0(X) coincides with the Grothendieck group of locally free
sheaves on X. For a closed immersion of k-schemes D ↪X, let K(X,D) denote the homotopy
fiber of the restriction map of Bass-Thomason-Trobaugh K-theory spectra K(X) → K(D).
We let Ki(X,D) denote the i-th stable homotopy group of K(X,D).

3.1. The cycle class maps. Let us assume that X is a reduced quasi-projective scheme
over k and let Y ⊂X be any closed subscheme containing Xsing (but not necessarily nowhere
dense). If x ∈ X ∖ Y is a closed point, then it lies in the regular locus of X. In particu-
lar, the inclusion map Spec (k(x)) ↪ X has finite tor-dimension. This yields the maps of

spectra K(Spec (k(x)))
(ιx)∗ÐÐÐ→K(X)

ι∗YÐ→K(Y ). Since the composite map is canonically null-
homotopic, (ιx)∗ has a canonical factorization (ιx)∗∶K(Spec (k(x)))→K(X,D). In particu-
lar, we have a map (ιx)∗∶Z =K0(Spec (k(x)))→K0(X,D). Letting cyc(X,Y )([x]) = (ιx)∗(1),
and extending it linearly on Z0(X,D), we get a cycle class map

(3.1) cyc(X,Y )∶Z0(X,Y )→K0(X,Y ).
Composing cyc(X,Y ) with the canonical map K0(X,Y )→K0(X), we obtain the cycle class

map cyc(X,Y )∶Z0(X,Y )→K0(X). It is shown in [2, Lemma 3.13] that if Y is nowhere dense
in X, this map kills R0(X,Y ) and hence defines a cycle class map

(3.2) cyc(X,Y )∶CH0(X,Y )→K0(X).

We shall write cyc(X,Xsing)
in short as cycX . We shall denote the image of cycX by F 2K0(X).

Lemma 2.6 implies the following.
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Corollary 3.1. Assume that k is infinite, dim(X) = 2 and Y is nowhere dense in X. Then
the cycle class map Z0(X,Y )→K0(X) induces the commutative diagram

(3.3) CHL
0 (X,Y )

φ(X,Y )
// //

cycL(X,Y )

33
CH0(X,Y )

cyc(X,Y )
// K0(X),

where the map cycL
(X,Y ) is the cycle class map for the Levine Chow group defined in [38] (see

[2, Section 3]).

We next recall the cycle class map for the 0-cycle group with modulus. Let X be a non-
singular quasi-projective surface over k and let D ⊂X be an effective Cartier divisor. By (3.1),
there is a cycle class map cyc(X,D)∶Z0(X,D) → K0(X,D). It follows from [31, Theorem 1.2]
that this map factors through CH0(X ∣D) so that there is a cycle class map

(3.4) cycX ∣D ∶CH0(X ∣D)→K0(X,D).
WhenX is non-singular, it is clear from the above construction that the composition CH0(X ∣D)
cycX∣DÐÐÐÐ→ K0(X,D) → K0(X) coincides with the composition CH0(X ∣D) → CHF

0 (X)
cycXÐÐÐ→

K0(X), where cycX is as in (3.2).

3.2. The Cohomology of K-theory sheaves. We shall now establish a key step in the
proof of Bloch-Kato formula for the Chow group of 0-cycles. We first recall the definition of
relative Milnor K-theory.

Let A be a Noetherian local ring and let I ⊂ A be an ideal. We let KM
n (A) denote the

Milnor K-group of A as defined by Kato-Saito [25, § 1.3]. We let KM
n (A, I) = Ker(KM

n (A)↠
KM
n (A/I)). The Milnor K-theory of local rings was also defined by Kerz in [26]. The two

definitions agree for n ≤ 2. However, this may not be the case when n ≥ 3 and A has finite
residue field. Since we are interested only in n ≤ 2 case in this paper, we shall ignore this
subtlety.

We let K̂M
n (A) denote the improved Milnor K-group of A as defined in [27]. Then the

canonical map from the Milnor to the Quillen K-theory of A has a factorization KM
n (A) →

K̂M
n (A) → Kn(A). The first map is surjective for all n ≥ 0 by [27, Theorem 13]. It is an

isomorphism when A is a field. The second map is an isomorphism when n ≤ 2 by [27,

Propositions 2, 10]. Since we shall only use K̂M
n (A) for n ≤ 2, we shall make no difference

between K̂M
n (A) and Kn(A) and denote the common group by the latter notation. When

the residue field of A is infinite, then the map KM
n (A) → Kn(A) is an isomorphism for

n ≤ 2 by [27, Proposition 10]. It follows that the map KM
n (A, I) → Kn(A, I) is also an

isomorphism in this case, where the latter group is defined to be the kernel of the restriction
map Kn(A)→Kn(A/I).

We now fix a field k. Let X be a reduced quasi-projective surface over k and let Y ⊂ X
be a nowhere dense closed subscheme containing Xsing. Let IY denote the sheaf of ideals on
X which defines Y . We let IY,x denote the stalk of IY at a point x ∈ X. For any integer

n ≥ 0, we let KMn,(X,Y ) denote the Zariski (resp. Nisnevich) sheaf on X whose stalk at a point

x ∈ X is the Milnor K-group KM
n (OX,x,IY,x) (resp. KM

n (OhX,x,IhY,x)). The sheaf Kn,(X,Y ) is

defined similarly. We write KMn,(X,∅) as KMn,X . We use a similar notation for Kn,(X,∅).
Let τ denote Zariski or Nisnevich topology and assume n ≤ 2. Then it follows from the

above that the canonical map of τ -sheaves KMn,X → Kn,X is surjective and generically an

isomorphism. It is clear that the map KMn,(X,Y ) → Kn,(X,Y ) is generically an isomorphism. It

is shown in [12, Theorem 2.1] (see the proof of [25, Proposition 9.9]) that this map is surjective.
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If k is infinite, then both maps are isomorphisms. Since the surjection Kn,(X,Y ) ↠ Kn,(X,Y )
is an isomorphism away from Y , we therefore get the following.

Lemma 3.2. Suppose n ≤ 2. Then the following hold.

(1) H2
τ (X,Kn,(X,Y ))→H2

τ (X,Kn,(X,Y )) is an isomorphism.

(2) The map KMn,X → Kn,X induces an isomorphism

H2
τ (X,KMn,X) ≅Ð→H2

τ (X,Kn,X).

(3) The map KMn,(X,Y )↠ Kn,(X,Y ) induces an isomorphism

H2
τ (X,KMn,(X,Y ))

≅Ð→H2
τ (X,Kn,(X,Y )).

We next show the following.

Lemma 3.3. The change of topology maps

(3.5) λX ∶H2
zar(X,KM2,X)→H2

nis(X,KM2,X);

(3.6) λX ∶H2
zar(X,K2,X)→H2

nis(X,K2,X)
are injective.

Proof. In view of Lemma 3.2, both statements are equivalent. So we shall show the injectivity
of the second map.

The Thomason-Trobaugh descent spectral sequence and its compatibility with respect to
change of topologies yield a commutative diagram with exact rows

(3.7) K1(X) // H0
zar(X,K1,X)d

0,1
//

��

H2
zar(X,K2,X)

γX
//

��

K0(X)

K1(X) // H0
nis(X,K1,X)d

0,1
// H2

nis(X,K2,X)
γX
// K0(X),

where the vertical arrows are the change of topology maps and the maps γX are the edge
homomorphisms for the Thomason-Trobaugh spectral sequence.

It is shown in [31, Lemma 2.1] (see also [34, p. 162]) that the map K1(X) → H0
τ (X,K1,X)

is naturally split surjective when τ is either Zariski or Nisnevich topology. Hence, we get
injective maps

(3.8) H2
zar(X,K2,X)↪H2

nis(X,K2,X)↪K0(X).
This finishes the proof. �

3.3. The Bloch-Kato map for singular surfaces. We now assume again that X is a
reduced quasi-projective surface over an arbitrary field k and Y is any closed subscheme
of X containing Xsing. Let x ∈ X ∖ Y be a closed point. The excision theorem for the

cohomology with support shows that the restriction map H2
{x}(X,K

M
2,X)→H2

{x}(Xreg,KM2,Xreg
)

is an isomorphism. On the other hand, we have a commutative diagram of Zariski cohomology
groups

(3.9) H2
{x}(Xreg,KM2,Xreg

) //

��

H2(X,KM2,X)

≅

��

H2
{x}(Xreg,K2,Xreg) //

αx
77

H2(X,K2,X),
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where the horizontal arrows are the ‘forget support’ maps and the vertical arrows are induced
by the canonical Milnor to Quillen K-theory map. The right vertical arrow is an isomorphism
by Lemma 3.2. It follows that there is a unique arrow αx as indicated such that the inner
triangles and the outer square in (3.9) commute. We remark that the left vertical arrow in
this diagram is also an isomorphism if Xreg is smooth over k (see [24, Theorem 2]), but we
do not need it.

The Gersten resolution of K2,Xreg [42, Theorem 5.11] shows that H2
{x}(Xreg,K2,Xreg) ≅

K
{x}
0 (X) ≅K0(k(x)) ≅ Z. Hence, x defines a unique cycle class [x] ∈H2

{x}(Xreg,K2,Xreg). Tak-

ing its image under αx, we get a well-defined cycle class ρ(X,Y )([x]) ∈H2
zar(X,KM2,X). Extend-

ing this assignment linearly on Z0(X,Y ), we get a map ρ(X,Y )∶Z0(X,Y ) → H2
zar(X,KM2,X).

Composing this with the change of topology map λX ∶H2
zar(X,KM2,X) → H2

nis(X,KM2,X), we
obtain maps

(3.10) Z0(X,Y )
ρ(X,Y )ÐÐÐ→H2

zar(X,KM2,X) λXÐÐ→H2
nis(X,KM2,X).

We also have the cycle class map cyc(X,Y )∶Z0(X,Y ) → K0(X,Y ) → K0(X) from (3.2).
These maps are related by the the following.

Lemma 3.4. There is a commutative diagram

(3.11) Z0(X,Y )
ρ(X,Y )

//

cyc(X,Y )
++

H2
zar(X,KM2,X) �

� λX // H2
nis(X,KM2,X)

� _

γX
��

K0(X).

In particular, ρ(X,Y ) factors through its quotient CH0(X,Y ) if Y is nowhere dense in X.

Proof. The commutativity of the diagram is [20, Lemma 3.2]. Note that the proof of the cited
result uses no assumption on the nature of the field k. The injectivity of λX and γX is (3.8).
The last assertion follows from the injectivity of γX ○ λX and (3.2). �

Lemma 3.5. The map Z0(X,Y )
ρ(X,Y )ÐÐÐ→ H2

zar(X,KM2,X) is surjective if Y is nowhere dense

in X. The map λX is an isomorphism if X ∖ Y is furthermore smooth over k (e.g., if k is
perfect).

Proof. Suppose first that k is infinite. Let α ∈ Z0(X,Xsing) be a 0-cycle. Since k is infinite, we
can use [37, Lemma 1.3] to find a complete intersection reduced curve C ⊂X such that C ∩Y
is finite and C ∩Xreg is regular. Moreover, the latter contains the support of α. This yields
a push-forward map (e.g., see [15, Lemma 1.8]) Pic(C)→ CH0(X,Xsing). Since Y is nowhere
dense in X, it is well known that Pic(C) is generated by closed points away from C ∩Y (note
that Csing ⊂ Y because Xsing ⊂ Y and C ∩Xreg is regular), it follows that the canonical map

Z0(X,Y ) → CHL
0 (X,Xsing) = CHL

0 (X) is surjective. On the other hand, the composite map

CHL
0 (X)↠ CH0(X)

ρXÐ→H2
zar(X,KM2,X) is surjective by [35, p. 169] and Lemma 3.2. We have

thus shown that the map ρ(X,Y ), which factorizes as Z0(X,Y ) ↠ CHL
0 (X) ↠ CH0(X)

ρXÐ→
H2

zar(X,KM2,X), is surjective.
If k is finite, then X ∖Y is smooth over k and dense open in X. So it suffices now to prove

the lemma when X ∖Y is smooth over k and dense open in X. In the latter case, λX ○ρ(X,Y )
is surjective by [25, Theorem 2.5]. In particular, λX is surjective. We are therefore done by
Lemma 3.3. �
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We can summarize the above results in the form of the following.

Theorem 3.6. Let X be a reduced quasi-projective surface over a field k. Let Y ⊂ X be a
nowhere dense closed subscheme containing Xsing. Then there are canonical maps

(3.12) CH0(X,Y )
ρ(X,Y )ÐÐÐ→H2

zar(X,KM2,X) λX↪ H2
nis(X,KM2,X)

γX↪ K0(X)

such that the composite γX ○ λX ○ ρ(X,Y ) is the cycle class map cyc(X,Y ) of (3.2). The map
ρ(X,Y ) is surjective. The map λX is an isomorphism if X ∖ Y is smooth over k (e.g., if k is
perfect).

When X has only one singular closed point and k is infinite, then ρ(X,Y ) was shown to
be an isomorphism by Collino [11]. When X is a normal surface, ρ(X,Y ) was shown to be
an isomorphism by Pedrini and Weibel [40]. Note here that Collino and Pedrini-Weibel
prove their results only for H2

zar(X,K2,X) (i.e., they use Quillen K-theory sheaf). When k is
algebraically closed, ρ(X,Y ) was shown to be an isomorphism by Levine [35]. We shall extend
Levine’s result to all infinite fields.

3.4. The Bloch-Kato map for cycles with modulus. We shall now prove the modulus
version of Theorem 3.6. In order to do this, we need to generalize the construction of § 3.3
little bit. We fix an arbitrary field k.

Let X be a reduced quasi-projective surface over k and let Y ⊂ X be a closed subscheme
such that Xo ∶= X ∖ Y is smooth over k. Notice that we did not impose this extra condition
in § 3.3.

Let x ∈ Xo be a closed point. The excision theorem for the cohomology with support
shows that the restriction map H2

{x}(X,K
M
2,(X,Y )) → H2

{x}(X
o,KM2,Xo) is an isomorphism (in

the Zariski topology). Since Xo is smooth over k, Kato showed that the Gersten com-
plex for KM2,Xo is exact except at its left-most end. This implies that H2

{x}(X
o,KM2,Xo) ≅

K
{x}
0 (X) ≅ K0(k(x)) ≅ Z (see [24, Theorem 2]). Hence, x defines a unique cycle class

[x] ∈ H2
{x}(X,K

M
2,(X,Y )). The image of this cycle class under the ‘forget support’ map

H2
{x}(X,K

M
2,(X,Y )) → H2(X,KM2,(X,Y )) yields a cycle class [x] ∈ H2

zar(X,KM2,(X,Y )). Extend-

ing this assignment linearly on Z0(X,Y ), we get a map ρ(X,Y )∶Z0(X,Y )→H2
zar(X,KM2,(X,Y )).

Composing this with the change of topology map λ(X,Y )∶H2
zar(X,KM2,(X,Y ))→H2

nis(X,KM2,(X,Y )),
we obtain maps

(3.13) Z0(X,Y )
ρ(X,Y )ÐÐÐ→H2

zar(X,KM2,(X,Y ))
λ(X,Y )ÐÐÐÐ→H2

nis(X,KM2,(X,Y )).

We now let k be a as above and let X be a smooth quasi-projective surface over k. Let
D ⊂ X be an effective Cartier divisor. Recall that the Thomason-Trobaugh descent spectral
sequence yields the Nisnevich descent map H2

nis(X,K2,(X,D)) → K0(X,D). We let γ(X,D)
denote its composition with the canonical map H2

nis(X,KM2,(X,D))→H2
nis(X,K2,(X,D)).

