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8.1 Introduction

Let U be a smooth algebraic variety over C and let Uan be the analytic site
on U(C), the associated analytic space. An important object to study in
algebraic geometry is the regulator map from the higher Chow group ([7])
to the singular cohomology of U (cf. [18])

regp,q
U : CHq(U, 2q − p)⊗Q → (2π

√
−1)qW2qH

p(Uan, Q) ∩ F qHp(Uan, C),

where F ∗ and W∗ denote the Hodge and the weight filtrations of the mixed
Hodge structure on the singular cohomology defined by Deligne [8]. For the
special case p = q, we get

regq
U : CHq(U, q)⊗Q → Hq(Uan, Q(q))∩F qHq(Uan, C). (Q(q) = (2π

√
−1)qQ)

Beilinson’s Hodge conjecture claims the surjectivity of regq
U (cf. [11, Con-

jecture 8.5]). In [4] we studied the problem in case U is an open complete
intersection, namely U is the complement in a smooth complete intersec-
tion X of a simple normal crossing divisor Z = ∪s

j=1Zj on X such that
Zj ⊂ X is a smooth hypersurface section. One of the main results affirms
that regq

U is surjective if the degree of the defining equations of X and
Zj are sufficiently large and if U is general in an appropriate sense. In-
deed, under the assumption we have shown a stronger assertion that regq

U
is surjective even restricted on the subgroup CHq(U, q)dec of decomposable
elements in CHq(U, q), which is not true in general. In order to explain this,
let KM

q (O(U)) be the Milnor K-group of the ring O(U) = Γ(U,OZar) (see
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§8.2.3 for its definition). We have the natural map

σU : KM
q (O(U)) → CHq(U, q)

induced by cup product and the natural isomorphism

KM
1 (O(U)) = Γ(U,O∗Zar)

∼=−→ CH1(U, 1)

and CHq(U, q)dec is defined to be its image. Note that we have the following
formula for the value of regq

U on decomposable elements;

regq
U ({g1, . . . , gq}) = [g1] ∪ · · · ∪ [gq] ∈ Hq(Uan, Q(q))

= dlog g1 ∧ · · · ∧ dlog gq ∈ H0(X, Ωq
X/C(log Z)) = F qHq(Uan,C)

where gj ∈ O(U)∗ for 1 ≤ j ≤ q and [gj ] ∈ H1(Uan, Q(1)) is the image
of gj under the map O(U)∗ → H1(Uan, Z(1)) induced by the exponential
sequence

0 → Z(1) → OUan
exp
−−→ O∗Uan → 0.

In what follows we are mainly concerned with the map

regq
U : KM

q (O(U))⊗Q → Hq(Uan, Q(q)) ∩ F qHq(Uan, C) (8.1)

which is the composition of the regulator map and σU .
Now we consider the following variant of the above problem. Assume that

we are given a smooth algebraic variety S over C and a smooth surjective
morphism π : U → S over C. Let πan

∗ : Uan → San be the associated
morphism of sites. Assume that the fibers of π are affine of dimension m.
Then Rbπan

∗ Q = 0 for b > m and we have the natural map

α : Hm+q(Uan, Q(m + q)) → Hq(San, Rmπan
∗ Q(m + q))

which is an edge homomorphism of the Leray spectral sequence

Ea,b
2 = Ha(San, Rbπan

∗ Q(m + q)) ⇒ Ha+b(Uan, Q(m + q)).

Note that Ha(San, Rbπan
∗ Q(m+q)) carries in a canonical way a mixed Hodge

structure and α is a morphism of mixed Hodge structures ([17] and [1]). Let

regm+q
U/S : KM

m+q(O(U))⊗Q → Hq(San, Rmπan
∗ Q(m + q)) ∩ Fm+q (8.2)

be the composition of regm+q
U and α where F t ⊂ Hq(San, Rmπan

∗ C) denotes
the Hodge filtration. In this paper we study regm+q

U/S in case U/S is a fam-
ily of open complete intersections, namely in case that the fibers of π are
open complete intersections. Roughly speaking, our main results affirm that
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regm+q
U/S is surjective for q = 0, 1 if π : U → S is the pullback of the univer-

sal family of open complete intersection of sufficiently high degree via a
dominant smooth morphism from S to the moduli space. Let di, ej ≥ 0
(1 ≤ i ≤ r, 1 ≤ j ≤ s) be fixed integers. Let M = M(d1, · · · , dr; e1, · · · , es)
be the moduli space of the sets (X1,o, . . . , Xr,o;Y1,o . . . , Ys,o) of smooth hy-
persurfaces in Pn of degree d1, · · · , dr; e1, · · · , es respectively which intersect
transversally with each other. Let f : S → M be a morphism of finite type
with S = Spec R nonsingular affine and let Xi → S and Yj → S be the
pullback of the universal families of hypersurfaces over M. Put

X = X1 ∩ · · · ∩Xr and U = X\ ∪
1≤j≤s

X ∩ Yj

with the natural morphisms π : U → S. Put

d =
r∑

i=1

di, δmin = min
1≤i≤r
1≤j≤s

{di, ej}, dmax = max
1≤i≤r

{di}.

Theorem 8.1.1. (see §8.3) Assume f is dominant smooth.

(1) Assuming δmin(n− r − 1) + d ≥ n + 1,

regm
U/S : KM

m (O(U))⊗Q → H0(San, Rmπan
∗ QU (m + 1))

is surjective.
(ii) Assuming

δmin(n− r − 1) + d ≥ n + 2, δmin(n− r) + d ≥ n + 1 + dmax, δmin ≥ 2,

regm+1
U/S : KM

m+1(O(U))⊗Q → H1(San, Rmπan
∗ QU (m + 1)) ∩ Fm+1

is surjective.

The method of the study is the infinitesimal method in Hodge theory and
is a natural generalization of that in [3] and [4]. To explain this, we now
work over an arbitrary algebraically field k of characteristic zero which will
be fixed in the whole paper. Let f : S →M and π : U → S be defined over
k as above. Following Katz and Oda ([12]), we have the algebraic Gauss
Manin connection on the de Rham cohomology (see §8.2.2)

∇ : H•
dR(U/S) −→ H•

dR(U/S)⊗R Ω1
R/k. (8.3)

The map ∇ is extended to H•
dR(U/S)⊗R Ωq

R/k −→ H•
dR(U/S) ⊗R Ωq+1

R/k by
imposing the Leibniz rule

∇(e⊗ ω) = ∇(e) ∧ ω + e⊗ dω (8.4)
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and it induces the complex

Grp+1
F Hm

dR(U/S)⊗Ωq−1
R/k −→ Grp

F Hm
dR(U/S)⊗Ωq

R/k −→ Grp−1
F Hm

dR(U/S)⊗Ωq+1
R/k,

where m = dim(U/S) and F • denotes the Hodge filtration:

F pHq
dR(U/S) = Hq

Zar(X, Ω≥p
X/S(log Z)) ⊂ Hq

dR(U/S).

The cohomology at the middle term of the complex has been studied in
[3] when 1 ≤ p ≤ m− 1.

In the study of the variant of Beilinson’s Hodge conjecture, a crucial role
will be played by the kernel of the following map:

∇q : FmHm
dR(U/S)⊗ Ωq

R/k −→ Grm−1
F HdR(U/S)⊗ Ωq+1

R/k (q ≥ 0).

which arises as the special case p = m in the above complex. The key result
is, roughly speaking, that when f : S → M factors as S

g−→ T
i−→ M

where g is smooth and i is a regular immersion of small codimension, then
the kernel of ∇q is generated by the image of

dlog : KM
m+q(O(U)) −→ FmHm

dR(U/S)⊗ Ωq
R/k

(see §8.2.3 for its definition). In case k = C it implies the surjectivity of
regm+q

U/S (8.2) for q = 0 and 1 by using the known surjectivity of the map
(8.1) for U = S.

The main tool for the proof of the above key result is the theory of gener-
alized Jacobian rings developed by the authors in [3]. It describe the Hodge
cohomology groups of U and the Gauss-Manin connection ∇q in terms of
multiplication of the rings, so that the various problems can be translated
into algebraic computations in Jacobian rings. We show several compu-
tational results on Jacobian rings in §8.4 and §8.5. The basic techniques
for this were developed by M.Green, C.Voisin and Nori. We note that a
key to the computational results is Proposition 8.5.5, which is proved in [3]
as a generalization of Nori’s connectivity theorem ([14]) to open complete
intersections.

Notation and Conventions

For an abelian group M , we write MQ = M ⊗Z Q.

8.2 The Main Theorem

Throughout the paper, we work over an algebraically closed field k of char-
acteristic zero.
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8.2.1 Setup

We fix integers n ≥ 2, r, s ≥ 1, n ≥ r and d1, · · · , dr, e1, · · · , es ≥ 1. We put

d =
r∑

i=1

di, e =
s∑

j=1

ej , δmin = min
1≤i≤r
1≤j≤s

{di, ej},

dmax = max
1≤i≤r

{di}, emax = max
1≤j≤s

{ej}.

Let P = k[X0, · · · , Xn] be the polynomial ring over k and P d denote
the subspace of the homogeneous polynomials of degree d. Then the space
P d−{0} parametrizes hypersurfaces in Pn of degree d with a chosen defining
equation. Let

M̃ = M̃(d1, · · · , dr; e1, · · · , es) ⊂
r∏

i=1

(P di − {0})×
s∏

j=1

(P ej − {0})

be the Zariski open subset such that the associated divisor X1,o+· · ·+Xr,o+
Y1,o + · · · + Ys,o to any point o ∈ M̃ is a simple normal crossing divisor on
Pn, namely all Xi,o and Yj,o are nonsingular and they intersect transversally
with each other. Put Xo = X1,o ∩ · · · ∩Xr,o and Zj,o = Xo ∩ Yj,o. Then Xo

is a nonsingular complete intersection of dimension n− r, and
∑s

j=1 Zj,o is
a simple normal crossing divisor on Xo.