Theorem 3.7. Let X be a smooth quasi-projective surface over k. Then there are canonical
maps

(3.14) CH0(X ∣D)
ρX∣DÐÐÐ→H2

zar(X,KM2,(X,D))
λ(X,D)→

≅
H2

nis(X,KM2,(X,D))
γ(X,D)ÐÐÐ→K0(X,D)

such that the composite γ(X,D) ○ λ(X,D) ○ ρX ∣D is the cycle class map cycX ∣D of (3.4). The
map ρX ∣D is surjective.
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Proof. We first show that cycX ∣D = γ(X,D) ○ λ(X,D) ○ ρ(X,D) on Z0(X,D), where ρ(X,D) is

as in (3.13). It is enough to check this for every closed point x ∈ X ∖D. We let ρnis
(X,D) =

λ(X,D) ○ ρ(X,D).
We let SX be the double of X along D. We identify X as X+ ⊂ SX . It is then immediate

from the construction of the cycle class map on Z0(X,D) = Z0(X+,D) in § 3.1 that the
composite map

(3.15) Z0(X+,D) = Z0(SX ,X−)
cyc(SX,X−)ÐÐÐÐÐÐ→K0(SX ,X−)

ι∗+Ð→K0(X,D)
coincides with cycX ∣D. We now consider the diagram

(3.16) Z0(SX ,X−)
ρnis(SX,X−)// H2

nis(SX ,KM2,(SX ,X−))
γ(SX,X−)//

ι∗+
��

K0(SX ,X−)

ι∗+
��

Z0(X,D) Z0(X+,D)
?�

OO

ρnis(X,D)
// H2

nis(X,KM2,(X,D))
γ(X,D)

// K0(X,D).

Here, γ denotes again the edge homomorphism for the Thomason-Trobaugh spectral se-
quence. The map ρnis

(SX ,X−) is the composition of the two maps in (3.13). Like cycX ∣D, it follows

immediately from the constructions of ρnis
(SX ,X−) and ρnis

(X,D) that the left square in (3.16) com-

mutes. The right square in (3.16) commutes by the functoriality of the Thomason-Trobaugh
spectral sequence with respect to the inclusion (X+,D) ↪ (SX ,X−). Using (3.15), it suffices
therefore to show that composite map on the top row of (3.16) is cyc(SX ,X−).

To prove this last assertion, we consider the commutative diagram

(3.17) 0 // Z0(SX ,X−)

ρnis(SX,X−)
��

p+∗
// Z0(SX ,D)

ρnis(SX,D)
��

ι∗− // Z0(X ∖D)

ρnisX
��

// 0

0 // H2
nis(SX ,KM2,(SX ,X−))

p+∗
//

γ(SX,X−)
��

H2
nis(SX ,KM2,SX )

γSX
��

ι∗− // H2
nis(X,KM2,X)

γX
��

// 0

0 // K0(SX ,X−)
p+∗

// K0(SX)
ι∗− // K0(X) // 0.

The three rows are split exact. It follows from Lemma 3.4 that

(3.18) p+∗ ○ cyc(SX ,X−) = cyc(SX ,D) ○ p+∗ = γSX ○ ρnis
(SX ,D)

○ p+∗.

Since (3.17) commutes, we also have p+∗ ○γ(SX ,X−) ○ρnis
(SX ,X−) = γSX ○ρ

nis
(SX ,D)

○p+∗. Combining

this with (3.18) and using that p+∗ is injective, we get cyc(SX ,X−) = γ(SX ,X−) ○ ρnis
(SX ,X−). We

have therefore shown that γ(X,D) ○ λ(X,D) ○ ρ(X,D) in (3.14) is cycX ∣D, which we wanted to
show.

We now show that ρ(X,D) factors through the rational equivalence (this is due to Rülling-
Saito [43] if Dred is a SNCD on X). For this, we note that (3.16) and (3.17) remain
valid if we replace the Nisnevich cohomology by the Zariski cohomology. Suppose now that
α ∈ R0(X ∣D). Then p+∗(α) ∈ R0(SX ,D) by Theorem 2.11. It follows from Theorem 3.6
(applied to SX) that ρ(SX ,D) ○ p+∗(α) = 0. This implies by (3.17) that ρ(SX ,X−)(α) = 0

in H2
zar(SX ,KM2,(SX ,X−)). Since the left square in (3.16) is commutative, we deduce that

ρ(X,D)(α) = 0 in H2
zar(X,KM2,(X,D)). We have thus shown that ρ(X,D) factors through its

quotient CH0(X ∣D). We let ρX ∣D ∶CH0(X ∣D)→H2
zar(X,KM2,(X,D)) be the induced map.
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The map λ(X,D) is an isomorphism by a combination of Lemma 3.2 and [25, Proposition 9.8]
(or [31, Lemma 2.1]). It remains to show that ρX ∣D is surjective. For this, it suffices to show

that the map Z0(X,D)
ρ(X,D)ÐÐÐ→H2

zar(X,KM2,(X,D)) is surjective. Now, we note in (3.17) that all

rows are compatibly split, where all splittings are given by the pull-back via the flat projection
π∶SX → X. It follows therefore from Theorem 3.6 that ρ(SX ,D) and ρX are surjective. But
this implies that ρ(SX ,X−) is also surjective. Using the left square of (3.16), it suffices now

to show that the restriction map ι∗+∶H2
zar(SX ,KM2,(SX ,X−)) → H2

zar(X,KM2,(X,D)) is surjective.

But this is clear because the map of Zariski sheaves KM2,(SX ,X−)
ι∗+Ð→ KM2,(X,D) is an isomorphism

away from D and dim(SX) = 2. �

3.5. Some functoriality properties. We shall use the following functoriality properties of
the Chow group of 0-cycles and their cycle classes. For any Y ∈ Schk, recall our notation that
CHF

∗ (Y ) is the direct sum of all Chow groups of Y in the sense of [16, Chapter 1].

Proposition 3.8. Let k be any field and let X be a reduced quasi-projective surface over k.
Let j∶U ↪ X be an open immersion such that Xsing ⊂ U . Then we have an exact sequence of
abelian groups

CHF
0 (X ∖U) i∗Ð→ CHL

0 (X)
j∗
Ð→ CHL

0 (U)→ 0.

The same holds for the lci Chow group.

Proof. The proofs of the proposition for the lci and the Levine-Weibel Chow groups are
completely identical. We give the proof for the latter case. We have to first explain the maps
i∗ and j∗. It is clear that the restriction of cycles with respect to the open immersion j indeed
gives the map j∗. It is clearly surjective because Xsing ⊂ U .

The map i∗ is the push-forward map with respect to the closed immersion i∶Z ∶=X∖U ↪X.
It is clearly well-defined at the level of cycles. If C ⊂ Z ×P1

k is an irreducible 1-cycle dominant
over P1

k, then it is also clear (note that Xsing ⊂ U) that i∗(C) is a Cartier curve on P1
X which

defines the rational equivalence between i∗(C0−C∞). Hence, the maps in the above sequence
are defined. We only need to see that this sequence is exact in the middle.

So suppose that α =
r

∑
i=1

ni[xi] is a 0-cycle on X such that j∗(α) = 0. We can assume without

loss of generality that xi ∈ U for each i. We let C1, . . . ,Cs be Cartier curves on P1
U such that

j∗(α) =
s

∑
i=1

(Ci0−Ci∞). We let C
i

be the scheme-theoretic closure of Ci is P1
X . Since Xsing ⊂ U ,

it follows that C
i

is a Cartier curve on P1
X and C

i
0−C

i
∞ = (Ci0−Ci∞)+βi, where βi is a 0-cycle

supported on Z. Letting β =
s

∑
i=1

βi, we get α − β =
s

∑
i=1

(Ci0 −C
i
∞). This finishes the proof. �

Proposition 3.9. Let k be an infinite field and let X be a reduced quasi-projective surface
over k. Let π∶ X̃ → X be a resolution of singularities of X. Then we have a commutative
diagram

(3.19) CHL
0 (X)

cycLX//

π∗
��

K0(X)

π∗
��

CHF
0 (X̃)

cycX̃// K0(X̃).

The same holds for the lci Chow group over any field.
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Proof. Using Corollary 3.1, it suffices to prove the proposition for the lci Chow group. We
need to first define the vertical arrow on the left. All other maps are defined. Since the map
π−1(Xreg) → Xreg is an isomorphism, the pull-back π∗∶Z0(X,Xsing) → Z0(X̃) is simply the
inclusion map. It is now an easy exercise using the definitions of rational equivalences to
check that this map preserves the subgroups of rational equivalences. We shall nonetheless
provide a proof which simultaneously shows that (3.19) is commutative.

We now use Lemma 3.4 to get a diagram

(3.20) Z0(X,Xsing)
ρX
//

π∗
��

H2
zar(X,KM2,X)

π∗
��

λX // K0(X)

π∗

��

CHF
0 (X̃)

ρX̃ // H2
zar(X̃,KM2,X̃)

λX̃// K0(X̃).

It is clear from the various definitions above that this diagram is commutative. The clas-
sical Bloch’s formula for non-singular surfaces and Lemma 3.2 together imply that ρX̃ is an
isomorphism. We now conclude from Lemma 3.4 that the left vertical arrow kills R0(X,Xsing)
and 3.19 commutes. �

Lemma 3.10. Let k be any field and let X be a reduced quasi-projective surface over k. Let
k ↪ k′ be a separable algebraic extension (possibly infinite) of fields. Let X ′ = Xk′ and let
pr∗k′/k∶X

′ →X be the projection map. Then the diagram

(3.21) CH0(X)
cycX
//

pr∗
k′/k
��

K0(X)
pr∗
k′/k

��

CH0(X ′)
cycX′
// K0(X ′)

is commutative.

Proof. Let x ∈Xreg be a closed point and let Y = Spec (k(x))×XX ′. Since k′ is separable and
algebraic over k, it follows that Y is a 0-dimensional reduced closed subscheme of X ′. We let
[Y ] = pr∗k′/k([x]) ∈ Z0(X ′,X ′

sing). We let ιx∶Spec (k(x))↪X and ιY ∶Y ↪X ′ be the inclusion

maps. Then the diagram

(3.22) K0(Spec (k(x)))
(ιx)∗
//

pr∗
k′/k
��

K0(X)
pr∗
k′/k

��

K0(Y )
(ιY )∗

// K0(X ′)

is commutative by [51, Proposition 3.18]. Since (ιY )∗(1) = cycX′([Y ]), the lemma follows. �

Corollary 3.11. Let k be any field and let X be a smooth quasi-projective surface over k. Let
D ⊂ X be an effective Cartier divisor. Let k ↪ k′ be a separable algebraic extension (possibly
infinite) of fields. Let X ′ = Xk′ ,D

′ = Dk′ and let prk′/k∶X ′ → X be the projection map. Then
the diagram

(3.23) CH0(X ∣D)
cycX∣D

//

pr∗
k′/k
��

K0(X,D)
pr∗
k′/k

��

CH0(X ′∣D′)
cycX′ ∣D′

// K0(X ′,D′)
is commutative.
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Proof. We consider the diagram

(3.24) Z0(X,D)
cyc(SX,X−)//

pr∗
k′/k
��

K0(SX ,X−)
ι∗+ //

pr∗
k′/k

��

K0(X,D)
pr∗
k′/k

��

Z0(X ′,D′)
cyc(SX′ ,X′−)

// K0(SX′ ,X ′
−)

ι∗+ // K0(X ′,D′).

We saw in (3.15) that the composite horizontal arrows in this diagram are the cycle class
maps cycX ∣D and cycX′∣D′ . Hence, it suffices to show that the two squares in (3.24) commute.
The right square clearly commutes. The left square commutes by applying Lemma 3.10 to
SX and X and then using (3.17). �

4. The family of good cycles

Our next goal is to show that the cycle class map CHL
0 (X,Y )→K0(X) is injective if X is

a reduced quasi-projective surface over an infinite field. As we stated in § 1, this was proven
by Levine in his yet unpublished manuscript [36] when the base field is algebraically closed.
A published account of Levine’s proof is available in [6]. In the next few sections, our goal
is to revisit Levine’s proof and show that it can be carried over to all infinite fields with the
help of new arguments at every step of the proof.

In this section, we shall construct families φ∶ΓU → U of cycles on X. We shall state
and prove an upgraded version of Kleiman’s transversality theorem [30, Theorem 2] and its
generalization by Levine [36, Lemma 1.2] (see also [8, Lemma 1.1]) which works over an
arbitrary infinite field. This theorem will be used to ensure that every member of a family φ
as above gives rise to a well defined 0-cycle on X. The proof closely follows the one in [36,
Lemma 1.2]. Unless stated otherwise, k will always denote an infinite ground field in this
section.

4.1. Some recollection. We begin with some standard algebraic geometry results that we
shall use repeatedly. We collect them here for reader’s convenience.

Lemma 4.1. Let f ∶X → Y be a continuous map of topological spaces such that the following
hold.

(1) Y is irreducible.
(2) f is open.
(3) There exists a dense set of points y ∈ Y such that f−1(y) is irreducible.

Then X is irreducible.

Proof. See [46, Lemma 004Z]. �

Lemma 4.2. Let f ∶X → Y be an open morphism in Schk. Assume that X is equidimensional,
Y is irreducible and every irreducible component of X is dominant over Y . Then f has
equidimensional fibers. That is,

dim(f−1(y)) = dim(X) − dim(Y ) for all y ∈ Y.

Proof. See [19, Theorem 14.114]. �

Corollary 4.3. Let f ∶X → Y be an open as well as closed morphism in Schk. Assume that
X is equidimensional and Y is irreducible. Then f has equidimensional fibers.

Proof. Under our assumption, every irreducible component of X must be dominant over Y
and therefore Lemma 4.2 applies. �
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Lemma 4.4. Let X,Y ∈ Schk be equidimensional schemes. Then X × Y is equidimensional.

Proof. Let k be an algebraic closure of k. Since dim(X × Y ) = dim((X × Y )k) (e.g., see [19,
Proposition 5.38]) and (X × Y )k ≅ Xk ×k Yk, we can assume k is algebraically closed. In this
case, the lemma follows from our assumption because X ′×Y ′ is irreducible of dimension equal
to dim(X ′) + dim(Y ′) if X ′, Y ′ ∈ Schk are irreducible. �

4.2. Morphisms to homogeneous spaces. We recall homogeneous spaces and describe
some properties of morphisms from schemes to these spaces. The set-up of this section will
be used throughout the next few sections of this paper.

Let G be a connected reductive algebraic group over k and let H = G/P be a projective
homogeneous space for G. Recall that a smooth closed subgroup P ′ ⊂ G is parabolic if and
only if the variety G/P ′ is complete (equivalently, projective). It follows that P is a parabolic
subgroup of G. In particular, it is connected (e.g., see [10, Theorem 11.16]). We shall let
dP = dim(P ).

Let π∶G→H be the resulting P -torsor. Note that since P is affine, π is an fppf locally trivial
P -torsor, it follows that π is fppf locally an affine morphism. But this implies that π is an
affine morphism. Since G is reductive, it is smooth over k and an fppf descent argument shows
that H must also be smooth over k. Furthermore, as G is connected, it must be geometrically
connected (any X ∈ Schk which is connected and X(k) ≠ ∅ is geometrically connected). It
follows that G is geometrically integral. In particular, H = G/P is also geometrically integral.

Another property we shall use frequently is that, being reductive, G is a uni-rational variety
over k (i.e., admits a dominant k-morphism from a dense open subset of an affine space over
k) by [10, Theorem 18.2]. It follows that H is also uni-rational. Since k is infinite, this implies
that for any dense open U ⊂H (or in G), the set of k-rational points U(k) is Zariski dense in
H (or in G).

Let G act on a reduced quasi-projective scheme X over k and let µ∶G ×X → X be the
action map. Let Φ = (µ, idX)∶G ×X → X ×X denote the map Φ(g, x) = (µ(g, x), x). Let
µ̃ = (idG, µ)∶G×X → G×X denote the map Φ(g, x) = (g, µ(g, x)). Since µ̃ is an isomorphism
and G is smooth, it follows that µ is a smooth surjective morphism.

For a closed point g ∈ G, the composite morphism λg ∶Spec (k(g)) × X = Xk(g) ↪ G ×
X

µ
Ð→ X can be easily seen to be closed. In particular, gY ∶= λg(Y ) is closed in X for any

closed subscheme Y ⊂ X. If g ∈ G(k), we can identify Xk(g) with X and then λg defines
an automorphism of X. It is easy to see that {λg}g∈G(k) define a group homomorphism
λ∶G(k)→ Autk(X).

4.3. The parameter space of good cycles. We now let H = G/P be a homogeneous space
for G as above. Then G acts transitively on H. This action gives rise to the maps µ, µ̃ and Φ be
as above. Let Y ⊂ H be an equidimensional closed subscheme. Let X be an equidimensional
reduced quasi-projective k-scheme and let f ∶X →H be a k-morphism.

We consider the commutative diagram

(4.1) Γ
δ′ //

f ′

��

φ

��

Y ×X
ιY ×f

��

G G ×H
p
oo δ // H ×H,

where ι∶G→ G is the inverse morphism (ι(g) = g−1), δ is the composite

G ×H ι×idHÐÐÐ→ G ×H ΦÐ→H ×H
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and p is the projection. The scheme Γ is defined so that the right square is Cartesian. The
map φ is defined so that the left triangle is commutative. For U ⊂ G, we let ΓU ∶= U ×GΓ. We
study some properties of Γ.