Let f : S → M̃ be a morphism of finite type with S = Spec R nonsingular
affine. We write PR = P ⊗k R and P !

R = P ! ⊗k R. Let

Fi ∈ P di
R (1 ≤ i ≤ r) and Gj ∈ P

ej

R (1 ≤ j ≤ s) (8.5)

be the pullback of the universal polynomials over the moduli space. We
denote by X, Xi, Yj and Zj the associated families of the complete intersec-
tions Xo, Xi,o, Yj,o and divisors Zj,o respectively. Thus we get the smooth
morphisms:

πX : X −→ S, πXi : Xi −→ S, πYj : Yj −→ S, πZj : Zj −→ S. (8.6)

We write

X∗ =
r∑

i=1

Xi, Y∗ =
s∑

j=1

Yj , Z∗ =
s∑

j=1

Zj .

Put U = X −Z∗ and we get π : U → S, a family of open complete intersec-
tions.
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8.2.2 Gauss-Manin connection

For an integer q ≥ 0 we have the Gauss-Manin connection

∇ : H•
dR(U/S) −→ H•

dR(U/S)⊗ Ω1
R/k. (8.7)

Here H•
dR(U/S) is the de Rham cohomology defined as

Hk
dR(U/S) = Hk

Zar(X, Ω•
X/S(log Z∗)) = Γ (S, RkπX∗Ω•

X/S(log Z∗)),

where the second equality follows from the assumption that S is affine. It
is an integrable connection and satisfies the Griffiths transversality:

∇(F pH•
dR(U/S)) ⊂ F p−1H•

dR(U/S)⊗ Ω1
R/k (8.8)

with respect to the Hodge filtration

F pH•
dR(U/S) := H•

Zar(X, Ω≥p
X/S(log Z∗)). (8.9)

We are interested in Hn−r
dR (U/S) (Since X is a complete intersection, the

cohomology in other degrees is not interesting). We denote by

∇q : Fn−rHn−r
dR (U/S)⊗ Ωq

R/k −→ Fn−r−1Hn−r
dR (U/S)⊗ Ωq+1

R/k (8.10)

the map given by (8.4). Noting

F pHn−r
dR (U/S)/F p+1Hn−r

dR (U/S) / Hn−r−p(X, Ωp
X/S(log Z∗)),

(8.8) implies that ∇q induces

∇q : H0(X, Ωn−r
X/S(log Z∗))⊗ Ωq

R/k −→ H1(X, Ωn−r−1
X/S (log Z∗))⊗ Ωq+1

R/k.

(8.11)
Our main theorem gives an explicit description of Ker(∇q) under suitable
conditions. For its statement we need more notations.

8.2.3 Milnor K-theory

We denote by KM
! (A) the Milnor K-group of a commutative ring A ([13, 19]).

By definition, it is the quotient of A∗⊗! by the subgroup generated by

a1 ⊗ · · ·⊗ a!, (ai + aj = 0 or 1 for some i 0= j).

The element represented by a1⊗ · · ·⊗a! is called the Steinberg symbol, and
written by {a1, · · · , a!}. We have

{a1, · · · , ai, · · · , aj , · · · , a!} = −{a1, · · · , aj , · · · , ai, · · · , a!} for i 0= j

following from the expansion {ab,−ab} = {a, b}+{b, a}+{a,−a}+{b,−b}.
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Let O(U) = Γ(UZar,OU ) be the ring of regular functions on U . We have
the dlog map

dlog : KM
! (O(U)) −→ H0(Ω!

X/k(log Z∗)), {h1, · · · , h!} 1−→
dh1

h1
∧ · · ·∧ dh!

h!
(8.12)

Assuming ' ≥ n− r = dim(X/S), there is the unique map

υX : Ω!
X/k(log Z∗) −→ Ωn−r

X/S(log Z∗)⊗ Ω!−n+r
S/k . (8.13)

such that its composition with Ωn−r
X/k(log Z∗)⊗Ω!−n+r

S/k → Ω!
X/k(log Z∗) is the

identity map Ωn−r
X/k(log Z∗)⊗ Ω!−n+r

S/k → Ωn−r
X/S(log Z∗)⊗ Ω!−n+r

S/k . Let

ψM
! : KM

! (O(U)) −→ H0(Ωn−r
X/S(log Z∗))⊗Ω!−n+r

R/k = Fn−rHn−r
dR (U/S)⊗Ω!−n+r

R/k .

be the composition of υX and dlog. Its image is contained in Ker(∇!−n+r)
since it lies in the image of H0(Ω!

X/k(log Z∗)). Thus we get the map

ψM
! : KM

! (O(U)) −→ Ker(∇!−n+r) (8.14)

We will also consider the induced maps

KM
!+n−r(O(U))⊗Z Ωq−!,d=0

R/k −→ Ker(∇q); ξ ⊗ ω 1→ ψM
!+n−r(ξ) ∧ ω,

KM
!+n−r(O(U))⊗Z Ωq−!

R/k −→ Ker(∇q); ξ ⊗ ω 1→ ψM
!+n−r(ξ) ∧ ω,

where Ω•,d=0
R/k = Ker(d : Ω•

R/k → Ω•
R/k) is the module of closed forms.

Now we construct some special elements in KM
! (O(U)). Let ' ≥ 1 be

an integer. We define
!∧
(Gj) as the Q-vector space spanned by symbols vJ

indexed by multi-indices J = (j0, · · · , j!) (1 ≤ jk ≤ s) with relations

vj0···jp···jq ···j! = −vj0···jq ···jp···j! for 0 ≤ p 0= q ≤ ' (8.15)

and
!+1∑

k=0

(−1)kejkvj0···bjk···j!+1
= 0. (8.16)

We formally put
0∧
(Gj) = Q. By convention,

!∧
(Gj) = 0 if s = 0 or 1. We

easily see

dimQ
!∧

(Gj) =
(

s− 1
'

)
with basis {v1j1···j! ; 2 ≤ j1 < · · · < j! ≤ s},

and
!∧
(Gj) = 0 if ' ≥ s. Let Gei

j /G
ej

i |X be the restriction on X of a rational
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function Gei
j /G

ej

i on Pn
R = Proj(R[X0, . . . , Xn]). Then we have a natural

homomorphism

sym! :
!∧

(Gj) −→ KM
! (O(U))Q. (8.17)

vJ 1→ gJ := e−!+1
j0

{
G

ej0
j1

/G
ej1
j0

|X , · · · , G
ej0
j!

/G
ej!
j0

|X
}

(J = (j0, . . . , j!))

Putting gj = Gj/X
ej

0 |X , a calculation shows

dlog(gJ) =
!∑

ν=0

(−1)νejν

dgj0

gj0
∧ · · ·∧ d̂gjν

gjν

∧ · · ·∧ dgj!

gj!

on {X0 0= 0}. (8.18)

The maps ψM
• and sym! induce a homomorphism

Ψq
U/S :

q⊕

!=0

!+n−r∧
(Gj)⊗Q Ωq−!

R/k −→ Ker(∇q); gI ⊗ η 1→ ψM
! (gI)

∧
η.

(8.19)
The main theorem affirms that this map is an isomorphism under suitable
conditions. In order to give the precise statement we need to introduce some
notations.

8.2.4 Statement of the Main Theorem

Let TR/k be the derivation module of R over k which is the dual of Ω1
R/k.

A derivation θ ∈ TR/k acts on PR = P ⊗k R = R[X0, . . . , Xn] by idP ⊗
θ. Introducing indeterminants µ1, . . . , µr,λ1, . . . ,λs, we define an R-linear
homomorphism

Θ = Θ(Fi,Gj) : TR/k −→ A1(0), θ 1→
r∑

i=1

θ(Fi)µi +
s∑

j=1

θ(Gj)λj . (8.20)

where

A1(0) =
r⊕

i=1

P di
R µi

⊕ s⊕

j=1

P
ej

R λj (P !
R = P ! ⊗k R) (8.21)

We note that Θ is surjective (resp. an isomorphism) if f : S = Spec(R) → M̃
is étale (resp. smooth). Put

W = Im(Θ) ⊂ A1(0).

It is a finitely generated R-module.



Beilinson’s Hodge Conjecture with Coefficients 319

For an ideal I ⊂ PR we denote by A1(0)/I the quotient of A1(0) by the
submodule

r⊕

i=1

(I ∩ P di
R )µi

⊕ s⊕

j=1

(I ∩ P
ej

R )λj .

For a variety V over k we denote by |V | the set of the closed points of V . Let
α ∈ |Pn

R| and x ∈ S = Spec(R) be its image with κ(x), its residue field. Let
mα,x ⊂ Px := P ⊗R κ(x) be the homogeneous ideal defining α in Proj(Px)
and let mα ⊂ PR be the inverse image of mα,x. The evaluation at α induces
an isomorphism (note κ(x) = k)

vα : A1(0)/mα /
r⊕

i=1

k · µi

⊕ s⊕

j=1

k · λj . (8.22)

We now introduce the conditions for Ψq
U/S to be an isomorphism. We fix an

integer q ≥ 0. Consider the following four conditions.

(I) Both W and A1(0)/W are locally free R-modules. We put

c = rankR(A1(0)/W ).

(II) W has no base points: W → A1(0)/mα is surjective for ∀α ∈ |Pn
R|.