Since Φ = (µ, idH) and µ is affine, it follows that Φ is affine. Hence, δ is affine. It is also
clear from the definition of Φ that for every point z ∈H×H, the scheme-theoretic fiber Φ−1(z)
is isomorphic to Pk(z). In particular, Φ is equidimensional of relative dimension dP . Since
the source and the target of Φ are both regular, it follows from [22, Exc. III.10.9] that Φ is
flat. Since P is smooth over k, it follows that Φ is a smooth morphism. Since ι × idH is an
isomorphism, we conclude that δ is a smooth surjective affine morphism of relative dimension
dP . This implies that δ′ is also a smooth surjective affine morphism of relative dimension dP .

Since X and Y are equidimensional, it follows from Lemma 4.4 that Y ×X is also equidi-
mensional. As P is geometrically integral, we see that over every irreducible component V
of Y ×X, the map δ′ is smooth surjective with irreducible fibers. It follows therefore from
Lemma 4.1 that δ′−1(V ) is irreducible of dimension dim(V ) + dP . We conclude that Γ is
equidimensional and

(4.2) dim(Γ) = dim(X) + dim(Y ) + dP .

Lemma 4.5. There exists a dense open subscheme U ⊂ G such that φ∶ΓU → U is flat, and
for all g ∈ U(k), the scheme f−1(gY ) = φ−1(g) is equidimensional. Furthermore,

dim(f−1(gY )) = dim(X) − (dim(H) − dim(Y )).

Equivalently, codimX(f−1(gY )) = codimH(Y ) for all g ∈ U(k).

Proof. Since φ is surjective, at least one irreducible component of Γ is dominant over G.
Let us write Γred = Γ′ ∪ Γ′′ as a union of closed subschemes such that Γ′ is the union of all
irreducible components of Γ which are dominant over G and Γ′′ is the union of those irreducible
components which are not dominant over G. We can choose a dense open subscheme U ′ ⊂ G
such that φ−1(U ′) ∩ Γ′′ = ∅. In particular, φ−1(U ′) = φ−1(U ′) ∩ Γ′.

We let ΓU ′ = φ−1(U ′). Then φ∶ΓU ′ → U ′ is surjective morphism with irreducible base.
Hence, it follows from the generic flatness theorem (see EGA IV2 6.9.1) that there is a dense
open subscheme U ⊂ U ′ such that φ∶ΓU → U is flat and surjective. Since ΓU = Γ′U and Γ is
equidimensional, it follows that we have a morphism φ∶ΓU → U which is flat, whose source is
equidimensional and each irreducible component of the source is dominant over the base. We
can therefore apply Lemma 4.2 to conclude that φ∶ΓU → U has equidimensional fibers.

In particular, using the identification f−1(gY ) = φ−1(g), induced by the commutative dia-
gram (4.1), we have for any g ∈ U(k),

(4.3)

dim(f−1(gY )) = dim(φ−1(g)) = dim(Γ′) − dim(G)
= dim(Γ) − dim(G)
= dim(X) + dim(Y ) + dP − dim(G)
= dim(X) − (dim(H) − dim(Y )).

Since U ⊂ G is dense open, the proof of the lemma is complete. �

We let α∶Γ→ G×X be the map induced by the projections φ∶Γ→ G and Γ
δ′Ð→ Y ×X →X.

We let β∶G × X → H be the composite p1 ○ δ ○ (idG, f), where p1∶H × H → H is the first
projection.

If we let G act on G×X by right multiplication on itself and trivially on X (i.e., g1 ⋅(g, x) =
(gg−1

1 , x)), then β∶G ×X → H is G-equivariant. Since β is surjective and H is reduced, it
follows from the generic flatness theorem that β is flat over a dense open subscheme of H.
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Since G acts transitively on H and β is G-equivariant, it follows that it must actually be flat
everywhere.

We now consider the diagram

(4.4) Γ′

ι′Y

��

β′

**Γ
δ′ //

f ′

��

α

}}

γ

aa

Y ×X
idY ×f

��

p1
// Y

ιY

��

G ×X
β

99

idG×f
// G ×H δ // H ×H

p1
// H,

where ιY is the inclusion, and Γ′ ∶= (G ×X) ×H Y with respect to maps β and ιY . It is easy
to check from the definition of Γ in (4.1) that β ○ α = ιY ○ p1 ○ δ′. It follows that there is a
unique morphism γ∶Γ→ Γ′ such that ι′Y ○ γ = α and β′ ○ γ = p1 ○ δ′. Furthermore, it is easy to
check that γ is an isomorphism. In particular, β′ is flat (since p1 and δ′ are) and α is a closed
immersion.

We let U ⊂ G be the dense open as in Lemma 4.5 and let g ∈ U(k). We consider the
(equivalent) Cartesian diagrams

(4.5) f−1(gY )
λg−1○f
//

��

Y

ιY

��

X
λg−1○f

// H,

f−1(gY )
f
//

��

gY

ιgY

��

X
f
// H.

Lemma 4.6. The squares in (4.5) are Tor-independent.

Proof. We consider another commutative diagram

(4.6) f−1(gY ) //

��

Spec (k(g)) ×X //

ιg

��

Spec (k(g))

��

ΓU
α // U ×X

p1
// U,

where the composition of the horizontal arrows on the bottom is φ. Since φ is flat, it follows
that the big outer square is Tor-independent. Since p1 is flat and the vertical arrows are
closed immersions, it follows by an elementary verification that the left square is also Tor-
independent.

Let us now consider a resolution E● → OY → 0 of OY by locally free OH modules of finite
ranks. Since β is flat, it follows that β∗(E●) is a locally free resolution of OΓ under the closed
immersion α∶Γ ↪ G ×X. In particular, E●U ∶= β∗(E●)∣U×X is a locally free resolution of OΓU .
Since the left square in (4.6) is Tor-independent, it follows that ι∗gE●U → ι∗gOΓU → 0 is a locally
free resolution on X. Equivalently, ι∗gE●U → Of−1(gY ) → 0 is a locally free resolution on X.

That is, Tor
(β○ιg)−1OH
i ((β ○ ιg)−1OY ,OX) = 0 for all i > 0. Since β ○ ιg = λg−1 ○f and since λg is

an isomorphism, this implies that Torf
−1OH
i (f−1OgY ,OX) = 0 for all i > 0. Equivalently, (4.5)

is Tor-independent. �

Corollary 4.7. Let V ⊂ H be an open subscheme such that Y ∩ V is a local complete in-
tersection in V . Then f−1(gY ∩ gV ) is a local complete intersection in f−1(gV ) for every
g ∈ U(k).
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Proof. Follows directly from Lemma 4.6 and [39, 16.4]. �

4.4. Kleiman-Levine transversality theorem. We shall now prove the following transver-
sality result over k. We let G and H be as above. We shall follow the notations of § 4.2 and
§ 4.3.

Theorem 4.8. Let X be an equidimensional reduced quasi-projective k-scheme and let f ∶X →
H be a k-morphism. Let Y ⊂H be an equidimensional reduced closed subscheme. Then there
exists an open dense subscheme U(f, Y ) ⊂ G such that for every g ∈ U(f, Y )(k), the following
hold.

(1) The scheme f−1(gY ) is either empty or is equidimensional of dimension dim(X) +
dim(Y ) − dim(H).

(2) Torf
−1OH
i (f−1OgY ,OX) = 0 for all i > 0.

(3) The inclusion f−1(gY ) ↪ X is a local complete intersection at every generic point of
f−1(gY ) ∩Xsing.

Proof. Let U ⊂ G be the open subscheme obtained in Lemma 4.5. The item (1) then follows
directly from (4.3) and (2) follows from Lemma 4.6.

We now prove (3). First of all, we can apply (4.3) to every irreducible component of
Xsing to see that after shrinking U if necessary, every g ∈ U(k) has the property that either
f−1(gY )∩Xsing is empty or dim(f−1(gY )∩Xsing) = dim(Xsing)+dim(Y )−dim(H). Combining
this with (4.3), we get the inequality

(4.7) dim(f−1(gY ) ∩Xsing) ≤ dim(Xsing) + dim(f−1(gY )) − dim(X),

where the equality holds if f−1(gY ) ∩Xsing ≠ ∅. In other words, f−1(gY ) and Xsing intersect
properly in X. The same token shows that by possibly shrinking U further, we have that
f−1(gYsing) and Xsing intersect properly in X for all g ∈ U(k). This means, in particular, that
every generic point of f−1(gY ) ∩Xsing is contained in f−1(gYreg).

We now observe that Yreg ↪ H is a local complete intersection morphism because H is
regular. The same is true for gYreg ↪ H, since λg−1 ∈ Autk(H). We can therefore apply
Corollary 4.7 to conclude (3). We take U(f, Y ) to be the above U to finish the proof. �

Let us write P1
k as the homogeneous space PGL2,k/B, where B is the image of the upper-

triangular matrices under the quotient map GL2,k ↠ PGL2,k. Let G and H be as above. Then

H ×P1
k becomes a homogeneous space for G̃ ∶= G×PGL2,k via the coordinate-wise action. We

shall now apply the previous Theorem in this setting to get the following result on generic
translates in H × P1

k.
Let X be an equidimensional reduced quasi-projective scheme over k, and let f ∶X →H be a

k-morphism as before. LetW ⊂H×P1
k be an equidimensional reduced closed subscheme. Write

gW for the pullback of W along λg−1×id∶H×P1
k →H×P1

k. Suppose that the composition W →
P1
k of the inclusion of W in H ×P1

k followed by the second projection H ×P1
k → P1

k is flat over a
neighborhood of {0,∞}. Let (f × idP1

k
)−1(gW ) denote the fiber product gW ×(H×P1

k
) (X ×P1

k).
We write f × idP1

k
as f̃ . Let G (resp. PGL2,k) act on H × P1

k by acting trivially on P1
k (resp.

on H). These actions of G and PGL2,k on H × P1
k commute with each other.

Proposition 4.9. There exists an open dense subscheme U = U(f̃ ,W ) of G such that for
every k-point g ∈ U(k), the following hold.

(1) f̃−1(gW ) is either empty or equidimensional of dimension

dim(f̃−1(gW )) = dim(X) + dim(W ) − dim(H).
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(2) f̃−1(gW ) intersects P1
Xsing

and Xsing × {0,∞} properly.

(3) The composition f̃−1(gW )↪ P1
X → P1

k is flat over a neighborhood of {0,∞}.

(4) The inclusion f̃(gW ) ↪ P1
X is a local complete intersection at each generic point of

f̃(gW ) ∩ P1
Xsing

.

Proof. We shall use the structure of the homogeneous space on P1
H for the group G̃ as above.

We then observe that for every t ∈ PGL2,k(k), the map λt∶P1
X → P1

X is an isomorphism which

keeps every fiber of the projection P1
X →X invariant. It follows that for any (g, t) ∈ G̃(k), the

assertions (1), (2) and (4) of the proposition will hold for f̃−1(gW ) if and only if they hold

for t(f̃−1(gW )).
On the other hand, Theorem 4.8 says that there is a dense open Ũ ⊂ G̃ such that for every

(g, t) ∈ Ũ(k), the scheme f̃−1((g, t)W ) satisfies (1), (2) and (4). Since

(4.8) f̃−1((g, t)W ) = t(f̃−1(gW )),

we conclude that for every (g, t) ∈ Ũ(k), the scheme t(f̃−1(gW )) satisfies (1), (2) and (4).

Letting U be the image of Ũ under the projection p1∶ G̃→ G, we see that U ⊂ G is dense open.
Furthermore, for any g ∈ G(k), the fiber p−1

1 (g) ≅ PGL2,k has a dense set of k-rational points.

For any such point t, the scheme t(f̃−1(gW )) satisfies (1), (2) and (4). But we have seen in

the beginning of the proof that this is equivalent to saying that f̃−1(gW ) satisfies (1), (2) and
(4).

For (3), it is enough to show that the map f̃−1(gW ) → P1
k is flat in a neighborhood of

each point ε ∈ {0,∞}. However, we know that W satisfies this property. Hence, gW too
satisfies this property for every g ∈ G(k) as G acts trivially on P1

k. Now, if we replace P1
k by

S = Spec (OP1
k
,ε) and correspondingly replace all schemes over P1

k by their base change to S,

then f̃−1(gW ) will not be flat over S if and only if it is supported on the closed point {ε} ⊂ S.
The latter condition is easily seen to imply that

(4.9) TorOS1 (k(ε),OgW×HSXS
) ≠ 0.

Since HS and gW are both flat over S, an elementary homological algebra shows that (4.9)

implies that Tor
OHε
1 (OgWε ,OXε) ≠ 0. But this contradicts Lemma 4.6 if we choose g ∈ U(k)

(after possibly shrinking U). It follows that (3) holds if g ∈ U(k). Letting U(f̃ ,W ) = U , we
conclude the proof of the proposition. �

5. The family of rational equivalences

In § 4, we constructed families of good cycles on a reduced quasi-projective scheme over an
infinite field k which are obtained by pulling back cycles from homogeneous spaces. In this
section, we shall construct a family which will parameterize rational equivalences between the
members of a given family of good cycles. We shall prove some properties of this family that
will be used in the following sections. We fix an infinite field k throughout this section.

5.1. A1-path connectivity of reductive groups. We write (P1
k)
m as ◻mk for any integer

m ≥ 1. For any integer n ≥ 1, we fix a compactification GLn,k ⊂ An2

k ↪ ◻n
2

k , where the first

inclusion is the inverse image of Gm,k under the determinant map det∶An2

k ≅ Mn,k → A1
k and

the second inclusion is the product of the canonical inclusion A1
k ⊂ ◻

1
k. We remark here that

there are many other choices of a smooth compactification of GLn,k. But we choose the above
one with some purpose. This will be evident in Lemma 5.1.
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We let GL×n,k ∶= GLn,k ∩Gn2

m,k ⊂ An2

k . It is clear that GL×n,k is a dense open subscheme of

GLn,k whose complement is its intersection with the union of the coordinate axes of An2

k . Let

µ∶Ank ×A
1
k → Ank denote the multiplication operation induced by the k-algebra homomorphism

k[t1, . . . , tn] → k[t, t1, . . . , tn] which sends ti to tti. Note that µ is flat everywhere of relative
dimension one and is smooth over Ank ∖ {0}. We consider the morphisms

(5.1) Ank ×Ank ×A1
k
τ ′ //

Φ′
n

��

Ank ×Ank ×A1
k ×A1

k
τ // (Ank ×A1

k) × (Ank ×A1
k)

µ×µ

��

Ank Ank ×Ank ,
µ+

oo

where τ ′(x,x′, y) = (x,x′, y,1 − y), τ(x,x′, y, y′) = (x, y, x′, y′) and µ+ is the group operation
map for the structure of the additive group Gn

a,k on Ank .

It is clear that τ is an isomorphism, µ+ is a smooth morphism and µ is smooth over Ank∖{0}.
One can easily check that Φ′

n (defined as the composition) is a surjective morphism between
regular schemes. Furthermore, its restriction on Wn ∶= Gn

m,k ×G
n
m,k ×(A1

k ∖{0,1}) is surjective

with each fiber isomorphic to the base change of Gn
m,k ∖ (A1

k ∖ {0,1}) by some field extension

of k. It follows that Φ′
n is a smooth surjective morphism on Wn of relative dimension m + 1.

Note that each of the arrows in (5.1) is defined over k. In particular, the composition of all
arrows Φ′

n is a k-morphism. On the rational points, it is given by Φ′
n(x,x′, t) = tx + (1 − t)x′.

It is also easy to see that Φ′
n defines a rational map Φ′

n∶Ank ×Ank × P1
k ⇢ ◻nk whose base locus

is Zn × {∞}, where Zn is the union of coordinate axes on Ank × Ank . In particular, if we let
m = n2, we get a k-morphism

(5.2) Φ′
m∶GL×n,k ×GL×n,k × P1

k → ◻mk .

More generally, if n1, . . . , nr are positive integers and we let m =
r

∑
i=1

n2
i , then Φ′

m defines a

rational map Φ′
m∶ (

r

∏
i=1

An
2
i

k )× (
r

∏
i=1

An
2
i

k )×P1
k ⇢ ◻mk which is a morphism on the open subscheme

(
r

∏
i=1

Gn2
i

m,k) × (
r

∏
i=1

Gn2
i

m,k) × P1
k. We let G =

r

∏
i=1

GLni,k and G× =
r

∏
i=1

GL×ni,k. We then get a

k-morphism

(5.3) Φ′
m∶G× ×G× × P1

k → ◻mk .

We let B = G× × G× and let Φm be the composite B × P1
k

idB×ηÐÐÐ→ B × P1
k

Φ′
mÐÐ→ ◻mk , where

η(t) = t/(t − 1). We fix the open embedding j∶G↪ ◻mk via the composition of open embeddings

G =
r

∏
i=1

GLni,k ↪
r

∏
i=1

Mni,k ≅ Amk ↪ ◻mk . We also have open embedding G× ↪ G. Let ∞ ∈ ◻mk
be the closed point whose every coordinate is ∞. The following lemma says, along with other
things, that G× is ‘path-connected’ in the sense of A1-homotopy theory.

Lemma 5.1. The k-morphism
Φm∶B × P1

k → ◻mk
has following properties.

(1) Φm(x,x′, t) = t
t−1x + (1 − t

t−1)x
′.

(2) Φm(B × {0,∞}) ⊂ G×.
(3) Φm(B × {1}) =∞.
(4) For every pair of points g1, g2 ∈ G×(k), we have Φm(g,0) = g1 and Φm(g,∞) = g2,

where g = (g2, g1) ∈ B(k).
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(5) G× ⊂ Φm(B × P1
k). In particular, Φm is dominant.

(6) Φm is flat of relative dimension m + 1 over G×.
(7) Φm is smooth on B × (P1

k ∖ {0,1,∞}).
(8) The projection map Φ−1

m (G×)→ P1
k is flat.

Proof. All properties (except possibly (6) and (8)) are clear from our explicit construction of
Φm. The property (6) follows because (5) shows that Φm is a surjective morphism between
regular schemes over G× and (1) shows that all fibers of Φm over G× have relative dimension
m + 1. Hence, it must be flat (see [22, Exc. III.10.9]). The property (8) follows easily from
(2) since the image of Φ−1

m (G×) in P1
k is anyway open. �

Remark 5.2. Recall that every k-rational variety X (e.g., the variety G above) is separably
uni-ruled. That is, there exists a separable dominant rational map Φ∶X ′ × P1

k ⇢ X, where
dim(X ′) = dim(X)−1. However, the purpose of Lemma 5.1 is to show that the reductive group
G satisfies many other properties which can not be directly deduced from uni-ruledness. We
shall need Lemma 5.1 to construct our parameter space of rational equivalences between good
cycles in a family. Remark also that not every uni-rational variety in positive characteristic
in separably uni-ruled.

5.2. The partial parameter space Σo. LetG be as in § 5.1. LetH = G/P be a homogeneous
space for G as in § 4.2. Define a morphism ψ∶Φ−1

m (G) ×G ×H →H as the composition

Φ−1
m (G) ×G ×H

(Φm,idG×H)ÐÐÐÐÐÐÐ→ G ×G ×H
(ι,ι)
ÐÐ→ G ×G ×H

(m,idH)ÐÐÐÐ→ G ×H
µHÐÐ→H,

where ι∶G → G is the inverse operation, m∶G ×G → G is the multiplication in G and µH is
the G-action on H (we denoted this action by µ in § 5.1). Let Y ⊂ H be an integral closed
subscheme and let Σo be the pullback

(5.4) Σo � � //

ψ′
��

Φ−1
m (G) ×G ×H

ψ
��

Y �
�

// H.

We note that the set of k-points of Σo is given by

Σo(k) = {(g1, g2, t, g, h) ∣Φm(g1, g2, t) ∈ G and (Φm(g1, g2, t))−1g−1h ∈ Y }.

There is an action of G on Σo induced by the diagonal action of G on G ×H. Explicitly,

(5.5) g′ ⋅ (g1, g2, t, g, h) = (g1, g2, t, g
′g, g′h).

Or, in other words, Σo is stable for the G action on Φ−1
m (G)×G×H given by the trivial action

on the first component and by the canonical action on the second and the third components.
We let Γ ∶= Y ×H (G×H) with respect to the composite map µH ○ (ι× idH)∶G×H →H. It

is easy to check that the diagram

(5.6) Γ
ι′Y //

µ̃′H
��

G ×H
µ′H
��

G × Yid×ιY// G ×H

is Cartesian, where ιY ∶ Y ↪H is the inclusion, ι′Y is the second projection of Γ and µ′H is the
automorphism of G ×H given by (g, h) ↦ (g, g−1h) (see § 4.2). We thus have the following
simple expression for the scheme Γ.
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Lemma 5.3. The action map µ′H induces an isomorphism of schemes

µ̃′H ∶Γ
≅Ð→ G × Y.

In particular, Γ is integral.

Proof. We only need to prove the second part. But this follows from the known fact that
the product two schemes, one of which is integral and the other is geometrically integral, is
integral. �

Let φ be the composite map Φ−1
m (G) × G

(Φm,idG)ÐÐÐÐÐ→ G × G
(ι,ι)
ÐÐ→ G × G mÐ→ G so that ψ =

µH ○ (φ, idH). It is then easy to see that (5.4) being Cartesian is equivalent to saying that the
square

(5.7) Σo φ′
//

θ′
��

Γ

θ

��

Φ−1
m (G) ×G

φ
// G

is Cartesian, where the vertical arrows are the projections.
Since the projection G ×H → G is projective (because H is projective), and Γ is closed in

G×H (because Y is closed in H), it follows that θ is a projective morphism. Hence, θ′ is also
a projective morphism.

Let G act on itself by left multiplication and diagonally on G ×H. Then Γ ⊂ G ×H is G-
invariant. In particular, Γ is equipped with G-action such that θ is G-equivariant. Moreover,
θ is surjective and equidimensional of relative dimension equal to dim(Y ). As G is integral,
the generic flatness theorem says that θ is flat over a dense open subscheme of G. Since θ is
G-equivariant, G(k) is Zariski dense in G whose action is transitive on the base of θ, it follows
that the latter is flat everywhere on G. It follows in particular that θ′ is flat and surjective.

Since Γ and G are integral, it follows that the generic fiber of θ is integral. Moreover, the
fiber of θ over every k-rational point is isomorphic to Y . In particular, every k-rational fiber
of θ is integral. Hence, the same holds for θ′ as well. Since Φ−1

m (G)×G is irreducible, θ′ is flat
(and hence open), (Φ−1

m (G)×G)(k) is Zariski dense in Φ−1
m (G)×G (as the latter is a rational

variety) and every k-rational fiber of θ′ is irreducible, it follows from Lemma 4.1 that Σo is
irreducible.

It follows from Lemma 5.1 (7) that the map φ∶Spec (k(Φ−1
m (G) × G)) → Spec (k(G)) is

smooth. Since θ is generically integral, it follows that θ′ is generically reduced. Since it is
also surjective, it follows that Σo is generically reduced. Hence, it is generically integral. We
have thus shown that Σo is irreducible and generically integral. Although this will suffice for
our main proofs, the following lemma says more.

Lemma 5.4. Σo is an integral scheme.

Proof. We have seen above that Σo is irreducible. So we only need to show that it is reduced.
One knows that a Noetherian scheme is reduced if and only if all its local rings satisfy Serre’s
R0 and S1 conditions. Since we have shown above that Σo is generically integral, all its local
rings clearly satisfy the R0 condition (i.e., the localization at every minimal prime is regular).
It remains to show that the local rings of Σo satisfy the S1 condition. Equivalently, we have
to show that if x ∈ Σo is a point of codimension at least one, then the local ring OΣo,x contains
a non-zero divisor.

We let Z = {x} ⊂ Σo with its reduced induced closed subscheme structure. Since θ′ is
projective and Z is integral, its scheme-theoretic image θ′(Z) is an integral closed subscheme
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of Φ−1
m (G) ×G. We let U = Spec (A) ⊂ Φ−1

m (G) ×G be an affine neighborhood of θ′(x) and
let V = Spec (A′) ⊂ Σo be an affine neighborhood of x such that θ′(V ) ⊂ U . Let p be the
prime ideal of A such that θ′(Z) ∩ U = V (p) and let p′ be the prime ideal of A′ such that
Z∩V = V (p′). Since θ′ is dominant whose base is integral, it follows that it induces a k-algebra
monomorphism A↪ A′ such that p′ ∩A = p.

We have to consider two cases. Suppose first that p = {0}. Then the inclusion A ↪ A′

induces an inclusion k(A) ↪ A′
p′ , where k(A) is the quotient field of A. Since we have

shown above that the generic fiber of θ′ is integral, it follows that A′
p′ is integral. Since the

codimension of Z is at least one in Σo, it follows that A′
p′ has dimension at least one. In

particular, it contains non-zero divisors.
In the second remaining case, we can assume that p ≠ {0}. Let a ∈ p be any non-zero

element. Then a ∈ p′. Since A is an integral domain, a is a non-zero divisor in A. Since we
have shown above that θ′ is flat, it follows that the map A → A′

p′ is also flat. This implies

that a ∈ A′
p′ = OΣo,x must be a non-zero divisor. This finishes the proof. �

Let pBG denote the projection map B × P1
k ×G → B ×G and let poBG = pBG∣Φ−1

m (G)×G
. If

pB ∶B × P1
k → B is the projection map, then note that pBG = pB × idG. Let πo∶Σo → B ×G

denote the composition poBG ○ θ′.
Lemma 5.5. πo is a flat and surjective morphism whose generic and rational fibers are
integral.

Proof. Since θ′ is flat and surjective and pBG is smooth, it follows that πo is flat. Since pB
is surjective, by Lemma 5.1 (2), it follows that so are poBG and πo (note that pBG is trivially
surjective). Since Σo (see Lemma 5.4) and B ×G are integral, it follows that the generic fiber
of πo is integral.

We now fix a point w ∈ (B ×G)(k). We can write this point uniquely as w = (g1, g2, g) ∈
G×(k) ×G×(k) ×G(k). Then p−1

BG(w) = Spec (k(w)) × P1
k ≅ P1

k and Uow ∶= (poBG)−1(w) ⊂ P1
k is

open. Since the projection pB ∶Φ−1
m (G)→ B is surjective by Lemma 5.1 (2), we see that Uow is

dense open in P1
k. Let Σo

w = (πo)−1(w).
Let φw denote the restriction of φ to the closed subscheme Uow. It follows from (5.7) that

Σo
w = Uow ×G Γ via the map φw. It follows from this that every rational fiber of the projection

pow∶Σo
w → Uow is isomorphic to Y . In particular, it is integral. Since θ′ is flat and surjective,

so is pow. In particular, it is open. Since Uow(k) is Zariski dense in Uow, and the latter is
irreducible, we conclude from Lemma 4.1 that Σo

w is irreducible.
We shall show that Σo

w is reduced by following the same argument that we used for proving
this property for Σo. We first need to show that the generic fiber of pow is integral.

Let S = Spec (k(Uow)) denote the generic point of Uow. We need to show that S ×G Γ is
integral via the maps φw∶S → G and θ∶Γ→ G. For this, we consider the diagram

(5.8) Γ
ι′Y //

µ̃′H
��

G ×H
p1

��

µ̃′H
��

G × Yid×ιY// G ×H
p1
// G

S × Yid×ιY//

OO

S ×H

OO

p1
// S,

φw

OO

where p1 is the projection to the first factor of its source and other notations are as in (5.6).
It is clear that all squares and the lone triangle in (5.8) are commutative. Moreover, all

squares are Cartesian and θ = p1 ○ ι′Y . In particular, we get θ = p1 ○ (id × ιY ) ○ µ̃′H . Since µ̃′H
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is an isomorphism, the integrality of S ×G Γ is equivalent to showing that S ×G (G × Y ) is
integral via the maps φw and p1 ○ (id× ιY ). Since all lower squares are Cartesian, the desired
integrality is finally equivalent to saying that S × Y is integral. But this is clear because Y is
integral and k(Uow) is purely transcendental over k.

We have now shown that Σo
w is irreducible, the map pow∶Σo

w → Uow is flat and surjective
whose generic fiber is integral. Since Σo

w = Uow ×G Γ and θ∶Γ→ G is projective, it follows that
pow is also projective. We can now repeat the argument of the proof of Lemma 5.4 to conclude
that Σo

w is reduced. Hence, it is integral. This finishes the proof of the lemma. �

5.3. The parameter space of rational equivalences. Let Σ denote the scheme-theoretic
closure of Σo in B × P1

k ×G ×H. Let θ′ be the projection map Σ → B × P1
k ×G and let π be

the composition Σ
θ′Ð→ B × P1

k ×G
pBGÐÐ→ B ×G.

Lemma 5.6. In the above notations, Σ is a G-invariant, geometrically integral closed sub-
scheme of B × P1

k ×G ×H, for the G-action induced by the trivial action on B × P1
k and the

diagonal action on G ×H. Moreover, the projection map π is G-equivariant.

Proof. Since all factors of B × P1
k × G × H are geometrically integral, we know that it is

(geometrically) integral. Since Σo is an integral closed subscheme of an open subscheme of
B × P1

k ×G ×H, it follows that Σ is an integral closed subscheme of B × P1
k ×G ×H. Since

θ′ is projective on Σ (since H projective) and it is dominant on Σo, it follows that the map
θ′∶Σ→ B × P1

k ×G is surjective. Furthermore,

(5.9) Σo = Σ ∩ (Φ−1
m (G) ×G ×H) = Σ ∩ θ′−1(Φ−1

m (G) ×G).

Let ν∶G×(B×P1
k×G×H)→ B×P1

k×G×H denote the action map of the lemma. We have seen
in (5.5) that Σo is G-invariant with respect to this action. Since G is geometrically integral
and Σ is integral, it follows that G×Σ is an integral closed subscheme of G×(B×P1

k ×G×H).
Since Σo is dense open in Σ, it follows that G × Σo is dense open in G × Σ. Since Σo is G-
invariant, it follows that G×Σo ⊂ ν−1(Σo) ⊂ ν−1(Σ). As Σ is closed in B×P1

k×G×H, it follows

that G × Σ = G ×Σo ⊂ ν−1(Σ). But this means that Σ is a G-invariant closed subscheme of

B ×P1
k ×G×H. Moreover, the projections Σ

θ′Ð→ B ×P1
k ×G

pBGÐÐ→ B ×G are G-equivariant. �

Let π∶Σ → B ×G denote the composite projection map. For w ∈ B ×G, we let Σw denote
the scheme-theoretic fiber π−1(w).

Lemma 5.7. There exists an open dense subscheme VY of B such that the projection map

ΣY ∶= π−1(VY ×G) πÐ→ VY ×G has following properties.

(1) π is flat and surjective.
(2) The generic fiber of π is integral.
(3) For every w ∈ (VY ×G)(k), there exists an open neighborhood (depending on w) Uow

of w × {0,∞} in P1
k(w) = p

−1
BG(w) such that π−1(w) ∩ θ′−1(Uow) is an integral scheme

which is flat over Uow under the projection map θ′∶π−1(w)→ P1
k(w).

(4) If Y is geometrically reduced (e.g., if k is perfect), then we can choose VY so that
π−1(w) is geometrically reduced for every w ∈ VY ×G.

(5) If Y is geometrically irreducible (e.g., if k is separably closed), then we can choose VY
so that π−1(w) is geometrically irreducible for every w ∈ VY ×G.

Proof. Since θ′ and pBG are surjective (see the proof of Lemma 5.6), we see that π is a
surjective morphism whose base is integral. Hence, the generic flatness theorem says that
there is a dense open subscheme V ′ ⊂ B ×G over which π is flat. We let VY be the image of
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V ′ under the projection B ×G → B. Since this projection is open, VY is open dense in B.
Since B ×G (resp. G) is rational, every open subset in B ×G (resp. G) has the property that
the set of its k-rational points is Zariski dense. Since G acts transitively on itself, and π is
G-equivariant by Lemma 5.6, we deduce that π must be flat over VY ×G. Since Σ and VY ×G
are integral, it follows that the generic fiber of π is integral.

We now fix a point w ∈ (VY ×G)(k). We can write this point uniquely as w = (g1, g2, g) ∈
G×(k) ×G×(k) ×G(k). Then p−1

BG(w) = Spec (k(w)) × P1
k ≅ P1

k and Uow ∶= (poBG)−1(w) ⊂ P1
k is

open. Here, poBG is the projection (Φ−1
m (G) ∩ (VY × P1

k)) ×G → VY ×G. Since the projection
pB ∶Φ−1

m (G) ∩ (VY × P1
k) → VY is surjective, by Lemma 5.1 (2), we see that Uow is dense open

in P1
k. It also follows from Lemma 5.1 (2) that {0,∞} ⊂ Uw. Let Σo

Y,w = (πo)−1(w) and

ΣY,w = π−1(w).
Under the above situation, it follows from (5.9) that we have a Cartesian square

(5.10) Σo
Y,w

j′
//

pow
��

ΣY,w

pw

��

Uow
j
// P1
k.