(III)q One of the following conditions holds:

(i) q = 0 and δmin(n− r − 1) + d− n− 1 ≥ c,
(ii) q = 1, δmin(n − r − 1) + d − n − 1 ≥ c + 1 and δmin(n − r) + d −

n− 1− dmax ≥ c,
(iii) δmin(n− 1)− n− 1 ≥ c + q.

(IV)q For any x ∈ |S| and any 1 ≤ j1 < · · · < jn−r ≤ s, there exist q + 1 points
α0, · · · ,αq ∈ |X ∩ Yj1 ∩ · · · ∩ Yjn−r | lying over x such that the map

W → A1(0)/(J ′ + mα0)
⊕

· · ·
⊕

A1(0)/(J ′ + mαq)

is surjective. Here J ′ ⊂ A1(0) denotes the R-submodule generated by the
elements

L · (
r∑

i=1

∂Fi

∂Xk
µi +

s∑

j=1

∂Gj

∂Xν
λj) with 0 ≤ ν ≤ n and L ∈ P 1

R.

Remark 8.2.1. (I) holds if f factors as S
g
−→ T

i−→ M̃ where g is smooth
and i is a regular immersion. In this case c = codimfM (T ).

Remark 8.2.2. In view of (8.22), (II) holds if Fiµi, Gjλj ∈ W for ∀i, j
and J ′ ⊂ W .
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Remark 8.2.3. (IV)q always holds if s ≤ n− r +1. Indeed we will see (cf.
8.5.3) that for any 1 ≤ j1 < · · · < jn−r ≤ s and any α ∈ |X ∩ Yj1 ∩ · · · ∩
Yjn−r |, A1(0)/(J ′ + mα) is a k-vector space of dimension s− 1− (n− r) and
A1(0)/(J ′ + mα) = 0 if s− 1 ≤ n− r.

Remark 8.2.4. (IV)q holds if W = A1(0) and δmin ≥ q (cf. §8.2.1). In
this case the natural map

A1(0) −→
q⊕

i=0

A1(0)/mαi (8.23)

is surjective for arbitrary (q + 1)-points αi ∈ |Pn
R| (0 ≤ i ≤ q) lying over a

point x ∈ |S|. To see this it suffices to show that

P q
x −→

q⊕

i=0

P q
x/(mαi,x ∩ P q

x ) (8.24)

is surjective. Let Hi ∈ P 1
x (0 ≤ i ≤ q) be a linear form such that Hi(αj) 0= 0

for j 0= i and Hi(αi) = 0. Then the images of H ′
i := H0 · · · Ĥi · · ·Hq ∈ P q

x

for 0 ≤ i ≤ q generate the right hand side of (8.24).

Main Theorem. Fix an integer q ≥ 0.

i) Assuming (IV)q, Ψq
U/S is injective.

ii) Assuming (I), (II)q, (III) and (IV)q, Ψq
U/S is an isomorphism.

In order to clarify the technical conditions of the Main Theorem, we ex-
plain in the next section its implications on the image of the regulator map
(8.2). The proof of the Main Theorem will be given in the sections following
the next.

8.3 Implications of the Main Theorem
Let

Ω•,d=0
R/k = Ker(Ω•

R/k
d−→ Ω•+1

R/k)

be the module of closed differential forms.

Theorem 8.3.1. Fix an integer q ≥ 0 and assume (I), (II), (III)q and
(IV)q+1 in the Main Theorem. Then the map ψM

! (cf. (8.14)) induces an
isomorphism

q⊕

!=0

!+n−r∧
(Gj)⊗Q Ωq−!,d=0

R/k

∼=−→ Ker(∇q), (8.25)
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where ∇q : Fn−rHn−r
dR (U/S)⊗ Ωq

R/k → Fn−r−1Hn−r
dR (U/S)⊗ Ωq+1

R/k.

Proof We first note that (IV)q+1 =⇒ (IV)q by definition. Consider the
following commutative diagram

⊕q
!=0

!+n−r∧
(Gj)⊗Q Ωq−!

R/k
Ψ′

−−−−→ Fn−rHn−r
dR (U/S)⊗ Ωq

R/k

id⊗d

0
0∇q

⊕q+1
!=0

!+n−r∧
(Gj)⊗Q Ωq+1−!

R/k
Ψ′′

−−−−→ Fn−r−1Hn−r
dR (U/S)⊗ Ωq+1

R/k.

Ψ′ is injective and its image is ker∇q by the Main Theorem (ii). Ψ′′ is
injective by the Main Theorem (i). Thus the assertion follows by diagram
chase.

The second implication of the Main theorem concerns the Hodge filtration
on cohomology with coefficients. The Gauss-Manin connection (cf. (8.7))
gives rise to the following complex of Zariski sheaves on S

Hn−r
dR (U/S) ∇−→ Hn−r

dR (U/S)⊗ Ω1
S/k

∇−→ · · · ∇−→ Hn−r
dR (U/S)⊗ Ωdim S

S/k . (8.26)

which is denoted by Hn−r
dR (U/S)⊗Ω•

S/k. We define the de Rham cohomology
with coefficients as the hypercohomology

Hq
dR(S, Hn−r

dR (U/S)) = Hq
Zar(S, Hn−r

dR (U/S)⊗ Ω•
S/k).

It is a finite dimensional k-vector space. It follows from the theory of mixed
Hodge modules by Morihiko Saito ([17]) that H•

dR(S, Hn−r
dR (U/S)) carries in

a canonical way the Hodge filtration and the weight filtration W• denoted
by

F pH•
dR(S, Hn−r

dR (U/S)) and WpH
•
dR(S, Hn−r

dR (U/S))

respectively. (Arapura [1] has recently given a simpler proof of this fact.)
In case k = C there is the comparison isomorphism between the de Rham
cohomology and the Betti cohomology ([9, Thm.6.2])

Hq(San, Rn−rπan
∗ CU ) / Hq

dR(S, Hn−r
dR (U/S)) (π : U → S) (8.27)

which preserves the Hodge and weight filtrations on both sides defined by
M. Saito. It endows H•(San, Rn−rπan

∗ QU ) with a mixed Hodge structure..
Define the subcomplex Gi of Hn−r

dR (U/S)⊗ Ω•
S/k as

F iHn−r
dR (U/S) → F i−1Hn−r

dR (U/S)⊗ Ω1
S/k → · · ·

· · ·→ F i−dim SHn−r
dR (U/S)⊗ Ωdim S

S/k

(8.28)
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where F •Hn−r
dR (U/S) is the Hodge filtration as in (8.9). If S were proper

over k, we would have

F iH•
dR(S, Hn−r

dR (U/S)) = H•
Zar(S, Gi).

When S is not proper, there is in general only a natural injection (cf. [2,
Lemma 4.2])

F iH•
dR(S, Hn−r

dR (U/S)) ↪→ H•
Zar(S, Gi) (∀i ≥ 0). (8.29)

The precise description of the Hodge filtration on the de Rham cohomology
with coefficients is more complicated in general.

Theorem 8.3.2. Fix an integer q ≥ 0. Let S ⊂ S be a smooth compacti-
fication with ∂S := S − S, a normal crossing divisor on S. Assuming (I),
(II), (III)q and (IV)q+1 in the main theorem, we have an isomorphism

q⊕

!=0

!+n−r∧
(Gj)⊗Q Γ (S,Ωq−!

S/k
(log ∂S))

∼=−→ Fn−r+qHq
dR(S, Hn−r

dR (U/S)). (8.30)

Proof We have the following commutative diagram

⊕q
!=0

!+n−r∧
(Gj)⊗Q Γ(S,Ωq−!

S/k
(log ∂S)) φ−−−−→ Fn−r+qHq

dR(S, Hn−r
dR (U/S))

e

0∩ a

0∩

⊕q
!=0

!+n−r∧
(Gj)⊗Q Ωq−!,d=0

R/k

∼=−−−−→ Hq(S, Gn−r+q)

b

0
0

⊕q
!=0

!+n−r∧
(Gj)⊗Q Hq−!

dR (S/k) c−−−−→ Hq
dR(S, Hn−r

dR (U/S))

(8.31)

where by definition

Ht
dR(S/k) = Ht(S,Ω•

S/k
(log ∂S))

and the map b comes from the isomorphism

Ht(S,Ω•
S/k

(log ∂S)) / Ht(S, Ω•
S/k) / Ωt,d=0

R/k /dΩt−1
R/k (8.32)

due to [8, II (3.1.11)] and it is surjective. The map a comes from (8.29).
The map e comes from [8, II (3.2.14)]. The bijection in the middle row is
the composition of the isomorphism in Theorem 8.3.1 and the isomorphism

Ker(∇!) / H!(S, G!+n−r) for ∀' ≥ 0. (8.33)
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The map c is induced by the composition

q⊕

!=0

!+n−r∧
(Gj)⊗Q Ωq−!,d=0

R/k −→ Ker(∇!)⊗Q Hq−!
dR (S/k)

−→ H!(S, Hn−r
dR (U/S)⊗ Ω•

S/k)⊗Hq−!(S, Ω•
S/k)

−→ Hq(S, Hn−r
dR (U/S)⊗ Ω•

S/k)

where the first map is induced by ψM
!+n−r (8.14) and (8.32), the second by

(8.33), and the last by cup product. We claim that there is a map φ which
makes the upper square of the diagram (8.31) commute. Indeed let V be
the source of c. Endowing V with the Hodge filtration defined by

F p
( t∧

(Gj)⊗Q Hu
dR(S/k)

)
=

t∧
(Gj)⊗Q F p−tHu

dR(S/k)

with F p−tHu
dR(S/k) = Hu(S,Ω≥p−t

S/k
(log ∂S)), c respects the Hodge filtra-

tions. Noting

Fn−r+qV =
q⊕

!=0

!+n−r∧
(Gj)⊗Q H0(S,Ωq−!