We saw in the proof of Lemma 5.5 that pow is surjective. Hence, it is flat, since Uow is a
regular scheme of dimension 1. It also follows from the same lemma that Σo

Y,w is integral.

Since pw is proper, it follows that the map Σo
Y,w → P1

k is flat and surjective, where Σo
Y,w is the

scheme-theoretic closure of Σo
Y,w in ΣY,w. We have thus shown (1) ∼ (3).

Suppose now that Y is geometrically reduced. Recall that a scheme W over a field k′ is
geometrically reduced if and only if Wk′′ is reduced for every field extension k′ ⊂ k′′. Thus
we see using (5.6) and Lemma 5.3 that the generic fiber of the map θ∶Γ→ G is geometrically
reduced. Since φ is dominant, the same token shows that the generic fiber of θ′ is geometrically
reduced.

Let η (resp. η′) denote the generic point of B × G (resp. Φ−1
m (G) × G). Then (2) shows

that ΣY,η = Σo
Y,η = π−1(η) = θ′−1(P1

η) is integral. Clearly, η′ is the generic point of P1
η. Since

θ′−1(η′) is geometrically reduced, as shown above, it follows (e.g., see [19, Proposition 5.49])
that the function field of ΣY,η is separable over k(η′). Since k(η′) is purely transcendental
over k(η), it follows that the function field of ΣY,η is separable over k(η). We thus see that
ΣY,η ∈ Schk(η) is integral whose function field is separable over k(η). We conclude from EGA
IV2 4.6.3 (see also [19, Proposition 5.49]) that ΣY,η is geometrically reduced.

Since π is a flat and projective over VY ×G whose generic fiber is geometrically reduced,
it follows from EGA IV3 12.2.1 that there is a dense open subscheme V ′ ⊂ VY ×G such that
π−1(w) is geometrically reduced for every w ∈ V ′. If we let V ′

Y ⊂ VY be the image of V ′ in VY ,
then using again that G acts transitively on itself, and π is G-equivariant, we deduce that
π−1(w) is geometrically reduced for every w ∈ V ′

Y ×G. We have thus shown that by shrinking
VY if necessary, we can achieve (4).

Suppose now that Y is geometrically irreducible. Recall that a scheme W over a field
k′ is geometrically irreducible if and only if Wk′′ is geometrically irreducible for every field
extension k′ ⊂ k′′. It follows therefore from (5.6) and Lemma 5.3 that the generic fiber of the
map θ∶Γ→ G is geometrically irreducible. Since φ is dominant, the same holds for the generic
fiber of θ′. In particular, k(η′) is separably closed in the function field of ΣY,η = Σo

Y,η by [19,

Proposition 5.50].
Since k(η′) is purely transcendental over k(η), it follows that the latter is separably closed

in the function field of ΣY,η. We thus see that ΣY,η ∈ Schk(η) is integral such that k(η) is
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separably closed in the function field of ΣY,η. We conclude from [19, Proposition 5.50] that
ΣY,η is geometrically irreducible. Since VY ×G is integral, we can apply [47, Lemma 25.5] to
find a dense open subscheme V ′ ⊂ VY ×G such that π−1(w) is geometrically irreducible for
every w ∈ V ′. We can now argue as before to show that after shrinking VY , we can achieve
(5). This finishes the proof. �

Lemma 5.8. Let VY ⊂ B be the open subscheme of Lemma 5.7. Assume that Y ⊂ H has
codimension i. Let w = (v, g) ∈ (VY ×G)(k) and let pw∶ΣY,w → P1

k be the composite projection
Σ→ B × P1

k ×G→ P1
k. Then the following hold.

(1) ΣY,w is a closed subscheme of H × P1
k of pure codimension i.

(2) pw is flat over an open neighborhood of {0,∞}.
(3) If we write v = (g1, g2) ∈ B(k) = G×(k) ×G×(k), then

p−1
w (0) = g1g ⋅ Y and p−1

w (∞) = g2g ⋅ Y.

Proof. The property (1) follows because π∶ΣY → VY ×G is a flat surjective morphism between
two integral schemes and hence has equidimensional fibers. The property (2) follows from
Lemma 5.7 (3) because the composition P1

k(w) ↪ B ×P1
k ×G→ P1

k is an isomorphism. The last

property follows directly Lemma 5.1 (2) and the definition of φ in (5.7). �

6. Pull-backs of cycles from homogeneous spaces

We shall now use the results of the previous sections to construct the pull-back maps from
the Chow groups of codimension two cycles on suitable homogeneous spaces to the Levine-
Weibel Chow group of a singular surface. Note that for smooth surfaces, this is an easy
consequence of the Chow moving lemma or Fulton’s deformation to normal cone techniques.
We can not use the latter trick in the non-A1-invariant world. So we shall use some sort of
moving lemma tricks to achieve our goal. Over algebraically closed fields, this construction
is due to Levine [36]. We shall follow Levine’s outline to carry this out for surfaces over any
infinite field.

We fix an infinite field k. We consider the linear algebraic group G =
r

∏
i=1

GLni,k and let

H = G/P be a projective homogeneous space for G as in § 4.2. We let B = G× ×G× ⊂ G ×G
be the open subscheme as in § 5.1. For an integral closed subscheme Y ⊂ H, we let VY ⊂ B
be the open and ΣY ⊂ B ×P1

k ×G×H the closed subschemes of Lemma 5.7. We shall continue
to follow the notations of the previous sections.

We recall the maps used in Lemma 5.7 in the following diagram as we shall need to use
them in this section.

(6.1) ΣY,w� _

��

θ′ // P1
k(w)

pBG
//

� _

��

Spec (k(w))� _

��

ΣY
θ′ //

π

FF
VY × P1

k ×G

p2
��

pBG
// VY ×G

P1
k
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Here, p2 is the projection map. The two squares on the top are Cartesian and the composite
vertical arrow in the middle is an isomorphism if w ∈ (VY ×G)(k). We shall let pw denote the

composite map pw∶ΣY,w ↪ ΣY
p2○θ

′
ÐÐÐ→ P1

k.
We fix an equidimensional reduced quasi-projective surface X over k. Note that since X

is reduced, it is regular in codimension zero. That is, dim(Xsing) ≤ 1. Since the associ-
ated and minimal primes of a reduced Noetherian commutative ring coincide (e.g., see [20,
Lemma 3.3]), we note furthermore that X is Cohen-Macaulay in codimension one. Since the
Cohen-Macaulay locus XCM of X is open (e.g., see EGA IV2 6.11.2), it follows that its com-
plement XnCM is a finite closed subscheme (with reduced induced structure) of X contained
in Xsing. We fix a morphism f ∶X →H.

6.1. Construction of the map f∗∶Z2(H)→ CHL
0 (X). Let Z2(H) be the free abelian group

of integral cycles on H of codimension two. We shall first define a map

f∗∶Z2(H)→ CHL
0 (X).

Let Y ⊂H be an integral closed subscheme of codimension two. By applying Theorem 4.8
to X and Xsing simultaneously, we find a dense open subscheme U(f, Y ) ⊂ G such that for
every g ∈ U(f, Y )(k), the pull-back f−1(gY ) ∶= gY ×H X has pure codimension two and
f−1(gY ) ∩Xsing = ∅. We can then define

(6.2) f∗[Y ] = [f−1(gY )] ∈ ZL0 (X),
where [f−1(gY )] is the fundamental class of the closed subscheme f−1(gY ) in the sense of
[16, § 1.5]. Our goal now is to show that (after possibly shrinking U(f, Y )) this class does
not depend on the choice of g ∈ U(f, Y )(k) up to rational equivalence in ZL0 (X,Xsing). We
shall prove this using the following lemmas.

Until we have proven the desired independence, we fix Y ⊂ H as above and simplify our
notations. We write U(f, Y ) simply as U . Recall also that if Σ ⊂ B ×P1

k ×G×H is as in § 5.3,
then ΣY = π−1(VY ×G) for the projection map π∶Σ → B ×G. Hence, we have Σw = ΣY,w for

all w ∈ VY ×G. We shall therefore use the common notation Σw. We recall our notation f̃ for
the map f × id∶X ×P1

k →H ×P1
k from § 4.4. For every w ∈ (VY ×G)(k), we know that Σw is a

closed subscheme of P1
H . We shall write f̃−1(Σw) = Σw ×P1

H
P1
X as Γw.

We consider the composite map

(6.3) τ ∶VY ×G↪ B ×G↪ G ×G ×G→ G ×G;

(g1, g2, g)↦ (g ⋅Φm(g1, g2,0), g ⋅Φm(g1, g2,∞)) = (gg1, gg2).
Note that this definition makes sense by Lemma 5.1 (2). The equality on the right follows from
Lemma 5.1 (4). It is easy to check that the last map in (6.3) is a surjective morphism between
regular schemes with smooth fibers, namely, G. Hence, this map is flat by [22, Exc.III.10.9],
and therefore smooth. Since the first and second maps in (6.3) are open immersions, it follows
that τ is a smooth morphism. If τ(w) = (g1, g2) ∈ (G ×G)(k), then Lemma 5.8 says that

(6.4) Σw ×P1
k
{0} = g1Y and Σw ×P1

k
{∞} = g2Y.

We let Ũ ∶= τ−1(U × U) and consider the subset W ⊂ Ũ ⊂ VY × G consisting of points w
having the following properties.

a) Γw is of pure dimension 1.
b) Γw ∩ P1

XnCM
= ∅.

c) (Σw)nsm ∩ f(Xsing) × P1
k = ∅.

d) Γw ∩ P1
Xsing

is a finite set.
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Our goal is to show that W is a constructible subset of VY ×G containing the generic point
of the latter. In particular, it is non-empty. Note that Ũ is dense open in VY ×G because τ
is smooth and G ×G is irreducible.

Lemma 6.1. W is a constructible subset of VY ×G.

Proof. Note that W is constructible in VY ×G if and only if it is so in Ũ . We consider the
maps f × id∶VY ×P1

k ×G×X → VY ×P1
k ×G×H. We let Σ′ = (f × id)−1(ΣY ) and f ′ = (f × id)∣Σ′ .

This gives us maps Σ′ f ′
Ð→ Σ

πÐ→ VY × G. Note that for every w ∈ VY × G, the induced map
on the fibers f ′w∶Σ′

w → Σw is same as the restriction of the map f̃ ∶ (P1
X)k(w) → (P1

H)k(w) to

f̃−1(Σw). We can therefore replace Γw = f̃−1(Σw) in (a) ∼ (d) above by Σ′
w. We let π′ be the

restriction of the map π ○ f ′∶Σ′ → VY ×G to Σ′
U ∶= (π ○ f ′)−1(Ũ).

We let Wa ⊂ Ũ be the set of points which satisfy condition (a) above. We define Wb,Wc

and Wd similarly. It suffices to show separately that each of the sets Wa,Wb,Wc and Wd is
constructible.

Now, the constructibility of Wa follows by applying [19, E.1 (5)] to the morphism π′∶Σ′
U →

Ũ . The constructibility of Wb and Wd follows by applying [19, E.1 (4)] to the compositions

Σ′
U ×X XnCM ↪ Σ′

U

π′Ð→ Ũ and Σ′
U ×X Xsing ↪ Σ′

U

π′Ð→ Ũ , respectively. For Wc, we first

observe that since Σ
πÐ→ VY ×G is flat by Lemma 5.7(1), one checks that for any point y ∈ Σ,

the morphism π is smooth at y if and only if Σπ(y) is smooth over Spec (k(π(y))) at y
(e.g., see [48, Lemma 136.16]). Hence, we have the equality (Σw)nsm = (Σnsm)w. We can
now deduce the constructibility of Wc by replacing π by its composition with the inclusion
Σnsm ∩ (VY × P1

k ×G × f(Xsing)) ∩Σ′
U ↪ Σ′

U and applying [19, E.1 (4)]. �

Lemma 6.2. For every point w ∈ (VY ×G)(k) lying in W , the following hold.

(1) Γw ∩ P1
Xsing

⊂ P1
XCM

.

(2) For x ∈ Γw ∩ P1
Xsing

, one has that f̃(x) ∈ (Σw)sm.

(3) For every x ∈ Γw ∩ P1
Xsing

, the ideal of Σw in the local ring OP1
H ,f̃(x)

is a complete

intersection of height two.

Proof. The item (1) follows from the item (b) before Lemma 6.1 and (2) follows from the
item (c) before Lemma 6.1. By Lemma 5.8, Σw is of pure codimension two in P1

H . Since Σw

is smooth over Spec (k(w)) at f̃(x) by (2), it is regular at f̃(x). In particular, Σw ⊂ P1
H is a

closed immersion of schemes both of which are regular at f̃(x). Hence, (3) follows. �

Lemma 6.3. For every point w ∈ (VY ×G)(k) lying in W , the following hold.

(1) Γw is purely 1-dimensional.
(2) Γw ∩ P1

Xsing
is a finite set.

(3) Γw ∩ (Xsing × {0,∞}) = ∅.
(4) The inclusion Γw ⊂ P1

X is a local complete intersection morphism at every point of
Γw ∩ P1

Xsing
.

(5) The projection map Γw → P1
k is flat over an open neighborhood of {0,∞}.

Proof. The items (1), (2) and (3) are respectively same as the items (a), (c) and (d) before
Lemma 6.1. If x ∈ Γw ∩ P1

Xsing
, then it must be a closed point of P1

X by (2). Let J ⊂ OP1
X ,x

be the ideal of Γw in OP1
X ,x

. Now, item (3) of Lemma 6.3 shows that the ideal I of Σw in

the local ring OP1
H ,f̃(x)

is a complete intersection of height two. In particular, we can write

I = (a1, a2). We have the morphism of local rings OP1
H ,f̃(x)

→ OP1
X ,x

and J = IOP1
X ,x

. This
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implies that J = (a1, a2). On the other hand, OP1
X ,x

is Cohen-Macaulay by Lemma 6.2 (1).

Since ht(J) = 2, it must be a complete intersection (e.g., see [39, Theorem 17.4]). This proves
(4).

For (5), we first note that the projection map Σw → P1
k is flat over an open neighborhood of

{0,∞} by Lemma 5.8. Hence, if we repeat the proof of Proposition 4.9 (3), the only thing we

need to know is that Tor
OHε
1 (O(Σw)ε ,OXε) = 0 for ε = 0,∞. But for w = (v, g) with v ∈ VY (k)

and g ∈ G(k) as above, we have

(6.5) Γw ×P1 {0} = f−1(gΦm(v,0) ⋅ Y ) = f−1(g1Y ) and

Γw ×P1 {∞} = f−1(gΦm(v,∞) ⋅ Y ) = f−1(g2Y ),
where τ(v, g) = (g1, g2) ∈ U ×U (see (6.4)). Hence, the desired Tor-vanishing follows from our
choice of U and Lemma 4.6. �

We shall need the following elementary lemma to show that W contains a dense open subset
of VY ×G.

Lemma 6.4. Let f ∶X1 →X2 be a morphism in Schk such that X1(k) is Zariski dense in X1.
Let Z ⊂ X1 be a closed subset which has the property that f−1(x) ∩ Z is dense in f−1(x) for
every x ∈X2(k). Then Z =X1.

Proof. Suppose that Z ≠ X1. Our assumption then implies that (X1 ∖ Z)(k) ≠ ∅. Choose a
point in x′ ∈ (X1 ∖Z)(k) and let x = f(x′). Then x ∈X2(k) and f−1(x)∩Z is a proper closed
subset of f−1(x). Hence, it can not be dense in f−1(x), a contradiction. �

Lemma 6.5. W contains a dense open subset of VY ×G.

Proof. Since VY ×G is irreducible, it suffices to show that W contains the generic point η of
VY ×G. Suppose to the contrary that η ∉W . As W is constructible and VY ×G irreducible,
this means that η ∉ W , where the latter is the closure of W in VY ×G. Since (VY ×G)(k)
is Zariski dense in VY ×G, it follows from Lemma 6.4 that there exists v0 ∈ VY (k) such that
p−1

1 (v0) ∩W is not dense in p−1
1 (v0).