S/k
(log ∂S)),

we see that c induces φ as desired. The injectivity of φ follows from that of e.
To show its surjectivity, note that Im(c) contains Fn−r+qHq

dR(S, Hn−r
dR (U/S))

by the diagram. This shows Fn−r+q Coker(c) = 0. By strictness of the
Hodge filtration, we get the surjectivity of φ. This completes the proof of
the theorem.

In what follows we assume k = C. Take S ⊂ S, a smooth compactification
with ∂S := S − S, a normal crossing divisor on S. Write for t ≥ 0

Ht,0
Q (S) := Ht(San, Q(t))∩F tHt(San, C) = Ht(San, Q(t))∩H0(S,Ωt

S/C(log ∂S))

Write m = n− r = dim(U/S). Let

regm+!
U/S : KM

m+!(O(U))⊗Q → H!(San, Rmπan
∗ Q(m + ')) ∩ Fm+!

be as (8.2). It induces for q ≥ 0

λq :
⊕q

!=0 KM
m+!(O(U))⊗Q Hq−!,0

Q (S) →
→ Hq(San, Rmπan

∗ QU (m + q)) ∩ Fm+q.
(8.34)

Theorem 8.1.1 follows from the following corollaries in view of Remarks
8.2.1, 8.2.2, 8.2.3.
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Corollary 8.3.3. Fix an integer q ≥ 1 and assume (I), (II), (III)q and
(IV)q+1 in the Main Theorem. Then the map (8.2)

regm+q
U/S : KM

m+q(O(U))⊗Q → Hq(San, Rmπan
∗ QU (m + q)) ∩ Fm+q

is surjective for q = 1. More generally regm+q
U/S is surjective if the regulator

map for S:

regt
S : KM

t (O(S))⊗Q → HQ(S)t,0

is surjective for 1 ≤ ∀t ≤ q.

Proof The first assertion of 8.3.3 follows from the second in view of the
fact that reg1

S is surjective, namely H1,0
Q (S) is generated by dlog O(S)∗.

The second assertion is a direct consequence of the following isomorphism
induced by λq:

q⊕

!=0

!+m∧
(Gj)⊗Q HQ(S)q−!,0 ∼=−→ Hq(San, Rmπan

∗ QU (m + q)) ∩ Fm+q. (8.35)

which follows from Theorem 8.3.2.

Corollary 8.3.4. Assuming (I), (II), (III)q and (IV)q+1 for q = 0, λ0

induces an isomorphism
m∧

(Gj)
∼=−→ H0(San, Rmπan

∗ QU (m)).

Proof Applying (8.35), we have an isomorphism
m∧

(Gj)
∼=−→ H0(San, Rmπan

∗ QU (m)) ∩ Fm. (8.36)

We need show that the right hand side is equal to H0(San, Rmπan
∗ QU ). It

suffices to show that H0(San, Rmπan
∗ Q) is pure of type (m,m). We need a

result from [3, Theorem (III)], which implies that the map

∇ : Grp
F Hm

dR(U/S) −→ Grp−1
F Hm

dR(U/S)⊗ Ω1
R/C

is injective for all 1 ≤ p ≤ m − 1 under the assumption of Corollary 8.3.4.
It implies

Ker(∇) ∩ F 1Hm
dR(U/S) = Ker(∇) ∩ FmHm

dR(U/S),

where ∇ : Hm
dR(U/S) → Hm

dR(U/S) ⊗ Ω1
R/C is the algebraic Gauss-Manin

connection. Noting H0(San, Rmπan
∗ CU ) ∼→ Ker(∇) under the comparison
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isomorphism (8.27), it implies

F 1H0(San, Rmπan
∗ CU ) = FmH0(San, Rmπan

∗ CU ). (8.37)

Consider the mixed Hodge structure H := H0(San, Rmπan
∗ QU ). By the

Hodge symmetry (8.37) implies

Hp,q := Grp
F Grq

F
GrW

p+qH = 0 unless (p, q) = (m, 0), (m,m), (0,m).

Hence it suffices to show Hm,0 = 0. Putting V = FmH0(San, Rmπan
X∗CX)

where πX : X → S is as in (8.6), we have the surjection V → Hm,0 while
V = 0 by Theorem 8.3.2 applied to the case s = 0. This completes the
proof.

8.4 Theory of Generalized Jacobian Rings

We introduce the generalized Jacobian ring. It describes the Hodge cohomol-
ogy groups H•(Ω•

X/S(log Z∗)) of open complete intersections, and enables us
to identify the Gauss-Manin connection (cf. (8.11)) with the multiplication
of rings. The computational results in this section will play a key role in the
proof of the Main Theorem (see §8.5.2).

8.4.1 Fundamental results on generalized Jacobian ring

Recall the notations in §8.2.1. Let

A = PR[µ1, · · · , µr,λ1, · · · ,λs] = R[X0, . . . , Xn, µ1, · · · , µr,λ1, · · · ,λs]

be the polynomial ring over PR with indeterminants µ1, · · · , µr,λ1, · · · ,λs.
For q ∈ Z and ' ∈ Z, we put

Aq(') =
⊕

a1+···+ar+b1+···+bs=q

Pm(a,b,!)
R · µa1

1 · · ·µar
r λb1

1 · · ·λbs
s

with m(a, b, ') =
∑r

i=1 aidi +
∑s

j=1 bjej + '. Here ai and bj run over non-
negative integers satisfying a1 + · · · + ar + b1 + · · · + bs = q. By convention,
Aq(') = 0 for q < 0. Note that the notation in 8.21 is compatible with the
above definition.

The Jacobian ideal J = J(F1, · · · , Fr, G1, · · · , Gs) is defined to be the
ideal of A generated by

r∑

i=1

∂Fi

∂Xk
µi+

s∑

j=1

∂Gj

∂Xk
λj , F!, G!′λ!′ (0 ≤ k ≤ n, 1 ≤ ' ≤ r, 1 ≤ '′ ≤ s).
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The quotient ring B = A/J is called the generalized Jacobian ring ([3]). We
put

Jq(') = Aq(') ∩ J and Bq(') = Aq(')/Jq(').

We now recall some fundamental results from [3].

Theorem 8.4.1 ([3], Theorem (I)). Suppose n ≥ r+1. For each integer
0 ≤ p ≤ n− r there is a natural isomorphism

φ : Bp(d + e− n− 1)
∼=−→ Hp(X, Ωn−r−p

X/S (log Z∗))

and the following diagram is commutative up to a scalar in R×:

Bp(d + e− n− 1) ε−−−−→ Bp+1(d + e− n− 1)⊗A1(0)∗

φ

0
01⊗Θ∗

Hp(X, Ωn−r−p
X/S (log Z∗))

∇−−−−→ Hp+1(X, Ωn−r−p−1
X/S (log Z∗))⊗ Ω1

R/k

(8.38)

where ∇ is induced by the Gauss-Manin connection:

∇ : Fn−r−pHn−r
dR (U/S) −→ Fn−r−p−1Hn−r

dR (U/S)⊗ Ω1
R/k

and ε is induced from the multiplication

Bp(d + e− n− 1)⊗A1(0) → Bp+1(d + e− n− 1)

and Θ∗ is the dual of the map (8.20)

Θ : TR/k → A1(0); θ 1→
r∑

i=1

θ(Fi)µi +
s∑

j=1

θ(Gj)λj .

The second fundamental result is the duality theorem for generalized Ja-
cobian rings. For an R-module we denote M∗ = HomR(M,R).

Theorem 8.4.2 ( [3], Theorem (II)). There is a natural map (called the
trace map)

τ : Bn−r(2(d− n− 1) + e) → R.

Let
hp : Bp(d− n− 1) → Bn−r−p(d + e− n− 1)∗

be the map induced by the following pairing induced by the multiplication

Bp(d− n− 1)⊗Bn−r−p(d + e− n− 1) → Bn−r(2(d− n− 1) + e) τ−→ R.

Then hp is bijective if 1 ≤ p ≤ n− r, and surjective if p = 0. The kernel of
h0 is a locally free R-module of rank

(s−1
n−r

)
.
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8.4.2 Generalized Jacobian rings à la M. Green

We review from [3, §2] a “sheaf theoretic” definition of generalized Jacobian
ring. This sophisticated definition originates from M.Green ([10]). It is
useful for various computations (cf. §8.4.3 and §8.5.2).

Put

E = E0

⊕
E1 with E0 =

r⊕

i=1

O(di) and E1 =
s⊕

j=1

O(ej)

which is a locally free sheaf on Pn = Pn
R. We consider the projective space

bundle

π : P := P(E) −→ Pn.

Let L = OP(E)(1) be the tautological line bundle. We have the Euler exact
sequence

0 −→ OP −→ π∗E∗ ⊗ L −→ TP/Pn −→ 0. (8.39)

We consider the effective divisors

Qi := P(
⊕

1≤α +=i≤r

O(dα)
⊕

E1) ↪→ P(E) for 1 ≤ i ≤ r,

Pj := P(E0

⊕ ⊕

1≤β +=j≤r

O(eβ)) ↪→ P(E) for 1 ≤ j ≤ s,

and let

µi ∈ H0(P,L⊗ π∗O(−di)), λj ∈ H0(P,L⊗ π∗O(−ej))

be the global sections associated to these. We put

σ =
r∑

i=1

Fiµi +
s∑

j=1

Gjλj ∈ Γ(P,L).

Let ΣL be the sheaf of differential operators on L of order ≤ 1, defined
as:

ΣL = Diff ≤1(L) = {P ∈ Endk(L) ; Pf − fP is OP-linear for ∀f ∈ OP}
/ L⊗Diff ≤1(OP)⊗ L∗.

(It might be helpful to mention that ΣL is a prolongation bundle.) By
definition it fits into an exact sequence

0 −→ OP −→ ΣL −→ TP −→ 0 (8.40)
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with extension class

−c1(L) ∈ Ext1(TP,OP) / Ext1(OP,Ω1
P ⊗ OP) / H1(P,Ω1

P).

Letting U ⊂ Pn be an affine subspace and x1, · · · , xn be its coordinates,
Γ (π−1(U),ΣL) is generated by the following sections

∂

∂xi
, λi

∂

∂λj
, λi

∂

∂µj
, µi

∂

∂λj
, µi

∂

∂µj
, OP-linear maps. (8.41)

The section σ defines a map

j(σ) : ΣL −→ L, P 1−→ P (σ),

which is surjective by the assumption that X∗+Y∗ is a simple normal crossing
divisor. It gives rise to the exact sequence

0 −→ TP(− log Z) −→ ΣL
j(σ)−→ L −→ 0, (8.42)

where Z ⊂ P is the zero divisor of σ. Put

Q∗ = Q1 + · · · + Qr and P∗ = P1 + · · · + Ps,

and define ΣL(− log P∗) to be the inverse image of TP(− log P∗) via the map
in (8.40). We then have the exact sequence

0 −→ OP −→ ΣL(− log P∗) −→ TP(− log P∗) −→ 0. (8.43)

Moreover (8.42) gives rise to an exact sequence

0 −→ TP(− log(Z + P∗)) −→ ΣL(− log P∗)
j(σ)−→ L −→ 0. (8.44)

Lemma 8.4.3. For integers k and ', put Ak(')Σ = H0(Lk ⊗ π∗O(')) and

Jk(')Σ = Im
(
H0(ΣL(− log P∗)⊗ Lk−1 ⊗ π∗O('))

j(σ)⊗1−→ H0(Lk ⊗ π∗O('))
)
.

Then we have

Ak(') = Ak(')Σ, Jk(') = Jk(')Σ.

Proof See [3, Lem.(2-2)].

Thus we have obtained another definition of the generalized Jacobian ring.
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8.4.3 Some computational results

We keep the notations in §8.4.2. In what follows we simply write Σ =
ΣL(− log P∗).

Lemma 8.4.4. We have

Hw(P,
p∧

Σ∗ ⊗ Lν ⊗ π∗O(')) = 0

if one of the following conditions holds:

(i) p− ν ≤ r + s− 1 and ν ≤ −1,
(ii) p− ν ≥ n + 1 and ν ≥ −s + 1.
(iii) w > 0, ν ≥ −s + 1, ' ≥ 0 and (ν, ') 0= (0, 0).

Proof See [3, Thm.(4-1)].

Proposition 8.4.5. Let k be an integer.

(i) Hν(
k∧
Σ∗) = 0 for any k ≥ 0 and ν 0= 0, n.

(ii) H0(
k∧
Σ∗) is a locally free R-module of rank

(s−1
k

)
.

(iii) Hn(
k∧
Σ∗) is a locally free R-module of rank

( s−1
k−n−1

)
. (Note

(x
!

)
= 0

for ' < 0 by convention.)

The rest of this section is devoted to the proof of Proposition 8.4.5.
Recall that there is an exact sequence

0 −→ Ω1
P(log P∗) −→ Σ∗ −→ OP −→ 0 (8.45)

with the extension class

c1(L)|P−P∗ ∈ Ext1(OP,Ω1
P(log P∗)) = H1(Ω1

P(log P∗)).

It gives rise to the short exact sequence

0 −→ Ω•
P(log P∗) −→

•∧
Σ∗ −→ Ω•−1

P (log P∗) −→ 0, (8.46)

and we have the long exact sequence

· · ·Hν(Ωk
P(log P∗)) −→ Hν(

k∧
Σ∗) −→

Hν(Ωk−1
P (log P∗))

δ−→ Hν+1(Ωk
P(log P∗)) · · · ,

(8.47)

where δ is induced by the cup-product with c1(L)|P−P∗ ∈ H1(Ω1
P(log P∗)).
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The first step is to write down H•(Ω•
P(log P∗)) and δ explicitly. We prepare

some notations. For an integer k ≥ 1 we put

∆k = {I = (i1, · · · , ik)| 1 ≤ i1 < · · · < ik ≤ s}.

For I = (i1, · · · , ik) ∈ ∆k we write PI = Pi1 ∩ · · · ∩ Pi1 . For k = 0 we put
∆0 = {∅} and P∅ = P by convention. To compute Hν(Ωk

P(log P∗)) we first
note the isomorphisms

Hν(Ωk
P(log P∗)) / Grk

F Hν+k(P− P∗) / GrW
2k Hν+k(P− P∗),

where H∗(P− P∗) = H∗(P,Ω•
P/S(log P∗)), and

F pH∗(P− P∗) = H∗(P,Ω≥p
P/S(log P∗)) ⊂ H∗(P,Ω•

P/S(log P∗))

is the Hodge filtration and WpH∗(P− P∗) ⊂ H∗(P− P∗) denotes the weight
filtration induced by the spectral sequence

Epq
2 =

⊕

I∈∆q

Hp(PI) =⇒ Hp+q(P− P∗) (8.48)

where H∗(PI) = H∗(PI ,Ω•
PI/S) (cf. [8]). We note Ep,q

2 = 0 unless 0 ≤ q ≤
s. Since the spectral sequence (8.48) degenerates at E3, Hν(Ωk

P(log P∗)) is
isomorphic to the cohomology at the middle term of the following complex

⊕

I1∈∆k−ν+1

H2ν−2(PI1) −→
⊕

I2∈∆k−ν

H2ν(PI2) −→
⊕

I3∈∆k−ν−1

H2ν+2(PI3). (8.49)

The arrows in (8.49) are described as follows. Let I1 = (i1, · · · , ik) ∈ ∆k

and I2 ∈ ∆k−1. If I2 0⊂ I1, then H2ν−2(PI1) → H2ν(PI2) is the zero map.
If I2 = (i1, · · · , îp, · · · , ik), then it is (−1)p−1φI1I2 where φI1I2 is the Gysin
map. In order to describe it in more convenient way we introduce some
notations. Let

SR = R[x, y]

be the polynomial ring and Sν
R be the set of homogeneous polynomials of

degree ν. We put

QI(x, y) =






r∏

i=1

(x− diy) ·
∏

j +∈I

(x− ejy) if I 0= ∅,

r∏

i=1

(x− diy) ·
s∏

j=1

(x− ejy) if I = ∅,
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Lemma 8.4.6. i) There is an isomorphism of graded rings:

SR/(QI(x, y), yn+1)
∼=−→ H∗(PI); x 1→ c1(L)|PI , y 1→ π∗c1(O(1))|PI ,

where we recall π : P = P(E) → Pn.
ii) For I ⊂ I ′ we have the commutative diagram

H∗(PI)
∼=−−−−→ R[x, y]/(QI(x, y), yn+1)

ψII′

0
0

H∗(PI′)
∼=−−−−→ R[x, y]/(QI′(x, y), yn+1)

where the left vertical map is the restriction map and the right vertical
map is the natural surjection.

iii) If I ′ = I ∪ {j} with j 0∈ I we have the commutative diagram

H∗(PI′)
∼=−−−−→ R[x, y]/(QI′(x, y), yn+1)

φII′

0 x−ejy

0

H∗(PI)
∼=−−−−→ R[x, y]/(QI(x, y), yn+1)

where the left vertical map is the Gysin map and the right vertical map
is the multiplication by x− ejy.

Proof The first assertion is well-known, and the second assertion follows
immediately from the first. To show the last assertion, we note that φII′ is
the Poincaré dual of ψII′ and the composite φII′ψII′ : H∗(PI) → H∗+2(PI)
is the multiplication by the class c1(PI′)|PI of the divisor PI′ in PI . Hence
the assertion follows by noting c1(PI′)|PI = c1(Pj)|PI = x− ejy.

For I = (i1, . . . , i!) ∈ ∆! write λI = λi1 ∧ · · · ∧ λi! and λI = 1 if I = ∅.
Lemma 8.4.6 provides us with an isomorphism

⊕

I∈∆!

Sp
R/(QI(x, y), yn+1)⊗ λI

∼=−→
⊕

I∈∆!

H2p(PI) for each p ≥ 0.

Under this isomorphism, the arrows in (8.49) are identified with

dλ : ξ ⊗ λI 1−→
!∑

k=1

(−1)k−1(x− eiky)ξ ⊗ λi1 ∧ · · · ∧ λ̂ik ∧ · · · ∧ λi! . (8.50)

Thus we have obtained the following result.
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Lemma 8.4.7. For any integers k and ν, Hν(Ωk
P(log P∗)) is isomorphic to

the cohomology at the middle term of the complex

⊕

I1∈∆k−ν+1

Sν−1
R /(QI1(x, y), yn+1)⊗λI1

dλ→
⊕

I2∈∆k−ν

Sν
R/(QI2(x, y), yn+1)⊗λI2

dλ→
⊕

I3∈∆k−ν−1

Sν+1
R /(QI3(x, y), yn+1)⊗ λI3 (8.51)

with dλ defined as in (8.50) (Note that by convention
⊕

I∈∆!
(· · · ) = 0 unless

0 ≤ ' ≤ s).

In order to calculate the cohomology at the middle term of the complex
(8.51), we introduce new symbols ε1, · · · , εs and write εI = εi1 ∧ · · ·∧ εi! for
I = (i1, . . . , i!) ∈ ∆!. Consider the following diagram

0 0
0

0
⊕

I∈∆!
SR ⊗ εI

dε−−−−→
⊕

I′∈∆!−1
SR ⊗ εI′

aI

0
0aI′

⊕
I∈∆!