Since p−1
1 (v0) ≅ G has a Zariski dense set of k-rational points, we can choose w0 = (v0, g0) ∈

(VY ×G)(k). Let Σw0 = π−1(w0) ⊂ P1
H . By applying Proposition 4.9 to Σw0 , we get a dense

open subscheme Uw0 ⊂ G such that for every g ∈ Uw0(k), the pull-back Fg ∶= f̃−1(gΣw0)
satisfies the following.

(1) Fg has pure dimension 1.
(2) Fg ∩ P1

XnCM
= ∅.

(3) Fg ∩ P1
Xsing

is finite and Fg ∩ (Xsing × {0,∞}) = ∅.

(4) The inclusion Fg ⊂ P1
X is a local complete intersection at each point of P1

Xsing
.

(5) The projection Fg → P1
k is flat over a neighborhood of {0,∞}.

Since G acts on Σ ⊂ B × P1
k ×G ×H by Lemma 5.6 where its action is trivial on the first

two factors and diagonal on the product of the other two factors (see § 5.2), it follows that
every g ∈ G(k) acts as an automorphism of B × P1

k ×G ×H which takes gΣw0 onto Σ(v0,gg0).

Hence, we see that for every g ∈ Uw0(k), the pull-back f̃−1(Σ(v0,gg0)) satisfies (1) ∼ (5) above.

We let U ′
w0

= (Uw0)g0 ⊂ G. Then the right multiplication by g0 defines an automorphism

G
≅Ð→ G which takes Uw0 onto U ′

w0
. It follows that U ′

w0
is dense open in G and f̃−1(Σ(v0,g))

satisfies (1) ∼ (5) above for every g ∈ U ′
w0

(k). In particular, {v0} × U ′
w0

⊂W . But {v0} × U ′
w0

is clearly dense in p−1
1 (v0). This implies that p−1

1 (v0)∩W is dense in p−1
1 (v0). This leads to a

contradiction. We have thus proven the lemma. �
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Lemma 6.6. There exists a dense open subscheme V (f, Y ) ⊂ U(f, Y ) of G, depending only
on f and Y , such that for every g1, g2 ∈ V (f, Y )(k), the classes [f−1(g1Y )] and [f−1(g2Y )]
define the same element of CHL

0 (X). In particular, the assignment (6.2) gives a group homo-
morphism

f∗∶Z2(H)→ CHL
0 (X).

Proof. Let W ′ ⊂ W be a subset which is dense open in VY × G. Such a subset exists by
Lemma 6.5. Since τ is smooth (this is shown just below (6.3)), its image τ(W ′) is dense open
in G×G. If we take the projection of τ(W ′) to the first factor of G×G, it is also dense open
in G. Hence, it contains a k-rational point g0. Then p−1

1 (g0)∩τ(W ′) is dense open in p−1
1 (g0).

Since the composite map p−1
1 (g0) ↪ G ×G

p2Ð→ G is an isomorphism, it takes p−1
1 (g0) ∩ τ(W ′)

to a dense open subscheme of G. Let V (f, Y ) be such a dense open subscheme. Note that
V (f, Y ) ⊂ U(f, Y ) since W ⊂ τ−1(U ×U).

For every g ∈ V (f, Y )(k), we have that (g0, g) ∈ τ(W ). Let w ∈ W be such that τ(w) =
(g0, g). It is clear from (6.3) that w ∈ (VY ×G)(k). It follows from Lemma 6.3 and Definition 2.1
that Γw is a Cartier curve on P1

X . Furthermore, it follows from (6.5) that Γw defines a
rational equivalence between [f−1(g0Y )] and [f−1(gY )]. It follows that for any pair of points
g1, g2 ∈ V (f, Y )(k), the cycles [f−1(g1Y )] and [f−1(g2Y )] are both rationally equivalent to
[f−1(g0Y )]. Hence, they are rationally equivalent each other. This finishes the proof. �

6.2. The pull-back map on the Chow groups. We let G,H,X and f ∶X → H be as
we described in the beginning of § 6. We have shown in § 6.1 that f induces a pull-back
map f∗∶Z2(H) → CHL

0 (X). We shall now show that this map factors through the rational
equivalence in the classical Chow group of H.

Proposition 6.7. The morphism f∗∶Z2(H)→ CHL
0 (X) descends to a homomorphism

f∗∶CH2(H)→ CHL
0 (X)

satisfying the following property: for every Y ⊂ H integral subvariety of codimension 2, the
equality f∗[Y ] = [f−1(gY )] holds in CHL

0 (X) for every k-point g ∈ V (Y, f), where V (Y, g) is
the open dense subset of G of Lemma 6.6.

Proof. We only need to show that f∗ respect the rational equivalence, since it is already clear
by construction that on generators the pullback can be computed by first translating Y by a
rational point of V (Y, f) followed by the naive pullback.

It is well-known that the rational equivalence in CH2(H) can be presented in terms of
subvarieties of H of codimension 1 with rational functions on them, or in terms of subvarieties
of codimension 2 of P1

H . The latter presentation is easier to handle in our context. Following
Levine [36], let W ⊂ P1

H be an integral subscheme of codimension 2, flat over P1
k, and let

p′1∶P1
H →H be the projection.

Let W0 = p′1(W ⋅ (H × {0})) and W∞ = p′1(W ⋅ (H × {∞})). Note that the intersection
product is well defined (this is simply the pull-back to W of the Cartier divisors 0 and ∞
of P1

k, which is well defined since the map is flat). We need to show that the difference

f∗[W0] − f∗[W∞] is an element of RL0 (X,Xsing). Let V0 = V (f,W0) and let V∞ = V (f,W∞).
If we take g ∈ (V0 ∩ V∞)(k), we have that f∗[W0] = [f−1(gW0)] and f∗[W∞] = [f−1(gW∞)]
(for the same k-point g of G).

By Proposition 4.9, there exists an open dense subset U = U(f × idP1 ,W ) of G such that
for every g ∈ U(k), the inverse image (f × idP1)−1(gW ) defines a purely 1-dimensional closed
subscheme Γ of P1

X satisfying the following properties.
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(1) The inclusion Γ ⊂ P1
X is a local complete intersection morphism at every point of

Γ ∩ P1
Xsing

.

(2) Γ ∩ P1
Xsing

is a finite set and Γ ∩ (Xsing × {0,∞}) = ∅.

(3) The induced map Γ→ P1
k is flat over an open neighborhood of {0,∞}.

In particular, (p1)∗(Γ ⋅ (X × {0})) − (p1)∗(Γ ⋅ (X × {∞})) ∈ RL0 (X,Xsing). If we choose
g ∈ (U ∩ V0 ∩ V∞)(k), we conclude that

f∗[W0] = [f−1(gW0)] = (p1)∗(Γ ⋅ (X × {0})) ∼ (p1)∗(Γ ⋅ (X × {∞}))
= [f−1(gW∞)] = f∗[W∞],

as required. �

6.3. Functoriality of f∗ in G and H. We now show that the pull-back on the Chow
groups behaves well with respect to the change in the group G and the homogeneous space
H. Let (G,H) and (G′,H ′) be two pairs of groups and their homogeneous spaces of the
types described in the beginning of § 6. A morphism Ψ∶ (G,H) → (G′,H ′) is a pair of maps
ρ∶G→ G′ and h∶H →H ′ such that ρ is a group homomorphism and h is G-equivariant, where
the latter acts on H ′ via ρ.

Let Ψ∶ (G,H)→ (G′H ′) be as above. Let X be an equidimensional reduced quasi-projective
surface and let there be a commutative diagram

(6.6) X
f
//

f ′
��

H

h
��

H ′.

We now prove the following functoriality property with respect to the change of homoge-
neous spaces.

Lemma 6.8. There is a commutative diagram

(6.7) CH2(H ′) h∗ //

f ′∗ $$

CH2(H)

f∗
��

CHL
0 (X).

Proof. Let Y be an integral subscheme of H ′ of codimension 2. Using Lemma 6.6 (applied
simultaneously to h and f ′), we let U ′ ⊂ G′ be a dense open such that α∗([Y ]) = [α−1(gY )]
and [α−1(gY )] ∼ [α−1(g′Y )] for g, g′ ∈ U ′(k) and α ∈ {h, f ′}. We fix g0 ∈ U ′(k) and let
Y0 = g0Y and U ′

0 = (U ′)g−1
0 . Then U ′

0 is a dense open subset such that α∗([Y0]) = [α−1(gY0)]
and [α−1(gY0)] ∼ [α−1(g′Y0)] for g, g′ ∈ U ′

0(k) and α ∈ {h, f ′}.
Using Lemma 6.6 (applied to f), we now let U1 ⊂ G be a dense open subset such that

(6.8) f∗(h∗([Y ])) = f∗([h−1(Y0)]) = [f−1(gh−1(Y0))] and

[f−1(gh−1(Y0))] ∼ [f−1(g′h−1(Y0))] for any g, g′ ∈ U1(k).

Since U ′
0 contains the identity element of G′ by its construction, it follows that U ′

0∩ρ(G) ≠ ∅.
In particular, ρ−1(U ′

0) is dense open in G. Hence, U1 ∩ ρ−1(U ′
0) is dense open in G. We can

therefore replace U1 by U ∶= U1 ∩ ρ−1(U ′
0) and (6.8) continues to hold for g, g′ ∈ U(k).
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We now choose any g ∈ U(k) so that g′ ∶= ρ(g) ∈ U ′
0. Then we get

f∗h∗[Y ] = f∗([h−1(Y0)]) = [f−1(gh−1(Y0))]
=1 [f−1(h−1(g′Y0))]
= [f ′−1(g′Y0)] = [f−1(g′g0Y )]
=2 f ′∗([Y ]),

where =1 follows from the G-equivariance of h and =2 follows from the choice U ′ because
g′g0 ∈ U ′(k). This proves the lemma. �

We shall also need the following obvious functoriality property of the pull-back map on the
Chow groups.

Lemma 6.9. Let π∶ X̃ →X be a resolution of singularities of X and let f̃ ∶ X̃ →X →H be the
composite map. Then f̃∗ = π∗ ○ f∗ as maps between the Chow groups CH2(H) and CH2(X̃)
of smooth schemes.

Proof. Let Y ⊂ H be an integral closed subscheme of codimension two. Let V (f, Y ) ⊂ G
be as in Lemma 6.6 so that f∗([Y ]) = [f−1(gY )] for every g ∈ V (f, Y )(k). Since f−1(gY )
is a 0-cycle supported on Xreg, it follows from the definition of π∗ in Proposition 3.9 that

π∗([f−1(gY )]) = [f−1(gY )] = [f̃−1(gY )] = f̃∗([gY ]). Since G is rationally connected, we

know on the other hand that [Y ] ∼ [gY ] in Z2(H). Hence, we get f̃∗([gY ]) = f̃∗([Y ]) in

CH2(X̃). We have thus shown that π∗(f∗([Y ])) = f̃∗([Y ]). �

6.4. P1-homotopy between two maps. We shall now prove a suitable P1-invariance of
maps between the Chow groups. Let H = G/P be a projective homogeneous space as before.
For any t ∈ P1

k(k), let ιt∶{t}↪ P1
k be the inclusion.

Lemma 6.10. Let F ∶X × P1
k → H be a morphism. Let ft = F ○ ιt∶X → H. Then f∗0 =

f∗∞∶CH2(H)→ CHL
0 (X).

Proof. Let Y ⊂ H be an integral cycle of codimension two. Let U ⊂ G be the intersection of
the dense open subsets obtained by applying Lemma 6.6 to f0 and f∞. Let F̃ ∶X×P1

k →H×P1
k

be the morphism F̃ = (F, p2), where p2∶X × P1
k → P1

k is the projection.

By applying Theorem 4.8 to (G̃ ∶= G×PGL2,k,H ×P1
k), we get an open dense subset Ũ ⊂ G̃

such that for g̃ = (g, σ) ∈ Ũ(k), the subscheme F̃−1(gY × P1
k) = F̃

−1(g̃ ⋅ P1
Y ) satisfies (1) ∼ (3)

of Theorem 4.8. Since (U × PGL2,k) ∩ Ũ is dense open in G̃, we can find a k-rational point
g̃ = (g, σ) in this intersection.

We let Γ = F̃−1(gY ×P1
k). Then for any point g̃ as above, we see from the choice of U that the

fibers of the map Γ→ P1
k over {0,∞} are supported on Xreg and TorOHi (OgY ,OX) = 0 for i ≥ 1

with respect to the maps f0 and f∞. In particular, the argument in the proof of Proposition 4.9
(3) shows that this map is flat over an open neighborhood of {0,∞}. Hence, Γ determines
a Cartier curve on P1

X such that Γ0 = [f−1
0 (gY )] = f∗0 ([Y ]) and Γ∞ = [f−1

∞ (gY )] = f∗∞([Y ]).
This finishes the proof. �

7. The Chern classes for singular surfaces

We fix an infinite field k and a connected equidimensional reduced quasi-projective surface
X over k. In this section, we shall review the ring structure on CHL

0 (X) due to Levine [36]
and define Chern classes of vector bundles in this ring.
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7.1. Intersection product of Cartier divisors. For a closed subscheme D ⊂X, we let ∣D∣
denote the support of D. We let KX denote the Zariski sheaf of total quotient rings on X. We
let Z1(X,Xsing) denote the subgroup of Cartier divisors D ∈H0

zar(X,K×X/O×X) such that ∣D∣∩
Xsing is finite. We let R1(X,Xsing) be the subgroup of Z1(X,Xsing) generated by principal
Cartier divisors div(f), where f ∈ H0

zar(X,K×X) is invertible at all generic points of Xsing.

We let CH1(X) = Z1(X,Xsing)/R1(X,Xsing). It is easy to check that there is a canonical

injective map CH1(X)↪ Pic(X) which takes a Cartier divisor D to the associated line bundle
OX(D). We let CH0(X) denote the free abelian group on the cycle [X] so that there is a

canonical isomorphism Z ≅Ð→ CH0(X). We let CH∗(X) = CH0(X)⊕CH1(X)⊕CHL
0 (X). Then

a ring structure on CH∗(X) is completely determined by defining the intersection product

(7.1) CH1(X)⊗CH1(X)→ CHL
0 (X).

This construction is identical to the case of smooth surfaces. We recall it here. Let D,E
be two effective Cartier divisors on X with no common components. Let x ∈Xreg be a closed
point. Recall that the intersection multiplicity of D and E at x is defined as

ix(D,E) = `(OX,x/OX(−D −E)x).

The number ix(D,E) is non-zero only if x ∈ Supp(D) ∩ Supp(E), and satisfies the standard
properties of symmetry and additivity. In particular, if ∣D∣∩ ∣E∣ ⊂Xreg, the product (D ⋅E) =
∑x∈∣D∣∩∣E∣ ix(D,E)[x] is a well-defined element of the Chow group CHL

0 (X).
Note that since X is quasi-projective, the map CH1(X)↪ Pic(X) is in fact an isomorphism.

In fact, we can write up to linear equivalence D = D1 − D2 as difference of effective and
very ample Cartier divisors without common components (e.g., see [22, II Ex.7.5]). Since
k is infinite, we can use the classical Bertini theorem (e.g., see [23, 6.3 b)]) to ensure that
∣D1∣∩ ∣D2∣∩Xsing = ∅ and ∣Di∣∩Xsing finite for i = 1,2. We do the same for E, which we write
(up to linear equivalence) as E1 −E2 with the additional property that Di ∩Ej is finite and
disjoint from Xsing. At this point, we can define

(D ⋅E) = (D1 −D2) ⋅ (E1 −E2) =D1 ⋅E1 −D1 ⋅E2 −D2 ⋅E1 +D2 ⋅E2.

It is straightforward to check that the product is well-defined (i.e., it does not depend on the
presentation of D and E). We leave out the details.

7.2. Compatibility of product with pull-backs. Let G and H be as in § 6. We let
CH∗(H) = ⊕i≥0CHi(H) denote the classical Chow ring of H. We assume that dim(H) ≥ 2.
Let f ∶X → H be a morphism. We have a well-defined pull-back map f∗∶Pic(H) → Pic(X).
Equivalently, a pull-back map f∗∶CH1(H) → CH1(X). To give a more explicit description
of this, note that for any integral divisor D ⊂ H, we can apply Theorem 4.8 (to X and
Xsing) to find a dense open U ⊂ G such that for every g ∈ U(k), the scheme-theoretic pull-
back f∗(gD) satisfies conditions (1) ∼ (3) of Theorem 4.8. But this precisely means that
f∗(gD) is an effective Cartier divisor on X whose no irreducible component is contained
in Xsing. It is then clear from the definition of CH1(X) in the beginning of § 7.1 that

f∗([D]) = [f∗(gD)] ∈ CH1(X).
We have also defined the pull-back f∗∶CH2(H) → CHL

0 (X). Since f∗∶CH0(H) → CH0(X)
is identity as X is connected, we have a well-defined codimension preserving (we define f∗ to
be zero on CH≥3(H)) group homomorphism f∗∶CH∗(H)→ CH∗(X).

Proposition 7.1. The map f∗∶CH∗(H)→ CH∗(X) is a ring homomorphism. If Ψ = (ρ, h)∶
(G,H)→ (G′,H ′) is a morphism as in § 6.3, then (h ○ f)∗ = f∗ ○h∗ as ring homomorphisms.



BLOCH’S FORMULA AND HIGHER DIMENSIONAL CFT 37

Proof. We only need to show this for the product of cycles lying in CH1(H). For this, we
note that CH1(H) ≅ Pic(H) and we know that every line bundle on H is a difference of two
very ample line bundles. Furthermore, if D is a Cartier divisor on H such that OH(D) is very
ample, then the classical Bertini smoothness theorem over infinite fields tells us that D ∼D′,
where D′ is a smooth effective Cartier divisor on H. It follows therefore that CH1(H) is
generated by smooth very ample divisors.

Now, given two smooth very ample divisorsD1 andD2 onH, we can use the Bertini theorem
of Jouanolou (see also [1, Theorem 1]) to find elements D′

1 and D′
2 in the linear systems

∣H0(H,OH(D1))∣ and ∣H0(H,OH(D2))∣, respectively such that D′
1 and D′

2 are geometrically
integral smooth schemes which intersect transversely in a smooth and (geometrically) integral
codimension two subscheme Y ⊂ H. We remind here that H is smooth and geometrically
integral. We therefore need to show that if D1 and D2 are two smooth connected very ample
effective Cartier divisors on H whose scheme-theoretic intersection Y is smooth and integral
codimension two cycle on H, then [f∗(D1)] ⋅ [f∗(D2)] = [f∗(Y )] in CHL

0 (X).
We now apply Theorem 4.8 again. We can then find an open dense subset Ui of G, for

i = 1,2 such that, for every g ∈ Ui(k), the scheme-theoretic pull-back f−1(gDi) is an effective
Cartier divisor on X having finite intersection with Xsing. By replacing U1 and U2 by their
intersection, we can assume that U1 = U2 = U and that, the same g works for both D1 and
D2.

Let V (f, Y ) be the open subset of Lemma 6.6. Then for every g ∈ V (f, Y )(k), we have
f∗(D1 ⋅D2) = f∗[Y ] = [f−1(gY )], with f−1(gY ) ∩Xsing = ∅. Choosing g ∈ (V (f, Y ) ∩U)(k),
we obtain

f∗([D1] ⋅ [D2]) = [f−1(gY )] = [f−1([gD1] ⋅ [gD2])]
= [f−1(gD1)] ⋅ [f−1(gD2)]
= f∗[D1] ⋅ f∗[D2],

as required (the second equality follows directly from the local definition of the intersection
product in § 7.1). The second assertion of the proposition follows directly from Lemma 6.8. �

7.3. The Chern classes. Let X be as in the beginning of § 7. We now review the con-
struction of Chern classes in CH∗(X) of vector bundles on X. This construction depends
solely on the results of the previous sections of this manuscript and does not use any further
information about the nature of the field k. Hence, all the proofs in the construction of the
Chern classes given in [36] and [6] verbatim remain valid and we have nothing extra to add.
We shall therefore only recall it very briefly and refer to [6, § 5] for details.

For any vector bundle E of rank n on X, we let c0(E) = 1 and c1(E) = c1(⋀n(E)) = [⋀n(E)] ∈
Pic(X) = CH1(X). It is easy to check that c1(E) = c1(E ′) + c1(E ′′) if

0→ E ′ → E → E ′′ → 0

is an exact sequence of vector bundles. These definitions are identical to the classical case.
We now recall the construction of c2(E). We first recall that for integers 0 ≤ n ≤ r, the

Grassmanian variety Grk(n, r) is a representable functor on Schk which to any Y ∈ Schk
associates the set of quotients OrY ↠ F , where F is locally free of rank n on Y . Note that this
construction holds over any base scheme S. It is classically known that GLr,k acts transitively
on Grk(n, r) and the latter is projective. Hence, we have that Grk(n, r) ≅ GLr,k/P with P
parabolic.

Let us now assume that E is globally generated by the sections s1, . . . , sr ∈ H0(X,E).
Then it follows from the above definition of Grk(n, r) that there is a unique k-morphism
f ∶X → Grk(n, r) such that E ≅ f∗(Qn,r), where Qn,r is the universal quotient vector bundle
on Grk(n, r). We let c2(E) ∶= f∗(c2(Qn,r)). Note that this makes sense since we have a
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well-defined theory of Chern classes of vector bundles on smooth schemes. The fact that this
definition does not depend on the choice of the chosen sections follows from the following.

Lemma 7.2. Let {t1, . . . , tr} and {g1, . . . , gs} be two sets of global sections generating E. Let
f1∶X → Grk(n, r) and f2∶X → Grk(n, s) be the classifying morphisms. Then f∗1 (c2(Qn,r)) =
f∗2 (c2(Qn,s)) in CHL

0 (X).

Proof. This is straightforward using Lemmas 6.8 and 6.10 (e.g., see [6, Lemma 10]). �

Lemma 7.3. Suppose that E is globally generated by {t1, . . . , tr} and let f ∶X → Grk(n, r)
be the associated classifying morphism. Let L be a line bundle on X globally generated by
{g1, . . . , gs}. Let h∶X → Grk(n, rs) be the classifying morphism for the vector bundle E ⊗OX L
and sections {ti ⊗ gj ∣1 ≤ i ≤ s,1 ≤ j ≤ s}. Then

(7.2) h∗(c2(Qn,rs)) = f∗(c2(Qn,r)) + (n − 1)c1(E) ⋅ c1(L) + (n
2
)c1(L)2.

Proof. This is straightforward using Lemma 6.8 and the theory of Chern classes on smooth
schemes (e.g., see [6, Lemma 11]). �

Let E be a rank n vector bundle on X. Let L be a globally generated line bundle on
X such that E ⊗OX L is generated by global sections t1, . . . , tr. Let f ∶X → Grk(n, r) be the
classifying morphism given by the ti’s. In view of Lemmas 7.2 and 7.3, the following definition
is meaningful.

Definition 7.4. We let

c2(E) = f∗(c2(Qn,r)) − (n − 1)c1(E) ⋅ c1(L) − (n
2
)c1(L)2.

We define the total Chern class of E to be

c(E) = 1 + c1(E) + c2(E).

Note that the above definitions coincide with the classical definitions of Chern classes if X
happened to be non-singular.

Lemma 7.5. The following hold for vector bundles on X and their Chern classes.

(1) Suppose H = G/P is as in § 5.1 and f ∶X →H is a morphism. If E is a G-equivariant
vector bundle on H, then f∗(c(E)) = c(f∗(E)).

(2) If E is a vector bundle on X, then there exists H = G/P as in § 5.1 and a G-equivariant
vector bundle E ′ on H such that E ≅ f∗(E ′).

(3) If
0→ E ′ → E → E ′′ → 0

is an exact sequence of vector bundles on X, then c(E) = c(E ′) ⋅ c(E ′′).

(4) If π∶ X̃ →X is a resolution of singularities of X, then c(π∗(E)) = π∗(c(E)).

Proof. We first prove (1). It suffices to prove the lemma for c2(E) as it is obvious for other
Chern classes by their definitions. We now note that since G and H are smooth and connected,
it follows from [50, Lemma 2.10] that H admits G-equivariant very ample line bundles. Hence,
we can find a very ample G-equivariant line bundle L generated by its global sections such
that E ′ ∶= E ⊗OH L is also generated by its global sections.

Let {s1, . . . , sr} be a k-basis of V ∶= H0(H,E ′). Then V becomes a rational represen-
tation of G, giving a group homomorphism ρ∶G → GLk(V ). Furthermore, the classifying
morphism h∶H → Grk(n,V ) given by the above basis of V is G-equivariant. It follows that
h ○ f ∶ X → Grk(n,V ) is the classifying morphism for the vector bundle f∗(E ′) with sections
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{f∗(s1), . . . , f∗(sr)}. The item (1) of the lemma is clear for h ○ f by the construction of
the Chern classes on X. Since E ′ = h∗(Qn,r), it follows from the theory of Chern classes
on smooth schemes that c2(E ′) = h∗(c2(Qn,r)). We now conclude the proof of (1) by using
Lemmas 6.8, 7.2 and 7.3.

For (2), we choose a globally generated line bundle L such that E ⊗OX L is also globally
generated. This gives rise to the classifying morphisms f1∶X → Grk(n, r) and f2∶X → Psk for
some r, s ≥ 1, where n = rank(E). We thus get a map f ∶X → Grk(n, r) × Psk, and it is clear
from various universal properties that E ≅ f∗(Qn,r ⊠OPs

k
(−1)).

The item (3) is obtained exactly as (2). Let Flk(n,n′′, r) be the (partial) flag variety
of quotients kr ↠ V ↠ W , where V and W are k-vector spaces of ranks n = rank(E) and
n′′ = rank(E ′′), respectively. Then Flk(n,n′′, r) is the projective homogeneous space for GLr,k.
This is a closed subvariety of Grk(n, r)×Grk(n′′, r) and the projections to these Grassmanian
varieties define a universal exact sequence of GLr,k-equivariant vector bundles

0→ S → p∗1(Qn,r)→ p∗2(Qn′′,r)→ 0.

We now choose a globally generated line bundle L such that E ⊗OX L is also globally
generated. Then E ′′ ⊗L is globally generated too. As in (2), this gives rise to the classifying
morphism f ∶Flk(n,n′′, r) × Psk such that

0→ S ⊠OPs
k
(−1)→ p∗1(Qn,r) ⊠OPs

k
(−1)→ p∗2(Qn′′,r) ⊠OPs

k
(−1)→ 0

pulls back to the exact sequence of (3) on X via f . We are now done by (1) and Proposition 7.1
because (3) is well-known for exact sequences of vector bundles on smooth schemes.

The item (4) is again clear for c0 and c1. For c2, we let f ∶X → Grk(n, r) be the morphism

obtained just above Definition 7.4. We let f̃ ∶ X̃ πÐ→X → Grk(n, r) be the composite map. We
then get

c2 ○ π∗(E) = c2 ○ π∗ ○ f∗(Qn,r) = c2 ○ f̃∗(Qn,r) =1 f̃∗ ○ c2(Qn,r)
=2 π∗ ○ f∗ ○ c2(Qn,r) =3 π∗ ○ c2 ○ f∗(Qn,r)
= π∗ ○ c2(E).

In the above, the equality =1 follows from the known functoriality of Chern classes on smooth
schemes, =2 follows from Lemma 6.9 and =3 follows from the item (1) of the lemma. This
finishes the proof of (4). �

7.4. The Chern classes on K0(X). Let X be as in the beginning of § 7. We let CH∗(X)×
denote the multiplicative group of units in CH∗(X) whose codimension zero part is equal to
1 (see [16, § 15.3]). An immediate consequence of Lemma 7.5 (3) is that the total Chern class
defines a group homomorphism

(7.3) cX ∶K0(X)→ CH∗(X)×,
where the left hand side uses the additive group structure of the ring K0(X).

Let K̃0(X) be the kernel of the the rank map rk∶K0(X) ↠ Z. There is a canonical map

det∶ K̃0(X) → Pic(X), induced by taking a vector bundle to its determinant. This map is

split by the natural map Pic(X) → K̃0(X) that sends a line bundle L to [L] − [OX]. Let
SK0(X) denote the kernel of det. It follows that there is a natural decomposition

(7.4) K0(X) = Z⊕Pic(X)⊕ SK0(X).
We let x ∈ Xreg be a closed point and let U = X ∖ {x}. Let j∶U ↪ X be the inclusion and

let j∗∶K0(X) → K0(U) be the induced map. It is then clear that the rank map of K0(X)
factors through K0(U). Furthermore, as x is a regular closed point of X and dim(X) ≥ 2,
one knows that the map Pic(X)→ Pic(U) is an isomorphism. Since j∗([O{x}]) = 0, it follows
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that the first and the second components of [O{x}] ∈ K0(X) under the decomposition (7.4)
are zero. We conclude that the cycle class map of (3.3) canonically factors through

(7.5) cycLX ∶CHL
0 (X)→ SK0(X).

We shall denote the image of the cycle class map cycLX by F 2K0(X). It also follows from

the above discussion and the definitions of Chern classes that ci(cycLX([x])) = 0 for i = 0,1.

In particular, we get cX ○ cycLX([x]) = c2 ○ cycLX([x]). This also implies that c2∶F 2K0(X) →
CHL

0 (X) is a group homomorphism.

Lemma 7.6. The composite map CHL
0 (X)

cycLXÐÐÐ→ F 2K0(X) −c2ÐÐ→ CHL
0 (X) is identity.

Proof. This is proven in [36] and [6, Proposition 2]. We reproduce the latter proof for sake of
completeness. It is enough to check that c2 ○ cycLX([x]) + [x] = 0 if x ∈ Xreg is a closed point.

Fix such a point and let j∶U =X ∖ {x}↪X be as above. Let j∗∶CHL
0 (X)→ CHL

0 (U) be the
restriction map of Proposition 3.8. Then it is clear from the construction of the Chern classes
that j∗ ○cX = cU ○j∗. It follows therefore from the above argument that j∗ ○c2 ○cycLX([x]) = 0.

We conclude from Proposition 3.8 that c2 ○ cycLX([x]) = m[x] for some m ∈ Z. It remains to
show that m = −1.

We let π∶ X̃ → X denote a resolution of singularities of X. This exists over all base fields
since dim(X) = 2. Since x ∈ Xreg ⊂ X̃, we see that π∗([x]) = [x] under the pull-back map

π∗∶CHL
0 (X) → CH2(X̃). Lemma 7.5 (4) easily implies that π∗ ○ c2 ○ cycLX([x]) = c2 ○ π∗ ○

cycLX([x]). This yields

c2 ○ cycX̃([x]) = c2 ○ cycX̃ ○ π∗([x]) =† c2 ○ π∗ ○ cycLX([x])
= π∗ ○ c2 ○ cycLX([x]) = π∗(m[x])
= mπ∗([x]) =m[x],

where =† follows from Proposition 3.9. We thus get c2 ○ cycX̃([x]) = m[x] on X̃. Since the
lemma is well known for non-singular surfaces, this forces m = −1. �

The above lemma leads us to the following final result of this section which generalizes
Levine’s result [35] to all infinite fields.

Theorem 7.7. Let X be an equidimensional reduced quasi-projective surface over an infinite
field. Then the cycle class map

cycLX ∶CHL
0 (X)→ F 2K0(X)

is an isomorphism.

Proof. The map cycLX is surjective by definition and is injective by Lemma 7.6. �

Combining Theorem 7.7, Corollary 3.1 and Lemmas 3.2, 3.4 and 3.5, we obtain the follow-
ing.

Corollary 7.8. Let X be an equidimensional reduced quasi-projective surface over an infinite
field. Then the cycle class map induces the isomorphisms

CHL
0 (X) ≅Ð→H2

zar(X,KM2,X) ≅Ð→H2
zar(X,K2,X).

8. The main results

In this section, we shall prove the main results of this paper. We shall first prove the Bloch-
Kato formula for the lci Chow group of singular surfaces and then use it prove Theorems 1.1
and 1.2.
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8.1. The Bloch-Kato formula for singular surface. Let k be any field. Let X be an
equidimensional reduced quasi-projective surface over k. In § 3.3, we constructed the maps

(8.1) CH0(X)
ρXÐ→H2

zar(X,KM2,X) λXÐÐ→H2
nis(X,KM2,X)

γXÐ→K0(X).
The following result extends Theorem 7.7 and Corollary 7.8 to all fields if we use the lci Chow
group.

Theorem 8.1. The cycle class map

cycX ∶CH0(X)→ F 2K0(X)
is an isomorphism. In particular, the map

ρX ∶CH0(X)→H2
zar(X,KM2,X)

is an isomorphism. If Xreg is smooth over k (e.g., if k is perfect), then λX ○ ρX is also an
isomorphism.