SR ⊗ λI
⊕

SR ⊗ εI
dλ+dε−−−−→

⊕
I′∈∆!−1

SR ⊗ λI′
⊕

SR ⊗ εI′

bI

0
0bI′

⊕
I∈∆!

SR ⊗ λI
dλ−−−−→

⊕
I′∈∆!−1

SR ⊗ λI′0
0

⊕
I∈∆!

SR/(QI , yn+1)⊗ λI
dλ−−−−→

⊕
I′∈∆!−1

SR/(QI′ , yn+1)⊗ λI′0
0

0 0

(8.52)

where dε is given by:

dε : ξ ⊗ εI 1−→
!∑

k=1

(−1)k−1ξ ⊗ εi1 ∧ · · · ∧ ε̂ik ∧ · · · ∧ εi! , (8.53)

aI and bI are given by:

aI : ξ⊗εI 1→ ξQI⊗λI+ξyn+1⊗εI and bI : ξ1⊗λI+ξ2⊗εI 1→ (ξ1y
n+1−ξ2QI)⊗λI .
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One can easily check that the diagram is commutative and the vertical
sequences are exact. Put

E! = Ker




⊕

I∈∆!

S0
R ⊗ εI

dε−→
⊕

I∈∆!−1

S0
R ⊗ εI



 . (8.54)

Note E! = 0 unless 0 ≤ ' ≤ s by convention.

Claim 8.4.8. i) The following sequence is exact:

0 −→
⊕

I∈∆s

SR ⊗ εI
dε−→

⊕

I∈∆s−1

SR ⊗ εI
dε−→ · · · −→

⊕

I=∅
SR ⊗ 1 −→ 0.

ii) Assume s ≥ 2 and ei 0= ej for some i 0= j. Then, for an integer
' ≥ 0, the following sequence is exact:

⊕

I∈∆!

S0
R ⊗ λI

dλ−→
⊕

I∈∆!−1

S1
R ⊗ λI

dλ−→ · · · −→
⊕

I=∅
S!

R ⊗ 1 −→ 0.

iii) Assume e = e1 = · · · = es. Then the cohomology at the middle
term of the complex

⊕

I1∈∆!+1

Sp−1
R ⊗ λI1

dλ−→
⊕

I2∈∆!

Sp
R ⊗ λI2

dλ−→
⊕

I3∈∆!−1

Sp+1
R ⊗ λI3 (8.55)

is isomorphic to Sp
R/(x− ey)⊗ E!.

Proof (i) Easy (and well-known).
(ii) Let V0 be a free R-module with basis λ1, · · · ,λs. Let c : OP1 ⊗ V0 →
OP1(1) be the map of locally free sheaves on P1 = Proj(SR), defined by
λj 1→ x − ejy. This is surjective by the assumption. It gives rise to the
Koszul complex

0 → OP1('− s)⊗
s∧
V0 → OP1('− s + 1)⊗

s−1∧
V0 → · · ·

· · ·→ OP1('− 1)⊗ V0 → OP1(') → 0.
(8.56)

We decompose (8.56) into the following sequences:

0 → OP1('− s)⊗
s∧

V0 → · · ·→ OP1(−1)⊗
!+1∧

V0 → V1 → 0. (8.57)

0 → V1 −→ OP1 ⊗
!∧

V0 → · · ·→ OP1('− 1)⊗ V0 → OP1(') → 0. (8.58)

Noting H0(OP1(')) = S!
R and that (8.58) gives an acyclic resolution of V1, it
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suffices to show H i(P1, V1) = 0 for i ≥ 1 which is obvious for i ≥ 2. To show
H1(V1) = 0 it suffices to prove H0(O(−2) ⊗ V ∗

1 ) = 0 by the Serre duality.

By (8.57) there is an injection O(−2)⊗V ∗
1 ↪→ O(−1)⊗

!+1∧
V ∗

0 . The assertion
follows from this.
(iii) Since e = e1 = · · · = es, we have the following commutative diagram
⊕

I1∈∆!+1
Sp−1

R ⊗ εI1
dε−−−−→

⊕
I2∈∆!

Sp−1
R ⊗ εI2

dε−−−−→
⊕

I3∈∆!−1
Sp−1

R ⊗ εI3

ι0

0 ι1

0 ι2

0
⊕

I1∈∆!+1
Sp−1

R ⊗ λI1
dλ−−−−→

⊕
I2∈∆!

Sp
R ⊗ λI2

dλ−−−−→
⊕

I3∈∆!−1
Sp+1

R ⊗ λI3

where ιi : ξ ⊗ εI 1→ (x − ey)iξ ⊗ λI . Note that ι0 is bijective and ιi are
injective for i > 0. Due to (i), the cohomology group of the complex (8.55)
is isomorphic to

Ker




⊕

I2∈∆!

Sp
R/(x− ey)⊗ λI2

dλ−→
⊕

I3∈∆!−1

Sp+1
R /(x− ey)2 ⊗ λI3



 . (8.59)

The map Sp
R/(x−ey) → Sp+1

R /(x−ey)2, given by multiplication with (x−ey),
is injective. Hence (8.59) is isomorphic to

Ker




⊕

I2∈∆!

Sp
R/(x− ey)⊗ εI2

dε−→
⊕

I3∈∆!−1

Sp
R/(x− ey)⊗ εI3



 = Sp
R/(x−ey)⊗E!.

This completes the proof.

Combining Lemmas 8.4.7, 8.4.8 and (8.52), we get the following explicit
description of Hν(Ωk

P(log P∗)).

Lemma 8.4.9. Let E• be as in (8.54), and put

Λ! = Ker




⊕

I∈∆!

S0
R ⊗ λI

dλ−→
⊕

I∈∆!−1

S1
R ⊗ λI



 .

i) Assume s ≥ 2 and ei 0= ej for some i 0= j. Then we have

Hν(Ωk
P(log P∗)) /






Λk

Λk−n−1

0

if ν = 0
if ν = n

otherwise

(Note Λ! = 0 unless 0 ≤ ' ≤ s by convention.)
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ii) Assume e = e1 = · · · = es. Then we have for ∀k, ν ≥ 0

Hν(Ωk
P(log P∗)) / Sν

R/(yn+1, x− ey)⊗ Ek−ν / R[y]ν/(yn+1)⊗ Ek−ν .

In order to complete the proof of Proposition 8.4.5 we need the following
Lemma, which gives an explicit description of the map δ in (8.47).

Lemma 8.4.10. i) Assume s ≥ 2 and ei 0= ej for some i 0= j. Then
c1(L)|P−P∗ = 0 and δ = 0.

ii) Assume e = e1 = · · · = es. Then

π∗ : H1(Ω1
Pn) −→ H1(Ω1

P(log P∗))

is injective and c1(L)|P−P∗ = π∗c1(O(e)). The map δ in (8.47) is
identified with the multiplication by ey⊗ 1 under the isomorphisms in
Lemma 8.4.7.

Proof (i) Noting O(Pj) / L⊗ π∗O(−ej) and c1(Pj)|P−P∗ = 0, we have

c1(L)|P−P∗ = π∗c1(O(ej)) = ejπ
∗c1(O(1)) for 1 ≤ ∀j ≤ s.

By the assumption this implies c1(L)|P−P∗ = 0 and π∗c1(O(1)) = 0.
(ii) The first assertion follows from the existence of an isomorphism P /
Pn × Pr+s−1 such that Pj corresponds to Pn × Hj with Hj a hyperplane.
The second assertion has been already shown in (i). To show the last we
first note that the cup product for Hν(Ωk

P(log P∗)) is induced by the cup
product

H2i(PI)⊗H2j(PI) → H2(i+j)(PI+J)

when one identifies Hν(Ωk
P(log P∗)) with the cohomology at the middle term

of the complex (8.49). Here PI+J = PI∩PJ if I∩J = ∅ and H2(i+j)(PI+J) =
0 otherwise by convention. Under the isomorphisms of Lemma 8.4.6, it is
identified with

Si
R/(QI(x, y), yn+1)⊗ Sj

R/(QJ(x, y), yn+1) → Si+j
R /(QI+J(x, y), yn+1),

(f ⊗ λI)⊗ (g ⊗ λJ) 1→ fg ⊗ (λI

∧
λJ).

Since δ is induced by the cup product with c1(L)|P−P∗ ∈ H1(Ω1
P(log P∗)), the

desired assertion follows by noting c1(L)|P−P∗ corresponds to ey under the
isomorphism H1(Ω1

P(log P∗)) / S1
R/(Q∅(x, y), yn+1) due to Lemma 8.4.7.
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Finally we can complete the proof of Proposition 8.4.5. First assume
s ≥ 2 and ei 0= ej for some i 0= j. The assertion follows from (8.47),
Lemma 8.4.10 (i) and Lemma 8.4.9 (i) by noting that the R-module Λ! is
locally free of rank

(s−2
!

)
due to Claim 8.4.8 (ii). (Compare the coefficients

of (1 − x)s−2 = (1 − x)s · (1 − x)−2 = (
∑

p(−1)p
(s
p

)
xp) · (

∑
q qxq) to get(s−2

!

)
=

(s
!

)
− 2

( s
!−1

)
+ · · · .) Next assume e = e1 = · · · = es. By (8.47),

Lemma 8.4.10 (ii) and Lemma 8.4.9 (ii), we have an exact sequence

R[y]ν−1/(yn+1) ey⊗1−→ R[y]ν/(yn+1)⊗ Ek−ν −→ Hν(
k∧

Σ∗)

−→ R[y]ν/(yn+1)⊗ Ek−ν−1 ey⊗1−→ R[y]ν+1/(yn+1)⊗ Ek−ν−1.