Proof. In view of Theorem 3.6, we only need to show that cycX is injective to prove the
theorem. If k is finite, we can use Proposition 2.7, Lemma 3.10 and the standard pro-`
extension trick to reduce our problem to the case of infinite fields. In the latter case, the
desired injectivity follows directly from Corollary 3.1 and Theorem 7.7. �

8.2. The Bloch-Kato formula for 0-cycles with modulus. We again assume k to be
an arbitrary field. Let X be a smooth quasi-projective surface over k and let D ⊂ X be an
effective Cartier divisor. Let cycX ∣D and ρX ∣D be the cycle class and the Bloch-Kato maps

constructed in § 3.1 and § 3.4. We let F 2K0(X,D) denote the image of the map cycX ∣D.
Consider the following diagram (see § 3.3 and § 3.4).

(8.2) CH0(X ∣D)
ρX∣D
// H2

zar(X,KM2,(X,D))
λ(X,D)
//

��

H2
nis(X,KM2,(X,D))

γ(X,d)

''��

H2
zar(X,K2,(X,D))

λ(X,D)
// H2

nis(X,K2,(X,D))
γ(X,d)
// F 2K0(X,D),

where the vertical arrows are the canonical maps from the cohomologies of Milnor to Quillen
K-theory sheaves. The following result proves Theorem 1.1.

Theorem 8.2. All of the maps in (8.2) are isomorphisms.

Proof. In view of Lemma 3.2 and Theorem 3.7, the proof of the theorem reduces to show-
ing that cycX ∣D is injective. Using Proposition 2.9, Corollary 3.11 and the standard pro-`
extension trick, we can reduce our problem to showing the injectivity of cycX ∣D when k is
infinite.

We now assume k is infinite and consider the diagram

(8.3) 0 // CH0(X ∣D)
p+∗
//

cyc(SX,X−)
��

CH0(SX)
ι∗− //

cycSX
��

CH0(X) //

cycX
��

0

0 // K0(SX ,X−)
p+∗
//

ι∗+
��

K0(SX)
ι∗− //

ι∗+
��

K0(X)

ι∗D
��

// 0

K0(X,D)
p+∗
// K0(X)

ι∗D // K0(D).
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The top row is exact by Theorem 2.11. The middle row is split exact and the bottom row
is exact. It follows by applying Theorem 8.1 to SX that cycSX is injective. It follows that
cyc(SX ,X−) is also injective. The bottom left vertical arrow is an isomorphism by [2, Propo-
sition 13.2] because k is infinite. Since cycX ∣D = ι∗+ ○ cyc(SX ,X−) by (3.15), we conclude that
cycX ∣D is injective. �

For a connected projective variety X over a field and an effective Cartier divisor D ⊂X, let
CH0(X ∣D)0 denote the kernel of the degree map deg∶CH0(X ∣D) → Z. Theorem 8.2 has the
following important consequence on the finiteness of CH0(X ∣D)0. We shall generalize this to
higher dimensions in Corollary 8.7.

Corollary 8.3. Let X be a smooth and connected projective surface over a finite field and let
D ⊂X be an effective Cartier divisor. Then CH0(X ∣D)0 is a finite abelian group.

Proof. Let H2
nis(X,KM2,(X,D))

0 be the image of CH0(X ∣D)0 under the Bloch-Kato cycle class

map ρnis
X ∣D = λ(X,D) ○ ρX ∣D ∶CH0(X ∣D) → H2

nis(X,KM2,(X,D)). The group H2
nis(X,KM2,(X,D))

0 is

finite by the Kato-Saito class field theory (see [25, Theorem 9.1] or [21, Theorem 12.8]). The
corollary now follows by Theorem 8.2. �

8.3. The theorem of Kerz-Saito. Let k be a finite field of characteristic p > 0. Let U
be a smooth and connected quasi-projective scheme over k of dimension d ≥ 1. Choose a
compactification U ⊂ X with X normal and proper over k such that C = (X ∖ U)red is the
support of an effective Cartier divisor on X. We let

(8.4) C(U) = lim←Ð
D

CH0(X ∣D),

where the limit is taken over all effective Cartier divisors onX supported on C. We endow each
CH0(X ∣D) with the discrete topology and C(U) with the inverse limit topology. It is known
(e.g., see [29, Lemma 3.1]) that C(U) is independent of the choice of the compactification
X. We have the degree map deg∶C(U) → Z which takes any 0-cycle to its degree. We let
C(U)0 = Ker(deg).

Let πab
1 (U) denote the abelianized étale fundamental group of U . We let πab

1 (U)0 =
ker(πab

1 (U) → Gal(k/k)). If x ∈ U is a closed point, then the inclusion ιx∶Spec (k(x)) ↪ U
defines the natural map (ιx)∗∶π1(Spec (k(x))) → πab

1 (U). Letting ρU(x) = (ιx)∗(Fx) (with
Fx being the Frobenius element of the Galois group of k(x)) and extending linearly, we get
a group homomorphism ρU ∶Z0(U) → πab

1 (U). It follows from [29, Proposition 3.2] that this
map induces a reciprocity map ρU ∶C(U)→ πab

1 (U).
If D ⊂X is an effective Cartier divisor supported on C, we let

(8.5) πab
1 (X,D) = Homcont(filDH

1(U,Q/Z),Q/Z),

where filDH
1(U,Q/Z) is the group of continuous characters χ∶πab

1 (U) → Q/Z such that for
any integral curve Z ⊂ U , the restriction χ∣Z ∶πab

1 (Z) → Q/Z satisfies the following inequality

of Cartier divisors on Z
N

:

∑
y∈ψ−1Z (C)

arty(χ∣Z)[y] ≤ ψ∗Z(D).

Here, ψZ ∶Z
N →X is the projection map from the normalization of the closure of Z in X and

arty(χ∣Z) is the Artin conductor of the restriction of χ to Gal(k(Z)y), where k(Z)y is the
completion of k(Z) at y (see [45]).
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It is easy to check that there is an exact sequence

(8.6) ⊕
Z⊂U

( ⊕
y∈∣ψ−1Z (D)∣

G
ny
k(Z)y

)→ πab
1 (U)→ πab

1 (X,D)→ 0,

where the sum on the left runs over all integral curves Z ⊂ U . Here, ψ∗Z(D) = ∑y∈∣ψ−1Z (D)∣ ny[y]
and G

ny
k(Z)y

is the higher ramification subgroup (for the upper numbering) of Gal(k(Z)y).
The first map in (8.6) is the composite

G
ny
k(Z)y

→ Gal(k(ZN))→ π1(ZN)
(ψZ)∗ÐÐÐ→ πab

1 (U).

It follows from (8.5) that πab
1 (X,D) is the unique quotient of πab

1 (U) which classifies all
finite abelian Galois covers of U whose ramification away from U is bounded by the divisor D.
It follows [14, Proposition 3.9] (see also [29, Proposition 2.10]) that the limit of these quotient
maps induces an isomorphism

(8.7) πab
1 (U) ≅Ð→ lim←Ð

D

πab
1 (X,D).

We let ρ(X,D) denote the composition Z0(U)
ρUÐ→ πab

1 (U)↠ πab
1 (X,D). It follows from the

classical ramified class field theory for curves that this descends to a map ρ(X,D)∶CH0(X ∣D)→
πab

1 (X,D), compatible with ρU . Furthermore, ρU = lim←Ð
D

ρ(X,D).

We let πab
1 (X,D)0 denote the kernel of the map πab

1 (X,D) → Gal(k/k)) ≅ Ẑ. It follows
from [28, Corollary 1.2] that πab

1 (X,D)0 is a finite abelian group. The reciprocity map ρ(X,D)
restricts to a continuous homomorphism of discrete abelian groups ρ0

(X,D)∶CH0(X ∣D)0 →
πab

1 (X,D)0. Moreover, ρ0
U = lim←Ð

D

ρ0
(X,D).

Using (8.7) and the finiteness of πab
1 (X,D)0, we get a commutative diagram of exact se-

quences of topological abelian groups and continuous group homomorphisms

(8.8) 0 // C(U)0 //

ρ0U
��

C(U)
deg
//

ρU
��

Z� _

��

0 // πab
1 (U)0 // πab

1 (U) // Ẑ,

where the groups on the bottom have their canonical pro-finite topology and the right-most
vertical arrow is the pro-finite completion morphism. The horizontal arrows on the right are
surjective if U is geometrically connected over k.

An easy consequence of (8.4), (8.6) and (8.7) is the following (see [29, Corollary 3.4]).

Lemma 8.4. The map ρ0
U is an isomorphism of topological abelian groups if and only if

ρ0
(X,D)∶CH0(X ∣D)0 → πab

1 (X,D)0 is an isomorphism of finite abelian groups for all effective

Cartier divisors D ⊂X which are supported on C.

The following result is due to Kerz and Saito [29] when p ≠ 2. We shall prove this using
Theorem 8.2 and the Kato-Saito class field theory.

Theorem 8.5. ρ0
U is an isomorphism of topological abelian groups.

Proof. By using Wiesend’s trick (see [29, Lemma 3.6]), we can replace the chosen compacti-
fication X by any of its alterations in the sense of de Jong. We can therefore assume that X
is smooth projective and C =X ∖U is a simple normal crossing divisor on X.
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Suppose now that d ≥ 3. By Lemma 8.4, it suffices to show that ρ0
(X,D) is an isomorphism

for all D. Since πab
1 (X,D)0 is finite by [28, Corollary 1.2], it follows immediately from the

Chebotarev-Lang density theorem (e.g., see [45, Theorem 7] or [49, Theorem 5.8.16]) that
ρ0
(X,D) is surjective. The heart of the proof therefore is to show that ρ(X,D)∶CH0(X ∣D) →
πab

1 (X,D) is injective.
Let α ∈ CH0(X ∣D) be a 0-cycle such that ρ(X,D)(α) = 0. By a generalized version of

Poonen’s Bertini theorem over finite fields (see [18, Corollary 5.4]), we can find a very ample
line bundle L on X and a section s ∈ H0(X,L) such that its zero locus Y = Z(s) ⊂ X is
smooth, Y ×X C is a simple normal crossing divisor on Y and ∣α∣ ⊂ Y . Let ι∶Y ↪ X be the
inclusion and let E = Y ×X D. By the choice of Y , there exists α′ ∈ CH0(Y ∣E) such that
α = ι∗(α′).

We now have the diagram:

(8.9) CH0(Y ∣E)
ρ(Y,E)
//

ι∗
��

πab
1 (Y,E)

ι∗
��

CH0(X ∣D)
ρ(X,D)
// πab

1 (X,D),

whose commutativity is immediate from the definition of the reciprocity maps.
By [28, Theorem 1.1], we can choose L ample enough (depending on D) so that the right

vertical arrow in (8.9) is an isomorphism. It follows that ρ(Y,E)(α′) = 0. We have therefore
inductively reduced the proof of the theorem to the case when d ≤ 2.

We shall now show that ρ0
U is an isomorphism when d ≤ 2. Since we have already seen that

the map ρ0
(X,D)∶CH0(X ∣D)0 → πab

1 (X,D)0 is surjective for all D supported on C and since

CH0(X ∣D)0 is finite by Corollary 8.3 (note that the d = 1 case of this finiteness is classical),
it follows that the map ρ0

U ∶C(U)0 → πab
1 (U)0 is surjective. It suffices therefore to show that

the map ρU ∶C(U)→ πab
1 (U) is injective.

Let ρnis
X ∣D = λ(X,D) ○ρX ∣D ∶CH0(X ∣D)→Hd

nis(X,KMd,(X,D)) be the cycle class map from (8.2)

for any D. Let Hd
nis(X,KMd,(X,D))

0 be the image of CH0(X ∣D)0 under this map (see the proof

of Corollary 8.3). It is clear from the definition of ρnis
X ∣D (see § 3.4) that it is compatible with

the inclusions of effective Cartier divisors D ⊂D′. We let ρ̃U ∶= lim←Ð
D

ρnis
X ∣D.

We now consider our key diagram

(8.10) C(U)

ρU
%%

ρ̃U
// lim←Ð
D

Hd
nis(X,KMd,(X,D))

ρ̂U
��

πab
1 (U),

where ρ̂U is the reciprocity map of Kato-Saito [25, § 3]. The map ρ̃U is the inverse limit of the
cycle class maps ρnis

X ∣D from (8.2), taken over effective Cartier divisors D ⊂ X supported on

C. It is immediate from the construction of the three maps in (8.10) and by [25, Proposition
3.8] that this diagram is commutative.

Since Hd
nis(X,KMd,(X,D))

0 is finite for all effective Cartier divisors D ⊂ X supported on C,

it follows that the canonical map lim←Ð
D

Hd
nis(X,KMd,(X,D)) → lim←Ð

D,m

Hd
nis(X,KMd,(X,D)) ⊗ Z/m is
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injective. On the other hand, the reciprocity map ρ̂U has a factorization

lim←Ð
D

Hd
nis(X,KMd,(X,D))↪ lim←Ð

D,m

Hd
nis(X,KMd,(X,D))⊗Z/m

ρ̂UÐ→ πab
1 (U).

The latter arrow is an isomorphism by [25, Theorem 9.1 (3)]. It follows that the vertical
arrow on the right in (8.10) is injective. Since the horizontal arrow on the top in (8.10) is
an isomorphism by Theorem 8.2 (see [31, Lemma 3.1] when d = 1) and a limit argument, we
conclude that ρU is injective. This finishes the proof. �

Corollary 8.6. The reciprocity maps {ρ(X,D)}∣D∣⊂C induce an isomorphism of pro-finite topo-
logical groups

ρU ∶ lim←Ð
D,m

CH0(X ∣D)⊗Z/m ≅Ð→ πab
1 (U).

The following result provides an independent and a K-theoretic proof of a finiteness result
of Deligne (see [14, Theorem 8.1]). This was also obtained independently by Kerz-Saito [29]
in characteristic ≠ 2.

Corollary 8.7. Let X be a normal and connected projective variety over a finite field. Let
D ⊂X be an effective Cartier divisor such that X ∖D is regular. Then CH0(X ∣D)0 is a finite
abelian group.

Proof. Combine Lemma 8.4, Theorem 8.5 and [28, Corollary 1.2]. �

References

[1] A. Altman and S. Kleiman, Bertini theorems for hypersurface sections containing a subscheme, Comm.
Algebra, 7, (1979), pp. 775–790.

[2] F. Binda and A. Krishna, Zero cycles with modulus and zero cycles on singular varieties, Comp. Math.,
154, (2018), pp. 120–187.

[3] F. Binda and A. Krishna, Rigidity for relative 0-cycles, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), to appear,
arXiv:1802.00165v3 [math.AG], (2020).

[4] F. Binda and A. Krishna, The Levine-Weibel Chow group of normal crossing varieties, In preparation,
(2019).

[5] F. Binda and S. Saito, Relative cycles with moduli and regulator maps, J. Math. Inst. Jussieu, 18, (2019),
pp. 1233–1293.

[6] J. Biswas and V. Srinivas, The Chow ring of a singular surface, Proc. Indian Acad. Sci. Math. Sci., 3,
(1998), pp. 227–249.

[7] S. Bloch, K2 and algebraic cycles, Ann. Math., 99, (1974), pp. 349–379.
[8] S. Bloch, Algebraic Cycles and Higher K-theory , Adv. Math., 61, (1986), pp. 267–304.
[9] S. Bloch, The moving lemma for higher chow groups, J. Algebraic Geom., 3, (1994), pp. 537–568.

[10] A. Borel, Linear Algebraic Groups, 2nd enl. ed., Graduate texts in Mathematics, 126, Springer-Verlag,
(1997).

[11] A. Collino, Quillen’s K-theory and algebraic cycles on almost non-singular varieties, Illinois J. Math., 25,
(1981), pp. 654–666.

[12] R. Dennis and M. Stein, K2 of radicals and semilocal rings revisited, LNM Series, 342, Springer-Verlag,
Berlin, (1973), pp. 281–303.

[13] V. Drinfeld, On a conjecture of Deligne, Mosc. Math. J., 12, (2012), pp. 515–542.
[14] H. Esnault and M. Kerz, A finiteness theorem for Galois representations of function field over finite fields

(after Deligne), Acta Math. Vietnam., 37, (2012), pp. 531–562.
[15] H. Esnault, V. Srinivas and E. Viehweg, The universal regular quotient of the Chow group of points on

projective varieties, Invent. math., 135, (1999), pp. 595–664.
[16] W. Fulton, Rational equivalence on singular varieties, Publications mathématiques de l’IHES, 45, (1975),
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