The desired assertion follows by noting that the R-module E! is locally free
of rank

(s−1
!

)
due to Claim 8.4.8 (i). This completes the proof of Proposition

8.4.5.

8.5 Proof of the Main Theorem
In this section we prove the Main Theorem stated in §8.2.4.

8.5.1 Proof of (i)

Let

Ψq
U/S :

q⊕

!=0

!+n−r∧
(Gj)X ⊗Q Ωq−!

R/k −→ H0(Ωn−r
X/S(log Z∗))⊗ Ωq

R/k (8.60)

be the map (8.19). We show the stronger assertion that Ψq
U/S ⊗R κ(x) is

injective for any x ∈ |S| assuming (IV)q. We fix x ∈ |S|. Without loss of
generality we may assume j1 = 1, · · · , jn−r = n− r in (IV)q. We may work
in an étale neighbourhood of x to assume that R is a strict henselian local
ring with the closed point x ∈ Spec(R) and that the 0-dimensional scheme
defined by F1 = · · · = Fr = G1 = · · · = Gn−r = 0 in Pn

R is a disjoint union
of copies of Spec(R).

For an integer ' ≥ 1 let
!∧
(Gj)j +=1 be the subspace of

!∧
(Gj) generated

by such gj0···j! that jν 0= 1 for 0 ≤ ∀ν ≤ ' (cf. (8.17)). We have the exact
sequence

0 →
!∧

(Gj)j +=1 →
!∧

(Gj)
τ−→

!−1∧
(Gj)j +=1 → 0,

where τ is characterized by the condition that τ(g1j1···j!) = −gj1···j! and
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that it annihilates
!∧
(Gj)j +=1. Put Z(1)

∗ = Z2 + · · · + Zs where we recall
that Zj ⊂ X is a smooth hypersurface section defined by Gj . Consider the
residue map along Z1:

Res : Ωn−r
X/S(log Z∗) → Ωn−r−1

Z1/S (log Z(1)
∗ ∩ Z1); dg1/g1 ∧ ω 1→ ω|Z1 ,

where g1 is a local equation of Z1. By (8.18) one sees that Res◦Ψq
U/S factors

through τ and we get the following commutative diagram:

0 0
0

0
q⊕

!=0

!+n−r∧
(Gj)j +=1 ⊗Q Ωq−!

R/k −−−−→ H0(Ωn−r
X/S(log Z(1)

∗ ))⊗R Ωq
R/k

0
0

q⊕
!=0

!+n−r∧
(Gj)⊗Q Ωq−!

R/k

Ψq
U/S−−−−→ H0(Ωn−r

X/S(log Z∗))⊗R Ωq
R/k

0τ⊗id

0Res⊗id

q⊕
!=0

!+n−r−1∧
(Gj)j +=1 ⊗Q Ωq−!

R/k −−−−→ H0(Ωn−r−1
Z1/S (log Z(1)

∗ ∩ Z1))⊗R Ωq
R/k

0
0

0 0
By the diagram and induction we are reduced to show the injectivity of
Ψq

U/S ⊗R κ(x) in case s = 1 or n − r = 0. If s = 1, the assertion is clear

because
!∧
(Gj) = 0 by convention. We consider the case n− r = 0. Then

X = {F1 = · · · = Fn = 0} ⊂ Pn
R and Yj = {Gj = 0} ⊂ Pn

R (1 ≤ j ≤ s).

By the assumption we have X =
∐

β∈X(R)
Spec(R) where X(R) is the set of

sections of X → Spec(R). The map (8.60) becomes

Ψ :
q⊕

!=0

!∧
(Gj)⊗Q Ωq−!

R/k −→ H0(OX)⊗R Ωq
R/k

By Nakayama’s lemma, condition (IV)q in the Main Theorem implies:

(∗) There are q + 1 points β0, · · · ,βq ∈ X(R) such that the map

W
Θ−→ A1(0)/(J ′ + mβ0)⊕ · · ·⊕A1(0)/(J ′ + mβq),
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is surjective, where mβ ⊂ PR denotes the homogeneous ideal defining β in
Pn

R = Proj(PR).
We note

H0(OX) =
⊕

β∈X(R)

R · [β]

and put
H0(OX)′ =

⊕

0≤ν≤q

R · [βν ].

It suffices to show the injectivity of Ψ′ ⊗R κ(x) where

Ψ′ :
q⊕

!=0

!∧
(Gj)⊗Q Ωq−!

R/k −→ H0(OX)′ ⊗R Ωq
R/k (8.61)

is the composite of Ψ with the projection H0(OX) → H0(OX)′. We have

Ψ′(v1j1···j! ⊗ η) =
q∑

ν=0

[βν ]⊗ εj1ν ∧ · · · ∧ εj!ν ∧ η (η ∈ Ωq−!
R/k),

with εjν := dlog((Ge1
j /G

ej

1 )(βν)) ∈ Ω1
R/k.

Hence the desired assertion follows from the following two lemmas.

Lemma 8.5.1. The log forms εjν (2 ≤ j ≤ s, 0 ≤ ν ≤ q) are linearly
independent in Ω1

R/k ⊗ κ(x).

Lemma 8.5.2. Let Ω be a finite dimensional vector space over a field k of
characteristic zero. Suppose that εjν ∈ Ω (1 ≤ j ≤ s, 0 ≤ ν ≤ q) are linearly

independent. For given ηt ∈
t∧
Ω with 0 ≤ t ≤ q, put for 0 ≤ ν ≤ q (the

product is wedge product)

ων = ηq +
∑s

j=1 ηq−1εjν +
∑

1≤j1<j2≤s ηq−2εj1νεj2ν + · · ·

· · · +
∑

1≤j1<···<jq≤s η0εj1ν · · · εjqν ∈
q∧
Ω.

}
(8.62)

If ων = 0 for 0 ≤ ∀ν ≤ q, then ηt = 0 for 0 ≤ ∀t ≤ q.

Now we prove the above lemmas. Lemma 8.5.1 follows from the condition
(∗) by noting the following:

Lemma 8.5.3. For β ∈ X(R), A1(0)/(J ′ + mβ) is a free R-module of rank
s− 1, and the dual of TR/k → A1(0)/(J ′ + mβ) induced by Θ is given by the
matrix

(dlog
Ge1

2

Ge2
1

(β), · · · ,dlog
Ge1

s

Ges
1

(β))
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for a suitable choice of a basis of A1(0)/(J ′ + mβ).

Proof Giving β = (β0 : · · · : βn) in the homogeneous coordinate of Pn
R,

mβ = (βiXj − βjXi)0≤i<j≤n ⊂ PR = R[X0, · · · , Xn].

We may assume without loss of generality that β0 = 1. We write ∂! :=
∂/∂X! for 0 ≤ ' ≤ n and L(β) := L(1,β1, · · · ,βn) ∈ R for any homogeneous
polynomial L. Then we have an isomorphism

A1(0)/(J ′ + mβ) ∼=
( n⊕

i=1

R · Xdi
0 µi

⊕ s⊕

j=1

R · Xej

0 λj
)
/J ′β

with J ′β =
n∑

!=0

R · (
n∑

i=1

∂!Fi(β)Xdi
0 µi +

s∑

j=1

∂!Gj(β)Xej

0 λj).

Using the fact

det




∂1F1(β) · · · ∂1Fn(β)

...
...

∂nF1(β) · · · ∂nFn(β)



 ∈ R∗,

we get

A1(0)/(J ′ + mβ) ∼=
( s⊕

j=1

R · Xej

0 λj
)
/R · (

s∑

j=1

ejGj(β)Xej

0 λj), (8.63)

which is a free R-module of rank (s− 1). To prove the second assertion we
first show for θ ∈ TR/k

Θ(θ) ≡ θ(G1(β)) · Xe1
0 λ1 + · · · + θ(Gs(β)) · Xes

0 λs

mod J ′ + (X! − β!X0)1≤!≤n. (8.64)
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In fact
s∑

j=1

θ(Gj(β)) · Xej

0 λj =
s∑

j=1

(θGj)(β) · Xej

0 λj +
s∑

j=1

n∑

!=0

∂Gj

∂X!
(β) · θ(β!) · Xej

0 λj

≡
s∑

j=1

(θGj)(β) · Xej

0 λj −
n∑

i=1

n∑

!=0

∂Fi

∂X!
(β) · θ(β!) · Xdi

0 µi mod J ′

=
(∗∗)

s∑

j=1

(θGj)(β) · Xej

0 λj +
n∑

i=1

(θFi)(β) · Xdi
0 µi

≡
s∑

j=1

(θGj)λj +
n∑

i=1

(θFi)µi mod (X! − βlX0)1≤!≤n

= Θ(θ).

Here (∗∗) follows from 0 = θ(Fi(β)) = (θFi)(β) +
∑n

!=0(∂!Fi)(β) · θ(β!)
(note Fi(β) = 0 since β ∈ X(R)). Let {(Xej

0 λj)∗}1≤j≤s be the dual basis of⊕s
j=1 R · Xej

0 λj . Then

1
ejGj(β)

(Xej

0 λj)∗ −
1

e1G1(β)
(Xe1

0 λ1)∗ (2 ≤ j ≤ s)

is a basis of the dual module of the right hand side of (8.63). By (8.64), we
see that the dual of TR/k → A1(0)/(J ′ + mβ) is given by

1
ejGj(β)

(Xej

0 λj)∗ −
1

e1G1(β)
(Xe1

0 λ1)∗ 1−→
1

e1ej
dlog

Ge1
j

G
ej

1

(β).

This completes the proof of Lemma 8.5.1.

Finally we prove Lemma 8.5.2. We prove the assertion by induction on
q ≥ 0. If q = 0, it is clear. Let ε∗il (1 ≤ i ≤ s, 0 ≤ ' ≤ q) be a linear form on
Ω such that ε∗il(εi′!′) = 0 if (i, ') 0= (i′, '′) and ε∗il(εil) = 1. For 1 ≤ ν 0= ' ≤ q
we have

(ων , ε
∗
il) = (ηq, ε

∗
il) +

s∑

j=1

(ηq−1, ε
∗
il)εjν + · · · +

∑

1≤j1<···<jq−1≤s

(η1, ε
∗
il)εj1ν · · · εjq−1ν

= 0 ∈
q−1∧

Ω.

By induction this implies (ηt, ε∗il) = 0 for 0 ≤ ∀t,∀' ≤ q and 1 ≤ ∀i ≤ s.
Then

0 = (ων , ε
∗
j1ν · · · ε∗jq−tν) = ηt.

This completes the proof of Lemma 8.5.2.
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8.5.2 Proof of (ii) : Case TR/k / W

Since we have proved the injectivity of Ψq
U/S ⊗R κ(x) for ∀x ∈ |S|, it suffices

to show that the kernel of ∇q is a locally free R-module of the same rank as
the source of Ψq

U/S . More precisely we want to show the following.

Lemma 8.5.4. Assuming (I), (II) and (III)q in the Main Theorem, Ker(∇q)
is a locally free R-module of rank

∑

k≥0

(
s− 1

n− r + k

)
· rank

q−k∧
TR/k. (8.65)

In this subsection we show Lemma 8.5.4 assuming Θ : TR/k → W is an
isomorphism. We note that W is a locally free R-module by (I). By Theorem
8.4.1, ∇q is identified with the map

B0(d + e− n− 1)⊗
q∧

W ∗ −→ B1(d + e− n− 1)⊗
q+1∧

W ∗

induced by the multiplication Bq(')⊗W → Bq+1('). By the duality theorem
(Theorem 8.4.2), the dual of the map fits into the commutative diagram

B1(d + e− n− 1)∗ ⊗
q+1∧

W −−−−→ B0(d + e− n− 1)∗ ⊗
q∧
W

∼=
@

@ι

Bn−r−1(d− n− 1)⊗
q+1∧

W
Φ−−−−→ Bn−r(d− n− 1)⊗

q∧
W.

(8.66)

The diagram induces an exact sequence

0 → Coker(Φ) →
(
Ker(∇q)

)∗ → Coker(ι) → 0.

Due to Theorem 8.4.2 ι is injective and its cokernel is a locally free R-module

of rank
(s−1
n−r

)
· rank

q∧
W . Therefore it suffices to show that the cokernel of

the map Φ is a locally free R-module of rank

∑

k≥1

(
s− 1

n− r + k

)
· rank

q−k∧
W. (8.67)

In order to show this we recall the notations in §8.4.2 and §8.4.3. For
integers k, h and ' we put

Mk,h(') =
n+r+s−h∧

Σ∗ ⊗ Lr+k−h ⊗ π∗O('− d + n + 1)
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and

Ck,h(') = H0(P,Mk,h(')).

Due to Lemma 8.4.3, there is an exact sequence

Ck,1(') −→ Ck,0(') −→ Bk(') −→ 0. (8.68)

We now need the following two results Lemmas 8.5.5 and 8.5.6. The first
result is a direct consequence of [3, Lem.(7-4)]. It is a generalization of
Nori’s connectivity [14] to the case of open complete intersections and is the
key to the proof of the Main Theorem.

Proposition 8.5.5. Putting Ck,h = Ck,h(d− n− 1), the Koszul complex

Cn−r+h−1,h ⊗
q−h+1∧

W → Cn−r+h,h ⊗
q−h∧

W

→ Cn−r+h+1,h ⊗
q−h−1∧

W → Cn−r+h+2,h ⊗
q−h−2∧

W

is exact for ∀h ≥ 0 assuming (II) and (III)q in the Main Theorem.

Putting Mk,h = Mk,h(d − n − 1), (8.44) induces the following exact se-
quence (cf. [3, Lem.(5-1)])

0 →Mn−r+k,n+r+s →Mn−r+k,n+r+s−1 → · · ·→Mn−r+k,0 → 0. (8.69)

Lemma 8.5.6. Let k ≥ 1 be an integer. Then the complex

0 → Cn−r+k,n+r+s → Cn−r+k,n+r+s−1 → · · ·→ Cn−r+k,0 → 0

induced by (8.69) is exact except at the term Cn−r+k,k−1, and the cohomology

group at this term is isomorphic to Hn(
r+s−k∧

Σ∗).

Before proving Lemma 8.5.6, we complete the proof of Lemma 8.5.4 as-
suming TR/k / W . We write B• = B•(d − n − 1). Consider the following
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commutative diagram:

Cn−r−1,1 ⊗
q+1∧

W → Cn−r−1,0 ⊗
q+1∧

W
j1→ Bn−r−1 ⊗

q+1∧
W

↓ ↓ ↓ Φ

Cn−r,1 ⊗
q∧
W → Cn−r,0 ⊗

q∧
W

j2→ Bn−r ⊗
q∧
W

↓ ↓

Cn−r+1,2 ⊗
q−1∧

W → Cn−r+1,1 ⊗
q−1∧

W → Cn−r+1,0 ⊗
q−1∧

W

↓ ↓ ↓

Cn−r+2,2 ⊗
q−2∧

W → Cn−r+2,1 ⊗
q−2∧

W →
...

↓ ↓

Cn−r+3,2 ⊗
q−3∧

W →
...

↓
...

Starting from the third row, each horizontal sequence is exact except at

the term Cn−r+k,k−1 ⊗
q−k∧

W (k ≥ 1) by Lemma 8.5.6. The horizontal
sequences in the first and second row are exact, and the maps j1 and j2

are surjective (cf. (8.68)). The vertical sequences are exact at the boxed
terms by Proposition 8.5.5. A diagram chase now shows that there is a
finite decreasing filtration U• on Coker Φ such that U0 CokerΦ = CokerΦ
and that

Grk−1
U CokerΦ / Hn(

r+s−k∧
Σ∗)⊗

q−k∧
W (k ≥ 1).

This shows that the cokernel of Φ is a locally free R-module. Moreover, by
Proposition 8.4.5 (iii), we have

rank(CokerΦ) =
∑

k≥1

(
s− 1

r + s− k − n− 1

)
· rank

q−k∧
W, (8.70)

which is equal to (8.67). (Note
(x

!

)
= 0 for ' < 0 by convention.) This

completes the proof of Lemma 8.5.4 assuming TR/k / W .

Now we prove Lemma 8.5.6. Noting Mn−r+k,n+k =
r+s−k∧

Σ∗, we decom-
pose (8.69) into the following exact sequences:

0 →Mn−r+k,n+r+s → · · ·→Mn−r+k,n+k+1 → N1 → 0, (8.71)
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0 −→ N1 −→
r+s−k∧

Σ∗ −→ N2 −→ 0, (8.72)

0 → N2 →Mn−r+k,n+k−1 → · · ·→Mn−r+k,0 → 0. (8.73)

By Lemma 8.4.4 i), Hw(Mn−r+k,h) = 0 for ∀w ≥ 0 and ∀h ≥ n + k + 1.

Hence Hw(N1) = 0 and Hw(
r+s−k∧

Σ∗) = Hw(N2) for ∀w ≥ 0. On the other

hand, since Hw(
•∧
Σ∗⊗Lν) = 0 if ν > 0 and w > 0 by Lemma 8.4.4 (iii), we

have Hw(Mn−r+k,h) = 0 for ∀w > 0 and 0 ≤ ∀h ≤ n + k − 1. This means
that (8.73) is a flabby resolution of N2. Therefore, for 0 ≤ h ≤ n+k−2, the

cohomology group at Cn−r+k,h is isomorphic to Hn+k−1−h(
r+s−k∧

Σ∗). Now
the assertion follows from Proposition 8.4.5 (i).

8.5.3 Proof of (ii) : General Case

It remains to show 8.5.4 in case Θ : TR/k → W is not necessarily an isomor-
phism. Setting I = Ker(TR/k → W ), we get the exact sequence:

0 −→ I −→ TR/k −→ W −→ 0. (8.74)

Since W is a locally free R-module, so is I. By the argument in §8.5.2 it
suffices to show that the cokernel of the map

Bn−r−1(d− n− 1)⊗
q+1∧

TR/k −→ Bn−r(d− n− 1)⊗
q∧

TR/k (8.75)

is a locally free R-module of rank

∑

k≥1

(
s− 1

n− r + k

)
· rank

q−k∧
TR/k. (8.76)

(8.74) gives rise to a filtration U• on
q∧
TR/k such that U i/U i+1 = (

q−i∧
W )⊗

(
i∧
I). Since I annihilates B•(d− n− 1), the map (8.75) admits a filtration

whose graded quotients for 0 ≤ i ≤ q are given by

Bn−r−1(d−n−1)⊗
q+1−i∧

W⊗
i∧

I −→ Bn−r(d−n−1)⊗
q−i∧

W⊗
i∧

I. (8.77)

By what we have shown in §8.5.2 the cokernel of the map (8.75) is a locally
free R-module of rank

q∑

i=0




∑

k≥1

(
s− 1

n− r + k

)
· rank(

q−i−k∧
W )



 · rank(
i∧

I). (8.78)
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It is easy to see that the numbers (8.76) and (8.78) are equal (left to the
reader).

This completes the proof of the Main Theorem.
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